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ABSTRACT  
   

Sensing and controlling current flow is a fundamental requirement for 

many electronic systems, including power management (DC-DC converters and 

LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, 

and power monitoring. Current Shunt Monitor (CSM) systems have various 

applications for precise current monitoring of those aforementioned applications. 

CSMs enable current measurement across an external sense resistor (RS) in series 

to current flow. Two different types of CSMs designed and characterized in this 

paper. First design used direct current reading method and the other design used 

indirect current reading method. Proposed CSM systems can sense power supply 

current ranging from 1mA to 200mA for the direct current reading topology and 

from 1mA to 500mA for the indirect current reading topology across a typical 

board Cu-trace resistance of 1 Ω with less than 10 µV input-referred offset, 0.3 

µV/°C offset drift and 0.1% accuracy for both topologies. Proposed systems avoid 

using a costly zero-temperature coefficient (TC) sense resistor that is normally 

used in typical CSM systems. Instead, both of the designs used existing Cu-trace 

on the printed circuit board (PCB) in place of the costly resistor. The systems use 

chopper stabilization at the front-end amplifier signal path to suppress input-

referred offset down to less than 10 µV. Switching current-mode (SI) FIR filtering 

technique is used at the instrumentation amplifier output to filter out the chopping 

ripple caused by input offset and flicker noise by averaging half of the phase 1 

signal and the other half of the phase 2 signal. In addition, residual offset mainly 

caused by clock feed-through and charge injection of the chopper switches at the 
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chopping frequency and its multiple frequencies notched out by the since 

response of the SI-FIR filter. A frequency domain Sigma Delta (Σ∆FD) ADC 

which is used for the indirect current reading type design enables a digital 

interface to processor applications with minimally added circuitries to build a 

simple 1st order Σ∆ ADC. The CSMs are fabricated on a 0.7µm CMOS process 

with 3 levels of metal, with maximum Vds tolerance of 8V and operates across a 

common mode range of 0 to 26V for the direct current reading type and of 0 to 

30V for the indirect current reading type achieving less than 10nV/√�� of flicker 

noise at 100 Hz for both approaches. By using a semi-digital SI-FIR filter, 

residual chopper offset is suppressed down to 0.5mVpp from a baseline of 8mVpp, 

which is equivalent to 25dB suppression. 
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1    INTRODUCTION 

As electronic devices are becoming more versatile by converging many 

functions and independent devices into one compact form, designing power 

hungry portable devices with longer operation time is becoming more important 

than ever. Not only building long-lasting power management system is important, 

but also using it more efficiently is becoming essential in recent electronics 

applications. As a consequence, sensing and controlling current flow from energy 

sources is a fundamental requirement for several electronic systems [1]-[5], 

including power management (DC-DC converters and LDOs) [1], [6]-[7], battery 

chargers [8]-[9], electric vehicles [10]-[11], solenoid positioning [12]-[13], motor 

control [14], and power monitoring [15]. Current Shunt Monitors (CSMs) are part 

of the instrumentation amplifier family, which is dedicated to precise sensing of 

system current for industrial and consumer applications [16]-[18]. In many system 

applications, sensing of supply current with less than 1% error across the power 

source common-mode voltage range is required. Most practical way of sensing 

the current is measuring voltage drop across a current sensing resistor (RS) [19], 

which requires reading out of voltages ranging from 10mV to hundreds of mV in 

typical applications [20]. Fig. 1.1 shows a concept of how current sensing can be 

completed through a dedicated sense resistor which placed in series with the 

current path. 

 Sensing of weak supply current by monitoring voltage drop across current 

sensing resistor in the presence of high common mode range input signal (0V up 

to 30V in case of the proposed designs) is a challenging design task.  
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Fig. 1.1 Sensing of current through a series connected sense resistor RS 

 

To sense the typical range of the voltage drop, input referred offset floor 

of the input front-end pre-amplifier should be well below tens of micro volt (µV) 

range [21]. To obtain low input referred offset, auto-zeroing and chopping is 

widely used in current shunt monitors. While each approach has its own strengths 

and trade-offs, due to noise folding problem associated with auto-zeroing [22], 

chopping has been the preferred method for instrumentation applications [23]-

[26].  

 Although chopping can effectively suppress input referred DC offset by 

modulating it to the chopping frequency, the up-converted DC offsets and flicker 

noise can cause considerable ripple at the chopping frequency [27]. Mismatches, 

clock feed-through, and charge injection of the first chopping switches can also 

cause residual offset at the amplifier input, which is amplified by the amplifier 

gain and modulated to the odd multiples of the chopping frequency.  



  3 

 

Fig. 1.2 Sources of noise in chopper amplifier system 

 

 Fig. 1.2 shows the sources of noise that contributed to the final amplifier 

output after demodulation in general chopping amplifier systems. To obtain the 

required input referred offset level, 10µV, with other specification targets listed in 

the following chapters, two different types of CSMs have been designed and 

presented in this dissertation. First type of design adopted direct current reading 

topology which takes some portion of the current to be measured into the CSM 

loop to read the precise amount of current flowing while the second design 

adopted indirect current reading topology which converts the sensed input voltage 

drop corresponding to the amount of the current flowing through a sense resistor 

(RS) back into current by using a gain boosted Gm stage inside CSM system. Both 

of the proposed designs implement ripple reduction scheme that uses a second 

order current mode semi-digital FIR filter. The current mode second order semi-

digital FIR filter provides a notch filter at the integer harmonics of the chopping 



  4 

frequency to notch out the chopping ripple and residual offset at the multiples of 

the chopping clock frequency and current domain operation removes the need for 

current to voltage conversion, which eliminating a possible step of generating 

noise. Fig. 1.3 shows the typical form of a notch filter response. 

 Furthermore, the indirect current reading type CSM embedded all digital 

frequency-domain ADC. Sigma-Delta Frequency to Digitization (Σ∆FD) block 

that requires only two D flip-flops (DFFs) and one XOR gate has been designed 

to build the required first order Σ∆ ADC. This added function with minimal 

power dissipation enables digital output, which makes the system possible to 

interface with other digital systems.  

While a wide variety of applications benefit from the ability to measure 

current flow, current sensing has been primarily for circuit protection and 

reporting. However, as technology advances, current sensing is becoming more 

important as a way to monitor performance and ultimately enhance it [28].  

 

FS 2FS 3FS 4FS

dB

frequency

 

Fig. 1.3 A general form of notch filter response 
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Some applications that benefit from current sensing can be: 

• Over-current protection and supervising circuits  

(enhancing battery life for mobile application and Hybrid vehicles) 

• Programmable current sources 

• Linear and switch-mode power supplies 

• Battery chargers 

• Battery-operated circuits for which the ratio of current flow into and out of 

a rechargeable battery should be known 

•  Proprotional solenoid control (current control)  

 The paper is organized as follows. In chapter 2, different current sensing 

techniques (methods), definition and types of current shunt monitors followed by 

explanation of related prior works are discussed. Basic principles of chopper 

stabilization technique including analyzing noise entailed due to chopping and 

some techniques to reduce residual offset are discussed in chapter 3. Chapter 4 

introduces the proposed current shunt monitor design, which contains two 

different type of design, one with using direct current reading topology and the 

other is using indirect current sensing method. Detailed architecture and circuit 

level design of the proposed current sensing systems and measurement results for 

both of approaches will be following in the same chapter. Finally, the conclusion 

is drawn in chapter 5. 

 
 
 
 
 



2    CURRENT SENSING TECHNIQUES 

2.1    Different Current Sensing Methods 

Current sensors are electronic circuits that monitor the current flow by 

measuring voltage drop across a resistor (RS) placed in-line with the current path. 

The outputs of the current sensor can be either a voltage or a current that is 

proportional to the current through the measured path. Unlike voltage monitoring, 

which can be performed with a high degree of precision while introducing 

virtually no losses into the measurement system, current sensing requires 

sacrificing DC precision for low insertion loss or suffering high insertion loss for 

greater DC precision depends on the magnitude of the inserted sensing resistor 

(RS) [29]. Current sensing can be performed either at the low side or the high side 

of the load. Low side current sensing can be performed by connecting a current 

sensing element between the load and the ground as shown in Fig. 2.1 (a). Current 

is measured by looking at the voltage drop across a resistor (RS) placed between 

the load and ground. Some of the advantages of low side current sensing 

technique are that it is straight forward, easy, and rarely requires more than an op-

amp to implement, and is inexpensive and precise [17]. However, addition of 

undesirable resistance in the ground path may cause ground noise which cannot 

be tolerated in most high accuracy system applications. In a similar manner, high 

side current sensing requires connecting a current sensor between the supply and 

the load as shown in Fig. 2.1 (b). Current is measured by looking at the voltage 

drop across a resistor (RS) placed between the supply and the load. Some of the 

advantages of high side current sensing technique are as following.  
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                                       (a)                                            (b) 

Fig. 2.1 (a) Low side and (b) high side current sensing 

 

Since a current sensor connected directly to the power source, it can detect 

any downstream failure and trigger appropriate corrective action. Also, it won’t 

create an extra ground disturbance that comes with a low side current sensing 

design [29].  

 While introducing no ground disturbance as in low side current sensing, 

high side current sensing approach must withstand switching wide common-mode 

range voltages, which may be outside the limits of the supply rails of the 

amplifiers being used [28]. Also, high side current sensing technique requires 

very careful resistor matching in order to obtain an acceptable common mode 

rejection ratio (CMRR). The results of inaccuracy due to the resistor mismatching 

are [29]: 

• A 0.01% deviation in any resistor value lowers the CMRR to 86dB 
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• A 0.1% deviation lowers it to 66dB 

• A 1% deviation lowers it to 46dB 

 A conceptual view of a conventional in-line current sensing signal chain is 

shown in Fig. 2.2. Both the low side and high side sensing concept are depicted in 

a single drawing for simplicity. Both of the techniques require insertion of a 

resistor in series with the load. Although reduction of such resistor would bring 

down the amount of the power dissipated by the component, the measured voltage 

generated by the current of interest also gets reduced, which results in increased 

errors for the input sensing amplifier. Also, such a resistor typically requires high 

precision over the entire operating temperature variation, which also increase the 

overall system cost. Therefore low insertion loss input current sensing component 

with high precision sensing instrumentation amplifier that has less than 10µV 

input referred offset is crucial for this design. 

