
Systematic Policy Analysis and Management

by

Ketan Kulkarni

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2011 by the
Graduate Supervisory Committee:

Gail-Joon Ahn, Chair
Stephen S. Yau
Dijiang Huang

ARIZONA STATE UNIVERSITY

May 2011



ABSTRACT

With the advent of technologies such as web services, service oriented ar-

chitecture and cloud computing, modern organizations have to deal with policies

such as Firewall policies to secure the networks, XACML (eXtensible Access Con-

trol Markup Language) policies for controlling the access to critical information as

well as resources. Management of these policies is an extremely important task in

order to avoid unintended security leakages via illegal accesses, while maintaining

proper access to services for legitimate users. Managing and maintaining access

control policies manually over long period of time is an error prone task due to their

inherent complex nature. Existing tools and mechanisms for policy management

use different approaches for different types of policies. This research thesis repre-

sents a generic framework to provide an unified approach for policy analysis and

management of different types of policies. Generic approach captures the common

semantics and structure of different access control policies with the notion of pol-

icy ontology. Policy ontology representation is then utilized for effectively analyzing

and managing the policies. This thesis also discusses a proof-of-concept imple-

mentation of the proposed generic framework and demonstrates how efficiently

this unified approach can be used for analysis and management of different types

of access control policies.

i



To my parents, my brother, and all my friends.

ii



ACKNOWLEDGEMENTS

My graduate study in Computer Science has been a great journey as well

as learning experience for me. It has contributed significantly towards my abilities,

to approach and solve different research problems. I would like to offer my sin-

cere appreciation and regards to my advisor Dr. Gail-Joon Ahn, who has been a

constant source of motivation throughout this journey. He has always provided me

with valuable guidance in my research area. I would like to specially offer sincere

regards to my colleague Mr. Hongxin Hu, who has always inspired and helped me

in my research work. I would also like to extend my gratitude to Dr. Stephen S. Yau

and Dr. Dijiang Huang for serving on my committee. It has been great experience

working in the Secure Engineering For Future Computing (SEFCOM) Lab. I would

like to thank each and every member of this lab for their valuable inputs during my

research work. I would also like to thank all of my friends who had always been a

constant support for me during this wonderful journey. I would like to extend sincere

regards and love to my family for being a constant source of motivation.

iii



TABLE OF CONTENTS

Page

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 FRAMEWORK FOR GENERIC POLICY MANAGEMENT . . . . . . . . . 10

3.1 Generic Access Control Policy Representation . . . . . . . . . . 11

3.2 Policy Analysis and Management . . . . . . . . . . . . . . . . . 17

3.3 Policy Administration User Interface . . . . . . . . . . . . . . . . 18

4 REALIZATION OF GENERIC REPRESENTATION FOR ACCESS CON-

TROL POLICIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Generic Ontology for Access Control Policies . . . . . . . . . . . 21

4.2 Generating Policy Specific Instance . . . . . . . . . . . . . . . . 24

4.3 Generating Efficient Representation . . . . . . . . . . . . . . . . 26

5 REALIZATION OF POLICY ANALYSIS AND MANAGEMENT . . . . . . . 30

5.1 Conflict Detection and Resolution . . . . . . . . . . . . . . . . . 30

5.1.1 Conflict Detection Approach . . . . . . . . . . . . . . . 31

5.1.2 Conflict Resolution Approach . . . . . . . . . . . . . . 37

5.2 Redundancy Detection and Removal . . . . . . . . . . . . . . . 44

5.2.1 Redundancy Removal at Policy Level . . . . . . . . . . 50

5.2.2 Redundancy Removal at Policy Group Level . . . . . . 51

5.3 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . 52

6 IMPLEMENTATION AND EVALUATION . . . . . . . . . . . . . . . . . . . 58

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iv



LIST OF TABLES

Table Page

4.1 Atomic boolean expressions and corresponding boolean variables map-

ping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Summary of Access Control Policies used for evaluation. . . . . . . . . 60

6.2 Conflict detection and redundancy removal algorithms evaluation. . . . . 61

v



LIST OF FIGURES

Figure Page

2.1 Policy Based Management System . . . . . . . . . . . . . . . . . . . . 5

2.2 An example XACML Policy . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Generic Access Control Policy Management Framework . . . . . . . . . 11

3.2 Access Control Policy Structure . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Framework for capturing access control policy structure and semantics . 17

3.4 Policy Administration User Interface Components . . . . . . . . . . . . . 19

4.1 Generic Access Control Policy Representation Process . . . . . . . . . 21

4.2 Access Control Policy Ontology . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Access Control Policy Ontology Concepts . . . . . . . . . . . . . . . . . 23

4.4 Generic Access Control Policy Ontology Instance Representation . . . . 25

4.5 Representing the rules of XACML policy ontology instance with BDD. . . 29

5.1 Generic Analysis and Management Approach for Access Control Policies 31

5.2 Tree structure for example XACML policy . . . . . . . . . . . . . . . . . 32

5.3 Disjoint partition segment for authorization space of policy P2 in example

policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Disjoint partition segment for authorization space of policy P2 in example

policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Conflict Resolution Framework . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Tradeoff between security and availability using threshold. . . . . . . . . 41

5.7 Conflicting segment correlation Example. . . . . . . . . . . . . . . . . . 43

5.8 Authorization Space Segments Classification. . . . . . . . . . . . . . . 45

5.9 Property Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 Example of Correlation Breaking Process for Redundancy Removal. . . 49

5.11 Redundancy Removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



Figure Page
5.12 Authorization space segmentation at Policy set level for redundancy re-

moval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.13 Policy Analyzer Interface - All Segments View . . . . . . . . . . . . . . 54

5.14 Policy Analyzer Interface - Conflict Segments Only View . . . . . . . . . 55

5.15 Policy Analyzer Interface - Segment Detail View . . . . . . . . . . . . . 56

5.16 Policy Analyzer Interface - Redundancy Details View . . . . . . . . . . . 57

6.1 Performance improvement after Redundancy Removal . . . . . . . . . . 62

vii



Chapter 1

INTRODUCTION

We have witnessed explosive growth of cloud computing technologies, service ori-

ented architecture (SOA) as well as social networks. Cloud computing and SOA

have enabled the on-demand network access to a shared pool of configurable com-

puting resources such as networks, servers, storage, and application services [3].

Social networks also allow users to share personal data and interact with each

other. To achieve this, these technologies heavily rely upon different levels of inter-

action between remote systems/platforms, networks, data, services and users.

The advent of these technologies have provided different challenges for con-

trolling the access to critical resources as well as information. Previously client ap-

plications and data would generally reside on dedicated servers. Hence access

control was mainly focused on shell defenses like Firewall, intrusion detection sys-

tems and policy based mechanisms for critical resources. In addition, Cloud com-

puting and SOA technologies brought the concept of multi-tenancy for serving var-

ious subscribers through a common pool of resources. In such an environment, it

is necessary to have strong access control mechanism to prevent unintended use

of shared common resources and private user data. These concerns have lead to

considerable attention towards the research area covering policy-based approach

for access control in large, open, distributed and heterogeneous environment.

A policy, the basic building block of policy-based system, is a set of rules that

control the behavior of system. Policy-based approach controls complex system

behavior by separating policies from system implementation and enabling dynamic

adaptability of system behavior by changing policy configurations without changing

system implementation. As discussed above, in the era of cloud, web-oriented

computing policy-based mechanism have gained importance for controlling access

1



to shared common resources as well as private data. Different types of access

control policies are used at different levels. For example, application level access

control policies like XACML are used to control access to user information and

documents. While firewall policies are used to control the access to network devices

which can be categorized into network level access control.

Research in the policy-based systems has been divided into two major ar-

eas. One area considers enhancement of policy decision point (PDP) and pol-

icy enforcement point (PEP). Other area covers policy management and analysis

mechanism. Policies that control the behavior of modern systems are exponen-

tially growing in size and complexity. In typical policies, multiple rules may overlap,

which mean one access request may match several rules. These multiple rules

within same policy may conflict, implying that those rules not only overlap each

other but also yield different decisions. Conflicts in these policies may lead to se-

curity issues (e.g. allowing unintended access) as well as availability issues (e.g.

denying legitimate access). On the other hand, there might be some rules that

are redundant meaning that access request matching one rule also matches other

rules with the same effect. In such cases, performance of access control system

might be degraded since it directly depends on the number of rules evaluated per

access request. An intuitive means for policy designer or manager to resolve these

conflicts is to identify and remove all policy conflicts and redundancies by analyzing

the policies.

Identifying and resolving conflicts as well as redundancies by modifying poli-

cies is remarkably difficult and nearly impossible task in practice from many as-

pects. First, the number of conflicts in policies is typically large considering that

they generally have thousands of rules. Second, one conflict might be associated

with several rules. Hence it is important to consider policy as whole and not in parts

while resolving those conflicts. With the large number of rules and conflicts, it is al-

2



most impossible to identify and analyze these conflicts manually. Besides, policies

are generally maintained by multiple administrators over their lifetime. Without the

prior knowledge of actual policy specification intentions, modifications may lead to

incorrect policy semantics.

Research in this area has resulted into policy analysis tools, such as Firewall

Policy Advisor [16] and FIREMAN [32], with the goal of discovering firewall policy

conflicts. For XACML policies, tools like XAnalyzer [25] have been developed for

helping policy administrators to identify conflicts as well as redundancies in XACML

policies. Most of these prior approaches handle management of a particular type of

policy. Because of this, policy administrator has to face the difficult task of getting

familiar with each of these tools or approaches for every different type of policies

and may get confused with their different methods. Therefore, a unified policy anal-

ysis and management mechanism is desirable which can manage different types

of access control policies.

In this thesis, we present innovative approach of representing different ac-

cess control policies using ontology, which can then be used for our unified policy

analysis and management approach for different type of access control policies.

This approach uses policy-based segmentation technique for policy anomaly de-

tection. Accurate policy anomaly information can be used for policy administrators

to resolve policy anomalies. As part of this research, we have also implemented

this unified policy analysis and management approach as a proof-of-concept tool

for policy anomaly detection and resolution.

The remainder of document is organized as follows. Chapter 2 overviews

policy anomalies with example and need for generic policy management framework.

Chapter 3 presents the requirements of generic access control policy management

framework and its components. We describe realization of generic policy represen-

tation approach using policy ontology in Chapter 4. In Chapter 5, we discuss the
3



realization of policy analysis and management approach. Chapter 6 discusses im-

plementation details along with evaluation of our approach. This thesis concludes

with directions for possible future work in Chapter 7.

4



Chapter 2

BACKGROUND

The aim of policy-based management is to apply an organization wide integrated

management that includes system management, network management and ap-

plication management. Different types of policies are used at different levels of

system. For network operations point of view, policy-based network management

is about minimizing complexity of end-to-end management and provides security.

In case of application management, policy-based systems are generally used to

control access to shared resources. Figure 2.1 shows general components of a

policy-based management system. It has mainly three components:

1. Policy Decision Point (PDP): It evaluates and authorizes the policy decisions.

2. Policy Enforcement Point (PEP): This component intercepts access request

and enforces the decisions made by PDP.

