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ABSTRACT  
 

  The failure to withhold inappropriate behavior is a central component of 

most impulse control disorders, including Attention Deficit Hyperactivity 

Disorder (ADHD). The present study examined the effects of housing 

environment and methylphenidate (a drug often prescribed for ADHD) on the 

performance of rats in two response inhibition tasks: differential reinforcement of 

low rate (DRL) and fixed minimum interval (FMI). Both tasks required rats to 

wait a fixed amount of time (6 s) before emitting a reinforced response. The 

capacity to withhold the target response (volitional inhibition) and timing 

precision were estimated on the basis of performance in each of the tasks. 

Paradoxically, rats housed in a mildly enriched environment that included a 

conspecific displayed less volitional inhibition in both tasks compared to rats 

housed in an isolated environment. Enriched housing, however, increased timing 

precision. Acute administration of methylphenidate partially reversed the effects 

of enriched housing. Implications of these results in the assessment and treatment 

of ADHD-related impulsivity are discussed. 
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Introduction 

Impulsivity is a critical component of several problem behaviors including 

substance abuse (Bechara, 2005; Perry & Carrol, 2008), personality disorders 

(Chapman, Leung and Lynch, 2008), and Attention Deficit Hyperactivity 

Disorder (ADHD) (Barkley, 1997). The behavioral methods used to measure 

impulsivity vary across clinical and experimental settings and may be measuring 

different processes only loosely associated with impulsivity. In fact, impulsivity 

encompasses multiple, functionally independent, psychological phenomena 

(Evenden, 1999; Arce & Santisteban, 2006; Fellows & Farah, 2005; Leshem & 

Glicksohn, 2007; Pattij & Vanderschuren, 2008; Winstanley, Eagle, & Robbins, 

2006). The variety of impulsivity that is a main criterion of ADHD involves an 

inability to withhold prepotent responses (Barkley, 1997). Several behavioral 

phenomena are likely to be included even within this narrower definition, 

particularly when considering the sources of prepotency of the response to be 

withheld. For example, the kind of inhibitory effort required to hold a sneeze is 

unlikely to be the same as the effort required to avoid tasty but unhealthy food. 

More functionally, the factors involved in withholding an ongoing response are 

unlikely to be the same as those involved in withholding a tempting choice—the 

former comes after an action has been initiated or a decision has been made, 

whereas the latter precedes the action and involves the decision process itself. We 

use the term volitional inhibition to refer to the ability to withhold responses that, 

when emitted at the right time, have rewarding consequences, to differentiate it 

from other phenomena related to impulsivity and motor inhibition. Whereas 
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normal behavior is likely to involve non-clinical lapses in volitional inhibition, a 

more chronic deficit may characterize ADHD-related impulsivity. This paper 

aimed at isolating the components of volitional inhibition in Wistar rats, and at 

determining their sensitivity to two factors often related to impulsivity: housing 

conditions and the administration of methylphenidate hydrochloride (MPH).  

Volitional inhibition is typically studied using Go/No-Go tasks, where 

subjects are asked to perform an action in the presence of a cue (“Go”) but 

withhold it in the presence of a different cue (“No-Go”) (Epstein et al., 2003; 

Tripp and Alsop, 1999, 2001). These tasks involve a conditional discrimination 

between stimuli, where discriminability is fallible. The most typical Go/No-Go 

tasks used with human participants are known as Continuous Performance Tests 

(CPTs), where subjects must report the presence of a target stimulus among 

stimuli presented sequentially (Klee & Garfinkle, 1983; Epstein et al 2003). 

Errors of commission—reporting the presence of the target when it was absent—

are interpreted as indicative of low volitional inhibition. 

The test of volitional inhibition most widely used in rodents is the 5-

Choice Serial Reaction Time Task (5-CSRTT) (Robbins, 2002). In 5-CSRTT, a 

0.5-s cue is presented in 1 of 5 possible locations; a nosepoke on the 

corresponding location is reinforced. Nosepokes produced before cue onset are 

punished with time-outs, and are indicative of impulsivity (Bari, Dalley & 

Robbins, 2008). A signal-detection analysis is readily applicable to 5-CSRTT 

performance: At any time, the rat must choose between nosepoking or engaging 
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in other behavior. Inaccuracy in memory favors a bias toward nosepoking, 

because it is the only behavior that is explicitly reinforced in 5-CSRTT. Thus, to 

the extent that behavior is insensitive to the cue but sensitive to reinforcement, 

premature (i.e., impulsive) nosepoking would be prevalent.  

Other tasks may also be thought of as tests of volitional inhibition, such as 

the Differential Reinforcement of Low rates (DRL), the leverholding task (LHT, 

sometimes called Temporal Response Differentiation, or Differential 

Reinforcement of Response Duration), and the Fixed Consecutive Number (FCN) 

task. The signal to be detected in DRL is the minimum time that the animal has to 

wait between consecutive lever presses to obtain food (Sanabria & Killeen, 2008); 

in LHT, it is the minimum time that the animal has to hold down a lever to obtain 

food (Sanabria & Killeen, 2008); in FCN, it is the minimum number of 

consecutive lever presses before pressing another lever to collect food (Evenden 

& Meyerson, 1999) or to collect food and avoid electric shock (Evenden & Ko, 

2005). 

Go/No Go tasks like CPT and the 5-CSRTT may serve to evaluate 

differences in volitional inhibition between experimental and control groups. The 

construction of a quantitative model of volitional inhibition, however, requires 

more than the identification of qualitative differences; it requires precise 

estimation of model parameters. The estimation of impulsivity parameters hinges 

on the specification of mathematical relations between task-specific factors (e.g., 

salience of discriminative stimuli), inhibitory processes, and performance. Extant 
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inhibition assessment methods do not specify such relations. Moreover, the 

typical analysis of 5-CSRTT confounds overall rate of nosepoking (activity) with 

rate of premature nosepoking (impulsivity), because an increase in the former 

entails an increase in the latter and, because premature nosepokes preclude 

effective ones, it also entails a reduction in effective nosepokes. DRL, LHT, and 

FCN are also vulnerable to this kind of confound. 

This study compared two behavioral methods of assessing volitional 

inhibition in rats: DRL and fixed minimal interval (FMI) (Mechner & 

Guevrekian, 1962). FMI is a variant of DRL where the initial response is 

qualitatively different from the terminal response that produces a reinforcer. The 

DRL procedure has been extensively investigated as a model of timing and 

inhibition (Orduña, Valencia-Torres & Bouzas, 2009; Sanabria & Killeen, 2008; 

Bardo, Cain & Bylica, 2006; Ferguson, Paule, Cada, Fogle, Gray & Berry, 2001; 

Kramer & Rilling, 1970), and it is commonly used to test the effects of 

pharmacological treatments on these dependent variables (e.g., Fowler, Pinkston 

& Vorontsova, 2009; Sable, Eubig, Powers, Wang & Schantz, 2009;Richards, 

Kabol & Seiden, 1993). FMI is a much less common procedure, but closely 

related variations have been conducted (Soffie & Lejeune, 1991; Morgan & 

Einon, 1975).  

