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ABSTRACT

In many classi�cation problems data samples cannot be collected easily,

example in drug trials, biological experiments and study on cancer patients. In

many situations the data set size is small and there are many outliers. When

classifying such data, example cancer vs normal patients the consequences of mis-

classi�cation are probably more important than any other data type, because the

data point could be a cancer patient or the classi�cation decision could help de-

termine what gene might be over expressed and perhaps a cause of cancer. These

mis-classi�cations are typically higher in the presence of outlier data points. The

aim of this thesis is to develop a maximum margin classi�er that is suited to

address the lack of robustness of discriminant based classi�ers (like the Support

Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt

and develop a natural loss function that is more robust to outliers and more repre-

sentative of the true loss function of the data. It is demonstrated experimentally

that SVM's are indeed susceptible to outliers and that the new classi�er devel-

oped, here coined as Robust-SVM (RSVM), is superior to all studied classi�er

on the synthetic datasets. It is superior to the SVM in both the synthetic and

experimental data from biomedical studies and is competent to a classi�er derived

on similar lines when real life data examples are considered.
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Chapter 1

INTRODUCTION

Robust-Support Vector Machine, a robust solution to outliers

It is known that support vector machines and learning models like discriminant

classi�ers, optimize a loss function that is typically a hinge loss or its variant.

These learning models face the issue of lack of robustness to noise and outliers

[25], which is addressed in this thesis. By adopting a loss function that represents

the true nature of the loss, rather than an analytically simple one it is shown that

the new classi�er can compete with contemporary ones like the SVM. This thesis

is motivated from previous work[11]. But while the previous work extended the

Linear discriminant Classi�er(LDA), the RSVM extends Primal Support Vector

Machines[3].

This chapter will discuss �rst the contemporary loss functions used in

maximum-margin classi�ers and their inherent limitations, its limitations are an

important motivation for the RSVM. Strong arguments for the choice of its ana-

lytical design are also presented. And �nally the organization of the rest of the

thesis is laid out.

SVM and its limitations

Given a training set {(xi, yi)}1≤i≤n, xi ∈ Rd, yi ∈ {+1,=1} recall that the primal

SVM optimization problem is usually written as:

min
w,b
||w||2 + C

∑n
i=1 ξ

p
i (1)

under the constraints :

yi(w.x
t
i + b)≥1=ξi, ξi ≥ 0

1



Figure 1.1: Maximum-margin hyperplane and margins for an SVM trained with
samples from two classes. Samples on the margin are called the support vectors.

where p is either 1 (hinge loss) or 2 (quadratic loss) and < w, b > is a weight vector

that represents the separating hyperplane that is used to classify the data. The

intuitive idea behind the SVM is that we want to choose < w, b > to maximize

the margin, or distance between the parallel hyperplanes that are as far apart as

possible while still separating the data. The geometrical depiction is shown in

�gure (1.1). The two separating hyperplanes straddling the data can be described

by the equations:

w.xt
i + b = 1

and w.xti + b = −1

By using geometry, we �nd the distance between these two hyperplanes is

2
||w|| , and our objective is to minimize ||w||2 (the square is added to get rid of the

2



root). The problem reduces to expression 1 once the constraints are taken into

consideration. Note that this is a quadratic optimization problem and depending

on the value of p at this point, in the existent literature, typically there are

usually two main methodologies followed to solve this problem i.e. either in the

primal(used for p=2) or in the dual(used mainly for p=1). Both the solutions also

exploit the kernel trick to deal with linearly inseparable data. The SVM is known

to be less prone to the curse of dimensionality and provides a superior solution to

other classi�er methodologies like neural networks, logistic regression etc.

However it has been observed that in the small sample setting the di-

mensionality of the data, the complexity of the kernel function and projection

into higher dimensional space can introduce problems of over �tting as observed

in[17, 19]. In experimental biological data like micro-array data it is always the

case that genes are much more than the number of samples so typically some di-

mensionality reduction technique is always applied. It is worth noting that recent

developments especially in neighborhood embeddings in low dimensional spaces

like [20, 7] are worth looking at and are state of the art for dimensionality re-

duction and their importance in analyzing experimental biological data cannot be

overstated.

More importantly it is well known that outlier robustness of SVM's is an

issue and the experiment, shown illustratively, in Figure 1.2 and [25] have found

that the solution for the soft margin SVM using the hinge loss is plagued by

outliers, that bear a maximal e�ect on the optimal solution. The problems of

over-�tting in a small sample setting and the outlier robustness issue are strong

motivations to improve upon the SVM. Next the choice of a primal over a dual

solution is argued for the design of the RSVM.

3
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A primal solution for the RSVM

It is shown that the SVM optimization problem is solvable in the primal and it

is also shown that when deriving an approximate solution to the SVM, the opti-

mization in the primal is superior to the that in the dual[3]. The time and space

complexities of solving the primal and the dual have been shown, analytically, to

be the same for the primal and the dual forms; In fact when it comes to an ap-

proximate solution, primal optimization is superior because it is more focused on

minimizing what we are interested in: the primal objective function rather than

its dual[3]. Further it is proved in Appendix A that the primal and dual solutions

of the SVM recover essentially the same solution. This is the main motivation for

a primal solution to design the RSVM.

