Determining the Integrity of Applications and Operatings&ms using

Remote and Local Attesters

by

Raghunathan Srinivasan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved March 2011 by the
Graduate Supervisory Committee:

Partha Dasgupta, Chair
Charles Colbourn
Aviral Shrivastava

Dijiang Huang
Prashant Dewan

ARIZONA STATE UNIVERSITY
May 2011

(©2011 Raghunathan Srinivasan
All Rights Reserved

ABSTRACT

This research describes software based remote attessatiemes for obtain-
ing the integrity of an executing user application and the@png System (OS) text
section of an untrusted client platform. A trusted extemrglity issues a challenge to
the client platform. The challenge is executable code wkiehclient must execute,
and the code generates results which are sent to the exéstitgd These results pro-
vide the external entity an assurance as to whether the elggication and the OS are

in pristine condition.

This work also presents a technique where it can be verifidhie application
which was attested, did not get replaced by a different apfptin after completion of
the attestation. The implementation of these three teclesigvas achieved entirely in
software and is backward compatible with legacy machinetherintel x86 architec-

ture.

This research also presents two approaches to incorpgratifiware based
“root of trust” using Virtual Machine Monitors (VMMSs). Therft approach determines
the integrity of an executing Guest OS from the Host OS usingx.Kernel-based Vir-
tual Machine (KVM) and gemu emulation software. The secqut@ach implements
a small VMM called Mlvmm that can be utilized as a trusted dxsde to build security
applications such as those implemented in this researchmiiwas conceptualized
and implemented without using any existing codebase; itsmail size allows it to be
trustworthy. Both the VMM approaches leverage processppat for virtualization

in the Intel x86 architecture.

DEDICATION

To my late parents, | dedicate my second, just as | was theimske

ACKNOWLEDGEMENTS

This has been an incredible journey. | started out in 200%erack of multiple
setbacks in life. I am finishing 2011 with a Doctorate and munciie. There are many
people to whom | owe my sincerest gratitude for having red¢his far. It has to start
with my late parents for giving me a good direction in life.€Tinext person | need to
thank is my sister, Sathya, without whose nagging in 2005ula/not have attempted
graduate studies. Next, | owe thanks to my other relatives supported me through

the toughest times a person can go through.

| would like to thank my advisor Dr. Partha Dasgupta witholiose guidance none of
this would be possible. | would like to thank Dr. Charles Gulln, Dr. Dijiang

Huang, Dr. Aviral Shrivastava, and Dr. Prashant Dewan forisg on my committee
and giving me useful insight into my research. | would likeltank my innumerable
lab mates who helped me out at various times. | would like &amkimy close friends
Tushar Gohad, Dr. Satyajayant Misra, and Dr. Pavel Ghostiér thoughts on
various issues during my PhD. | would like to thank Dr. Guagjaue and Dr.
Matthew Pittinsky for guiding me on many issues. Other niaetatrentions are to Dr.
Amiya Bhattacharya, Ranal Fernando, and Harie Srinivasadiping me to complete
this work. | would also like to thank all my room mates andrids during the last 6

years for having shared many truly delightful and funny mees

My last ‘thanks’ is a special one reserved for my long terntfrggnd, now fiancée and
soon to be wife, Jessica. | have experienced remarkableggsumy fortunes ever
since | met her. It started with getting an internship, resiin many publications and

has culminated in me successfully defending my Doctorate.

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES
CHAPTER
1 INTRODUCTION
2 RELATED WORK

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3 THREAT MODEL AND ASSUMPTIONS

3.1
3.2
3.3
3.4

4 DESIGN OF INTEGRITY MEASUREMENT CODE

4.1
4.2
4.3
4.4

TABLE OF CONTENTS

Problems with building secure systems
Hardware based integrity measurement schemes
ExistingcommodiyVMMs Lo

Virtualization based integrity measurement

Software based integrity measurement schemes

Attacks against software based schemes and countenangs! . . .
Program analysis and code obfuscation
Hardware extensions for virtualization on the Intetfolan

Hypervisors Utilizing Extensions for Virtualization

Threat model and assumptions for user applicationtaties
Threat model and assumptions for kernel attestation
Threat model and assumptions for guest OS attestatiog K¥YM . . .

Threat model and assumptions for minimal VMM creation

Changing execution flow and locations of variables ocksta . . .
Inserting dummy instructions
Changing instructions during execution.

Implementation

Chapter Page

Changing execution flow and locations of variables on theksta . . . 24
Obfuscating instructions executed 25
5 REMOTE ATTESTATION OF USER APPLICATION” 26
5.1 Implementation 27
Injectionof Codeon 27
CommunicationwithTrent 28
Determining Machine Identifiers 29
Determining MD5 and Arithmetic Checksum 30
Determining Process Identifiers 13
52 Results. 32
6 VERIFIED CODE EXECUTION 35
6.1 Stack allocation in Intel architecture 35
6.2 Executing%g after.#; without executingaRET 37
6.3 Implementation 37
7 KERNEL ATTESTATION e 40
7.1 Implementation 42
Identifying locations to measureinkernel 42
Communicationwith Trent. 43
Fixing call instructions 43
Disablinginterrupts 45
7.2 Results. 45
8 ATTESTATION OF AGUESTOSFROMAHOSTOS 47
8.1 Implementation 51
Startingaclone 51
Startinga TCP serverinsideclone 52
Reading memory contents of theguestOS 53
Results 54

Chapter Page
9 BUILDING A SECURE MINIMAL TRUSTED CODE BLOCKVMM . .. 56

9.1 Overview of dynamic launchmodel 85
9.2 DesignofSystem 59
9.3 Implementation 62
Initial Processor Checks 62
Allocating memory for the VMM components 63
Loading State valuesintoVMCS 64
LaunchingMivmm 67
Continued executionof Mlvmm L. 67
LinesofCode 68

10 CONCLUSION e e 69
REFERENCES e 71

BIOGRAPHICAL SKETCH 76

Vi

LIST OF TABLES

Table Page
5.1 Average code generationtime atserverend 33
5.2 Timeto compute measurements 33.
7.1 Execution times for various components 45
8.1 Execution times for components of kvm-gemusetup. 54

vii

LIST OF FIGURES

Figure

11
1.2
4.1
5.1
5.2
5.3
6.1
6.2
6.3
6.4
7.1
7.2
7.3
7.4
7.5
8.1
8.2
9.1
9.2
9.3
9.4

Overview of Remote Attestation
Overview of verified code execution
Snippet from the checksumcode
Detailed steps in Remote Attestation process

sendroutine throughsocketcalin ASM

Contents of /proc/net/tcpfile

Sample C routine and its disassembly

Change of flow of execution
TailportionofZ1

FixingJumptarget

user application initiates attestation request

user application sends attestation code to kernel space

kernel returns integrity measurementstouserland
Verification of kernel integrity by trusted server
Fixing locations of call instruction
Overview of kvm-gemu interface
Overview of gemu clone operation
Overview of dynamiclaunch
SystemDesign
Structure of allocated stack areaforhost

Lines of code of each componentinthe VMM

viii

Chapter 1

INTRODUCTION

A consumer computing platform can be compromised by malgmde in many
different ways. Preventing compromises requires safengpdieveloping secure
Operating Systems (OS), and developing secure kernel redeault densities in OS
kernels can range from 2 - 75 per 1000 Lines of Code (LOC) ppstiand Weyuker,
2002]. OS kernels are often supplemented by many devicerdror kernel modules
which have higher error rates [Chou et al., 2001]. Bufferioer is a common
vulnerability that exists in many pieces of applicationta@ire. This may allow

malware to compromise systems [lyer et al., 2010].

All copies of an application are identical; this gives amaeker (Mallory) the
opportunity to analyze the presence and locations of vabikties in the application,
and develop means to exploit these flaws. Operating Syst#erditile or no fault
isolation; this can lead to a malware rapidly obtaining colndf a computing platform
[Wang and Dasgupta, 2008]. It has been mathematically prthag perfect detection
of unknown viruses is equivalent to solving the Halting peog [Cohen, 1993]. Smart
malware can render detection schemes ineffective; thigedalthe fact that traditional
detection mechanisms operate off application binarieskvban be disabled or
patched to escape detection [Srinivasan and Dasguptal. ZD@7sequentially a user
(Alice) has to request integrity measurement of the platfbrom an external agent, or

an entity that operates beyond the bounds of the operatsigray

Remote attestation is a set of protocols that use a trustedséo probe the
memory of a client computer to determine whether at leastppéication has been
tampered with or not. Primarily used for DRM, these techagjgan be extended to
determine whether the integrity of the entire system haa besmpromised. Remote

attestation has been implemented using hardware devicesl\machine monitors
1

(VMM), and software based techniques. The Trusted Plattdodule (TPM) chip

has been used extensively to build hardware based soldtioremote attestation. In
most cases, some integrity measurement values are stattes fhatform
Configuration Registers (PCR) of the TPM. Anytime an intiggmeasurement is to be
taken on the consumer platform, a private key stored in the BQised to sign the
integrity values read from the system software [Stumpf e28I06], [Sailer et al.,
2004], [Goldman et al., 2006]. A parallel hardware intggniteasurement may use a
secure co-processor that can be placed on the PCI slot ofi¢in¢ glatform [Wang

and Dasgupta, 2008], [Petroni Jr et al., 2004]. The co-@m®mecontains an
independent software stack which can read all memory loecatn the client

platform to determine whether any compromise has takerepMctualization
schemes involve a special software layer known asipervisoror a VMM taking
integrity measurements ovegaestoperating system [Garfinkel et al., 2003], [Sahita

etal., 2007].

Software based solutions for Remote Attestation vary iir ihgplementation
technique. Most methods involve taking a mathematical ayptographic checksum
over a section of the program in questia®) , and reporting the results of verification
to a trusted external server (Trent) [Seshadri et al., 2Q88hnell and Jamieson,
2003]. TEAS [Garay and Huelsbergen, 2006] proves matheaibtithat it is difficult
for an attacker to forge integrity results obtained on antl@atform, provided the
integrity measurement code changes for every attestatgtance, however, an

implementation framework is not provided in the work.

To provide a trusted computing environment to an end usierdibsertation
provides four frameworks. The first two schemes obtain ttegnity of an OS and a
user application without the use of hardware support ankdowuitany virtualization
support. The protocol involves the untrusted client plaf@éommunicating with a

trusted external server Trent. Trent issues challengeshndre executable code to the
2

OS or the user application depending on the entity beindiedriFor obtaining the
integrity measurement of the OS Text section, the attestagrvice provider Treht
provides executable cod&ierne) to the client OS QSyjice)- OShiice Feceives the code
into a kernel module and executes the code. It is assume@fate has means such
as Digital Signatures to verify th&erne did originate from Trerit The challenge
measures the integrity of the OS text section, System ChleTand Interrupt

Descriptor Table (IDT).

It may be argued that once the OS is attested, it can be usé@sb the
application rendering the second scheme redundant. Howaaay applications
execute on a client platform, and each gets updated frelyuéfrine OS performs
integrity measurement on each binary, for security requéngts the definitions should
reside somewhere in the kernel. These definitions will haweetupdated in the
protected area frequently as each software gets updategicdinbe considered a
major overhead in the system. Instead of this, the simpletisa is to have an
external agent such as the application vendor, or a netvebrikrastrator provide
integrity measurement for the applications as the defimitioeed to be updated only
at one location. After the attestation is completed for ti&aPeas, the attestation
proceeds with the second scheme which measures the igtefatparticular client
application. The OS provides system call interface whidxiensively used by the
user application scheme, this way the OS serves as a roatsdffer the application
attestation scheme. For the sake of explanation, this wqlams the user application
prior to presenting the OS attestation scheme. Hence dthrendiscussion of the user
application it is assumed that the OS is pristine, althouagtractice the kernel

attestation should precede the user application attestati

For attesting the user applicatiog), the trusted authority (Trent) issues a
challenge to#?. The response provided 3y allows Trent to determine whether its

integrity is compromised. The challenge should have infterlaracteristics that
3

prevent Mallory from forging any section of the results gated. A software protocol
allows Mallory to perform various attacks. If the challeng@ot different for every
attestation instance, Mallory can construct a replay obpwase from a previous
instance of the attestation. If the challenge is not compadlory can compute the
response without executing the requested challenge adisemesults to Trent. In
addition, Mallory may bounce the challenge to another maehihich contains a
clean copy of the program to obtain results of the challeigdlory may also execute

the challenge in a sandbox to determine its results.

To mitigate these situations, Trent generates a new instainattestation code
%, which is sent to Alice for executior¥ is binary code which is injected by the
application? on itself. ¢ does not require the system library support as it executes
any required system call by executing software interruptss prevents any user level
malware from tampering with the results of integrity measoents. The kernel

should not be compromised for this process to work.

Since Alice injects#, it has to be verified that” was indeed generated by
Trent. To determine this Alice can setup an SSL connectidie¢at and receive’
during the SSL connection. Trent can be authenticated w@sowgtificate based

scheme while the rest of the communication can be encryied @ session key.

Injection of code on a client machinBlgice) to obtain integrity measurements
is an important aspect of the solution provided in this wdikis reduces the window
of opportunity that Mallory may have to analyze the meas@m®operations being
performed orMajice. The operations performed ¥ in each attestation instance are
changed to prevent Mallory from performingeplayattack. There are many
operations performed during attestation that make detengpihe response difficult
for Mallory without executings’. In addition,%” measures some machine and process
identifiers which are determined through the system inperinterface to make

forging of results difficult.%” has inherent programming constraints which ensure that
4

/

Application &

Injected
code?

Figure 1.1: Overview of Remote Attestation

if € executes, it sends the results back to Trent.

Fig. 1.1 provides an overview of remote attestation. Tremttrusted entity
who has knowledge of the structure of a clean copy of the g€#) to be verified.
Trent has to be a trusted server, as Alice executes codeeedeom Trent. Trent
provides executable cod&’] to Alice which is injected or”?. ¥ takes overlapping
MD5 hashes and overlapping arithmetic checksums on subrggf.#? and returns
the results to Trent. This prototype determines the intggfia binary executing at
(Majice)- This protocol is robust against user mode viruses thatraaify system
libraries, but not against rootkits. The remote attestatigplemented as part of this
work is more robust and works under harder constraints miéfreudt than those
implemented in previous workBioneer[Seshadri et al., 2005 enuinity [Kennell

and Jamieson, 2003].