3. Policy Information Point (PIP): It provides external information to PDP such

as LDAP attributes for a user requesting access to the system.

Different types of polices exist. To enumerate few, Firewall policies are used

for network based access control. XACML and Ponder [8] policies are used for ap-

plication level access control. Effectiveness of policy-based mechanism depends

Figure 2.1: Policy Based Management System

5



upon quality and correctness of the policy used. As discussed in Chapter 1, pol-

icy anomalies always exist due to various reasons. Policy anomalies are mainly

of two types: (a) Policy Conflicts (b) Policy Redundancies. To consider how these

policy anomalies exist in the real world, let us consider an example of the Em-

ployee Appraisal System. In this system, we have different actors such as Asso-

ciate, Team Lead, Manager who can perform different activities such as Assign,

Evaluate, Change the Goals as well as Read or Change some Comments or Feed-

back for assigned goals. System should enforce certain behaviors defined at an

organization-level. For example, Goals can be assigned by Team Lead or Manager

only and not by an Associate. Figure 2.2 shows an example XACML policy, which

defines the behavior of the employee appraisal system.

At root level, example XACML policy consists of a Policy set, which further

contain two policies. Each policy consists of rule set. Each rule consists of a target,

a condition, and an effect. The target of a rule decides whether an access request is

applicable to the rule and it has a similar structure as the target of a policy or a policy

set; the condition is a boolean expression to specify restrictions on the attributes in

the target and refine the applicability of the rule; and the effect is either permit or

deny. An XACML policy often has conflicting rules or policies, which are resolved

by four different combining algorithms defined in XACML specifications. The root

policy set RPSlist contains two policies, P1 and P2, which are combined using

Permit-Overrides combining algorithm. The policy P1 has two rules, r1 and r2, and

its rule combining algorithm is Deny-Overrides. The policy P2 includes four rules r3,

r4, r5 and r6 with Permit-Overrides as a combining algorithm. In this example, there

are three subjects: Manager, Team Lead and Associate; two resources: Goals and

Comments; and four actions: Read, Change, Assign and Evaluate. Note that both

r3 and r4 define conditions over the Time attribute.

6



Figure 2.2: An example XACML Policy

7



Anomalies in Example Policy

In case of policies having hierarchical structure (i.e. root level policy set may

contain one or more policy sets or policies) like XACML policy, anomalies occur at

two different levels. First, anomalies occur at policy level because of conflicting or

redundant policy rules. Secondly, anomalies may exist at policy set or group level

because of conflicting or redundant policy or policy set components. Following

anomalies could be found in the example XACML policy:

• Anomalies at Policy Level: A rule is conflicting with other rules, if this rule

overlaps with others but defines a different effect. For example, the deny rule

r4 is in conflict with the permit rule r3 in Figure 2.2 because rule r3 allows

the access requests from a team lead and associate to read goals in the time

interval [9:00, 17:00], which are supposed to be denied by r4 during the time

interval [15:00, 16:00]; and a rule is redundant if there is other same or more

general rules available that have the same effect. For instance, if we change

the effect of r4 to Permit, r4 becomes redundant since r3 will also permits a

team lead and associate to read goals in the time interval [15:00, 16:00].

• Anomalies at Policy Set Level: Anomalies may also occur across policies

and/or policy sets. For example, considering two policy components P1 and

P2 of the policy set RPSlist in Figure 2.2, P1 is conflicting with P2, because

P1 permits the access requests that a team lead assigns or evaluates the

goals, which are denied by P2. r2 is redundant with respect to r5, even

though r2 and r5 are placed in different policies P1 and P2, respectively.

Considering above example and inherent complex nature of the real world

access control policies, it is safe to assume that identifying and removing the policy

anomalies manually, is a very difficult and error prone task. Hence, it is necessary

to automate the policy analysis and management approach for policy administra-
8



tors in order to ensure the quality and correctness of access control policies. Many

research efforts have been devoted to identify policy analysis and management ap-

proach for different types of policies. Fisler et al. [22] introduced an approach to rep-

resent XACML policies with Multi-Terminal Binary Decision Diagrams (MTBDDs). A

policy analysis tool called Margrave was developed. Margrave can verify XACML

policies against the given properties and perform change-impact analysis based on

the semantic differences between the MTBDDs representing the policies. Several

work presenting policy analysis tools with the goal of detecting policy anomalies in

firewall are closely related to this work. Al-Shaer et al. [16] designed a tool called

Firewall Policy Advisor which can only detect pairwise anomalies in firewall rules.

Yuan et al. [32] presented a toolkit, FIREMAN, which can detect anomalies among

multiple firewall rules by analyzing the relationships between one rule and the col-

lections of packet spaces derived from all preceding rules. However, the anomaly

detection procedures of FIREMAN are still incomplete [17]. Generic policy analysis

and management framework designed as a part of this research thesis is the result

of experience gained from our previous work [24] [25].

However, each of the above approach considers specific type of policy such

as XACML or Firewall only. Policy administrator in the real world deals with dif-

ferent types of access control policies. It is very difficult for administrators to use

different tools and approaches for each different type of policy. Sometimes it might

be confusing to use different tools and may lead to errors in the policy analysis

and management tasks. Hence, it is desirable to have a generic approach for the

policy analysis and management, which can consider different types of policies. It

will help to maintain consistency in the policy analysis and management tasks. In

this work, we attempt to design a generic approach along with the corresponding

tool for accurate anomaly detection as well as effective anomaly resolution in the

access control policies.

9



Chapter 3

FRAMEWORK FOR GENERIC POLICY MANAGEMENT

Chapters 1 and 2 discussed about the policy anomalies, need for the automation

as well as benefits of generic framework for the policy analysis and management

tasks. The motivation behind the generic framework is to support policy analysis

and management of different types of access control polices under a single uni-

fied approach. These different types of policies may include network level policies

such as Firewall or application level policies like XACML. We analyzed the policy

analysis and management tasks performed by the policy administrators in order

to identify the components required for a generic policy analysis and management

framework. We also studied policy specifications for the access control policies like

Firewall, XACML and Ponder, to extract common semantics and structure of the

access control policies. Based upon this literature survey, we have come up with

the generic policy analysis and management framework for access control policies.

Figure 3.1 shows the components involved in this generic framework and their in-

teraction with each other to achieve effective policy analysis and management of

access control policies under a single unified approach.

Generic access control policy management framework is divided into three

major parts:

Part 1: Generic Access Control Policy Representation. This part deals with the

conversion of different types of access control policies into generic internal

representation, which can be further utilized by the policy analysis and man-

agement tasks. Generic policy representation enables policy analysis and

management to be independent of the policy type. Hence, it is an important

component in the generic policy management framework.

Part 2: Policy Analysis and Management. This part of generic framework encom-
10



Figure 3.1: Generic Access Control Policy Management Framework

passes the policy analysis and management tasks. These tasks include pol-

icy anomaly detection and resolution. It uses the generic policy representa-

tion.

Part 3: Policy Administration User Interface. We consider user interface for policy

analysis and management tasks to be an integral part of the framework. It

is extremely important to provide policy administrators with an intuitive user

interface that will help them to easily understand the policy management pro-

cess as well as information about policy anomalies and their resolution.

Following subsections describe the details and requirements for each of the

subcomponent of a generic policy analysis and management framework.

3.1 Generic Access Control Policy Representation

Generic access control policy representation enables the policy analysis and man-

agement components to be independent of different access control policy types.

Hence, for the design of a generic policy management framework, it can be consid-

ered as a central point of focus. In order to design generic access control policy rep-
11



resentation we analyzed the specifications of access control policies like Firewall [2]

and XACML [4] as well as some of the available test set policies. We observed that

access control policy representation has three important characteristics:

1. Policy Domain Concepts: Access control policy domain concepts can be con-

sidered as the terms that are generally used to describe the access control

policies.

2. Policy Structure: Structure can be considered as the depiction of how policy

components are arranged within policy with respect to each other.

3. Policy Semantics: Semantics capture the relationship between policy compo-

nents and also describe the behavior of a policy.

In order to achieve effective and comprehensive policy analysis and man-

agement, generic policy representation should successfully capture above charac-

teristics from different types of policies. Following subsections describe how to cap-

ture above mentioned characteristics from different types of access control policies

to design a generic policy representation. The process of capturing these charac-

teristics is a continuous process. These characteristics should be revised whenever

changes are made to the policy specifications or new policy types are considered

for generic approach of policy management.

3.1.1 Capturing Policy Domain Concepts

Capturing access control policy domain concepts can be considered as a

first step towards the capturing generic policy representation. We analyzed specifi-

cations of different access control policies and enlisted the terms used for express-

ing those policies. After that, we tried to classify these terms from different type

of policies under common classes that can be considered as access control pol-

12



icy domain concepts. For example, we enlisted terms like rule, policy, policy set,

access control list, subject, action ,resource, combination algorithm, conflict resolu-

tion strategy and many more. After that we classified them under common concepts

such as Policy, Policy Group, PolicyRule. To give an example of our classification

process, consider XACML policy has the notion of Combination Algorithm, which

describes the policy behavior in case of conflicts. Firewall policy uses default first-

matched strategy for conflict resolution. Both can be classified under one class

Meta-Policy, which can be considered as policy about the behavior of an access

control policy in case of a decision conflict.

3.1.2 Capturing Generic Policy Structure

We analyzed the structure of different access control policies. XACML policy

structure has the notion of <Rule>, <Policy> and <PolicySet>. PolicySet is the

container for other policies as well as policy sets. Policy defines the list of rules.

Consider other access control policy such as firewall, it has the concept of Access

Control List (ACL) which includes the list of firewall rules. Typical firewall policy

may contain number of ACLs. We can consider each ACL similar to policy node

containing group of rules. While firewall policy can be considered as a group of

number of ACLs or Policy nodes.

Based on our observation from the test set policies and study of different

policy specifications, we designed generic access control policy structure. Access

control policy defines what activities a member of the subject domain can perform

on the set of objects in the Resource domain. Basic node or unit for defining policy

is Policy Rule. These rules either permit or deny access to the resource objects

and hence can be classified into two types: Positive Rule and Negative Rule re-

spectively. Rules that are applicable to the same subject or resource objects can

13



Figure 3.2: Access Control Policy Structure

be arranged into the Policy node as a Rule List. Each Policy node may have meta-

policies associated with it, which specify policy about policy behavior. For example,

conflict resolution strategy specified for policy node defines the behavior of a policy

in case of conflict. Further access control policies are grouped together to gener-

ate composite policies. Related policies may be grouped together into one Policy

Group. For example, policies related to same department or same application may

grouped together for better policy organization and management. This policy group

may also have meta-policies associated with it. Policy group may choose to refer to

the existing policy groups or polices instead of defining them again. These referred

policies are called as Import Policies. Access control policy might contain Policy as

root node or it might have a hierarchical structure where root node is Policy Group

containing other policies or policy groups. Figure 3.2, depicts the generic access

control policy structure.