Previous work

The issue of the SVM with outliers is demonstrated in the previous sections and

a motivation for a primal classi�er has been discussed, but what is the solution

that we should adopt? It is already shown that it is possible to improve the

error estimates by considering the sample spread of the data points as a measure

for reliable error estimation[11]. Intuitively put this is analogous to drawing a

ball around the data points and then minimizing the volume of the ball that

is cut by the hyperplane. Since the area represents a spread, its minimization

automatically reveals a loss function also. But here in lies a problem; In higher

dimensional space this problem is very hard to solve as the probability mass tends

to be concentrated in a thin shell at a �nite radius of a D-Dimensional ball[5].

The loss function becomes hard to solve analytically, thus some simpli�cation is

required. A solution for this was proposed in [11] wherein the loss function chosen

for RSVM is a simple circular Gaussian, it is in fact the Error Function, with equal

variance along the diagonal. The RSVM is also designed on similar lines. The

5



variance is estimated using the data distribution, similar to[11]. The algorithm

is thus parameterized by the variance of the data and is not a hyperparameter.

It still retains the regularizer from the Primal SVM as an hyperparameter. The

nature of the loss function makes the design unique and di�erent from those

included in the current thesis.

Organization of the thesis

The margin formulation is mathematically intensive and is presented in chapter

2 of the paper. Chapter 2 will also de�ne the loss function and discuss its mathe-

matical properties. Gradient and second order based optimization techniques are

exploited to derive an analytical form for a new margin based classi�er. The loss

function, based on sample spread and the max margin de�nition, reveals a convex

optimization function solved in chapter 2. The loss function proposed is naturally

convex, albeit mathematically complex. The focus of the paper, for now, will be

more on providing a strong proof of concept and laying down the basic ground

work for a more robust classi�er rather than performance. Experiments on some

data sets are done on chapter 3. First the performance of the RSVM is compared

against the Linear SVM and Sigma Classi�er on synthetic dataset and then it is

compared to case of the real life datasets also.

6



Chapter 2

MATHEMATICAL FORMULATION

In this chapter �rst, the minimization function along with the new loss function

is outlined. The method to solve this optimization function and its mathematical

characteristics are discussed next. Then some notation is mentioned, followed by

the mathematical derivation of the classi�er in section 2.4 and 2.5. Finally the

numerical and computational aspects are discussed in the last section.

The objective function and its solution

The R-SVM objective function that needs to be optimized is de�ned as the ex-

pression:

λ||w||2 +
∑
i∈n

Lg(w,xi, b) (#1.0)

The normalized Gaussian with zero mean is de�ned to be:

G(x) =
1√
2πσ

exp(− x2

2σ2
)

Now the error Lg is de�ned as:

Lg(w,xi, b) =



1√
2πσck

´∞
di
exp( −x

2

2σ2
ck

)dx 0 < yi(w.x
t
i + b) ≤ 1

1√
2πσck

´ di
−∞ exp(

−x2
2σ2
ck

)dx yi(w.x
t
i + b) < 0

0 otherwise

(#1.1)

where di is the function output of di(w,xi, b) =
|w.xti+b|
||w|| which is the eu-

clidean distance of the point from the hyper-plane described by < w, b >. The

�rst and second derivatives of the system will be solved analytically. σckare the

7



class speci�c parameters (not hyper-parameter) derived from the spreading of the

data distribution. The loss function is similar in shape to the cumulative distri-

bution curve of the exponential distributions of form: p(x) = exp(−x2) and it

may give the reader the impression that the sigmoid function is similar in shape

to this and may be used as a substitute. But this is not true because the error

bounds for the sigmoid are not the same as the Gaussian Error Function.

The following section will present a closed form solution of the �rst and

the second derivatives of the loss function. The weights can be updated using

newton's method:

w = w + ηH−1∇ (#1.2)

Section 2.3 is the �rst derivative evaluation. Section 2.4 is the evaluation

of the Hessian (Second Derivative).

b = b+ η
dLg/db

d2Lg/db2
(#1.3)

The choice of a Gaussian as a loss function is reasonable as a lot of random

data phenomenon are considered Gaussian in nature and a lot of unsupervised

and supervised learning algorithms like the Gaussian Mixture Models and PCA

depend on it[18, 24]. Certainly an analysis of the data and previous studies on

similar data should be studied before hand to ascertain the nature of the data

and applicability of certain method.

Another important reason why the integral of a circular Gaussian was

chosen as the loss function is because has a closed mathematical form represented

by 1.1 and more pertinently its derivatives are also having a closed form. Other

distributions like Poisson or chi-square were found to be worth studying but there

8



derivatives did not have simple closed form and thus harder to handle analytically

and analyze.