It is possible that oncRemote Attestatiois completed, Mallory may replace
the attested binary#®) with a corrupted version#®’). Alice would have no
knowledge of such a change as long@$performs all the functionalities of?. To
prevent Mallory from achieving such attacks, a framework/rified code execution
is also presented in this work. This involves server makomge changes to the code
section of the client progra¥ after the remote attestation is performed. Trent uses

% to change a function call i” to call a new function#; instead of calling#o.
5

Application &

Fo | T

main routine [,
Injected /
code?

Figure 1.2: Overview of verified code execution

When the changed section 6 executes it communicates back to Trent. This
communication tells Trent that the attested program indeaapleted execution. All
changes made by Trent to the attested program are nonipatsaad remain in-core
to prevent Mallory from analyzing the changes madeoln addition this keeps the
binary image of%Z unmodified. Fig. 1.2 shows the overview of the verified code

execution process.

To remove the dependency on remote agents, this disserfagsents a
scheme where an external agent residing on the same physchine as the client
OS. Any agent residing within the bounds of a corrupted O&sseptible to getting
subverted. Hence a local attester has to reside outsiddéieheé ©S. To incorporate
this threat model, this dissertation implements a virzaion based scheme where the
integrity of a guest OS is measured by a Host OS using the LKW interface.
Depending on the threat model, the Host OS can communicatesults to the user
sitting on the guest OS using a separate channel or passstiitsreack to the guest.

The communication of results is not implemented as partisfithmework.

Virtual machine monitors (VMM) are not completely securaprerous
vulnerabilities are known to exist in Xen 3, VMware Workstat6, and VMware ESX

Server 3 [Secunia, a], [Secunia, b], [Secunia, c], and [¥¥ojt, 2008a]. To address

6

this aspect, this dissertation also presents a framewoikifadementing a small

VMM (Mlvmm) on which security audits can be performed easflysmall code base
is more manageable, and can be used as a trusted code baselonavious
applications can be built. The VMM presented in this work waglemented in under
4000 Lines of Code (LOC). This is due to the fact that the VMM sorts only the

minimum necessary features to support virtualization fag Quest operating system.

The rest of this dissertation is organized as follows: Caaptpresents related
work for all the implemented modules in this dissertatioha@ter 3 provides the
threat model for each of the implementations. Chapter 4eptesghe guidelines for
generating attestation code; chapter 5 presents the rettestation framework for
obtaining the integrity of a user application. Chapter Gpr#s the verified code
execution component; chapter 7 presents the kernel diteassgheme. Chapter 8
presents the Linux KVM based attestation scheme; chaptezsepts the small

VMM, finally chapter 10 concludes this work.

Chapter 2

RELATED WORK
2.1 Problems with building secure systems

Many early security works featured on building secure kistn& secure kernel
implements basic security mechanisms to control the systeources, prevent
intrusions, and provide verification of components [Ame®0al., 1983], [Wika and
Knight, 1994], [McCauley and Brongowski, 1979]. If the kehis completely secure
and trusted then the security of the rest of the software edsublt around it.
However, reliable and secure operating systems did natiexise past [Tanenbaum
et al., 2006], and with recent operating systems runnirgnmtlions of lines of code
with many rich features, it is unlikely that a secure op@@system will exist in the
future. Fault density is found to be in the range of 2 to 75 bogwery 1000 lines of
operating systems code [Ostrand and Weyuker, 2002]. Devicers are known to
have higher error rates than operating systems [Chou @04l1]. Due to these issues,
relying on a commodity operating system kernel to providegmtion and integrity

measurements is not feasible.

2.2 Hardware based integrity measurement schemes

Some hardware based schemes that determine the integaitglieht platform operate
off the TPM chip provided by the Trusted Computing Group [Bjpd et al., 2006],
[Sailer et al., 2004], [Goldman et al., 2006]. These schemag involve the kernel or
an application executing on the client obtaining memorgseand providing it to the
TPM. The TPM signs the values with its private key and may &oohit to an external
agent for verification. The TPM may also be capable of proxgdiecure bootstrap,
but subsequent deployment of malware may go undetected baste
implementation of the protocol. TPM based solutions haeestigma of Digital

Rights Management (DRM), may be difficult to reprogram aredraot ideally suited
8

for mass deployment.

Integrity Measurement Architecture (IMA) [Sailer, 2008]a software based
integrity measurement scheme that utilizes the underlyigl on the platform to
measure the integrity of applications that are loaded orlibat machine. IMA
maintains a list of integrity values of all possible appiioas in the system. When an
executable, library, or kernel module is loaded, IMA penrfgran integrity check prior
to executing it. IMA measures values while the system isdp&aded, however, it
does not provide means to determine whether any progranstiméxecution is

tampered in memory after it was loaded from the secondarggto

Co-processor schemes that are installed on the PCI sloedt@have been
used to measure the integrity of the kernel as mentionedctinse2.1. One scheme
[Wang and Dasgupta, 2008] computes the integrity of thedtexninstallation time
and stores this value for future comparisons. The core ofyhtem liesin a
co-processor (SecCore) that performs integrity measureaie kernel module
during system boot. The kernel interrupt service routirec(SR) performs integrity
checks on a kernel checker and a user application checkeikdérhel checker
proceeds with attesting the entire kernel .TEXT sectionrandules. The system
determines that during installation for the machine used@ilding the prototype, the
.TEXT section began at virtual address 0xC0100000 whictesponded to the
physical address 0x00100000, and begin measurements atiifiiess. The Copilot
[Petroni Jr et al., 2004] is a hardware coprocessor thattantlg monitors the host
kernel integrity. It cannot handle dynamic kernel moduled aser-level applications

and it does not have a mechanism for a kernel patch.
2.3 Existing commodiy VMMs

A virtual machine monitor (VMM) adds a layer of software to@ate computer
hardware such that one hardware platform can be partitiorieanultiple logical

9

platforms. The VAX [Karger et al., 1991] security kernel vaa¥ MM based security
solution for the VAX processor. It creates isolated virtpalcessors each capable of
running an operating system. The VAX architecture did neeharovisions to support
a VMM and hence certain changes were required to implemergeburity kernel.
The security kernel is a layered architecture and isolatedayer from another
completely. The kernel applies discretionary and mangiaocess controls to each
VM. VMM based detection schemes are used to detect the presémalware and
rootkits. The VAX processor is not manufactured anymoretaisdVMM is outdated

as a result of it.

Xen is a virtual machine monitor that allows concurrent exien of several
guest operating systems on one hardware platform. The fiesttgperating system is
a trusted OS known as its domain 0. The domain 0 guest boaimatitally with the
hypervisor (VMM) and receives special privileges and dissress to all hardware on
the system. Domain O can be used to manage other untrustedgaehines (domain
U). The Xen hypervisor is a large system that comprises afiyn&0,000 lines of
code [Weblink, p], which is coupled with a trusted domain 0. Oiis leads to a bulky

solution, increasing the possibility of vulnerabilitiesthe implemented VMM.

Kernel-based Virtual Machine (KVM) is a Linux kernel baseduwalization
technology [Weblink, h]. Each virtual machine in KVM is a lux process and it
interacts with a driver known as the KVM driver. All hardwaaxecess for the virtual
machine is handled by the KVM driver using a character deideg/kvm, and
through a modified gemu process. All code handling and eiarepandling is
delegated to one kernel module. In the Linux 2.6.33 kerreeKi\iM device driver for
Intel VT—x can be measured to be around 4000 lines of C codélje j]. However
KVM also has other components such as an emulator, intecargtoller, memory
management, and page table management which increaseetfadl size of KVM. It

should be noted that these features are necessary oncepéeatons are built on a
10

VMM. However, for obtaining a code block without vulneratids, these features can
be eliminated and added later when required by each applicathis also gives an
application the freedom to choose how to implement the abeateires. As KVM is
coupled with the Linux kernel, the security features preddy KVM are affected by

the security features a standard Linux kernel provides.

VMware ESX server 3.x was known to have had 13 documentedigecu
vulnerabilities in 2009 [Secunia, a] - these attacks wemudeented as privilege
escalation, security bypass, and exposure of sensitivenvation. VMware
workstation 6 was reported to have had 5 new security adesdocumented in 2009
[Secunia, b] - 1 of them was a privilege escalation basedlatbéen was documented
to have had 5 new security advisories in 2008 [Secunia, ovbonsisted of security
bypass and DoS based attacks. These numbers show that cced &M solutions
that have been in use extensively (may have also passed owsraardits) still have
vulnerabilities present. The presence of newly discovetdaerabilities over time

makes it imperative to create a secure root of trust VMM.
2.4 Virtualization based integrity measurement

Terrauses a trusted virtual machine monitor (TVMM) and partiidine hardware
platform into multiple virtual machines that are isolateahfi one another [Garfinkel
et al., 2003]. Hardware dependent isolation and virtuibreare used by Terra to
isolate the TVMM from the other VMs. Using Terra, a scheme lbaimplemented
where each class of application may be run on a differeriadirnachine. Terra is
installed in one of the VMs (TVMM) and is not exposed to extdrapplications like
mail, gaming, and so on. The TVMM takes measurements on the pidr to
loading them. Most traditional VMM based schemes are bulid/@eed significant
resources on the platform to appear transparent to the emgthis holds true for

Terra where the authors advocate multiple virtual machines

11

VIS [Sahita et al., 2007] is a hardware assisted (Intel VViualization
scheme which determines the integrity of client programs ¢bnnect to a remote
server. VIS contains an Integrity Measurement Module wingads the
cryptographically signed reference measurement (mahibés client process. VIS
requires that the pages of the client programs to be pinnegemory (not paged out).
VIS restricts network access during the verification phagaévent any malicious
program from bypassing registration. VIS does not allowdlient programs

unrestricted access to network before the program has lezdied.
2.5 Software based integrity measurement schemes

In Pioneer[Seshadri et al., 2005], the integrity measurement is ddtieowt the help
of hardware modules or a VMM. The verification code for thelagion resides on
the client machine. The verifier (server) sends a random eufmonce) as a
challenge to the client machine. The response to the clgaldatermines if the
verification code has been tampered or not. The verificatole then performs
attestation on some entity within the machine and transfemsrol to it. This forms a
dynamic root of trust in the client machinioneerassumes that the challenge cannot
be redirected to another machine on a network, however, nymeal world scenarios
a malicious program may attempt to redirect challenges ashen machine which has
a clean copy of the attestation cod®oneerincorporates the values of Program
Counter and Data Pointer, in its checksum procedure; bethethisters hold virtual
memory addresses. An adversary can load another copy ofie¢hé @de to be
executed in a sandbox like environment and provide it théerge. This way an
adversary can obtain results of the computation that thikectgee produces and return

it to the verifier.

Genuinity[Kennell and Jamieson, 2003] implements a remote attestati

system in which the client kernel initializes the attestatior a program. It receives

12

executable code and maps it into the execution environnseditected by the trusted
authority. The executable code performs various checkb®ulient program, returns
the results to a verified location in the kernel on the rematehime, which returns the
results back to the server. The server checks if the resdti® @ccordance with the
checks performed, if so the client is verified. This protaegjuires operating system
(OS) support on the remote machine for many operationsdiredioading the
attestation code into the correct area in memory, obtainargware values such as
TLB. It also requires the client OS to disable interruptsiides to have confidence
that the attestation code actually executed. However, lieatdOS is corrupted then it
may choose to not disable interrupts in which case varioua+inéormation about the
process incorporated into the checksum will not be corraatther problem with this
scheme is that the results are communicated to the servleliketnel and not the
downloaded code. This may allow a malicious OS to analyzenaodify certain

values that the code computes.

In TEAS[Garay and Huelsbergen, 2006], the authors propose a remote
attestation scheme in which the verifier generates progaata to be executed by the
client machine. Randomized code is incorporated in thetattien code to make
analysis difficult for the attacker. The analysis providgdhem proves that it is very
unlikely that an attacker can clearly determine the actp@réormed by the
verification code; however implementation is not describgegart of TEAS and
certain implementation details often determine the effenaess of a particular

solution.

2.6 Attacks against software based schemes and countenangs!

Genuinity has been shown to have weaknesses. Genuinityeleasshown to fail
against a range of attacks known as substitution attackenj&n et al., 2004]. The

attack suggests placing attack code on the same physicalgsatpe checksum code.

13

The attack code leaves the checksum code unmodified andvisigdf to the
zero-filled locations in the page. If the pseudo random tsalanaps into the page on
which the imposter code is present, the attack code reditketchallenge to return
byte values from the original code page. Authors of Genyioaiuntered these
findings by stating that the attack scenario does not takeaitctount the time required
to extract test cases from the network, analyze it, find gppate places to hide code
and finally produce code to forge the checksum operationsrjgiand Jamieson,
2004]. The attacks were specifically constructed againsimstance of the checksum
generation, and would require complex re engineering toesot against all possible
test cases. Itis also suggested that Genuinity reads 32hitsvior performing a
checksum and hence will be vulnerable if the attack is caostd to avoid the lower
32 bits of memory regions [Seshadri et al., 2004]. These tains are countered by
the authors of Genuinity [Kennell and Jamieson, 2004]. Titbas state that

Genuinity reads 32 bits at a time, and not the lower 32 bits)address.

Other works have also been researched against check suraafingre
[Wurster et al., 2005]. However, every attack scenario telénitations and can be
worked around. In this dissertation, remote attestatioampemented by downloading
new (randomized and obfuscated) attestation code for éwstgnce of the operation.
This operation makes it difficult for the attacker to forge asults that are produced
by the attestation code. To launch a successful attack piaNould have to perform
an ‘impromptu’ analysis of the operations performed anareghe forged results to

Trent within a specific time frame. This is considered diffit¢a achieve.

2.7 Program analysis and code obfuscation

Program analysis requires disassembly of code and theatdlot graph (CFG)
generation. The linux tool ‘objdump’ is one of the simplesthlr sweep tools that

perform disassembly. It moves through the entire code afisassembling each

14

instruction as and when encountered. This method suffens & weakness that it
misinterprets data embedded inside instructions henefutigrconstructed branch
statements induce errors [Schwarz et al., 2003]. Lineaepwsealso susceptible to
insertion of dummy instructions and self modifying codec&sive Traversal

involves decoding executable code at the target of a bragidrdanalyzing the next
executable code in the current location. This techniqueatembe defeated by opaque
predicates [Collberg et al., 1998], where one target of adira@ontains complex

instructions which never execute [Linn and Debray, 2003].

