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ABSTRACT  
   

The challenging search for clean, reliable and environmentally friendly energy 

sources has fueled increased research in thermoelectric materials, which are 

capable of recovering waste heat. Among the state-of-the-art thermoelectric 

materials b-Zn4Sb3 is outstanding because of its ultra-low glass-like thermal 

conductivity. Attempts to explore ternary phases in the Zn-Sb-In system resulted 

in the discovery of the new intermetallic compounds, stable Zn5Sb4In2-δ (δ=0.15) 

and metastable Zn9Sb6In2. Millimeter-sized crystals were grown from molten 

metal fluxes, where indium metal was employed as a reactive flux medium. 

Zn5Sb4In2-δ and Zn9Sb6In2 crystallize in new structure types featuring complex 

framework and the presence of structural disorder (defects and split atomic 

positions). The structure and phase relations between ternary Zn5Sb4In2-δ, 

Zn9Sb6In2 and binary Zn4Sb3 are discussed. To establish and understand structure-

property relationships, thermoelectric properties measurements were carried out. 

The measurements suggested that Zn5Sb4In2-δ and Zn9Sb6In2 are narrow band gap 

semiconductors, similar to b-Zn4Sb3. Also, the peculiar low thermal conductivity 

of Zn4Sb3 (1 W/mK) is preserved. In the investigated temperature range 10 to 350 

K Zn5Sb4In2-δ displays higher thermoelectric figure of merits than Zn4Sb3, 

indicating a potential significance in thermoelectric applications. Finally, the 

glass-like thermal conductivities of binary and ternary antimonides with complex 

structures are compared and the mechanism behind their low thermal 

conductivities is briefly discussed. 
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Chapter 1 

INTRODUCTION TO THERMOELECTRIC MATERIALS: SIGNIFICANCE 

AND STATE-OF-THE-ART 

The development of world’s economy requires sustainable energy sources 

along with a reduced emission of carbon dioxide. The most recent energy flow 

chart, developed at Lawrence Livermore National Laboratory (LLNL), illustrates 

the constituents of energy sources in the U.S. in 2009 (figure 1.1).1 The major part 

of the energy consumed in the U.S. is from carbon-containing fossil fuels, i.e., 

coal, petroleum and natural gas. Nevertheless, none carbon-containing sources 

play an increasingly important role in the energy mix. According to LLNL, wind 

power increased drastically from 0.51 quadrillion British Thermal Units (quads) 

in 2008 to 0.70 quads in 2009. The continuous development of renewable energy 

sources, such as nuclear, solar, geothermal, biomass, hydro and wind power is 

commensurate with the reduction of carbon emission. In parallel to the concerted 

efforts to expand the range of energy sources, energy conversation becomes 

increasingly important. In 2009, the total amount of energy used in the U.S. is 

94.6 quads, down from 99.2 quads in 2008.1 The decrease could be accounted for 

by a wider adoption of more efficient electronic devices as well as declined 

economic activity. However, most striking is the fact that a big portion of the 

energy produced today is lost as heat (54.64 quads) and only less than half 

actually serves human society (39.97 quads). Therefore, for solving a potential 

future energy crisis, ways to recover waste energy (heat) should be included in the 

future energy landscape since even a small part of energy converted from waste 
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heat will have a significant impact.2 In this respect, thermoelectric power 

generation represents one possibility.  

Figure 1.1. The Energy Use in USA in 2009.1 

 

1.1 The Thermoelectric Effects 

Thermoelectric materials provide a way of energy conversion between heat 

and electricity. Two thermoelectric effects have been known since 19th century:   

(i) power generation, discovered by Thomas Seebeck, and (ii) refrigeration, 

discovered by Jean Peltier. Until the 1950s’, these effects draw only attentions as 

laboratory curiosities.3 This changed recently when the potential significance of 

thermoelectric power generation for waste heat recovery was realized.4,5,6,7,8,9  

Modern semiconductor theory provides insight into fundamental 

understanding of thermoelectric effect. Peltier effect occurs when a circuit (shown 
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in figure 1.2) composed of a pair of conductors, is subject to a current. Then one 

joint is heated while the other is cooled. Let us assume that this circuit contains an 

n-type semiconductor and a metal which are situated in a uniform temperature 

distribution. Without any electric field, the Fermi levels for the semiconductor 

and the metal will coincide and all mobile electrons should have the same energy. 

This scenario changes when a current flows through the junction. The applied 

electric field produces a discontinuity in the Fermi level across the junction. On 

the semiconductor side, the average energy of “moving” electrons, which should 

be electrons in the conduction band for an n-type semiconductor, is given by DEt , 

which is the average energy of electrons in the conduction band with respect to 

the Fermi level. On the metal side, the average energy of “moving” electrons is 

denoted by DEm, with respect to Fermi level. It is obvious that the difference DEt 

is greater than DEm. Therefore, when electrons transfer from the metal side to the 

semiconductor side, the amount of energy (DEt – DEm) needs to be absorbed from 

surroundings. The same amount of energy will be released at the other junction as 

electrons transfer from the semiconductor to the metal. Hence, the Peltier 

coefficient is derived as  

  

))(/1( mt EEe ∆−∆=Π  (1.1) 
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Figure 1.2. A circuit composed of two different conductors with joints a and b. 
Peltier effect, when a current passes through, joints a and b show different 
temperatures. Seebeck effect, when temperatures of a and b are different, a 
voltage drop will be observed in case the circuit is open. 

 

If the temperature between joints a and b in figure 1.2 is different, a voltage 

will appear if either of a and b is opened. This phenomenon, called Seebeck effect, 

is exploited in thermocouples for temperature measurement.10 The Seebeck 

voltage is produced by the fact that the density of charge carriers redistributes in a 

temperature gradient. Carriers with higher energy will diffuse toward the cold end 

and a net current appears. This current will cause an opposite voltage and the total 

current becomes zero. The voltage is proportional to temperature gradient and the 

ratio is defined as Seebeck coefficient, which for the circuit of figure 1.2 is,  

T

V
ab ∆

=α          (1.2) 

where V is the voltage and DT is the temperature gradient.  

The Seebeck and Peltier effects share the same interpretation based on charge 

carrier diffusion. In 1857,11 Lord Kelvin established a thermodynamic 

relationship between them which is  

Tbaba ,, α=Π   (1.3) 
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where T is the absolute temperature. Kelvin also proposed a third thermoelectric 

effect: Reversible heating or cooling occurs when a current passes through a 

conductor which at the same time is subjected to a temperature gradient. The 

theory established by Kelvin gives the basis of deriving the efficiency of 

thermoelectric energy conversion, on which the development of modern 

thermoelectric materials and devices is rooted. 

1.2 The Efficiency of Thermoelectric Materials   

Modules generated by pairing up an n-type conductor and a p-type conductor 

leg can be employed for both refrigeration and power generation (figure 1.3). 

Since there is no need of a compressor and chlorofluorocarbons coolants, 

thermoelectric refrigeration (figure 1.3, left) is very compact and environmental 

friendly. As discuss earlier, power generation based on Seebeck effect (figure 1.3, 

right) has potential in low level heat recovery, which can be used to improve the 

fuel efficiencies for automobile engines.12 However, what limits the commercial 

practicality of thermoelectric devices is their low efficiencies. The primary barrier 

to improving thermoelectric devices is the thermoelectric materials themselves.  
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Figure 1.3. Schematic of thermoelectric refrigeration (left) power generation and 
power generation (right).13 

 

The efficiency of a thermoelectric device, like all other engines, is defined as 

the output of the energy divided by the energy consumed, i.e., 

qw /=η  (1.4) 

Ioffe in 1957 derived that highest efficiency for power generation can be 

represented as14,15 

)1(/

)1()(

ZTTT

ZT

T

TT

HcH

CH

++
+−=η  (1.5) 

where T is the average temperature. The first term corresponds to Carnot 

efficiency, which becomes the highest limit of h since the second term is always 

less than 1. The quantity ZT, which is known as figure of merit, is given by 

TZT
κ
σα 2

=  (1.6) 
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where a is Seebeck coefficient, s is electrical conductivity, k is total thermal 

conductivity and T is the average temperature (T = (TH + TC)/2). h will generally 

increase with ZT.  

Accordingly, a good thermoelectric material must simultaneously possess a 

high Seebeck coefficient, a high electrical conductivity and a low thermal 

conductivity. These three factors are interrelated and make it quite challenging to 

optimize ZT. Equation 1.6 emphasizes that high Seebeck coefficients are 

important for a good thermoelectric material. Nevertheless, an increase in S is 

almost always accompanied with a decrease in s. Typically semiconductors and 

semimetals have higher S but lower s than metals because of their rather lower 

carrier concentrations. The thermal conductivity, k, consists of two parts, a 

contribution from lattice vibration, kL, and a contribution from the charge carriers, 

ke. According to the Wiedemann-Franz law, any increase in carrier concentration 

will favorably increase s but also (unfavorably) increase ke.
16   

It is necessary to identify a charge carrier range where the two trade-off 

factors S and s can reach their maximum product of S2s  while ke stays 

reasonably low. Snyder, et al., suggested that the maximum ZT is achieved with 

carrier concentrations 1019 to1021 cm-3 (figure 1.4).4 Today, most state-of-the-art 

thermoelectric materials are heavily doped semiconductors or semimetals with 

narrow band-gaps. It is noteworthy that in a semiconductor minority carriers are 

always thermally activated and will play a detrimental role to the Seebeck 

coefficient. It has been suggested that for a good thermoelectric material the band 

gap should be around 10 kBT (“10 kBT rule”).17   
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Figure 1.4. Curves showing ZT as a function of carrier concentration.4   

Apart from possessing the optimum carrier concentration, the lattice thermal 

conductivity kL of a thermoelectric material needs to be as low as possible. 