Convexity, smoothness of the loss function

First lets look at the error function itself, erfc. Its convexity will in turn prove

the convexity of the loss function. Let the function be convex

erfc(t ∗ x1 + (1− t) ∗ x2) 6 t ∗ erfc(x1) + (1− t) ∗ erfc(x2)ˆ ∞
tx1+(1−t)x2

exp(−x2)dx 6 t ∗
ˆ ∞
x1

exp(−x2)dx+ (1− t)
ˆ ∞
x2

exp(−x2)dx

where t ∈ [0, 1] also x1 ≤ t ∗ x1 + (1− t) ∗ x2 ≤ x2. Thus one can split the

L.H.S. of the above and rearrange the R.H.S. as:

ˆ x2

t∗x1+(1−t)∗x2

exp(−x2)dx+
ˆ ∞
x2

exp(−x2)dx 6 t

ˆ ∞
x1

exp(−x2)dx−
ˆ ∞
x2

exp(−x2)dx


+

ˆ ∞
x2

exp(−x2)dx
ˆ x2

t∗x1+(1−t)∗x2
exp(−x2)dx 6 t ∗

ˆ x2

x1

exp(−x2)dx

Which is true for any t. The convexity is not strict. As the area under

the Gaussian is unity. The error function is upper bounded. It is naturally

smooth according to the de�nition 1.1. In contrast the hinge loss is naturally not

smooth and is not a proper scoring function[13]. It is employed largely due to its

mathematical simplicity and because it gets the mathematical sign right and is

9



able to approximate the 0− 1 error. There is a great debate within the machine

learning community about weather to use real life loss function that the data may

represent or those that are mathematically simple. As it is demonstrated by the

better experimental results and in[11], selecting a natural loss function can give

better results. The mathematically correct idea is to select a loss function that

is an approximation of the 0 − 1 loss[22]which is satis�ed in this case because

the maximum error contributed by a point is unity (area under Gaussian) in the

limiting case.

Notation

Bold face small letters will denote vectors. Capital letters are representative of

Matrices. Thus the expressionx ∗ z has x as a vector and z as a scalar, it is the

same as multiplying each component of x by a scalar z. ′.′ is generally used to

represent the dot product between vectors. ⊗ is the outer product of vectors or

the Kronecker product. � .∗� will represent point wise multiplication. Each vector

is considered to be a row vector.xt is the transpose of a vector.

The Gradient

Now the derivative of the error function de�nition in (#1.1) will be de�ned by

the Leibniz rule:

d

dx

ˆ f2(x)

f1(x)

g(t) dt = g(f2(x)).f
′
2(x)− g(f1(x)).f ′1(x)

Note that the derivatives corresponding to the upper limit (±∞) will dis-

appear and the derivative becomes:

10



∂
∂wLg(w, b, xi)

=


1√

2πσck

∂
∂w

´∞
di
exp(−x

2

2σ2
ck

)dx 0 < yi(w.x
t
i + b) 6 1

− 1√
2πσck

∂
∂w

´ −∞
di

exp
(
− x2

2σ2
ck

)
dx yi(w.x

t
i + b) < 0

(#1.4)

Before di�erentiating. Put x√
2σck

= y. Thus dy = dx√
2σck

. The lower limit

can be rede�ned as y = di(w.,x,b)√
2σck

= |w.xt
i+b|

||w||
√
2σck

. Thus above becomes:

∂

∂w
Lg(w, b, xi)

=


1√
π
∂
∂w

´∞
di√
2σck

exp(−x2)dx 0 < yi(w.x
t
i + b) ≤ 1

− 1√
π
∂
∂w

´ −∞
di√
2σck

exp
(
−x2

)
dx yi(w.x

t
i + b) < 0

(#1.5)

Thus the derivative described in terms of the Gaussian Error Function,

erfc is:

∂
∂wLg(w, b, xi) =

∂
∂w

(
erfc(

di√
2σck

)

2

)
0 < yi(w.x

t
i + b) 6 1

∂
∂w

(
1
2 +

erf

(
di√
2σck

)
2

)
yi(w.x

t
i + b) < 0

(#1.6)

Note that the value of the partial derivatives in (1.5) is exactly the same

with respect to the ±∞ upper-limits:

11



∂

∂w

ˆ ±∞
di√
2σck

exp
(
−x2

)
dx

 = − 1√
2σck

∗ exp
(
−d2i (w,xi, b)

)
∗ ∂(di(w,xi, b))

∂w

It is also important to note that since |..| function in di is not di�erentiable

one need to remove the discontinuity by de�ning two functions for di, as done in

(1.4). The derivative is de�ned at all points except where w.xi + b = 0.

= − 1√
2σck

∗ exp

(
−
(
di(w,xi, b)√

2σck

)2
)
∗
∂(

w.xti+b

||w|| )

∂w

= − 1√
2σck

∗ exp

(
−
(
di(w,xi, b)√

2σck

)2
)
∗
(

xti
||w||

− wt

||w||3
. ∗ (w.xti + b)

)
The exponential term indicates that the derivative is directly dependent

on distance of the data from the hyperplane.