CFG generation involves identifying blocks of code such thay have one
entry point and only one branch instruction with target addes. Once blocks are
identified, branch targets are identified to create a CFG.flenoptimization
techniques such as executing instructions in the delay§kbbranch cause issues to
the CFG and require iterative procedures to generate ameaedDFG. The execution

time of these algorithms is non-linearjiCooper et al., 2002].
2.8 Hardware extensions for virtualization on the Intelfolan

Hardware virtualization is a recent development on the X&&gm which provides
processor extensions to create a VMM. The processor cadaireral fields which
can be filled during boot or after the native OS has loaded teentiee native OS into
guest mode. VMM implementations involve a hypervisor thahages one or more
VMs by operating at the highest software privilege level (¥¥bot mode in VT—-X)
[Intel Corporation, 2010]. The VMM is invoked on the occurce of certain events
which can be setup prior to executing the VMM. On the occueent these events the
processor loads the state of the VMM stored in certain ar¢lasofnemory (termed
VMCS in Intel VT—x) and jumps to its entry point. The VMM opéea in two modes
VMX root mode and VMX non-root mode. The guest runs in nontraode and the

VMM itself runs in the root mode. A control transfer into th&N¥ (host) is called a

15

VMEXit and a transfer to the VM (guest) is called a VMEntry.eTéxit and entries
happen at certain instructions as specified in the architecbr as set up by the
system administrator. A VM can also explicitly perform a Vk#by executing a
VMCall instruction which is similar to a hypercall. The VMM#orces isolation and
other system policies. The VMM can manage the launch andletwt of VMs,
memory/device isolation, control register access, MSRs&dnterrupts and
instruction virtualization. Intel VT—x allows a user to axide certain sections of the

guest operating system routines based on the threat modielsaige.
2.9 Hypervisors Utilizing Extensions for Virtualization

BitVisor [Shinagawa et al., 2009] implements a hypervisat utilizes the drivers of
the guest operating system to minimize its code size. Thervgor implements a set
of drivers to mediate all access to devices. BitVisor impais shadow DMA
descriptors to control data transferred through DMA betwggest OS and devices.
BitVisor mediates data transferred between the guest OS8ewides by intercepting
data I/Os. BitVisor inspects and manipulates the contedatd to implement security
functionalities such as encryption or intrusion detectibine hypervisor implements
parapass-through drivers for each of the device to be menitditVisor also
implements instruction emulators to handle mode transstlzetween real mode and
protected mode of the Intel x86 based CPU. Due to these addlitn it, the size of
BitVisor is estimated as being close to 20KLOC, the size chgaara-pass through

drivers is an addition to this code size.

SecVisor [Seshadri et al., 2007] is a hypervisor that virtea Memory
Management Unit and the IO Memory Management Unit of the Gir&allow
hardware protections to be set over kernel memory. Sec¥lsecks all modifications
to MMU and IOMMU state to protect protected code from DMA st SecVisor

depends on user supplied policy to approve code that candoeid by the kernel.

16

Its security relies on a user inputs of trusted code, it candted that smart malware
may attempt to fake user responses and inputs to send mededhje SecVisor TCB

to modify its trusted code lists.

MAVMM [Nguyen et al., 2009] builds a minimal VMM that can exzict
information such as execution traces, memory dumps, sysa#is) disk accesses, and
network interactions from programs running on the guestN¥S/MM protects the
hypervisor memory from being tampered by the guest usintgdesging and
protects from external DMA writes by using the IOMMU featsi@ the virtualization
extensions of the processor. MAVMM single steps througlsgapplications to
determine instructions executed. MAVMM does not utilize tjuest OS drivers to
extract data; instead it uses a serial port to extract datathwe help of BIOS.

MAVMM has the ability to selectively monitor some procesaes ignore other ones.
To achieve this, a user level application specifies the narfig® processes to be
tracked. The hypervisor section of MAVMM is written in neadKLOC. In
comparison Mlivmm implemented in this work has the core ofcibde to be around
2.5 KLOC. This is because Mlvmm does not implement any sgctaatures, it
merely offers a system which is small in code size and offeecapability to build

various applications on top of it.

Bluepill [Rutkowska, 2006] is a rootkit that utilizes hardwe extensions for
virtualization provided by Intel VT —x and AMD -V to move thative operating
system into a shell monitored by it. Bluepill identifies a pdgut driver to be written
on and writes binary code on the paged out code of the devieerdwhen the driver
is loaded back to memory the injected code executes. Thetétjeode turns on the
hardware virtualization feature and forces the Vista OjregeSystem to migrate to
the guest environment. Bluepill does not survive systeroaebVitriol [Zovi, 2006] is
also a hardware assisted virtualization rootkit which exeg on a platform having

Intel VT—x which works in a similar fashion to Bluepill. Botiootkits implement only
17

the bare features necessary to implement a hypervisor tisrftardware extensions

on the x86 architecture.

18

Chapter 3

THREAT MODEL AND ASSUMPTIONS

This chapter provides the threat model and assumptionsvibide used in each of
the implemented works. Since each work is slightly diffeiants aim and scope,

each work has a separate threat model and assumptions.

3.1 Threat model and assumptions for user applicationtaties

It is assumed that Mallory may have installed a backdodfat.e which can inform
Mallory that an attestation process has been initiated.bHekdoor may divert the
challenge to another machine inside Mallory’s control viagan provide the response
for the challenge. The backdoor can also use dis-assentif/ttodetermine the
operations performed by the challenge. In addition the d@agkmay attempt to

execute the challenge inside a sandbox to determine thigsre$the response.

Since Trent is a trusted server, it is assumed that Aliceexgicute the code
provided by Trent. Trent may be the vendor of the binary orraroercial provider of
remote attestation service for many binaries. It is alsaragsl that Alice has a digital
signature scheme, which can identify that the executalile e@ms generated by Trent.
Because attestation code determines the IP address oféhewhich serves as its
machine identifier, it is assumed that Alice is not executirgprograms behind a
NAT. This assumption is made &@takes measurements Mpice to determine if it is
the same machine that contacted Trentifice is behind a NAT the connections
would appear to be coming from a router and not the machinge whwould respond
with the machine IP. It can also be noted that in case Trenhetwork administrator,
the NAT does not come into play at all as the attester wouldhbiele the NAT. In a
home computing scenario, often there is only one computén@®network, so the

case of another machine masquerading with the same IP cgndred. Hence, the IP

19

measurement check can be done away with. Also many routevg @he machine
inside the NAT to be placed outside it. This option can be tiesgorarily during

communication between Trent and Alice.

% executes OS calls by using software interrupts. Due toithssassumed
that the OS o1Mpjice IS NOt compromised by @otkit. The presence of @otkit would
require the use of a VMM or a hardware based checker to determiegrity. Also so
note that there are many software interrupts in the Linuxatpeg system, due to
which it can be assumed that a user level malware will findffitodilt to intercept the

operations of software interrupts.

It is assumed tha?” is not self-modifying code. Any integrity measurement
technique cannot obtain measurements on self-modifyidg because the state of the
code section changes with time and execution. Moreoverporpating platforms
based on the Intel x86 architecture, the code section iséwyariotected’ by default,
which reduces the scenario of self modifying code existimgammon applications. It
is also assumed that Mallory may attempt to change the apiglic?’ after it has been
attested by Trent. To prevent this scenario, the first schemeended to determine

whether the attested binary continued execution or waacedlby an attacker.
3.2 Threat model and assumptions for kernel attestation

For the kernel attestation part, this work assumes thatehaskis compromised,;
system call tables may be corrupted, and a malware may haveget the interrupt
descriptors. Runtime code injection is performed on a Kanoelule to measure the
integrity of the kernel. It is assumed that Alice has mearh s digital certificates to
determine that the code being injected is generated by @tfgerver. It is also
assumed that the trusted server is the OS vendor or a coepatork administrator

with knowledge of the OS mappings for the client.

20

3.3 Threat model and assumptions for guest OS attestating K¥M

For the virtualization based OS kernel attestation, thiskwses Linux-KVM and
gemu emulator. It is assumed that the implementation of émegand kvm interface
is secure. This means that it is assumed that no malware gémiteany bugs in the
interface to exploit the Host OS. It is assumed that the GD&sinay be completely
corrupted, but the Host OS is clean. The external serveivesa connection request
from the guest OS and requests the integrity measuremetits giiest OS by
communicating to the Host OS. It is assumed that the trustety &nows the IP
address of the Host machine for the guest OS in questionafissmed that the Host
OS runs on an Intel x86 based machine which has virtualiz&xensions VT-x built
in its hardware. This assumption is made for KVM supports k$sumed that the

Host has means such as digital signatures to verify Trent.

3.4 Threat model and assumptions for minimal VMM creation

For the minimal VMM creation section, it is assumed that ttegfprm on which the
VMM executes will have Intel-VT capabilities. It is assuntbdt the native OS is
clean prior to launch of the VMM. Although this seems resive, it is required only
as long as the VMM is implemented as a minimal feature VMMh# &bility to take
integrity measurements on the native OS is incorporatelda’viMM, then this
assumption is not required. It is assumed that the procesBdrehave correctly and

trap the execution of sensitive instructions into the VMM.

21

Chapter 4

DESIGN OF INTEGRITY MEASUREMENT CODE

Trent is a trusted server that provides integrity measuneicwde?’ to Alice. Alice
injects the code on the user applicatigh &7 transfers control t&” and allows it to
report measurements to Trent. Trent must prevent Mallemfanalyzing the
operations performed by'. To achieve this, Trent can utilize a combination of

obfuscation techniques.

Trent also maintains a time threshold (T) by which the respdromMpice IS
expected. If& does not respond in a stipulated period of time (allowingetwork
delays), Trent will know that something went wrong\itjice. This includes denial of

service based attacks where Trent will inform Alice tiaits not communicating back.

Fig. 4.1 shows a sample snippet of tienathematical checksum code. The
send function used in the checksum snippet is implemenied udine ASM. It is
evident that in order to forge any results, Mallory must deiae the value of
checksumz2 being returned to Trent. This requires that Malttentify all the
instructions modifying checksum2 and the locations onkstlaat it uses for
computation. To prevent Mallory from analyzing the injettede, certain

obfuscations are placed #i as discussed below:

4.1 Changing execution flow and locations of variables ocksta

To prevent Mallory from using knowledge about a previousanse of#” in the
current test, Trent changes the checksum operations pextbby selecting
mathematical operations on memory blocks from a pool ofipteseperations and

also changes the order of the instructions. The resultsesktloperations are stored

22

x = <random value>
a = 0;
while (a<400) {
checksum 1 += Meml[a];
if ((a % 55) == 0) {
checksum? += checksuml/x;

b

at++;

)

3

send checksum?2;

Figure 4.1: Snippet from the checksum code

temporarily in the stack. Trent changes the pointers ontdekgor all the local
variables insid& for every instance. These steps prevent Mallory from swsfabg

launching an attack similar to those used for HD-DVD key latgdWeblink,
e],[Weblink, f].

4.2 Inserting dummy instructions

Program Analysis is a non linear operation as discussedtioge2.7. An increase in
the number of instructions that Mallory has to analyze deses the time window
available to forge the results of these operations. Tresgris instructions that never
execute and also inserts operations that are performéth@r but not included as
part of the results sent back to Trent. These additions todde make it difficult for

Mallory to correctly analyz&’ within a reasonable period of time.
4.3 Changing instructions during execution

Mallory may perform static analysis on the executable cédsent by Trent. A good
disassembler can provide significant information on th&uresions being executed,

and allow Mallory to determine when system calls are madendreh function calls
23

are made. In addition, it may also allow Mallory to see thearecode which reads
memory recursively. If these tools do not have access todtle to be executed
before it actually executes, then Mallory cannot deternti@eoperations performed
by €. Trent removes some instructionsdghwhile sending the code tdpjice and
places code inside” with data offsets, such that during execution, this sedticsi
changes the modified instructions to the correct valuestefbie, without executing

%, itis difficult for Mallory to determine the exact contents®.

4.4 Implementation
Changing execution flow and locations of variables on theksta

Changing execution flow and locations on stack preventsrihgram analysis off.
The source code &f was divided into four blocks which are independent of each
other. Trent assigns randomly generated sequence nunolt@esfour blocks and

places them accordingly insi¢€ source code.

The checksum block is randomized by creating a pool of mastiead
operations that can be performed on every memory locatidrsalecting one
operation from the pool of operations for each memory sloe pool of operations is
created by replacing the mathematical operation with atiethematical operations

on the same location.

Once the mathematical operations are selected ifteeurce code, Trent
changes the sub-regions for the checksum code and the MIx¥iggadocedure. This
is done by replacing the numbers defining the sub-regigiisas sub-regions defined
in its un-compiled code. To randomize the sub-regions, gpveessor is executed on
the un-compile®’ so that it changes the numbers defining the sub-regions. The

numbers are generated so that the sub-regions randomhapver

¢ allocates space on the local stack to store computatiohssalnstead of

using fixed locations on the stack, Trent replaces all veesinsides” with pointers
24

to locations on the stack. To allocate space on the stack destares a large array of
type ‘char’ of size N, which has enough space to hold conteinadl the other
variables simultaneously. Trent executes a pre-procedsich assigns locations to
the pointers. The pre-processor maintains a counterrgjatiO and ending at N-1. It
randomly picks a pointer to assign a location and assighg ivalue on the counter
and increments the counter using the size of the correspgmdiiable in question.
This continues until all the pointers are assigned a lonaiiothe stack. Trent

compiles? source code to produce the executadilby placing these obfuscations.

Obfuscating instructions executed

Mallory cannot obtain a control flow graph (CFG) or perforragnmam analysis on the
executable code &f if the instruction being executed ¥ cannot be determined.
Trent changes the instructions inside the executable aotieasthey cause analysis
tools to produce incorrect results’ contains a sectiorestore Which changes these
modified instructions back to their original contents whisgkecutes%estore CONtains
the offset from the current location and the value to be plasside the offset. Trent
places information to correct the modified instructionsdB$ estore GrestoreiS
executed prior to executing other instructions insgdand%estore COrrects the values

inside the modified instructions.

25

Chapter 5

REMOTE ATTESTATION OF USER APPLICATIONY

If Alice could download the entire copy a¥ every time the program had to be
executed then Remote Attestation would not be required.gévewsince? is an
installed application, Alice must have customized cerpawfile options, saved some

data which will be cumbersome to create every time.