Lowest thermal conductivity is found for glasses,18 where thermal conduction is 

carried out by random walks of vibrations instead of lattice phonons. However, 

glasses are poor electrical conductors and, thus, cannot reach high power factors 

S2σ. To describe this dilemma, Slack proposed the expression “phonon glass 

electron crystal” for ideal thermoelectrics.19 “Electron crystal” refers to the 

requirement that materials should meet the ideal compromise of S, s, and ke, i.e. 

the properties governed by electrons, and “phonon glass” reflects the requirement 

that the lattice thermal conductivity should be as low as possible.    

1.3 State-of-the-Art Thermoelectric Materials 

Figure 1.5 displays a compilation of state-of-the-art thermoelectric materials 

(ZT > 1). Some of them will be described briefly in the following. 
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Figure 1.5. ZT as a function of temperature for some of bulk thermoelectric 
materials, complied by Tritt, T. M. and Subramanian, M. A..20  

 

Bismuth Tellurides 

One of the most useful thermoelectric materials today is Bi2Te3 and its alloys 

with antimony telluride or bismuth selenide. Bi2Te3 crystallizes in a rhombohedral 

structure with layers formed by Bi and Te atoms. These layers follow the 

sequence Te-Bi-Te-Bi-Te. Atoms within this sequence are strongly connected by 

covalent Bi-Te bonding while between sequences there are only weak van der 

Waals interactions. Accordingly, this material is easily cleaved perpendicular to 

the c-axis and its properties are highly anisotropic. 

Bi2Te3 displays a small energy gap of around 0.15eV and a Seebeck 

coefficient close to ±200mV/K.21 According to the “10 kBT rule” discussed in the 

early section, Bi2Te3 offers the best thermoelectric performance below or about 

room temperature which renders its application primarily to thermoelectric 
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cooling. By alloying with Sb or Se or both, kL is substantially reduced (from 1.4 

W/mK to 0.6 W/mK at room temperature).22 

Variations of the Bi2Te3 structural theme can be achieved by introducing 

electropositive alkali metals. Electropositive metals act as electron donors to the 

layer building blocks, which rearrange and form additional bonds. Remarkably 

complex compositions and structures result. Among them the chalcogenides 

K2Bi8S13 and K2.5Bi8.5Se14 have been shown promising thermoelectric properties, 

especially through a low thermal conductivity.23,24,25 The highlight, however, is 

CsBi4Te6 which was reported by Chung, et al.26 This new material has a similar 

electronic structure as Bi2Te3 and reaches a maximum ZT of 0.8 at 225K when 

optimally doped, making it an outstand candidate for low temperature 

applications. 

Skutterudites   

Skutterudites are binary compounds with the general formula MX3 where M is 

group 9 transition metals and X is a heavier pnictogen element (P, As, Sb). Binary 

skutterudites crystallize in the body centered cubic space group Im3. The structure 

corresponds to a three-dimensional array of corner connected MX6 octahedra 

which are mutually tilted (figure 1.6). It is noteworthy that because of the tilting, 

pnictogens atoms approach and thus form planar rectangular rings, which is also 

shown in figure 1.6. A second consequence of the tilted octahedra is the creation 

of voids at the unit cell corners and center (position 2a (0,0,0)). Skutterudites 

reveal diamagnetic and semiconducting behavior. The major bonding interaction 

is between the transition metal and pnictogen atoms. The band gaps is a 
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consequence of the strong interaction between d and p states (dp hybridization 

gap). The completely filled valence band hosts 18 electrons.  

 

 

Figure 1.6 The structure of a skutterudite, CoSb3. Red atoms are Co and green 
atoms are Sb. Left, arrangement of corner-connected CoSb6 octahedra in a unit 
cell. Right, the unit cell has been shifted along the body diagonal by illustrate the 
presence of rectangular antimony rings.  
 

The thermal conductivity for binary skutterudites is rather high and they 

haven’t been considered as promising thermoelectric materials until ternary 

derivatives were found where voids are partially occupied with guest atoms. The 

synthesis of filled skutterudites has been pioneered by Jeitschko and his co-

workers.27,28 Guest atoms are typically rare earth metal atoms, such as La, Ce and 

Yb, which allow for a tuning of the doping level towards optimum carrier 

concentrations.29 With larger amounts of guest atoms an exchange of Co for more 

electron poor Fe becomes possible, and filled skutterudites can be p- and n-type 

conductors. Guest atoms are loosely bonded in the voids and will scatter lattice 

phonons by their thermal motion. This rattling effect of void-filling atom is 
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usually associated with the dramatic decrease in thermal conductivity,30,31 even 

though the mechanism is still elusive. There have been several examples for filled 

skutterudites, such as CeFeSb3, CeFeAs3, CeFe4−xCoxSb12, LaFe4−xCoxSb12 

(0<x<4), which display a ZT around 1 at elevated temperatures.32,33,34,35       

Clathrates 

Similar to skutterudites clathrates possess a framework with voids (or rather 

cages) that enclose guest atoms. The framework of clathrates is formed by group 

14 element (Si, Ge, Sn) atoms that are tetrahedrally coordinated. Therefore, as for 

skutterudites the framework structure of clathrates is electron precise. On the 

other hand, clathrates frameworks are not stable without guest atoms, typically 

corresponding to formally electron donating alkali and alkaline earth metals. The 

presence of “guest” atoms has various consequences. Binary clathrates are usually 

n-type conductors. However, the framework structure may balance excess 

electrons by introducing vacancies and by this reinstall the electron precise, 

semiconducting, situation. Secondly, the framework may be composed of two 

types of atoms, tetravalent group 14 and trivalent group 13 ones (Al, Ga, In). In 

ternary clathrates excess electrons from guest atoms can be balanced by the 

presence of group 13 atoms in the framework.  

Clathrates display very interesting thermoelectric properties. Prominent is a 

low thermal conductivity which is very similar to glasses. A theoretical study 

showed that the systems, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30 are 

semiconductors, which by appropriate n- or p-doping can reach a ZT of 0.5 at 

room temperature, and values as high as 1.7 at 800 K.36 Property measurements 
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have shown rather varied ZT values.37,38 The best thermoelectric clathrate 

currently known is Ba8Ga16Ge30 with a figure of merit of 1.35 at 900K.39 

The concentration of guest atoms and/or the ratio of tri- and tetravalent 

framework atoms in ternary clathrates provide a means of tuning the electron 

transport properties. Similar to skutterudites, the low thermal conductivity of 

clathrates is attributed to a “rattling” of guest atoms. To demonstrate that 

“rattling” represents the major origin of phonon scattering, a triple axis neutron 

spectroscopy study has been recently performed which probed the coupling of 

vibrations of guest atoms and the surrounding framework.40  

Yb14AlSb11 

High temperature thermoelectric applications have been dominated by Si-Ge 

alloys because of the limited thermal stability of most intermetallic 

thermoelectrics. Yb14AlSb11 provides an alternative choice.41 Yb14AlSb11 adopts 

the structure of Ca14AlSb11. The formula unit is composed of one [AlSb4]
9- and 

one [Sb3]
7- polyanion as well as four Sb3- anions and 14Yb2+ cations. The 

identification of polyanions and assignment of charges follows from the Zintl 

concept. The balanced charge results in an intrinsic characteristic with a poor 

carrier concentration. Similar to other intrinsic semiconductors, extrinsic 

properties can be pronounced by rational chemical doping. In this case, hole 

injection was achieved by the substitution of Mn2+ for Al3+. A complete 

examination of Yb14MnxAl1-xSb11 identified that a peak of ZT of 1.1 occurs at 

1200 K when x reaches 0.4.42 The existence of two cation species can be used to 

tune the carrier concentration. La3+ substitution for Yb2+ can back fill one electron 
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to the valence states.43 The low thermal conductivity of Yb14MnxAl1-xSb11 may be 

explained by defects and disordering introduced by chemical alloying and a large 

unit cell structure.2,19    

Zn4Sb3 

Outstanding thermoelectric properties have been reported for β-Zn4Sb3 which 

is the room temperature modification of Zn4Sb3.
44,45,4,46,47,48,49 It was found that ZT 

values of this p-type material exceed 1 above 500 K and increase to almost 1.4 at 

670 K (cf. figure 1.5). Zn4Sb3 has an ideal temperature range for automotive 

waste heat recovery. The key to the high thermoelectric performance of β-Zn4Sb3 

lies in the exceptional thermal conductivity, which is even lower than that for 

clathrates.50,51 

The origin of the remarkably low thermal conductivity of β-Zn4Sb3 remained 

a mystery until very recently when Snyder et al. reported an unusual and intricate 

form of disorder in this compound.4 The disorder is expressed as a combination of 

Zn defects in a regular framework with composition Zn6Sb5 and Zn interstitials. 

The ideal composition of Zn4Sb3 was found to be Zn13Sb10 which corresponds to 

an electron precise situation of a narrow gap semiconductor with a completely 

filled valence band (see below). The actual composition, however, is Zn13-δSb10 (δ 

= 0.2 – 0.5).45 The Zn deficiency δ is thought to correlate with the p-type behavior 

of Zn4Sb3 and should control the carrier concentration. The effects of intrinsic Zn 

doping have been examined by Toberer et al. via a series of samples within stable 

composional window for pure phases.46 
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1.4 Current Strategies in Thermoelectric Materials Research 

1.4.1 Thermal conductivity engineering 

The outline of some state-of-the-art thermoelectric materials in the 

preceding sections suggests that an important strategy to increase ZT is to 

minimize kL. Because kL is quite independent of the electron structure, efforts on 

impeding phonon transport usually do not lead to appreciable detriments to 

electron transfer. Low thermal conductivity can be expected in compounds with a 

large average mass of constituent atoms and/or in compounds with complex, large 

unit cell structures. Further κL can be decreased by alloying or by the presence of 

loosely bonded atoms (rattlers) in the crystal structure. Rattlers are believed to 

induce isolated vibrational modes (Einstein modes) which scatter heat carrying 

lattice phonons.18 Material systems with rattlers are especially skutterudites and 

clathrates. 