Note that the sum error of the system from equation 1.0 is:

E =
∑
i∈nsv

Lg(w, b, xi)

Thus the derivative, written with the summation taken into account is:

= −
∑
i∈nsv

1√
2σck

∗ exp

(
−
(
di(w,xi, b)√

2σck

)2
)
∗
(

xti
||w||

− wt

||w||3
∗ (w.xti + b)

)

= −
∑
i∈nsv

1√
2σck

exp

(
−
(
di(w,xi, b)√

2σck

)2
)
∗ xti
||w||

−
exp

(
−
(
di(w,xi,b)√

2σck

)2)
||w||

∗

wt

||w||
∗ (w.x

t
i + b)

||w||

= −
∑
i∈nsv

1√
2σck

∗ fi ∗
xti
||w||

− fi
||w||

∗ gi ∗
wt

||w||

Combining with 2 above and the derivative of the �rst term of (1.0), viz

λ||w||2 is:

12



∇ =


2λwt − 1√

2πσck

∑
i∈nsv fi ∗

xti
||w|| −

fi
||w|| ∗ gi ∗

wt

||w|| 0 < yi(w.x
t
i + b) 6 1

2λwt + 1√
2πσck

∑
i∈nsv fi ∗

xti
||w|| −

fi
||w|| ∗ gi ∗

wt

||w|| yi(w.x
t
i + b) < 0

(#1.7)

Note that the gradient is a column vector. Where

fi = f(w,xi, b) = exp

(
−
(
di(w,xi,b)√

2σck

)2)
and gi = g(w,xi, b) =

w.xti+b
||w|| .

Note that these are scalars and de�ned for a point i in the data.

Also the partial derivatives of these quantities are de�ned as follows:

g′i =
∂gi
∂w

=
∂
(

w.xti+b

||w||

)
∂w

=
||w|| ∗ ∂

∂w
(w.xti + b)− wt

||w|| ∗ (w.x
t
i + b)

||w||2

=

(
xti
||w||

− wt

||w||3
∗ (w.xti + b)

)

This is a vector and also the derivative f ′i :

f ′i =
∂f

∂w
=

∂ exp

(
−
(

w.xti+b

||w||
√
2σck

)2)
∂w

= −exp

(
−
(

w.xti + b

||w||
√
2σck

)2
)
∗
∂
(

w.xti+b

||w||
√
2σck

)2
∂w

= −exp

(
−
(

w.xti + b

||w||
√
2σck

)2
)
∗ w.x

t
i + b

||w||
∗
∂
(

w.xti+b

||w||

)
∂w

= −
(

1

2σ2
ck

∗ fi ∗ gi
)
∗ ∂gi
∂w
−
(

1

2σ2
ck

∗ fi ∗ gi
)
. ∗ g′i

13



Both of these terms are vectors with the dimensionality of the data and are column

vectors and will be used repeatedly in the computation of the Hessian (the second

derivative).

The Hessian

Now the expression for second derivatives here will be taken over the two terms

which is rewritten here for brevity:

exp (−d2i (w, b,xi)) ∗
xti
||w|| and wt ∗ exp

(
−d2i (w, b,xi)

)
∗

(w.xti + b)

||w||3

= fi
||w|| ∗ x

t
i and

(
fi
||w|| ∗ gi

)
∗ wt

||w|| respectively

fi, gi are multivariate scalar valued functions de�ned in the last section.

The second derivatives for these are solved, one term at a time. The �rst term,

fi
||w|| ∗ x

t
i is a vector valued function[9]. The derivative of this is a matrix as:

∂(fi ∗ xti)
∂w

=



x1i ∂
(

fi
||w||

)
∂w

x2i ∂
(
fi
|w||

)
∂w

.

.

.

xDi ∂
(

fi
||w||

)
∂w



14



=



x1i ∂
(

fi
||w||

)
∂w1

x1i ∂
(

fi
|||w||

)
∂w2

. . .
x1i ∂

(
fi
||w||

)
∂wD

x2i ∂
(

fi
|||w||

)
∂w1

x2i ∂
(

fi
||w||

)
∂w2

. . .
x2i ∂

(
fi
||w||

)
∂wD

.

.

.

.

.

.

.

.

.

.

.

.

xDi ∂
(

fi
||w||

)
∂w1

xDi ∂
(

fi
||w||

)
∂w2

. . .
xDi ∂

(
fi
||w||

)
∂wD



=



x1i ∂hi
∂w1

x1i ∂hi
∂w2

. . .
x1i ∂hi
∂wD

x2i ∂hi
∂w1

x2i ∂hi
∂w2

. . .
x2i ∂hi
∂wD

.

.

.

.

.

.

.

.

.

.

.

