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ABSTRACT  
   

This study contributes to the ongoing discussion of Mathematical 

Knowledge for Teaching (MKT). It investigates the case of Rico, a high school 

mathematics teacher who had become known to his colleagues and his students as 

a superbly effective mathematics teacher. His students not only developed 

excellent mathematical skills, they also developed deep understanding of the 

mathematics they learned. Moreover, Rico redesigned his curricula and 

instruction completely so that they provided a means of support for his students to 

learn mathematics the way he intended. The purpose of this study was to 

understand the sources of Rico’s effectiveness.  

The data for this study was generated in three phases. Phase I included 

videos of Rico's lessons during one semester of an Algebra II course, post-lesson 

reflections, and Rico’s self-constructed instructional materials. An analysis of 

Phase I data led to Phase II, which consisted of eight extensive stimulated-

reflection interviews with Rico. Phase III consisted of a conceptual analysis of the 

prior phases with the aim of creating models of Rico’s mathematical conceptions, 

his conceptions of his students' mathematical understandings, and his images of 

instruction and instructional design. 

Findings revealed that Rico had developed profound personal 

understandings, grounded in quantitative reasoning, of the mathematics that he 

taught, and profound pedagogical understandings that supported these very same 

ways of thinking in his students.  
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Rico's redesign was driven by three factors: (1) the particular way in 

which Rico himself understood the mathematics he taught, (2) his reflective 

awareness of those ways of thinking, and (3) his ability to envision what students 

might learn from different instructional approaches. Rico always considered what 

someone might already need to understand in order to understand "this" in the 

way he was thinking of it, and how understanding "this" might help students 

understand related ideas or methods. Rico's continual reflection on the 

mathematics he knew so as to make it more coherent, and his continual 

orientation to imagining how these meanings might work for students' learning, 

made Rico's mathematics become a mathematics of students—impacting how he 

assessed his practice and engaging him in a continual process of developing 

MKT. 
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CHAPTER 1—STATEMENT OF THE PROBLEM 

It is important that mathematics education research develop a deep 

understanding of the complexities of teaching and the ways in which teachers 

manage them. With this, we can plan and act judiciously in helping teachers and 

preservice teachers to improve their practice and in turn provide better 

opportunities for student learning.  

First, what does it mean to be an effective teacher? In spite of the depth of 

research in the field, there is no consensus as to the definition of an effective 

mathematics teacher. Franke, Kazemi, & Battey (2007) assert that: “what 

constitutes good teaching is consistently controversial and will remain 

controversial” (p.226). Other researchers affirm that the question: “what makes 

mathematics teachers effective?” does not have an obvious or easy answer 

(Hiebert & Grouws, 2007). This lack of agreement is in part because the idea of 

effective mathematics teaching rests implicit on researchers’ and teachers’ notions 

of learning (Kirshner, 2008), the philosophical underpinnings of the research 

(Wilson, Cooney, & Stinson, 2005), and the disparity of views about teaching 

entailed by cultural differences (Bryan, Wang, Perry, Wong, & Cai, 2007; Pang, 

2009).  

Researchers have used different lenses to better understand what is 

entailed in diverse views of effective teaching. Kirshner (2008) points to distinct 

metaphors of learning (e.g. learning as habituation, learning as construction, 

learning as enculturation) as a way to frame discussions of what “good teaching” 
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means. Ball’s (1991) review of research on teaching and the role that subject 

matter knowledge plays in defining teacher effectiveness revealed that views of 

effective mathematics teaching are often tacit in the research paradigms under 

which the studies take place. Other researchers call attention to cultural 

differences in views of effective mathematics teaching. For example, in a study of 

what teachers from different countries believe effective mathematics teaching to 

be, Cai et al. (2007) found that teachers from Australia and US had more to say 

about teacher’s enthusiasm, rapport with the students, and classroom management 

as characteristics of an effective mathematics teacher, than teachers from 

Mainland China and Hong Kong. Instead, the latter teachers focused on how well 

teachers prepare and present a lesson and their ability to provide clear explanation 

of the points covered in the lesson. Teachers from these countries did not mention 

classroom management at all (Bryan, et al., 2007).  

Moreover, the study of effective mathematics teaching necessarily entails 

a simplification of teaching and its relationships to student learning. In 

constructing a model for studying teaching and learning, researchers need to 

decide to put more emphasis on some aspects of the model, discarding others 

(Fenstermacher & Richardson, 2005; L. Shulman, 1986; A. G. Thompson & 

Thompson, 1996). Hiebert and Grows (2007) point out that the ways in which 

teaching influences students’ learning does not have a trivial answer and 

“documenting particular features of teaching that are consistently effective for 
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students’ learning has proven to be one of the great research challenges of 

education” (p.371).  

Aware of the different ways in which effective teaching can be appraised, 

Fenstermacher and Richardson (2005) propose three models that provide a lens to 

differentiate between successful, good, and quality teaching. For them, successful 

teaching is one that produces learning, regardless of the method being used. In 

this sense, effectiveness in teaching should be measured by student learning.1 

Good teaching is “teaching that comports with morally defensible and rationally 

sound principles of instructional practice” (p.189). In this case, what the teacher 

knows and the methods that she uses are central in considering whether a 

teacher’s actions constitute good teaching. According to Fenstermacher and 

Richardson, the lens that researchers use to value good teaching can be viewed as 

learner-dependent or learner-sensitive depending on the role that student learning 

plays in the researchers’ judgments about the quality of a teacher’s instruction. 

For example, a researcher displays a learner-sensitive perspective if she defines an 

effective teacher as one who adjusts her actions based on what she interprets the 

students’ thinking to be.  On the other hand, a researcher displays a learner-

dependent perspective by taking into consideration measures of student 

learning—such as tests or interviews—when defining effective mathematics 

instruction. Finally, Fenstermacher and Richardson argue that quality teaching 

                                                
1 Usually, student learning has been measured by students’ achievement in 
standardized tests. 
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goes beyond the combination of good and successful teaching, because “learning 

does not depend only on good teaching”. Quality teaching refers to: “what we are 

most likely to obtain when there is willingness and effort on the part of the 

learner, a supportive social surround, ample opportunity to learn, and good 

practices employed by the teacher” (p.191). Each view, whether it refers to good 

teaching, successful teaching or quality teaching, entails the use of different 

methods to investigate the phenomenon of teaching. 

For this study, I follow a learner-sensitive perspective2 to investigate what 

constitutes effective mathematics teaching—good teaching in the sense of 

Fenstermacher and Richardson (2005). This means that instead of trying to 

document whether the teacher is successful in relation to his students’ learning, 

the main focus of analysis is on understanding the teacher’s actions and the 

systems of meanings and values that give rise to them. In other words, my goal 

with this study is not to provide evidence of the teacher’s effectiveness in 

teaching mathematics. Instead, I am trying to understand the ways in which the 

teacher understands the mathematics that he teaches so as to support his design of 

instruction. To do so, this study investigates the case of Rico, a high school 

mathematics teacher who had become known to his colleagues and his school’s 

students’ as a superbly effective mathematics teacher. His students not only 

                                                
2 A consequence of selecting a learner-sensitive perspective to the investigation of 
what Fenstermacher and Richardson (2005) would refer as good teaching, is that I 
analyzed videotaped lessons of the teacher’s instruction (among other artifacts). 
However, I did not follow individual student learning in this study. 
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developed excellent mathematical skills, they also developed deep understanding 

of the mathematics they learned. Moreover, Rico redesigned his curricula for his 

Algebra II honors course—which is the main focus of analysis for this study—and 

his instruction completely so that they provided a means of support for both him 

and his students to learn mathematics the way he intended.  

The purpose of this study is to understand the sources of Rico’s 

effectiveness by exploring Rico’s thinking. By Rico’s thinking I mean the ways in 

which Rico understands the mathematics that he teaches and the ways in which he 

frames the learning goals, material support and instruction for his Algebra II 

course in relation to his students’ learning. In this sense, a focus on the teacher’s 

thinking can produce a model composed of interacting parts, in which no element 

acts in isolation. Components of the model refer to the way in which the teacher 

envisions the curriculum to be taught (whether driven by sections of the book or 

by ideas and ways of thinking), the teacher’s mathematical knowledge for 

teaching (MKT) (as a way in which the teacher transforms his own mathematical 

understandings into pedagogical actions), and attention to the students’ 

mathematics from a developmental perspective.  

By adopting this perspective for investigating what constitutes effective 

mathematics teaching, this study contributes to research in providing 

characterizations of the teacher’s mathematics. This is relevant because recent 

discussions on teacher knowledge and its impact on effective mathematics 
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teaching have focused on teachers’ mathematical performance abilities and not on 

the teacher’s ways of thinking that can support effective teaching.  

The research questions that this study investigates are the following: 

• What are mathematical ideas and ways of thinking that Rico envisions for his 

students as suggested by his design of instruction? 

• What are the mathematical understandings that support Rico’s pedagogical 

actions and design of instruction? 

• What are Rico’s conceptions of his students’ mathematics? 

• In what ways do the above express themselves in Rico’s teaching? 
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CHAPTER 2—LITERATURE REVIEW 

Introduction 

In what follows, I present excerpts of an interview3 with Rico that will 

allow me to better explain the reasons why this case is valuable. The excerpts 

illustrate aspects of Rico’s mathematical knowledge as it pertains to teaching 

Algebra II that lie outside the scope of most past research on teachers’ MKT, and 

hence as I highlight important aspects of Rico’s thinking, I outline the research 

literature that I drew upon to investigate his MKT. This also provides an 

opportunity to state the reasons why some research literature that one might think 

is important for investigating Rico’s effectiveness is not useful to investigate the 

complexities in Rico’s thinking. 

The interview took place in March of 2006, eight months after Rico’s 

initial contact with his professional development program. Of note, Rico 

described the reasons why he changed the content of a unit on systems of linear 

equations and about his motives for changes in the way he taught it. He described 

                                                
3 This interview took place in the context of a research and professional 
development project called Teachers Promoting Change Collaboratively (TPCC) 
for which my advisor, Dr. Patrick Thompson, was the P.I. and I was a research 
assistant. It was in the context of analyzing the data from the project that I first 
met Rico, who at the time was a participant in the project. In Chapter 5, I will 
expand on Rico’s background as a teacher. 
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the new ways in which he conceived what he wanted his students to learn and 

how he adjusted his curriculum and teaching accordingly.4 

Excerpt 1. Why Rico changed his approach of Systems of Equations (March, 

2006). 

Interviewer: Last fall you prepared a special unit on systems of equations. Why 

did you do that, and how did it go? 

Rico:  Of all the concepts that I teach, writing equations of lines and solving 

systems of equations has just driven me crazy. Because no matter how 

many times I explained it to students and all…even one year it got to the 

point, because there was these series of questions that they will miss all in 

their final exams and they didn't do well on the AIMS questions. I was just 

trying to get them...this year I will make sure that they nail these 

questions. And, so every week or two, just as a warm-up I had them 

review solving systems of equations, writing an equation. Every time they 

saw them, it was like, "I've never seen this before in my life". And, you 

know, I did [this] every couple of weeks. And as I began to look ahead at 

what we were going to do for that particular lesson [applications section of 

solving systems of equations], I realized that our textbook doesn't prepare 

                                                
4 While Rico’s reflections were about teaching systems of linear equations for his 
Algebra I course, this is not the only unit he eventually redesigned. Specifically, 
15 months after this interview he completely rearranged the standard curriculum 
for his Algebra II course, which is the focus of main interest for this study. An 
outline of how Rico modified the standard curriculum in Algebra II will be 
provided in Chapter 5. 
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them for that kind of thinking. That really what it does is, and I think this 

is pretty typical of the way the American textbooks and curriculum works; 

it goes through several sections where it says, “here you graph two lines 

and you find the intersection point” and then, “here's algebraically how 

you can do a substitution method”, and “here's how you do addition and 

subtraction method”. And then, they put it into a word problem and expect 

them [the students] to understand what the slope means, how to write 

equations out of the word problem, and do like four or five things and put 

all of them in context without ever having told them to do that. Even 

though they sometimes put the problems in a word problem, in these 

earlier sections, it was always: “here's 20 drill problems of doing this 

without context”, and now, after they are already getting bored with this, 

“here's the word problem that's kind of going to make you think”. And 

they are done. They just quit and they don't know how to do it. They don't 

know how to write equations. 