Recently, however, it has been shown that a most effective means to low 

values of thermal conductivity is structural disorder beyond point defects (cluster 

or nanocrystal inclusions) because it can provide additional scattering 

mechanisms that also affect mid- and long-wave-length phonons. The idea of 

boundary scattering is especially valid for systems with reduced dimensionality 

where enhancements of ZT have been published in one dimensional nanowires52 

or two dimensional quantum wells.53 However, it appears to be also applicable for 

bulk materials. The inclusion of non-periodic nano-sized precipitates in the some 

tellurides such as PbTe and GeTe showed substantially decreased thermal 

conductivity.54,55
 In this year, Biswas et al. reported that SrTe could be 
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endotaxially arranged in the PbTe matrix with a concentration up to 2%.56 With 

the appropriate doping with Na2Te, the system reached a thermoelectric figure of 

merit of 1.7 at around 800K, which is the highest observed ZT for a bulk material. 

1.4.2 Power factor, S2s, enhancements 

Another way to maximize ZT lies in the increase of the power factor without 

drastically increasing the total thermal conductivity. However, this has proven to 

be very difficult because s is related to ke  based on the Drude’s free electron gas 

model. This is because that electrons conduct both thermal energy and charge. 

Also, and most important, it is currently not understood how a material can 

maintain simultaneously a high thermopower S and a high electrical conductivity 

σ. Generally, S can be approximated by the Mott equation57 
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where s(E) is the electrical conductivity as a function of the Fermi energy, T is 

the temperature and all other letters are physical constants. If we assume that the 

electron scattering is independent of energy, S will be a measure of the change in 

the density of states above and below the Fermi level. A crude insight from the 

Mott equation is that S is large if there is a spike of electronic states above or 

below the Fermi level. Intuitively, one would expect to tailor S by changing the 

Fermi level, for instance, by introducing resonance states.58 

1.5 Perspective of Thermoelectric Materials Based on Zinc Antimonides  

Following the “electron-crystal, phonon-glass” paradigm the question arises 

where else to look for materials (or rather chemical compositions) that produce a 
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complex crystal structure (ensuring a low thermal conductivity) and a narrow 

band gap at the Fermi level (indicative of a high power factor). Here Zn4Sb3 

represents a special case. In contrast to the other high-ZT materials, Zn4Sb3 is not 

embedded into a large family of compounds, like clathrates and skutterudites. As 

a matter of fact, zinc antimonides (i.e. Zn4Sb3, ZnSb and Zn3Sb2) display a unique 

crystal chemistry, which can not be associated with that of other materials. 

The binary phase diagram of Zn-Sb is shown in figure 1.7.42 ZnSb is a 

stoichiometric compound with a well studied structure (CdSb type).59 In contrary 

Zn rich Zn3Sb2 is metastable at room temperature and appears in a low-

temperature (between 682 and 728 K) and a high-temperature form (between 713 

and 840 K). The structures and exact compositions of the Zn3Sb2 phases are not 

firmly established. HT-Zn3Sb2 adopts a complex incommensurately modulated 

structure where the modulation vector is coupled to a small homogeneity range 

Zn3-xSb2 (0.167 > x > 0).60 The properties of Zn3Sb2 phases are virtually 

unexplored. Also thermoelectric Zn4Sb3 is temperature polymorphic. The 

disordered room temperature form (β-Zn4Sb3) transforms into ordered forms (α 

and α’) at temperatures below 255 K.61 At temperatures above 765 K high 

temperature γ-Zn4Sb3 is stable. At even higher temperatures two more 

modifications are proposed (δ and δ’).62 In terms of thermoelectric properties, 

ZnSb displays a similar power factor compared to β-Zn4Sb3. 
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Figure 1.7. Phase diagram of Zn-Sb according to ref. 42. 

 

The structures of zinc antimonides (if established) share a common principle, 

which originates in their peculiar chemical bonding. In the ZnSb structure each 

atom attains a five-fold coordination by one like and four unlike neighbors (cf. 

figure 1.8a). At the same time each atom is also part of planar rhomboid rings 

Zn2Sb2 containing a short Zn-Zn contact (2.7 Å). The arrangement of bonds and 

triangles (from the rhomboid ring) around each atom occurs in a tetrahedral 

fashion. Thus, although higher coordination numbers than four are realized, 

coordination is ruled by an underlying tetrahedral principle. Now one can transfer 

the simple bonding picture of tetrahedrally bonded III-V semiconductors to ZnSb 

and assign each atom in the ZnSb framework a basis set of four sp3 hybrid orbitals. 
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Bonds not involved in rhomboid rings are considered as two-center two-electron 

(2c2e) bonds. This leaves 6 orbitals for rhomboid ring bonding. Of the resulting 

MOs two are bonding, and with four electrons occupying them the rhomboid ring 

represents a 4c4e bonded entity (figure 1.8b). Each multi-center bonded ring 

Zn2Sb2 (involving 4e) is connected with 2c2e bonds to 10 neighboring ones 

(involving 10e) and thus ZnSb attains an electron precise situation (electron count 

of 3.5 e/atom). This bonding model is in agreement with the semiconducting 

properties of ZnSb. 

 

Figure 1.8. a) Top: The crystal structure of ZnSb. Bottom: Coordination of Zn 
(green) and Sb (red) atoms. The rhomboid ring motif is highlighted by bold bonds 
b) Top: Arrangement of Zn2Sb2 rhomboids in the ZnSb structure. Bottom: Basis 
set for the ring bonding and the two bonding MOs. Figures are adapted from ref. 5 
& 57. 
 

The scheme applied for ZnSb is easily extended to thermoelectric Zn4Sb3 

(figure 1.9). The framework of the rhombohedral structure of beta-Zn4Sb3 (space 

group R-3c) consists of three atomic positions: 36 Zn, 18 Sb1 and 12 Sb2 giving a 
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composition Zn6Sb5 (figure 1.9a). Rhomboid rings Zn2Sb2 are condensed into 

chains by sharing common Sb1 atoms (figure 1.9b). These chains run in three 

different directions and result in a framework with channels along the c direction. 

Chains are linked to each other by 2c2e bonds and via tetrahedrally coordinated 

Sb2 atoms centering the channels. The complete Zn6Sb5 framework consisting of 

three [Zn2Sb12/2] chains and two linking Sb2 atoms is electron precise for 38 

electrons. The composition Zn6Sb5 of the framework (37 electrons) cannot 

generate electron precise conditions (as shown in figure 1.9c, the Fermi level for 

Zn6Sb5 is situated in the valence band), and in thermoelectric Zn4Sb3 this is 

balanced by intricate Zn disorder, which is expressed by the occurrence of defects 

in the framework and interstitial Zn atoms. The actual composition of Zn4Sb3 – as 

established from the crystallographically ordered low-temperature forms - is close 

to Zn13Sb10 (Zn6.5Sb5) which corresponds to an electron precise situation.63 
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Figure 1.9. a) Framework Zn6Sb5 in b-Zn4Sb3 along [001]. Zn2Sb2 rhomboid rings 
are condensed into chains Zn2Sb12/2. b) Coordination of Zn (green), Sb1 (red) and 
Sb2 (purple) atoms. c) DOS of Zn6Sb5 and Zn13Sb10 (ordered a-Zn4Sb3). Figures 
are adapted from ref. 5. 
 

Zinc antimonides and related cadmium antimonides have been termed 

“electron poor framework semiconductors”.5 “Framework semiconductor” refers 

to a material with a structure where all constituting atoms participate in a common 

framework. This expresses the weakly polar character, as opposed to e.g. salt-like 

Zintl phases (CaSi2 = [Ca2+][Si-]2). “Electron poor” refers to a sp bonded 

framework with electron counts lower than 4 per atom, as opposed to exactly 4 in 

tetrahedral frameworks. The resulting multi-center bonding is thought to be a key 

to structural complexity. Can this concept be broadened to more materials? Can 

new materials be found that realize the structural and chemical bonding principles 

of zinc antimonides, which are obviously beneficial for thermoelectric properties? 
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This thesis is concerned with the search for such materials. As a strategy, the 

ternary system Zn-Sb-In was investigated with the goal to achieve novel ternary 

compounds. The choice of In was based on its electronegativity and size being 

similar to Zn and Sb. This was deemed necessary in order to maintain a weak 

polarity in the potential ternary compounds. Target compositions were aimed at 

electron counts lower than 4. Another aspect of this thesis was to look a little 

more closely at the possible reasons for “electron poor framework 

semiconductors” being good thermoelectrics. For example, can their multi-center 

bonding features induce desired resonance states in the density of states? Or, what 

is the origin of the low, glass-like, thermal conductivity of these materials? It 

appears that this feature is not restricted to classic, randomly disordered beta-

Zn4Sb3 but a rather general phenomenon for antimony based electron poor 

framework materials, including ordered a-Cd4Sb3 and a-Zn4Sb3.
55,64 The 

elucidation is challenging but will be important for a more fundamental 

understanding of lattice thermal conductivity in complex intermetallics with 

implications to thermoelectric materials design.  

Lately,  b-Zn4Sb3 was anticipated to replace and PbTe in commercial 

thermoelectric applications.65 Zinc antimonides are cheaper materials and more 

environmental friendly. However, samples of b-Zn4Sb3 display a rather low 

thermal stability (only up to about 673 K) and tend to lose Zn.66 This is 

moderately suppressed in samples prepared by a new zone melting technique,67 or 

by reducing the impurities.68 It is interesting to see if ternary materials show 

higher thermal stabilities. 
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In particular, this dissertation addresses three major aspects. 