3.1.3 Capturing Generic Policy Semantics

Access control policies are defined in terms of the policy attributes. At-

tributes are named values of known types and are characteristics of the Subject,

Resource, Action in which the access requests are made. Access control policy

rules are defined based on these attributes. Generally high-level semantics of a

rule in an access control policy can be described as which subject(s) has access

14



to which resource(s) and with what action(s) permitted or denied? Thus at the unit

level of policy semantics, access control policies are typically based on the policy

rules expressed in terms of attributes of type Subject, Resource, Action and Effect.

Additionally rules might have conditions, that need to be satisfied for making access

control decisions.

To capture the high-level semantics mentioned above in generic policy rep-

resentation, we need to identify attributes of type Subject, Resource, Action and

Effect from different types of policies. Additionally, we also need to identify at-

tributes such as condition, conflict resolution strategy for comprehensive access

control policy representation.

Consider rule r3 from the example XACML policy in Chapter 2. We can

easily extract following attributes using XACML attribute designators:

Subject Team Lead, Manager, Associate.

Resource Goals, Comments.

Action Read.

Condition Between 9 AM to 5 PM

Effect Permit.

Now, consider following Firewall policy rule:

deny udp 149.169.112.73 eq 20 192.168.99.61 eq 137

In this case it not easy to extract the required attributes from this rule. However,

consider the high level semantics of a firewall policy which says: source-ip (or net-

work space) wants to access resource-ip (or network space) with specific protocol

has effect deny or allow. According to this we can identify required policy attributes

as follows:

15



Subject 149.169.112.73 : 20.

Resource 192.168.99.61 : 137.

Action access (dummy action).

Condition (protocol==udp)

Effect Deny.

Apart from the above policy rule level semantics, a policy also specifies at-

tributes such as conflict resolution strategy which define the behavior of a policy in

case of conflicting policy decisions. For example, XACML defines permit-override,

deny-override, first-applicable and only-one applicable strategies, while firewall pol-

icy uses default first-matched strategy. Attributes like conflict resolution strategy

which define the policy behavior, need to be identified and associated with proper

policy structure components such as Policy or Policy Group node for effective and

comprehensive generic policy representation.

3.1.4 Framework for Capturing Generic Policy Structure and Semantics

Figure 3.3 shows a framework for capturing generic policy structure and se-

mantics mentioned previously. Policy information extractor component captures the

required policy structure information such as Policy, Policy Set or Rules as well as

policy semantics information such as policy attributes from a given policy. Policy in-

formation extractor is specific for each type of access control policy. Policy Instance

Generator component creates a generic access control policy instance based upon

the information captured by a policy information extractor and previously identified

generic policy structure and semantics. This generic policy instance can be directly

used as a generic policy representation for policy analysis and management tasks

or may be converted to an efficient data structure representation based upon the

nature of operations required for the policy analysis and management.

16



Figure 3.3: Framework for capturing access control policy structure and semantics

3.2 Policy Analysis and Management

Policy anomalies are always present due to the inherent complex nature of access

control policies. Policy anomalies may lead to an unintended access to critical

resources or denial of a legitimate access request in a policy-based system. To

remove these anomalies, policies must be analyzed periodically or whenever new

changes are introduced. Considering large number of components involved in poli-

cies and their inherent complex nature, manual analysis of policies for anomaly

detection is almost impossible or error prone task. Hence, an automated approach

is necessary for consistent and effective policy analysis and management. In our

approach, we consider two types of policy anomalies detection and resolution:

1. Policy Conflicts: Chapter 2 discussed about the conflicts in an access con-

trol policy. Several policy components may be involved in the policy conflicts.

Also due to the composite or hierarchical policies, conflicts may be present

at different levels of policy structure. Thus, conflicts must be identified by

considering a policy as a whole and not just comparing the two policy com-

ponents. In this way, approach should be able to detect the policy conflicts

present at different levels of a policy structure. Once conflicts are identified,

17



existing mechanisms for the conflict resolution can be applied to resolve the

conflicts. However, we observed that existing conflict resolution mechanisms

are too restrictive and hence administrator should be able to apply more fine

grained mechanisms for conflict resolution.

2. Policy Redundancies: Chapter 2 also discussed about the redundancies present

in an access control policy. Redundant components may also be present

at different levels of a policy structure. Hence for comprehensive redun-

dancy analysis, policies must be considered as a whole similar to the conflict

detection approach. Redundant components may be overlapping with the

other policy components. In that case, redundancy removal approach should

make sure that all subspaces of redundant components are removable with-

out changing the existing policy semantics.

Figure 3.1 shows the framework components involved in the policy analysis and

management tasks. Chapter 5 discusses our comprehensive policy anomaly de-

tection and removal approach using generic policy representation.

3.3 Policy Administration User Interface

Policy administration user interface is an essential part of the generic policy man-

agement framework. It provides administrator with the detailed information about

policy anomalies such as policy conflicts and redundancies. Important feature of

user interface for generic policy management framework is the depiction of infor-

mation does not change with the change in policy type. It helps in maintaining

unified and unambiguous approach for policy management. Figure 3.4 shows com-

ponents of the user interface for policy analysis and management. It has mainly

two components:

1. Conflict Viewer : This component provides administrators with the precise in-

18



Figure 3.4: Policy Administration User Interface Components

formation about policy components involved in the policy conflicts. It helps

to guide them through conflict resolution process and provides them an op-

portunity to interfere in the resolution process at the precise points such as

selection of a conflict resolution strategy.

2. Redundancy Viewer : It provides administrators with the intuitive information

about redundant policy components and help them in policy analysis. It also

guides them through a redundancy removal process.

19



Chapter 4

REALIZATION OF GENERIC REPRESENTATION FOR ACCESS CONTROL

POLICIES

Chapter 3 discussed about the framework for generic approach of access con-

trol policy analysis and management. It discussed about the required components

and their interaction with each other. Generic framework for access control policy

analysis and management is divided into three major parts: (a) Generic Represen-

tation of Access Control Policy (b) Policy Analysis and Management and (c) Policy

Administration User Interface. This chapter discusses the realization of a system

architecture and workflow for Generic Representation of Access Control Policy.

Process of creating generic representation of access control policy involves

three major steps:

Step 1: Generic Ontology for access control policies. Chapter 3 discussed about

the capturing access control policy domain concepts, structure and semantics

for generic policy representation. Generic characteristics identified through

the analysis of different types of policies needs to be defined somewhere

and we use generic access control policy ontology for this purpose. Policy

ontology is then used to create the generic policy representation from different

types of access control policies.

Step 2: Generating policy specific instance. Based upon the policy ontology, re-

quired structure and semantics information needs to be extracted from the ac-

cess control policy under consideration. Ontology instance instantiated with

the information extracted from a policy represents the policy specific instance.

Step 3: Generating efficient representation. Realization of the policy analysis and

management involves complex algorithms. These algorithms typically involve

a lot of set operations. To carry out these tasks efficiently, we need to convert
20



Figure 4.1: Generic Access Control Policy Representation Process

this policy specific ontology instance to an efficient data structure suitable

for the required operations. In our implementation, we utilize binary decision

diagrams (BDD) [20] as an efficient data structure.

Figure 4.1 depicts the system components involved in the process of generic rep-

resentation of an access control policy. Following subsections describe the details

about the realization of each step in a generic policy representation process.

4.1 Generic Ontology for Access Control Policies

Generic representation of policy requires identifying the domain concepts, policy

structure and semantics shared by different types of policies. Chapter 3 discussed

about the process of capturing these characteristics. However, a format or template

is needed which can store this generic information about policy domain concepts,

structure and semantics effectively and accurately. Also, this format or template

must be easily populated or instantiated with information obtained from a policy in

21



Figure 4.2: Access Control Policy Ontology

order to create generic representation instance for a specific policy. We considered

different approaches such as template based information extraction [21]. However,

we found them cumbersome and insufficiently expressive for describing the access

control policy domain. Then, we came across the method of modeling a domain

using an Ontology.

Ontology is a model or language for describing the world that consists of a

set of types, properties, and relationships. It provides us the shared vocabulary for

modeling a domain, which includes the types of concepts in a particular domain,

their properties and relationships. Ontology is formally described as follows:

Definition 1 (Ontology). It is a formal representation of knowledge as a set of

concepts within a particular domain and relationships between those concepts.

Creating access control policy ontology enables us to model the access control

policy domain by defining its vocabulary, objects and their relations along with the

properties. Policy ontology which represents shared domain knowledge, provides

us the template which can be instantiated with the information extracted from differ-

ent types of access control policies to provide a generic policy representation.

Figure 4.2 shows the generic ontology created for the access control pol-

22



icy domain. We used the access control policy domain concepts, structure and

semantics obtained from policy specifications as well as hand analysis of a test

set of access control policies, to generate the policy ontology. We utilize web on-

tology language (OWL) [7], which represents the family of knowledge represen-

tation languages for authoring an ontology. To create the policy ontology using

OWL, we used protege [9] tool. OWL allows us to describe the domain in terms of

individuals, classes and properties.

Class represents the collection of objects, usually sharing some common

properties. Tree hierarchy in the Figure 4.3 shows the classes representing the con-

cepts which describes the Access Control Domain. We created the base classes for

domain concepts such as subject, action. Properties represents the relationship

between individual concepts. There are two main types of OWL properties used to

define the relationship:

Figure 4.3: Access Control Policy Ontology Concepts

1. Object Properties: Object property is a relationship between the two individu-

als or concepts of ontology domain. We defined the different object properties

to capture generic structure as well as semantic information of access con-

trol policy. For e.g. object property like hasRule between concepts Access-

ControlPolicy and PolicyRule captures the structure information that, access

23



control policy node may contain one or more rules.

2. Data Properties: Data properties link an individual concept to its literal value.

We used data properties such as hasValue to assign a literal value to a con-

cept such as Subject.

Defining policy ontology enables us to capture the access control policy do-

main concepts, structure as well as semantic information. Policy ontology can be

easily extended to support new characteristics introduced due to the changes in the

access control policy specifications. We can add data properties or object proper-

ties along with the new domain concepts to reflect these newly introduced changes

in our policy ontology.

4.2 Generating Policy Specific Instance

For creating the generic representation of an access control policy of particular

type, we use policy ontology defined for access control policy domain as a tem-

plate. Module for creating the generic representation of a policy starts with a base

policy ontology containing object classes for the concepts of the access control

domain and properties as well as relationships between them. We instantiate this

base ontology with the structure and semantic information extracted from a particu-

lar policy. This method of instantiating the base ontology with the specific attributes,

properties and relationships extracted from a policy, is called Ontology Population.

Basically, we create a copy of the base ontology populated with the attributes, struc-

ture and semantic information from a given policy. Figure 4.4 shows the ontology

instance representation. Nodes are either labeled with the ontology concept or in-

formation instance obtained from a particular policy such as XACML or firewall. A

link labeled instance Of from an information instance to ontology concept repre-

sents an instance generated for the corresponding policy ontology concept.