Alice uses# to contact Trent for a service, Trent returns# a challenge
which is executable codé&). &7 must inject?’ in its virtual memory and execute it at
a location specified by Tren® computes integrity measurements and communicates
the integrity measurement valiy directly to Trent. Trent has a local copy 6f on
which the same sets of tests are executed as issued to thietalroduce an integrity
measurement valudy. Trent compared, andMyp; if the two values are the same
then Alice is informed that’? has not been tampered. Trent wants to be certairdhat
took its measurements a® residing insidéMajice. TO provide this guarante&,
executes some more testsMRice and returns their results to Trent. These checks
ensure tha¥’ was not bounced to another machine, and that it was not esctouta

sandbox environment inside a dummy proc&4smmywithin Majice.

There are many ways in which Mallory may tamper with the ekeawf % .
Mallory may substitute values ®fl; being sent to Trent, such that the evidence of
modification of & is not discovered by Trent. It is also possible that Mallogym
have loaded a clean copy &F inside a sandbox, executéwithin it, and provide the
results back to Trent. Mallory may redirect the challengartother machine on the
network in order to compute the integrity measurements and the responses back
to Trent. Without addressing these issues, it is not pas$inlTrent to correctly
determine whether the measurements accurately reflectateecs. 2 on Mpjice. If

Trent can determine th&t executed oMajice, € Was not executed in a sandbox, and
26

1. Alice ——> Trent
Verification Request

2. Trent ——> Aliqe .
Inject code? at location, execute it

3.% — Trent
Machine Identifier
Trent —>
Proceed/Halt
— Trent
Initial Checksum
.Trent — 5
Proceed/Halt
— Trent
MDS5 of specified regions
8. Trent —
Proceed/Halt
9. ¢ . Trent
Test of correct process decriptor

o o »

10.Trent ——>
Proceed/Halt

Figure 5.1: Detailed steps in Remote Attestation process

Trent can produce code whose results are difficult to guleen,the results can
indicate the correct state a?. Achieving these guarantees also requires #hat

provides Trent with a machine identifier and a process iflentf Majice.

Trent can retain a sense of certainty that the results ang@mgeby producing
code that makes it difficult for Mallory to pre-compute résulOnce these factors are
satisfied, Trent can determine whethi#ron Mpjice has been tampered. Fig. 5.1 shows

the detailed steps in performing Remote Attestation.

5.1 Implementation
Injection of Code o’

The attestation cod# is injected by on itself. This allowss” to execute within the
process space a¥. This way% can use all descriptors a” on Majice Without

creating new descriptors. The advantage of this is#haannot be executed in a
sandbox easily and’ can also determine whether more than one set of descriptrs a
present forZ?. At the client side?” makes a connection request to Trent. Trent

responds by providing the size of attestation rou#h#llowed by the actual
27

executable code to determine the integrityZéf Trent also sends the information on
the location inside” where% should be placed? receives the code and prepares
the area for injection by executing the library utilityprotecfWeblink, k] on the area.
Once injection is completey creates a function pointer which points to the address

of the location and call%” using the pointer.

Communication with Trent

The attestation routine does not have any calls to systearigs. This is because
libraries may get compromised by an attacker to return meobresults. In addition,
the references to libraries are present at different lonati every machine. It is easier
to generate interrupts to execute the required functipnialstead of placing the
correct references to the libraries in C. Moreover, a cadl system library may
expose the functionality of the code to Mallory. Executidtilararies for
communication is achieved by executing the software inggwith the interrupt

number for the OS cafiocketcall

Communication to Trent is achieved by using the socket cctimethat. %’
created for an attestation request. All messages are sérgribusing thesocketcall
[Weblink, i] system call. ASM code for a network send ussagketcalis shown in
Fig. 5.2. The routine allocates space on the stack for thenpeter, followed by
placing the parameters on the stack. The system call nurabso¢ketcalis 102,
which is moved into the A register. The call number for a sersbicketcalis 9, this
value is moved to the B register, then the location of theipatars are moved to the
C register and the system call is executed using the inteimapuction (INT 80).
Once the interrupt returns the stack is restored to ther@igialue and the result is
obtained in the A register. The functions provided insdeketcalls present in the

Linux source code in the file include/linux/neth >.

28

asm (
"sub $16,%%esp\n"
"movl %%ebx, (%%esp)\n"
"movl %%hecx,4(%hesp)\n"
"movl %%edx,8(%kesp)\n"
"movl $0,12(%%esp)\n"
"movl $102,%%eax\n"
"movl $9,%%ebx\n"
"movl %%esp,%kecx\n"
"int $0x80\n"
"add $16,%%esp\n"
: "=a" (res)
:"b" (send_sock), "c" (p_MD5Buf), "d" (len)

);

Figure 5.2:sendroutine througtsocketcalin ASM

Determining Machine Identifiers

To determine tha¥’ is not re-directed to another machine, Trent obtains theninac
identifier on whichg” executes. Trent had received the request for attestabam fr
Alice, hence has access to the IP address of the machine frach ¥he request came.
% obtains the IP address of the platform on which it is exegudind communicates
the result to Trent. Trent compares the two values to determihe platform in
which % is obtaining results is the same as the platform from whiehrtitial
attestation request came. It can be argued that IP add@gsdgnamic; however
there is little possibility that any machine will changell®saddress in the small time
window between Alice requesting a challenge - to measuré&imging provided by
to Trent.Majice IS NOt behind a NAT; hence Trent observes the IP addreBk @l and
¢ reports the same address. It can be argued that Mallory mayrbdirected the
challenge to another machin@gaiory), and changed the address of the network
interface orMyqiiory to match that oMpjice. But asMaice is not behind a NAT it

would be difficult for Mallory to provide the address to anetimachine on an

29

external network and achieve successful communication.

¢ determines the IP address of\Me using system interrupts. The interrupt
ensures that the address present on the network interfaoeréstly reported to Trent.
This involves loading the stack with the correct operandste system call, placing
the system call number in the EAX register and loading thergplarameters in
registers EBX, ECX, EDX and executing the interrupt instiwre. Reading the IP
address involves creating a socket [Weblink, 1] on the nétirterface and obtaining
the address from the socket by using another systenmocdl[Weblink, g]. The
obtained address is in the form of an integer which is coedetid the standard

A.B.C.D representation.

Determining MD5 and Arithmetic Checksum

To determine whether the code sectionzdthas been tampered, computes an MD5
hash on the code section &7. It is possible that since the code section of the binary
is available, Mallory may compute the MD5 hash of every gasdboundary region
prior to Trent sending a challenge. To prevent this attackniidefines sub-regions in
the binary and overlaps on the sub-regions before meastimnigiD5 hash of the
overlapping regions. Overlapping checksums ensure thataiccident the
sub-regions are defined identically in two different vensiof#’, the overlap provides
a second set of randomization and ensures that the resaibergfutation produced by
% are different. This also ensures that some random sectfogéare present more
than once in the checksum to make it more difficult for Malltoyhide any

modifications to such regions.

To increase the complexity of the attestation procedurenflchanges the
MD5 measurement to a two phase protocol. MD5 code cannotianaized. The
only changes that can be made are to the overlapping subAsegio prevent possible

attacks on this protocol, Trent also obtains an arithmétecksum of the code section
30

of 2. The checksum is taken on overlapping sub-regions as desicaibove. The
sub-regions defined for the arithmetic checksum are diftdfrem the sub-regions

defined for obtaining the MD5 hash.

The sub-regions on the MD5 hash are defined by Trent in thes@made of
the attestation routine using constants. Prior to comipitafirent runs a pre-processor
which generates random numbers to change these constartsh@&cksum operations
are randomized by creating a basic arithmetic operatioa faemory location and
modifying the basic arithmetic operation to create alterrogperations. This provides
a pool of operations that can be performed on each memortidoc®uring code
generation, one operation is randomly selected for eachanelocation and placed
in the attestation routine. This changes the arithmeticaijmns performed for every
attestation request. The results of these operations@exddemporarily on the stack.
Trent changes the pointers on the stack for all the locahlbstes insides” for every
instance. These steps prevent Mallory from successfullydaing an attack similar to
those used for HD-DVD key stealing [Weblink, e], [Weblink, Trent places dummy
instructions that never execute and inserts some opesdtiam are performed on
Maijice; but not included as part of the results sent back to Tremnflalso places a
time limit (T) within which the response for these compuias must be received. The
addition of these operations is aimed to make analysis afadjpas within the time

frame difficult for Mallory.

Determining Process ldentifiers

To determine that the attestation routine was not bouncegdoute inside a second
copy of &, Trent obtains the state of the machine by comparing the dpseriptors
on Majice @against a known state of a clean machine. Trent knows thatlieea
machine there must be only one set of file descriptors use? bif there are multiple

copies of the descriptors used B¥, then an error is reported to Treff.identifies

31

sllocal_address rem_address st tx_queue rx_queue trtm->when retrnsmt uid timeout inode
5456

0: 0100007F:1F40 00000000:0000 OA 00000000:00000000 00:00000000 00000000 0 O

1: 00000000:C3A9 00000000:0000 0A 00000000:00000000 00:00000000 00000000 O O 4533
2: 00000000:006F 00000000:0000 OA 00000000:00000000 00:00000000 00000000 O O 4473
3: 0100007F:0277 00000000:0000 OA 00000000:00000000 00:00000000 00000000 O O 5690
4:0100007F:0019 00000000:0000 OA 00000000:00000000 00:00000000 00000000 0 O 5358
5:0100007F:743A 00000000:0000 OA 00000000:00000000 00:00000000 00000000 O O 5411

Figure 5.3: Contents of /proc/net/tcp file

descriptors that match the known descriptors used/bgnd determines the process
using these descriptors in the system. If the process ulsesgtdescriptors are the

same as the process inside whi€hexecutes, then an OK state is sent to Trent.

% obtains the pid of the process%) under which it is executing using the
system interrupt fogetpid[Weblink, c]. It locates all the remote connections
established to Trent fromilajice. This is done by reading the contents of the
‘/proc/net/tcp’ file. The file has a structure shown in FigB.5This file has some more
fields that are omitted from the figure. Once all the connestare identifieds’
utilizes theinodeof each of the socket descriptor to locate any process usifigis is
done by scanning the ‘/proc/pid >/fd’ folder for all the running processes &fipice.

In the situation that? is not corrupted, there should be only one processAg)(
using the identified inode. i encounters more than one such process, then it sends

an error message back to Trent.
5.2 Results

The remote attestation scheme was implemented on Uburdy(l8rfux 32 bit)
operating system using the gcc compiler; the applicatiband attestation cod€
were written in the C language. The time threshold (T) is apdrtant parameter in
this implementation. The value of T must take into accouttoek delays. Network
delays between cities in IP networks are of the order of a féliseconds [Weblink,
d]. Measuring the overall time required for one instance efite Attestation and

adding a few seconds to the execution time can suffice fordheevof T. The

32

Table 5.1: Average code generation time at server end

Machine Test generation time (ms) Compilation time (ms) Total time (ms)

Pentium 4 12.3 320 332
Quad Core 5.2 100 105

Table 5.2: Time to compute measurements

Machine Server side execution time (ms) Client side execution time (ms)

Pentium 4 0.6 22
Quad Core 0.4 16

performance of the system was measured by executing thgitgtehecks on the
source code for VLC media player interface [Weblink, n]. ®osections of the
program were removed for compilation purposes. The pedoe of the system was
measured on two pairs of systems. One pair of machines wgaseyienachines
executing on an Intel Pentium 4 processor with 1 GB of ram,taadecond pair of
machines were Intel Core 2 Quad machine with 3 GB of ram. T$is teeasured
were: the time taken to generate code including compile,timmes taken by the server
to do a local integrity check on a clean copy of the binary ame taken by the client
to perform the integrity measurement and send a respongdd#ue server. The time
taken for compiling the freshly generated code is reporebhble 5.1. As expected,
the Pentium 4 machine has slightly lower performance thdatéopm with 4 Intel

Core 2 processors.

The integrity measurement co@éwas executed locally on the server, and also
sent to the client for injection and execution. The time take the server to execute is
the time the code will take to generate integrity measuremerhe client, because
both machines were kept with the same configuration in easd dehese times are
reported in Table 5.2. As the code takes only in the order diseconds to execute on
the client platform, the value for T can be set in the order f@aseconds to allow for

network delays.

It can be observed from Table 5.1 that it takes an order of ehfavdred

33

milliseconds for the server to generate code, while from&al® it can be observed
that the integrity measurement is very light-weight andmes results in the order of a
few milliseconds. As a result, the code generation procas$e viewed as a huge
overhead. However, the server need not generate new codediorinstance of a
client connection. It can generate the measurement codmlpeily every second and
ship out the same integrity measurement code to all cliertaecting within that

second. This can alleviate the workload on the server.

34

Chapter 6

VERIFIED CODE EXECUTION

Once Remote Attestation determines the integrity of a @iogithe server begins
communication and sharing of sensitive data to the clieogm@m. However, Mallory,
the attacker, may choose to wait till the attestation precesompleted and then
substitute the client prograr®¥ with a corrupted progran¥.. To prevent Mallory
from doing this, Trent has to obtain some guarantee thatribeeps that was attested
earlier is the same process performing the rest of the conuation. Trent cannot
make any persistent changes to the binary as Mallory woukttthese changes
under the current threat model. Trent has to change the fl@xexfution from normal
in the client process such that the sequence of events eepwitl allow Trent to

determine whether the attested process is executing.

As discussed before, Trent knows the layout of the progfdmAt the end of
Remote Attestation, Trent sends a new group of messagg€s e message contains
some code executable codq that Trent instruct&” to place at a particular location
in &. Trent also instruct®” to modify a future function call FO irZ such that
instead of calling%p, & calls.%#;. .#1 communicates back to Trent and this way
Trent knows that the copy o¥ which was attested in the previous step is still
executing. At the end of its executiog; undoes all its stack operation and jumps to
the address wheré is located. If.%7 executes a return instruction then control
would move back ta”Z and some functionality a#” would be lost. It cannot execute

a function call to%g as this may cause loss of some parameters passéél by
6.1 Stack allocation in Intel architecture

In the Intel x86 implementation of Linux, stack is definedidgrcompilation time and

allocated only during runtime. Every function allocates thquired stack at the start

35

int C10)

{
char mesg_string[20];
strcpy(mesg_string, "Hello World");
printf("\n %s", mesg_string);
return O;

8048514: 55 push %ebp
8048515: 80 eb5 mov %esp, %hebp
8048517: 80 ec 38 sub $0x38, %esp

8048569: c9 leave
804856a: c3 ret

Figure 6.1: Sample C routine and its disassembly

of its execution by subtracting required amount of byteddoal memory from the

stack pointer using the SUB instruction.