DRL and FMI performance were analyzed with a signal-detection 

approach in mind, using a target interval as the signal to be detected. Rats 

obtained sucrose rewards by starting a clock (not visible to them) and waiting at 
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least 6 s before stopping the clock; stopping the clock before 6 s had elapsed 

resulted in reward cancellation. This paradigm may be described in terms of a 

biased discrimination task: Rats had a continuous choice between stopping the 

clock and letting it continue to run. Whereas stopping the clock sometimes 

resulted in a reward, letting the clock run—by itself—never yielded a reward, it 

only increased the probability of a reward in the future. Thus, to the extent that 

passage of time was not well discriminated, rats had an incentive to stop the clock 

immediately. Because passage of time is a continuous variable, waiting times 

indicated exactly how much time justified a clock-stopping response. Moreover, 

the dispersion of waiting times was indicative of timing acumen, separately from 

volitional inhibition. These data could support inferences on model parameters 

based on extensively researched mathematical models relating timing, 

instrumental contingencies, instrumental behavior (Killeen and Fetterman, 1988; 

Machado, 1997), and, only recently, volitional inhibition (Sanabria and Killeen, 

2008).  

The proposed methods and analytical techniques were applied to assess 

the effects of housing conditions and MPH on volitional inhibition in rats. Prior 

manipulations of these variables have yielded mixed results. Rodents reared in 

isolation typically show poorer behavioral and cognitive performance relative to 

rats reared in a socially and physically enriched environment (Larsson, Winblad 

and Mohammed, 2002; Janus, Koperwas, Janus and Roder, 1995; Wright and 

Conrad, 2008). Rats reared in isolation are also more likely to self-administer 

amphetamines (Bardo, Klebaur, Valone and Deaton, 2001). Nonetheless, whereas 
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Perry, Stairs, and Bardo (2008) report that rats raised in isolation are more 

impulsive in a delay discounting choice task, Hellemans, Nobrega, and Olmstead 

(2005) report the opposite effect. More relevant to volitional inhibition, Dalley 

and colleagues (2002) report no differences in 5-CSRTT impulsivity between rats 

reared in isolated environments and in enriched environments. Isolated rats, 

however, produced more premature responses in a DRL procedure (Ough, Beatty 

& Khalili, 1972). In a 2-lever DRL, a variation of FMI in which pressing either 

one of two levers resets the clock, isolated rats made more initial and terminal 

lever presses than enriched rats, receiving fewer overall rewards (Morgan & 

Einon, 1975). A potential issue in all of these findings is that rodents reared in 

isolation, relative to those reared in enriched environments, are more active in 

open field tests (Amaral, Vargas, Hansel, Izquierdo & Souza, 2008; Smith, 1972), 

and lever press for food at higher rates (Rose, Love & Dell, 1985), even in the 

presence of free food (Coburn and Tarte, 1976). Additionally, isolated rats may be 

more sensitive to reinforcers than enriched animals (Rose, Love & Dell, 1985; 

Brenes, Rodriguez & Fornaguera, 2008).  

Methylphenidate (MPH) is one of the most commonly prescribed drugs 

for treating ADHD (Setlik, Bond & Ho, 2009; Greenhill, Halperin & Abikoff, 

1999). In humans, MPH has been widely shown to reduce impulsivity and other 

symptoms of ADHD (Sunohara, et Al., 1999; Pietras, Cherek, Lane, 

Tcheremissine & Steinberg, 2003). A variety of studies show decreased 

impulsivity in a stop signal reaction time task (Devito, et Al., 2009; Aron, 

Dowson, Sahakian & Robbins, 2003, Scheres et Al., 2003), as well as a delay 
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discounting task (Pietras, Cherek, Lane, Tcheremissine & Steinberg, 2003). In 

regards to volitional inhibition, Broyd et. Al (2005) demonstrated that MPH 

reduced the number of commission errors in children with ADHD, bringing them 

to the same level as non ADHD children. The replicability of this effect in animal 

models, however, has had mixed evidential support. Using delay-discounting 

tasks, Pitts and McKinney (2005) report that MPH decreases impulsivity in 

Sprague-Dawley rats, most noticeably at intermediate doses. However, Bizot and 

colleagues (2007) report these MPH-induced self-control improvements only in 

juvenile Wistar rats, not in adult Wistar, Spontaneously Hypertensive Rats (SHR, 

a widely used animal model of ADHD; Sagvolden, 2000), or Wistar-Kyoto rats 

(WKY, the conventional normotensive control of SHR). Perry and colleagues 

(2008) only report an MPH-induced reduction in delay-discounting impulsivity in 

isolated and not in socially reared rats.  

More directly relevant to volitional inhibition, Evenden and Ko (2007) 

report that MPH (6 mg/kg) increased the number of long chains produced using 

the Fixed Consecutive Number (FCN) method with shock avoidance. The 

increase in long chains, however, did not result in improved response or chain 

efficiency scores, as measured by the total number of responses divided by the 

total number of un-shocked food deliveries, and the total number of chains 

divided by the total number of un-shocked food deliveries, respectively. This 

occurred because although animals increased the percentage of very long response 

chains, they also increased the percentage of very short response chains. Bizarro, 

Patel, Murtagh and Stolerman (2004) also report MPH-induced improvement of 
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volitional inhibition using 5-CSRTT (2, 5 and 10 mg/kg). In contrast, Navarra and 

colleagues (2008) report MPH-induced disruptions of volitional inhibition using 

5-CSRTT at a dose of 5 mg/kg. Ferguson, Paule, Cada, Fogle, Gray and Berry 

(2007) report disrupted inhibition with MPH in DRL and LHT. To interpret these 

seemingly contradictory findings, it is important to consider the effect that MPH 

has on motivational and motoric responses, apart from inhibition. Heyman (1992) 

showed that at low doses (1.0 and 2.0 mg/kg), MPH increases response rates by 

increasing motivation to engage in the task. At a high dose (8 mg/kg) MPH 

affects motoric behavior by increasing maximal response rate. 

Relative to these tests, there were two reasons to expect that the methods 

and analytical techniques presented in this paper would be more sensitive to 

changes in volitional inhibition. First, inferences were based on a more efficient 

use of performance data, examining the distribution of intervals produced and not 

just summary performance indices. This approach allowed further constraint on 

the Temporal Regulation model of volitional inhibition (Sanabria and Killeen, 

2008). Second, performance of rats that were required to inhibit premature 

responses was compared with the performance of rats in a similar task, but that 

did not have a waiting requirement. This comparison differentiated effects on 

volitional inhibition from changes in activity and arousal, which were likely 

confounded in prior research. 
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Method 

Subjects 

Forty-eight male Wistar rats (Charles River, Laboratories, Hollister CA) 

served as subjects. Rats arrived to the laboratory on post-natal day (PND) 24. Rats 

had free access to food daily, and were housed on a 12/12 hrs light-dark cycle 

(dawn at 6 am) in translucent polycarbonate cases (260 mm wide by 460 mm deep 

by 210 mm high) covered with Sanichip bedding and wire lids. Other specific 

housing conditions (rats per cage, objects in cage) were part of the experimental 

manipulation and are explained in the procedure section. 