24



Figure 4.4: Generic Access Control Policy Ontology Instance Representation

We use policy specific parser that extracts the information required for on-

tology population. Parser understands the semantic as well structure information

for a particular policy type and parses out the information required by policy ontol-

ogy such as Subject, Resource, Action and PolicyRule. For example, parser for

the firewall policy parses out source-ip information in a rule as the Subject for

that particular rule as per the firewall policy semantics. Process of creation of an

ontology instance from example XACML can be described briefly as follows:

Step 1: When XACML parser extracts the information about policy set RPSlist,

we create the instance of class PolicyGroup defined in a base ontology. We

also populate the data properties such as hasId, hasStrategy to assign the

policy set id, combining algorithm information extracted by the parser to a

newly created PolicyGroup instance.

Step 2: When parser extracts information about policy nodes P1 and P2, we cre-

ate two instances of class BasicPolicy defined in the base ontology. Similarly,

instances for policy rules and rule attributes like subject, action, resource

are created, which are in turn related to the appropriate policy and rule in-

25



stances according to the base ontology structure and semantic information.

Data properties of each instance such as hasRuleId, hasId are populated with

appropriate information obtained by the parser.

Our current implementation supports the parsers for XACML and firewall

policies. Creating the instance for information extracted by a parser is performed

using Java based OWL API [14]. It provides the API functions for importing the

base ontology, creating the instance for the classes, object properties and data

properties defined in the base ontology as well as saving the ontology with newly

created instances as ".owl" file in the XML format.

4.3 Generating Efficient Representation

Our policy analysis and management approach uses policy-based partitioning which

requires a well-formed representation of policies for performing a variety of set

operations. Considering the size and complexity of the real world access control

policies, using the ontology instance created in XML format from a given policy is

extremely inefficient for performing those set operations. Binary decision diagram

(BDD) [20] is a data structure that has been widely used for formal verification and

simplification of digital circuits. In our approach, we leverage BDD as the underly-

ing data structure for generic representation of access control policies and facilitate

effective policy analysis.

As described in Chapter 3, at the unit level of policy semantics, access con-

trol policies are typically based on the policy rules expressed in terms of the at-

tributes of type Subject, Resource, Action and Effect. Additionally rules might have

conditions, that need to be satisfied for making access control decisions. Given the

ontology instance corresponding to a particular policy, we can use OWLOntologyWalker

and OWLOntologyWalkerVisitor provided by OWL API, to walk the asserted struc-

26



ture of the policy ontology. As the walker object created using OWLOntologyWalker

walks over the ontology structure, visitor object created using OWLOntologyWalkerVisitor

gets visited by the different objects encountered by the walker. We can override visit

method of an OWLOntologyWalkerVisitor to obtain the information about required

attributes such as Subject, Resource, Action and Effect for each policy rule object in

an ontology instance. Once these attributes are identified, all policy rule instances

can be transformed into boolean expressions [18]. Each boolean expression of a

rule is composed of atomic boolean expressions combined by the logical opera-

tors ∨ and ∧. Atomic boolean expressions are treated as equality constraints or

range constraints on attributes (e.g. Subject = “Manager”) or conditions (e.g.

9 : 00 ≤ Time ≤ 17 : 00).

Example 1 Based on the attribute information extracted from an ontology instance

of the example XACML policy in Figure 2.2, rule r3 can be expressed in terms of

atomic boolean expressions as follows:

(Subject = “TeamLead”∨Subject = “Associate”∨Subject = “Manager”)∧

(Resource = “Goals”∨Resource = “Comments”)∧ (Action = “Read”)∧

(9 : 00 ≤ Time ≤ 17 : 00)

The boolean expression for rule r5 is:

(Subject = “TeamLead”∨Subject = “Manager”)∧(Resource = “Goals”)∧

(Action = “Assign” ∨Action = “Evaluate” ∨Action = “Change”)

Similarly, some firewall rule from an ontology instance of a firewall policy can be

represented in boolean expression as follows:

(Subject = “190.128.72.10 : 80”) ∧ (Resource = “10.8.50.115 : 1098”) ∧

(Action = “Access”) ∧ (Protocol = ”TCP”)

Boolean expressions for policy rules consists of an atomic boolean expres-

sions with an overlapping value ranges. In such cases, those atomic boolean ex-
27



pressions are needed to be transformed into a sequence of new atomic boolean

expressions with the disjoint value ranges. Agrawal et al. [15] have identified differ-

ent categories of such atomic boolean expressions and addressed corresponding

solutions for those issues. We adopt similar approach to construct our boolean

expressions for policy rules.
Table 4.1: Atomic boolean expressions and corresponding boolean variables map-
ping.

Unique atomic Boolean Expression Boolean Variable
Subject = “TeamLead” S1

Subject = “Manager” S2

Subject = “Associate” S3

Resource = “Goals” R1

Resource = “Comments” R2

Action = “Read” A1

Action = “Change” A2

Action = “Assign” A3

Action = “Evaluate” A4

9 : 00 ≤ Time < 12 : 00 C1

15 : 00 ≤ Time < 16 : 00 C2

We encode each of the atomic boolean expression as a boolean variable.

For example, an atomic boolean expression

Subject=“Team Lead" is encoded into a boolean variable S1. A complete list of

boolean encoding for the ontology instance of the example XACML policy in Fig-

ure 2.2 is shown in the Table 4.1. We then utilize the boolean encoding to construct

boolean expressions in terms of boolean variables for the policy rules.

Example 2 Consider the ontology instance of the example XACML policy in Fig-

ure 2.2 in terms of boolean variables. The boolean expression for rule r3 is:

(S1 ∨ S2 ∨ S3) ∧ (R1 ∨R2) ∧ (A1) ∧ (C1)

The boolean expression for rule r5 is:

(S1 ∨ S2) ∧ (R1) ∧ (A2 ∨A3 ∨A4)

BDD is a acyclic directed graph which represents the boolean expressions

compactly. Each nonterminal node in a BDD represents a boolean variable, and

has two edges with binary labels, 0 and 1 for nonexistent and existent, respectively.
28



Terminal nodes represent the boolean values T (True) or F (False). Figures 4.5(a)

and 4.5(b) give BDD representations of two rules r3 and r5, respectively.

Figure 4.5: Representing the rules of XACML policy ontology instance with BDD.

Once the BDDs are constructed for policy rules, performing the set oper-

ations, such as union (∪), intersection (∩) and set difference (\), required by our

policy-based segmentation algorithms (see Algorithm 1 and Algorithm 2) is effi-

cient as well as straightforward. Our BDD representation is based on boolean

expressions generated from the boolean variables mapped to the policy ontology

attributes. If new policy attributes are introduced to the generic policy ontology due

to changes in policy specifications, then our BDD representation can be easily ex-

tended to represent these new attributes from corresponding boolean expressions.

29



Chapter 5

REALIZATION OF POLICY ANALYSIS AND MANAGEMENT

In the Chapter 4, we discussed about the realizing the generic representation of an

access control policies. We used policy ontology to create the instance of given pol-

icy type and then convert it to BDD-based policy representation for efficient policy

analysis and management. Generic representation of policy gives us the advantage

of implementing unified approach for analysis and management for any type of ac-

cess control policy. This chapter discusses the realization of policy analysis and

management module. It consists of two main tasks: (a) Anomaly Detection and (b)

Anomaly Resolution. Following subsections describe the implementation approach

for analyzing policy anomalies of mainly two types: policy conflicts and policy re-

dundancies. It also includes the section for the graphical user interface, which is an

integral part of the policy analysis and management framework. Figure 5.1 depicts

the system components of our policy analysis and management approach.

5.1 Conflict Detection and Resolution

Policy conflicts are the part of policy anomalies which may lead to allowing unau-

thorized access or denial of legitimate access to a critical resource. To identify the

policy conflicts, we define the authorization space for each policy component based

on BDD representation. We first define the authorization space and then determine

our conflict detection and resolution approach in following subsections.

Definition 2 (Authorization Space). An authorization space for a policy compo-

nent can be defined as collection of access requests to which policy component is

applicable. Policy component can be considered as policy rule, policy or policy set

that collectively define the access control policy.

30



Figure 5.1: Generic Analysis and Management Approach for Access Control Poli-
cies

5.1.1 Conflict Detection Approach

In our conflict detection approach, we used policy-based segmentation technique [25],

in which we partition entire authorization space defined by policy components into

disjoint authorization space segments. Then conflicting segments, which contain

policy components with different effects, are identified. Each of those conflicting

segment represents a policy conflict. We use generic representation of access

control policy for policy analysis and management and hence we consider generic

structure of policy for conflict detection. For simple access control policies, which

are defined using list of rules, we identify conflicts at policy level. While for complex

or composite policies, which are defined using more than one policy or group of

policies, we identify conflicts at policy as well as policy group level.

Figure 5.2 depicts a tree data structure for generic policy in which the leaf

node represents the policy node and intermediate nodes on the path from root

31



Figure 5.2: Tree structure for example XACML policy

node to leaf node represents a policy set or policy group. Each node stores the

information about the combining algorithm and effect of a policy component. We

identify conflicts at each node and store the details in each node to provide the de-

tailed analysis of each policy conflict to the administrator. In case of a simple policy

where policy do not have policy groups or hierarchical structure, only one node is

present for e.g. firewall policy containing only one ACL. Following subsections dis-

cuss the approach and algorithm for detecting conflicts at policy and policy group

level.

Conflict Detection at Policy Level

A policy component in an access control policy consists of list of rules. Each

rule specifies an authorization space with the effect of either permit or deny. We

call an authorization space with the effect of permit as permitted space and an

authorization space with the effect of deny as denied space.

Algorithm 1 shows the pseudocode for generating conflicting segments of a

policy component P . An entire authorization space derived from a policy compo-

nent is first partitioned into the set of disjoint segments. As shown in lines 16-32 in

Algorithm 1, a method called Partition accomplishes this procedure. This method

works by adding an authorization space s derived from a rule r to an authorization

32



space list denoted by partList. A pair of authorization spaces must satisfy one of

the following relations: subset (line 19), superset (line 24), partial match (line 27), or

disjoint (line 31). Therefore, we use the set operations to separate the overlapped

spaces into disjoint spaces.

Algorithm 1: Identify Disjoint Conflicting Authorization Spaces of Policy

Input: A policy node PNode with a set of rules.
Output: A set of disjoint conflicting authorization space for PNode.
/* Partition the entire authorization space of PNode into disjoint spaces*/1
PolicyPartition(PNode) partList.New();2
ruleList←− GetRules(PNode);3
foreach r ∈ ruleList do4

sr ←− GetAuthorizationSpace(r);5
partList←− Partition(partList, sr);6

StorePartitions(PNode, partList);7
/* Identify the conflicting segments */8
conflictList.New();9
foreach s ∈ partList do10

R
′
←− GetRule(s);11

if ∃ri ∈ R
′
, rj ∈ R

′
, ri ̸= rj and ri.Effect ̸= rj .Effect then12

conflictList.Append(s);13

StoreConflicts(PNode, conflictList);14
return PNode;15

Partition(partList, sr)16
foreach s ∈ partList do17

/* sr is a subset of s*/18
if sr ⊂ s then19

partList.Append(s \ sr);20
s←− sr;21
Break;22

/* sr is a superset of s*/23
else if sr ⊃ s then24

sr ←− sr \ s;25

/* sr partially matches s*/26
else if sr ∩ s ̸= ∅ then27

partList.Append(s \ sr);28
s←− sr ∩ s;29
sr ←− sr \ s;30

partList.Append(sr);31
return partList;32

Conflicting segments are identified as shown in lines 9-13 in Algorithm 1.