Fig. 6.1 shows a sample routine and its disassembly. As sdée code snippet, the
code first saves the base pointer on the stack; this acti@s shag frame for the
previous function. The execution then moves the curreckgtainter (which points
to the location beyond the last push), into the base poititerjs done as most of the
addressing inside a routine is performed relative to theectibase pointer. The
execution then subtracts some memory from the current gi@icker to allocate
memory for the local variables. The rest of the instructiomsstitute the program
functionality. The last two instructions aleaveandret. The leave instruction
reverses all net stack operations performed by the funetahit pops the value stored
in stack for the base pointer. The ret instruction resumesugion at the return

address stored on the stack.

36

e ccctecccccceccctttttotttttasssttsasssetaassnsanannan ret

Figure 6.2: Change of flow of execution

c " | communicate to Trent| -

-% | add value to esp 1
. seteb

5 Remote Attestation . fp

o jmp F#o

E i

= _ - ~|start

o Change function calbg to .%; Fo

IS

IS

Q

=

(@)

=

6.2 ExecutingZ after.#; without executing a RET

71 allocates some stack for its local memory in a fashion simdlabove. However,
instead of letting it return t@”, a jump instruction will be executed after the stack
operations are reversed:; can either move the value of the frame pointer into the
stack pointer to reverse stack allocation (which is eqeivebdf performing an addition
on the stack pointer), pop the current stack value into tise painter, and then jump
to the start of%g, or execute the leave instruction and jumpig. This allows.%(to
receive all parameters passed on the stack/hgnd resume normal execution. When
F(executes a return instruction, the control moves bacl’td=ig. 6.2 shows the

represents this process diagrammatically.
6.3 Implementation

As part of sending messages#0 Trent provides the code oF;, the location where
1 should be placed and a particular address insitiehich corresponds to a
function call to.%g. ¥ places the cod¢#; at the specified location and changes the
target of the call instruction inside? to point to.#;. When.#; executes, it

communicates to Trent and informs Trent that it executechritbe noted here that;

37

can use the existing connection to Trent or open a new coione&ince Trent
generated”1, Trent can place a random secret insidewhich gets communicated to

Trent. On receiving the secret Trent knows thatexecuted.

__asm__ ("mov %ebp, %esp \n"
upop %ebp \l’l"
"jmp 0x8048bff \n");

Figure 6.3: Tail portion of7;

The tail portion of.#1 is provided with code similar in functionality as shown
in fig. 6.3..%1 clears its stack by moving the base pointer into the stadkteoilt then
pops the base pointer value of the previous routine into EBen finally a jump is
performed toZp. As.#; is compiled as a standalone function, the gcc complier

generates an incorrect target address for the Jump instnudthis is fixed by the

int fix_address(void){
int length_ofF1= Oxbd;
int location_FO = 0x08048bff;
int location_F1 = 0x08048c92;
int offset_of_jmp_in_F1 = Oxag3;
int eip_offset_for_jmp = 5;

T_address = location_FO -
(location_F1 +

offset_of_jmp_in_F1+

eip_offset_for_jmp);
Write_back[0xa4] T_address & 0x000000FF;
Write_back [0xa5] (T_address & 0x0000FF00) >>8;
Write_back [0xa6] (T_address & 0xO00FF0000) >>16;
Write_back [0xa7] (T_address & OxFF000000) >>24;

Figure 6.4: Fixing Jump target

38

server side program by correcting the target of the jumpuctibn as seen in fig. 6.4.
The code calculates the actual 4 byte address for the JMfadtisin and then writes it

back in the binary in the little-endian format.

39

Chapter 7

KERNEL ATTESTATION

To measure the integrity of the kernel we implement a schehiehws similar to the
user application attestation scheme. Tréna trusted server who provides code
(Bkernel) t0 Mpjice. It is assumed that Alice has means such as digital signature
verification scheme to determine whetl&gne Was sent by TrehtAlice receives
Gkernel USINg a user level applicatio® ey, verifies that it was sent by Trérand

places it in the kernel of the OS executingMRjice. kernel IS then executed and
obtains integrity measurementdytine) on the OS Text section, system call table, and
the interrupt descriptors tabl&iernel passes these resultsRger, which returns these
results to Trerit If required%kernel Can encrypt the integrity measurement results
using a onetime pad or a simple substitution cipher, howesghe test case generated
is different in every instance this is not a required operatilrent also provides a
kernel moduleZyemel that providesoctl calls to Zser. As seen in figure 7.1 ser

receiveStiermel from Trent. In figure 7.2,%7,ser forwards the code t@Pyernel

Kernel
I attestation
Userland request Trent
@user
c@kernel (gkernel
Operating System

Figure 7.1: user application initiates attestation retjues

Prernel pPlaces the received code in its code section at a locatiarifgmeby
Trent and executes it6yerne Obtains an arithmetic and MD5 checksum on the
specified regions of the kernel &y jice and returns the results @ seras seen in
figure 7.3.Z,serthen forwards the results to Trémtho determines whether the

measurements obtained from the OV Match with existing computations as
40

Userland

c@user
Cgkerne

@kernel

Operating System

Figure 7.2: user application sends attestation code teekspace

Userland

L@USGI’

errnel

f@kernlel

Operating system

Figure 7.3: kernel returns integrity measurements to @set |

Kernel

Userland integrity
measurements
Puser Trent
OK
P kernel
Operating System

Figure 7.4: Verification of kernel integrity by trusted serv

shown in figure 7.4. Since Tréns an OS vendor or a corporate network
administrator, it can be assumed that Tréwats local access to a pristine copy of the
kernel executing oiMpjice t0 Obtain expected integrity measurement values generated
by %kernel Although this seems like Trénvould need infinite memory requirements

to keep track of every client, most OS installations are tidahas they are off the

shelf. In addition, if Trent is a system administrator forramber of machines on a

corporate network, Trehivould have knowledge of the OS on every client machine.

41

7.1 Implementation

The kernel attestation was implemented on an x86 based 8bhittu 8.04 machine
executing with 2.6.24-28-generic kernel. In Linux the eéxdentical copy of the
kernel is mapped to every process in the system. For thecapipin attestation
described in previous chapters, the support of OS is redjinirthe form of system
calls and interrupts. The system calls and interrupts aredtnside the high memory
(above 3 GB) of the process space in a 32 bit Linux OS. The higimany constitutes
kernel memory. We need to ensure that these sections of tteeeéd3ean while
providing integrity measurements of a process. The folhggection descibes the
integrity measurement of the OS text section, system dalkk @@and the interrupt

descriptor table.

Identifying locations to measure in kernel

The /boot/System.map-2.6.24-28-generic file on the cpéatform was used to locate
the symbols to be used for kernel measurement. The kernedgetion was located at
virtual address 0xC0100000 and the end of kernel text seatas located to be at
0xC03219CA which corresponded to the symhetext’. The system call table was
located at 0xC0326520, the next symbol in the maps file waddocat 0xC0326B3C,
a difference of 1564 bytes. The ‘arch/x86/include/asnsta2.h’ file for the kernel
build showed the number of system calls to be 337. SMgge was a 32 bit system,
the space required for the address mappings would be 1348.8e took integrity
measurements from 0xC0326520 - 0xC0326B3B. The Interregtriptor table was
located at 0OxC0410000 and the next symbol was located at4IBDO, which gives
the IDT a size of 2048 bytes. A fully populated IDT should b& 2ntries of 8 bytes
each which gives a 2KB sized IDT, this is consistent with thist&m.maps file on the

client machine.

42

Communication with Treht

The trusted server Trértommunicates to a user level applicatiofiser. Pusercan be
assumed to be an application provided by Tteftent also provides a kernel module
(Pkerne) to the client platform which is installed as a device drif@ra character
device. Zyser communicates to a kernel modutéeme| Using theoctl interface
provided by a character device ‘remaitestationdevice’ which is created using a
command ‘mknod /dev/remaigttestationdevice ¢ 100 0'. The last two numbers in

the command provide the MAJORUM and MINOR.NUM for the device.

Puserreceives the code from the trusted authority and opens @redgvice.
Puserthen executes aoctl which allows the kernel module to receive the executable
code. As in the user application attestation case Toe#s not send the MD5 code for
every attestation instance. The trusted authority sendserdode which populates a
data array and provides it to the MD5 code which stays resiol@%yernel. TO
prevent Mallory from exploiting this aspect the trustednawity also provides an
arithmetic checksum computation routine which is down&mhfbr every attestation
instance. This provides a degree of extra unpredictahdithhe results generated by

the integrity measurement code.

Fixing call instructions

Kernel modules can be relocated during compile time. Thiamaehat Treritwould

not know where the MD5 code got relocated during installatibthe module. In

order to execute the MD5 code, Trergquests the location of MD5 function in the
kernel module from the client end. After obtaining the addrdrentgenerates the
executable codederme) Which has numerous calls to the MD5 code. At generation,
the call address may not match the actual function addrdks atient end. Once

%kernel IS generated, the call instructions are identified in theectd the correct target
43

call_target = -((address_injected_driver +
call_locations[0] +
length_ofcall
)

- address_mdstring);
code_in_file[jump_locations[0] +1] = call_target;

Figure 7.5: Fixing locations of call instruction

address is patched on the call instruction. Once this pagdkidone, Trensends the

code to the client end. The call address calculation is dershawn in fig. 7.5.

%kernel IS l0aded in a char array code_file. The location wher&jernel
address to be injected is determined by Tregtselecting a location from a number of
‘nop’ locations in the module, this address is termed asextiinjecteddriver in the
above code snippet. The call location in the generated éxieleucode is determined
by scanning the code for the presence of the call instruciibe target of the call
instruction is a 4 byte value in the x86 architecture. Finahe address of mdstring
(which is the location of MD5 code) is obtained from the ctierachine as described
above. The second statement changes the code array bygalaeinorrect target
address. This procedure is repeated for all the call instmgin the generated code.
It must be noted thé&#iermel calls only the MD5 code and no other function. If
obfuscation is required, Tréntan place some function calls that do not have any
bearing on the final result. These calls can be executed lyatiray an ‘if statement’.
Trent can construct several if statements such that they nevkragdo true. It can
be noted that even if the client does not communicate theeadaif the MD5 code,
Prernel Can be designed such that the MD5 driver provided by thegdustithority
and the MD5 code reside on the same page. This means thagtier RO bits of the
address of the MD5 code and the downloaded code will be the sawhonly the
lower 12 bits would be different. This allows the Tretat determine wher&iernel

will reside on the client machine and automatically caltaithe target address for the
44

MD?5 code. This is possible because the C compiler produeesr b2 bits of function
addresses while creating a kernel module and allows theehRhbits to be populated

during module insertion.

Once the code is injected, Tréigsues a message to the user application
requesting the kernel integrity measuremeifser executes anotheéoctl which
causes theZyemel to execute the injected cod®iernel reads various memory
locations in the kernel and passes the data to the MD5 codeMD®b code returns
the MD5 checksum value t6yernef Which in turn returns the value to thectl handler
in the Pyermel Prernel then passes the MD5 and arithmetic checksum computations

back toZser Which forwards the results to the Trént

Disabling interrupts

If required, the disable interrupt instruction (CLI) canibgsued byékermel tO prevent
any other process from obtaining hold of the processor. Ktrha noted that in multi
processor systems disable interrupt instruction may reatgut a second processor
from smashing kernel integrity measurement values. Howegehe test cases are
different for every attestation instance, Mallory canns¢ any prior knowledge to

smash the integrity measurement values.

7.2 Results

Table 7.1: Execution times for various components

Time (ms) Pentium 4 Core 2 Quad
Fixing call instructions of Gigme 0.45 0.2
Execution Of (gykerne| 175 543
Network delay 21 15

Table 7.1 provides cumulative results for various operstion an Intel
Pentium 4 with 1 GB of RAM and an Intel Core 2 Quad machine tlaat 3 GB of

RAM. As expected, the Pentium 4 machine has slightly lowefgpsance than a

45

platform with 4 Intel Core 2 processors. The kernel attestatcheme takes longer to
execute than the times required for application attestatichapter 5. This is because
the size of the application is small compared to the size®fdB text section, system
call tables, and the IDT. The network delay shown in the tabfer each send/receive
operation occurring between the client and server machtesce if the two
machines perform 10 sends/receive, the network delay valle greater than other
components. The times shown do not present the time regiairgeherate the
challenge. This is because the generation involves issuingke’ command which
takes variable time. Code generation can be seen as a majbreaw for the server
for each attestation due to issuing a make command. To aléethe load on the
server code generation can occur for a number of test cagmeband, and stored in

persistent medium. During attestation any one of them carsbd randomly.

46

Chapter 8

ATTESTATION OF A GUEST OS FROM A HOST OS

This chapter presents a scheme to obtain the integrity merasut of an client OS by
utilizing an external trusted server Trent and virtuai@aton the client machine. The
client OS in question is a guest OS. The guest OS executepar toHost OS which
communications to Trent and obtains the integrity measargson the guest OS. The
virtualization scheme used in this work is the Linux KVM irfece. KVM is used in
combination with the gemu software to provide virtualinati KVM provides many
OS level calls through the ioctl interface. The integrityaserements were obtained

in this work using existing functions provided by KVM and aaglioctl calls.

A Host OS or a Virtual Machine Monitor (VMM) provides a usefoterface
to execute multiple OSs on the same physical platform. EaelstgOS or a virtual
machine (VM) is a standalone operating environment thatdependent of other
virtual machines. Each VM is dependent on the underlying ViéNhterface to the
hardware on the platform. Virtualization has become quijeypar with the advent of
multi core platforms. This allows utilization of hardwaesspurces as most executions
do not saturate the CPU, this way the resources on one ptatfan be shared among

multiple users.