 

 
 

Fig. 2.2 Conventional Low and High side in-line current sensing signal chain 
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2.2    Definition and Types of Current Shunt Monitors 

CSMs are unique new amplifier family that is solely dedicated to high side 

current sensing applications, and contains all the necessary functions needed to 

perform the measurement easily and economically [17]. Figure 2.3 shows an 

example of test set-up (signal chain) by using a conventional CSM.  

 There are two main approaches of sensing current that can fulfill the 

aforementioned requirements. First method is to sense the current directly by the 

CSM [19]. In this approach, two resistors of RS and RG designed ratiometrically 

sense a portion of the current directly into the CSM system as depicted in Fig. 

2.4(a).  The voltage drop with respect to the current ratio set by the size of the RS 

and RG across the final load resistance (RL) can be measured as follows.   

�	 =  ���� ���
��

�                                                                                                 (2.1) 

Load
VIN+ VIN-

RS

VIN+

V+

Up to ~60V

IS

VO = ISRSRL / RIN

RINRIN

GND
RL

 

 
Fig. 2.3 A signal chain of current sensing by using a conventional CSM 
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IIN

RLIRL

RS

LOAD

Battery

Vo

RG

 

(a) 

 

 

(b) 

Fig. 2.4 (a) Direct and (b) Indirect current reading topology 

 
 Interestingly, the ratio of RG and RS has important roles in terms of how 

much of the input referred offset would affect the final value of the CSM noise. 

Shown in Fig. 2.5. is calculation of the relationship among RS, RG and DC input 

offset in terms of contribution of the input offset to the final noise level. 
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Fig. 2.5 Input referred offset contribution with respect to the ratio of RG/RS 

 
Applying KVL in the loop will result in: 

���� − ���� + ��	��� = 0                                                                                (2.2) 

Solving equation (2.2) with respect to the input current to the system, I2 will result 

in: 

�� = �� ���
��� + ��  

��                                                                                            (2.3) 

The equation (2.3) clearly shows that the input referred DC offset is inversely 

proportional to the magnitude of gain resistance (RG). Therefore, increasing the 

ratio of RG/RS is desirable in typical CSM application.           

 The second method is reading the current indirectly by using input 

transconductance (gm) stages [30]. As shown in Fig. 2.4(b), by maintaining the 

effective gm of the input stage constant, current proportional to the product of gm 

and sensed input voltage across a sensing resistor can be measured as in the 

following equation. 
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�!"#!" =  $%"���!"#!"     &ℎ()(,    $%"�� =  +
�,-.                                         (2.4) 

However, the effective input transconductance (Gm) value of source degenerated 

transconductance stage is not linear over the entire operation range unless the gm 

value of input transistor pair is huge enough to be ignored with respect to the 

magnitude of degeneration resistance, RDeg as shown in the following equation. 

$% ≅ +
�,-.0 1

.2
                                                                                                     (2.5) 

Therefore, a crucial challenge of designing a current shunt monitor based on this 

topology is how to increase the effective transconductance value of Gm over the 

entire operation (input common mode) range. 

 

2.3    Prior Work Analysis 

As briefly mentioned in earlier chapter, the residual offset occurred by the 

chopper stabilization needs to be canceled out through a following circuit chain in 

CSM systems. Designing CSMs with less noise and possible reduction of cost has 

been actively performed. There are several prior works that can be related to CSM 

designs. Since chopping technique was used for all the works due to the 

superiority compared with other offset cancelling techniques, namely auto-

zeroing, and correlated doubling sampling [27], the prior works inevitably have 

residual offset and entail offset cancelling mechanism. Most of the prior arts fall 

into one of the subcategories as following; ripple reduction loop based low pass 

filter technique [19], band pass filter based ripple reduction technique [31], and 

nested chopper based ripple reduction [22]. In general, each different method was 
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designed to have lower comparable residual ripple while each approach has its 

own shortcoming. The following prior works that represents each one of the 

aforementioned approach is discussed in this chapter. 

 

2.3.1    A Current-Feedback Instrumentation Amplifier with 5µV Offset for 

Bidirectional High Side Current Sensing 

Shown in Fig. 2.6 is a simplified signal chain of the presented prior art. 

This architecture uses a ripple reduction loop based low pass filter technique for 

residual offset cancellation. Basic operation principle can be found through the 

following: 

  �+ =  $+  ×  �4#                                                                                               (2.6)                       

  �� =  $�  ×  ��5                                                                                               (2.7)  

 

 

Fig. 2.6 An indirect current-feedback instrumentation amp 
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By equating equation (2.6) and (2.7), we get the following: 

�� = $�  ×  � 6
��780� 6

9�	:; − �<"�=                                                                 (2.8) 

Now, let I1 = I2, 

 
9��78 > �?- =

�@A
=  ��78 0 � 6

B 6
 ��1

�C
�                                                                         (2.9) 

 Some of the advantages of this approach are including isolation of input 

and output CM (Common-mode) voltages, which implies that the input CM 

voltage can be lower than the output CM voltage and handling of bidirectional 

currents. However, a shortcoming of the topology could be that its offset is the 

sum of the offsets of both G1 and G2. Also, high complexity of chopping and auto-

zero paths with nested miller compensated op-amp blocks and not covering the 

lower rail around 0V are some of the potential problems of this topology.   

 

2.3.2    A CMOS Instrumentation Amplifier with 600nV Offset, 8.5nV/√�� 

Noise and 150dB CMRR 

Shown in Fig. 2.7 is a simplified signal chain of the presented prior art. In this 

design is used a band pass filter based residual ripple reduction technique. The 

following equation (2.10) shows the optimal Q factor for the designed band pass 

filter (BPF).  

  D	E; = F +
GH       , I =  �JK�L>�M

�M                                                                      (2.10)                 

where f0 is BPF center frequency.                                                      
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Fig. 2.7 Block diagram of the instrumentation amp 

 

 Cancellation of the residual ripple at every ripple frequency can be 

directly performed by applying a BPF. However, the required high Q of the BPF 

introduces gain inaccuracies if there is a mismatch between fchop and the center 

frequency, ω₀, of the BPF. Also, it does not function over the input rail-to-rail 

operation which in many cases is a requirement of applications. 

 

2.3.3    A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset 

 
 

Fig. 2.8 Nested chopper instrumentation amp 
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 Shown in Fig. 2.8 is a signal chain of the nested chopper based chopping 

ripple reduction technique. The architecture embedded two sets of choppers; one 

inside and the other surrounding the pairs from the outside. This technique can 

reduce down the fast clocking chopping (CH1) ripple by averaging it with slower 

clocking chopping (CH2) modulator signal.  

 

 
 

(a) 

 
 

(b) 

 
(c) 

 
 

Fig. 2.9 (a) Residual offset of faster chopper (CH1) (b) wave form of slower 

chopper (CH2) and (c) modulated residual ripple after passing through both CH1 

and CH2 



  17 

 Fig. 2.9 shows the mechanism and the resulting waveforms at each stage 

of nested chopping residual ripple reduction technique accordingly. One set of 

choppers (CH1) is clocking faster than the other set (CH2). The faster clocking 

sets of chopper modulate and demodulate the input dc-offset such as flicker noise 

as normal sets of choppers are operating. The Additional sets of outside chopper 

that have slower chopping frequency (fchopslow) cancel out the ripples occurring 

from the original fast chopper by alternating the insider chopper’s ripple as shown 

in clock sequence on Fig. 2.9 (b). However, a possible shortcoming of this 

topology is that the maximum input signal frequency is limited to half of fchopslow.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3    BASIC PRINCIPLE OF CHOPPER STABILIZATION 

Chopper stabilization (CHS) is a modulation technique that can be used to 

reduce the effects of op amp imperfections such as noise (mainly due to flicker 

and thermal noise of input devices, input pair mismatch, and etc.) and input 

referred dc offset voltage. This technique was first developed by Edwin A. 

Goldberg in 1949. There are other techniques that can reduce the input referred 

offset such as auto-zeroing (AZ), and correlated double sampling (CDS) which 

can be regarded as a particular case of AZ. While AZ uses sampling technique for 

operation, CHS employs modulation base operation technique. Since AZ and 

CDS suffer from noise folding issue due to its sampling nature, CHS does not 

suffer from the issue, which results in better performance in terms of in referred 

offset level. 

 

3.1 Basic Theory 

The CHS technique uses an AC carrier to get an AC signal from DC by 

modulating the input signal. Fig. 3.1 shows the principle of chopper amplification. 

The clock signals m1(t) and m2(t) in the figure are modulating and demodulating 

carriers (clock signal for the transmission switches) with period T=1/fchop, which 

in other words is the chopper frequency. VOS and VN denote deterministic dc 

offset and noise (mainly flicker), respectively. In this configuration is assumed 

that the input signal is band-limited to half of the chopper frequency (fchop), hence 

no signal aliasing is occurring. Chopper frequency (fchop) is normally selected at 

significantly higher frequencies where there is no 1/f noise.  
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Fig. 3.1 Principle of chopper amplification 

  
Amplitude modulation is performed by using a square wave signal 

(carrier) which transposes the signal and the noise to the each multiple sets (even 

and odd multiples) of chopper frequency. For the periodic carrier with a period of 

T and 50% duty cycle, its Fourier representation is [32]: 

NOPQ = 2 ∑ !4#�ST
C �

�ST
C �

UVW+ cos (2[\]^	E_P)                                                             (3.1) 

Since the k-th Fourier-coefficients, Mk of the above equation 3.1 has the 

following property as 

`a = `±� = `±c… = 0                                                                                     (3.2) 

The resulting modulated signal that is shown as Vin at m1 (t) in Fig. 3.1 is 

transposed to the odd harmonic frequencies of the modulating signal. Once 

modulation and amplification are done, the signal is then demodulated by 

multiplying m2 (t) to obtaining the following: 
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�e(P) = 4g�4#(P) ∑ !4#�ST
C �

�ST
C �

UVW+ cos (2[\]^	E_P) ∑ !4#�hT
C �

�hT
C �

UiW+ cos (2[\]^	EjP)  (3.3) 

 Since the signal obtained through the equation (3.3) contains harmonic 

contents at multiple chopper frequencies as shown in Fig. 3.2, the demodulated 

signal is generally applied to a low pass filter with a cut-off frequency slightly 

above the input signal bandwidth to recover the original signal in amplified form. 