Apparatus  

Experimental sessions were conducted in ten MED Associates® modular 

test chambers (4 boxes were 305 mm long, 241 mm wide, and 210 mm high; 6 

boxes were 305 mm long, 241 mm wide, and 292 mm high), each enclosed in a 

sound- and light-attenuating box equipped with a ventilating fan. The floor 

consisted of thin metal bars above a catch pan. The front and rear walls and the 

ceiling of the experimental chambers were made of clear plastic, with the front 

wall hinged and functioning as a door to the chamber. A square aperture (51 mm 

sides) located 15 mm above the floor and centered on an aluminum side panel on 

the right side of the chamber provided access to a receptacle (ENV-200-R2M) for 

45 mg sugar flavored pellets (Dustless Precision pellets, product # F0042, Bio-

Serv, Frenchtown, NJ). Each activation of a dispenser (ENV-203) delivered a 

single pellet. A retractable lever (ENV-112CM) was located on each side of the 
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food hopper. Only the lever closer to the chamber door, to the right of the hopper, 

was operative; the other lever remained retracted throughout the experiment. The 

center of the lever was 80 mm from the center of the food hopper, and 21 mm 

from the floor. Lever presses were recorded when a force of approximately 0.15 

N was applied to the end of the lever. Three-color light stimuli (ENV 222M) were 

located directly above each retractable lever and could be illuminated yellow, 

green, and red. The ventilation fan mounted on the sound-attenuating chamber 

provided masking noise of approximately 60 dB.  The test chambers could be 

dimly illuminated by a houselight located behind the left wall of the chamber. 

Experimental events were arranged via a Med-PC® interface connected to a PC 

controlled by Med-PC IV® software.  

Procedure 

Housing. Rats were separated into two different groups beginning post-

natal day (PND) 25. Half of the rats were assigned to a mildly enriched 

environment (Group Paired) and half to an isolated environment (Group Single). 

The enriched environment involved housing 2 rats per cage with a PVC pipe and 

a crumpled up sheet of paper towel. The PVC pipe was moved and a new paper 

towel was provided at least once a week, when cages were changed for cleaning. 

The isolated environment involved housing a single rat per cage with no objects.  

Experimental history. All rats were exposed to an autoshaping procedure 

from PND 35 to PND 86 using the same apparatus described in this report. The 

autoshaping procedure consisted of pairing either a 3 kHz tone or a right-lever 
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insertion with the probabilistic delivery of a food pellet (p = .1). Experience with 

one conditioning treatment or the other was counterbalanced across experimental 

groups. 

Training sessions. Training sessions were conducted once daily, 7 days 

per week for each rat, starting on PND 89. Sessions started with a 5-min 

habituation period, where levers were retracted and the chamber was dark. 

Insertion of the right lever and the illumination of the houselight signaled the 

beginning of experimental conditions. Each session ended after 75 min or after a 

rat obtained 40 food pellets, whichever happened first. 

Assignment to experimental conditions. Table 1 summarizes the design of 

the experiment. Rats were randomly arranged in pairs. Each pair of rats was 

randomly assigned to a response sequence condition, Lever or Head. The 

response requirement for the Lever group was a lever press followed by a head 

entry, and for the head group it was a head entry followed by a head entry. Each 

rat in each pair was randomly assigned to a different task condition, Waiting 

(WTN) or Yoked-control (YKC). Rats in a pair could be in the same or in 

different housing conditions, but were always in the same response sequence 

condition, and always in different task conditions. Response sequence and task 

conditions are described below in detail. 

Waiting (WTN) condition. Rats in this task condition were required to 

either press a lever (Group WTN Lever) or remove their heads from the food 

hopper (Group WTN Head) to start a clock. While the clock was running, the 3-
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color light stimuli above both levers were illuminated and the houselight was 

turned off. A head entry into the food hopper stopped the clock and terminated the 

lights for half of a second. The duration of the clock running constituted the inter-

response time (IRT). If the IRT was longer than a programmed target time, it 

counted as a correct sequence. Each correct sequence was reinforced with a food 

pellet on a variable-interval (VI) schedule that ran throughout the experimental 

session. Incorrect sequences were followed by a 2 s blackout. Target times and VI 

requirements were progressively increased to 6 and 60 s, respectively, as 

described in the “Shaping procedure and terminal schedule” section. 

It is important to note that, for Group WTN Lever, lever presses did not 

stop the clock. Thus, a rat in this group could start the clock with a lever press and 

continue lever pressing while the clock was running; repeated lever presses had 

no programmed consequences. This is a potentially significant difference between 

the lever-press-head entry sequence and the differential reinforcement of low rates 

(DRL) schedule, where each lever press restarts the clock. Rats in Group WTN 

Head experienced contingencies more similar to DRL, because each clock-

starting head-exit involved a clock-stopping head-entry, and thus repeated head-

exits were impossible. For this group, lever presses had no programmed 

consequences. 

Yoked-control (YKC) condition. Rats in this task condition obtained 

reinforcers by completing the same response sequence as their WTN partners, 

lever-press-then-head-entry (Group YKC Lever) or head-exit-then-head-entry 
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(Group YKC Head), but without having to wait the target time. Every reinforcer 

delivered to the WTN partner set up reinforcement for the YKC partner, which 

could be collected by completing the corresponding response sequence, regardless 

of how fast it was completed. Thus, rates of reinforcement were near equal for 

WTN and YKC partners. YKC rats, however, occasionally collected fewer 

reinforcers because WTN rats sometimes set up multiple reinforcers faster than 

YKC rats completed a single response sequence. 

Shaping procedure and terminal schedule. Initially, the target time and the 

VI requirement for WTN rats were set to 0.5 and 2 s, respectively. The target time 

increased with each reinforcer by 1.25% across sessions until reaching 6 s, where 

it remained constant. After reaching the 6-s target time, the VI requirement was 

increased to 9, 13, 19, 28, 42, and 60 s, in daily succession. The schedule of 

reinforcement of correct sequences was then fixed at VI 60 s (intervals were 

drawn from a 12-item Fleshler-Hoffman distribution; Fleshler & Hoffman, 1962) 

for a minimum of 15 days, until stable performance was attained. 

Dependent Measures. Two variables were tracked daily: The mean 

number of sequences (correct and incorrect) completed by WTN and YKC rats, 

and the mean proportion of correct sequences completed by WTN rats. Ten 

experimental sessions were conducted after daily changes in each variable were 

deemed unsystematic. Data analysis was based on performance on these ten 

sessions. The main dependent measures were sequences per hour, proportion 

correct, and IRTs. Sequences per hour refer to the number of sequences 
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completed per hour, regardless of whether they were correct or incorrect. 

Proportion correct is the number of correct sequences divided by the total number 

of sequences.  

MPH phase. Following the ten sessions used for data analysis (pre-MPH 

phase), daily experimental sessions continued. On Tuesdays and Fridays rats were 

injected with saline or methylphenidate hydrochloride (0.5, 2, or 8 mg/kg; 

Hawkins Pharmaceutical Group, Minneapolis, MN) 15 minutes before sessions. 

Two cycles of doses were conducted, with order of dose injected counterbalanced 

across groups following a Latin square design.  

Statistical Analysis. For the pre-MPH phase of the experiment, sequences 

per hour and proportion correct were analyzed using a MANOVA with response 

sequence, housing and task as factors, and individual t-tests were used to test 

interaction effects. For the MPH phase, these same measures were analyzed using 

a MANOVA with response sequence, housing, task and drug as factors. The 

modeling procedure used for the distributions of IRTs is described in detail 

below.  
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Results – Pre-MPH 

Figure 1 shows mean (±SEM) sequences per hour for each group of rats. 

The MANOVA revealed a significant interaction effect of response sequence 

(Lever vs. Head) and task (WTN vs. YKC) on sequence per hour (F(1,7) = 14.4, p 

< 0.001). Rats in the Head group completed sequences at a higher rate than those 

in the Lever group, but only if they did not have to wait (YKC condition, bottom 

panel) (t(22) = 4.62, p < .001). 