 In Excerpt 1, Rico spoke of his extraordinary effort to help students 

remember procedures for solving systems of linear equations and his frustration 

that, despite these measures, students remembered very little. He also spoke of his 

insight as to why these measures were ineffective—the textbook never prepared 

them for the kind of reasoning that applying these methods presumes. 

One explanation as to why his students acted as if they had never seen 

such problems before even after actually having seen many is that they did not 
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develop productive ways of thinking about such situations. In other words, they 

did not learn to conceive of described situations in terms of quantities, 

relationships among them, and to express this conception in algebraic expressions 

(Ellis, 2007; Lobato & Siebert, 2002; Smith & Thompson, 2008; Patrick W. 

Thompson, 1990, 1993, 1995). To do so, as Rico pointed out, students would 

need to experience instruction and tasks that were designed to help them do just 

that. But the textbook chapter presented one procedure after another, having 

students practice applying those procedures without any context leaving the word 

problems until the end of the section. Thus, the textbook did not support Rico in 

fostering such learning nor did it provide students the support they needed to 

develop those ways of thinking. 

Excerpt 2: Rico's rationale for the changes he made (March, 2006). 

Rico: So, even before the systems of equations chapter, I looked at the way that I 

was teaching writing equations of lines. I really focused on the meaning 

behind ‘slope’ [rate of change]; this way, when I got them to the chapter 

they have already a little bit deeper understanding of that. And then, I re-

did the way that I taught the chapter entirely. I started off day one, with a 

big word problem that I just asked them to think through and give me 

answers for. And I didn't care how they did it. Different students knew 

more about using the graphing calculator, the technology, or some 

students just plugged points until they found something, but I wanted them 

to work through the word problem. And then we looked at all the different 
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solutions that they created. And I kind of used that as an idea as we kept 

going. So as we got into the early sections, every day I would give them a 

big word problem to start with. And I would focus their discussion on 

creating a table of values to describe what is going on and how can we 

look...“now, when these values are equal what does that really mean”, 

“now we are looking at writing equations for these and what do the 

equations mean”, “what does the slope mean, the vertical intercept”…So 

then, they were really building their understanding for the procedures out 

of the contextual problems. And I did that every single day as I was 

building substitution method, showing them…having them explain to me 

why would they replace y in one equation with what it equals. Then when 

I would give them those abstract problems with no context, that was 

always at the end. “Ok, now you know what all those mean, so you don't 

have to know what x and y represent; you can still solve it the same way”. 

And, students were telling me: “this is interesting”, “this is easy”…We 

ended up doing a project. They went out and they found something that 

they enjoy doing and they found something that they could write a system 

of equations. They came together and they worked in groups. They did a 

presentation on how to find the solutions and what it meant for the context 

and no problem. In the test I gave them harder problems, than I did in the 

past. Even when students were missing the algebra on it, they still were 
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showing that they knew what they were doing and how to solve the 

system...I have never experienced that before. It was amazing.  

As with the Excerpt 1 of Rico’s interview, there are some aspects that 

deserve attention. First, Rico did not think of the systems of equations chapter 

isolated from the rest of the material that would need to be presented in the 

following months. Instead, he anticipated that, if students were to think about 

systems of equations in powerful ways, then there were other ideas that students 

needed to develop previously, such as ‘slope’ (Excerpt 2). One cannot discern 

from Rico’s interview what he meant by “the meaning behind slope”, but the 

instructional materials he created for his Algebra II course suggest that the idea of 

constant rate of change between two varying quantities was key to his 

development of a meaning for slope. From this point of view, solving systems of 

equations fits into a larger context in which students are provided with 

opportunities to think about quantities and how they are related, instead of 

meaningless application of procedures, that do not necessarily convey anything 

about the relationships between the quantities involved in the problem. 

The second aspect that can be highlighted from Excerpt 2 is that Rico’s 

understandings of systems of equations allowed him to envision differences in 

what students might learn from the two different instructional sequences (the one 

from the textbook, as mentioned above, and the one that he created based on the 

ways of thinking about systems of equations that he wanted the students to 

develop). He anticipated that the symbolic procedures, which the textbook taught 
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without meaning, would emerge meaningfully and naturally, under his guidance, 

from the reasoning that students developed as they created approaches to solving 

problems that were grounded in their understandings of the situations (Excerpt 2). 

Furthermore, he had an image of how he would carry out instruction following the 

two approaches (e.g. the problems he would pose, the conversations that he would 

have with students). He was able to imagine what students would learn by 

following the traditional approach, in comparison to what they might learn from 

his redesign of the curriculum and instruction. Finally, he spoke about evaluating 

the efficacy of his new approach by asking students to solve the kinds of problems 

that the textbook posed and by asking them to find situations within their 

everyday lives for which systems of equations might be applicable. 

In summary, the case of Rico is worth studying because his mathematical 

and pedagogical understandings are such that his teaching is attuned with what 

has been described as a conceptual orientation to mathematics teaching 

(Silverman & Thompson, 2008; A. G. Thompson, Philipp, Thompson, & Boyd, 

1994; A. G. Thompson & Thompson, 1996; Patrick W. Thompson & Thompson, 

1994). That is, his actions seem to have been driven by: 

• An image of a system of ideas and ways of thinking that he intends the 

students to develop; (A. G. Thompson & Thompson, 1996)  

• Constructed models of the variety of ways students may understand the 

content (decentering); 

• An image of how someone else might come to think of the mathematical 
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idea in a similar way; 

• An image of the kinds of activities and conversations about those activities 

that might support another person's development of a similar 

understanding of the mathematical idea; 

• An image of how students who have come to think about the mathematical 

idea in the specified way are empowered to learn other, related 

mathematical ideas (Silverman & Thompson, 2008). 

 In the pages that follow, I present a brief review of the literature in 

mathematics education research regarding issues of MKT that were highlighted 

from Rico’s interview—his ability to envision what students might learn from 

different instructional approaches and his command of the mathematics with 

regard to how students might experience it more coherently. Whether a study 

contributes to a focus on teachers’ ways of thinking mathematically or ways of 

thinking about their students’ mathematics is my primary criteria for deciding 

whether to build upon it in my study. Though not all of the research reviewed here 

is useful for investigating teachers’ mathematical ways of thinking and their 

instructional decision making, I do review several major programs of research as I 

make the case for why I do not take them as foundational. As such, I first explore 

current research in effective mathematics teaching. Then, I present a synthesis of 

different frameworks for mathematical knowledge for teaching. 
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Effective Mathematics Teaching 

The idea of effective mathematics teaching is an elusive concept that 

defies a simple characterization (Pang, 2009). Nevertheless, it has been present in 

the research literature for decades. In the previous chapter, I raised some of the 

issues that are related to the investigation of what constitutes effective 

mathematics teaching—that researchers’ and teachers’ conceptions of effective 

mathematics teaching are influenced by their notions of learning, their 

philosophical underpinnings, and their cultural identity, among others. 

In this section I elaborate on some aspects that have received attention in 

prior research—attending to student thinking, mathematics that students 

experience, and teacher knowledge—and that researchers have identified as 

factors that influence effective mathematics teaching. I emphasize that I don’t 

mean that these are the only aspects that have been considered as influential in the 

ongoing discussion on what constitutes effective mathematics teaching. Rather, 

my focus is on those aspects that provide support to my selection of the 

framework that I used to study Rico’s thinking.   

Attending to student thinking. Attending to student thinking has been 

considered an important factor that contributes to effective mathematics teaching 

(Chamberlin, 2005; Fennema, et al., 1996; M. L. Franke & Kazemi, 2001; Hill, 

Ball, & Schilling, 2008; McClain, 2002; A. G. Thompson & Thompson, 1996; 

Patrick W. Thompson, 1994a). McClain (2002) states that, “research on effective 

teaching often characterizes the teacher’s classroom decision-making process as 
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informed by the mathematical agenda but constantly being revised and modified 

in action based on students’ contributions” (p.217). For researchers, a model of 

what it means to attend to student thinking would be more or less similar to this: 

attending to student thinking entails a constant interaction between the learning 

goals (which need to be stated in cognitive terms and thus attending to a theory of 

learning), the instructional material (the activities that are designed and re-

designed as the teacher interacts with the students) and the actual instruction that 

occurs. This interaction should also be informed by a constant assessment of what 

the teacher interprets that students understand based on their engagement in 

instruction. This assessment derives from holding conversations with the students 

and “listen[ing] for cues as to what sense students have made of what was said or 

done, including asking for students’ interpretations of it” (Patrick W. Thompson, 

2002, p. 193). 

This elaborated model of what it means to attend to students’ thinking 

does not necessarily reflect what happens in classrooms and thus, what teachers 

mean by attending to student thinking. On the one hand, Franke, Kazemi, and 

Battey (2007) state that “most U.S. mathematics classrooms maintain an 

initiation-response-evaluation (IRE) interaction pattern, where the evaluation 

move on the part of the teacher focuses on students’ answers rather than the 

strategies they use to arrive at them. The teacher assumes responsibility for 

solving the problem while student participation often involves providing the next 

step in the procedure” (p.229). Teachers engage students in procedure-bound 
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discourses, asking for right answers rather than students’ reasoning behind those 

answers (Spillane & Zeulli, 1999; A. G. Thompson, et al., 1994). In this sense, 

attending to what students say serves to pace instruction rather than to shape it 

(Wilson, et al., 2005). 

On the other hand, the notions of student learning from which teachers 

operate do not often reflect what researchers intend, often graduating from teacher 

education without an appreciation of how children come to know mathematics or 

ways in which discourse invites mathematical thinking (Grouws & Shultz, 1996). 

Researchers at the elementary level, specifically the Cognitively Guided 

Instruction (CGI) project, have embarked in efforts to “help teachers build 

relationships between an explicit research-based model of children’s thinking and 

their own students’ thinking by encouraging reflection on how the model can be 

interpreted in light of their own students and classrooms.” (Fennema, et al., 1996, 

p. 405) While these researchers claim that there exists a “model of children’s 

thinking [that] is extremely robust” (ibid., p. 408) for teachers to compare their 

actual students’ thinking to such model and adapt instruction accordingly, at a 

high school level this is not the case. Thus, teachers need to create those models 

themselves when they develop instruction. To do so, teachers need to reflect on 

the “students’ thinking en route to developing a richer understanding of the 

students’ mathematics (Steffe, 1994) at play … [or ways in which] one might help 

a student who understands the mathematics in a certain way develop a deeper 

understanding” (Silverman, 2005, pp. 35-36). 
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The mathematics that students experience in their courses according 

to cross-cultural studies. Current research on effective mathematics teaching has 

adopted a cross-cultural perspective. The rationale behind this perspective, as 

Hiebert et al. (2005) notes, is “because teaching is such a common activity, one 

embedded within a culture, it can be difficult to notice common features, 

especially those that are most widely shared. Contrasts with less familiar methods 

used in other countries make one’s own methods more visible and open for 

inspection” (p.112). Insights regarding teachers’ beliefs of good practice, and the 

mathematics that students are taught, are some of the salient aspects of this 

perspective to the study of effective teaching. 

Regarding teachers’ beliefs of good practice, Cai and colleagues (2007) 

examined mathematics teachers’ beliefs on effective teaching from a cross-

cultural perspective. Their study sheds light on what teachers from China, Hong 

Kong, the US, and Australia value as important characteristics of effective 

mathematics teachers. For example, teachers from Australia and the US valued 

teacher’s enthusiasm and rapport with the students, while teachers from China and 

Hong Kong did not. Teachers from China and Hong Kong focused on how well 

the teacher prepares and presents a lesson and the teacher’s ability to provide 

clear explanations (Bryan, et al., 2007). Another important difference that Bryan 

et al. found is that US teachers considered classroom management as a 

characteristic of an effective mathematics teacher, whereas teachers from other 

countries did not mention classroom management at all (ibid.).  
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The second aspect that cross-cultural studies have uncovered refers to the 

mathematics that the students in different countries experience in their 

classrooms. For example, drawing from the results of the video component of the 

Third International Mathematics Science Study (TIMSS), Stigler and Hiebert 

(1999) and Stigler et al. (1999) developed an analysis of eighth-grade 

mathematics teaching using probability samples from three countries, Germany, 

Japan, and the United States. Results revealed that students in the U.S. experience 

mathematics as a set of procedures for solving problems, where students are 

expected to develop skills, rather than make sense of situations and ideas and 

solve problems based thereon. On another study that also draws from TIMSS, 

Schmidt et al. (Schmidt, Houang, & Cogan, 2002; Schmidt, Wang, & McKnight, 

2005) compared the US curriculum to the curriculum from high-achieving 

countries. The authors found that US curriculum introduces a wide variety of 

topics in each grade, becoming highly repetitive across grades, including content 

that is not very demanding and lacking coherence5.  