Shown in Fig. 3.2 is the Fourier transform of the noiseless demodulated output 

signal with loss pass filter signal applied on top of the demodulated signal at half 

of the chopper frequency. While the input signal is being modulated and 

demodulated accordingly, noise and offset are modulated only once. If SN(f) 

denotes the power spectral density (PSD) of the noise and offset, then the PSD of 

(VOS + VN)m2(t) is [33] 

 

 
 

Fig. 3.2 Fourier transform of the ideal noiseless output signal with a low pass 

filter 
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kl�(\) = m |`�V0+|�k� o\ − 2_ + 1
q r

U

VW>U
 

= �s
��� ∑ +

(�V0+)C
UVW>U k� �\ − �V0+

t �                                                                 (3.4) 

Therefore it is clear that noise and offset are transposed to the odd 

harmonic frequencies of the modulating signal as shown in the equation (3.4), 

which is leaving the chopper amplifier ideally without any offset or low-

frequency (flicker) noise.  

 

 
 

(a)                                                               (b) 
 

VA(t)

V in
A**)/4( π

V in
A**)/4( π−

t t

VA(t)

V in
A**)/4( π

V in
A**)/8(

2

π

 
 

(c)                                                             (d) 
 

Fig. 3.3 Effect of limited bandwidth of the amplifier on (a) a dc input signal, (b) 

modulation signal, (c) amplified signal after modulation, and (d) low pass filtered 

output signal after demodulation 
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Assuming the input signal Vin is a dc (at a frequency much lower than the 

chopper frequency) signal, if the amplifier is ideal that in other words means 

infinite gain bandwidth with no delay, the signal VA is simply the square wave 

with an amplitude A·Vin and the signal after demodulation is also a dc signal as 

A·Vin. In reality, the amplifier would normally have limited bandwidth and 

propagation delay. Assuming the amplifier has a bandwidth of twice of the 

chopper frequency with a constant gain of A and zero elsewhere (ideal low pass), 

the amplifier output signal VA(t) is now a sine wave corresponding to the 

fundamental component of the chopped dc signal with an amplitude (4/[)(A·Vin) 

[27] as shown in Fig. 3.3. Consequently, the output Vout as depicted in Fig. 3.3(d) 

of the demodulator is a rectified sine wave containing even-order harmonic 

frequency components [34]. Again, the output should be low pass filtered to 

recover the desired amplified signal. 

 Finally, delay introduced by the main amplifier could also degrade overall 

dc gain. Assuming the amplifier has an infinite bandwidth but introduces a 

constant delay of T/4 while the input and output modulators are in phase, the 

output signal would be a chopped cosine wave without a dc component and 

containing only odd harmonics. Therefore, the overall dc gain of the chopper 

stabilized amplifier would be zero. If there is the same constant delay between the 

input and output modulators, i.e., ∆t in Fig. 3.1 equals to T/4, the output signal is 

a rectified sine wave. In conclusion, the phase shift between the two modulators 

needs to match precisely with the phase shift introduced by the main amplifier in 

order to maximize the dc gain of the chopper amplifier [27]. 
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3.2    Noise Analysis due to Chopping 

Generally, there are two types of noise sources that corrupt analog signals 

processed by integrated circuits. One is device electronic noise and the other is 

environmental noise. The environmental noise in other words refers to random 

disturbances that a circuit experiences through the supply or ground lines or 

through the substrate in practical system applications [35]. On the other hands, 

electronic noise refers more to the intrinsic noise that is mainly occurring due to 

the characteristics of the material [36]. More specifically, the electronic noise can 

be divided into two parts: thermal and flicker noises. While each noise source 

shows different characteristics over frequency, the effect of chopping on both 

thermal (white) noise and flicker noise is analyzed in the following section. 

 

3.2.1    Chopping Noise Effect on Amplifier 

Shown in Fig. 3.4 is the plot of power spectral density (PSD) for both 

flicker and thermal (white) noise on the same axes.  

 

V n

2
log20

 
Fig. 3.4 Concept of flicker noise corner frequency 
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Let fc be the cut-off frequency of the main amplifier drawn in Fig. 3.1. The 

corner frequency depicted in the figure serves as a measure of what part of the 

band is mostly corrupted by flicker noise [37].  

In general, the definition of cut-off frequency widely used is the frequency 

for which the transfer function magnitude is decreased by the factor of 1/√2 from 

its maximum value [38]. More precisely, the 1/f noise corner, fc, of the output 

current can be determined as 

4_q ��
u vN� = w

l�xyz ∙ +
�J

∙ v%�                                                                           (3.5) 

that is, 

\l = w
l�xyz v% u

GVt                                                                                              (3.6) 

 The effect of the chopper modulation on the amplifier noise can be 

analyzed as in Fig.3.5 where VN(t) is the noise and m(t) the carrier signal. The 

bilateral PSD of the chopped output signal VCS(t) is given as 

kl�O\Q =  �s
��� ∑ +

#C
0U#W>U# 	ee

k� �\ − #
t�                                                                (3.7) 

In baseband (|\| ≤ 0.5\]^	E), SCS in equation 3.4 can be approximated by a white 

noise PSD as in the following: 

kl�>�^4;"(\) = kl�>�^4;"(\ = 0) = ka �1 − ���� (T
C�Jt)

T
C�Jt �                                  (3.8) 

 Assuming an amplifier cut-off frequency fc equal to five times the chopper 

frequency 1/T, and for fc >> fchop, SCS-white can be further approximated to 

kl�>�^4;"(\) ≅ ka   \�)   |\| ≤ 0.5\]^	E  ���  \] ≫  \]^	E                              (3.9)

 Therefore it is possible to say that the baseband PSD of the noise is nearly 
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constant for large fc of the amplifier. Unlike auto-zeroing (AZ) technique, the 

chopper modulation does not introduce aliasing of the broadband noise, which for 

AZ causes the PSD in the baseband to increase proportionally with the ratio of the 

noise bandwidth and the sampling frequency [39].  

 As shown in equation (3.8), the baseband PSD resulting from the chopper 

modulation is nearly constant, and it tends to be same as the value of the input 

white noise S0 for a large fcT. This is because of that the noise is not sampled nor 

held, just periodically inverted without changing the general properties of the 

noise in the time domain. Although the chopper modulator output PSD results 

from a summation as for a sample and hold (S/H) process, in the chopper 

modulation the replicas are multiplied by 1/n2, making their contribution to the 

baseband decrease very rapidly [27].  

 For 1/f noise, the input PSD can be described as  

k�>1
 
(\) = ka

�S
|�|                                                                                               (3.10) 

where fk is the amplifier corner frequency. Substituting the PSD in eq. 3.10 into 

eq. 3.2, the low frequency noise is translated into higher frequencies, which in 

other words means that the 1/f noise pole disappears from the baseband. 

 
Fig.3.5 Chopper modulation 
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Simulation shows that the chopped 1/f noise PSD in baseband can be 

approximated by [27] 

kl�>1
 
(\) = 0.8525ka\Vq                                                                                (3.11) 

 Finally, the total input-referred residual noise in the baseband for a typical 

amplifier can now be defined by summing the equation (3.9) and (3.11). 

kl�(\) = ka(1 + 0.8525\Vq)  \�)    |\| ≤ 0.5\]^	E   ���   \]  ≫  \]^	E       (3.12) 

Therefore, it is reasonable to choose the chopper frequency (fchop) equal to the 

amplifier corner frequency (fk). The resulting noise PSD increase is less than 6dB 

[27]. 

 

3.2.2    Chopping Noise Effect on Residual Offset 

Since the modulators are realized with MOS switches in most of the cases, 

it suffers from both charge injection and clock feed-through. Charge injection is 

known as that the remaining charges exit through the source and drain terminals 

every time the switch turns off. Clock feed-through is occurring due to the result 

of the coupling between control signals on the analog switch and analog signal 

passing through the switch. Such coupling happens because of the gate-to-source 

capacitance, interconnects parasitic capacitance or because of the substrate 

coupling [27]. The non-idealities cause spikes at the input of the main amplifier. 

The spikes (residual offset voltage) being located input of the amplifier will be 

amplified then modulated by the output modulator. Shown in Fig. 3.6(a) is a 

typical spike signal in time domain where � represents the time constant of the 

generated (parasitic) spikes, T is the chopper clock period. Since only the odd 
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harmonics of the chopper frequency contributes to the final residual offset as 

explained in earlier chapter, the spike signal has an odd symmetry. Since the time 

constant � normally has much smaller value than the half of the chopper clock 

period T/2, the energy of the spike signal tend to be concentrated at frequencies 

higher than the chopper frequency. Shown in Fig. 3.6(b) are the spectra of the 

spikes and the chopper-modulated signal that are located at the input of the main 

amplifier.  

τ

 
 

(a) 
 

τ/1~
 

 
(b) 

 
Fig. 3.6 (a) Spike signal at the input of the amplifier (b) spectra of spike signal of 

chopper modulated signal with amplifier bandwidth characteristics 
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The input-referred offset from the spectra can be calculated as following 

[27]. 