1. The synthetic search for new “electron poor framework semiconductors” in 

the system Zn-Sb-In along with their phase and crystal structure characterization 

is presented in chapter 3. It has been shown that indium can be incorporated into 

Cd4Sb3 (which is structurally very similar to Zn4Sb3) by replacing cadmium.69 

Whether or not the In chemistry is similar to that in Zn4Sb3 is an interesting aspect. 

2. A comprehensive physical property analysis for the obtained ternary Zn-In-

Sb compounds is given in chapter 4. Physical property measurements included 

electrical and thermal conductivity, Seebeck coefficient, and carrier concentration 

and mobility. Further, the thermal stability of the new Zn-In-Sb was investigated 

and attempts were undertaken to establish structure-property correlations. 

3. What makes the b-Zn4Sb3 stay in the pool of promising thermoelectric 

materials is its glass-like thermal conductivity. The general feature of electron 

poor antimonides having low thermal conductivities is addressed in chapter 5. 

First the lower limit of the thermal conductivity of Zn-Sb frameworks is 

established by the investigation of the amorphous alloy Zn41Sb59. Then possible 

mechanism behind their glass-like thermal conductivity is discussed. 
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Chapter 2 

EXPERIMENT METHODS 

Solid state chemistry involves chemical synthesis, structural characterization 

and physical property measurements. These three aspects are closely linked and 

their balance is critical for establishing the important relationships between 

structure and properties of a solid material.  Understanding and controlling such 

structure-property correlations are at the heart of solid state chemistry and also the 

basis for developing new materials with potential technological applications.   

The past decade has seen large improvements in methodologies and 

instrumentation concerning the synthesis of materials as well as their structure 

and property characterization.70 Additionally, computational modeling of 

structure and phase stability, electronic structure, and physical properties has 

become feasible for larger (>50 atoms/unit cell) systems and provides today 

guidance for materials synthesis and design. These developments have very much 

benefited thermoelectric materials research where complex phase relations and 

crystal structures frequently occur. The phase and structure analysis of materials 

with large unit cell structures and displaying simultaneously disorder was hardly 

accessible in the last century.  

2.1 Materials Synthesis  

The two primary methods to prepare the thermoelectric materials are: 1) hot 

pressing and sintering and 2) crystal growth from a melt. In the first method, 

starting materials are compacted and annealed at high temperatures until the 

desired phase is formed. Mechanisms involved are diffusion, recrystallization and 
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grain growth.15 In the second method, starting materials are melted and the target 

phase crystallizes upon cooling. The crystallization of the material is sensitive to 

the applied cooling condition. Direct cooling from the melt can produce 

polycrystalline samples with randomly oriented grains, polycrystalline samples 

with a preferred crystal orientation or single crystalline samples. Single crystals 

are critical in regards to physical property characterizations, since ambiguities due 

to compositional inhomogeneities, cracks and grain boundaries in the sample are 

avoided.    

2.1.1 Crystal Growth with Molten Metal Flux 

In practice the growth of crystals for solid state materials may turn out 

difficult. Elevated temperatures are always required since the diffusion 

coefficients are low. The direct combination of elements or binary compounds can 

be successful in providing crystals, however, there are limitations. Often these 

reactions are likely to produce the most thermodynamically stable compounds; the 

possibilities for kinetic control are relatively small. Also compounds with low(er) 

melting or decomposition temperatures may not be accessible from the direct 

combination of elements or binary precursors. In these cases molten metal fluxes 

have been proven to be very versatile. This type of synthesis allows the 

preparation of intermetallics at comparably low temperatures and yields 

compositionally homogenous, highly crystalline, products.71 Because of the low 

synthesis temperature and/or the chemical environment provided by the 

surrounding molten metal, reactions are sometimes kinetically controlled. Thus, 
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thermodynamically weakly stable or even metastable materials can become 

accessible by molten metal flux synthesis. 

For selecting a metal to be a viable flux medium several characteristics should 

be taken into account. First, the metal should possess a reasonable low melting 

point so that conventional containers and techniques could be used. Second, the 

difference between its melting point and boiling point should be large enough to 

ensure a stable flux medium. Third, it should not be difficult to remove the metal 

from the phases formed in the flux. Last but important, the metal flux should not 

form highly stable binary phases with any reactant.71 Metals with low melting 

points, such as Pb, Sn, Ga, In, etc have been extensively researched as flux 

mediums to either promote crystal growth72,73 or stabilize “kinetic” phases, such 

as b-SiB3 formed in a Ga flux.74 As a recent development, eutectic combinations 

of two metals have been employed as flux medium which enhances greatly the 

versatility of this synthesis method. For instance, the carbide Ca2LiC3H was 

obtained from a Ca/Li flux,75 where both Ca and Li participated in the reaction. 

The structure of the novel carbide-hydride contains rare C3
4- entities.76   

Molten metal flux synthesis is effective for preparing binary phases in the Zn-

Sb system. According to the Zn-Sb phase diagram (figure 1.7), ZnSb melts 

incongruently and forms a liquid and the high temperature phase of Zn4Sb3 at 819 

K. To synthesize mm-sized crystals of ZnSb, reaction mixtures with 55 at.% Sb 

are slowly cooled through the liquidus, e.g. from 823 K to 793 K, and 

subsequently centrifuged (see below). In this case excess Sb acts as a reactive flux. 
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Similarly, single crystals of Zn4Sb3 and metastable Cd4Sb3 were grown by using a 

third metal (Bi, Sn, Pb) as a flux medium.77,64 

2.1.2 Apparatus Setup and Crystal Growth Strategy for Compounds in the Zn-

Sb-In System 

Because of the positive experience with the synthesis of binary Zn-Sb and Cd-

Sb compounds molten metal flux synthesis was also considered for the 

exploration of the ternary Zn-Sb-In system. Indium served as a reactive flux. All 

materials used for synthesis were prepared and handled in a dry-argon filled glove 

box. Pure Zn (granules, 99.99%), Sb (powder, 99.5%) and In (ingot, 99.99%) 

were purchased from Sigma Aldrich. Powdered Sb was pressed into a pellet. 

Mixtures of Zn, Sb, and In were then loaded into specially prepared silica tubes. 

The experimental setup is schematically depicted in figure 2.1. The silica tubes 

contained crushed silica which was held on the top of the tube by a quartz wool 

plug. After flame sealing under vacuum (<10-5 mbar) ampoules were placed into a 

well insulated stainless-steel container. Reactions were carried out in a box 

furnace with a programmable temperature controller. Firstly, the temperature was 

raised to 923 K and kept for 24 h to homogenize the metal mixture. Subsequently 

the temperature was lowered to 598 – 748 K at rates between 2 and 5 K/h and the 

reaction mixture was held at this temperature for 48 h. The actual crystallization 

and holding temperatures depend on the composition of the reaction mixture and 

can be determined by a DTA analysis (cf. Appendix A.1). When the reaction was 

finished, the stainless steel reactor was flipped quickly and transferred into a 

centrifuge. The excess of flux medium is then filtrated through the quartz wool 
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(isothermal centrifugation). This procedure resulted in mm-sized specimens of 

agglomerated crystals (on top of the quartz wool filter) which were suitable for 

structure and property characterization.  

 

Figure 2.1. Schematic of a molten metal flux synthesis. Left, during a reaction the 
flux medium and reactants are at bottom. Right, after reaction, the container is 
quickly turned upside down and the flux medium is removed by centrifugation. 

 

2.2 Crystal Structure Characterization and Phase Analysis 

2.2.1 Single crystal data collection 

Crystal structures were elucidated from single crystal X-ray diffraction. 

Suitable crystals were obtained by crushing a large crystal specimen obtained 

from the flux synthesis. Crystal quality and unit cell parameters were determined 

first on a Bruker AXS diffractometer at ASU, using the APEX II software for data 

collection and reduction.78 Selected single crystal specimens were then sent to 

Stockholm University for intensity data collection. Data collection was performed 

at RT (295 K), 200, 150, and 120 K on an Oxford Diffraction Xcalibur 3 CCD 
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diffractometer with monochromatic Mo K radiation (l = 0.71073 Å) at 50 kV and 

40 mA and equipped with an Oxford cryo system cooler. The sample-to-detector 

distance was 50 mm. Oxford Diffraction’s CrysAlis79 software was employed for 

data reduction and integration. 

Structures were solved by using the charge flipping algorithm as implemented 

in the Superflip program.80 The charge flipping algorithm as a method of structure 

solution was developed by Ozlanyi and Suto.81 It alternates between reciprocal 

space and real space in the manner of Fourier recycling since the relationship 

between the electron density and structure factors is a unitary mapping. At the 

beginning of the charge flipping, random phases jrand(H) were assigned to all 

experimental amplitudes while making all unobserved ones equal to zero. A cycle 

consists of following steps.82 

1. The electron density r(n)
 is derived by the inverse Fouier transformation of 

experimental amplitudes F(n). 

2. A threshold d is given. All electron densities r(n) below d are flipped by 

multiplying -1 but the rest is kept the same to yield modified densities g(n). 

3. By Fourier transformation, temporary structure factors G(n) are calculated 

from g(n) and the new phases jG(H) 

4. New structure factors F(n+1) are obtained by combining the jG(H) and the 

experimental amplitudes. These new structure factors are the input for the next 

circle of iteration. These steps will be performed iteratively until a convergence 

appears. 
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The only variable in the charge flipping algorithm is d.  The important aspect 

for charge flipping is that it operates without any information of symmetry. 

Obtained structure model were least-square refined against F2 data using the 

programs JANA 200083 or SHELXL.84 

Crystallographic information files (.cif) for characterized crystal structures 

were submitted to the Inorganic Crystal Structure Database (ICSD). Details and 

structural information can be obtained from the Fachinformationszentrum 

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: (49) 7247-808-666; 

e-mail: crysdata@fiz-karlsruhe.de) on quoting the depository numbers CSD-

420363 (295 K), CSD-420364 (120K) for Zn5Sb4In2-δ and CSD-421504 

(orthorhombic), CSD-421505 (monoclinic) for Zn9Sb6In2, respectively. 