.

xDi ∂hi
∂w1

xDi ∂hi
∂w2

. . .
xDi ∂hi
∂wD


Thus it is the outer product xti ⊗ ∂hi

∂w . Where hi =
fi
||w|| . Thus each row

is de�ned as hi
′ =
[
xDi ∂hi
∂w1

xDi ∂hi
∂w2

. . . x
D
i ∂hi
∂wD

]
= ∂hi

∂w

If we plug in the expression equivalent for fi, one can evaluate h′ias:

hi
′ =
||w||fi′ − w

||w||fi

||w||2
=

f ′i
||w||

− wt

||w||3
∗ fi

Note that this is a row vector.

Now for the derivative of the second term: wt ∗ exp
(
−d2i (w, b,xi)

)
∗

(w.xti+b)
||w||3 . This is concisely written as wt

||w|| ∗ (hi ∗ gi). The derivative of this can
be written as:

15



∂( wt

||w||. ∗ (hi ∗ gi))
∂w

=



∂(
w1
||w||∗(hi∗gi))

∂w

∂(
w2
||w||∗(hi∗gi))

∂w

.

.

.

∂(
wD
||w||∗(hi∗gi))

∂w


where each element expands into a row vector:

∂

∂w

(
wj
||w||

∗ (hi ∗ gi)
)

=
[ ∂

∂w1

(
wj
||w||

∗ (hi ∗ gi)
)
,
∂

∂w2

(
wj
||w||

∗ (hi ∗ gi)
)
, ..

....,
∂

∂wD

(
wj
||w||

∗ (hi ∗ gi)
)]

=
[wjw1

||w||
∗ hi ∗ gi +

wj
||w||

(h′i1 ∗ gi + g′i1 ∗ h),
wjw2

||w||
∗ hi ∗ gi +

wj
||w||

(h′i2 ∗ gi + gi2 ∗′ hi), ...,(
1

||w||
−

w2
j

||w||3

)
∗ hi ∗ gi +

wj
||w||

∗ (h′ij ∗ gi + g′ij ∗ hi),

.....,
wjwD
||w||

∗ hi ∗ gi +
wj
||w||

∗ (h′ij ∗ gi + g′ij ∗ hi)
]

Therefore

16



∂( wt

||w|| ∗ (hi ∗ gi))
∂w

=

[
wt ⊗w

||w||
∗ hi ∗ gi +

wt ⊗ (h′i ∗ gi + g′i ∗ hi)
||w||

. ∗



0 1... 1

1 0... 1

.

.

.

.

.

.

.

.

.

1 1... 0


DxD

+

((
1

||w||
− w2

||w||3

)
∗ hi ∗ gi

)


1 0... 0

0 1... 0

.

.

.

.

.

.

.

.

.

0 0... 1


DxD

]

Where ⊗ is the outer product or the Kronecker product and in the above

is a matrix. The mathematics in the above is a little involved, It is instructive to

work the above out on paper and to verify it, none of the steps of the derivation

have been skipped due to complexity and for the sake of completeness.

Thus each element in the column matrix is a vector. Again one can simply

plug in the values of fi and gi from the previous section. Thus �nally writing the

Hessian:
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H =



I − 1
2
√
2πσck

∑
i∈nsv





x1i ∂(
fi

||w||)
∂w

x2i ∂(
fi
|w||)

∂w

.

.

.

xDi ∂(
fi
|w||)

∂w


−



∂(
w1
||w||∗(hi∗gi))

∂w

∂(
w2
||w||∗(hi∗gi))

∂w

.

.

.

∂(
wD
||w||∗(hi∗gi))

∂w




for 0 < yi(w.x

t
i + b) 6 1

I + 1
2
√
2πσck

∑
i∈nsv





x1i ∂(
fi

||w||)
∂w

x2i ∂(
fi
|w||)

∂w

.

.

.

xDi ∂(
fi
|w||)

∂w


−



∂(
w1
||w|| .∗(hi∗gi))

∂w

∂(
w2
||w||∗(hi∗gi))

∂w

.

.

.

∂(
wD
||w||∗(hi∗gi))

∂w




for y(w.xt

i + b) < 0

and the gradient is

∇ =



2 ∗wt − 1√
2πσck

∑
i∈nsv fi ∗

xti
||w|| −

fi
||w|| ∗ gi ∗

wt

||w||

for 0 < yi(w.xi + b) 6 1

2 ∗wt + 1√
2πσck

∑
i∈nsv fi ∗

xti
||w|| −

fi
||w|| ∗ gi ∗

wt

||w||

for yi(w.xi + b) < 0
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where 

hi = fi
||w||

∂hi
∂w

=
f ′i
||w|| −

wt

||w||3fi

fi = exp

(
−
(
|w.xti+b|
||w||
√
2σck

)2)
gi =

w.xt
i+b

||w||

The above completes the mathematical formulation for a simple newton

based method to be applied to the model. The next section focuses on the imple-

mentation di�culties that were faced while implementing the above in MATLAB.