��� ≅ ��
t �!E4V"                                                                                                 (3.13) 

As discussed in the earlier section, a maximum dc gain AV can be 

achieved by using an amplifier with a bandwidth much higher than the chopper 

frequency, fchop. However, using a wide bandwidth amplifier also results in a 

maximum output offset voltage because almost all of the spectral components of 

the spike signal will also contribute by transferring through the wide bandwidth 

amplifier. Therefore, a good design compromise is to limit the bandwidth of the 

amplifier to twice the chopper frequency. The overall dc gain resulted will be  

(8/[�) ∙ g� = 0.81g�                                                                                     (3.14) 

The equation shows only 19% degradation of dc gain while the offset voltage is 

reduced drastically as [27] 

��� ≅ ���
t �� �!E4V"                                                                                            (3.15) 

 

3.3    Techniques to Reduce Residual Offset 

As mentioned in previous section, residual offset mainly caused by charge 

injection of MOS switches. On top of the channel charge injection, the most 

important factors affecting residual offset are the following: 

• clock feed-through 

• sampled noise 

• leakage current 
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 Channel charge injection and clock feed-through related residual offset 

cancelling approaches will be discussed in this section. Fig. 3.7 shows a cross-

section of a transistor. As shown in the figure, when the transistor is on, charge 

forms under the gate to create a channel for current (Id) to flow. When the 

transistor turns off, this charge has to go somewhere. 

 In general, defining where the charge goes (how it divides between the 

two sides of the transistor) is an extremely complex function of the relative 

impedances on either side of the switch, the transistor type, the relative voltage 

levels on either side of the switch and the fall time of the gate voltage. In general, 

since ∆� =  ∆�/�, using a small switch and a larger capacitance will help.  

 However, if the switch is too small and the capacitor is too large, the 

required charge transfer will not have time to complete. Also, more power is 

required to drive large capacitance as well. A simple MOS switch can be drawn as 

in Fig. 3.8. Ch corresponds to the total capacitance at the switch drain (the hold 

capacitor) and Cp corresponds to the total parasitic capacitance at the source. 

 

 
 

Fig. 3.7 A cross-section of a MOSFET transistor 
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Fig.3.8 Basic MOS switch 

 
 

 Although it is a complex function to solve where the charge ends up 

distributed, whichever say the charge goes, some of it ends up on Ch and causes 

an error in the voltage that has been sampled on to Ch. 

 Besides increasing the size of hold capacitance and minimize the size of 

the MOSFET switch, there are many well known techniques of reducing residual 

offset caused by charge injection. Some of the basic approaches will be discussed 

in the following sub-sections. 

 

3.3.1    Using Complementary Switches 

One of the simplest conventional approaches is to use complementary 

switches instead of using a single type of MOSFET switch. The basic theory of 

this approach is that the charges released by one switch are absorbed by the 

complementary switch to build its channel. In reality, it is difficult to match 

precisely channel charges of an n-MOSFET device and a p-MOSFET device. 
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Therefore insertion of a half sized dummy switch between the drain of the switch 

and the hold capacitance, Ch would help to recover the net charge transfer as zero. 

However, phase jitter between the two complementary clocks further degrades the 

charge mismatch [27].   

 

3.3.2    Using Larger Capacitance 

Another efficient way of reducing the charge injection is to make Cp (total 

parasitic capacitance at the source side) much larger than Ch (total capacitance at 

the switch drain side) and choose a slow clock transition. Most of the channel 

charges will be attracted to the larger capacitor Cp, leaving almost zero charges to 

Ch on the output side. A main drawback of this approach is that it sets a limit on 

the maximum clock frequency [27]. 

 

3.3.3    Fully Differential Structure 

φ

φ

 
 

Fig.3.9 Fully differential structure 
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 By purposely setting Cp = Ch, which in other words means that the injected 

charges to the differential capacitors are matched, the resulting voltage appears as 

a common-mode voltage and is rejected. Shown in Fig. 3.9 is an example of a 

fully differential structure. This technique usually requires the generation of 

delayed-cutoff clock phases [27]. 

 

3.3.4    Using Multistage Cascading 

Another conventional approach of reducing the offset caused by switch 

charge injection is cascading several single-stage amplifiers to achieve high gain 

and speed. Shown in Fig. 3.10 is a sample circuit of cascading stages with 

corresponding switches. In the offset sampling phase, the negative inputs of all 

the simplifiers are connected to ground. Switch S1 is opened first to inject some 

charge into capacitor C1, which results in an error voltage appearing at the 

negative input of the second amplifier. This error voltage can be viewed as a 

change in the input-referred offset voltage of the second amplifier. This offset 

ends up being cancelled along with VOS2. Switches S1, S2, …, SN are opened 

successively. The effective offset voltage is only determined by charge injection 

of switch SN into capacitor CN in the last stage because the offset voltages at 

earlier stages get cancelled.  

The equivalent input-referred offset is [27] 

��� = +
�1�C…��

∙ �@A���
l�

                                                                                      (3.16) 

where qinj is the injected charge. This offset voltage is much smaller than that 

obtained for a single-stage low-gain amplifier.  
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Fig.3.10 Multistage offset cancellation circuit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4    CURRENT SHUNT MONITOR DESIGN 

As mentioned earlier, two current shunt monitors (CSMs) shown in Fig. 

4.1 based on different topologies have designed and fully characterized through 

the following chapters.  
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Fig. 4.1 (a) Direct current reading method and (b) Indirect voltage to current 

conversion method 
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 First topology depicted in Fig. 4.1(a) is based on direct current reading 

method which intakes a portion set by the ratio of RS and RG of the sensed input 

current to read the actual sensed amount. Second topology depicted in Fig. 4.1(b) 

is based on indirect current reading method which converts sensed input voltage 

drop that is proportional to the sensed input current through a source degenerated 

transconductance (gm) stage.  

The design target is specified in TABLE 4.1. 

 

TABLE 4.1 

Design Target Specifications 

 Input Output Power 

Parameter ICMR CMRR Offset Gain 
Gain 
Error 

Non- 
linearity 

Error 
Current 

Condition    Vsense = 1mV to 200mV Quiescent 

Target  
(Max) 

0~26
V 

120dB ±10µV 
250 
V/V 

±2% ±0.1% ~300uA 

 
 

4.1 Direct Current Reading Method 

Shown in Fig. 4.2 is the completed design and signal flow of the proposed 

direct current reading CSM. In the proposed approach, voltage drop 

corresponding to the current flowing through the input sensing resistor (RS) will 

be measured by the front-end instrumentation pre-amplifier. A ratio set by RS/RG 

will determine the amount of the current flowing into the CSM block.  
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Fig. 4.2 Architecture and completed signal chain of the direct current reading 

CSM 

 
 In order to suppress input-referred flicker noise and DC offset, the pre-

amplifier uses chopper stabilization at a frequency of 150KHZ which is 

significantly higher than the flicker noise corner frequency (fC).  Fig. 4.3 shows 

the concept of how cancellation of the input referred DC offset is performed by 

applied chopper stabilization. Averaging the output current of phase1 and phase2 

cancels the effect of the offset, VOS as 

�	:;+ = �∙��
�@A

+ ���
�@A

                                                                                           (4.1) 

�	:;� = �∙��
�@A

+ O>���Q
�@A

                                                                                      (4.2) 

By equating equation (4.1) and (4.2), the following will result. 

���� = �7810�78C
�                                                                                             (4.3) 
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(a) 
 
 

 
 

(b) 
 
 

Fig. 4.3 Showing the concept of cancelling DC offset by two phases (a), and (b) 

of signals 

 

 Shown in Fig. 4.4 is a simulation result that shows plots of the power 

spectral density (PSD) of the selected process, AMIS I2T100. The plot showing 

that the flicker domain noise has been lowered after chopping is applied (yellow 

line labeled as “Chopped”).  



 

Fig. 4.4 Suppression of flicker noise r

  
 Since the chopped signal has ripple

and residual offset due to switch clock feed

cause amplified spikes at the output of the front

frequency as shown in Fig. 

following stage to suppress the output ripple 

feed-through of the switching Mosfet

phases of chopped signal 

 While averaging performs effective filtering of the chopped ripple signals, 

in the frequency domain, this is equivalent to notch filtering at integer multiples

of chopping frequency, which notches out the harmonic contents of ripples and 

residue. Fig. 4.6 shows the sequential signal flow and resulting offset and 

chopping ripple cancellation of the proposed design in both frequency and time 

domain. 
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Fig. 4.4 Suppression of flicker noise resulting from chopping

 

Since the chopped signal has ripples due to input offset and flicker noise, 

and residual offset due to switch clock feed-through and charge injection that 

cause amplified spikes at the output of the front-end amplifier 

frequency as shown in Fig. 4.5, a switching current mode FIR filter is used in the 

following stage to suppress the output ripple and residual ripple caused by clock 

switching Mosfet by taking the average of the two different 

phases of chopped signal at the chopping frequency. 

While averaging performs effective filtering of the chopped ripple signals, 

in the frequency domain, this is equivalent to notch filtering at integer multiples

of chopping frequency, which notches out the harmonic contents of ripples and 

residue. Fig. 4.6 shows the sequential signal flow and resulting offset and 

chopping ripple cancellation of the proposed design in both frequency and time 

 

esulting from chopping 

due to input offset and flicker noise, 

through and charge injection that 

end amplifier at chopping 

, a switching current mode FIR filter is used in the 

and residual ripple caused by clock 

by taking the average of the two different 

While averaging performs effective filtering of the chopped ripple signals, 

in the frequency domain, this is equivalent to notch filtering at integer multiples 

of chopping frequency, which notches out the harmonic contents of ripples and 

residue. Fig. 4.6 shows the sequential signal flow and resulting offset and 

chopping ripple cancellation of the proposed design in both frequency and time 
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Fig. 4.5 Current ripple (offset) and residual offset after chopping 

 
 

 
 
 

Fig. 4.6 Signal flow of the proposed design in frequency and time domain  
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4.1.1    Building Block Analysis 
 

Each building blocks of the first architecture (direct current reading CSM) 

is described in detail through the following sections. 