2.2.2 Phase and composition analysis for Zn5Sb4In2-d and Zn9Sb6In2 

For phase analysis powder X-ray diffraction (PXRD) patterns were collected 

on a Siemens D5000 diffractometer (Bragg-Brentano θ:θ geometry) using Cu Kα 

radiation (λ = 1.54059 Å). The program Powder Cell85 was used to evaluate the 

diffraction pattern. Structural models employed for the phase analysis were 

established by single crystal diffraction with selected crystals from the synthesis. 

High temperature PXRD measurements were performed on a Bruker D8 

diffractometer equipped with an Anton Parr XRK900 furnace.    

Scanning electron microscopy (SEM) was employed to examine the surfaces 

of samples by back scattered electron imaging and energy dispersive spectroscopy 

(EDS). The SEM study was performed on an FEI XL-30 scanning electron 

microscope. More accurate chemical composition analysis was carried out with 
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electron probe micro analysis (EPMA) on a JEOL 8600 superprobe SEM operated 

at 15 KV and 30 nA. EPMA utilizes wavelength dispersive spectroscopy (WDS) 

instead of EDS. With this technique even neighboring elements in the periodic 

table, i.e. elements with an overlapping characteristic X-ray emission, can be 

analyzed accurately. Reference materials used as standards for EPMA were 

elemental Sb, InSb and ZnS for Sb, In and Zn, respectively. The ZAF (atomic 

number, adsorption and fluorescence) correction was employed for quantitative 

compositions determination. 

2.3 Thermal Analysis for Zn5Sb4In2-d and Zn9Sb6In2 

2.3.1 Differential Thermal Analysis (DTA) 

DTA measurements were performed on a Shimadzu DTA-50 using sealable 

stainless steel pans as sample containers. Typically the scanning range was from 

room temperature to 923 K. Heating and cooling rates were between 5-10 K/min. 

At the maximum temperature samples were equilibrated for 2-5 mins.  

2.3.2 Differential Scanning Calorimetry (DSC) 

DSC measurements were carried out on a TA Instrument 2910 calorimeter. 

Weighed samples (powder and crystalline) of ~20 mg were sealed in TA Tzero 

aluminum pans under dry argon. All experiments were performed with a helium 

flow of ~30 ml/min. Baselines were collected with two empty pans to determine 

the heat imbalance between the sample and reference pan. Temperature and heat 

flow were calibrated with Indium (Tm = 429.8 K, DH = 28.58 J/g) and Zinc (Tm = 

692.7 K). Scanning temperatures ranged from room temperature to 723 K at a 
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heating and cooling rate of 5 K/min. Baseline correction was made with the TA 

Instrument software Universal Analysis 2000. 

2.4 Physical Property Measurements 

2.4.1 Thermoelectric property measurements 

Electrical resistivity, thermopower and thermal conductivity were performed 

on a Quantum Design Physical Property Measurement System (PPMS) equipped 

with the Thermal Transport Option (TTO). Large crystal specimens were selected 

and carefully shaped and polished into rectangular blocks (typically 4.5 × 2 × 2 

mm3). The surface of the obtained specimen was free from any excess metal 

residual from the flux synthesis. For the thermal transport, two copper disks with 

extruded leads on each end were glued oppositely onto the specimen using a two-

component silver-filled epoxy (Epo-Tek H20E), which provided contacts after 

curing at slightly elevated temperatures for a short time. The arrangement was 

then mounted on the TTO puck, which was subsequently loaded into the PPMS 

chamber and then evacuated (<10-3 torr) for the measurement. The thermal 

transport measurements were conducted in a two-point configuration from 10 K 

to 350 K at a scanning rate of 0.3 K/min for all samples. At a certain temperature, 

a heat pulse was applied to the sample to create a temperature gradient of 3% with 

respect to the sample temperature. Thermal conductivity and Seebeck coefficient 

were obtained when the sample was equilibrated (cf. Appendix A.2). The 

autorange feature of the PPMS system was used in all of the measurements. 

Radiation heat loss was automatically corrected with the incorporated functions of 

the software. More accurate resistivity data were acquired with a 4-probe in-line 
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configuration using the resistivity option on the same PPMS, as shown in figure 

2.2, by introducing a DC current of up to 1 mA. Single cooling and cooling-

heating measurements from 10 K to 350 K were performed at a rate of 1 K/min, 

respectively. 

 

 

Figure 2.2. The experimental setup for a 4-probe in line arrangement for 
resistivity measurements on a PPMS resistivity puck. 
 

2.4.2 Measurements of charge carrier concentrations for Zn5Sb4In2-d  

Hall measurements were carried out on a custom computer-controlled 

system designed in accordance with the van der Pauw configuration. The entire 

system composed of a 7½ Agilent 34420A voltmeter, a high impendence Keithley 

7065 Hall card in a Keithley 7001 switch matrix, and a Keithley 200 current 

source. All devices were connected to center conductors through a triax cable, 

where the inner shield was guarded and the outer shield was connected to the 

ground. 

To obtain samples suitable for the van der Pauw arrangement, finely ground 

powders were cold-pressed into a cylinder (4.2 mm in diameter and 8.0mm in 

length) in a multi-anvil device and then cut with a diamond saw with isopropanol 
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as cooling liquid to afford thin disks (0.5 mm in thickness). Four contacts with 

gold bonding wires were painted with Demetron D200 silver paint on the sample 

edges, which allowed resistivity and Hall measurements at the same time. The 

influence of the Nernst, Righi-Leduc, thermoelectric and geometric effects was 

eliminated by rotating the current and voltage electrodes, as well as the poles of 

magnetic fields were switched in the case of Hall measurements.86 A set duration 

time of one second was used between the switching. The cryostat of a Quantum 

Design’s physical property measurement system (PPMS) was employed to control 

the temperature from 10-350 K and to apply magnetic fields perpendicular to the 

sample plane at 0.4 T. The current through the samples for both Hall and 

resistivity measurements was typically 10 mA. The Hall coefficient can be 

calculated by16 
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where n is the carrier concentration, e is the electron charge, VH  is the Hall 

voltage, I is the current through the sample, B is the magnetic flux density and d is 

the thickness. The resistivity from van der Pauw configuration was calculated 

according to ref. 87. 

Charge carrier concentrations were also investigated by infrared reflective 

spectroscopy using a Bomem DA-8 Fourier transform interferometer with a wide 

frequency range of 80 – 5000 cm-1. In heavily doped semiconductors, charge 

carriers correspond approximately to that of free charges. According to the Drude 
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model, the oscillation of free charges with respect to the ions in the lattice can be 

considered as plasmas, with a characteristic frequency wp
88 
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In equation 2.2 n is the carrier concentration, m* is the effective mass and e
 
is the 

complex dielectric constant at infinite frequency. The dielectric constant function 

e(w) is obtained by a Kramer-Kronig transformation of reflection spectra.88 The 

imaginary part Im(-1/e(w)) offers the information about wp from its peak position 

and scattering rates from its width. 
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Chapter 3  

SYNTHESIS, STRUCTURES AND PHASE RELATIONS OF ZN5SB4IN2-δ (δ = 

0.15) AND ZN9SB6IN2 

3.1 Introduction 

As previously described, the combination of structural complexity, weak 

polarity, and a narrow band gap gives zinc and cadmium antimonides interesting 

thermoelectric properties. The peculiar structural, bonding and electronic 

properties of these materials are not easily maintained in ternary systems. For 

example, in conjunction with electropositive metals (alkali, alkaline earth, rare 

earth) typically Zn/Cd and Sb atoms form commonly polyanions in now rather 

polar Zintl phases.89 Reactions with indium, however, provide an interesting 

possibility to modify the electron poor framework structures of zinc and cadmium 

antimonides while maintaining a weak polarity in the ternary compounds. 

Recently a ternary derivative of Cd4Sb3, Cd13-xInySb10, was reported, where 

trivalent indium appears to replace a considerable concentration of divalent 

cadmium.90 This results in a framework structure which in contrast with Cd4Sb3 

does not contain interstitial Cd atoms.64 In this chapter, it is shown that contrary to 

the Cd-Sb-In system, indium does not produce a substitutional variant of a known 

zinc antimonide structure, but segregates into distinct crystallographic positions in 

new, ternary, crystal structures.91,92 This study centered on the zinc rich corner in 

the Zn-Sb-In system. All synthesis was confined to compositions containing up to 

40 at. % of In and 50 at.% of Sb to avoid thermodynamically stable binaries, InSb 

and ZnSb. 
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3.2 Synthesis and Phase Analysis of Zn5Sb4In2-δ and Zn9In6In2 

Figure 3.1 summarizes the applied reaction mixtures used and corresponding 

temperatures where flux conditions are maintained. (Note, that synthesis 

temperatures increased with increasing Sb concentrations, which were illustrated 

with deeper colors). Additionally the products are indicated. With respect to 

reaction products one can discern three regions: (1) High In concentrations yield 

the ternary compound Zn5Sb4In2-δ. (2) High Sb concentrations (and accompanying 

higher temperatures) favor the formation of Zn4Sb3. (3) A ternary compound with 

higher at. % Zn, Zn9Sb6In2, is obtained in the intermediate region. 

 

Figure 3.1. Synthesis diagram for Zn5Sb4In2-δ and Zn9Sb6In2. The colored triangle 
marks the investigated compositions. The inscribed color code indicates the flux 
temperatures. Product regions: 1 –Zn4Sb3; 2 –Zn5Sb4In2-δ with traces of InSb; 3 – 
Zn9Sb6In2 upon quenching. Compositions on axes are in at. %.  
 