In summary, results from cross-cultural studies, together with teachers’ 

attending to student thinking highlight the crucial role that teachers play for 

effective mathematics teaching. Teachers’ beliefs about mathematics and 

instruction, as well as the curriculum, are essential for providing students with 

                                                
5 For this study, I follow Thompson’s (2008) idea of coherence of a curriculum, 
which states that, “coherence is more than just a sequence from less sophisticated 
to more sophisticated topics. Coherence of a curriculum (intended, implemented, 
or experienced) depends upon the fit of meanings developed in it”(p.49). 
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opportunities to learn mathematics that strives for developing coherent meanings 

and problem solving.  

Teacher knowledge and MKT. The idea that teachers’ mathematical 

knowledge is essential for effective teaching is widely accepted. Despite this, the 

ways in which researchers have come to conceptualize teacher knowledge and the 

ways in which they have tried to measure its impact in teaching has varied 

greatly. In her review of the literature of research on teaching, Ball (1991) 

highlighted how teachers’ subject matter knowledge “figured, faded, and 

reappeared as key influence on the teaching of mathematics” (p.1). 

In the 1960s, researchers approached the study of effective teaching by 

exploring the link between measurable teacher characteristics (e.g. years of 

teaching experience, credits in mathematics, having a major or minor in 

mathematics) associated with student achievement in mathematics.  Overall, no 

single teacher characteristic as a representative of teacher knowledge was found 

to be significantly correlated with student learning (Deborah L. Ball, 1991). 

Later, teachers’ generic behaviors (e.g. pacing, questioning, clarity) were 

incorporated to research studies with the goal of trying to find what would better 

predict student learning. Teachers’ subject matter knowledge faded into the 

background of the studies serving only as context of the studies. Mixed and 

inconclusive results led researchers to reject the notion that observable teacher 

behavior was the full story; as such, researchers developed new ways of studying 

and representing teacher thinking. The notion of effective mathematics teaching 
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shifted into that of expertise (e.g., Leinhardt, 1989; Leinhardt & Smith, 1985), 

where the most effective teachers were the experts; which in contrast to novices, 

experts developed lessons with rich agendas, consistent but flexible lesson 

structures, and gave explanations that met the goals of clarifying concepts and 

procedures (Deborah L. Ball, 1991). 

Teachers’ mathematical knowledge started to regain attention and, 

eventually, was again seen as essential to the characterization of effective 

mathematics instruction. In 1986, Shulman introduced the idea of PCK to address 

the issue that content knowledge is not sufficient for teachers to be successful (nor 

are general pedagogical principles of “good teaching”). For Shulman, PCK 

consisted of the ways of making subject matter comprehensible to others 

(representations of ideas, analogies, illustrations, examples, explanations, and 

demonstrations), identifying which topics are most difficult to understand, and 

students’ conceptions and pre-conceptions.  

For the past two decades, researchers in mathematics education have built 

upon and extended Shulman’s idea of PCK and have developed different 

conceptualizations of mathematical knowledge for teaching—mathematical 

knowledge that is specifically useful in teaching mathematics (Deborah L.  Ball, 

Thames, & Phelps, 2008; Hill, et al., 2008; Silverman & Thompson, 2008). 

Grounded in these different conceptualizations of MKT, frameworks have 

emerged from researchers’ attempts to understand and characterize, and in some 

cases, even measure what they see as MKT. 
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Researchers’ conceptualizations of MKT differ in many ways; at the core 

of these differences is how researchers think about knowledge. The first 

difference is whether MKT can be interpreted from an objectivist point of view—

that is, as knowledge that is independent from the knower. As a consequence of 

this perspective, the focus of investigation becomes what there is to know to 

become an effective mathematics teacher. On the other hand, MKT can be seen in 

an active sense, meaning that knowledge is dependent on the knower. In this 

sense, the question becomes: in what ways does the teacher need to understand 

the mathematics so that she can become an effective teacher? 

The second difference between conceptualizations is whether MKT refers 

to ‘knowing in the moment’ or if it refers to ‘knowledge that drives what the 

teacher does in the moment’. The notion of MKT as ‘knowing in the moment’ 

builds from the idea of PCK. Ball and Bass (2000) define PCK as the knowledge 

base that bundles mathematical knowledge, knowledge of learning, and pedagogy. 

These bundles help the teacher anticipate what students might have trouble 

learning, and they entail having ready alternative models or explanations to 

mediate those difficulties. In addition to those previously acquired models, the 

teacher needs to be able to engage in what Ball and Bass call a “real time problem 

solving”. This problem solving involves attending, interpreting, deciding, and 

making moves as teachers look at student work, choose a text to read, design a 

task or moderate a discussion (Deborah L. Ball & Bass, 2000). In a similar vein, 

Mason and Spence (1999) state that, “Shulman’s forms of knowledge are 
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supposed to equip the effective practitioner to act, but knowing-to act when the 

moment comes requires more than having accumulated knowledge-about” 

(p.139). The authors further explain that knowing-to act is when relevant 

knowledge comes to the fore so that it can be acted upon. 

The excerpts from Rico’s interview show that the ways in which he 

understood the mathematics that he teaches goes far beyond what can be observed 

in the moment of teaching. He had an understanding of systems of equations that 

allowed him to envision what students were going to learn from the two 

approaches he contemplated. Furthermore, he had an image of how he would 

carry out instruction in both approaches. This is not MKT in the moment. Instead, 

this is MKT that guided what Rico did in the moment. Silverman and Thompson 

(2008) refer to this MKT as neither “bundled” in advance, nor as just being able 

to “act in the moment”. Instead, they speak of MKT as entailing the ability to 

discern the network of mathematical ideas into which particular pedagogical 

choices will thrust the subsequent instruction and as the body of mathematical 

understandings that allow a teacher to act in these ways spontaneously. 

In summary, teachers’ MKT has become central to the discussion of 

effective mathematics teaching. But the frameworks that have emerged in this 

arena are substantially different. In what follows I present an overview of two of 

these frameworks: Ball and colleagues’ and Silverman and Thompson’s. Then, I 

will discuss specific aspects of the frameworks that lead to my framework choice. 
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Ball and colleagues’ framework. Ball and colleagues have been working 

to characterize and define the construct of MKT for more than fifteen years and 

their work has followed two clearly identified lines of research. As explained by 

Ball, Thames and Phelps (2008), in their first project the research group took an 

empirical approach to understand the content knowledge needed for teaching 

mathematics. They focused on “the work teachers do in their teaching” (ibid., , p. 

390). In what they call a related line of work, the research group also embarked in 

developing survey measures of content knowledge for teaching mathematics. It is 

by integrating these two lines of research that they have proposed a refinement to 

Shulman’s model of PCK, which they call: a practice-based theory of content 

knowledge for teaching. 

Ball and colleagues, building from the seminal work of Shulman on 

pedagogical content knowledge (L. Shulman, 1986; Lee Shulman, 1987) partition 

MKT into two main categories: subject matter knowledge and pedagogical 

content knowledge (Figure 1). Subject matter knowledge is further partitioned 

into three sub-domains: common content knowledge (CCK), specialized content 

knowledge (SCK), and knowledge at the mathematical horizon. They describe 

CCK as the “knowledge that is used in the work of teaching in ways in common 

with how it is used in many other professions or occupations that also use 

mathematics” (Hill, et al., 2008, p. 377). As they define it, this knowledge helps 

someone perform, say, a subtraction computation without mistake. SCK is 

defined as “the mathematical knowledge that allows teachers to engage in 
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particular teaching tasks, including how to accurately represent mathematical 

ideas, provide mathematical explanations for common rules and procedures, and 

examine and understand unusual solution methods to problems” (Ball et al., 2005; 

cited in Hill, et al., 2008, p. 377). This knowledge would help the teacher identify 

when a student has made a mistake in a computation, validate an alternative 

method, provide an appropriate representation to an example based on the 

students’ level of understanding. Finally, the third sub-domain, knowledge at the 

mathematical horizon refers to knowledge of “how mathematical topics are 

related over the span of mathematics included in the curriculum” (Deborah L.  

Ball, et al., 2008, p. 403).  

 

Figure 1 MKT according to Hill et al. (2008). 

The second category of MKT is associated with Shulman’s notion of 

pedagogical content knowledge (PCK). It is partitioned into the three sub-

domains: knowledge of content and students (KCS), knowledge of content and 

teaching (KCT), and knowledge of curriculum. The first sub-domain of PCK, 

KCS relates knowing about students and knowing about mathematics. This sub-

domain refers to teachers’ understanding of how students learn particular content 
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(common errors students make, ways in which previous knowledge can support 

learning of other topics, etc.). The authors further state that it “is separable from 

knowledge of teaching moves—for example, how best to build on student 

mathematical thinking or how to remedy student errors.” (Hill, et al., 2008, p. 

378). KCT, the second sub-domain of PCK, combines knowing about teaching 

and knowing about mathematics. This knowledge informs teachers’ decision-

making during planning and instruction. The last sub-domain, which Ball and 

colleagues include, but clarify that needs to be refined, refers to Shulman’s 

knowledge of curriculum, “the full range of programs designed for the teaching of 

particular subjects and topics at a given level, the variety of instructional materials 

available in relation to those programs, and the set of characteristics that serve as 

both the indications and contraindications for the use of particular curriculum or 

program materials in particular circumstances” (L. Shulman, 1986, p. 10).  

Ball and colleagues are interested in the mathematics that teachers use in 

teaching, not in teachers per se. In other words, the framework characterizes 

knowledge as a discipline and not as someone’s understandings about the ideas of 

the discipline. This way of defining MKT is useful, as Silverman and Thompson 

(2008) point out, as a way to share strategies for teaching, which includes an 

awareness of the typical misconceptions that students have when taught particular 

topics. However, this approach is non-cognitive in that there are no teacher’s 

cognitive processes involved. As such, this approach is not conducive in 

explaining aspects of Rico’s thinking, specifically the reasons why he decided to 
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change his unit on systems of equations in the manner he did, why he re-

structured his teaching as he did, and ways in which he might have developed 

new knowledge. Nor does the Ball et al. framework help me explain the ways 

Rico thought of the re-structured content and instruction impacting his students 

learning. To do this, I need a framework that addresses teachers’ thinking and 

reasoning, and transformations in that thinking and reasoning. 

Other researchers have built upon Ball and colleagues’ work on MKT. 

Two of these groups are Ferrini-Mundy et al. (2005) and Adler and Davis (2006). 

In the case of Ferrini-Mundy et al. (2005), they developed a conceptual 

framework for understanding and assessing teachers’ mathematical knowledge 

relative to algebra instruction; with a specific emphasis on algebraic expressions 

and equations along with linear relationships. The authors’ main goal is to use the 

framework as a template for organizing the knowledge needed for or used in the 

teaching of algebra and to lay the groundwork for empirical research that probes 

the connections between teachers’ mathematical knowledge and student outcomes 

in algebra. Adler and Davis (2006) from the QUANTUM6 project, are concerned 

with “the mathematics (how much and what kind) the middle school and senior 

school teachers need to know and know how to use in order to teach mathematics 

successfully” and  “how, and in what ways, programs that prepare and support 

mathematics teachers can/do provide opportunities for learning” (p.271). 