 

4.1.1.1    Matched PCB Cu-Trace Design 

In a conventional CSM design, use of an external RS increases the system 

cost, and matching of the external RS to the gain resistor (RG) as depicted in Fig. 

4.1 can cause gain error.   

 Especially, current sensing in power supplies and motor controls demands 

the use of a very low value resistor [40]. Instead of using external resistors, the 

proposed design uses existing PCB Cu-trace in place of the external RS and RG in 

the current path, which leads to elimination of external components as shown in 

Fig. 4.7. The Cu-trace resistance built as serpent shape to achieve the ratio of 

RG/RS as 50.  

The resistance for a piece of metal is given by the equation as a function of 

temperature [40]: 

�OqQ = �OtQ∙z
�                                                                                                   (4.4) 

where the units are 

R = Resistance, Ω 

S(T) = Resistivity, Ω-cm  

L = Length, cm 

a = Area, cm2 
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Fig. 4.7 Concept of building two matched Cu-trace resistance on an FR4 board 

 

Electrical resistivity can be defined as  

1.7241·10-6
Ω-cm @ 20°C 

Temperature Coefficient of Resistivity is 

+0.0039 per °C  

in typical case of 99.5% pure Cu. 

Finally, the resistivity of copper, as a function of temperature, can be defined as 

S(T)=1.7241·10-6·[1+0.0039·(T-20)] Ω-cm 

where T is the copper temperature in °C. Table 4.2 provides the required 

dimensions for a 1oz PCB copper resistor given a maximum current and desired 

voltage drop [40]. Fig. 4.8 shows the actual realization of the resistance on an 

FR4 PCB. Although the variation of the resistance over temperature is critical for 
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PCB Cu-trace resistance, the effect of absolute variation is minimal in direct 

current reading topology because it can be eliminated by using two matched Cu-

trace based resistors. 

 

TABLE 4.2 

DIMENSION SOLVER FOR GIVEN CURRENT AND DESIRED VOLTAGE DROP FOR 90°C 

MAXIMUM COPPER TEMPERATURE 

 

AMPS 

Desired Voltage Drop 

Width [in] 10mV 25mV 50mV 

PCB Etch Length [in] 

1 0.162 0.405 0.810 0.010 

2 0.243 0.608 1.215 0.015 

3 0.405 1.013 2.025 0.025 

4 0.648 1.620 3.240 0.040 

5 0.891 2.228 4.456 0.055 

6 1.053 2.633 5.266 0.065 

7 1.377 3.443 6.886 0.085 

8 1.701 4.253 8.506 0.105 

9 2.025 5.063 10.126 0.125 

10 2.430 6.076 12.152 0.150 

11 2.754 6.886 13.772 0.170 

12 3.078 7.696 15.392 0.190 
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Fig. 4.8 Cu-trace resistance on an FR4 board 

 
 In the proposed approach, the input sensing and gain resistors are designed 

in ratio such that RG/RS = 50 by using Cu-traces. Unit length of 2 inches with unit 

width of 0.9 mils, and thickness of 1.5 mils can yield a unit resistance of 1.08 Ω at 

40 °C for RS as shown in the Fig. 4.8. 

The following equation shows an example of how the 1.08 Ω resistance was 

achieved. 

qℎ( )(���P���( �P 40 °� = �O40Q

= 1.7241 ∙ 10> ¡1 + 0.0039 ∙ O40 − 20Q¤ ¥¦ − �N°� § ∙ 1000 N�j�2.54 �N ∙ 2000 N�j�
0.9 N�j� ∙ 1.5 N�j�

= 1.08 ¦ 



  44 

4.1.1.2    Input Instrumentation Amplifier Design 

To achieve less than ±1% gain error in the current readout path, the input 

front-end amplifier uses a gain boosted folded-cascode amplifier with the internal 

boosting amplifiers also utilizing folded-cascode amplifiers [41]-[42]. Modulation 

chopper is located at the input of the instrumentation amplifier and demodulation 

choppers are inserted inside each output current branch of the amplifier as 

described in Fig. 4.9. The demodulation chopper switches are inserted at the 

selected nodes because the nodes are low swing nodes. By keeping the ripple 

cancellation outside the main amplifier loop while achieving a DC gain of 110dB 

from a gain boosted folded-cascode amplifier, there is no need of using higher 

order amplifier systems, typically used in CSM applications. 

 

I
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Fig. 4.9 Insertion of the choppers into the signal path 
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 With the use of a single gain boosted amplifier, nested Miller 

compensation is avoided and the system can achieve a unity gain bandwidth of 

300 KHz with a quiescent current consumption of 100µA. 

 

4.1.1.3    Intermediate Amplifier Supply Design 

To enable the system operate over the entire common mode input range 

from 0 to 26V with a single PMOS input paired Operational Transconductance 

Amplifier (OTA), the system uses a charge pump that boosts sensed input voltage 

to around 4V above the input voltage. This intermediate rail (boosted voltage) is 

used as a power supply for front-end amplifier and the incoming common mode 

voltage (VBat) used as a ground return path for this front-end stage. 

 

 
 

Fig. 4.10 Charge pump to generate the sense amplifier supply voltage 
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 Since the charge pump only needs to maintain approximated voltage 

around 4V that can keep the front-end amplifier in saturation range and the well 

characterized load (small current in the range of 100uA) associated with the error 

amplifier, instead of using fully regulated charge pump topology, the design 

adopted a simple Dickson charge pump to minimize design complexity and size 

overhead as depicted in Fig. 4.10 [43]-[44]. Shown in Fig. 4.11 is the conceptual 

view of the role of the charge pump. Since the power supply ripple (VR) 

associated with the charge pump is inversely proportional to the size of the load 

capacitance CL, as in 

�� =  L72L
���J×l�

                                                                                                    (4.5) 

where Ipump is the pumping current into the flying capacitor (CF), which is equal to 

Iout in a steady stage [45], the optimal sizes of the passive elements can be resulted 

as following.  
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Fig. 4.11 Voltage boosting from the input common mode voltage 
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 Assuming Iout equals to 400µA (The amount of current needed to operate 

the front-end input sensing amplifier stage), charge pump oscillation clock 

frequency (fosc) at 10MHz with the load capacitance size of 10nF, the resulting 

voltage ripple at the output of the charge pump will be approximately 2mV as 

shown in Fig. 4.12. 

 

 
 

Fig. 4.12 Charge pump voltage fluctuation (ripple) 
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Fig. 4.13 Supply ripple rejection analysis (a) showing the impedance dividing 

point, and  (b) simplified small signal equivalent impedance analysis 
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 Also, the amount of charge injected to the load CL in one pumping clock 

cycle can be calculated by the following equation where Vin2 implying the voltage 

loss due to the channel resistance of the charge pump switching transistors. 

D4#¨ = ��¡�4#+ − �4#�¤ = ��¡�4#+ − �]^ × �]^¤                                                (4.6) 

The amount of voltage ripple (noise) due to the charge pump switching as 

in the equation (4.5) can be effectively reduced down by the resistor divider effect 

of the proposed architecture as described in Fig. 4.13. Small signal impedance 

looking down from the point A, represented by Zdown is  

©e	�# = �8
48 = )	 + 50 + 50v%)	g� ≅ 400`¦                                                (4.7) 

In the same manner, the following approach can be used to calculate impedance 

looking up (Zup).  

�:E = �8
48

= �
�20��

≅ �
�2

≅ 20ª¦                                                                       (4.8) 
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Fig. 4.14 CP ripple suppression by impedance dividing effect 
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Fig. 4.15 Current at node A and B in Fig. 4.13 with respect to the amount of 

charge pump voltage ripple 

 
The ratio of Zdown vs. Zup (~20,000:1) would reflect the same amount and phase of 

the power supply ripple on the point A in the Fig. 4.14, and the current ripple 

reflected on the point B due to the power supply voltage ripple will be suppressed 

down by   this ratio.  

The simulation result in Fig. 4.15 shows that the current ripple at node B 

in Fig. 4.14 which is replica of the sensed current at node A. The amount of 

current change due to the voltage ripple (VR) is 10nA, which is about 0.005% 

error with respect to the desired sensed current signal that is 200uA. This result is 

equivalent to achieving 85dB ripple suppression. The charge pump ripple 

reduction corresponding to different sensed input current is shown in Table 4.3. 

Since the front-end preamplifier of the CSM maintains minimum headroom for 

operation by using the power supply (battery) as its ground return and boosted 
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supply as its new power supply, most of the high voltage sensing front-end 

amplifier could be built by using low voltage core transistors without using any 

dedicated high voltage compliant transistors. The flying capacitance (CF) of 

100pF is integrated inside the chip while the load capacitance (CL) is located 

outside of the chip to provide current of 400µA. 

 
TABLE 4.3  

Charge Pump Ripple Reduction with Respect to Different Sensed Input Current 

Sensed Input (mA) 
Charge Pump 
(CP) Ripple 

(mV) 

Output 
change 
due to 

CP ripple 
(uV) 

Suppression (dB) 

5 4.032 0.397 80.13 

10 5.054 0.503 80.04 

15 6.047 0.597 80.11 

20 7.011 0.713 79.86 

 
 

4.1.1.4    Switching Current Mode FIR Filter Design 

As discussed in earlier chapter, the two main chopping ripple noise 

sources are generated by the modulation switch and the amplifier input referred 

noise (ex. flicker, input pair mismatch, and etc.) as in Fig. 4.16. The spike signals 

generated by the clock feed-through of the modulation MOSFET switches are 

amplified by the gain A of the amplifier before being demodulated back to the DC 

level and its even harmonic terms. Therefore, the harmonic tones of the induced 

residual offset are located at even harmonics of chopping frequency with the input 
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signal. In the meantime, the input referred dc offsets and flicker noise terms are 

being transposed to the odd harmonics of the chopping clock frequency, which 

eventually separates the dc-offset (such as flicker, and etc.) from the incoming 

input signal. Depicted in Fig. 4.17 are the noisy spike signals that are mainly 

caused by the clock feed-through and charge injection of the Mosfet switches.  