Figure 5.3 gives representation of the segments of authorization space derived from

the policy P2 of the example policy shown in Figure 2.2 1. Five unique disjoint
1For the purpose of easy analysis and understandability, we use a two dimen-

sional geometric representation for each authorization space segment. Note that
a rule in a policy typically has multiple fields such as subject, action and resource.
Thus a complete representation of authorization space must be multi-dimensional.

33



Figure 5.3: Disjoint partition segment for authorization space of policy P2 in example
policy

segments are generated. From five segments, two conflicting segments cs1 and cs2

are identified. Each of them represents a policy conflict, where conflicting segment

cs1 is associated with a rule set consisting of three rules r3, r4 and r6, and conflicting

segment cs2 is related to a rule set including two rules r3 and r4.

Conflict Detection at Policy Group Level

Our generic approach of policy analysis and management considers con-

flict detection at a policy group level for the types of policies having hierarchical

structure (e.g. XACML) or have notion of policy groups (e.g. Ponder). Algorithm 2

shows the pseudocode for identifying disjoint conflicting authorization spaces of

a policy group based on the tree structure of policy as identified in Figure 5.2.

In order to partition authorization spaces of all nodes contained in a policy tree,

this algorithm recursively calls the partition functions, PolicyPartition() and

PolicySetPartition() to deal with the policy nodes (lines 5-6) and the policy

group nodes (lines 9-10), respectively. We used bottom-to-top approach to identify

policy group conflicts. Once all children nodes of a policy group are partitioned,

we represent the authorization space of each child node (E) with two subspaces

permitted subspace (EP ) and denied subspace (ED) by aggregating all “Permit"

segments and “Deny" segments respectively as follows:

34



 EP =
∪

si∈SE
si if Effect(si) = Permit

ED =
∪

si∈SE
si if Effect(si) = Deny

(5.1)

where SE denotes the set of authorization space segments of the child node E.

For aggregating all “Permit" segments and “Deny" segments, we need to identify

an effect for each authorization space. For non-conflicting segments, the effect of

a segment equals to the effect of components covered by the segment. However,

for conflicting segments, effect of segment depends upon the combining algorithm,

which is used by the owner (a policy or policy group) of the segment. Different pol-

icy types use various combining algorithms (CA). For example, Firewall policy use

by default First-applicable. XACML policy uses four combining algorithms: First-

applicable, Permit-override, Deny-override and Only-one-applicable. We currently

provide the effect generation for conflict segment using above four combining algo-

rithms in following way:

1. CA=First-Applicable: In this case, the effect of a conflicting segment equals

to the effect of the first component covered by the conflicting segment.

2. CA=Permit-Overrides: The effect of a conflicting segment is always assigned

to be “Permit”.

3. CA=Deny-Overrides: The effect of a conflicting segment always equals to

“Deny”.

4. CA=Only-One-Applicable: The effect of a conflicting segment equals to the

effect of only-applicable component.

Our approach is flexible enough to support other combining algorithms for

various types of policies as well. In order to generate segments for the policy group

node PSNode, we can then leverage two subspaces (EP and ED) of each child

node (E) to partition the existing authorization space set belonging to PSNode

(lines 12-13).
35



Algorithm 2: Identify Disjoint Conflicting Authorization Spaces of Policy Set

Input: A policy set PSNode with a set of policies or other policy sets.
Output: A set of disjoint conflicting authorization spaces CS for PSNode.
/* Partition the entire authorization space of PSNode into disjoint spaces*/1
PolicySetPartition(PSNode) psParts.New();
C ←− GetChildNodes(PSNode);2
foreach c ∈ C do3

/* c is a policy*/4
if IsPolicy(c) = true then5

c←− PolicyPartition(c);6
AggregatePermitDenySpace(c);7

/* c is a policy set*/8
else if IsPolicySet(c) = true then9

c←− PolicySetPartition(c)10

childNodeParts←− GetChildNodePartitions(PSNode);11
foreach childPart ∈ childNodeParts do12

psParts←− Partition(psParts, childPart);13

StorePartitions(PSNode, psParts);14
AggregatePermitDenySpace(PSNode);15
/* Identify the conflicting segments */ CS.New();16
foreach s ∈ psParts do17

E ←− GetElement(s);18
if ∃ei ∈ E, ej ∈ E, ei ̸= ej and ei.Effect ̸= ej .Effect then19

CS.Append(s);20

StoreConflicts(PSNode, CS);21
return psNode;22

AggregatePermitDenySpace(node)23

S
′
←− GetNodePartitions(node);24

EP .New();25
ED.New();26

foreach s
′
∈ S

′
do27

if Effect(s
′
) = Permit then28

EP ←− EP ∪ s
′
;29

else if Effect(s
′
) = Deny then30

ED ←− ED ∪ s
′
;31

StorePermitSpace(node,EP );32
StoreDenySpace(node,ED);33
return node;34

Figure 5.4 represents an example of the segments of authorization spaces

derived from policy set PS1 in our example policy (Figure 2.2). We can observe

that six unique disjoint segments are generated, and one of them cs1 is a conflicting

segment. cs1 is related to PD
1 and P P

2 . It indicates a conflict occurring at policy set

level.

36



Figure 5.4: Disjoint partition segment for authorization space of policy P2 in example
policy

5.1.2 Conflict Resolution Approach

As discussed previously, conflicts always exist in access control policies. Every ac-

cess control policy specification defines the mechanism to resolve the conflict. For

example, firewall policy deals with conflicts by using default First-match mechanism.

XACML policy specification provides four combining algorithms: Permit-override,

Deny-override, First-applicable and Only-one-applicable. Once conflicts are iden-

tified between policy components using our approach, administrator can choose

appropriate strategies according to policy specifications to resolve them. However,

conflict resolution strategies or mechanisms provided by existing policy specifica-

tions are too restrictive and allow policy administrator to choose only one combining

algorithm for all conflicts identified within policy. It is common case that adminis-

trator might want to resolve each component individually using different resolution

strategies. Many conflict resolution strategies exists [23, 26, 27], but cannot be

used due to restrictions of policy specifications. Our approach to conflict resolution

provides comprehensive conflict resolution framework as shown in Figure 5.5. Our

conflict resolution approach has two steps: (A) Effect Constraint Generation (B)

Conflict Resolution based on Effect Constraints. Following subsections describe

each step in detail.

37



Figure 5.5: Conflict Resolution Framework

Step A. Effect Constraint Generation

In order to resolve the policy conflicts, policy components involved in conflict

should take expected action for any access request within the conflicting autho-

rization segment. In order to decide expected action, policy administrator needs to

assign desirable effect constraint for conflict segment. Effect Constraint for conflict

segment can be formally defined as follows:

Definition 3 (Effect Constraint). An effect constraint for a conflicting segment de-

fines an expected action that the policy should take when any authorization request

within the conflicting segment comes to the policy.

To generate effect constraints for conflict segments within policy, we use

Strategy-based approach described below.

Strategy-based approach In this approach, an effect constraint is derived

from the conflict resolution strategy associated with the conflicting segment. A pol-

icy administrator chooses an appropriate conflict resolution strategy for each iden-

38



tified conflict by examining the features of conflicting segment and policy compo-

nents involved. In our conflict resolution framework, a policy administrator is able

to adopt different strategies to resolve the conflicts indicated by different conflicting

segments. In addition to standard conflict resolution strategies provided by different

policy specifications, user-defined strategies [27], described below can be used:

• Recency-Overrides: This strategy indicates that in case of policy conflicts the

recency of policy components involved in a conflict is checked. The decision

provided by more recently introduced policy component takes precedence

over other components involved in a conflict.

• High-Majority-Overrides: This strategy permits (or denies) a request if the

number of policy components taking “Permit” (or “Deny”) action is greater

than the number of policy components taking “Deny” (or “Permit”) action re-

spectively.

• High-Authority-Overrides: This strategy states that a policy component de-

fined by a policy administrator with the highest authority takes precedence.

In addition, we also articulate another resolution strategy with the notion of

the risk. This strategy can be applied to the network security policies such as firewall

policy. A basic idea of using risk-aware strategy for effect constraint generation is

that a risk level of a conflicting segment could be used to determine the expected

action taken for the access requests within a conflicting segment. Risk evaluation

can be performed using specific tools. For example in case of network level policies,

we can use Common Vulnerability Scoring System (CVSS) [29, 30] as an underlying

security metrics for the risk evaluation. Network venerability scanning tools such as

Nessus [13] and Qualys [10] adopt CVSS base score to provide crucial baseline

information for automated security analysis.

39



In conventional risk measurement, two major factors contribute to the calcu-

lation of risk value (Rv). One factor is probability of damage (Pd), which indicates

the chance that an event happens to incur the damage. Another is cost of damage

(Cd), which is a quantified measurement of the damage. Beside those two fac-

tors, another important factor in determining the criticality of an identified security

problem is the asset importance value (Av). Normally, policy administrators place

a higher priority on protecting the critical resources over non-critical once. Equa-

tion 5.2 shows the general method for Risk Value measurement.

Risk Value = Pd × Cd × Av (5.2)

To calculate the risk level RL(cs) of each conflicting segment, we use av-

erage of all risk values for the policy components covered by a conflicting segment

using the equation 5.3.

RL(cs) =

∑
Rv

|C(cs)| (5.3)

Where, C(cs) is a function to return all policy components involved in a

conflicting segment cs. Once the risk level of a conflicting segment is computed,

an action constraint can be generated based on the risk level and a threshold (TH),

which is often set by a policy administrator.

Action(csi) =

 “allow” if RL(csi) < TH.

“deny” if RL(csi) >= TH;
(5.4)

Essentially, the threshold represents a tradeoff between security and avail-

ability as shown in Figure 5.6. We assume the range of risk level is from 0.0 to

10.0 2. We can see, if the choice of the threshold is less than 5.0, more conflicting
2For simplicity, we will just adopt average risk value (from 0.0 to 10.0) as the risk

level of a conflict segment for the demonstration of our approach in the rest of this
document.

40



Figure 5.6: Tradeoff between security and availability using threshold.

segments will be assigned a deny action constraints. That means more access

requests will be blocked due to the reason that the policy administrator considers

securing the system is more important than system availability. On the other hand,

if the policy administrator selects a large number for threshold (>= 5.0), more per-

mit action constraints will be generated for the conflicting segments, which means

more access requests can access system resources.

Risk-aware approach provides automatic constraint generation for conflict

segments based on the risk evaluation. It does not require policy administrators

intervention once risk level threshold is set. In future, additional strategies can be

easily supported by our conflict resolution framework for effect constraint genera-

tion.