Apart from being useful for sharing of resources, virtuatiian in itself offers
some security features. Virtualization is intended to keagh guest environment
completely isolated from other guest environments. Viibaéion offers memory
isolation, code isolation, disk isolation, and separatetchunks on the physical
hardware on the platform. In the best case scenario, one @Beciastalled on the
platform as a Host/VMM followed with the install of an emuéat/virtualization
environment, and install guest OSs on top of the Host/VMMItile OSs can be

installed on the machine; each OS can be limited to doin@icetasks. For example,
47

watching streaming videos can be limited to one operatistesy; checking mail can
be limited to another operating system. Using bank appiinat credit cards, and
other financial transactions can be limited to another dpgyaystem. This way the
use case scenario for each operating system can be limibech v turn limits
possible overflow attacks and phishing that may occur. Migtvirtual machines are
relatively quick to start and execute with the advent of imadte platforms, and this
entire process can be seen as a light overhead for achiexngity. A base snapshot
of a particular virtual machine can be stored and the workoyy of the operating
system can be purged regularly to replace it with the basg ddps way a pristine
working copy of the OS is available regularly. This servesetoove any infections
that may have occurred over a period of time. However, tlsisdeep may be highly

cumbersome.

A domain 0 virtual machine (like XEN), which has limited useteraction,
and no outside world interaction can also be used. Such VMiviswonitor all other
resident virtual machines and alert the user to any chamgég iguest environment.
This concept is utilized already to build virtual machinenitors like Terra [Garfinkel

et al., 2003].

Security features offered by virtualization are heavilpeledent on the
underlying VMM that allows virtualization to occur. If theNM layer itself is buggy,
then isolation and security features cannot be implemerae@ctly [Weblink, m].
Xen is a commonly used VMM layer and is known to run into margutands of
lines of code. Isolating and discovering bugs in such a lacjeme of code is
difficult. Xen consists of a Domain 0 which is a trusted rootismnment which has
access to all other guest VM. Every other guest VM is an uilpged Domain U.
Dom 0 can access all contents of Dom U. As long as Dom 0 staysesatcan detect
any malicious activity in other domains. However, Xen i©dtaown to be vulnerable

to buffer overflow, DMA write, and other attacks which contéuggy device drivers.
48

Guest OS

gemu process

A
ioctl Userland
Kernel
; space
v
KVM

Physical Machine

Figure 8.1: Overview of kvm-gemu interface

It was shown in black hat that attackers can get root accebe tibom 0 on a
machine, introduce a buggy driver, and overwrite porticdnsen code using DMA
[Wojtczuk, 2008b]. However, the crucial assumption is titédickers can get root
access to the account. If the system administrator pladegeht security measures
such that attackers find it difficult to get root access to Dothén this attack will be
difficult to execute. Nevertheless virtualization stilfexks an important security

benefit, which is strong isolation of execution environnsgiMcDermott, 2007].

KVM utilizes the hardware assisted virtualization featupeesent in the x86
architecture to offer a light weight virtualization on coutipg platforms. KVM is
installed as a kernel module and the emulation/virtuabrenf the guest OSs is
performed by a software callegemu The gemu software is launched as a process,
and the guest OS is loaded inside the process. It is assumieth¢hguest OS cannot
escape the execution environment and any malware that nvayirtifacted the guest

cannot infect the Host OS.
Figure 8.1 depicts the overall kvm-gemu interface. The GO&sis loaded

49

GUEST OS

Attestation
QEMU II_E('XII\LIJE Request
Local/Remote
Shar:gdmemo“ (TCP TCP client
server)

File Descriptors

Linux Host OS

Figure 8.2: Overview of gemu clone operation

entirely inside the gemu software process. All of guest aysnemory is actually
virtual memory of the gemu process. The gemu software conuates with kvm

module using ioctl. kvm provides the required accelerdmrgemu.

To measure the integrity of a guest OS, the gemu software wdsied to
launch a ‘clone’ along with the initial process executioigufe 8.2 depicts the
procedure. The gemu-clone is a TCP server that shares thempefithe gemu
process. The clone waits for a signal from Trent (TCP clieflbe signal includes the
sections of the guest memory that Trent needs to verify. ©givang the signal, the
clone executes an ioctl which transfers execution to thedtenodule. The kernel
module obtains the memory areas requested and reads tleatsoback to the
gemu-clone process. The gemu-clone process takes an MDD ondmory contents
and returns the MD5 values to Trent. If Trent finds correct Makies, then the

remote attestation is completed.

50

8.1 Implementation

This work was implemented on a 32 bit Ubuntu 10.04 OS exegtikia linux
2.6.32.28 kernel. The gemu software version used was 0.TB®Host OS executed
on an Intel Core 2 quad machine with 3 GB RAM. Since KVM uti§zeardware
assisted virtualization features, this system could notripemented on legacy

machines.

Starting a clone

The clone system call [Weblink, a] creates a new processikeasthe fork call

[Weblink, b]. However, clone also allows the two processeshiare context such as
file descriptors, global ariables. It essentially impletsdhreads that share concurrent
memory space. The child process requires a stack whicloisaa#id on the parent’s
heap region. Certain flags determine which memory conteatstared between the
two processes. The most pertinent flags to this implementatie the CLONE/M

and the CLONEFILES flags. CLONEVM allows the calling process and the child
processes to run in the same memory space. Memory writesrpea@l by the calling
process or by the child process are also visible in the ottueress. CLONBEFILES
allows the two processes to share file descriptors. A clolaiisched by executing

the code below.

clone(child_function, child_stack + CHILD_STACK_SIZE,

CLONE_VM | CLONE_FILES, NULL);

The parameters are explained as follows - clfildction is the function to be
executed as a clone. The chstack is allocated using a malloc call prior to executing
the clone call with a size of 0x4000. In the Intel architeefuhe stack moves down

and heap grows up, hence CHILBTACK_SIZE (of value 0x4000) is used to move
51

the stack pointer up for the clone process. The next arguallents the clone to use

the main process’ files and memory.

Starting a TCP server inside clone

The clone created inside the gemu process was used to implem€P server. The
TCP server waits for an incoming connection on port 2000.eCn€CP client makes
an incoming connection the server receives various pasamand executes the ioctl
described in section 8.1. Since the clone stack was allde®©x4000 bytes, data
buffer variables were allocated on the heap to avoid theilpiigsof exceeding the

allocated stack.

The clone creates the server executing the following code

listenSocket = socket (AF_INET, SOCK_STREAM, 0)
serverAddress.sin_family = AF_INET
serverAddress.sin_addr.s_addr = htonl (INADDR_ANY)
serverAddress.sin_port = htons (listenPort)
bind (listenSocket, (struct sockaddr *) &serverAddress,

sizeof (serverAddress)
listen (listenSocket, 5);
connectSocket = accept(listenSocket,

(struct sockaddr *) &clientAddress,

&clientAddressLength)

The last line of code shown in the snippet is kept inside aevbibp. This is
done so that once an attestation instance is completedgther reaks the client
connection and waits for a new connection to be made. Fots pasend and receive

are required for each attestation instance. The first pa&s ddhello handshake’. The
52

second pair receives the guest physical address from winéchneasurements have to
be taken. The third pair receives the number of bytes stafttom the provided
address that need to be measured, the last pair sends the D& requested

memory region back to the TCP client.

Reading memory contents of the guest OS

The KVM module provides a functiorkVm.read.guest which provides direct access
into the physical memory of the executing guest OS. The pat@ms it requires are the
file descriptor for the guest OS, the guest physical addiesgth of data to be read
and a char pointer to read the values into. The file descriptmutomatically filled
when the execution enters the kernel module through theindetface of ‘/dev/kvm’.

It determines the guest frame where the memory is located aixl
kvm_readguestpage which does the page table walk using ‘tgrhva’ to find what

is the Host virtual address that corresponds to the guestigdiyaddress. Once the
host virtual address is found, the memory contents are dapie the destination

pointer provided.

The ‘kvm_readguest’ functionality is used to implement a new ioctl
‘KVM _GUEST.INTEGRITY’. The ioctl populates the provided parametergoést
address, length, and memory pointer into an instance afcstr

kvm_userspacanemoryregion’.

Fresh memory is allocated in the kernel to copy the guest @S diae user
space pointer is not directly used to avoid errors which nmaypin case the
‘kvmread.guest call does not return correctly. The parameters passeddéwyskriand
are then used to call kvmeadguest function. Once&kvmread guestreturns with a
valid value, the memory contents are copied to the user guainger using
‘copy_to_user’. After a successful copy the kernel memory allocate@xecuting the

ioctl is freed by executingfree
53

Results

Table 8.1: Execution times for components of kvm-gemu setup

Time (micro seconds) Core 2 Quad
Execution of ioctl 0.5
Execution of MD5 inside gemu for 100 bytes of data .5
Network Round Trip on same machine 30
Network Round Trip on Gigabit Ethernet 150
Network Round Trip through fast ethernet switch 260

Table 8.1 provides the results for operations performedhduhe attestation
of a guest OS from the Host OS using the kvm interface. The tegeired to execute
theioctl which extracts the memory from the guest space and delivgrshe gemu
clone was found to be less than a microsecond. Similarlygpéin MD5 on the
requested memory was found to be less than a microsecondiat&és not large,
most requests were kept down to the order of 100 bytes, heantall turnaround

time for the attestation.

The network round trip time for one ‘send and receive pairs\icund to be an
average of 30 microseconds over 20 tries while using theD12 7. interface. As seen
in section 8.1 there were 4 pairs or send and receive regigrezhch attestation
instance. Hence a total of approximately 120 microsecoradgdwbe required for one
attestation instance if the user initiates the attestatguest from the Host OS or on

the same physical machine.

Network round trip time was measured for a client and servecgss
executing on two machines which were connected throughl@igthernet ports. The
time required for a send and receive pair was found to be gedras 150 micro

seconds over 20 tries.

Network round trip time was measured for a client and servecgss when
one machine was connected through a fast ethernet switdé thieiother machine

was connected to a Gigabit port. The time required for a saddeceive pair was
54

found to be averaged as 260 micro seconds over 20 tries. gjpriegents a remote
attestation scenario when the user typically has a slowerank connection compared

to a trusted server Trent who would be connected to a Gigpbéd network.

55

Chapter 9

BUILDING A SECURE MINIMAL TRUSTED CODE BLOCK VMM

This chapter presents a hardware assisted VMM called MIvorthie x86 computing
platform implemented under 4000 lines of code (LOC) thatlmansed to build
secure applications. Attackers may patch operating systatines and system
utilities to hide network sessions, processes, and opds.{oue to the reasons
described above malicious logic can have as much power &3htself.
Determining the integrity of a platform requires that we ggstems that are secure
enough to provide an indication of an attack to the user.Kh@vn to be difficult to
build a secure operating system [Tanenbaum et al., 2006¢eni¢ is difficult to build

a secure root of trust while using a commercial OS as its base.

The use of hardware or a VMM based root of trust offers a ctiuc@ to
system administrators while determining the integrityysftems. A VMM provides a
root of trust and a minimal Trusted Computing Base (TCB) &vpnt many escalation
based attacks from taking place. However, the robustnemsyafoot of trust

mechanism built using a VMM depends on the security of theedgithg VMM.

Traditional VMMs are known to be bulky; VMware ESX server isokvn to
run into 200K lines of code [Weblink, o] while the latest versof Xen which utilizes
hardware extensions for virtualization has nearly 150Ksinf code [Weblink, p]. Itis
estimated that software modules that are around 2000 LOE€ riearly 40 faults while
modules with 4000 LOC may have as much as 60 faults [Fento®duekon, 2002],
with this observation it can be assumed that the larger the base, the higher are
chances of vulnerabilities to exist in the module, whichhiis tase is a VMM. It is
difficult to perform code audits on such large systems tordate whether they are
completely secure or not. Numerous vulnerabilities arernto exist in Xen 3,

VMware Workstation 6, and VMware ESX Server 3 [Secunia, &gdunia, b],
56

[Secunia, c], and [Wojtczuk, 2008a]. These vulnerabgiadow attackers to break the
VMM sandbox environment and take control of the hypervisost OS. Due to this,

such bulky VMMs are not desired to provide a minimal trustethputing base.

Intel VT—x [Intel Corporation, 2010] and AMD-V [Advanced kfio Devices,
2010] are recent hardware extensions for the x86 platfoangtovide virtualization
support in the processor. These hardware extensions aliothié creation of a
minimal secure TCB which can be utilized to build complexuséy software stacks.
MIivmm implements only the minimum necessary features tgettyvirtualization for
a single guest operating system. This allows the entire VMM implemented in
under 4KLOC. The core of the VMM code comprising the launcthefVMM and
handling of VM exits is completed in around 2KLOC. This snwtle size can allow
security audits of the code and formal proofs. It also allgulserabilities such as
buffer overflow to be minimized and identified easily. To kéefine with the design
aspects certain features which are normally part of a VMMewemoved from
MIivmm. Mivmm does not support multiple VMs. This eliminatée need for device
virtualization and scheduling of VMs. Mlvmm does not neethémdle RESET vector
of the CPU. This is due to the fact that in the current impletagon of the VMM,
interactions with the BIOS are removed to reduce the sizhetbde base. Mlvmm
does not virtualize interrupts. A standard VMM that supponultiple VMs will have
to implement these features. However, to build a secure lbasle, these features are

currently stripped out of Mlvmm.

If used in conjunction with the Intel Trusted Execution Tealogy (TXT),
MIvmm can prevent rootkits like the bluepill [Rutkowska,@) from infecting the
system. Such rootkits utilize the hardware extensionsepthtform, the hypervisor
can be tuned to disallow attempt by any program to launchhemdtypervisor when
MIivmm is already executing. In addition, these rootkitsexe instructions such as

‘CPUID’, 'VMXON’, and ‘VMLAUNCH'. These instructions are snsitive
57

instructions and the processor traps into the Host (hyperyfor the execution of

these instructions.

MIvmm was implemented on the Inte86_64 architecture. To reduce the
number of lines of code in the hypervisor, Mivmm is launché&drahe native OS
boots up thereby bypassing real mode emulation of VT. Miviaunched by
loading specific state values in the Virtual Machine Con8wucture (VMCS) and
executing a series of instructions. Most of the state vadwesopied directly from the
native OS. The VMCS is also filled with certain conditions Wmoas exit conditions
on which the processor traps the execution of the guest tipgi/stem and executes
the VMM which can determine whether to allow the event, oalliisv the event.

Once launched, Mivmm performs routine exits from the guestdich are handled

by the host (VMM).