As discussed earlier, chopping results in chopping ripple and residual 

offset at the chopping frequency due to up-converted DC offsets, flicker noise, 

switching clock feed-through and charge injection [27]. The resulting signal at the 

point A of the signal path after chopping was previously depicted in Fig. 4.5. The 

Fig. 4.18 conceptually shows how SI FIR filter average out the chopped ripple 

signal and the residual offset. The proposed design implements ripple reduction 

scheme that uses a second order current mode semi-digital current-mode FIR 

filter as previously shown in Fig. 4.2.  

 
 

Fig. 4.16 Two main sources of noise contributing to output in chopper amplifier 

system 
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                       (a)                                                               (b)                                             
 

Fig. 4.17 (a) Spike signal occurred by clock feed-through in time domain. (b) 

spectrums of different noise sources in frequency domain 

 

  

 
 

Fig. 4.18 Cancellation of chopping ripple by averaging 
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Fig. 4.19 Cancellation of the offset by chopping and notching out of the resulting 

ripple by following SI FIR filter in time domain analysis 

 
The Switching Current mode (SI) FIR filter will average out the ripples by 

track and hold the incoming current domain signal during clock phases of ø1 and 

ø2 as described in Fig. 4.19. In frequency domain, the current mode second order 

semi-digital FIR filter also provides a notch filtering at the integer harmonics of 

the chopping frequency [46]-[48]. While the SI FIR filter is averaging out the 

chopping ripple caused by the input offset and flicker noise, its sinc response also 

notches out the residual ripples caused by the switching clock feed-through and 

charge injection. Since the residual offset caused by the first chopper switches 

will be amplified and modulated by the second chopper switches, only odd 

harmonics of the chopper frequency contributes to the residual offset, therefore 



 

the spike signal has an odd symmetry. Since the time constant 

general is much smaller than T/2, the energy of the spike signal conce

frequencies higher than the chopper frequency 

the chopper-modulated signal at the input of the amplifier are shown in Fig 

4.17(b). Mathematically, a sample and hold operation can be expressed as 

following. 

\! ^⁄ OPQ = ∑ \(�q)U#Wa

where u(t) = ¬0  P  01  P ® 0¯ 
Taking Laplace Transform of above equation will result in the following 

equations. 

\!O�Q = ¥+>"��°
! § ∑U#Wa

��! ^⁄  \� = ±+>"��°
! ± =

Fig. 4.20 Filter response FIR1, FIR2 and LPF in frequency domain
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the spike signal has an odd symmetry. Since the time constant τ in Fig. 4.17(a) in 

general is much smaller than T/2, the energy of the spike signal conce

frequencies higher than the chopper frequency [27]. The spectra of the spikes and 

modulated signal at the input of the amplifier are shown in Fig 

4.17(b). Mathematically, a sample and hold operation can be expressed as 

O Q¡²OP − �qQ − ²OP − �q − qQ¤                                       
¯ 

Taking Laplace Transform of above equation will result in the following 

(>!#t \O�qQ                                                                   

± q ±!4#�³°
C �±

±³°
C ±                                                                         

 
0 Filter response FIR1, FIR2 and LPF in frequency domain

in Fig. 4.17(a) in 

general is much smaller than T/2, the energy of the spike signal concentrates at 

The spectra of the spikes and 

modulated signal at the input of the amplifier are shown in Fig 

4.17(b). Mathematically, a sample and hold operation can be expressed as 

                                      (4.6) 

Taking Laplace Transform of above equation will result in the following 

                                             (4.7) 

                                                                        (4.8) 

 

0 Filter response FIR1, FIR2 and LPF in frequency domain 



 

Fig. 4.21 Transient simulation results showing chopping ripple reduction 

 

 The equation (4.8) shows that the 

mode FIR filter effectively suppresses down the switching and its harmonics of 

the chopper [49]. To achieve a wider band notch around the chopping frequency 

harmonics, two first-order hold 

response as shown in Fig. 4.20. 
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(a) 

 

 
(b) 

 
1 Transient simulation results showing chopping ripple reduction 

comparison of FIR1 vs. FIR2 

The equation (4.8) shows that the sinc response of the switching current 

mode FIR filter effectively suppresses down the switching and its harmonics of 

hopper [49]. To achieve a wider band notch around the chopping frequency 

order hold sinc FIR filters are cascaded, achieving a 

response as shown in Fig. 4.20.  

 

 

1 Transient simulation results showing chopping ripple reduction 

response of the switching current 

mode FIR filter effectively suppresses down the switching and its harmonics of 

hopper [49]. To achieve a wider band notch around the chopping frequency 

FIR filters are cascaded, achieving a sinc
2 



 

The second order sinc
2

baseline of 8mVpp ripple. 

effect as the order of the

The final stage of the system includes buffers embedded with a first order pas

LPF that can sense the output of the SI FIR filter differentially and convert the 

final difference to single

filters out remaining ripples outside the bandwidth of the LPF cutoff frequency in 

the signal after passing through the SI FIR filter stage.

 

4.1.1.5    Implementation of High Voltage Chopper Modulation Switches

Since the front end input amplifier stage uses incoming voltage as its own 

power, the input stage is facing wide range of voltages, namely 0V to 26V for this 

application. Fig. 4.22 describes the case when the incoming voltage is in excess of 

the compliant gate to source voltage, V

 

Fig. 4.22 Incoming voltage in excess of Vgs process compliance
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2 filter reduced residual ripple by more than 7.

ripple. The Fig. 4.21 shows a comparison of sinc filter notch 

the general sinc filter is increased in time domain analysis.

The final stage of the system includes buffers embedded with a first order pas

LPF that can sense the output of the SI FIR filter differentially and convert the 

final difference to single-ended output. As shown in Fig. 4.2, the final buffer stage 

filters out remaining ripples outside the bandwidth of the LPF cutoff frequency in 

the signal after passing through the SI FIR filter stage. 

4.1.1.5    Implementation of High Voltage Chopper Modulation Switches

Since the front end input amplifier stage uses incoming voltage as its own 

power, the input stage is facing wide range of voltages, namely 0V to 26V for this 

application. Fig. 4.22 describes the case when the incoming voltage is in excess of 

gate to source voltage, Vgs for the front end modulation switches. 

 
Incoming voltage in excess of Vgs process compliance

filter reduced residual ripple by more than 7.5mVpp from a 

he Fig. 4.21 shows a comparison of sinc filter notch 

general sinc filter is increased in time domain analysis. 

The final stage of the system includes buffers embedded with a first order passive 

LPF that can sense the output of the SI FIR filter differentially and convert the 

ended output. As shown in Fig. 4.2, the final buffer stage 

filters out remaining ripples outside the bandwidth of the LPF cutoff frequency in 

4.1.1.5    Implementation of High Voltage Chopper Modulation Switches 

Since the front end input amplifier stage uses incoming voltage as its own 

power, the input stage is facing wide range of voltages, namely 0V to 26V for this 

application. Fig. 4.22 describes the case when the incoming voltage is in excess of 

for the front end modulation switches.  

 

Incoming voltage in excess of Vgs process compliance 
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(a) 
 

 
 

(b) 
 

Fig. 4.23 (a) Level shifting circuit for input modulator protection (b) output 

waveform of the level shifter 

 
Although high voltage compliance drain extended MOSFET can sustain 

maximum voltage drop up to 40V over drain to source (Vds), the voltage drop 

over gate to source (Vgs) and gate to drain (Vgd) is limited to 8V to protect from 

gate oxide breakdown for the selected process. 

For example, when the incoming voltage is 26V a pair of p-MOSFET 

switch is supposed to be on while the other set is to be off as in Fig. 4.22. Since 

the maximum voltage compliance of Vgs is only 8V for the chosen process, one 

set of the two pairs of switches are always facing into excess voltage.  
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Fig. 4.24 Level shifted output wave form with respect to the middle voltage VM 

 
Therefore, special protection for the front end stage transmission gates is 

needed not to face into voltage drop over the maximum in case the incoming 

common mode voltage is exceeding the maximum voltage rating for Vgs. Shown 

in Fig. 4.23 are the level shifting circuit and its output. The incoming clock signal 

is level shifted with respect to the voltage VM. Fig. 4.24 shows a simulated level 

shifted output waveform. 

 

4.1.2    Measurements 

Fig. 4.25 shows measurement results showing the filtering effect in time 

domain at the input of the pre-amplifier, output of the first order filter (FIR 1), 

second order filter (FIR 2) and the final output after buffer with first order RC 

filter, respectively. The measurement results show that the unfiltered chopped 

signal contains both offset and switching ripple and the chopping ripple reduced 

more effectively as the order of the semi-digital sinc filter increased.  
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Fig. 4.25 Measured time domain SI FIR filter transient response 

 
  

 
 

(a) 
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(b) 
 

Fig. 4.26 (a) Measured output Power Spectral Density (PSD) plot with and 

without chopping from 0 to 100KHz and (b) Measured output PSD plot with and 

without ripple reduction filtering 

 
Fig. 4.26(a) shows the measured power spectral density (PSD) plot of the 

given process with and without chopping up to frequency of 100 KHz. Shown in 

Fig. 4.26(b) are the measured output responses of PSD and reduction of chopping 

ripple at a frequency of 150KHz and their harmonics at every odd multiples of the 

chopping frequency by semi-digital sinc filter in frequency domain. This 

measurement result also shows that the chopping ripple and its odd harmonics at 

multiples of chopping clock frequency have been removed by the designed sinc
2 

filter and the floor of the input-referred noise density of the overall system is 

10nV/√�� . 
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Fig. 4.27 Plot for linearity vs. sensed input current 

 
 Fig. 4.27 and Table 4.4 show that input vs. output linearity plot over the 

wide range of input current at a common mode input voltage of 3V. The linearity 

plot in manuscript shows how low the current shunt monitor system can sense the 

input voltage drop without degrading the accuracy of input sensing 

(performance).  