Implementation details

Certain implementation details about the computational model of the above solu-

tion are worth noting. The speci�c problem that was faced was that of the scaling

of the parameter w. The conditions in equation number 1.1 depend on the value

of the expression y(w.xti + b). This expression needs to be normalized by ||w||

to e�ectively apply this condition. This is a concept similar to the one used in

designing the maximum margin de�nition for the SVM.

Secondly the second order derivative shown to be analytically existent was

not Positive Semi De�nite (PSD). Damping it with a regularizer is not a good

solution as heavy damping is required to make it PSD and we e�ectively lose

the second order information. A quasi newton method (L-BFGS) method is used

instead, and is documented here[15]. It was e�ectively applied and achieved results

good enough to be mentioned in this work. Also the bias term is simply solved for

by extending the dimensionality of the data matrix X and w by one and letting

the last term of w be the bias[5]. The implementation was done in MATLAB.
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Chapter 3

ANALYSIS AND APPLICATIONS

There are three experiments that were carried out in this thesis. First with a

synthetic dataset then with a Glioblastoma Multiform dataset and �nally a lung

cancer dataset. Cross-validation techniques are used for real life datasets in the

last two cases. P-values, ROC/AUC analysis and con�dence intervals are mea-

sured where needed.

Analysis using synthetic data sets

This experiment was done on Gaussian synthetic data sets. The RSVM does in no

way take advantage of the fact that the data is Gaussian. A fact also demonstrated

by to its performance on real life data sets in later datasets whose distribution

is unknown. Gaussian noise of a prede�ned variance was added to the original

distribution and the variance was increased slowly to test the e�ects of noise and

outliers on the classi�ers. Since the error of the classi�ers is measured against the

distribution we generate the data such that it has a diagonal and equal covariance

to measure the error analytically[5]. It should be noted that doing the experiment

with synthetic data helps in evaluating the classi�er because we know the lower

bound of the error and it is important to avoid cross validation which is not a

unbiased estimator for the variance of the error for small sample datasets [2].

For two equal sized circular Gaussian the error of a classi�er against a

distribution can be calculated analytically as:

ˆ ∞
dµ1

exp(−x2)dx+
ˆ ∞
dµ2

exp(−x2)dx

where dµ1 and dµ2 is de�ned as the euclidean distance of the classi�er's hyperplane

from the mean of the 2 classes of the data distributions. A Kolmogorov-Smirnov

test was performed on the error samples of su�cient size to determine statistical
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Variable name Description Symbol
Variable
values for
experiment

Sigma_data This parameter is used
to generate Gaussian
data (circular).

s
[0.5, 0.6, 0.7,
0.8, 0.9, 1]

Sigma_noise This is the noise that is
present in the data per
class

sn
[0.5, 0.2, 0.1,
0.05];

Sample_size Number of data points
per class

N [10,20, 50]

number of iterations number of samplings of
data set to run the
classi�er on each time

K 250

Dimensions Dimensionality of the
data

d 2,20

Table 3.1: The table showing the parameters for the experiment carried out on
the synthetic datasets.

signi�cance of the errors. For a given data set the training data is sampled K

times and the errors against the distribution are collected.

The classi�ers used in this experiment are the sigma classi�er, the linear

SVM and the RSVM. The pseudo code for the experiment is shown in Algorithm

3.1. Table 3.1 shows the parameters used for the experiment.

Experimental Procedure

This section explains how the experiments were exactly done as per listed in

the pseudo code in Algorithm 3.1. The main loop begins on line 9. The hyper

parameters for the R-SVM and Linear SVM are chosen by looking at the best

performing classi�er against the true distribution and not by any Cross validation

technique. Since the classi�ers are a pure optimization problem where in the

functions are convex the machines are guaranteed to converge. The errors of these

classi�ers are measured against the true distribution (µ, s). All the errors in the
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are collected and written to a disk to be further analyzed. There are N ∗ s ∗ sn

�les produced, each containing K errors.

The errors are then used to obtain a con�dence plot shown in �gure (3.1).

It should be noted that the sigma classi�er does not require hyperparameter term,

all its parameters are derived from the data itself[11], also since it is a variant of

an LDA based classi�er there is no regularizer term. The results obtained are

shown in �gure (3.1). The experiment is in conformity of the main objective of

this thesis which says that irrespective of the fact weather outliers are present

or not, the error against the true data distribution must be minimal for a good

classi�er. Thus even though we add outliers by adding the sn component to the

Gaussian distribution, the error of a good classi�er against the true distributions

should be minimal and robust to these outliers.

Results

Figures (3.1) demonstrate the results for the previous section. As you can see

the RSVM in does better than the Sigma classi�er and both do better than the

Linear SVM. The errors disappear as the data samples increase and the variance

decreases. The superior performance of the Gaussian Error Functions chosen to

represent the loss function demonstrates that there is room for improvement as

far as outlier robustness in classi�ers is concerned.

In �gure (3.1) below there are three sub �gures; Each for a �xed sample

size N. In each sub �gure, the X-axis is the increasing variance of the data sets.