Proportion of correct sequences is shown in Figure 2. This measure was 

sensitive to the interaction between task and housing condition (F(1,7) = 4.6, p = 

.038) and to the interaction between task and response sequence (F(1,7) = 39.5, p 

< .001). Figure 2 shows that when IRTs greater than 6 s were reinforced, Single 

rats and rats completing lever-head sequences produced a larger proportion of 

intervals above this threshold than Paired rats (t(10) = -2.94, p < .05) and rats 

completing head-head sequences (t(10) = -2.27, p < .05). Proportion correct for 

YKC animals is shown in the bottom. Although these animals did not actually 

make “correct” sequences because they were not required to wait, the measures 

are shown for comparison. For the YKC animals, the proportion of sequences that 

took more than 6 s to complete hovered at just about 4% across conditions, and 

there were no differences between housing or response sequence conditions.  

Although sequences per hour and the proportion of correct sequences 

provide a global picture of the performance of rats across experimental groups, 

these measures neglect more subtle differences in the distribution of IRTs. 

Examining these distributions may reveal with more precision the sources of 
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variability in performance. The assessment methods reported below allow 

deriving timing parameters from the distribution of IRTs. Inferences on the 

mechanisms underlying waiting behavior may be drawn based on the Temporal 

Regulation model of volitional inhibition (Sanabria and Killeen, 2008) and on 

well known properties of timing performance (McGill and Gibbon, 1965; Killeen 

and Fetterman, 1988; Machado, 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  17 

Model of Performance in a Volitional Inhibition Task 

 

Clocked Bernoulli Modules. Prior research has shown that intervals 

between responses in both waiting and non-waiting conditions can be described 

by configurations of clocked Bernoulli modules (CBMs; Killeen, Hall, Reilly and 

Kettle, 2002; Sanabria and Killeen, 2008). A Bernoulli process is a series of trials 

that can have one of two outcomes, success or failure, which occur with 

probabilities π and 1 – π. A CBM is a Bernoulli process with a specified inter-trial 

interval τ. A CBM may be illustrated by a flipping a coin every τ seconds; the 

coin has a success probability π; every success adds to a counter; when the count 

n exceeds criterion N, the process terminates (Figure 3). The mean time between 

consecutive successes is c = τ/π; the mean duration between the beginning 

(“START”) and the end (“STOP”) of the process is Nc. When CBMs are applied 

to modeling behavior, IRTs are modeled as START-STOP intervals. To illustrate 

these computations and how they are applied to IRT modeling, consider an 

example in which the mean time between flips is 1 s and the probability of 

success is .5. In this example the mean time between consecutive successes is 1 s / 

.5 = 2 s. If a response were emitted after the first success, IRTs would be 

geometrically distributed with mean 1 × 2 s = 2 s. If a response were emitted after 

3 successes, IRTs would be Erlang-distributed with mean 3 × 2 s = 6 s. Because 

the CBM is assumed to run very fast with both τ and π approaching zero, the 

geometric and Erlang distributions are pushed to their continuous limits, the 

exponential and gamma, respectively.  
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Substantial research (Brackney, Cheung, Neisewander & Sanabria, in 

press; Shull, Gaynor and Grimes, 2001; Shull & Grimes, 2003; Shull, Grimes & 

Bennett, 2004) suggests that the distribution of IRTs when reinforcement is not 

contingent on the time between responses is a mixture of two random 

distributions, one of short IRTs that are characteristic of subjects engaged in the 

reinforced task, and another of long IRTs that are characteristic of intervals 

between task engagements. The random processes that yield these distributions 

may be described as a mixture of 2 CBMs, each with different parameters τ and π, 

but both with N = 1 (Killeen et al, 2002). This is akin to choosing between two 

coins of different bias and then flipping it until a success is obtained. We 

hypothesized that this model would describe IRTs produced in the YKC task, 

because no particular IRT was differentially reinforced in this task. 

Sanabria and Killeen (2008) suggested that the distribution of 

differentially reinforced IRTs could also be described as a mixture of 2 CBMs. 

One CBM outputs relatively short intervals of random duration, such that N = 1, 

generating what is often called the “DRL burst” (Richards, Sabol and Seiden, 

1993), a rapid repetition of the instrumental response. The other CBM outputs 

IRTs according to the reinforcement contingency by using a criterion N > 1. We 

hypothesized that this mixture model would describe IRTs in the WTN Head 

group, with response bursts expressed as rapid head-exit-entry sequences. We also 

hypothesized that the CBM with N > 1 would describe the majority of IRTs in the 

WTN Lever group, because response bursts (CBM with N = 1) would be 

expressed as iterated lever presses. 
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Figure 4 shows how performance during a trial may be represented as a 

series of interlocking CBMs. Both CBMs in the YKC group are expected to 

operate with N close to or equal to 1, yielding two exponential distributions. 

Parameters p and 1 – p describe the proportion of IRTs that correspond to each 

exponential distribution. In the WTN group, CBM 1 is expected to have N > 1, 

yielding the gamma distribution of IRTs, and CBM 2 is expected to have N close 

to 1. In this case, p describes the proportion of inter-response times that are 

gamma distributed; the remaining IRTs are exponentially distributed.  

Performance as a mixture of probability distributions. Because IRTs in 

the YKC task are hypothesized to be outputted by 2 CBMs with N = 1, this 

distribution may be characterized by a mixture of two exponential distributions: 

 I (t) = p 1− e
− t −δ( ) / E1( ) + 1− p( ) 1− e

− t −δ( ) / E2( ). 0 < δ < t, E1 < E2 (1) 

I(t) is the probability that a non-waiting interval will be shorter than t; δ represents 

the shortest interval that can be produced (e.g., the time it takes a rat to move 

from the lever to the hopper). This parameter was estimated using the shortest 

IRT that the rat produced. The proportion of short IRTs is denoted by p, and 1 – p 

is the proportion of the longer IRTs. E1 and E2 are the rate parameters of the 

exponential processes.  

Similarly, the distribution of IRTs in the WTN group may be expressed as 

a mixture of two distributions: a gamma (N > 1) and an exponential (N = 1) 

distribution, 

 W (t) = p γ N ,c( ) + 1− p( ) 1− e
− t −δ( ) / E1( ).  (2) 
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W(t) is the probability that an IRT will be shorter than t; γ(N, c) is a gamma 

distribution with shape parameter N and scale parameter c. Parameter p is the 

proportion of gamma-distributed IRTs, and is indicative of active engagement in 

“waiting” behavior. The mean IRT when the animal is engaged in waiting is 

expected to be close to the target time. Because response bursts in the WTN Lever 

condition are expected to be expressed in repetitive lever-presses, and not in 

repetitive lever-press-head-entry sequences, p is expected to be close to 1 in this 

condition. 

 Equations 1 and 2 are called global models. These two global models were 

compared along with two simpler versions of the models, the single exponential 

and the single gamma. The purpose of this comparison was to select the global 

model of IRTs that would be used for parameter estimation and inferential 

statistical analysis. The first step in our analysis was to determine which global 

model was more appropriate for each animal’s IRT distribution. The second step 

consisted of determining the likelihood that model parameters N and c varied 

between Paired and Single rats, since these parameters were the primary indices 

used to measure inhibition and timing. The null hypothesis that parameters did not 

vary between Paired and Single rats was formulated as a model; the alternative 

hypothesis that parameters varied between Paired and Single rats was formulated 

as another model. To distinguish them from the global models, we call these 

models comparison models. 