Step B. Conflict Resolution Based On Effect Constraint

Once effect constraints are generated for conflict segments, it is important

to map them to the existing conflict resolution strategies determined by the policy

specifications. In our framework, conflict resolution strategies assigned to resolve

different conflicts by a policy administrator can be automatically mapped to the stan-

dard conflict resolution strategies defined in policy specifications without changing

the way current policy implementations perform. For example, XACML policies pro-

vides permit-override, deny-override and first-applicable. If all effect constraints are

41



“Permit" for all conflict segments, then permit-override is selected for the target pol-

icy component in XACML policy. Similarly, deny-override is assigned to the target

policy component, if all effect constraints are “Deny". In other cases, first-applicable

is selected as conflict resolution strategy. Most of the access control policies sup-

port basic conflict resolution mechanism like first-applicable. However, in order to

resolve all conflicts within the target component by applying first-Applicable, the pro-

cess of reordering the conflicting components is compulsory. Process of reordering

the conflicting components makes sure that first component applied to access re-

quest is the correct component as intended by the policy administrator.

Practically, one policy component may get involved in multiple conflicts. The

most ideal solution for conflict resolution by using first-applicable strategy is that

all action constraints for conflicting segments can be satisfied by reordering con-

flicting components. In other words, if we can find out an ordering of conflicting

components that satisfies all action constraints, this ordering must be the optimal

solution for conflict resolution. Unfortunately, in practice action constraints for con-

flicting segments can only be satisfied partially in some cases. It also implies that,

we cannot resolve the conflicts by reordering policy components according to first-

applicable strategy for each conflict segment individually. Thus we use conflict

correlation mechanism proposed by Hongxin et al. [25] to identify dependent rela-

tionships among conflict segments. Algorithm 3 shows the process of identifying

correlated conflict segments.

Figure 5.7 shows an example for conflicting segment correlation, consid-

ering an general policy component P with eight rules. Five conflicting segments

are identified in this example. Several rules in this policy component are involved in

multiple conflicts. For example, r2 contributes to the two policy conflicts correspond-

ing to the two conflicting segments cs1 and cs2, respectively. Also, r8 is associated

with two conflicting segments cs2 and cs3. Suppose we want to satisfy the effect

42



Algorithm 3: Conflicting Segment Correlation Algorithm.

Input: A set of conflicting segments, C.
Output: A set of groups for correlated segment, GRP .
GRP.New();1
foreach c ∈ C do2

PCList←− GetComponents(c);3
foreach g ∈ GRP do4

foreach c
′
∈ GetSegment(g) do5

PCList
′
.Append(GetComponents(c

′
));6

if PCList ∩ PCList
′
̸= ∅ then7

g.Append(c);8
else9

GRP.NewGroup().Append(c);10

return GRP ;11   
Figure 5.7: Conflicting segment correlation Example.

constraint of cs2 by reordering associated conflicting rules, r2, r5 and r8. The posi-

tion change of r2 and r8 would affect conflicting segments cs1 and cs2 respectively.

Thus, a dependent relationship can be derived among cs1, cs2 and cs3 with respect

to the conflict resolution. Similarly, we can identify the dependent relation between

cs4 and cs5. We organize those conflicting segments with a dependent relationship

as a group called conflict correlation group.

Once we identify conflict correlation group, we need to identify ordering of

policy components involved in a correlated group that satisfies all effect constraints

generated for conflict segments. However as discussed above, all effect constraints

cannot be satisfied always. Hence, naive way to find optimal solution is to exhaus-

43



tively list all permutations of correlated conflicting components. Total resolve score

is computed for each permutation, which indicates total number of conflicts resolved

by particular permutation. Permutation with maximum resolve score is selected as

near optimal or optimal solution. Resolving score can be computed as shown in

equation 5.5.

RS(pm) = |CS.Sat(pm)| (5.5)

Note that we use a function Sat() in this equation to identify whether a per-

mutation can satisfy the effect constraint of a conflicting segment. Implementation

of Sat() function is fairly straight forward, which checks whether the effect of a first

component in particular permutation satisfies the effect constraint for conflict seg-

ment or not.

5.2 Redundancy Detection and Removal

We use policy-based segmentation technique in our redundancy removal approach.

Hongxin et al. [25] have introduced redundancy detection and removal mechanism

for XACML policies. We try to generalize their approach for policy analysis and

management. We define the redundancy in policy as follows:

Definition 4 (Redundancy). A component c is redundant in a policy p if and only

if the authorization space derived from the resulting policy p′ after removing c is

equivalent to the authorization space defined by p.

We use three steps to identify and eliminate the redundancies: authorization

space segmentation, property assignment for subspaces of segments and correla-

tion break and redundancy removal. We describe each step in details below.

Step 1. Authorization Space Segmentation

44



Figure 5.8: Authorization Space Segments Classification.

In this step, we use authorization space segments created for policy level

conflict detection. We identify overlapping, non-overlapping and conflicting overlap-

ping segments. Each non-overlapping segment is associated with a unique com-

ponent and each overlapping segment is related to a set of components, which

may conflict with each other (conflicting overlapping segment) or may have same

effect (overlapping segment). Figure 5.8 shows example authorization segments

classified in above categories.

Figure 5.8 illustrates an authorization space segmentation for a policy with

eight components. In this example, two policy segments s4 and s6 are non-overlapping

segments. Other policy segments are overlapping segments, including two conflict-

ing overlapping segments s1 and s3, and two non-conflicting overlapping segments

s2 and s5.

Step 2. Property Assignment

To reflect different characteristics of each subspace in authorization seg-

ments, we assign four property values: removable (R), strong irremovable (SI),

45



weak irremovable (WI) and correlated (C). Removable property indicates that a

rule subspace is removable. In other words, removing such a component subspace

does not make any impact on the original authorization space of an associated

policy. Strong irremovable property means that a component subspace cannot be

removed because the effect of corresponding policy segment can be only decided

by this component. Weak irremovable property is assigned to a component sub-

space when any subspace belonging to the same component has strong irremov-

able property. That means a component subspace becomes irremovable due to the

reason that other portions of this component cannot be removed. Correlated prop-

erty is assigned to multiple component subspaces covered by a policy segment, if

the effect of this policy segment can be determined by any of these components.

Following are the rules for the property assignment to each subspace within seg-

ments of a policy.

Rule 1: Property assignment for subspaces of a non-overlapping segment. A non-

overlapping segment contains only one component subspace. Thus, this sub-

space is assigned with the strong irremovable property. Other component

subspaces associated with the same component are assigned with the weak

irremovable property, except the component subspaces that already have the

strong irremovable property.

Rule 2: Property assignment for subspaces of a conflicting segment. Property as-

signment for this component is based on the combination algorithm used

by the owner component of this segment. Combination algorithms differ

with each policy type. Currently we support combination algorithms used

by XACML and firewall policies. We describe the behavior of the property

assignment module for First-applicable, Permit-override and Deny-override

combination algorithms below. However, we need to extend behavior of this

module to support new combination algorithms that may be introduced by the

46



new policy types.

1. First-Applicable: In this case, the first component subspace covered by

the conflicting segment is assigned with the strong irremovable property.

Other component subspaces in the same segment are assigned with

the removable property. Meanwhile, other subspaces associated with

the same component are assigned with the weak irremovable property

except the subspaces already having strong irremovable property.

2. Permit-Overrides: All subspaces of “deny" components in this conflicting

segment are assigned with the removable property. If there is only one

“permit" subspace, this case is handled similar to the First-Applicable

case. If any “permit" subspace has been assigned with the weak irre-

movable property, other subspaces without irremovable property are as-

signed with the removable property. Otherwise, all “permit" subspaces

are assigned with the correlated property.

3. Deny-Overrides: This case works the same as for the Permit-Overrides

case.

Rule 3: Property assignment for subspaces of non-conflicting overlapping seg-

ment. If any component subspace has been assigned with weak irremovable

property, other subspaces without irremovable property are assigned with the

removable property. Otherwise, all subspaces within the segment are as-

signed with the correlated property.

Figure 5.9 shows the result of applying our property assignment mecha-

nism, which performs three step property assignment process in the sequence to

the example presented in Figure 5.8. We can easily identify that r3 and r8 are re-

movable rules whose all subspaces have removable property. However, we need

to further examine the correlated rules r2, r4 or r7, which contain some subspaces

with correlated property.
47



Figure 5.9: Property Assignment.

Step 3. Correlation Break and Redundancy Removal

Subspaces covered by an overlapping segment are correlated with each

other when the effect of overlapping segment can be determined by any one of

those correlated subspaces. Thus, keeping one correlated subspace and remov-

ing others may not change the effect of corresponding segment. We call such a

correlated relation as vertical correlation, which can be identified in the property as-

signment step. For example in Figure 5.9, within segment s3, component subspace

of c4 is in a vertical correlation with the component subspace of c2. In addition, we

observe that some components may be involved in several conflicts. For example in

Figure 5.9, c4 has two subspaces that are involved in the correlated relations with c2

and c7, respectively. This correlated relation is called as horizontal correlation. This

case is similar to conflict resolution reordering process where we cannot resolve the

correlation individually. We use similar approach of identifying component correla-

tion groups based on the vertical and horizontal correlations. Figure 5.10(a) shows

correlated relationships of component subspaces of c2, c4 and c7 in the correlation

group g.

48



Figure 5.10: Example of Correlation Breaking Process for Redundancy Removal.

We additionally observe that different property assignments to break the rule

correlations in a correlation group may lead to different results for redundancy re-

moval. Figure 5.10(b) shows one possible solution. If we first assign two subspaces

of c4 with removable property, c4 becomes a removable but c2 and c7 are turned to

an irremovable components. In this case only one redundant component can be

removed. Consider another solution as shown in Figure 5.10(c), if we first assign

the correlated subspace of c2 with removable property, then only c4 becomes an

irremovable component. Both c2 and c7 are removable. Thus, in this case, we can

remove two redundant components. Based on this example, we observe that it is

necessary to seek optimal solution in order to achieve maximum redundancy re-

moval. To achieve this goal, we can compute a correlation degree (CD) for each

correlated component c using the equation 5.6.

CD(c) =
∑

si∈CS(c)

1

NC(si)− 1
(5.6)

Note that CS(c) is a function to return all correlated segments of a compo-

nent c, and NC(si) is a function to return the number of correlated components

within a segment si. Since each policy segment contains multiple correlated com-

ponents (NC(si) ≥ 2), 1
NC(si)−1

gives the degree of breakable correlation relations

associated with a policy segment si if we set a component c as removable. To max-

imize the number of removable components for redundancy resolution, our corre-

lation break process selects one component with the minimal CD as the candidate

removable component each time. For example, applying this equation to calculate

49



Figure 5.11: Redundancy Removal.

correlation degrees of three components demonstrated in Figure 5.10(a), CD(c2)

and CD(c7) equals to 1, and CD(c4) equals to 2. Thus, we can select either c2

or c7 as the candidate removable component in the first break step. Finally, two

components c2 and c7 become removable after breaking all correlations. Applying

this correlation break results to given example in Figure 5.9, we observe that four

components c2, c3, c7 and c8 are identified as redundant components.

Figure 5.11 depicts the result of applying our redundancy removal approach

to the example given in Figure 5.8.

We identified the generic approach for redundancy identification and re-

moval from policy components. For complex policies having hierarchical structure,

it is not sufficient to identify redundancies at policy level. We also need to identify

redundancies at policy set or policy group level. Following two subsections describe

the redundancy removal at policy as well as policy set level.