                                                
6 QUANTUM is the name given to a research and development project on quality 
mathematical education for teachers in South Africa. 
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Both groups have built from Ball and Bass’ notion of decompression or 

unpacking in order to deconstruct one’s own mathematical knowledge into less 

polished and final form, where elemental components are accessible and visible 

(Deborah L. Ball & Bass, 2000, p. 98). This assumes that the ways in which the 

teachers know mathematics will allow them to unpack what they know to benefit 

the learners. But if a teacher’s understandings are such that she holds incoherent 

and isolated schemes, she will be unable to unpack her understanding in 

meaningful ways. On the other hand, there are teachers whose understandings go 

beyond learned procedures and do understand the mathematics in personally 

powerful ways, but this does not mean that they will immediately be able to 

unpack their understandings in ways that can actually help someone else to learn. 

We need ways to describe how this mechanism of “unpacking” works. 

Silverman and Thompson’s framework. Silverman and Thompson 

(2008) propose a framework for studying the development of mathematical 

knowledge for teaching. Their goal is to investigate the ways in which the 

teachers understand the mathematics that they teach rather than coming to 

characterize the mathematics that becomes visible in teaching. The reason behind 

this approach is because “teachers’ personal understandings of the mathematical 

ideas that they teach is what constitutes the most direct source for what they 

intend students to learn and what they know about ways these ideas can develop” 

(Liu, 2005, p. 1). Thus, “if teachers’ conceptual structures comprise disconnected 

facts and procedures, their instruction is likely to focus on disconnected facts and 
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procedures. In contrast, if a teacher’s conceptual structures comprise a web of 

mathematical ideas and compatible ways of thinking, it will at least be possible 

that she attempts to develop these same conceptual structures in her students” 

(Patrick W. Thompson, p. 416). 

Silverman and Thompson’s framework builds upon Simon’s idea of key 

developmental understanding (Simon, 2002, 2006), Silverman and Thompson’s 

idea of key pedagogical understanding (Silverman, 2005; Silverman & 

Thompson, 2008; A. G. Thompson & Thompson, 1996; Patrick W. Thompson, 

Carlson, & Silverman, 2007; Patrick W. Thompson & Thompson, 1994), and 

Piaget’s idea of reflective abstraction (J. Piaget, 2001; Simon, Tzur, Heinz, & 

Kinzel, 2004; Patrick W. Thompson, 1985). A person has developed a key 

developmental understanding (KDU) when they construct a scheme of meanings 

that proves central for understanding a broad swath of mathematical ideas and 

methods. The scheme of meanings comprised by number naming, counting, 

adding, subtracting, and whole number numeration is a KDU in arithmetic. 

KDUs need not be as the example of arithmetic KDU given above, and 

they are not mutually exclusive. As schemes, KDUs can participate in other 

KDUs. A KDU is about personal knowledge. People can have a KDU and be 

unaware of it. They are aware that “things make sense” and they are aware that 

they can make connections. A teacher with a KDU could be a good student of the 

mathematics they teach without expressing that KDU in his or her instructional 

actions. When a teacher becomes reflectively aware of a KDU and realizes that 



!

! 30 

her students would benefit from “thinking this way”, she is developing a key 

pedagogical understanding (KPU). A teacher has a fully developed KPU when 

she has a KDU, is reflectively aware of it, intends that her students have it too, 

and has built a mini-instructional theory about how she can support them attaining 

it. Put another way, a teacher has developed knowledge that supports conceptual 

teaching of a particular mathematical topic when he or she: 

• Has developed a KDU within which that topic exists. For example, an 

understanding of slope as the constant rate of change between two varying 

quantities.  

• Has an image of how students who have come to think about the 

mathematical idea in the specified way are empowered to learn other, 

related mathematical ideas. For example, an approach to systems of 

equations, systems of linear inequalities, and linear programming, all of 

which are build upon an understanding of variation, covariation, and 

constant rate of change between two varying quantities. 

• Has constructed models of the variety of ways students might understand 

the content (decentering). This is, the teacher puts herself “in the place of 

a student and attempt[s] to examine the operations that a student would 

need and the constraints the student would have to operate under to 

(logically) behave as the prospective teacher wishes a student to do” 

(Silverman & Thompson, 2008, p. 508).  

• Has an image of how someone else might come to think of the 
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mathematical idea in a similar way; 

• Has an image of the kinds of activities and conversations about those 

activities that might support another person's development of a similar 

understanding of the mathematical idea. Silverman and Thompson (2008) 

emphasize that, “students' participation in conversations about their 

mathematical activity (including reasoning, interpreting, and meaning-

making) is essential for their developing rich, connected mathematical 

understandings” (p.507). Therefore, it is in the context of instruction that 

supports reflective conversations (Cobb, Boufi, McClain, & Whitenack, 

1997) that students are most likely to develop KDUs. 

 In summary, this framework for MKT provides the potential for 

explicating the mechanism by which the teacher transforms her personal 

mathematical understandings into pedagogical actions. Thus, Rico’s thinking is 

best explored by applying Silveman and Thompson’s framework. In addition, 

their focus on KDUs becomes a constant reminder that it is not what is listed in 

the curriculum, but how the teacher conceives what is listed in it that becomes the 

source of her pedagogical actions. 
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CHAPTER 3—BACKGROUND THEORIES 

 In this chapter, I explain the theoretical perspectives that guided the study. 

The first section involves a discussion about a theory of knowing and its 

implications to the study of MKT. The second section focuses on a theory of 

quantitative reasoning as a way to explain how people come to make sense of 

quantitative situations. This discussion provides a point of reference to 

characterize my descriptions of Rico’s mathematical and pedagogical 

understandings.  

A Theory of Knowing and its Implications to the Study 

Piaget (1971) developed a theory that he called genetic epistemology to 

provide explanations to what knowledge consists of and how knowledge develops 

(Campbell, 2001). Glasersfeld (1995) further elaborated Piaget’s genetic 

epistemology (1971) into a theory of knowing that is commonly referred to as 

radical constructivism. Radical constructivism follows two basic principles: 

1)  Knowledge is not passively received either through the senses or by way 

of communication; knowledge is actively built up by the cognizing 

subject. 

2)  The function of cognition is adaptive, in the biological sense of the term, 

tending towards fit or viability; cognition serves the subject’s organization 

of the experiential world, not the discovery of an objective ontological 

reality. (Glasersfeld, 1995, p. 51) 
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To adopt radical constructivism as background theory implies that there is 

a set of commitments and constraints to how I frame the problem to be studied, 

the phenomena that need to be explained and the actual explanations that I can 

provide (Patrick W. Thompson, 2002). For example, the main objective of this 

study is to develop insight into Rico’s personal and pedagogical understandings of 

the mathematics that he teaches, as well as his images of his students’ 

mathematics. To do so, my starting assumptions are that:  

• MKT is not a thing-in-itself that can be divided into categories;  

• The teacher does not have access to a mathematics that is independent of 

his ways of knowing; and, I (the researcher) do not have direct access to 

the teacher’s mathematics.  

The most we can do is to construct models of another person’s mathematics. 

That is, the observer (either the researcher or the teacher) develops explanations 

of the ways and means by which another person operates mathematically, by 

frequent interactions in which one observes the other’s actions. Such models are 

considered viable as long as they are not contradicted by what the other says or 

does (Steffe, 2007). As such, claims about a teacher’s MKT is a second-order 

model: “[a model] observers construct of the subject’s knowledge in order to 

explain [the observer’s] observations (i.e., their experience) of the subject’s states 

and activities” (Steffe et al., 1983, p. xvi, cited in Silverman & Thompson, 2008, 

p. 8). Furthermore, to adopt a radical constructivist perspective to the 

investigation of Rico’s MKT, allows me to move away from what there is to 
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know about mathematics that are used in teaching, to explore ways in which the 

teacher understands the mathematics and thus transforms his own understandings 

into pedagogical actions. It is then important to clarify what I will mean by 

understanding, and to describe a mechanism by which the teacher can transform 

his current mathematical understandings into MKT.  

Understanding 

Thompson & Saldanha (2003) define “to understand” as “to assimilate to a 

scheme,” relying on Piaget’s notion of assimilation (Glasersfeld, 1995; J. Piaget, 

2001). Assimilation is described as “[coming] about when a cognizing organism 

fits an experience within a conceptual structure it already has” (Glasersfeld, 1995; 

cited in Silverman, 2005, p. 7). To understand, then, results from a person’s 

interpreting an experience by assigning meanings according to a web of 

connections the person builds over time—either through the person’s own 

interpretations of settings or through interactions with others (Patrick W. 

Thompson & Saldanha, 2003). This way of thinking about knowing and 

understanding is highly compatible with Dewey’s notion of thinking (Dewey, 

1910) and with Piaget’s notion of assimilation (J. Piaget, 1950, 1968a, 1968b, 

1976, 1980). Montangero and Maurice-Naville quote Piaget as saying:  

Assimilating an object to a scheme involves giving one or several 
meanings to this object, and it is this conferring of meanings that 
implies a more or less complete system of inferences, even when it 
is simply a question of verifying a fact. In short, we could say that 
an assimilation is an association accompanied by inference. 
(Johnckheere, Mandelbrot, & Piaget, p. 59; quoted inMontagero & 
Maurice-Naville, 1997, p. 72)  
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To describe Rico’s understandings from this perspective requires, as 

Thompson and Saldanha note, addressing two sides of the assimilation: (1) what I 

(the researcher) see as the thing that Rico attempts to understand, and (2) the 

scheme of operations that constitutes Rico’s actual understandings (Patrick W. 

Thompson & Saldanha, 2003). 

Simon et al. (2004) points out that this way of explicating the process of 

assimilation seems to imply a vicious cycle, or what has been called the learning 

paradox. This is, if “in order to experience a new concept… one must already 

have that concept available to organize that experience… [then,] how can learning 

of new conceptions be explained without attributing to the learners prior 

assimilatory conceptions that are as advanced as those to be learned?” (ibid., p. 

310). Piaget proposed the mechanism of reflective abstraction to explain how new 

knowledge is generated from the person’s current conceptions. 

Reflective Abstraction 

The models of Rico’s mathematical knowledge for teaching not only posit 

what that knowledge is, but also look for mechanisms by which he created it. 

Silverman and Thompson address the issue of a teacher’s creation of a KPU—a 

teacher having a key developmental understanding, which the teacher takes as a 

target way of thinking for students to have, along with a mini-theory about how 

she can act instructionally to support students gaining it. Regarding how a teacher 

creates a KPU, Piaget (2001) proposed reflective abstraction as a way to explain 

how new, more advanced conceptions develop from the subject’s current 
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conceptions. Thus, reflective abstraction is a key concept in Silverman and 

Thompson’s (2008) framework; it is the mechanism by which a teacher develops 

MKT. That is, it is by reflective abstraction that the teacher develops powerful 

personal understandings of the mathematics he wants the students to learn and the 

pedagogical understandings that will guide the teacher’s instructional actions. 

For Piaget, all new knowledge presupposes an abstraction, but not all 

abstractions are the same (Glasersfeld, 1995). Piaget distinguished between 

‘empirical’, ‘pseudo-empirical’, and ‘reflective’ abstractions; and although 

reflective abstractions are the basis for explaining MKT, I will provide a brief 

description of the other two types: empirical and pseudo-empirical abstractions. 

The first kind of abstraction is called empirical abstraction and it “ranges 

over physical objects or the material aspects of one’s own action (such as 

movements, pushes, and the like)” (J. Piaget, 2001, p. 29). To engage in empirical 

abstraction does not mean a pure “read-off” of data from the environment.  In 

order to abstract any property, “the knowing subject must already be using 

instruments of assimilation (meanings and acts of putting into relation) that 

depend on sensorimotor or conceptual schemes. And such schemes are 

constructed in advance by the subject, not furnished by the object” (ibid., p. 30). 

Piaget referred to those abstractions in which “the knowing subject cannot carry 

out some constructions (which later on will become purely deductive) without 

relying constantly on their observable results (cf., using the abacus for the first 

numerical operations)” as pseudo-empirical abstractions (J. Piaget, 2001, p. 31). 
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He further explained that, “while the results are read off from material objects, as 

is the case with empirical abstraction, the observed properties are actually 

introduced into these objects by the activities of the subject” (ibid., p. 31). An 

example of pseudo-empirical abstraction is when a student solves several related 

problems, and creates a rule based on a pattern in the answers he obtained. While 

the student might have been engaged meaningfully in solving the problems, his 

abstraction of the rule was pseudo-empirical because it was not made from 

reflecting on the operations of his reasoning. Instead, the abstraction of the rule 

was made from the products of his reasoning. 