Selection of Global Models. Four global models, shown in Table 2, were 

compared to determine which best described IRT distributions. Equations 1 and 2 
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were compared along with the single-gamma and the single-exponential 

distributions. Global models were selected for each group using the corrected 

Akaike Information Criterion (AICc), (Anderson, 2008; Akaike, 1974). Each 

global model was fit to the data of each individual rat using the Maximum 

Likelihood Estimate (MLE) method. AICc balanced the goodness of fit of each 

model (its log-likelihood) against its number of free parameters; low AICc scores 

are indicative of high goodness of fit with few free parameters.  Because absolute 

AICc scores are meaningless, they were re-scaled by subtracting from each AICc 

score the minimum AICc score across models under comparison; i.e., ∆i = AICci 

– AICcMIN, where i indices the models under comparison (Burnham and 

Anderson, 2002). Thus, for the global model with the lowest AICc, ∆i = 0. A 

global model with ∆i < 10 was considered viable; it was selected for further 

analysis only if it had fewer free parameters than the global model with ∆i = 0, 

otherwise the latter was selected. 

 

Results – Models of Performance 

 

Global Models. Of the 4 global models (Table 2), the AICc analysis 

favored the Gamma + Exp model in all cases (Table 3); therefore, this model was 

selected for subsequent analysis. Figure 5 shows fits of the Gamma + Exp model 

to the mean distribution of inter-response times. Curve fits show that this model 

provided an adequate description of the distributions. The curves through the data 

are fitted traces of the Gamma + Exp model.  



  22 

The top of Figure 5 shows the WTN groups. Visible differences are 

apparent between the Head (left) and Lever (right) groups and between Paired 

(filled symbols, solid lines) and Single (unfilled symbols, dashed lines) rats. The 

most notable difference between Lever and Head was the high proportion of short 

IRTs in the Head group, a pattern not observed in the Lever group. This can be 

seen on the top-left panel of Figure 5 as the high limb in the leftmost part of the 

distribution.  

Across housing groups, in both WTN Head and WTN Lever, the 

distribution for Single rats was shifted to the right relative to Paired rats, 

indicative of longer waiting times. Inter-response times were more dispersed in 

the Single than in the Paired group.  

In the YKC group (bottom of Figure 5), very few IRTs were longer than 5 

s. There was a difference between the Head and Lever group on the leftmost side 

of the distribution. For the Lever group, the probability of IRTs between 0 and .2 

was equal to 0 (first point on the graph), whereas the Head group produced many 

IRTs in this range. Figure 5 does not reveal any systematic differences between 

housing conditions in the YKC group.  

Parameter Estimation and Inferential Analysis. Parameters of the selected 

global models were estimated. Then, it was determined whether or not differences 

between groups justified the assignment of different parameter values across 

groups. From the assignment of different parameter values it was inferred that the 

component of the process indexed by the parameter was sensitive to the 

experimental manipulation. For instance, if a comparison between waiting 
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intervals in Paired and Single rats justified a smaller N for Paired rats, then it 

would be inferred that pair-housing shortened the criterial count in the volitional 

inhibition task.  

The Gamma + Exp model served as the Global model used for the 

Comparison models. Four models were compared: one in which the mean of 

parameters N and c were held constant between rearing groups (Model N and c 

Same), one in which only the mean of parameter N was held constant (Model N 

Same), one in which only the mean of parameter c was held constant (Model c 

Same), and one in which the mean of both parameters varied between groups 

(Model N and c Vary). ∆i was then used to select the best model between these 

four for each condition. Selection of one of the constrained models (Model N and 

c same, Model N Same, or Model c Same) would suggest that the mean parameter 

or parameters did not substantially differ between groups; selection of the 

unconstrained model would suggest the opposite. 

Two indices, one of volitional inhibition (θ) and one of timing inaccuracy 

(w), were drawn from the estimates of N and c in WTN rats (Sanabria & Killeen, 

2008). Inhibition refers to a bias for stopping the clock, either prematurely or 

conservatively, and timing inaccuracy is as a measure of discrimination of elapsed 

time. Index θ was computed as the mean waiting interval (Nc) divided by the 

target time (6 s); it provided an estimate of the threshold for action, with lower 

values indicating lower volitional inhibition. Index w, the Weber fraction 

(Gescheider, 1997), was computed as the standard deviation of waiting intervals 
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divided by the mean waiting interval (w = sqrt(1 / N)); lower values of w were 

indicative of poor temporal acumen.  

Parameter Estimation. Table 4 shows the ∆AICc for each comparison 

model for each training group. The AICc analysis favored the comparison model 

that allowed N and c to vary between WTN Single and WTN Paired rats, and the 

model that allowed only N to vary between YKC Single and YKC Paired rats. 

Table 5 shows that the criterial count (N) was visibly higher for Lever than 

for Head rats and at least twice as high for WTN than for YKC. The model 

selection procedure favored higher estimates of N for Paired than for Single rats.  

Although the criterial count for the YKC Paired group varied in the same 

direction, the estimates of N were much smaller, hovering around 1 in the YKC 

Head group. The time between counts, (c), was visibly higher for Head than for 

Lever rats and higher for YKC than for WTN rats. For WTN Single, the estimate 

of c that was practically double that of WTN Paired rats, but this estimate did not 

vary across housing conditions in the YKC group.  

Figure 6 shows the derived indices of inhibition (response threshold or θ) 

and timing imprecision (Weber fraction or w). The left panel shows estimates for 

the Head group; the right panel shows estimates for the Lever group. Response 

thresholds (θ) indicate that Paired rats waited on average 1% longer than the 

target time, whereas Single rats waited 22% longer. There was no apparent 

difference in response inhibition between Head and Lever groups. The bottom 

panel shows estimates of w. The dispersion of IRTs was relatively smaller for 
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Paired rats in comparison to Single rats, as indexed by lower estimates of w. 

Lever rats also appeared to have less dispersion than Head rats.  
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Discussion – Pre-MPH Phase 

 The pre-MPH phase of the experiment revealed that response sequence 

requirements (Lever vs. Head) and housing conditions (Paired vs. Single) produce 

differences in operant performance, and these differences depend on whether or 

not reinforcement is dependent on the time between responses.     

 Response Sequence. In the WTN group, there were no differences in 

sequences completed per hour, regardless of response sequence conditions. 

However, the YKC group (Figure 1, bottom) was sensitive to response sequence 

requirements. The observed effect may be due to a longer minimum duration 

required for responses initiated by a lever-press relative to those initiated by a 

head-exit. This difference in minimum IRT can be seen in Figure 5. Whereas the 

Head rats produced a high proportion of IRTs between 0 and 0.2 s, Lever rats did 

not produce such short intervals, as these rats could not physically complete a 

sequence in less than 0.2 s. The difference becomes intuitive if one considers the 

position of the rat relative to the food hopper at the beginning of a Lever sequence 

and at the beginning of a Head sequence. These differences did not occur in the 

WTN group because the 6-s target time required to earn reinforcers was well 

above the minimum IRT that the rat could produce.  

The response sequence requirement affected the proportion of correct 

sequences produced in the WTN task, with the Lever group making more correct 

sequences. If this served as an index of inhibition, it would suggest that rats in the 

Lever group were more inhibited. There were no differences in the proportion of 

correct sequences between Lever and Head in the YKC groups. These animals 
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were not required to wait 6 s, so the proportion of correct sequences was very 

low. The modeling procedure was carried out in order to draw inferences on 

inhibition and timing on the basis of the entire distribution of IRTs. The Temporal 

Regulation model of response inhibition was robust in describing IRTs in both the 

Lever and Head procedural variations. In the WTN Head group, a large 

proportion of closely spaced, exponentially distributed IRTs were observed, in 

addition to the longer waiting intervals with a mean close to the target time. These 

quick, iterative responses are commonly referred to as the DRL burst (Rilling & 

Kramer, 1972). The FMI task was effective in eliminating the response burst 

component typically seen in waiting tasks. In this task, the mean waiting intervals 

were still close to the target time, but the exponentially distributed IRTs were 

spaced widely apart.  