5.2.1 Redundancy Removal at Policy Level

To remove the redundancies at policy level, we use the same approach as de-

scribed above. The redundant components at policy level can be identified in terms

of policy rules. Algorithm 4 describes the steps involved in the process of redun-

dancy removal at policy level.

50



Algorithm 4: Redundancy Elimination at Policy Level

Input: A policy P with a set of rules.
Output: A redundancy-eliminated policy P

′
.

PolicyRedundancyRemoval(P ) /* Partition the entire authorization space of P into disjoint spaces*/1
S.New();2
S ←− PolicyPartition(P );3
/* Property assignment for all rule subspaces */4
PropertyAssgin_P(S);5
/* Rule correlation break */6
G←− IdentifyCorrelatonGroup(S);7
foreach g ∈ G do8

foreach r ∈ g do9
r.CD ←−

∑
si∈CS(r)

1
NC(si)−1

;10

SP ←− GetCorrelatedSubspace(MinCDRule(g))11
foreach sp ∈ SP do12

sp.Property ←− R ;13
if |GetCorrelatedSubspace(sp)| = 1 then14

SP
′
←− GetCorrelatedSubspace(sp) SP

′
.P roperty ←− SI ;15

/*Redundancy removal */16

P
′
←− P ;17

foreach r ∈ P
′

do18
if AllRemovalProperty(r) = true then19

P
′
←− P

′
\ r;20

return P
′
;21

5.2.2 Redundancy Removal at Policy Group Level

We use policy tree representation as shown in Figure 5.2 for elimination of re-

dundancies at policy set level. We remove the redundancies using bottom-to-top

approach. Redundancies are removed at policy level first using method described

above and then redundancies at policy set level are removed recursively.

For redundancy removal at policy set level, both redundancies among chil-

dren nodes as well as rule redundancies, which may exist across multiple policies

or policy sets, should be discovered. Therefore, we keep the original segments of

each child node and leverage those segments to generate the authorization space

segments of PS. Note that, we do not use aggregated authorization spaces as in

the case of conflict detection at policy set level. Figure 5.12 demonstrates an ex-

ample of authorization space segmentation of a policy set PS with three children

51



Figure 5.12: Authorization space segmentation at Policy set level for redundancy
removal.

components P1, P2 and P3. The authorization space segments of PS are con-

structed based on the original segments of each child component. For instance, a

segment s
′
2 of PS covers three policy segments P1.s1, P2.s1 and P3.s2, where Px.sy

denotes a segment sy belonging to a policy Px.

After the property assignment to each component subspace of policy set

segments, we examine whether any child component is redundant. If a child com-

ponent is redundant, this child component and all rules contained in the child com-

ponent are removed from PS. Next, we examine whether there exist any redundant

rules. In this process, the properties of all rule subspaces covered by a removable

segment of a child component of PS needs to be changed to removable. Note that

when we change the property of a strong irremovable rule subspace to removable,

other subspaces for the same rule with dependent weak irremovable property need

to be changed to removable.

5.3 Graphical User Interface

Considering the complexity of tasks involved in the policy anomaly detection and

resolution, it is necessary to provide intuitive user interface for policy administrators.

Careful study of interactions of policy administrators with policy management tasks

52



provided us with the information about the workflow of policy analysis and man-

agement process as well as information required by the administrator at each step.

Based on our observation, we designed visualization interfaces for policy analysis

and management tasks. Each visualization interface provides administrator with

the accurate as well as precise information required for each analysis and manage-

ment task. It helps in reducing the ambiguity as well as complexity of information

that needs to be analyzed by the administrator for performing a particular task. In

this section, we describe each visualization interface that constitutes graphical user

interface of our implemented tool for policy analysis and management.

Policy analyzer interface of our tool depicts hierarchical structure of policies

and allows administrator to view anomalies at different levels of a policy indepen-

dently. Figure 5.13 shows the policy analyzer interface. Hierarchical structure of

policies is depicted by the tree of policy components present on the left side. Ad-

ministrator can choose a particular policy component such as Policy or PolicySet

node for anomaly analysis. We provide two different tabs for analyzing two types of

anomalies: (a)Policy Conflict and (b) Policy Redundancy. If administrator chooses

a Policy node for the analysis, then conflicts in that particular Policy node are dis-

played in terms of the rule subspaces involved. Otherwise, if administrator chooses

a PolicySet or Policy Group node, then all conflicts within that particular node are

displayed in terms of permit and deny subspaces of policy or policy set compo-

nents. The columns in the right hand space of policy analyzer interface depicts the

disjoint segments generated for particular node as a result of policy-based segmen-

tation. Each row of the column represents policy component subspace involved in

the disjoint segment and is identified by a component id. Color of each subspace

represents the effect of each policy component; Green identifies permit subspace

and Red depicts Deny subspace. Further, administrator either chooses to visual-

ize all the segments generated for selected policy component or to analyze only

53



Figure 5.13: Policy Analyzer Interface - All Segments View

conflicting segments as shown in Figure 5.14. This can be done by choosing ap-

propriate radio buttons provided below the policy analyzer interface. Conflicting

segments are grouped according to the correlated conflicting segments for easy

conflict analysis. In our interface, icons for policy segments indicate three different

states with respect to conflict analysis and resolution. One icon with Green Square

represents Permit effect constraint generated for a segment, while other icon with

Red Square represents Deny effect constraint assigned to a particular segment.

Third icon with Half Red and Half Green Square represents a conflicting segment.

Once administrator clicks on a particular column header representing a pol-

icy segment or correlated conflicting group, detailed information about all policy

components involved in particular segment or correlated group is displayed in an-

other window as shown in Figure 5.15. Details include information such as risk

associated with each component, the date when component was introduced into

the policy and by which authority. Administrator analyzes all the information and

54



Figure 5.14: Policy Analyzer Interface - Conflict Segments Only View

chooses an effect constraint for this conflicting segment based on either risk anal-

ysis for network security policies or strategy-based approach. In case of risk-

aware approach, administrator analyzes average risk for this conflicting segment

and specify the risk-level threshold in the tab below. Generated effect-constraint

is shown to the administrator. In case of strategy-based approach, administrator

chooses appropriate strategy based on information provided for each component

involved in a conflict segment through the corresponding tab.

After generating effect constraints for each conflict segment, administrator

chooses to resolve all conflicts by reordering of policy components and assigning

appropriate combining algorithm or conflict resolution strategy with a particular pol-

icy component. This process is initiated by clicking Resolve button in the below right

corner of policy analyzer interface. Reordering is reflected in the policy analyzer in-

terface and assigned conflict resolution strategy is displayed. Policy administrator

can also visualize the actual policy component definition in the Policy Viewer based

55



Figure 5.15: Policy Analyzer Interface - Segment Detail View

upon the component selected in a policy hierarchy.

Similarly, administrator is provided with the policy-based segments as well

as the information about property assignment for each component subspace to per-

form redundancy analysis. Different color for each subspace represents particular

property assignment. Red subspace represents Strong Irremovable, Pink speci-

fies Weak Irremovable, Yellow represents Correlated and Green is used to identify

Removable property. Once administrator chooses to remove all redundancies by

clicking Identify Redundancy button, correlation breaking process is performed for

assigning appropriate properties to the Correlated subspaces (if any) and redun-

dant components are displayed to the administrator. Figure 5.16 shows the user

interface snapshot of redundancy analysis for an access control policy.

We believe that the visualization interfaces provided in our tool will assist ad-

ministrators in viewing and analyzing the outputs from policy anomaly analysis and

facilitate a more effective and efficient anomaly resolution. It helps administrators

by minimizing the portions of the policy information that they need to examine at

56



Figure 5.16: Policy Analyzer Interface - Redundancy Details View

any given time. It also offers an intuitive and succinct view of the conflicting policy

components and enables administrator to better understand policy anomalies.

57



Chapter 6

IMPLEMENTATION AND EVALUATION

We have implemented our generic policy analysis and management approach in a

proof of concept tool called Generic Policy Analyzer using Java for policy admin-

istrators. Based on our generic policy analysis and management mechanism, it

consists of three core components: generic policy representation, policy analysis

module and graphic user interface (GUI). Currently our proof of concept tool sup-

ports analysis and management of XACML and Firewall policies only. Here are the

implementation details for each module:

1. Generic Policy Representation: We used protege [9] to define generic access

control policy ontology. To create ontology instance for a specific policy, we

use OWL API [14]. To populate all required information in ontology instance,

we need to parse the information from a given policy. For XACML we use

Sun XACML implementation [12]. In case of firewall policy, we use the parser

based on FIREMAN [32] implementation, to obtain all the required informa-

tion. Once ontology instance is populated, we convert it into binary decision

diagram (BDD) for efficient representation of a policy instance. We used Jav-

aBDD [5], which is based on BuDDy package [1] for this purpose.

2. Policy Analysis and Management : This module has two main parts: (a) Con-

flict Detection and Resolution (b) Redundancy Removal

Conflict Detection and Resolution We generate disjoint authorization spaces

of given policy from its BDD representation. Further we identify different

kinds of segments (conflicting and non-conflicting) and corresponding

correlation groups using algorithms described in Chapter 5. The effect

constraint generation module takes conflicting segments as an input and

58



generates effect constraints for each conflicting segment. Effect con-

straints are generated based on strategy-based approach. Currently, we

provide risk-aware strategy based approach only for the firewall policies.

In strategy-based approach, strategies are assigned to each conflicting

segment by administrator. The strategy mapping module takes conflict

correlation groups and effect constraints of conflicting segments as in-

puts and then maps assigned strategies to the standard XACML or fire-

wall policy combining algorithms.

Redundancy Removal We use disjoint segments and correlated groups gen-

erated during conflict detection and resolution for redundancy removal.

The property assignment module takes segment correlation groups as

inputs and automatically assigns corresponding property to each sub-

space covered by the segments of policy components. The assigned

properties are in turn utilized to identify redundancies according to algo-

rithms described in Chapter 5.

3. Graphical User Interface: We provide the graphical user interface for all steps

involved in our policy analysis and management approach. Typical scenario

starts with, administrator providing access control policy with its type. Admin-

istrator is then provided with the conflict details in one tab and redundancy de-

tails in another tab. For conflict details, administrator can choose specific pol-

icy or policy set from given policy. Then administrator may choose to analyze

either each and every disjoint segment or only conflict segments arranged in

correlated groups for conflict analysis. Administrator may individually analyze

details of each conflict and resolve it. For redundancy analysis, administrator

analyzes the property assignment for each component subspace and then

chooses to remove the redundancies in a given policy. For GUI implementa-

tion, we use Java Swing [6] API to create various user interface components.

59



We evaluated the efficiency and effectiveness of Generic Policy Analyzer

for policy analysis on both real-life and synthetic XACML as well as firewall policies.

We performed our experiments on Intel Core 2 Duo CPU 3.00 GHz with 3.25 GB

RAM running on Windows XP SP2. Table 6.1 summarizes XACML as well as Fire-

wall policies used for evaluation.