The third kind of abstraction is reflective abstraction. This mechanism 

“ranges over the subject’s cognitive activities (schemes or coordinations of 

actions, operations, cognitive structures, etc.)…[and] separates out certain 

characteristics of those cognitive activities and uses them for other ends (new 

adaptations, new problems, etc.)”(J. Piaget, 2001, p. 30). It does so, in two phases. 

In the first phase, the mechanism of reflective abstraction “transposes onto a 

higher plane what it borrows from the lower level (for instance, in 

conceptualizing an action). We call this transfer or projection a réfléchissement” 

(ibid., p. 30). In the second phase, “it must therefore reconstruct on the new level 

B what was taken from the previous level A, or establish a relationship between 

the elements extracted from A and those already situated in B. This 

reorganization… will be called a reflection [réflexion]” (ibid., p. 30). Finally, 

when reflecting abstraction is applied to the products of reflected abstraction, then 
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the subject is involved in the process of reflective thinking or metareflection. It is 

this mechanism of reflective abstraction that will allow me to investigate ways in 

which Rico might transform his current KDUs (understandings at a level A) into 

KPUs (understandings at a level B).  

Quantitative Reasoning 

It is well documented that students’ experience with mathematics in the 

U.S. is often based on meaningless manipulation of symbols and concrete 

strategies for solving problems. But having students engage in problem solving of 

real-world problems is not by itself a solution. It is the manner in which the 

student interacts with the situation that matters. For example, “a student could 

attend to number patterns extracted from a real-world situation and be engaged in 

number pattern reasoning alone. Similarly, a student could examine relationships 

between quantities in a highly unrealistic, abstract, or imaginary situation and still 

be engaged in quantitative reasoning” (Ellis, 2007, p. 441). 

Quantitative reasoning emphasizes operating with quantities and their 

relationships. Thompson defines quantities as “attributes of objects or phenomena 

that are measurable; it is our capacity to measure them –whether we have carried 

out those measurements or not that makes them quantities (Patrick W. Thompson, 

1989, 1993, 1994a)” (Smith & Thompson, 2007, p. 101). It is important to notice 

that a quantity is a conceptual entity that is related to how the person conceives of 

the situation rather than the situation itself. Thompson further defines quantitative 

operations as “the conceptual operations one uses to imagine a situation and to 
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reason about a situation—often independently of any numerical calculations” 

(Thompson, 1995, p.12). For example, I can imagine the heights of two objects. I 

can also imagine comparing those two heights, without knowing their specific 

measures, and creating a new quantity that refers to the difference between the 

two original heights. It is by a process of quantification (Patrick W. Thompson, 

1990) that I would assign numerical values to these heights, “but knowing their 

measures does not add to conceptualizing the comparison. Rather, knowing their 

measures simply adds information about the comparison” (Smith & Thompson, 

2008).  

Throughout the course, Rico invested considerable effort into helping 

students make sense of word problems. Such efforts involved engaging students 

in defining variables, explaining relationships between quantities, interpreting and 

developing algebraic expressions based on the context of the problems, etc. That 

is, Rico’s instruction focused on reasoning with quantities. Therefore, 

Thompson’s framework of Quantitative Reasoning (Smith & Thompson, 2008; 

Patrick W. Thompson, 1990, 1993) was an ideally suited theory for examining 

Rico’s KDUs and KPUs in the context of his Algebra II course. 
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CHAPTER 4—METHODOLOGY 

The goal of this chapter is to explain the methods that I employed for the 

analysis of the data generated in this study. To do so, this chapter is divided into 

two sections. In the first section, I provide a brief description of the analytical 

methods that I used: a) conceptual analysis, b) grounded theory and retrospective 

analysis of classroom videos, and c) stimulated-reflection interviews. In the 

second section of the chapter, I provide a description of the data and the analytical 

procedures that I followed to analyze the data. 

Analytical Methods 

Conceptual analysis. In light of the background theories stated in the 

previous chapter, I do not have direct access to another person’s thinking. Yet, I 

can construct models—conceptual systems held by the modeler which provide 

explanations of the phenomenon of interest of knowing that can help me think 

about how others might understand particular ideas (Patrick W. Thompson, 1982). 

Glasersfeld (1995) proposed an analytical method called conceptual analysis to 

address the issue of constructing such conceptual systems. The method’s aim is 

“to describe conceptual operations that, were people to have them, might result in 

them thinking the way they evidently do” (Patrick W. Thompson & Saldanha, 

2000, p. 4). This method can be used in different ways. One of these ways is to 

generate descriptions/explanations of a person’s understandings. In coming to 

better understand Rico’s MKT that supports his teaching of Algebra II, I 

constructed models of Rico’s mathematical and pedagogical understandings, for 
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example, by answering questions such as: what KDUs and KPUs do I attribute to 

Rico based on his instructional design of linear functions?  

A second way in which conceptual analysis can be used is for devising 

ways of understanding systems of mathematical ideas, without necessarily 

referring to a particular person. I used conceptual analysis from this second 

perspective as I described the mathematical ideas and ways of thinking that a 

person might have developed as he or she experienced instruction based on the 

instructional materials and conversations held in Rico’s class. In this case, I am 

not referring to a particular person’s ways of understanding such ideas; rather, I 

talk about hypothetical ways of thinking—what Piaget (1970) and Thompson and 

Saldanha (2000) call the epistemic subject. For example, a student might come to 

think of x2 ! x1  as either a subtraction of two numbers or as a new quantity that is 

the result of comparing two quantity’s magnitudes. In the first case, the person 

comes to think of a number. In the latter, that is what is suggested by Rico’s self-

constructed instructional material, the person comes to think about a quantity. 

Grounded theory and longitudinal analyses of videorecordings. 

Grounded theory (Strauss & Corbin, 1998) as a way to build claims that are 

grounded in the data seemed an appropriate analytical method to validate the 

models that I constructed about Rico’s understandings and the mathematical ideas 

and ways of thinking conveyed by his Algebra II course. Rather than theory 

coming first and researchers trying to find data to fit or disconfirm the theory, a 
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grounded theory is inductively derived from studying the phenomenon it 

represents.  

Cobb and Whitenack (1996) propose an analytical method that is 

consistent with grounded theory that is aimed at analyzing large sets of data such 

as classroom videorecordings and transcripts. In general, this analytical method 

proposes to analyze the data in chronological order and on an episode-by-episode 

basis. As episodes are analyzed, initial conjectures are made and constantly 

revised when analyzing subsequent episodes. Then, “the chains of inferences and 

conjectures” become data for further analysis in a process the authors call 

“zigzagging between conjectures and refutations.” (Cobb & Whitenack, 1996, p. 

224) The ultimate goal is the search of more stable categories that will evolve into 

explanatory constructs. This analytical method became useful for the study for 

two main reasons. First, the analytical method provides guidance in cases where 

the researcher deals with a large amount of data—which was the case of this study 

(videotaped lessons, post-lesson reflections, instructional material, and 

stimulated-reflection interviews). Second, the method provided a way to validate 

my claims. In this sense, I was able formulate hypotheses by analyzing the data 

from Rico’s Algebra II course to test by interviewing Rico. Then, further 

hypotheses emerged and others were refuted from analyzing the interviews. This 

process led to an additional analysis of the data from the Algebra II course in 

order to further test and validate the resulting models; which became more stable 

over time. 
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Stimulated-reflection interviews. Stimulated-recall has been used 

extensively in educational research, nursing and counseling. This technique 

consists of an introspection procedure in which videotaped passages of behavior 

are replayed to individuals to stimulate recall of their concurrent cognitive activity 

(Lyle, 2003).  

For this study, I used a similar technique that I refer to as stimulated-

reflection interviews. This is similar to stimulated-recall in that I used artifacts 

from Rico’s teaching—instructional material, the textbook, the agenda of the 

course, and videotaped passages of the lessons—to further investigate Rico’s 

understandings by stimulating his recollection and theorizations of the events. The 

difference between this technique and stimulated-recall interviews is that my 

focus of investigation was not to reconstruct the teacher’s thinking in the moment 

of teaching. Rather, I used the above-mentioned artifacts as “things to talk about” 

to stimulate Rico’s reflection on his understandings (of his students’ mathematics, 

his design of instruction, and his mathematical understandings) in the moment of 

the interviews.  

These interviews were open ended. Although, I had certain topics and 

questions in mind, I let Rico guide the conversations. Usually, I presented him 

with artifacts from his Algebra II course—either instructional material or 

videotaped episodes from his lessons—and then asked him some specifics about 

the artifacts; letting Rico guide the rest of the conversation as he discussed aspects 

of his practice, his rationale behind designing or using particular tasks, his 
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anticipations of students’ understandings, and his theorizations about the results 

of using particular tasks with the students.  

It is important to mention that, as I present the results of the analysis I 

place Rico’s comments in time. I do so, not to imply agency of change; rather, it 

was Rico who referred back to different periods of time during the stimulated-

reflection interviews. He did so to share his insights about what he used to think 

of his practice before he joined his professional development program, before and 

after the Algebra II course, and at the moment of the interviews. By placing 

Rico’s comments in time, I am not making claims regarding what made him 

change; instead, I just report what he said.  

Finally, another important aspect that needed consideration was that 

Rico’s thinking clearly evolved in the time when he taught the course and the time 

in which the stimulated-reflections took place. The actions that he would take in 

the moment of the interviews were better informed than what they actually were 

when he taught the course. This data provided interesting opportunities to explore 

ways in which Rico’s thinking changed over time. 

Data and Analytical Procedure 

 The data collection and analysis for this study took place in three different 

phases. In each phase, new data was generated and analyzed to make way for the 

next phase. In what follows, I describe the type of data that was generated and the 

analytical methods that I followed for the analysis in each of the three phases of 

the study. 
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Phase I—Rico’s Algebra II course. The data for the first phase was 

collected when Rico taught the Algebra II course (academic year 2007-2008). 

This data includes: 

• Videos of Rico’s lessons recorded during the first semester of the 

academic year (60 lessons x 50 minutes approx. = 50 hours).  

• Structured post-lesson reflections. Immediately after each lesson, a set 

of five questions were asked by the videographer7 to Rico with the 

goal of helping him reflect on what he had previously taught. Each 

post-lesson reflection was also videotaped (60 sessions x 5 minutes 

approx. = 5 hours). The questions that were asked during each post-

lesson reflection are listed below: 

1. Do you think your lesson was successful? 

2. Did you follow your original plan or did you make adjustments during 

instruction? 

3. Do you think that your students were truly involved in today's lesson? 

4. Give an example of a question or questions you would ask to find out 

how students have learned what you taught 

5. Have your ideas changed for next lesson of this class? 

                                                
7 I was not the videographer in the data collection for Phase I of the study. A 
videographer assigned by the research project videotaped Rico’s Algebra II 
course and the post-lesson reflections.  
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• Rico’s self-constructed instructional materials. These materials include 

the agenda for the course, as well as all the worksheets and exams that 

Rico developed for the entire academic year. 

At the time, Rico was teaching different sections of the same course. Only 

one of those sections (the first one of the day) was videotaped and immediately 

after the lesson the post-lesson reflection took place. This means that, Rico 

developed his post-lesson reflections based on teaching the lesson to that 

particular group of students; however he might have generated his later insights 

about the Algebra II course, based not only on that first section that he taught, but 

from teaching that same lesson and refining it over and over again, throughout the 

day. 

The Phase I data analysis consisted of an initial review of the videotaped 

lessons, post-lesson reflections and instructional material with the goal of gaining 

an understanding of what the course was about. This preliminary analysis of the 

data allowed me to develop hypotheses about the mathematical understandings 

and ways of thinking that Rico might have had envisioned for his students to 

learn. As I watched the videos and looked at the instructional material, I asked the 

following questions: 

• What are the mathematical ideas addressed in the worksheet/lesson?  

• How does Rico treat those mathematical ideas so that they prepare 

students to learn ideas to be addressed in future lessons?  

• How does Rico structure his interactions with students? 
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• Are there any unique and interesting features in the lessons?  

• Do I need Rico to provide clarification about something in particular 

regarding the lesson/worksheet; including the learning goals that he set 

out for students?  