The higher proportion of correct sequences in the WTN group likely 

occurred because these animals did not produce as many quick, iterative 

responses. However, a lack of bursting does not necessarily mean that separating 

the terminal response from the initial response in the Lever group results in higher 

volitional inhibition. Because iterative responses in waiting tasks appear to be part 

of a motoric component of behavior separate from waiting, these responses should 

not be included when inferring levels of inhibition. The Temporal Regulation 

model separately captures IRTs that are independently distributed from those that 

are indicative of active engagement in waiting behavior. The measure of 

inhibition in this model, θ, only includes those waiting intervals. Timing accuracy 

was also inferred from the Temporal Regulation model as a measure of the 
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dispersion around the mean waiting interval. The observed better performance of 

rats in the Lever condition compared to the Head condition suggests that 

separating the initial response from the terminal response improves timing. In the 

typical waiting paradigm, two consecutive initial responses cannot be made 

before the criterion time has elapsed without restarting the clock. This was 

evident in the Head WTN task, where an intervening head entry resulted in a head 

exit that restarted the timer. Conversely, in the Lever sequence, the initial 

response of lever pressing could be performed repeatedly with no programmed 

consequences of restarting the clock. Repetitive lever pressing may have helped 

these animals discriminate time more accurately, by engaging in a task to move 

through behavioral states (Killeen & Fetteerman, 1988).  

Housing. Housing conditions also substantially altered behavior in the 

present experiment. Although sequences per hour were similar regardless of 

housing, the proportion of correct sequences was significantly higher for Single 

rats in both the Head and Lever conditions.  

Visual inspection of Figure 5 shows a horizontal displacement to the right 

in the waiting distributions of the Single animals; these animals produced a higher 

proportion of longer IRTs. Differences in response threshold θ, also supported the 

notion that Single rats waited substantially longer than Paired rats. This finding is 

consistent with some other studies showing decreased impulsivity in rats reared in 

isolation in a delay discounting task (Hellemans et al., 2005), and in a 5 CSRTT 

(Dalley et. Al), although these results were a non-significant trend. One potential 

explanation for the longer waiting intervals could be that Single animals are less 
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motivated, abandoning the task more frequently and resulting in longer waiting 

intervals. If this were the case, it would be expected that the median time to 

initiate the sequence would be higher for Single rats than for Paired rats (Wise,). 

However, inspection of the median latencies did not reveal any such effect (2.95 

vs 4.1 for Single and Paired Head, and 4.1 vs 6.8 for Single and Paired Lever rats, 

respectively). In fact, it appears the Single rats actually had shorter latencies, 

indicating that, if anything, they were more motivated to begin the sequence.   

The apparent reduced motivation and inhibition in Paired rats may be due 

to an elevated acute stress response to the experimental procedure in these rats. 

During the experimental session, the Paired animals were removed from their 

littermate to be placed into the operant chamber. The removal from the littermate 

may have elicited a stress response in these animals (Ferland & Schrader, 2010, 

Burman & Owen, 2008), possibly resulting in the reduced motivation and 

inhibition.    

The longer waiting in Single animals was unlikely to be due to lower 

levels of activity, because yoked interval distributions were unaffected by housing 

conditions (Figure 5). Instead, the stress response induced by separation in Paired 

animals may have resulted in higher levels of arousal. Arousal is often linked in 

timing tasks with the speed of the pacemaker (Killeen & Fetterman, 1988), which 

is represented here by c, the time between counts in the hypothetical CBM 1 

(Figure 4). Low arousal would imply high estimates of c, observed in group 

Single WTN, and high arousal by low estimates of c, observed in group Paired 

WTN. When waiting was not required (i.e. in the YKC animals), c was constant 
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between Paired and Single. It thus appears that reduced inhibition in Paired rats 

was facilitated by an increase in arousal induced by littermate separation stress.  

Although other studies have suggested increased impulsivity in isolated 

rats (Perry et Al., 2008; Ough et Al., 1972), procedural details may explain the 

conflicted findings. The rats in the present experiment were run daily in operant 

chambers, and therefore they were handled daily. This is a necessity for obtaining 

stable data in most operant tasks. Holson, Scallet, Ali & Turner (1991) 

demonstrated that daily handling of isolated rodents decreased the “isolation 

stress” syndrome and brought these animals to the same activity level as their 

enriched counterparts, whether the social animals were handled or not. The daily 

handling in combination with the daily separation stress in the Paired rats may 

help to elucidate the present results. 
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Results—Methylphenidate Administration 

Statistical Analysis. For the MPH phase of the experiment, a MANOVA 

was conducted to reveal the main effects of MPH and its interaction effects with 

housing, required response sequence, waiting task, and methylphenidate on each 

of the dependent measures from baseline. For the basic indices (sequences per 

hour and proportion correct), performance in no-injection sessions (those 

conducted a day before every injection session) was averaged with performance 

under saline injections and used as the baseline measure. 

Most effects of housing and response sequence conditions observed during 

baseline were replicated. Figure 7 shows the mean (±SEM) values of sequences 

per hour. Head rats continued to complete sequences at a higher rate than Lever 

rats, particularly if waiting was not required (F(1, 31) = 22.7, p < .001) (t(22) = 

4.21, p < .001). However, no significant effect of MPH on number of sequences 

completed per hour was observed.  

Figure 8 shows the mean (±SEM) value of the proportion of correct 

sequences. Similar to baseline, Single and Lever rats were more likely to produce 

waiting intervals longer than 6 s than their Paired and Head counterparts 

(respectively, F(1, 31) = 8.7, p = .004; F(1, 31) = 34.7, p < .001) (t(10) = -2.05, p 

= .06); (t(10) = -2.71, p < .05), respectively. MPH had no effect on proportion of 

correct sequences.    

Estimates of Temporal Regulation Parameters under MPH. Since the 

Gamma +Exp model best described IRTs in the pre-MPH phase of the 
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experiment, this model was used to estimate parameters at different doses of 

MPH. MLE and AIC were once again used select between comparison models. 

The models were tested in individual animals, and the best model for each group 

was determined. Four comparison models were tested: One in which both 

parameters N and c were constant across doses for every rat (Model N and c 

Same), one in which only N was constant across doses for every rat (Model N 

Same) one in which only c was constant across doses for every rat (Model c 

Same), and one in which all parameters varied for every rat (Model N and c 

Vary). For example, to test whether the parameter N was constant across doses 

(Model N Same), a single estimate of N was used for every MPH dose to fit the 

model to the data. This model has four fewer parameters than Model N and c 

Vary, because four estimates of N are constrained and do not vary. Then, the 

AICc value for Model N same was compared to the AICc values of the other three 

models. The model with the lowest ∆i, or a ∆i less than 10 with the fewest free 

parameters was chosen. To determine differences in parameters from baseline, 

95% confidence intervals were calculated, indicating whether changes in 

parameters were different from zero.  

Temporal Regulation Parameters under MPH. Table 6 shows the ∆i, 

values for each group. For every group except Paired Head YKC, the best model 

was one in which both N and c varied across MPH doses. In group Paired Head 

YKC, the best model was one in which N was held constant across doses. Table 7 

shows the mean (±SEM) parameter estimates of N and c for each group across 



  33 

MPH doses. Values marked with an asterisk indicate that the value was 

significantly different from baseline, based on 95% confidence intervals.   