During exit handling the parameters received from the gopstating system
are validated. This is achieved by selecting a range of atbvalues that the guest
registers may contain while executing the sensitive imsion. If the exit contains
allowed values, then the instruction is emulated in the VMM #he resulting values
are stored back in the guest registers prior to resumingubstglf the values are
determined to be invalid, the guest operating system ismediat the next instruction.
It may be noted that since Mlvmm is installed by the OS as acagedhiiver, a
compromised OS can modify the VMM during launch. Howevehtatel and AMD
provide TXT and SVM technologies that have the ability to mea the integrity of a
VMM prior to loading it. As a result any wrongdoing by the OSdze clearly

identified.

9.1 Overview of dynamic launch model

We utilized the Intel VT—x hardware extensions to creatersadyic launch
58

Power on/Machine boot

Load the 0S

Insert device driver

Perform compatibility checks

Copy 0S state to guest components in the VMCS

Setup host state components in VMCS

Launch VMM, move the 0S into guest environment

Handle VMexits, continue executing until VMM is turned off

Figure 9.1: Overview of dynamic launch

VMM (Mlvmm) that provides a root of trust in the hypervisogkr. Dynamic launch
involves allowing the native operating system to boot up gletely and then porting
it into the guest environment. Fig. 9.1 shows the steps tolb®ded for dynamic
launch of a VMM. Once the native OS boots, a device driveraairig all the VMM
code is installed on the OS. The device driver can be coettdll a ring 3 application
to perform the steps or it can execute all the required stepis @wn as part of its
module entry depending on the threat model. The devicerdtivecks for machine
compatibility for executing instructions that require gresence of Intel VT—x on the
platform. The driver copies each of the required guest statgponents from the
native OS into a control area known as the Virtual Machinet@obistructure

(VMCS), sets up the VMM (host) state area in the VMCS and ete=cthe
instructions to launch the VMM. Once launched the VMM exesuh the background

and executes when the CPU traps certain events on the guest OS

9.2 Design of System

The design goal of Mlvmm was to create a root of trust mechaiois the platform
while keeping the lines of code in the implementation as kasgbossible. To create a
secure root of trust it is imperative that the number of bug$é root be almost
negligible. As discussed in section 2.1, the fault rate®leasiensity of 2 —75 every

1000 lines of code in OSs. Due to this a design requiremerifemm was that it

59

User User User User
Space Space Space Space
' Ring3 |
Application
,,,,,,, i
,,,,,,,,,,,,,,,,,,,,,,
| ! ! Kernel
Device | '+ Device | Space
g S Driver ' Driver
c [= = I
e 2 § 8 Device -
x Kernel X Kernel < Kernel < Driver ia—»l Mivmm
§ Space s Space § Space § iiiiiiiiiiiiii L
Page table with
o) 2) 3)) address mapping

Figure 9.2: System Design

should be implemented in under 10,000 —15,000 lines of cbde.small code base
also eliminates any possible vulnerability that may crexp the code apart from
faults. This also allows removal of unnecessary featus the VMM. Overall a
smaller code base provides an efficient and secure solatithetproviding a root of
trust. Mlvmm leverages Intel Virtualization Technology\6f-x to overlay memory
protections from the hypervisor onto software running inM,Wience it serves as a

root of trust to an untrusted system.

The VMM acquires control of the hardware on the machine idiclg the CPU
and monitors specified events on the system. Only one gueste® 8nplemented
executing on top of the VMM, this enabled removal of featigash as device
virtualization and memory isolation from the VMM. The dyniarfaunch model was
chosen to allow the native OS to handle all device driverstanudstrap. These
reductions enable creating a VMM with minimal features ac#ed by the Intel

VT—x technology.

Fig. 9.2 provides an overview of the system design of Mlvmime VMM is
loaded after a successful boot of the native OS. The VMM idesiaas a device driver
as seen by the dotted box. A ring 3 application issues a sefrsmmands using the

ioctl interface to start the VMM. On a successful executibthe VMLAUNCH
60

instruction the guest OS completely migrates to the guestenamd a thin layer VMM
executes underneath. The exit conditions are stored in W€ ¥ region, on
encountering these conditions the processor loads thestadstconfiguration into
memory and executes it. The processor resumes the guestéd $afexit condition
is handled, the transfer of execution control to the guesis@3lled a
VMResume/VMEntry. VMEXxits and VMResumes occur routineljthe VMM is

turned off or the machine is powered down/rebooted.

MIvmm does not survive a system reboot. This model allowselection of
the code from the VMM. The VMM only needs to implement coderf@naging its
memory resources and storing certain state area. All othokr such as user
interaction, device management is left to the guest opgyatystem. Although this
can be seen as a drawback, a smaller VMM allows bug free ingaiéation of a
secure code base. If needed while building other applicatithese features can be
incorporated in Mlvmm. This also mitigates memory leakdfdnoverflow and other

attack scenarios.

Once inserted, the device driver performs certain chedksaes memory for
VMXON region and executes VMXON. This puts the operatingeysin VMX root
mode. It then allocates memory for the host (VMM) code, sttt various other
required memory regions. This is followed by loading statkigs into the VMCS and
finally executing VMLAUNCH instruction which moves the OSdarmguest mode.
Once the OS is completely moved to the guest mode, it exeounttde platform
hardware. As discussed before, the execution of certaifsggconditions in the
VMCS cause the processor to trap the execution of the guddbad the host state

(VMM) components for execution.

61

9.3 Implementation

The VMM was implemented on Linux Fedora 11 64 bit Operatingtem on the Intel
x86_64 architecture on the Intel Core i7 930 processor. The VMM wadtten in C,
inline assembly and assembly, it was compiled using the Gt @ler Collection
(gcc). The implementation is logically separated into geriing initial checks,
allocating required memory, loading values into VMCS, lehuing VMM, and
continued execution of VMM. Preliminary operations invinstalling the driver,
allocating required memory, and starting VMX operationgadling the values in
VMCS involves reading nearly 100 state values from the greggster and storing
them in the VMCS. Launch of VMM involves porting the native @% the guest
mode and executing the VMM in the background. This occudsa fMLAUNCH
instruction executes without errors. Continued executigalves handling and

returning from VM-exits.

The VMM is written as part of a device driver. After the nati®& boots up
completely, the device driver is installed usingiasmodcommand. Once installed
the driver stays dormant till a Ring 3 application issuesreesef ioctl commands to
launch the VMM. Preliminary checks are performed by theeirimn receiving one
ioctl command from the Ring 3 application. The second icathmand allocates the
required memory for the VMM. The third ioctl command starfglX operations,
loads values into VMCS and launches the VMM. It must be ndtetithe control
does not return to the Ring 3 application from the time VMXQGMNekecuted till a

successful VMLAUNCH occurs.

Initial Processor Checks

The driver executes CPUID with RAX =1, the resulting valu®din5 of the RCX

register determines whether the processor supports VMXatipas. The driver

62

checks the state of the IA32eaturecontrol MSR. This is a safety feature in the
architecture which prevents malicious programs from émgevMX operations. Bit O
and 2 of this MSR must be set to start VMX operations in nornparating mode.
This MSR can be changed only through the BIOS and not from pleeading system.
VMX operations are enabled by setting the CR4.VMXE (bit X3R0.PE (bit 1),
CRO.NE (bit 5), and CRO.PG (bit 31). The driver then finds ize sf the VMXON,
VMCS regions and the Processor Revision ID by reading th IXBIX _BASIC
MSR. The first 32 bits in the MSR contain the revision identifiad bits 32-44
contain the size of the VMXON region and the VMCS region. T is reported as
a value between 0 and 4096. On the machine used to developMiMetkis register
reported the size as 1024. However there is an architectstction that both these
memory regions must be aligned on a 4K address (lower 12 tiitee@ddress must be

0).

Allocating memory for the VMM components

The VMM requires memory for VMXON region, VMCS region, hosask region,
and exit conditions for MSR bitmaps. Each of the above VMMagag needs to be in
physically contiguous memory; hence the device driver ksgalloc with the
GFP.KERNEL option instead of the vmalloc call to allocate N KB oémory for

each region.

For VMXON and VMCS regions it was difficult to allocate a 1K reg as
specified by the IA32/MX _BASIC MSR using kmalloc and obtain memory which
was address aligned on the 4K boundary. Due to this, an #ibocaf 4K memory
region was chosen for both VMXON and VMCS regions. On both imgmegions
(VMXON and VMCS) the processor revision ID read from the IAGIX _BASIC
MSR. 4 pages (4 * 4096 bytes) of memory were allocated for tst stack. The page

with the higher address was reserved for the guest statgeeg)i The host stack can

63

X +4 o X +4

ages
pag Guest State GPR pages
Host RSP
X + (3*4096
(bytes? Host Stack R15
RBX
. RAX
X+3
Host Stack pages
X+ 0 bytes B

Figure 9.3: Structure of allocated stack area for host

be seen in Fig. 9.3 On a VM-exit, the host entry routine (writin assembly to
remove compiler additives) saves each of the 15 GPRs in gtersyon the highest
page using MOV instructions. This way the host stack poirgerains unchanged,
and the Host RSP can be used as a frame pointer to the guestegjisters while
handling the exit. The driver also allocates memory bitmegter for each possible
MSR read and write. This is done as MSR reads and writes caubeexit. A

bitmap vector can be created in the allocated memory whidicates to the processor

to cause a VM-exit on the specified reads and writes in theovect

Loading State values into VMCS

Once the processor revision ID is written on the VMXON regiwwe execute
VMXON instruction. This puts the processor state in VMX rombde and allows us
to write values into the VMCS using the VMWRITE instructioAfter this the
processor revision ID is written into the VMCS region and VMRLD is executed
with the physical address of the VMCS region. This makes thEC® region as the

current VMCS region in the processor state.

After the VMCS pointer is loaded as the current VMCS, the ¢jgatsde values

are loaded into the VMCS by executing a series of VMWRITEsS&wvalues are:
64

. Read the values of CS, SS, DS, ES, FS, GS, LDTR, TR sele@®#R, IDTR,
GS, FS base, control registers CR0, CR3, and CR4 and wrcte tiadues in the
guest state area of the VMCS. We also determine values of ES, ES, FS,
GS, LDTR, TR segment limits and access rights. The base valugl the
segments other than IDTR are determined from the globafisctable. The
location of the GDT is found by executing the SGDT instructi®he base
address of the interrupt descriptor table is determinedbgwing the SIDT
instruction. The segment limit and access rights are detexhby reading the

appropriate entry in the GDT.

. Read the native operating system RSP and assigned it \fMI&S. Determined

the instruction where the guest would ‘wake-up and assigritedhe guest RIP.

. Read the values present in the following MSRs and store ih the guest
state VMCS. IA32DEBUGCTL, IA32.SYSENTERCS, IA32 EFER,
IA32_SYSENTERESP, IA32SYSENTEREIP, IA32 PAT,
IA32_PERFGLOBAL _CTRL.

. We also determined some non-register state informatiothé guest VMCS.
These are activity state and VMCS link pointer. The actisifyte is determined
by reading the IA32/MX _MISC and the link pointer is statically assigned
FFFFFFFEFFFFFFFFH.

. Read and stored values of control registers CR0O, CR3, &4diiCthe host state
area of the VMCS. Allocated a 4 page memory area for the hask stnd
assign the address to host RSP. Created a host entry pottivinand assigned
it to the host RIP.

. Read the selector fields for CS, SS, DS, ES, FS, GS, and TResegg and
stored it in the host state VMCS. Base address fields for FSTRSGDTR,

and IDTR. The base address for FS and GS base are deternonethfe
65

respective MSRs. The other base values are determined tiyngethe selector

offset into the GDT just like in the case of the guest stata.are

. Read the values in the following MSRs and stored them imdse state VMCS.
IA32_SYSENTERCS, IA32EFER, IA32SYSENTERESP,
IA32_PAT, IA32. SYSENTEREIP, IA32.PEREGLOBAL _CTRL.

. Determined the values of the following VM-execution gohfields and stored
them in the VMCS. Pin-Based VM execution controls, Primarg &econdary
Processor-Based VM execution controls, MSR-Bitmap addrElse Pin-Based
VM execution controls are determined by reading the costeht

IA32_.VMX _PINBASED CTLS and IA32VMX TRUE_PINBASED CTLS.

The Primary Processor-Based VM execution controls argméted by reading
the contents of IA32/MX _PROCBASEDCTLS and

IA32_.VMX _TRUE_.PROCBASEDCTLS. The Secondary Processor-Based VM
execution controls are determined by reading the conténts o

MSR IA32.VMX _PROCBASEDCTLS2. The MSR-Bitmap address is a 4 K
memory area. Each MSR is represented by 2 bits; one for rezgsand
another for write access. Each bit represents whether thashMId exit into
the host area for the respective access. If the bit is set ttleeaccess causes a

VM-exit. We cleared all the bits in our implementation.

. Determined the values of VM-EXxit controls and VM-Entryntwls. The exit
controls are determined by reading the MSRs IAB2X _EXIT_CTLS and
IA32_VMX _TRUE_EXIT_CTLS. The entry controls are determined by reading
the following two MSRs: IA32VMX _TRUE_ ENTRY_CTLS and

IA32_VMX _ENTRY_CTLS.

66

Launching Mlvmm

Loading state values into the VMCS is followed by the exemutf VMLAUNCH
instruction. If successful the native operating systemditéons into the guest mode
and the VMM runs underneath. The processor performs sanégks on the VMCS
values. If the VMCS state values are incorrect the procasganrts an error in
RFLAGS. The corresponding error number is read from a VMQ8manent
VM-Instruction Error. The errors encountered during thelementation of Mivmm
were: incorrect VM-execution control fields, incorrect tisate fields, and incorrect
guest state fields. The occurrence of the events in orderearained as the
processor first performs a check on the control fields in theDAyifollowed by
checks host state fields. If the first two checks cause an énear the processor aborts
the VMX operation and returns to the native OS. If these twldgiare successful the
processor starts loading the guest state values whilerparfg checks on the guest
state fields. If the checks on the guest state fields reporeany the processor

performs a VM-exit and starts executing the Host.