One problem I faced regarding the data was that there were no videotaped 

lessons for the first two weeks of the course, so I looked ahead to Phase II with 

three main goals in mind. First, I planned to ask Rico about his overall 

organization of the course to better understand the learning goals he had 

established for his students. Second, I planned to ask Rico to provide details about 

what he did in the first two weeks of the course and why. Since I didn’t have 

video for those first two weeks, I used the instructional material that he developed 

to generate talking points to discuss his practice. Finally, my third goal was to 

further investigate Rico’s understandings of his students’ mathematics regarding 

variable, rate of change, and functions; as it had become evident from the first 

approach to the data that Rico had paid special attention to those ideas in the 

Algebra II course. 

Phase II—Stimulated-reflection interviews. The data collection for 

Phase II of the study took place during the months of March through April 2010. 

During this period, I held a total of eight stimulated-reflection interviews with 

Rico.  

As a result of the Phase 1 analysis, I selected a preliminary list of ‘things 

to talk about’ with Rico during the interviews. It was preliminary in that I kept 
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modifying the topics of discussion as a result of my ongoing analysis of the 

stimulated-reflection interviews. Although I had certain topics and questions 

prepared in advance, I let Rico’s spontaneous recollection of events guide the 

conversations. For example, there were occassions in which as he was talking 

about specifics of a worksheet, he would remember general aspects of the course.  

The initial interview provided information regarding Rico’s rationale 

behind his general organization of the course, his insights as to why he redesigned 

the entire curriculum of his Algebra II course, and how he used the textbook. The 

remaining interviews were geared toward investigating more specific aspects 

about Rico’s learning goals and pedagogical actions associated with them as they 

related to specific instructional sequences throughout the course. As I mentioned 

before, since I didn’t have video for the first three weeks of the course, we spent 

more time than what we did with other parts of the course—three out of the eight 

stimulated-reflection interviews—discussing the instructional sequences on Unit 1 

(constant rate of change). In addition, it was during the first weeks of the course, 

that Rico set the stage for what they were going to talk about during the course 

and the ways in which they were going to engage with the mathematical ideas. In 

the other interviews—from the fifth to the eighth interview—we discussed Unit 2 

(non-constant rate of change, average rate of change), function transformations, 

and other aspects of Rico’s general organization of the course; such as his 

expectations for student engagement and assessments. 
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The stimulated-reflection interviews were videotaped, transcribed, and 

open coded in a line-by-line analysis (Strauss & Corbin, 1998). Themes regarding 

Rico’s KPUs and KDUs started to emerge from this analysis. For example, two 

types of categories emerged from the analysis of the data: 1) categories pertaining 

to KDUs (variable, rate of change, and function) and 2) categories pertaining 

Rico’s KPUs (e.g. coherence, meaningful operations). I then went back to the data 

generated in Phase I (videotaped lessons, post-lesson reflections and instructional 

material) to further test and refine the emerging models of the mathematics 

conveyed by Rico’s course, Rico’s pedagogical understandings, and his 

understandings of his students’ mathematics. This process led to Phase III of the 

study. 

Phase III—Narrative of the course and Rico’s MKT. Phase III 

consisted of a conceptual analysis of the prior phases with the aim of creating 

models of Rico’s mathematical conceptions, his conceptions of his students' 

mathematical understandings, and his images of instruction and instructional 

design. To do so, I first developed the narrative of the course (Chapter 6), 

focusing on the progression of three main ideas: variable, rate of change, and 

functions. I then used the narrative of the course as data to delve into what 

allowed Rico to create the course that he created and to interact with students in 

the way he did. As a result of this analysis, I developed an explanatory model of 

Rico’s MKT (Chapter 7). 
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In the remaining chapters of the dissertation, I present the findings of the 

study. Chapter 5 presents an overview of who is Rico—his personal and 

professional background—and an overview of the Algebra II course. Chapter 6 

develops a narrative of the progression of ideas in Rico’s Algebra II course. In 

Chapter 7, I discuss Rico’s mathematics and his mathematics of students. Finally, 

I present the concluding comments in Chapter 8. 
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CHAPTER 5—OVERVIEW 

Who is Rico? 

Personal and professional background. Rico was a mathematics teacher 

at a high school located in the suburbs of a major metropolitan area in the 

southwestern United States. He held an undergraduate degree in secondary 

education with an emphasis in history and held a master’s degree in teaching 

secondary education. Rico had always enjoyed mathematics as well. While he 

was in college, Rico was a mathematics tutor for four years, which influenced his 

decision to apply for a job teaching mathematics, instead of history, after 

graduation. 

As a student, Rico ranked at the top of his high school class. In college, he 

graduated with a 4.0 GPA8. Regarding his experience with mathematics, he was 

always enthusiastic and persistent about the subject. Rico explained that when 

faced with a problem in his mathematics courses, he would work until he figured 

out the solution, regardless of the time spent working on the problem. 

When he taught the Algebra II course (academic year 2007-2008) that 

relates to this study, he was in his fifth year of teaching high school mathematics 

and in his third year as a participant in a professional development and research 

                                                
8 GPA stands for Grade Point Average. The GPA refers to the average grade 
earned by a student. It is the result of dividing the grade points earned by the 
number of credits attempted and it is measured on a scale from 0 to 4.  
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project called Teachers Promoting Change Collaboratively (TPCC)9. As a 

participant in the TPCC, Rico met with other colleagues in his high school in 

weekly Reflecting on Practice Sessions (RPS) guided by a facilitator. The purpose 

of a RPS was for participants to discuss matters of instructional practice, 

curriculum, and student learning. Rico also took two courses on a functions 

approach to a unified secondary curriculum as part of his participation in the 

research project. 

Although Rico had always strived to be a good teacher, after joining the 

TPCC in 2005, he came to think differently about what this meant. By the time of 

this study, he was in the second year of trying a new approach to his Algebra II 

course.10 As he explained in RI#111 (March 9, 2010), Rico had come to realize 

that his past way of teaching was not oriented to students’ thinking. He further 

explained that, previously, his teaching consisted almost entirely of direct 

instruction with nearly all homework and assessments coming from the textbook 

and its supplemental materials.  

Rico said he had realized, as he tried to revamp his curriculum, that his 

Algebra II textbook (and textbooks in general) conveyed a message to students 

                                                
9 NSF-funded research project (P.I. Dr. Patrick Thompson). Project aimed at 
creating a model for a Professional Learning Community (PLC) to assist 
secondary pre-calculus teachers in providing high quality instruction. 

10 Rico first tried the new approach to teaching the Algebra II course during the 
academic year 2006-2007. 

11 RI#1 denotes Stimulated-Reflection Interview 1. I use analogous notation to 
reference other reflective interviews. 
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about what it means to think mathematically that differed greatly from the 

message he now wanted to convey. The textbook’s goal was to teach students 

how to perform efficient calculations and algorithms. It made no effort to explain 

lines of reasoning that led to formulas or why particular formulas worked the way 

they did. In addition, Rico felt the textbook’s content was compartmentalized—

the contents of one chapter were exclusive to that chapter only; subsequent 

chapters never referred to the contents of previous chapters, even though, the 

mathematical ideas were closely related. Thus, students received the message that 

whatever formulas they learned in one section of the textbook were particular to 

that section, and that there was no need for them to use or remember those 

formulas once they had taken the exam for that specific section of the textbook.  

Rico did not like the textbook’s approach because when he followed it, 

students ended up experiencing completely disconnected lessons throughout the 

year. This made it very hard for them to remember what they had learned in any 

usable form. As he explained in RI#1 (March 9, 2010), by fall 2007, Rico had 

decided to do the opposite of the textbook’s treatment. The approach that Rico 

had adopted after joining the TPCC was to incorporate more opportunities for his 

students to develop and apply their own reasoning and for him to listen to—and 

learn from—his students. Rico did not want students to merely learn rules and 

apply them without having developed an understanding of why they worked or 

the line of reasoning that gave rise to them. Therefore, Rico felt he had to write 

his own instructional material to support the lessons he wanted to teach.  



!

! 54 

Rico’s goals for the course. In addition to writing his own instructional 

material, Rico set new goals for his Algebra II course. One of his main goals for 

the course, as he noted in RI#1 (March 9, 2010), was for students to develop 

meaningful ways of thinking about formulas and to incorporate those ways of 

thinking into their mathematical problem solving.  

Another goal Rico held for his students was that they be excited about 

learning—that they actually be curious about why a formula works the way it 

does, be proud after using their powers of reasoning to solve problems, and to 

strive for the personal satisfaction of understanding the mathematical ideas being 

discussed in class. Rico intended to first help students develop ways of reasoning 

about problems and then let formulas emerge as a way of generalizing such 

reasoning. In order to attain this goal, he believed there were two key aspects that 

he needed to consider. First, he needed to provide students with real world 

applications that could serve as a basis for developing their reasoning. Second, he 

needed to reinforce that his students learn to communicate their thinking and 

listen to their classmates’ attempts to communicate their understandings, too.  

Finally, another goal that Rico held back in 2007 was to create a course 

that became coherent in his students’ minds. He intended to accomplish that by 

establishing a few key ideas—e.g., rate of change, functions, graphs—and build 

upon them throughout the course. Rico was aware that students’ prior 

mathematical learning would not help them in this regard, so he also intended to 
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provide opportunities for them to rethink and revise their previously developed 

understandings by making meanings explicit topics of discussion. 

Overview of Rico’s Algebra II Course 

Rico’s perceived constraints. Rico recognized several constraints on his 

redesign of Algebra II (Fall 2007) that determined his overall organization of the 

course. Two in particular were, one, the school district had a mandated timeline 

for topic coverage and two, students district-wide would sit for standardized end-

of-semester examinations. Rico arranged the topics of instruction in accordance 

with the district’s timeline to ensure that his students were prepared for the 

examinations. However, Rico treated the mathematical ideas in the course in a 

substantially different way than was standard for the school district. 

According to Rico, the integrated mathematics curriculum, which is the 

curriculum adopted by the school district, resembles a spiral. The Algebra II 

course is the third course of a series in which students visit and revisit the same 

topics with the goal of gaining more sophisticated understandings each year. This 

means that by the time students get to Algebra II, they have already seen in the 

previous two courses topics such as linear functions, systems of equations, and 

polynomial functions. However, students are expected to learn new concepts 

related to these topics such as end behavior in polynomial functions or new 

methods for solving problems (e.g., the matrix equation method in systems of 

equations). 
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Since students had already seen many of the topics in the Algebra II 

course in the previous two courses, Rico faced yet another challenge to his 

redesign of the course. That is, students’ lack of meaningful mathematical 

experiences. On the one hand, Rico anticipated that students might not think about 

the topics in the ways he wanted them to. For example, Rico expected that they 

would think of linear functions as just lines and not as functional relationships, or 

that they would know how to use the methods for solving systems of equations, 

but not necessarily understand why the methods worked. On the other hand, Rico 

felt that he did not have the time to go back and re-teach all the ideas that the 

students should have already learned by the time they get to Algebra II. 

Therefore, he came up with a strategy for addressing the students’ lack of 

meaningful experiences in their previous courses along with the time constraint. 

His strategy was to intervene in students’ way of thinking about the previously 

learned topics by asking them questions that students felt they should be able to 

answer, but they kept finding that they couldn’t. He did this to help students 

become aware that they needed to refine their meanings and, at the same time, to 

provide them with opportunities to expand upon those meanings. However, this 

was a challenging task for Rico, as he repeatedly expressed some frustration in the 

post-lesson reflections. It usually took him more time, than he had anticipated, to 

go over the ideas in the homework; making it hard to keep up to speed with all the 

topics he had to cover—as mandated by the District’s timeline—and what Rico 

considered important for his students to learn. 
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Overall organization of the course. The Algebra II course consisted of 8 

units and each unit was divided into instructional sequences.  

Table 1 shows the instructional sequences in each unit and the number of 

weeks Rico spent teaching each unit. 

Table 1 

Overall Organization of Rico’s Algebra II Course 

 

In addition to the instructional sequences, there were individual lessons 

incorporated throughout the course that did not address specific mathematical 
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ideas, but they were geared toward providing students with opportunities to 

improve their communication skills when expressing their mathematical thinking. 