 As shown in Table 7, for both Paired WTN groups, MPH caused a 

significant decrease in N and increase in c from baseline at the highest dose (both 

groups) and at the 2 mg/kg dose (Paired WTN Lever). In the Single WTN Lever 

group, Saline, 0.5, and 8 mg/kg resulted in a decrease in N, and 8 mg/kg resulted 

in an increase in c. Some doses of MPH also changed N and c for Single YKC 

groups. In group Single YKC Head, N increased and c decreased at doses of 0.5 

and 8 mg/kg. In group Single YKC Lever, N decreased and c increased after the 

Saline injection, and N also increased at 0.5 mg/kg MPH.  

  Figure 9 shows changes in mean (±SEM) derived measures of volitional 

inhibition (θ and timing inaccuracy (w), as a function of MPH dose for each 

experimental condition. The x-axis shows each of the four doses of MPH, and the 

y-axis shows the log proportion change from baseline of each parameter value for 

each group. The log proportion change is calculated by dividing the MPH dose by 

the baseline value, and taking the log base 2 of that number. A positive value 

indicates that the mean measure increased at that dose, and a negative value 

indicates that the mean measure decreased at that dose. These measures are shown 

separately for each housing and response sequence conditions, but only in the 

WTN task as the YKC animals were not required to wait. The Head groups are 

shown on the left, and the Lever groups are shown on the right. Paired and Single 

groups are shown together on the graphs as black and gray bars, respectively. 
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Asterisks indicate that 95% confidence intervals drawn around the mean measure 

did not envelop zero.  

The most noticeable difference in θ occurs in the Paired Head group at an 

8 mg/kg dose. Although there appears to be a visible increase in θ, the effect was 

not significantly different from zero due to the high inter-subject variability. 

Significant changes in the inhibition metric occurred in the Paired Lever group, 

with a slight, decrease after the saline injection, and in the Single Lever group, 

with a decrease at 2 mg/kg MPH.  

The effects of MPH on timing are shown in the bottom of Figure 9. The 8 

mg/kg dose significantly increased the measure of dispersion, w, in the Paired 

Head group. This effect was also consistently observed in the Lever group. In the 

Single Lever group, doses of Saline and 0.5 and 8 mg/kg of MPH increased w. 

Doses of 2 and 8 mg/kg increased w in the Paired Lever group.  



  35 

Discussion MPH  

 Overall, the MPH phase of the experiment replicated effects from 

baseline. Single rats had a higher proportion of correct sequences in comparison 

to Paired rats. Lever rats had a higher proportion correct in comparison to Head 

rats, and the effects of MPH depended on response sequence, housing and task 

conditions. 

Similar to baseline, Paired rats had lower estimates of c and higher 

estimates of N (Table 6), in comparison to Single rats. This again suggest 

increased arousal in Paired rats, as arousal is indexed by the time between counts 

(c), with shorter times indicating higher levels of arousal. The highest dose of 

MPH tended to decrease N and increase c in both housing groups. It thus appears 

that methylphenidate worked to reduce arousal while shortening the criterial count 

in the WTN groups. Essentially, MPH appears to make Paired animals more 

similar to Single animals, and enhances the observed effects in Single animals. It 

is thus interesting that the highest dose of MPH reduced arousal in the highly 

aroused Paired rats. 

Although a positive dose-dependent increase in volitional inhibition (θ) 

was observed in WTN rats, it was not statistically significant. This may be due to 

the high variability between animals, as well as the opposing changes of 

parameters within animals (i.e. decreases in N  and increases in c). Timing 

accuracy, however, was substantially compromised by MPH, most notably in 
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Lever rats. MPH induced disruptions in timing have been observed previously 

(Mayorga, Popke, Fogle & Paule, 2000).    
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General Discussion 

 

 TLDR; The results of the present experiment suggest that response 

sequence requirements alter iterative responses and timing, but do not appear to 

affect volitional inhibition. Housing rats in a mildly enriched environment 

reduced volitional inhibition yet improved timing compared to rats that were 

single housed in a barren environment. Methylphenidate showed a slight trend in 

increasing volitional inhibition, but this effect was not significant. Timing, 

however, was substantially disrupted by MPH. These inferences on volitional 

inhibition effects were well described by the Gamma+ Exp model.    

Volitional inhibition is one variety of impulsivity that may serve as an 

index for disorders associated with impulse control.  Given the negative 

consequences that are often associated with impulsive behaviors, it is important to 

have robust and accurate measures of this construct. Tasks such as CPT and the 5-

CSRTT provide useful yet qualitative indices of discrimination and inhibition. A 

necessary next step in understanding this variety of impulsivity is the use of 

methodological techniques and quantitative analyses that are sensitive to  critical 

yet subtle effects of independent variables on behavioral measures of inhibition. 

The DRL and FMI procedures employed in the present experiment serve as useful 

methodological techniques for this assessment. Since CPT, 5 CSRTT, DRL and 

FMI are all used as measures of inhibition, it will be useful to examine the extent 

to which measures of inhibition taken from all of these tasks correlate with one 

another.   
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The methodological techniques in the present procedure allowed for 

inferences to be drawn on the entire distribution of IRTs. The Gamma + Exp 

provided an excellent fit of the distributions of IRTs in both DRL and FMI 

procedures. This model allowed for the extraction of inhibitory threshold and 

timing precision, separate from iterative responses.  

Response Sequence 

Although the waiting tasks employed in the present work quantified 

inhibition, small variations in these procedures resulted in visibly obvious 

differences in performance. The separation of the terminal response from the 

initial response in the Lever procedure resulted in a higher proportion of correct 

responses. However, the isolation of waiting behavior from performance revealed 

that rats in the FMI task were not actually more inhibited, instead they did not 

produce the burst of rapid iterative responses that was observed in DRL. Since the 

burst of iterative responses in DRL are likely the result of motivational and motor 

responses separate from waiting behavior, these short IRT should not considered 

in the calculation of inhibition. DRL, similar to the Head task in the present 

procedure, is used in many drug studies to measure the effects of pharmacological 

agents on timing and inhibition behavior (Bardo, Cain & Bylica, 2006; Fowler, 

Pinkston & Vorontsova, 2009; Sable, Eubig, Powers, Wang & Schantz, 2009). 

However, if inferences of inhibition are drawn from this task without separating 

out iterative responses, it may result in inaccurate estimations of inhibition.  

The optimal method for inferring inhibition involves modeling the distributions of 

IRTs and calculating θ. Proportion correct is a common dependent variable used 
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to measure timing performance on the task. Estimating inhibition parameters is 

better than using performance indices, because the latter conflate iterative 

responses with waiting behavior. Again, these two can be empirically separated—

to some extent—using FMI, but the best way to do it is to isolate estimates of 

inhibition based on models grounded in theory. 

 

Housing Conditions 

Housing conditions significantly altered both inhibition and timing: rats 

raised in a mildly enriched  environment exhibited greater volitional inhibition 

than rats raised in an enriched environment, but they were less accurate at timing. 