Continued execution of Mlvmm

Once launched, the VMM executes in the background and pesfooutine VM-exits
on the execution of CPUID and other mandatory exits as spddify Intel VT-x. On a
VM-exit the host entry routine saves each of the 16 genenglgae registers using an
instruction of the format: MOV REGISTER, X (% RSP) where Xhe toffset from

the host RSP. The first register is stored at offset OH; therskpegister is stored at
offset 8H, and so on. Exit handling operations are perfororethis stored frame and
these values are restored from memory onto registers jisttprV MRESUME using
MOV instructions. The guest OS also contains a VMCALL irded. The VMCALL

interface allows the guest to voluntarily cede control ®%MM. The guest provides

67

Ring 3 application: 100 LOC

Driver routine including ioctl definitions: 150 LOC
Preliminaries checks: 200 LOC

Launching VMM: 1900 LOC

Exit handling: 50 LOC (C) + 150 LOC (Assembly)
Print routines for debugging: 1000 LOC

Figure 9.4: Lines of code of each component in the VMM

information to the host on which VMCALL is requested by pagsiertain values
through the GPRs. The registers can be chosen by the progmatoimmplement the
VMCALL interface.

Lines of Code

MIvmm was implemented in under 4000 lines of C code. It wasmased of the
components as shown in Fig. 9.4. As can be seen from the nanmbEig. 9.4,
MIvmm implementation provides a very minimal trusted codsd If the print
routines used for debugging are excluded, Mlvmm can be digghas smaller than
4KLOC. This enables elimination of vulnerabilities thatacdue to implementing

features that are not essential for executing a VMM.

68

Chapter 10

CONCLUSION

This research presents software based techniques to thxaimegrity of a user
application, and OS kernels entirely in software. A trusggtérnal entity provides
Alice with generated code that when executed on the clielet giovides guarantee
that the client side application is not compromised. Thisknadso extends remote
attestation by verifying whether the binary attested cargd executing or was
replaced by the attacker. The check involves placing newe aothe in-core image of
the binary and replacing a function call inside the binargamt to the new code. The
execution of the new code provides an attesting server thmgtee that the binary
was not replaced. A series of such changes made inside ésteattbinary reduce the
opportunities that an attacker may have to hijack authatgtcsessions by tampering

other client end software.

This work presented a technique to obtain the integrity messent of the OS
text section, system call table and Interrupt descriptioletal hese measurements are
important as the remote attestation scheme for the useicapph requires the
assistance of system calls and the interrupt interfacetairolis measurements. This
scheme was implemented on Intel x86 architecture usingd.amal its performance

was measured.

This work presented a virtualization based technique terdehe the integrity
of a guest OS using Linux-KVM. A VMM based solution is more wecthan the
previous device driver based solution provided in the diaten as it is considered

difficult for a malware operating in the guest OS to affectekecution of the Host OS.

This research also presented the need to develop a sequkéviiMl which can

be used to build other security protocols. The VMM was biltzing Intel VT-x

69

technology on Linux (Fedora 11) and supports one guest tpgrsystem as it is built
for providing a trusted code base. The VMM is launched udiegdynamic launch
model, i.e., after the operating system boots up, and walkemgnted in under

4KLOC on the C language using GCC.

As future work the Remote Attestation scheme can be implésdemith
hardware assisted virtualization as every consumer x8uatnyg platform is
currently manufactured with this ability. The native OS &&nported into the guest
OS mode as described in the VMM implementation and remogéstation on the user
application and the OS kernel can be performed. Once coethldte OS can be

brought back to the native state.

70

REFERENCES

Advanced Micro Devices (2010, June). AMD64 architectugpammers manual
volume 2: System programming.

Ames Jr., S., M. Gasser, and R. R. Schell (1983). Securitygtelesign and
implementation: An introductionComputer 167), 14-22.

Chou, A., J. Yang, B. Chelf, S. Hallem, and D. Engler (2001).epirical study of
operating systems errors. Rroceedings of the eighteenth ACM symposium on
Operating systems principlggp. 73—88. ACM.

Cohen, F. (1993). Operating system protection throughraragevolution* 1.
Computers & Security XB), 565-584.

Collberg, C., C. Thomborson, and D. Low (1998). Manufactgicheap, resilient, and
stealthy opaque constructs. Pnoceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languagsgs 184—-196. ACM.

Cooper, K., T. Harvey, and T. Waterman (2002). Building atcarflow graph from
scheduled assembly code. Technical report, Dept. of Caen@dience, Rice
University.

Fenton, N. and N. Ohlsson (2002). Quantitative analysiswolt$ and failures in a
complex software systengoftware Engineering, IEEE Transactions on(@6
797-814.

Garay, J. and L. Huelsbergen (2006). Software integritygatoon using timed
executable agents. Proceedings of the 2006 ACM Symposium on Information,
computer and communications securip. 189-200. ACM New York, NY, USA.

Garfinkel, T., B. Pfaff, J. Chow, M. Rosenblum, and D. Bone®0O@). Terra: A virtual
machine-based platform for trusted computidgEM SIGOPS Operating Systems
Review 315), 206.

Goldman, K., R. Perez, and R. Sailer (2006). Linking remttiestation to secure
tunnel endpoints. IIProceedings of the first ACM workshop on Scalable trusted
computingpp. 24. ACM.

Intel Corporation (2010, March). Intel 64 and IA-32 Arcluteres Software
Developers Manual Volume 3B: System Programming Guidehfiieal report.

lyer, V., A. Kanitkar, P. Dasgupta, and R. Srinivasan (20 H3eventing overflow
attacks by memory randomization. Rroceedings of the 21st IEEE International
Symposium on Software Reliability Engineeripg. 339—-347. IEEE.

Karger, P., M. Zurko, D. W. Bonin, A. Mason, and C. Kahn (1994 yetrospective on
the VAX VMM security kernel.IEEE Trans. Software Eng. {¥1), 1147-1165.

71

Kennell, R. and L. Jamieson (2003). Establishing the getyuiriremote computer
systems. IrProceedings of the 12th USENIX Security Symposppn295-308.

Kennell, R. and L. Jamieson (2004). An analysis of proposidles against genuinity
tests. Technical report, CERIAS Technical Report, Purdowéssity.

Linn, C. and S. Debray (2003). Obfuscation of executablet¢odmprove resistance
to static disassembly. IRroceedings of the 10th ACM conference on Computer and
communications securitpp. 290-299. ACM.

McCauley, E. and P. Brongowski (1979). KSOS-The design efcaiee operating
system. Irafips pp. 345. IEEE Computer Society.

McDermott, J. (2007). Xenon: High assurance xen. Retrié\@rl 20, 2010:http:
//www.xen.org/files/xensummit_4/XenSummitSpring07_McDermott.pdf.

Nguyen, A. M., N. Schear, H. D. Jung, A. Godiyal, S. T. Kingdat D. Nguyen
(2009). MAVMM: Lightweight and Purpose Built VMM for MalwarAnalysis. In
2009 Annual Computer Security Applications Confereppe 441-450. IEEE.

Ostrand, T. and E. Weyuker (2002). The distribution of fauita large industrial
software system. IRroceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysgs 64. ACM.

Petroni Jr, N., T. Fraser, J. Molina, and W. Arbaugh (2004pi®t-a
coprocessor-based kernel runtime integrity monitoiRioceedings of the 13th
conference on USENIX Security Symposium-Volumpd.313. USENIX
Association.

Rutkowska, J. (2006). Subverting vista kernel for fun arafiprin Black Hat
Briefings

Sahita, R., U. Savagaonkar, P. Dewan, and D. Durham (200ifigaing the
lying-endpoint problem in virtualized network access feavorks. In A. Clemm,
L. Granville, and R. Stadler (EdsManaging Virtualization of Networks and
ServicesVolume 4785 ol_ecture Notes in Computer Scienpg. 135-146.
Springer Berlin - Heidelberg.

Sailer, R. (2008). 1.B.M. research - integrity measurenagahitecture. Retrieved
November 3, 2010http: //domino.research.ibm. com/comm/research_
people.nsf/pages/sailer.ima.html.

Sailer, R., X. Zhang, T. Jaeger, and L. Van Doorn (2004). §reand implementation
of a TCG-based integrity measurement architectur€rateedings of the 13th
USENIX Security Symposiupp. 223-238.

Schwarz, B., S. Debray, and G. Andrews (2003). Disassenfldyerutable code
revisited. InReverse Engineering, 2002. Proceedings. Ninth WorkingdeZence
on, pp. 45-54. IEEE.

72

Secunia. Vulnerability report: Vmware esx server 3.x. Rg&d June 6, 2010:
http://secunia.com/advisories/product/10757/

Secunia. Vulnerability report: Vmware workstation 6.x.tfeved June 6, 2010:
http://secunia.com/advisories/product/14321/

Secunia. Vulnerability report: Xen 3.x. Retrieved June(@, @
http://secunia.com/advisories/product/15863

Seshadri, A., M. Luk, N. Qu, and A. Perrig (2007). SecVisottidy hypervisor to
provide lifetime kernel code integrity for commodity OSés Proceedings of
twenty-first ACM SIGOPS symposium on Operating systemsijpie pp. 350.
ACM.

Seshadri, A., M. Luk, E. Shi, A. Perrig, L. van Doorn, and PoKla (2005). Pioneer:
verifying code integrity and enforcing untampered codecaken on legacy
systems ACM SIGOPS Operating Systems Revie(63a—-16.

Seshadri, A., A. Perrig, L. Van Doorn, and P. Khosla (2004ya% Software-based
attestation for embedded devices.Sacurity and Privacy, 2004. Proceedings. 2004
|IEEE Symposium qipp. 272-282. IEEE.

Shankar, U., M. Chew, and J. Tygar (2004). Side effects arsufticient to
authenticate software. Rroceedings of the 13th USENIX Security Symposjym
89-102.

Shinagawa, T., H. Eiraku, K. Tanimoto, K. Omote, S. Hasegdwhklorie, M. Hirano,
K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjodak. Kato (2009).
BitVisor: a thin hypervisor for enforcing i/o device sedyriln Proceedings of the
2009 ACM SIGPLAN/SIGOPS international conference on &mrecution
environmentspp. 121-130. ACM.

Srinivasan, R. and P. Dasgupta (2007). Towards more aféectius detectors.
Communications of the Computer Society of Indig3121-23.

Stumpf, F., O. Tafreschi, P. Roder, and C. Eckert (2006)ol#ust integrity reporting
protocol for remote attestation. Becond Workshop on Advances in Trusted
Computing (WATCO06 FallCiteseer.

Tanenbaum, A., J. Herder, and H. Bos (2006). Can we make tipgpsystems
reliable and secure€omputers 3%), 44-51.

Wang, L. and P. Dasgupta (2008). Coprocessor-based Harartrust management
for software integrity and digital identity protectiodournal of Computer
Security 163), 311-339.

Weblink. clone(2) - linux system call man page. RetrievedrEary 15,
2011http://linux.die.net/man/2/clone.

73

Weblink. fork(2) - linux system call man page. Retrieved ey 15,
2011http://linux.die.net/man/2/fork.

Weblink. getpid(2) - linux system call man page. Retrievedel6, 2010:
http://linux.die.net/man/2/getpid.

Weblink. Global ip network latency. Retrieved on January2(710:
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html.

Weblink. Hackers discover hd dvd and blu-ray processing kalyhd titles now
exposed. Retrieved on November 3, 2008tp: //www.engadget . com/2007/02/
13/hackers-discover-hd-dvd-and-blu-ray-processing-key-all-hd-t/.

Weblink. Hi-def dvd security is bypassed. Retrieved on Noler 3, 2009:
http://news.bbc.co.uk/2/hi/technology/6301301.stm.

Weblink. ioctl(2) - linux system call man page. Retrievedd, 2010:
http://www.manpagez.com/man/2/ioctl/.

Weblink. Kvm: Kernel-based virtualization driver. Retrasl June 6, 2010:
http://www.linuxinsight.com/files/kvm_whitepaper.pdf.

Weblink. Linux/unix command socketcall Retrieved June 6, 2010:
http://linux.about.com/library/cmd/blcmdl2_socketcall.htm.

Weblink. Lxr the linux cross reference, code for kvm. Refteid October 6, 2010:
http://1xr.linux.no/#linux+v2.6.33/arch/x86/kvm/vmx.c

Weblink. mprotect(2) - linux system call man page. Retreeyane 6, 2010:
http://linux.die.net/man/2/mprotect.

Weblink. socket(2) - linux system call man page. Retriewatels, 2010:
http://linux.die.net/man/2/socket.

Weblink. Virtualization security. Retrieved April 21, 201
http://kerneltrap.org/OpenBSD/Virtualization_Security.

Weblink. Vilc media player source code ftp repository. Reteid on February 24
2010:http://download.videolan.org/pub/videolan/vlc/

Weblink. Vmware esx server virtual infrastructure nodeleators guide. Retrieved
June 6, 2010http://www.vmware.com/pdf/esx_vin_eval.pdf.

Weblink. Xen documentation. Retrieved June 6, 2010:
http://www.xen.org/products/xenhyp.html.

Wika, K. G. and J. Knight (1994). A safety kernel architeetufechnical Report
N0.CS-94-04. Technical report, Department of Computeer8m®, University of
Virginia.

74

Wojtczuk, R. (2008a). Adventures with a certain xen vulbéry (in the pvfb
backend).

Wojtczuk, R. (2008b). Subverting the Xen hypervisBtackHat USA

Wurster, G., P. van Oorschot, and A. Somayaji (2005). A deratack on
checksumming-based software tamper resistanc8etuirity and Privacy, 2005
IEEE Symposium qipp. 127-138. IEEE.

Zovi, D. (2006). Hardware virtualization-based rootkits Black Hat USA

75

BIOGRAPHICAL SKETCH

Raghunathan Srinivasan was born in Patna, India. He raetiigeschooling through
ICSE (X" grade) and CBSE (Xit grade). He moved after X\ grade to greener
pastures of Chennai for receiving a Bachelor of Enginedbiegree in Computer
Science from Anna University, India. He joined Arizona 8taiversity, USA on the
insistence of his sister to pursue a Masters Degree in Canfgtence instead of
starting work in the software industry. Not satisfied withahbing only a MS in 2007,
he continued on after finishing MS to obtain a PhD in Computéerg&e at ASU
under Dr. Partha Dasgupta. During his PhD he gained usef@raze in operating
systems, kernel programming, computer architecturejngaelocatable executable
code in running processes, virtualization, and devicesdiwvogramming.

Raghu has worked as an Intern at Intel Corporation in Oreg@®09 and in
Arizona in 2010. The internships helped him to gain usefok&into kernel
programming. Raghu has also briefly worked as an unpaidimiteiReliance
Infocomm in Chennai, India. Raghu will be joining Intel Corption at Chandler,
Arizona after his marriage to Jessica.

76