Real-life XACML policies utilized for evaluation were collected from differ-

ent sources. Two of the policies, CodeA and Continue-a are XACML policies used

in [22]; among them, Continue-a is designed for a real-world Web application sup-

porting a conference management. GradeSheet is utilized in [19]. It is difficult to

get a large volume of real-world policies because they are often considered to be

highly confidential. Thus, we generated two large synthetic policies SyntheticPolicy-

1 and SyntheticPolicy-2 for further evaluating the performance and scalability of our

tool. We also used SamplePolicy, which is the example XACML policy represented

in Figure 2.2, in our experiments. Table 6.1 summarizes the basic information of

each XACML policy including the number of rules, the number of policies, and the

number of policy sets.

Table 6.1: Summary of Access Control Policies used for evaluation.

Policy Rule (#) Policy (#) Policy Set (#)
XACML Policies

1 (CodeA) 4 2 5
2 (SamplePolicy) 6 2 1
3 (GradeSheet) 13 1 0

4 (SyntheticPolicy-1) 147 30 11
5 (Continue-a) 312 276 111

6 (SyntheticPolicy-2) 456 65 40
Firewall Policies

1 (A) 12 1 0
2 (B) 25 1 0
3 (C) 52 1 0
4 (D) 83 1 0
5 (E) 132 2 1
6 (F) 354 3 1

Similarly, firewall polices used for evaluation were obtained from our lab

environment or synthetically generated. Table 6.1 summarizes each of the firewall

policy used for evaluation and its size in terms of number of rules. ACLs A, B and

60



Table 6.2: Conflict detection and redundancy removal algorithms evaluation.

Policy
Partitions Conflict Detection Redundandancy Removal

(#) Policy Policy Set Time Policy Policy Set Time
Level(#) Level(#) (s) Level(#) Level(#) (s)

XACML Policies
1 (CodeA) 6 1 1 0.095 1 0 0.096

2 (SamplePolicy) 8 0 2 0.106 0 2 0.109
3 (GradeSheet) 18 0 4 0.125 0 2 0.132

4 (SyntheticPolicy-1) 205 8 14 0.364 7 4 0.359
5 (Continue-a) 439 9 14 0.621 10 7 0.597

6 (SyntheticPolicy-2) 523 29 15 0.914 14 8 0.903
Firewall Policies

1 (A) 15 3 0 0.119 2 0 0.113
2 (B) 36 5 0 0.153 3 0 0.151
3 (C) 89 11 0 0.196 5 0 0.189
4 (D) 127 18 0 0.224 6 0 0.213
5 (E) 183 23 5 0.417 13 3 0.431
6 (F) 405 41 11 0.589 16 7 0.603

C were synthetically generated from ACLs deployed in lab environment for initial

testing purpose. ACLs D, E and F are obtained from our lab environment.

We conducted three separate sets of experiments for the evaluation of generic

policy representation, conflict detection and redundancy removal respectively. Ta-

ble 6.2 summarizes our evaluation results.

Evaluation of Generic Policy Representation For generic approach of policy

analysis and management, correct generic representation of access control poli-

cies using ontology is extremely important. Correct generic representation of ac-

cess control policy should have same properties like number of policy set, policy or

rules when compared to the original policy. We calculated number of policy sets,

policies or rules in an ontology instance created for access control policy, before

it is converted to a BDD representation. We observed that these numbers for on-

tology instance of policy match with the number of attributes for original policy as

described in Table 6.1. It clearly proves that, generic ontology instance created

for XACML as well as Firewall policies correctly depicts the properties of original

access control policies.

61



Figure 6.1: Performance improvement after Redundancy Removal

Evaluation of Conflict Detection Time required by Generic Policy Analyzer

for conflict detection highly depends upon the number of segments generated for

each access control policy. The increase of the number of segments is proportional

to the number of components contained in an XACML or a firewall policy. From

Table 6.2, we observe that Generic Policy Analyzer performs conflict detection

fast enough to handle larger size XACML as well as firewall policies. We also ob-

serve that even for some complex policies with multiple levels of hierarchies along

with hundreds of rules such as real-life XACML policy Continue-a, two synthetic

XACML policies or firewall policy ACLs E and F, it performs conflict detection ef-

ficiently. The time trends observed from Table 6.2 are very promising, and hence

provides the evidence of efficiency of our conflict detection approach.

Evaluation of Redundancy Removal In the third set of experiments, we evaluated

our redundancy analysis approach based on our experimental policies. Table 6.2

62



shows that, redundancies in both XACML as well as firewall policies can be identi-

fied in a very short time. This can be observed even for complex XACML policies,

where redundancies are identified at both policy as well as policy set level. Fur-

thermore, when redundancies in a policy are removed, the performance of policy

enforcement is improved. To verify this, we choose to evaluate policy enforcement

performance for XACML policies in our experiment. We evaluate policy enforce-

ment performance only for XACML policies because Sun XACML PDP [12] pro-

vides standard API for Policy Decision Point (PDP) implementation as well creating

XACML access requests for experimental purpose. We conducted the evaluation of

effectiveness by comparing our redundancy analysis approach with traditional re-

dundancy analysis approach [16, 28], which can only identify redundancy relations

between two rules. Figure 6.1 depicts the total processing time for Sun XACML

PDP [12] in responding 10,000 randomly generated XACML requests. The evalu-

ation results clearly shows that the processing times are reduced after eliminating

redundancies in XACML policies applying either traditional approach or our ap-

proach, and our approach obtains better performance improvement than traditional

approach.

63



Chapter 7

CONCLUSION

We have designed an innovative framework for policy analysis and management,

which unifies the systematic detection and resolution of policy anomalies for dif-

ferent types of access control policies. This framework presented the generic ac-

cess control policy representation approach using policy ontology, which helps in

realizing policy analysis and management tasks for different types of policies. We

used policy based segmentation technique for effective and efficient policy anomaly

analysis. As part of this framework, we also presented an intuitive graphical user

interface for performing policy analysis and management tasks.

Our contribution in this research thesis is the generic policy representation

using policy ontology and the framework for analysis and management of different

types of access control policies based on this generic policy representation. We

also implemented this framework as a proof of concept tool called Generic Policy

Analyzer, which currently supports XACML and Firewall policy analysis. Our exper-

imental results show that, Generic Policy Analyzer can discover policy anomalies in

XACML and Firewall policies efficiently and effectively. We believe that our generic

approach for the policy analysis and management will significantly help adminis-

trators manage the different types of access control policies such as network level

policies, system level policies and web application management policies. It will

help enhance the correctness and effectiveness of policy management tasks, by

avoiding any potential anomalies.

As a future work, this framework can be extended to support other types of

access control policies by extending our policy ontology. Current implementation of

storing an ontology as well as ontology instance in a file format can be extended to

use Sesame [11] knowledge repositories to store ontological data and SPARQL [31]

64



query language for ontology operations. Also, more fine grained strategies can

be supported for effective conflict resolution. Implemented tool can be extended

to provide features such as logging, version control as well as rollback for audit

purpose, which would help policy administrators in systematically analyzing and

managing the policies.

65



BIOGRAPHICAL SKETCH

[1] Buddy version 2.4. http://sourceforge.net/projects/buddy.

[2] Cisco IOS Firewall. http://www.singlepointoc.com/products/cisco/
docs_security/product_data_sheet09186a0080117962.pdf.

[3] Cloud Computing. http://csrc.nist.gov.

[4] eXtensible Access Control Markup Language (XACML) Version 2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.
0-core-spec-os.pdf.

[5] Java BDD. http://javabdd.sourceforge.net.

[6] Java Swing. http://download.oracle.com/javase/6/docs/technotes/
guides/swing/index.html.

[7] OWL Web Ontology Language Reference. http://www.w3.org/TR/
owl-ref/.

[8] Ponder Policy. http://www-dse.doc.ic.ac.uk/Research/policies/
ponder.shtml.

[9] Protege Ontology Editor. http://protege.stanford.edu/.

[10] Qualys. http://www.qualys.com.

[11] Sesame Knowledge Repository. http://www.openrdf.org.

[12] Sun XACML Implementation. http://sunxacml.sourceforge.net.

[13] TENABLE Network Security. http://www.nessus.org/nessus.

[14] The OWL API. http://owlapi.sourceforge.net/.

[15] D. Agrawal, J. Giles, K. Lee, and J. Lobo. Policy ratification. In Sixth IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks, 2005,
pages 223–232, 2005.

[16] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed fire-
walls. In IEEE INFOCOM, volume 4, pages 2605–2616. Citeseer, 2004.

66



[17] J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens. Complete analysis of con-
figuration rules to guarantee reliable network security policies. International
Journal of Information Security, 7(2):103–122, 2008.

[18] A. Anderson. Evaluating xacml as a policy language. In Technical report.
OASIS, 2003.

[19] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and L. Iftode. Enforcing
authorization policies using transactional memory introspection. In Proceed-
ings of the 15th ACM conference on Computer and communications security,
pages 223–234. ACM New York, NY, USA, 2008.

[20] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on computers, 100(35):677–691, 1986.

[21] G. Chowdhury. Template Mining for Information Extraction from Digital Docu-
ments. Library Trends, 48(1):182–208, 1999.

[22] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verifica-
tion and change-impact analysis of access-control policies. In ICSE ’05: Pro-
ceedings of the 27th international conference on Software engineering, pages
196–205, New York, NY, USA, 2005. ACM.

[23] I. Fundulaki and M. Marx. Specifying access control policies for XML docu-
ments with XPath. In Proceedings of the ninth ACM symposium on Access
control models and technologies, pages 61–69. ACM New York, NY, USA,
2004.

[24] H. Hu, G. Ahn, and K. Kulkarni. FAME: a firewall anomaly management envi-
ronment. In Proceedings of the 3rd ACM workshop on Assurable and usable
security configuration, pages 17–26. ACM, 2010.

[25] H. Hu, G.-J. Ahn, and K. Kulkarni. Anomaly Discovery and Resolution in Web
Access Control Policies. In Proceedings of the 16th ACM Symposium on Ac-
cess Control Models and Technologies, page To Appear. SACMAT, 2011.

[26] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for ex-
pressing authorizations. In IEEE Symposium on Security and Privacy, pages
31–42, Oakland, CA, May 1997.

[27] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin. Access
control policy combining: theory meets practice. In Proceedings of the 14th

67



ACM symposium on Access control models and technologies, pages 135–144.
ACM, 2009.

[28] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems man-
agement. IEEE Transactions on software engineering, 25(6):852–869, 1999.

[29] P. Mell, K. Scarfone, and S. Romanosky. A complete guide to the common vul-
nerability scoring system version 2.0. In Published by FIRST-Forum of Incident
Response and Security Teams, June. Citeseer, 2007.

[30] M. Schiffman, G. Eschelbeck, D. Ahmad, A. Wright, and S. Romanosky.
CVSS: A Common Vulnerability Scoring System. National Infrastructure Advi-
sory Council (NIAC), 2004.

[31] E. Sirin and B. Parsia. Sparql-dl: Sparql query for owl-dl. In 3rd OWL Experi-
ences and Directions Workshop (OWLED-2007), volume 4. Citeseer, 2007.

[32] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra, and C. Davis. Fire-
man: A toolkit for firewall modeling and analysis. In 2006 IEEE Symposium on
Security and Privacy, page 15, 2006.

68