 The linearity plot is obtained by measuring the sensing accuracy below the 

target specification level, 10mV. Since the current that needs to be measured turns 

into voltage over the sense resistor (RS), precise readout of the voltage drop at the 

sense resistor (RS) over the entire input common mode range (0V-26V) is 

important. Shown in Table 4.5 are the design parameters of the selected process, 

AMIS I2T100. 
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TABLE 4.4 

INPUT VS. OUTPUT LINEARITY 

Input (mA) 
Output 
(mV) 

Linearity error (%) 
 

´Oµ# − µ#>+Q − 250
250 ¶  × 100 

1 263.87  

2 513.75 0.07 

3 763.15 0.08 

4 1013.8 0.08 

5 1263.75 0.1 

6 1513.8 0.1 

7 1763.81 0.08 

8 2013.79 0.09 

9 2263.8 0.07 

10 2513.8 0.07 

 

   

 In addition, reducing the amount of voltage drop over the input sense 

resistor (RS) is also important because the critical shortcoming of high side current 

sensing system is that the amount of power dissipated by the current sensing 

element (RS) could take the head room needed for the operation of main battery 

powered load (system). Since reduction of the size of the resistor (RS) will result 

in increased errors for the input sensing amplifier due to the reduced voltage 

generated by the current of interest, more accurate sensing mechanism is needed 

for the main amplifier in case of reduced magnitude of RS.   



 

Process 

General Info. Substrate

 P-

Capacitors 

Β (µA/��) 

Vth(0) 

Vgs max 

 
 
 

 

Fig. 4.28 Layout of the proposed direct current reading CSM
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TABLE 4.5 

PROCESS PARAMETERS 

AMIS I2T100 

Substrate Geometry 
HV Operation 

(Vds) 
Well Formation

-sub 0.7 µm Up to 100 V Twin

Poly0/Poly1 capacitor (360 pF/NN�)

Metal1/Poly/Metal2 sandwich (75 pF/NN
680 (NDMOS, W=40, L=3) 
190 (PDMOS, W=40, L=4) 

0.8 V (max., NDMOS) 
-1.2 V (min., PDMOS) 

~12 V 
(Depends on the type and the Vds voltage range of 

the DMOS) 

 
 

Fig. 4.28 Layout of the proposed direct current reading CSM
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Twin-well 
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voltage range of  

 

Fig. 4.28 Layout of the proposed direct current reading CSM 
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Fig. 4.29 Plot for Die photograph of the proposed CSM 

 
 
 

TABLE 4.6 

FINAL PERFORMANCE SUMMARY AND COMPARISON 

 

 
This 
work 

[15] [16] [19] 

Year  2010 2007 2008 2009 

ICMR (Input 
CM) 

0 to 
26V 

4 to 
60V 

1.9 to 
30V 

- 

Floor noise 

(nV/ Hz ) 
10 - - 15 

Offset (Input 
Referred) 

10 µV 10 µV 5 µV 5 µV 

CMRR (DC)  
>120 
dB 

- - >120dB 

Current draw 
(Isupply) 

300 µA 420 µA 650 µA 230 µA 

Chopping 
Frequency 

150 
KHz 

- - 40, 510 KHz 

BW 
300 
KHz 

- - 800 KHZ 
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The device is fabricated on a 0.7µm AMIS I2T100 CMOS technology 

with 3 metal layers, and occupies a core area of 2.1 mm2. Shown in Fig. 4.28 is 

the final layout of the designed direct current reading CSM. The die photograph 

of the fabricated current shunt monitor is depicted in Fig. 4.29. Overall system 

operates with 1.5mW power consumption. The final performance and 

comparisons with other chopper amplifiers are summarized in Table 4.6. 

 
4.1.3    Conclusion 

A current shunt monitor (CSM) system that can sense typical current 

range of 1mA to 200mA across a Cu board trace of 1Ω over the entire common 

mode range of 0 to 26 volts is presented. Direct current reading topology with 

high side current sensing is selected for the design. The proposed CSM can 

operate rail to rail with reduced number of high-voltage compliant drain-extended 

transistors being used by maintaining minimum operational voltage for the front-

end input stages. The CSM achieves less than 10µV input-referred offset noise 

floor and DC CMRR of 120dB with the flicker noise of 10nV/√��  at 100Hz by 

using chopping and SI FIR notch filter with a gain boosted instrumentation 

amplifier. As discussed earlier, this system can be used for many industrial 

current sensing applications with minimal tuning of the proposed design. 

 

4.2    Indirect Current Reading Method 

As shown in Fig. 4.30, the voltage drop corresponding to the current 

flowing through the input sensing resistor (RS) will be measured by the input gm 
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stages. In order to suppress input-referred flicker noise and DC offset, the input 

gm stage uses chopper stabilization at a frequency of 150 KHz which is 

significantly higher than the flicker noise corner frequency (fC). Cancellation of 

the input DC offset and flicker noise with the selected indirect current reading 

topology can be described in Fig. 4.31. The figure shows that the input referred 

offset can be removed by averaging the sensed signal (Iout1 and Iout2) of chopping 

phase 1 and 2. 

 

 
 

Fig. 4.30 Signal chain of the proposed indirect current reading CSM 

 

 
 

(a) 
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(b) 

Fig. 4.31 Cancellation of input referred offset with chopper stabilization 

 
 

 
 

Fig. 4.32 Signal flow of the proposed design in frequency and time domain 

 
Since the chopped signal has ripples due to input offset and flicker noise, 

and residual offset due to switch clock feed-through and charge injection that 

cause spikes in front of the front-end amplifier at chopping frequency, following 
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switching current mode (SI) FIR filter is used to suppress the output ripple and 

residue at the chopping frequency by notching out the ripple through its sinc filter 

response at multiples of chopping clock frequency. Fig. 4.32 shows the signal 

flow and resulting offset and chopping ripple cancellation of the proposed design 

in both frequency and time domain. 

 

4.2.1    Building Block Analysis 

As described earlier, in a conventional CSM design, use of an external 

sense resistor (RS) increases the system cost. Also, such a resistor is typically 

required to be precise enough to put the overall system error within 1% over the 

entire operational temperature range normally from -40 to 85 °C. Therefore, it is 

highly desirable to measure the current by simply using the voltage drop across 

existing Cu-traces on a PCB board in place of a dedicated external sensing 

resistor, which leads to elimination of external components. Also, the variation of 

the resistance over temperature is cancelled out at the following frequency 

domain ADC block, which generates the frequency modulated reference level 

using an identical path as the sensed input signal path. By sampling the sensed 

frequency-modulated input signal generated from the Cu-trace path with a 

frequency-modulated reference signal generated from the identically duplicated 

Cu-trace path, the temperature variation of the Cu-trace resistance will be 

cancelled. Also, interdigitation layout helps to reduce the mismatch between the 

two different current paths. More detailed analysis of the Σ∆FD block will be 

followed in the upcoming sections.   
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4.2.1.1    Input Sensing Gm-Block Design 

The proposed design adopted indirect current reading topology [30] 

having two gm-boosted PMOS and NMOS input pairs as depicted in Fig. 4.33.  

To cover the entire input common mode range of 30 volts, lower side of 

input rail is sensed by the p-side gm block while the rest of the input is sensed by 

the n-side gm block. Selection of the input gm-stage is determined by a simple 

comparator which has programmable threshold value being changed according to 

the input common mode level.  

 
 

 
 

Fig. 4.33 Detailed schematic level design showing input sense resistor (RS), two  

chopper stabilized gm stages followed by SI FIR filter, and Σ∆FD block 
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 It is well known that the transconductance (gm) value of a source-

degenerated input stage is inversely proportional to the magnitude of the 

degeneration resistor (RDeg) as long as the magnitude of the effective input gm is 

comparably large enough to be ignored with respect to RDeg as shown in equation 

(4.9). 

$%"�� = +
�,-.0 1

.2
≅ +

�,-.                                                                                   (4.9) 

Since the magnitude of the sensed input voltage drop is inversely proportional to 

the magnitude of RDeg, the value of the resistance cannot be set up too high. 

Therefore, increasing the magnitude of input gm stage rather than that of RDeg is 

necessary. Shown in Fig. 4.34 is an input gm boosting approach [42] which leads 

into new boosted transconductance (g’m) value as described in the following 

equation.  

v′% = ¸¹°
�º� = �»

�º� ∙ �¼
�» ∙ ¸¹°

�¼                                                                              (4.10) 

 

 
 

Fig. 4.34 Effective gm-boosting scheme 



 

Fig. 4.35 Typical 10mV input over the entire common mode voltage range 

(0~30V

The above equation (4.9) 

shows that the new transconductance

v′% = O−v%+)	Q ∙ Ov%
The Miller compensation capacitor (

 

4.2.1.2    Σ∆ Frequency Discrimin

The proposed CSM architecture 

frequency-domain digitizer using frequency discriminator (

the SI FIR filter. The 

followed by first-order sigma delta frequency to digital converter, which consists 

of two D-Flip-Flops (DFFs) and an XOR gate as in Fig. 

accomplishes all three functions of integration, quantization, and differentiation 

just like a typical analog in
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Typical 10mV input over the entire common mode voltage range 

V) showing the linear response of the system 

 

(4.9) is equivalent to the following equation which clearly 

shows that the new transconductance is boosted by the gain of multiple stages

O %�)	Q ∙ v%u                                                                    

The Miller compensation capacitor (Cc) is inserted for loop stability

Frequency Discrimination ADC  

The proposed CSM architecture enables digital interface

domain digitizer using frequency discriminator (Σ∆FD) at the output of 

the SI FIR filter. The Σ∆FD is composed of a current controlled oscillator (ICO) 

order sigma delta frequency to digital converter, which consists 

Flops (DFFs) and an XOR gate as in Fig. 4.36. This 

accomplishes all three functions of integration, quantization, and differentiation 

just like a typical analog input Σ∆ modulator.  