  - 38 - 

Importantly, attempts to synthesize Zn5Sb4In2-δ from stoichiometric melts 

always produce a mixture of Zn5Sb4In2-δ, Zn4Sb3 and InSb, which indicates that 

the ternary compound melts incongruently. In contrast, flux synthesis with higher 

In (and Zn) concentrations (i.e. region (1)) yields Zn5Sb4In2-δ virtually phase pure 

and in the form of mm-sized crystals. Depending on synthesis temperature and 

composition the product may contain traces or small amounts of InSb. Figure 3.2a 

shows representatively the powder pattern of the product from the synthesis 

mixture Zn50Sb20In30 annealed at 623 K corresponding to Zn5Sb4In2-δ as the major 

product. 

A second ternary compound, later established as Zn9Sb6In2, was first 

recognized in a reaction mixture Zn62.5Sb25In12.5 annealed at 723 K, but could 

subsequently not be reproduced. This raised the suspicion that the compound may 

be metastable and decomposing if not quenched. In the routine way of finishing 

off reactions, crystalline products were left in the insulated stainless steel 

container after centrifugation to cool radiantly to room temperature (cf. 

experimental section). Indeed, when silica jackets were taken out of the steel 

container immediately after centrifugation and quenched in ice water the 

crystalline product corresponded reproducibly to Zn9Sb6In2. Subsequently a larger 

number of reactions were repeated and finished off by this procedure, which 

yielded Zn9Sb6In2, together with minor amounts of Zn5Sb4In2-δ. Figure 3.2b 

shows representatively the powder pattern of the product from the synthesis 

mixture Zn60Sb25In15 annealed at 698 K and subsequently quenched. The great 
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similarity to the powder pattern of Zn5Sb4In2-δ indicates a very close structural 

similarity. 
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Figure 3.2. (a) Powder XRD pattern (Cu Kα) for the product of sample 
Zn50Sb20In30 (top). Square and triangle symbols mark reflections from the 
byproducts InSb and Zn, respectively. The calculated pattern for Zn5Sb4In2-δ is 
shown below. (b) Powder XRD patterns for the product of sample Zn60Sb25In15 
(top). This product represents a macroscopic mixture of Zn9Sb6In2 and a small 
amount of byproduct Zn5Sb4In2-δ. The arrow marks a reflection from Zn5Sb4In2-δ. 
The calculated pattern for Zn9Sb6In2 is shown below. (c) Powder XRD pattern of 
the product mixture obtained after annealing Zn9Sb6In2 at 573 K (top). Zn9Sb6In2 
decomposes quantitatively into Zn5Sb4In2-δ, Zn4Sb3 and elemental Zn, indicated 
with yellow, green and red reflection markers, respectively. The calculated pattern 
below is for β-Zn4Sb3. 
 

The metastable nature of Zn9Sb6In2 was confirmed in DTA experiments 

(figure 3.3). The broad exothermic event in the trace for Zn9Sb6In2 with a 

maximum around 485 K is attributed to its decomposition into the 

thermodynamically stable mixture. PXRD analysis of a sample Zn9Sb6In2 

annealed at 573 K for 1 h identifies the constituents of this mixture as Zn5Sb4In2-δ, 

Zn4Sb3 and elemental Zn (figure 3.2c). Thermal events at higher temperatures 

(above 600 K) must be inherent to this mixture. Between 570 K and 680 K, 

Zn5Sb4In2-δ most likely undergoes several high temperature phase transitions, 
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which are not well investigated yet, and decomposes above 700K (see chapter 

4.5). Events in the trace for Zn9Sb6In2 above 700 K resemble that for pure 

Zn5Sb4In2-δ. 

 

Figure 3.3. DTA heating traces for Zn9Sb9In2 (red line) and Zn5Sb4In2-δ (black 
line). 
 

3.3 Crystal Structure Elucidation 

3.3.1 Structure solution and refinement of room- and low- temperature 

Zn5Sb4In2-δ 

The diffraction patterns for Zn5Sb4In2-δ and Zn9Sb6In2 can be both 

interpreted as orthorhombic superstructures of a tetragonal, I-centered, basis 

lattice with atet ≈ 8.7 and ctet ≈ 7.15 Å. The patterns of the former compound can 

be indexed in an orthorhombic unit cell (a ≈ 7.16 Å, b ≈ 17.15 Å, c ≈ 8.69 Å). The 

room temperature measurement shows unambiguously systematic extinctions in 

the Bragg reflections compatible with the space group Pbcn. At 120 K the n-glide 

perpendicular to c and the c-glide perpendicular to b are both violated by many 
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reflections, suggesting ordering in a subgroup to Pbcn. Centro-symmetric 

orthorhombic groups allow for two different kinds of maximal non-isomorphic 

subgroups, non-centric orthorhombic with the possible point group symmetries 

mm2, m2m, 2mm and 222 and centro-symmetric monoclinic with the point group 

symmetries 2/m11, 12/m1 and 112/m respectively. As two out of three of the glide 

planes are disallowed in the low temperature data, only two of these maximal 

subgroups is compatible with the extinction conditions, namely those with point 

group symmetries 222 (P212121 in standard setting) and 2/m11, (P21/c in standard 

setting). The strict adherence to the b-glide perpendicular to a (i.e. the c-glide 

perpendicular to b in standard setting) and the violation of the two-fold screw axis 

along c is a strong indication that the centrosymmetric monoclinic group P21/c is 

the proper choice. 

The structures of both the room temperature phase and the low temperature 

phase were solved by charge flipping, using the program Superflip.80 The models 

were refined against F2 data using the program JANA2000.83 In the final 

refinements, Sb and Zn positions were considered to be fully occupied, while the 

occupancies of the In positions were refined. A model of the disordered room 

temperature phase refines to 0.053/0.138 R1/wR2 for all reflections. For the low 

temperature phase it is possible to refine an ordered, twinned, model in S.G. P21/c 

to an agreement 0.042/0.121 R1/wR2 for all reflections. The applied twinning 

matrix (pseudo-orthorhombic cell) was (1 0 0, 0 1 0, 0 0 -1). Table 3.1 lists a 

summary of the refinement results. 
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Table 3.1. Selected Crystallographic Data for RT and LT Zn5Sb4In2-δ 

 

a
 R1 = ||Fo| - |Fc||/||Fo||. b wR2 = [w(Fo2 – Fc2)2]/[w(Fo2)2]1/2 

 

The chemical composition obtained from the single crystal diffraction data 

was confirmed by extensive electron probe micro analysis (EPMA) yielded a 

composition 46.8(3) at.% Zn, 35.7(3) at.% Sb, and 17.5(1) at.% In. The elemental 

composition of Zn5Sb4In2-δ did not vary significantly for crystal specimens from 

the same sample, and between specimens from samples obtained from different 

Analysis for RT LT 

formula Zn20Sb16In7.5 Zn20Sb16In7.5 

formula weight  1029.6 1029.6 

crystal size, mm3 0.049*0.063*0.089 0.049*0.063*0.089 

space group  Pbcn (No. 60) P21/c (No.14) 

a, Å  7.1619(2) 8.6518(2) 

b, Å  17.1562(4) 7.1360(4) 

c,Å  8.6887(4)  17.1158(4)  

β, deg   90 

Z; V, Å3
 1;1067.59(6) 1;1056.72(7)  

Dcalc, gcm-3 
 6.3783 6.475 

temp, K  293K 120K 
λ(Mo Kα), Å 0.71069 0.71069 

absorption coeff, mm-1  25.119 25.119 

F(000)  1777 1784 

θmin-θmax, deg  3.87-30.89 3.70-30.84 

index ranges  -9≤h≤10, -24≤k≤24 -12≤h≤12, -10≤k≤9 

 -12≤l≤12 -24≤l≤24 

total reflns collected  15534 16233 

independent reflns  1622[R(int) = 0.0328] 3067[R(int) = 0.0283] 

refinement method  
full-matrix least-squares 
on F 

2 
full-matrix least-squares 
 on F 

2 

data/restraints/params  1622/0/59 3067/0/104 
final R indices [I > 
3σ(I)]a,b

  R1=0.0391, WR2=0.1267 R1=0.0356, WR2=0.1173 

R indices (all data)a,b 
 R1=0.0529, WR2=0.1379 R1=0.0416, WR2=0.1213 

largest diff. peak and 
hole, e^A-3  2.32 and -1.62 1.81 and -1.49 

GOF on F 2   1.41 1.31 
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starting compositions or from applying different flux temperatures. The results 

from X-ray powder diffraction and electron probe microanalysis suggest that 

Zn5Sb4In2-δ has no or only a very small homogeneity range. 

3.3.2 Structure Solution of Orthorhombic and Monoclinic Zn9Sb6In2 

As discussed in chapter 3.3.1, the room temperature structure of Zn5Sb4In2-δ 

has space group symmetry Pbcn with a ≈ ctet, b ≈ 2 × atet, c ≈ atet. For Zn9Sb6In2 

atet appears doubled and btet trebled while c remains. The symmetry of the basic 

structure is I4/mcm. In orthorhombic setting this yields the full set of symmetry 

operations (I (2,21)/(c,b) (2,21)/(c,a) (2,21)/(m,n)). Now, doubling or trebling an 

axis can never convert a glide operation to a reflection (while the reverse is 

possible), and since there are no systematic absences for the hk0, h0l or 0kl planes, 

the only possible reflection operation in the cell is the mirror plane perpendicular 

to z. In orthorhombic symmetry, the allowed combinations of two fold axes and 

reflections are limited to 2/m 2/m 2/m, mm2, m2m, 2mm and 222, and hence, the 

lone reflection perpendicular to c is disallowed as well. The orthorhombic space 

group must therefore be generated by a combination of 2 fold rotations and 21 

screws. Inspection of the axial reflections reveals systematic absences compatible 

with P212121 and that was the space group used to solve the structure. To phase 

the reflections, charge flipping was used. This yielded a set of atomic positions 

that quickly refined to an acceptable agreement between F2 data and model if 

twinning was properly modelled. For this the program JANA200083 was 

employed. The final model treats all atomic positions with anisotropic thermal 

displacement parameters. In Zn5Sb4In2-d, we detected a substantial occupational 
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deficiency for the In positions, and the structural model for Zn9Sb6In2 was tested 

for In deficiency as well. Allowing occupational deficiency of the In positions did 

not result in any change of the overall composition, although two In positions 

became over-occupied and the other two under-occupied. The effect is slight, and 

the difference in fit between model and data is negligible, and consequently the 

structure was treated as stoichiometric with all atomic positions fully occupied. 