For example, at the end of Unit 1, Rico gave his students a worksheet that 

contained a range of written answers to a problem that they, as a class, had 

already studied in Unit 1. Students had to rank the answers depending on what 

they considered that a good answer should include. Rico took the class discussion 

about the worksheet as an opportunity to discuss with the students the importance 

of communicating their mathematical meanings; and to provide students with a 

reference point in constructing their own answers to the problems in the course. 

Homework assignments and structure of the lessons. The class met five 

times per week for approximately 50 minutes. Often, Rico handed out a new 

worksheet to the students at the end of the lesson for them to work on at home. 

The following day, Rico would give the students the first ten minutes of the 

lesson (sometimes more, if necessary) to discuss their homework answers 

amongst each other. Rico used that time to go around the classroom and gauge the 

effort that students put into the homework in order to determine the issues that 

needed to be addressed in a whole class discussion. Sometimes, the discussion 

about the homework naturally led to the main ideas that Rico wanted to address 

during the lesson. Other times, Rico would present a new contextual problem that 

would serve as a basis for talking about the mathematical ideas he wanted to 

address. 
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The homework assignments were a central part of Rico’s lessons. He was 

not familiar with the term “didactic object” —a thing to talk about that was 

designed to support reflective discourse about mathematical ideas and ways of 

thinking. However, Rico designed the homework assignments with similar 

intentions. That is, Rico explained in the reflective interviews that when he had 

designed the course, his goal with the worksheets was not just to get the students 

to practice with similar problems that they had learned in class, but also to take 

the discussion from class one step further —an extension of and expansion upon 

the class discourse. It is important to clarify that the objective of the problems was 

to teach students to explain their reasoning rather than merely computing the 

solutions. Rico constructed the assignments with the expectation that the students’ 

engagement with the problems could generate a range of interpretations. He did 

this with the goal of promoting mathematical discussions between the students 

and their partners and as a class. 

The time that the class spent working on each worksheet varied depending 

on whether the students experience difficulties with the worksheets or not. 

Sometimes, if Rico noticed that students were experiencing some trouble with 

specific ideas addressed in the worksheets, he would let the students spend more 

time working on the problems in groups. Other times, he would prepare new 

tasks, related to the ideas with which students were struggling, to help him 

address those difficulties during class discussion. 
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The problems that Rico included in the worksheets came from different 

sources. Some of the problems were modifications of the contextual problems 

included in the textbook. Other problems came from newspapers. Rico explained 

that if he read something on the newspaper that he could relate somehow to what 

they were talking about in class then he would use it. Finally, he also included 

contextual problems from other subjects—for example, Physics and Chemistry—

and addressed the mathematical aspects of those problems. In the post-lesson 

reflections, Rico commented that he liked to use contextual problems that students 

could find interesting and that students could relate to them. Therefore, Rico 

carefully elaborated the contextual problems he used in class and he seemed to 

have fun using them with his students. 

Rico’s expectations for student engagement. Rico held two main 

expectations for his students’ engagement with the course. First, as 

aforementioned, Rico considered that students’ participation in mathematical 

discussions was crucial for extending and refining their mathematical meanings. 

Rico structured the lessons to ensure that every student in the class could engage 

in a mathematical discussion at least once during the lesson, either with their 

partners or as a class. Along with their participation in mathematical discussions, 

Rico expected the students to make an effort to provide explanations based on 

reasoning and not only on rote memorization of facts and formulas. 

Second, Rico expected students to continuously work hard to make sense 

of the ideas discussed in the lesson. In exchange, he made an agreement with his 
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students to design every lesson to relate to the meanings that supported the 

mathematical ideas addressed in it. Rico made the commitment to not ask the 

students to work on something if they did not have access to that meaning, as this 

would only undermine the students’ confidence in their own reasoning. 

Throughout the first semester of the course, getting students to engage 

with the course in the way Rico intended them to, was not an easy task. For 

example, as students considered many of the topics as review—even if Rico was 

addressing those topics from a different perspective and in a more sophisticated 

way—then the students would sometimes provide memorized facts as answers 

and have a hard time explaining what those facts really meant. Also, Rico 

commented in a post-lesson reflection that there were some students that he knew 

they needed tutoring because they were having trouble with the material from the 

course; however they were not seeking the appropriate help from him.  

Rico further explained in RI#5 (March 30, 2010) that the second semester 

of the course felt different than the first semester in that, students were now used 

to Rico’s expectations about their engagement in the course. Also, the 

mathematical ideas in the second semester were new to the students, that is, they 

had not seen them in their previous mathematics courses; in consequence, 

students had to rely on what they had learned in the Algebra II course to make 

sense of those ideas. 
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CHAPTER 6—PROGRESSION OF MATHEMATICAL IDEAS 

Introduction 

In this chapter I will provide details about the progression of mathematical 

ideas in Rico’s Algebra II course. I will focus on three key mathematical ideas—

variable, rate of change, and function—and how Rico treated them in instruction. 

These ideas played a very important role in the course. Although I use them as 

separate themes to guide my narrative of the course, it is the way Rico treated 

them in his instruction to build upon one another and create a system of meanings 

that better explains what the course was about. Then, in Chapter 7, I will take the 

course as data to further explore Rico’s MKT. 

Before I move on to the main theme of this chapter, I first provide some 

context for Rico’s motives in redesigning the course and the strategies he 

employed in developing a course that could become a coherent system of 

meanings in the students’ minds.  

I emphasize that in this case I am only reporting Rico’s insights as to how 

he thought he had come to think different about his practice. I did not have access 

to Rico’s thinking, instruction, and instructional design previous to the Algebra II 

course so as to make claims regarding how he changed. Instead, I share Rico’s 

insights with the goal of portraying to the reader how reflective Rico was about 

the impact his instruction had on his students’ mathematics. 

Rico’s motives for redesigning the course. In RI#1 (March 9, 2010), 

Rico explained that early in his involvement with the TPCC project, Rico was 
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required to develop a teaching experiment as part of his final project for the 

Functions I course12. Rico chose function transformations as a topic for the 

assignment. When he tried to incorporate what he had learned from the teaching 

experiment into his Algebra II course, he realized that his past way of teaching 

function transformations did not help students develop powerful ways of thinking 

about functions.  

The content Rico used to teach prior to his involvement in the TPCC, as 

he noted in RI#1 (March 9, 2010), was strictly from a graphical point of view—

consisting of identifying the shape or formula of the parent function and then 

identifying or applying the transformations in order (i.e. reflections, stretches, and 

translations). Students were provided with rules to follow with no attached 

meaning to them other than to identify some numbers from a formula and make 

sure the points were located on the right spot. Rico also noted in RI#1 (March 9, 

2010) that his instruction prior to 2005 did not provide students with ways of 

thinking that would allow them to reason their way to a solution. It also had the 

problem that it was not about functions; that is, according to Rico, “As I vary the 

argument, what happens to the outputs of the function” (Rico, RI#5—March 30, 

2010).  

Rico decided that students would be better served if the chapter’s focus 

shifted to comparing inputs and outputs of functions. For example, he wanted his 

                                                
12 Functions I, was the first of a series of courses that the teachers took as part of 
their involvement in the TPCC. 



!

! 64 

students to think that they would define a new function g(x) using the outputs of 

some other function, as in g(x) = f (x ! 2) +1 . That is, he wanted the students to 

define new functions based on the outputs of previously defined functions, 

regardless of the “shape” of their graph or how the formula of the parent function 

looked. In order to understand function transformations in this way, Rico 

imagined that the students had to ponder questions such as “What happens to the 

argument of f as the value of x varies?” and “What are all the calculations in the 

expression doing to the outputs of f(x)?” in order to obtain the outputs for g(x).  

Rico further realized that while this new chapter might be more beneficial 

for his students’ future thinking in mathematics courses, there was nothing in the 

course that would prepare them to think about functions in the way that was 

needed in the chapter. In Excerpt 3, Rico relates such insights. 

Excerpt 3. Rico’s realization that he did not prepare students’ thinking (RI#1—

March 09, 2010). 

Rico: Nothing that I did in the chapters leading up to function transformations 

prepared students to think about functions in that way. None of the rules 

and the formulas, and anything that we teach in the first semester, 

prepared students to really focus on the relationships between the outputs 

of these two functions [f(x) and g(x)] in the way that I wanted them. 

After 2005, Rico stopped thinking about the function transformations 

chapter as an isolated chapter in the course. Instead, he anticipated that if students 

were to think about function transformations and functions in general in powerful 
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ways, then they would need to experience instruction aimed at developing the 

kinds of thinking that Rico had in mind. As a consequence, Rico ended up 

redesigning the entire curriculum for his Algebra II course. 

Rico’s strategies for developing a coherent system of meanings. By 

2007, Rico had realized that his previous instructional approach did not orient 

students to thinking about functions as a relationship between covarying 

quantities. In addition, the textbook’s compartmentalized presentation of topics 

did not support his attempt to redesign the course. Therefore, Rico came up with a 

set of strategies that guided his organization of the new course. 

First, he anchored the course in a few mathematical ideas that would 

provide students with tools for reasoning about functions. At the core of these 

ideas were a dynamic view of variable, a conception of rate of change as deeply 

embedded in proportional reasoning, and a conception of function as a 

relationship between covarying quantities. 

Second, Rico made sure, especially at the beginning of the course, to 

provide students with opportunities to rethink, extend, and expand upon their 

previously developed meanings of mathematical concepts such as variable, slope, 

and linear function. He did this because he anticipated that students might not 

think about these ideas in ways that would help them understand the meanings he 

wanted to convey in the Algebra II course. For example, some of the meanings 

that Rico expected students to have based on their previous mathematical 

experiences, were: 
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• Variable —A letter in an equation 

• Slope —The steepness of a line or a number that is the result of plugging 

numbers into the equationm =
y2 ! y1
x2 ! x1

and simplifying the result.  

• Linear function —a line. That is, the result of plotting two points and 

connecting them; or, the result of finding an equation, which is the result 

of applying a set of memorized steps.  

These meanings are problematic in at least two ways. First, if someone 

holds these as her foundational meanings, then there is nothing about them that 

encourages thinking about variation, and thus, thinking about functions as a 

covariation of quantities. Second, someone holding these meanings might be able 

to solve problems that require them to “Find the equation of the line passing 

through the points (5, 10) and (8, 4)”. However, there is nothing about these 

meanings that extends to other ideas such as “Find the equation of the line passing 

through the point (5,10) with a rate of change of -2”. In other words, the material 

that comes later in the course does not build upon these meanings. 

For Rico, the development of ideas and ways of thinking had become a 

long-term process and it was not confined to particular instructional sequences. 

As he redesigned the lessons, he constantly tried to connect what the students 

learned before to what they were currently learning. At the same time, Rico 

prepared students for what they were going to learn later in the course. For 

example, function transformations and inverse functions were two instructional 

sequences that, according to the District’s timeline, pertained to the second 
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semester of the course. However, throughout the first semester, Rico included 

questions in the lessons that were intended to build toward both ideas, so that by 

the time they got to those topics, instruction would involve formalizing ways of 

thinking about functions that they had been practicing all along. 

Together, Rico’s curriculum design strategies were aimed at developing a 

course that could become a coherent system of meanings in students’ minds. That 

is, the meanings the class established throughout the course remained consistent 

and built upon each other. I refer to the class and not to Rico, because as he noted 

in the stimulated-reflection interviews, when teaching the course, he emphasized 

that the students should take part in creating the definitions they used in class. 

Variables as Quantities 

Rico, without expressing any personal knowledge of a formal theory of 

quantitative reasoning (e.g.,Smith & Thompson, 2008; Patrick W. Thompson, 

1989, 1993, 1994a), seemed to have a strong intuitive grasp of the importance that 

his students reason quantitatively. For example, he constantly oriented students to 

pay attention to the quantity whose values a variable represented. Every time a 

variable came into play, Rico put special emphasis on the variable’s definition 

and its units. Also, he stressed that in a problem, a variable is free to vary —it can 

assume any of a range of values for which the variable is defined.  