 

Typical 10mV input over the entire common mode voltage range 

 

is equivalent to the following equation which clearly 

is boosted by the gain of multiple stages. 

                                                                    (4.11) 

) is inserted for loop stability. 

enables digital interface, by using a 

FD) at the output of 

FD is composed of a current controlled oscillator (ICO) 

order sigma delta frequency to digital converter, which consists 

This Σ∆FD block 

accomplishes all three functions of integration, quantization, and differentiation 
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Fig. 4.36 Overall signal chain  
 
 

 

 
Fig. 4.37 Diagram of the proposed Σ∆FD block 

 

As a consequence of using reduced complexity digital circuits in 

comparison to analog digitization techniques, such as windowed, successive 

approximation or pipeline ADCs, it consumes lower power [50].  Operation of the 
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Σ∆FD block is as follows. The output current of the SI FIR can be used as a 

control signal for the current controlled oscillator (ICO) block. This produces a 

frequency modulated input signal. Another frequency modulated clock signal that 

is generated from an identical Cu-Trace and the following gm block is used for 

sampling the frequency modulated input signal in the Σ∆FD ADC.  

Since both the sensed input and the generated clock signals contain the 

same temperature variation of the Cu-trace resistance, their temperature variation 

can be cancelled at the digitization stage, hence, produces final temperature 

compensated Σ∆ frequency modulated digital bit-streams at the output of the 

Σ∆FD ADC. 

 

4.2.2    Measurements 

Fig. 4.38 shows measurement results showing the filtering effect in time 

domain at the output of the gm block which containing square wave ripple and 

residual offset, the first order filter (FIR 1), second order filter (FIR 2) and the 

final buffer with first order RC filter, respectively. The measurement results show 

that the unfiltered chopped signal contains both offset and switching ripple and 

the chopping ripple reduced more effectively as the order of the semi-digital sinc 

filter increased. Fig. 4.39 shows the Power Spectral Density (PSD) plot of the 

given process with and without chopping up to frequency of 100 KHz.  
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Fig. 4.38 Measured time domain SI FIR filter transient response 

 
 

 
 
 

Fig. 4.39 Measured output Power Spectral Density (PSD) plot with and without 

chopping from 0 to 100 KHz 
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Fig. 4.40 Measured output PSD plot with and without ripple reduction filtering 

 
Shown in Fig. 4.40 are the output responses of PSD and reduction of 

chopping ripple at a frequency of 150 KHz and their harmonics at odd multiples 

of the chopping frequency by semi-digital sinc filter in frequency domain. This 

measurement result also shows that the chopping ripple and its odd harmonics at 

every multiple of chopping clock frequency have been removed by the designed 

sinc
2 filter and the floor of the input referred noise density of the overall system is 

10nV/√��. Fig. 4.41 and Table 4.7 show that input vs. output linearity plot over 

the wide range of input current at a common mode input voltage of 2V at the 

ADC output. 
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Fig. 4.41 Plot for linearity vs. sensed input current 

 
As it was done for the case of direct current reading based CSM in the 

previous chapter, the linearity plot shows that how low the current shunt monitor 

system can sense the input voltage drop without degrading the accuracy of input 

sensing (performance). The linearity plot is obtained by measuring the sensing 

accuracy below our target specification level, 10mV. The design efforts that are 

attributed to the obtained linearity are as following.  
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TABLE 4.7 

INPUT VS. OUTPUT LINEARITY 

Input (mA) 
Output 
(mV) 

Linearity error (%) 
 

´Oµ# − µ#>+Q − 250
250 ¶  × 100 

1 264.88  

2 514.76 0.07 

3 764.16 0.08 

4 1014.9 0.08 

5 1264.85 0.1 

6 1514.9 0.1 

7 1764.91 0.08 

8 2014.89 0.09 

9 2264.9 0.07 

10 2514.9 0.07 

 

 
  

Using board Cu-trace as a sensing method which brings down the size of 

sense resistor to typical range of 1Ω, input stage Gm-boosting scheme which 

helps increasing linearity of the source degenerated input stage, interdigitated 

layout of the degeneration resistors for better matching and chopping technique 

with appropriate FIR filtering. Overall system operates with 1mW power 

consumption. The final performance and comparison are summarized in Table 

4.8.  
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TABLE 4.8 

FINAL PERFORMANCE SUMMARY AND COMPARISON 

 

Design 
Parameters 

This 
work 

[15] [16] [19] 

Year  2010 2007 2008 2009 

ICMR  
(Input CM) 

0 to 26V 4 to 60V 
1.9 to 
30V 

- 

Floor noise 

(nV/ Hz ) 
10 - - 15 

Offset  
(Input 

Referred) 
10 µV 10 µV 5 µV 5 µV 

CMRR (DC)  140 dB - 143 dB >120dB 

Offset drift 
± 

75nV/°C 
± 

50nV//°C 
  

Chopping 
Frequency 

150 
KHz 

- - 40, 510 KHz 

Current draw 
(Isupply) 

200 µA 420 µA 650 µA 230 µA 

 

 
  

 As shown in the provided table, the most significant performance of the 

proposed design is that it can cover the entire input rail to rail common range 

including ground level input while achieving minimal power consumption. 



 

 
 

Fig. 4.42 Final layout of the proposed indirect current reading CSM

 
 
 

GMP

GMN

Fig. 4.43

 
The device is fabricated on a 0.7µm AMIS I2T100 CMOS technology 

with 3 metal layers, and occupies a core area of 2.3 mm
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Final layout of the proposed indirect current reading CSM

CLK Gen

Output 

Buffers

GMP

GMN

SI FIR

∑∆FD

 
Fig. 4.43 Plot for Die photograph of the proposed CSM

The device is fabricated on a 0.7µm AMIS I2T100 CMOS technology 

with 3 metal layers, and occupies a core area of 2.3 mm2. Shown in Fig. 4.42 is 

 

Final layout of the proposed indirect current reading CSM 

 

Plot for Die photograph of the proposed CSM 

The device is fabricated on a 0.7µm AMIS I2T100 CMOS technology 

Shown in Fig. 4.42 is 
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the final layout of the designed indirect current reading CSM. The die photograph 

of the fabricated current shunt monitor is depicted in Fig. 4.43. Shown in Fig. 

4.44 is the picture of the final test board that is used for both types of the proposed 

designs. 

 

 

 
 

4.44 Picture of the final testing board 
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4.2.3    Conclusion 

A current shunt monitor system that can sense typical current range of 

1mA to 500mA across a Cu board trace of 1Ω over the entire common mode 

range of 0 to 30 volts is presented. Indirect current reading topology with high 

side current sensing is selected for the design. The proposed CSM can operate 

over entire input rail to rail common mode range by switching from p-side gm 

stage to n-side gm stage accordingly. 

 Some of the highlights of this approach include use of existing PCB Cu 

trace resistance for input current sensing method, which reduces the cost of mass 

production by eliminating dedicated external sense resistor component. Second, 

this work can cover entire input rail to rail from 0V to 30V, which includes 

absolute ground level input. Third, the switching current mode FIR filter notches 

out the chopping ripple at multiples of chopping frequency, which can only be 

possible through higher order filter with sharp 3dB pass band very close to the 

baseband frequency. This conventional analog filtering technique may induce 

significant loss of signal due to the reduced pass bandwidth of the signal while the 

sample domain filter can notch out the ripple with no significant impact on the 

baseband signal. Finally, there is an optional direct digital interface with micro-

controllers by using a built-in Σ∆ ADC block. Since the frequency modulated 

input signal is available by feeding the sensed input signal thorough a current 

controlled oscillator (ICO) chain, a first order digital Σ∆ ADC can be 

implemented at the output of the signal chain with minimally added gate counts 

(Two digital FFs  and one XOR gate) and power consumption.  
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 The CSM achieves less than 10µV input-referred offset and DC CMRR of 

120dB with the flicker noise of 10nV/√�� at 100Hz by using chopping and SI 

FIR notch filter. Σ∆ modulated bit stream output makes the designed CSM system 

possible to communicate with other digital systems directly without using any 

additional interconnecting circuitry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5    CONCLUSIONS 

Those noise sources that are originated from amplification of the clock 

feed through of the modulation switches reflected as residual ripples at the final 

output of the amplifier. Moreover, in addition to the ripple occurring at chopping 

frequency, its harmonic terms located at every multiple of chopping clock 

frequency contribute to the DC offset. 

 Many prior works tried to minimize the residual ripple in different ways. 

Most of the prior arts fall into one of the subcategories as following; ripple 

reduction loop based low pass filter technique, band pass filter based ripple 

reduction technique, and nested chopper based ripple reduction. In general, each 

different method was designed to have lower comparable residual ripple while 

each approach has its own shortcoming.  

 First of all, the low pass filter based approach needs to have a lot higher 

order and runs at the risk of impacting DC measurement accuracy to have an 

equivalent performance to our proposed sinc filter based design. Also, the 

additional Gm stages for ripple reduction loop can be added noise source of DC 

offset at a lot complicated design effort due to higher order amplifier loop 

compensation and added Gm stages. The band filter pass based ripple reduction 

loop also achieves low offset at the potential risk of increased noise when there is 

mismatch between the center frequency of the band pass filter and the frequency 

of the chopper. Finally, the nested chopper technique runs at the limitation of that 

the input signal frequency is reduced to half of slower chopper frequency. 

Consequently, the most important point that all the previous approaches could not 
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efficiently overcome was that the harmonic contents of the chopping ripples could 

not be removed effectively. The significance of the presented discrete time 

switching current mode FIR filter approach is that it can remove all the harmonic 

contents of the chopping ripples located at every multiple of chopping clock 

frequency by its natural zero order hold sinc response. Also, the fact that the 

signal filtering is carried over the current domain can also remove a potential risk 

of the sensed signal being corrupted by unnecessary noise addition generated 

from the current to voltage conversion process that should be entailed in typical 

voltage domain filter stage.  
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