Table 3.2 lists a summary of the refinement results of orthorhombic Zn9Sb6In2 

and a monoclinic variant, which will be addressed in chapter 3.4.3. 
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Table 3.2 Selected crystallographic data for the orthorhombic and monoclinic 
form of Zn9Sb6In2 

 

a
 R1 = ||Fo| - |Fc||/||Fo||. b wR2 = [w(Fo2 – Fc2)2]/[w(Fo2)2]1/2 

 

 

 

 

Crystal Data Orthorhombic Monoclinic 

formula Zn9Sb6In2 Zn9Sb6In1.89 

formula weight  1548.6 1536 

space group  P 21 21 21 C11 21 

a, Å  7.142(2) 17.1463 

b, Å  17.146(5) 51.4388 

c,Å  25.719(7) 7.1416 

beta, deg   90 

Z; V, Å3 8, 3149.4(15) 16, 6298.785 

Dcalc, gcm-3  6.53 6.477 

temp, K  293 293 

l(Mo Kα), Å 0.71069 0.71069 

absorption coeff, mm-1  26.347 26.191 

F(000)  5391 10696 

θmin-θmax, deg  2.38-28.37 4.43-26.89 

index ranges  
-9 h 9, -22 k 22 

-18 h 21, -63 k
54 

 -34 l 34 -8 l 8 

total reflns collected  21287 25164 

independent reflns  7183 17525 

refinement method  full-matrix least-squares 
 on F 

2 

full-matrix least-
squares  
on F 

2 
data/restraints/params  7183/0/308 17525/0/224 

final R indices [I > 3σ(I)]a,b
  R1=0.0408, WR2=0.0837 

R1=0.1247, 
WR2=0.1341 

R indices (all data)a,b  R1=0.1885, WR2=0.1028 
R1=0.1592, 
WR2=0.1379 

largest diff. peak and hole, 
e^A-3  3.21,-3.11 7.36,-5.26 

GOF on F 2  1.6 4.51 
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3.4 Description and Analysis of Crystal Structures 

3.4.1 Room temperature Zn5Sb4In2-δ  

The room temperature form of Zn5Sb4In2-δ crystallizes with the 

orthorhombic space group Pbcn and contains 7 distinct atomic positions (Figures 

3.5 and 3.6, Tables 3.1, 3.3 and 3.4). Zn1, Zn2, Sb1, and Sb2 atoms are situated 

on general sites 8d, while In1 and In2 atoms occupy sites 4c. The In positions 

display some occupational deficiency (5 – 10%) which is indicated as δ in the 

compound formula. The Zn3 position represents a split position (i.e. a half 

occupied general position 8d). The refined composition of Zn5Sb4In2-δ is 

Zn5Sb4In1.85(3) (δ = 0.15(3)). 

 

Figure 3.4. The 32434 Sb net.  
 

 The characteristic feature of the Zn5Sb4In2-δ structure is 32434 nets (cf. 

figure 3.4) formed by the Sb atoms that are stacked in antiposition orientation 

along the a direction. This yields rows of face-sharing square antiprisms that are 
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connected in the bc plane by sharing triangle edges. Such an arrangement of 

32434 nets occurs in many intermetallic compounds, and the most prominent is 

probably the CuAl2 type where nets are formed by Al atoms while Cu atoms 

center square antiprisms. The arrangement of Sb atoms is body centered 

tetragonal (its unit cell is indicated in figure 3.5a) and contains also intervening 

tetracapped tetrahedra usually termed as tetraedersterns (figure 3.5b).93 In some 

stuffed variants of the CuAl2 type the center of the central tetrahedron is occupied 

which retains the tetragonal symmetry (e.g. in “TlSe” larger Tl+ and smaller Tl3+ 

occupy square antiprisms and central tetrahedra, respectively).  
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Figure 3.5. The framework “ZnSb” in Zn5Sb4In2-δ. (a) Sb atoms (red circles) form 
32434 nets (thin lines) stacked in antiposition along the a direction. The unit cell 
of the Sb atom arrangement is outlined in red, the one of the Zn5Sb4In2-δ structure 
in black. (b) Tetracapped tetrahedron (“tetraedersterns”) formed by 8 Sb atoms. 
The central tetrahedron (empty) is marked in grey. (c) Arrangement of 
tetraedersterns in Zn5Sb4In2-δ with peripheral tetrahedra occupied by Zn atoms. 
Different colors indicate different heights in the a direction (cf. (a) where pairs of 
Zn atoms are connected by grey, thick, lines). Cyan x ≈ 0.12; Green x ≈ 0.38; 
Blue x ≈ 0.62; Purple x ≈ 0.88. (d) Coordination environment of Zn atoms. 
Rhomboid rings Zn2Sb2 are emphasized with bold lines. Ellipsoids are drawn at a 
90% probability. 

 

In Zn5Sb4In2-δ, however, Zn1 and Zn2 occupy two of the four peripheral 

tetrahedra in Sb8 tetraedersterns while the central tetrahedron always remains 

empty. Those edge-shared peripheral tetrahedra result in rather short distances 

Zn1-Zn1 and Zn2-Zn2 (below 3 Å). The distribution of Zn atoms (or “Zn pairs”) 
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is shown in figure 3.5c with three tetraedersterns that are consecutively stacked 

along the a direction and in figure 3.5a where different colors denote different 

heights along a. It results in a symmetry lowering of the originally tetragonal 

arrangement of Sb atoms to orthorhombic, and a doubling of unit cell. It should be 

noted that the kind of distribution of Zn atoms in tetraedersterns is unusual when 

considering the structure of Zn5Sb4In2-δ as a derivative of the CuAl2 type. None of 

the ubiquitous structures based on antiposition stackings of 32434 nets and 

different fillings in square antiprisms and tetrahedra display this kind of 

distribution.94 However, the Zn distribution yields a structural fragment 

characteristic for binary zinc antimonides, namely rhomboid rings Zn2Sb2 as a 

part of face sharing tetrahedra ZnSb4.
63 As in binary zinc antominides, Zn atoms 

in Zn5Sb4In2-δ (Zn1 and Zn2) display a peculiar 5-coordination by one like atom 

and 4 Sb atoms (figure 3.5d). 
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Figure 3.6. (a) The total structure of Zn5Sb4In2-δ projected along the a direction. 
Cyan, red and grey ellipsoids denote Zn, Sb, and In atoms, respectively. Atom 
pairs Zn-Zn and Zn-In are connected by grey, thick, lines. (b) Coordination 
environment (broken lines) of atoms centering Sb8 square antiprisms (solid lines). 
Left: Zn3-In1 pair, right: In1 atom. Ellipsoids are drawn at a 90% probability.  

 

The framework of Sb and Zn1 and Zn2 atoms represents a (2 × 1 × 1) 

superstructure with respect to the tetragonal basis structure of Sb atoms. It has a 

composition ZnSb and involves 16 atoms in the unit cell. The remaining atoms 

(In1, In2, and Zn3) are located in the channels provided by the rows of square 

antiprisms (figure 3.6a). The stuffing of those channels in RT-Zn5Sb4In2-δ does 

not result in any further symmetry lowering. Centers of square antiprisms are 

occupied alternately by pairs of Zn3 and In1 atoms, and single In2 atoms. Their 

coordination is shown in figure 3.6b. The distance between pairs of Zn3 and In1 

atoms is peculiarly short, 2.62 Å. In2 atoms have large and anisotropic 
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displacement parameters (cf. table 3.3) and appear loosely coordinated by the 8 

Sb atoms forming the square antiprism and additionally 6 Zn atoms. Furthermore 

the two pairs Zn3-In1 located in neighboring square antiprisms can also be 

considered coordinating In2 (not shown in figure 3.6b). The nearest neighbor 

distances vary continuously from 3.40 to 3.85 Å. The smallest distance is to Zn2 

atoms. The Zn3 split position and the occupational deficiency of In atoms indicate 

disorder within the tetragonal channels formed by the square antiprisms. Also, the 

composition from the microprobe analysis (46.3% Zn; 35.7% Sb; 17.5% In) 

suggests a slightly higher Zn/Sb ratio compared to the crystallographically refined 

one (45.9% Zn; 36.7% Sb; 17.3% In). The redistribution of Zn atoms to the 

surface, which will be discussed in later chapters, could be a possible reason. 
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Table 3.3. Atomic coordinates and isotropic displacement parameters for room 
(RT) and low temperature (LT) Zn5Sb4In2-δ. 
  Atom Wyck. Occ. X Y z Uiso (Å

2) 
RT Zn1 8d 1 0.6134(1) 0.55866(6) 0.3776(1) 0.0207(3) 
 Zn2 8d 1 0.6202(2) 0.18741(7) 0.1102(2) 0.0286(3) 
 Zn3 8d 0.5 0.0377(4) 0.7141(2) 0.7820(4) 0.042(1) 
 Sb1 8d 1 0.76445(7) 0.45854(3) 0.58049(6) 0.0142(2) 
 Sb2 8d 1 0.74447(7) 0.29790(3) 0.91934(7) 0.0160(2) 
 In1 4c 0.891(5) 0 0.56332(7) 0.75 0.0303(4) 
 In2 4c 0.952(6) 0.5 0.36577(9) 0.25 0.0623(7) 
        