As the variance increases the error rate, represented on the Y-axis goes up. The

�staircase� like steps in the �gure are formed because for each variance value i ∈ s

we add a noise component j ∈ sn. The p-values with some analysis are in the

appendix section and are statistically signi�cant.
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Algorithm 3.1 Pseudo-code for the experiment carried out on the synthetic dataset

1 K = 250 % Samples to c o l l e c t f o r s i g n i f i c a n c e t e s t

2 s = [ 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 ] ;

3 s_n = [ 0 . 5 , 0 . 2 , 0 . 1 , 0 . 0 5 ] ;

4 N = [10 , 20 , 5 0 , 1 00 , 200 , 500 ] ;

5

6 for n = N

7 for i = s

8 for j = s_n

9 e r r o r s = array ( s ize (K) ,4 ) ;

10 for k = 1 :K

11 X,Y = generateData ( i , j , mean_data ) ;

12 model_svm = LinearSVM(X,Y) ;

13 model_sigma = S i gmaC la s i f i e r (X,Y) ;

14 model_rsvm = RSVM(X,Y) ;

15 e r r o r s (k , : ) = e r r o r_d i s t r i bu t i on (model_svm

, model_rsvm , model_sigma ) ;

16

17 end

18 h1 = ks t e s t 2 ( e r r o r s ( : , 1 ) , e r r o r s ( : , 2 ) , 0 . 0 5 ) ;

19 h2 = ks t e s t 2 ( e r r o r s ( : , 2 ) , e r r o r s ( : , 3 ) , 0 . 0 5 ) ;

20 save (new F i l e ( ) , ' e r r o r s ' , ' h1 ' , ' h2 ' ) ;

21 end

22 end

23 end
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Applications

Glioblastoma Multiforme (GBM) data

The Glioblastoma multiforme (GBM) data set has 173 samples with 28 genes iden-

ti�ed in the paper [23] as critical to distinguishing the classes apart. Glioblastoma

multiforme is the most common and most aggressive type of primary brain tumor

in humans, involving glial cells and accounting for 52% of all parenchymal brain

tumor cases and 20% of all intracranial tumors. They are the most prevalent

form of primary brain tumors according to a WHO study[14]. This experiment

was performed by splitting the data at random into 2 parts with 4
5
ths of the data

or ~136 Sample for training and rest for testing. The classi�ers were trained on

these 136 samples with 10 fold cross validation and tested on the test data set. A

non linear SVM with an RBF kernel was also tested for the sake of completeness

of this thesis. There are 4 classes in the classi�er so one vs. the rest performance

is measured. This result was repeated 100 times for each of the datasets made as

indicated in table 2 below. The Table 1 is graphically represented in Figure 3.2.

The results show the following observations

1. The Non linear SVM seems to over-�t the data for one of the datasets and

is probably not very well performant due to over-�tting. This was observed

due to the 0 training error but high test error.

2. The R-SVM and sigma classi�ers perform almost similarly but slightly

better than the existing SVM implementations.
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Class division

(4 classes)

Linear SVM Sigma(±CM) R SVM NL SVM

Classical vs

rest

0.087±0.006 0.046±0.008 0.078±0.008 0.20±0.018

Mychesmal vs

rest

0.0923±0.007 0.037±0.018 0.052±0.009 0.30±0.011

Neural vs rest 0.083±0.0072 0.076± 0.014 0.164±0.0181 0.14±0.007
Pro Neural vs

rest

0.077±0.0075 0.042±0.0064 0.049± 0.0094 0.27±0.025

Neural, Pro

Neural vs rest

0.14±0.012 0.079±0.008 0.085±0.008 0.45 ±0.042

Table 3.2: The table shows the classi�cation error for the 5 datasets. Thus row
1 represents the errors when the class Classical was taken in Class A and other
3 were taken in class B. The 5th row shows Neural and Pro Neural in one class
and Classical and Mychesmal in the other. The sigma classi�er has a lower mean
error in all the cases. However, one should take caution in the fact that these are
not statistically signi�cant from other machines except in the case of row 1.

3. R-SVM and Sigma classi�er agree that Neural and Pro Neural is well

separated from Classical and Mychesmal.

4. It is also noted that R-SVM have an higher error than the sigma classi�er

on unbalanced classes as per the sample count ({'Neural': 26, Pro-Neural:

53, 'Classical': 38, 'Mesenchymal': 56}). Note that the neural (black) and

classical (red) classes are more unbalanced than the others and are having

higher error. This may indicate a susceptibility to class imbalance during

training.
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Figure 3.2: The �gure shows the con�dence intervals of the errors on the GBM
data set. The X axis has four points for the four classi�ers and the Y axis is the
error or accuracy of the classi�ers. See table 2 for more details. One can clearly
see that the sigma classi�er and the RSVM are almost indistinguishable when it
comes to the con�dence interval of the error.
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Lung cancer data

A previous study on identifying Brain Metastaces (BM) possibility for non-small

cell lung cancer (NSCLC) [1] by mi-RNA micro-array pro�ling was performed

on samples from clinically matched NSCLC from patients with BM and without

BM. Eight mi-RNAs were con�rmed to be signi�cantly di�erentially-expressed.