These differences were robust across response sequence conditions. Paired and 

social (i.e. 3 or more rats per cage) housing is a common method for rearing 

animals ( ). Many studies involving timing and impulsivity use this method 

(Balcells-Olivero, Richards, Seiden, 1997; Richards, Sabol & Seiden, 1993; Bizot 

et. Al, 2007;) whereas in other studies, animals are reared in isolated conditions 

(Bizarro et. Al, 2004; Navarro et al, 2008). Different rearing environments may be 

an important component in differential effects between studies [how?]. Deficits in 

impulsivity and timing are observed in children with ADHD (). The present 

results suggest that environmental factors may play a key role in these deficits, 

although in an unexpected direction. One potential implication of this research 

may involve factors that reduce separation stress in children. Power (1992) 

demonstrated that the mere presence of an adult in the experimental room 

improved inhibition and attention in children with ADHD.   In future studies 
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involving rearing environment, it is important to consider the effects of increased 

stress due to littermate separation on behavior.  

MPH 

Although MPH appeared to produce a slight increase in volitional 

inhibition, this was a non-significant trend.  The increase in c and decrease in N 

appeared to make the behavior of paired rats more similar to Single rats. The 

increase in c suggests that MPH may reduce arousal in a timing task. To 

determine if MPH significantly affects inhibition, procedural variations may be 

necessary. For example, Bizo et. Al (2007) only found a reduction in impulsivity 

after MPH administration in juvenile Wistar rats, but not in adult Wistar, SHR, or 

WKY rats, at a 3 mg/kg dose. The use of adolescent rats may serve as a better 

model for determining changes in inhibition.  It may also be worthwhile to 

evaluate the effects of these drugs on an individual basis, taken baseline levels of 

activity into account.  
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  Table 1. Group assignment. 

Housing 
Response Sequence 

 Head Lever 

Paired WTN (N = 5), YKC (N = 7) WTN (N = 7), YKC (N = 5) 

Single WTN (N = 7), YKC (N = 5) WTN (N = 5), YKC (N = 7) 

Note. WTN is Waiting task condition, and YKC is Yoked-Control condition. Each 

WTN rat was paired with a YKC rat in the same response sequence condition but 

not necessarily in the same housing condition. 
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Table 2: Global models and the corresponding parameters and equations.  

 

  

 

 

 

 

 

 

 

 

 

Model Name 
Free 

Parameter
s 

Equation 

Exp 1 I(t) = p 1− e− t−δ( )/E1( )  

Exp + Exp 3 I(t) = p 1− e− t−δ( )/E1( ) + 1− p( ) 1− e− t−δ( )/E2( )  

Gamma 2 W (t) = p γ N,c( )  

Gamma + 
Gamma + Exp 

4 W (t) = p γ N,c( ) + 1− p( ) 1− e− t−δ( )/E1( ) 
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                                        Table 3: ∆AIC analysis 

 
  

∆AIC (WTN) ∆AIC (YKC) 

Exp  35916.27 65771.42 

Exp + Exp  25250.05   1795.84 

Gamma  20664.02 48327.41 

Gamma + Exp     0   0 
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Table 4: Values of ∆i for each group either under the constraint that the mean of parameters N and c were equal across 
rearing groups (N and c Same), only N was equal (N Same), only c was equal (c Same), or in the absence of any 
constraint (N and c Vary).  

 

  Head 
WTN 

Head 
YKC 

Lever 
WTN 

Lever 
YKC  

∆i N and c Same  760.5 30.0 187.7 56.4 

∆i N Same  27.6 18.0 135.0 55.8 

∆i c Same  748.6 0.0 98.4 0.0 

∆i N and c Vary 0.0 0.7 0.0 1.7 
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Table 5. Parameter estimates of N and c across groups in the pre-MPH phase.  

 

  Head  Lever 

 Paired 
WTN 

Single 
WTN 

Paired 
YKC 

Single 
YKC 

 Paired 
WTN 

Single 
WTN 

Paired 
YKC 

Single 
YKC 

N 6.19±1.07 4.12±1.40 1.20±0.17 1.00±0.0  11.95±1.69 7.63±1.75 5.07±2.72 2.81±0.69 

c(s) 1.15±0.29 2.94±0.92 6.79±0.81 6.79±0.60  0.57±0.07 1.32±0.48 2.77±1.78 2.77±1.35 
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     Table 6. ∆i values of the best model of MPH effects on parameter values.  

 

 

  Head  Lever 

 
Paired 
WTN 

Single 
WTN 

Paired 
YKC 

Single 
YKC 

 
Paired 
WTN 

Single 
WTN 

Paired 
YKC 

Single 
YKC 

∆i All Same  2939.85 1285.29 128.65 615.29  820.9 566.23 621.61 2951.71 

∆i N Same  366.19 649.49 0 77.46  119.76 224.91 178.97 285.23 

∆i c Same  1504.94 1036.41 118.91 608.4  153.54 438.77 184.08 1612.98 

∆i All Vary 0 0 1.32 0  0 0 0 0 
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Table 7. Parameter estimates for each group under doses of Saline and 0.5, 2, and 8 mg/kg MPH. 

  Head  Lever 

 
MPH 
dose 

mg/kg 

Paired 
WTN 

Single 
WTN 

Paired 
YKC 

Single 
YKC 

 
Paired 
WTN 

Single 
WTN 

Paired 
YKC 

Single 
YKC 

N S  5.33±1.3 3.41±0.81 1.1±0.05  1.08±0.07   9.98±1.24 *4.83±1.51 4.4±1.39 *2.02±.58 

 0.5  6.25±1.58 3.6±0.41 1.1±0.05 *1.15±0.08   9.74±1.4 *3.98±0.29 3.54±0.72 *1.67±0.24 

 2  5.64±1.07 4.39±0.57 1.1±0.05  1.32±0.18  *6.35±0.99  5.57±0.6 4.58±1.63  2.11±0.35 

 8 *2.37±1.11 4.4±1.2 1.1±0.05 *1.45±0.09  *6.85±0.94 *3.47±0.85 3.27±0.92  3.27±0.98 

           

c S  1.48±0.4 3.67±1.09 7.92±1.28  7.66±1.77   0.62±0.08  5.22±3.76 0.22±0.12 *4.65±2.03 

 0.5  1.47±0.45 2.46±0.34 6.41±0.95 *5.46±0.75   0.69±0.11  1.61±0.24 0.21±0.11  3.59±1.05 

 2  1.59±0.62 2.05±0.37 7.15±0.92  10±5.3  *1.11±0.16  1.2±0.2 0.23±0.13  1.3±0.61 

 8 *98.02±84.95 4.03±1.97 8.0±1.3 *0.17±0.03  *1.15±0.23 *3.06±0.72 0.25±0.14  5.01±3.2 
 

 

*Confidence interval crossed zero.
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Figure 1. Response sequences completed per hour for WTN (top) and YKC 
(bottom) rats. Sequences per hour are compared across housing and response-
sequence conditions.  
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Figure 2. Proportion of correct responses completed by animals in the WTN task 
across housing and response sequence conditions. 
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Figure 3: A clocked Bernoulli module (CBM). The time between coin flips is 

τ, the probability of incrementing a counter is πand the count criterion is N.  

 

 



 

 

 

 

Figure 4: Series of interlocking CBMs representing performance during a trial.  

 

 

  



 

 
Figure 5. Probability density functions of IRTs fit with the Gamma + Exp model 
for each group.  

 
  



 

 

 
Figure 6: Estimates of θ and w across rearing groups in each response sequence 
conditions.  

  



 

 
Figure 7. Sequences per hour completed by each group under the four doses of 
MPH.   



 

 
 
Figure 8. Proportion of correct sequences in each group under the four doses of 
MPH. 
 
  



 

 
 
Figure 9. Log proportion changes in θ and w across each dose of MPH. 