LT Zn1a 4e 1 0.8743(2) 0.3878(2) 0.55715(8) 0.0066(3) 
 Zn1b 4e 1 0.6208(2) 0.6137(2) 0.55944(8) 0.0071(4) 
 Zn2a 4e 1 0.8995(2) 0.8907(2) 0.68596(9) 0.0113(4) 
 Zn2b 4e 1 0.3849(2) 0.6255(2) 0.81217(8) 0.0076(3) 
 Zn3 4e 1 0.7055(2) 0.4498(2) 0.78468(9) 0.0179(4) 
 Sb1a 4e 1 0.91867(9) 0.76582(9) 0.54075(5) 0.0046(2) 
 Sb1b 4e 1 0.57851(9) 0.23652(9) 0.54207(5) 0.0046(2) 
 Sb2a 4e 1 0.9207(1) 0.26164(9) 0.70132(5) 0.0058(2) 
 Sb2b 4e 1 0.5864(1) 0.74664(9) 0.70320(5) 0.0052(2) 
 In1 4e 0.919(4) 0.7552(1) 0.4932(1) 0.93596(5) 0.0105(2) 
 In2 4e 0.960(6) 0.7462(2) 0.9783(3) 0.86476(5) 0.0246(3) 

 
 

3.4.2 Low temperature Zn5Sb4In2-δ. 

At low temperatures (below 200 K) Zn5Sb4In2-δ undergoes a structural phase 

transition. Additional reflections appear that violate the extinction conditions 

imposed by the n- and c-glide planes in Pbcn (figure 3.7 (a)). The symmetry is 

lowered to monoclinic without any change in the unit cell. In space group P21/c 

the split position resolves into a single four-fold Zn position (Zn3). As a 

consequence, pairs Zn-In within tetragonal channels that were previously 

arranged parallel to the orthorhombic b axis are now slightly tilted with respect to 

this axis (the monoclinic c axis). This is shown in figure 3.7b. Apart from that, the 

structure remains virtually unchanged.  
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Figure 3.7. (a) Diffraction pattern of the (h0l) plane for Zn5Sb4In2-δ. Left: 200 K – 
orthorhombic room temperature form. Right: 120 K – monoclinic low 
temperature form. The rectangles mark the areas for odd l where reflections 
appear that violate the reflection condition for the c-glide (h0l : l = 2n) present in 
the room-temperature form. Red arrow heads mark rows with diffuse and 
additional reflections attributed to intergrown domains of Zn9Sb6In2. (b) The 
crystal structure of Zn5Sb4In2-δ at 200 K (left) and at 120 K (right). For better 
comparability the room temperature structure was also refined in the monoclinic 
symmetry of the low-temperature form. The Zn3 split position in the room-
temperature form (cf. figure 3.6a) is now expressed as a single, elongated atom. 
Ellipsoids are drawn at a 90% probability (cyan, red and grey denote Zn, Sb, and 
In atoms, respectively) 
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The structural behavior of Zn5Sb4In2-δ is reminiscent of binary Zn4Sb3. Here 

the room temperature phase (β-Zn4Sb3; S.G. R-3m) is substantially disordered 

which is manifested in interstitial Zn atoms distributed on three weakly occupied 

(to about 5%) general sites 36f. Upon cooling Zn4Sb3 undergoes two phase 

transitions to the consecutively higher ordered phases α and α’ where interstitial 

Zn atoms occupy distinct crystallographic sites in highly complex low-symmetry 

crystal structures. One could suspect that the deviation between microprobe 

determined and crystallographic composition is caused by a small concentration 

of interstitial Zn atoms in Zn5Sb4In2-δ. When increasing the unit cell content from 

20 to 21 Zn atoms (i.e. by 5%) a good agreement is obtained. However, we did 

not find any clear evidence for weakly occupied Zn positions in our refinements. 

Instead, we propose that crystals of Zn5Sb4In2-δ contain domains of the phase 

Zn9Sn6In2, which has a higher Zn content. The crystal structures of Zn9Sb6In2 

(explained below) and Zn5Sb4In2-δ  have identical ZnSb frameworks but differ in 

the stuffing of the tetragonal channels. Indeed, a multiphase refinement including 

the second phase, Zn9Sb6In2, did yield a better fit to the data. This strategy leads 

to an improvement of R1/wR2 to 3.34/6.59 for all reflections, at a minority 

component content of 8% (120 K data).  

3.4.3 Orthorhombic and monoclinic Zn9Sn6In2 

Structurally, Zn9Sb6In2 turns out to be quite challenging. As for the 

previously reported Zn5Sb4In2-δ there is a basic tetragonal pattern (figure 3.8 a) 

arising from the Sb substructure (I4/mcm). In Zn5Sb4In2-δ the systematic 
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extinction associated with the I-centering is broken, and additionally both the a 

and the b directions exhibit satellite reflections that indicate a doubling of the 

corresponding axes. There is however a conspicuous lack of reflections that 

double the tetragonal a and b axes simultaneously, and this led us to conclude that 

the doubling only applies to one direction, while the second set of satellites are 

generated by pseudo merohedral twinning. According to chapter 3.4.1, the space 

group symmetry of Zn5Sb4In2-δ is Pbcn with a ≈ 7.15 Å (ctet), b ≈ 17.15 Å (2 × 

atet), c ≈ 8.7 Å (atet). 
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Figure 3.8. Diffraction patterns corresponding to hkl of (a) orthorhombic 
Zn5Sb4In2-δ (b) orthorhombic Zn9Sb6In2 and (c) monoclinic Zn9Sb6In2. The 
reflections corresponding to the basic tetragonal lattice are highlighted. The 
diffraction pattern shown in (d) represents an enlargement of (c) where the 
reciprocal unit cells of orthorhombic and monoclinic Zn9Sb6In2 have been 
highlighted. 
 

The diffraction pattern of Zn9Sb6In2 is more complex, and a cursory 

inspection indicates a tetragonal unit cell with a six-fold superstructure along the 

a and b directions (figure 3.8b). A very large number of reflections are however 

systematically absent, indicating twinning. With few exceptions the non-

crystallographic absences are in agreement with a model where atet is doubled 

and btet is trebled, and where pseudo merohedral twinning generates the rest of 
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the reflections observed. The violations of this simple model are a weak set of 

reflections that double atet and btet simultaneously, and those reflections will be 

dealt with separately at a later stage. Zn9Sb6In2 was assigned space group 

symmetry P212121. 

A large number of crystals were studied, and in many samples the fit between 

data and model was quite poor, but improved substantially when Zn5Sb4In2-δ was 

introduced into the refinement as a second phase. It appears that substantial 

fractions of Zn5Sb4In2-δ intergrow regularly in metastable Zn9Sb6In2. The vice 

versa situation is observed as well (described in chapter 3.4.2). However, volume 

fractions of Zn9Sb6In2 in crystals of Zn5Sb4In2-δ are significantly small (up to 8%). 

One particular crystal showed a distinctly different diffraction pattern. The 

six-fold super-structuring is much more pronounced than in Zn9Sb6In2 and 

interestingly, this effect is exhibited only in every second row of reflections 

(figure 3.8c). The obvious interpretation is a further doubling of the long axis in 

Zn9Sb6In2 but this approach proved unsuccessful in providing a structural solution. 

After abandoning this first interpretation, it was realized that the diffraction 

pattern may be generated by a two-phase crystal, where one phase is 

orthorhombic Zn9Sb6In2 and the other is a monoclinic variant that generates a new 

set of reflections along the long axis that neatly interdigitates the reflections from 

the former (figure 3.8d). The symmetry of this new monoclinic phase was 

assumed to be P1121, and the structure was solved by charge-flipping. It comes 

out as a simple variation of the orthorhombic form. The structure of the 

monoclinic form may be generated by a simple shift of a unit cell sized block of 
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the orthorhombic phase by the vector (½½0). To facilitate the simultaneous 

treatment of the two structures, the shift vector (½½0) was employed as a 

centering vector in the monoclinic structure. This allows a description in a 

metrically orthorhombic cell, twice the size of the cell of the orthorhombic phase 

(doubling the long b axis). Thus, both structures are described in a metrically 

orthorhombic cell measuring 17.14 by 51.44 by 7.14 Å. In addition to the biphasic 

nature of the crystal, both phases are twinned by pseudo merohedry because of the 

underlying tetragonal symmetry. The final agreement between the model and data 

is modest (R1 is ca. 12%, cf. Table 3.2), but considering the complexity of the 

sample this is not unexpected. 

The most prominent satellite reflections of the monoclinic phase are those that 

simultaneously double the a and b axes of the basic tetragonal cell. It is interesting 

to note that these reflections are absent both in Zn5Sb4In2-δ and in orthorhombic 

Zn9Sb6In2. These are the unexplained weak reflections present in the diffraction 

pattern of Zn9Sb6In2 referred to earlier. It would seem that metastable Zn9Sb6In2 

occurs in different structural variations depending on melt composition and the 

thermal history of sample preparation. The same holds for the intergrowth with 

Zn5Sb4In2-δ. Finally, it should be mentioned that we also identified crystals were 

Zn9Sb6In2 appears to be epitaxially intergrown with the binary phase Zn4Sb3. This 

shows the complexity of phase relations in the compositional region (2), even 

nominal “single” crystals may consist of several phases. 
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3.5 Structure and Phase Relationship of Zn5Sb4In2-δ and Zn9Sb6In2 

In the following we will establish the crystal structure relationships between 

orthorhombic Zn5Sb4In2-δ and Zn9Sb6In2 (figures 3.9 and 3.10). The characteristic 

features of both structures are 32434 nets formed by the Sb atoms that are stacked 

in antiposition orientation (figure 3.9a). This arrangement yields rows of face-

sharing square antiprisms that are connected in the tetragonal plane by sharing 

triangle edges. In addition to square antiprisms the Sb atom substructure generates 

also intervening tetracapped tetrahedra usually termed tetraedersterns (figure 

3.9b).93  
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