Of these, expression of miR-328 and miR-330-3p were able to correctly classify

BM+ vs. BM- patients.

The miR-328 and 330 were selected using the strong feature classi�er.

Left hand side of �gure3.33.4 shows the prediction accuracy of the classi�ers on

the same data set, misclassifying BM+1 and BM-2. Then the same classi�er is

applied to the SHC Validation data and the result is shown on the right hand

side of �gure(3.3)(3.4) . Four samples were misclassi�ed, SHC1+, SHC6- SHC15-

and SHC14-, with 74% accuracy (speci�city = 0.7300 and sensitivity = 0.75). All

the samples from the training dataset were chosen for training the three SVM's

in this case as only thirteen training examples were present. The error rates of

the three classi�ers are as indicated in table (3.3) below

Classi�er Linear SVM Sigma classi�er RSVM

Error 0.33 0.2 0.26

Table 3.3: Results for the 3 SVM's on the lung cancer dataset. The sigma classi�er
and the RSVM performance is almost the same (di�ering only by 1 example which
is misclassi�ed)

The ROC and AUC �gures for the trained RSVM are indicated in Figure

(3.5). It is important to note that since all the training examples are used for the

training and no cross validation is done, the ROC and AUC curves are used to

measure of the classi�er performance rather than the cross validation error used

in the GBM dataset. The high area under the AUC curves typically indicates

28



the probability of the classi�er to pick out positive examples correctly from the

dataset. Although the use of ROC/AUC and its reliability as a metric for micro-

RNA datasets is still a subject of debate[6]
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Chapter 4

DISCUSSION AND FUTURE WORK

Even though the non linear SVM is demonstrated to over�t in some of the test

data and previously cited work[17, 19], it is important in certain settings where

over-�tting is not a problem. Thus the kernalization of the RSVM is a desirable

feature. Also desirable is to use this loss function to select a strong feature set,

something that was studied in previous works[11] but not here. Second order

information needs to be implemented in the computational model and its lack

of positive semide�nite nature needs to be analyzed, this can help in quadratic

instead of super linear time needed for the machine to converge[15], but this is

not a particularly pressing issue, given the results. Issues like class imbalance

were experienced with GBM data set analysis that should also be addressed in

the future.

This study helped in realizing that there is scope for improvement over the

maximum margin classi�ers. Some mathematical knowledge, speci�cally in the

�eld of vector calculus was also gained. Important insights were obtained into the

nature of second order optimization and quasi newton techniques and their space-

time trade-o�s. Also were studied a couple of important dimensionality reduction

techniques like Information bottleneck[21] and Spectral clustering[16] that were

not a part of this thesis but were used to analyze the data.

Biological data is unique in its nature because it is small sample and noisy,

but getting the classi�cation correct is all the more important, especially if clinical

testing and cancer study depends on it. Thus the most important lesson learnt

is, that one must analyze the data before selecting what algorithm should to be

applied, every learning model has a weakness in some data setting and failure to

take it into account can result in problems.
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APPENDIX A

DERIVATIONS AND PROOFS
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SIMILARITY OF THE PRIMAL AND DUAL FORMULATION.

Given a matrix X ∈ Rn∗d representing the coordinates of n points in d dimensions

and a target vector y ∈ Rn , the primal RLS problem can be written as

min
w∈Rd

λwTw + ||Xw=y||2(#1.1)

where λ is the regularization parameter. This objective function is popularly

minimized for w = (XTX + λI)−1XTy and its minimum is

yTy=yTX(XTX + λI)−1XTy. (#1.2)

In typical SVM literature we introduce a slack variables ξ = Xw=y, the dual

optimization problem then becomes

max
α∈Rn

2αTy=
1

λ
αT (XXT + λI)α (#1.3)

. The dual is maximized for ,α = λ(XXT + λI)−1y and its maximum is

λyT (XXT + λI)−1y (#1.4)

The primal solution is then given by the KKT condition, w = 1
λ
XTα. The

inverses of XXT + λI and XTX + λI and due to the Woodbury formula,

λ(XXT + λI)−1 = I=X(λI +XTX)−1XT

With this equality, we recover that primal (1.2) and dual (1.4) optimal values are

the same, i.e. that the duality gap is zero.
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APPENDIX B

TABLES

Table 1,2,3 and 4 depict the results that RSVM performs better than the LSVM

and the sigma classi�er for di�erent sample sizes on the synthetic dataset. As

sample size increase the other machines are able to generalize better and the

performance gradually becomes similar as indicated by high p-values. The rows

in each table are the standard deviation of the data for each class [0.5, 0.6, 0.7,

0.8, 0.9, 1] and the columns represent the noise variance [0.5, 0.2, 0.1, 0.05].
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