Allowing a variable to assume any of a range of values over a specified 

interval was relevant in two ways. First, it allowed Rico to hold discussions 

regarding a variable, say x, as it continuously varied throughout an interval. This 
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dynamic view of variable is key to developing a covariation view of function 

(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Oehrtman, Carlson, & Thompson, 

2008; Patrick W. Thompson, 1994b) and is compatible with the idea of function 

that Rico intended to promote in class. Second, it allowed him to focus his 

instruction not only on specific values of the variable, say x = a , but also on what 

he called “changes in variables” —the change from some value of one variable to 

another value of the same variable. For example, suppose that x = h for some 

value h, then x ! h represents the change in x away from h. Rico did not explicitly 

refer to “changes in variables” as defining new quantities. However, he treated 

them in instruction as if they were. Rico’s notion of “changes in variables” is 

compatible with Thompson’s (1994a) idea of creating a difference —a new 

quantity that is the result of comparing two already conceived quantities 

additively. As Smith and Thompson (2008) point out, a difference is not the result 

of subtracting. In this sense, x ! h does not need to assume any particular value for 

someone to come to conceptualize x ! h . And it is in this sense that Rico treated 

changes in variables in instruction. 

In the following sections, I first describe Rico’s strategy for orienting 

students to paying attention to quantities. Then, I describe the two cases in which 

Rico paid attention to differences ( x ! h and x2 ! x1 ) in instruction, and the 

purpose these conceptualizations served in the progression of ideas. 

Orienting students to pay attention to quantities. Back in 2007, one 

major theme that Rico wanted to develop throughout the academic year was that 
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all the functions in the course represented a relationship between two variables. 

And that it was by allowing the variables to vary throughout an interval and 

analyzing the changes in one variable in relation to changes in the other that 

someone could understand the relationship that is, the function. Furthermore, this 

analysis of a function’s behavior could be done regardless of the operations that 

were performed on one variable to obtain the other. In other words, this way of 

analyzing a function’s behavior could be applied to any function in the course. 

Thus, one of Rico’s main goals for students was to orient them to thinking about 

functions as composed of variables —as opposed to thinking for example, that a 

quadratic function is a u-shaped figure.  

When Rico redesigned the course, he anticipated two main issues 

regarding students’ previous experience with variables. First, he expected that for 

students variable might mean “a letter in an equation” which did not convey the 

dynamic view of variable that he wanted to promote in class. Second, due to 

students’ previous experiences in mathematics courses, they might be used to 

working with variables without ever questioning what the variables in a problem 

stood for. To deal with these issues and help students develop a more 

sophisticated conceptualization of variable, Rico included questions in the 

homework assignments that provided the students with opportunities to examine 

and extend their meaning of variable (Example 1). He also included contextual 

situations that oriented students to paying careful attention to the variables’ 

definitions (Example 2) and the units in which they were measured (Example 3). 
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In what follows, I present Examples 1-3 from Rico’s instructional 

material. In each example, I present the contextual problem, a proposed solution 

that resembles13 how Rico approached instruction regarding the task, and a brief 

discussion about the purpose that the task served in Rico’s instruction. 

Example 1. First assignment of the course: state, test, and refine students' 

definition of variable. 

Figure 2 shows a series of four questions that Rico included in the first 

homework assignment in the course. Rico designed these questions with the goal 

of getting students to state, test, and refine their meaning of variable.  

 
 
Figure 2. Refining the meaning of variable (Homework Assignment—August 08, 

2007). 
                                                
13 The tasks that I present in this section are from the first two weeks of the 
course, for which I do not have videotapes of the lessons. I rely on Rico’s 
accounts of how he used the tasks in instruction. I searched for evidence in 
written material and videotaped lessons from later instructional sequences to test 
whether his recollection of events fit with his actual approach to instruction 
regarding quantities. What I present as solutions fit both his recollection of events 
and his instruction during the time he taught the course.  

3.  How would you define the term variable? 
 
4. According to your definition (meaning, read your definition carefully and use your definition, 

not other prior knowledge), identify each variable in the formula . 
 
5.  Reflect on the following definition: 

Parameter: a constant in an equation that can be varied to yield a family of similar curves 
 

a. Identify any parameters in the function . 
 
 

b. Explain the concept of parameter in your own words. Include a discussion of the 
differences between a parameter and a variable (for example, why is “b” a parameter and 
not a variable?).  

 
6. Consider your responses to Exercises 3 through 5. Rewrite your definition of variable if 

necessary to clarify your ideas.  
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As shown in Figure 2, Question 3 asked the students to state their 

definition of variable. Then, in Question 4, they had to test their definition by 

identifying the variables in the equation y = mx + b . Rico had anticipated that a 

common response to Question 3 would be something along the lines of “a 

variable is a letter in an equation”. Then, strictly speaking, y, m, x, and b should 

be considered variables in the equation of a linear function. Question 5 introduced 

the definition of parameter to allow students to differentiate between the two 

notions.  

Rico designed the task with two goals in mind. First, he wanted to help 

students recognize the important difference between parameters and variables in 

an equation. Even though letters can represent both within a problem, variables 

are free to take any of a range of values for which the problem is defined, whereas 

parameters are fixed —although they can vary from problem to problem. Second, 

he also wanted to convey the message that the course required students’ 

commitment to continually engage in trying to make sense of the mathematical 

ideas discussed in class and that students should take part in creating what he 

called “powerful definitions,” which are definitions that can actually be used as 

tools for thinking about mathematical problems and communicating one’s 

meanings.  

According to Rico’s recollection of events, he was puzzled by the fact that 

students were able to differentiate parameter from variables in y = mx + b . Still, 

students’ definitions of variable did not account for such differentiation. He 
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further explained that if he were to teach the course again and assign this task to 

students, instead of assigning it as homework, he would have students test each 

other’s definitions. He would do this with the purpose of helping students realize 

that their definitions did not clearly and effectively communicate their meanings.  

Rico did not expect students to reconsider their meanings by working 

exclusively on one task. However, it was by helping students become aware of 

their meanings, and allowing them to test whether these fit with what was 

conveyed in class, that he could help them start engaging in learning previously 

seen ideas in new ways. I refer to previously seen ideas, because almost all the 

material in Unit 1 (e.g. linear functions, systems of equations) served as review. 

Thus, at the time it felt like a real challenge for Rico to help students realize there 

was more to know about the topics than the memorized facts and procedures of 

solving problems learned in the previous courses. 

Example 2. The role of contextual problems for reasoning with quantities. 

Figure 3 presents a contextual problem included in the first assignment of 

the instructional sequence on Systems of Equations —the second sequence in 

Unit 1. The main goal of the assignment was for students to “draw the 

mathematics out of the context” (Rico’s words, RI#1 —March 09, 2010) in order 

to set up, solve and interpret the system of equations associated with the problem.  
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Figure 3. The cantilever problem—Part 1 (Homework Assignment—August 

13,2007). 

The problem describes a setting in which an engineer designs a new 

platform that can be moved up and down the side of a building. The engineer can 

use either rope or chain to hold the platform to a support structure situated on the 

top of the building. A series of questions and more information is introduced 

throughout the task to help students construct linear functions that represent the 

total weight (in pounds) that the support structure must hold as a function of the 

distance (in number of feet) that the platform is lowered. 

 

Systems of Equations 
Honors Math Topics 5 

 

An engineer is designing a new platform for tall buildings so that window washers, 
repairmen, painters, etc. can move up and down the side of the building. He needs to 
attach either rope or metal chain to the platform, which will hang from a system of 
pulleys attached to a support structure on top of the building. 
 
 

 
This is a sketch of this situation: 

 

 
 
 
In order to attach the ropes securely and use the proper pulleys, the engineer must 
attach 50 pounds of additional equipment to the platform, which already weighs 200 
pounds. Using the chain, however, will only require attaching 15 pounds of 
additional equipment. The platform is designed to carry workmen and supplies 
weighing 500 pounds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Platform 

Support 
Structure 

Note: The rope or chain is unwound 
from this location to lower the 
platform (in other words, the excess 
chain or rope is not dangling from the 
support structure or stored on the 
platform). 

Rope or 
chain 
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Figure 4. The cantilever problem—Part 2 (Homework Assignment—August 13, 

2007). 

The purpose of the first set of questions (Question 1-4 in Figure 4) was to 

help students conceptualize the problem. In this case, merely looking at the 

problem to search for key words and numbers —a strategy commonly taught to 

students for setting up systems of equations —does not work in successfully 

setting up the equations that describe the problem (Question 5 in Figure 5 in page 

76). First, students have to put together the information that is provided within the 

context of the given problem.  

1. What is the total weight that must be supported (so far) if he plans to use rope (don’t 
forget the workmen and their supplies)? 
Answer: The total weight that must be supported (so far) if he uses rope is 750 pounds. 
 
2. What is the total weight that must be supported (so far) if he plans to use chain (don’t 
forget the workmen and their supplies)? 
Answer: The total weight that must be supported (so far) if he uses chain is 715 pounds. 
 
The chain weighs slightly more than the rope per linear foot. A foot of rope weighs 
0.56 pounds. A foot of chain weighs 0.65 pounds. The platform needs four ropes or 
four chains to hold it. 
 
3. As the platform is lowered what happens to the total weight that must be supported 
from the top of the building (the support structure)? Why? 
Answer: As the platform is lowered, the weight that must be supported from the support 
structure increases, because more rope or chain is needed to support the platform. 
 
4. For each foot that the platform is lowered, how much weight is added to the total 
weight that the support structure must hold if (remember that there are four ropes or 
chains): 

a. rope is used  
Answer: 4(.56) = 2.24  pounds for each foot that the platform is lowered 
b. chain is used 
Answer: 4(.65) = 2.6  pounds for each foot that the platform is lowered 
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As Rico recalled in the stimulated-reflection interviews, his use of real 

world applications was different from what is done in many textbooks. It is 

common that textbooks present the application problems at the end of the section, 

expecting students to apply what they have learned. Usually, students find these 

problems complicated and unrelated to what they have practiced throughout the 

section. In Rico’s view, real world applications served a different purpose 

(Excerpt 4).  

Excerpt 4. Rico’s use of real world applications (RI#1—March 09,2010). 

Rico: If you can successfully frame your discussions around interesting real 

world situations and you can pose natural questions that might come up if 

someone starts thinking about this real world situation, it engages the 

students a little bit more. Students can apply some reasoning that 

otherwise they wouldn’t apply. It gives the students some extra tools to 

attack the problem. 

For Rico, the use of contextual problems served as a tool for helping 

students conceive of situations mathematically. Conceiving situations in this way 

allowed students to deal with and think about much more than just numbers or 
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symbols void of meaning.14 In this case, the students had to engage in operating 

with quantities.  

 

Figure 5 The cantilever problem—Part 3 (Homework Assignment—August 13, 

2007). 
                                                
14 Rico argued in RI#3 (March 23, 2010) that in his experience, it has been very 
common that students know how to use the techniques for solving systems of 
equations without knowing why the techniques work. During the time he taught 
the course, Rico spent most of the instructional sequence on systems of equations 
—which was meant as a review —going back to the techniques (substitution, 
graphical, and elimination methods) that students learned in previous courses to 
develop explanations about the reasoning that gives rise to each of the 
mathematical techniques. 

5. Write a function that represents the weight the support structure must hold if: 
a. rope is used 
Answer: y = 750 + 2.24x   
b. chain is used 
Answer: y = 715 + 2.6x   

 
6. In Exercise 5, what do your variables stand for (include units)? 
x: number of feet (ft) the platform is lowered 
y: number of pounds (lb) the structure must hold 

 
7. What are the rates of change for each of the linear functions defined in Exercise 5? 
What does each rate of change mean in the context of this situation?  
Answer: If rope is used, the rate of change is 2.24lb / ft  and it means that whatever the 
number of feet the platform is lowered, the weight (in pounds) the support structure must 
hold increases by 2.24 times as much. If chain is used, then the rate of change is 
2.6lb / ft . It means that whatever the number of feet the platform is lowered, the weight 
(in pounds) the support structure must hold increases by 2.6 times as much. 

 
8. How much weight would be added to the amount the support structure must hold if the 
platform was held up by rope and the platform was lowered by 0.75 feet? 
Answer: (2.24lb / ft) ! (.75 ft) = 1.68lb   
9. Identify two pairs of coordinate points that are true for the function representing the 
weight of the platform held by chains. What does each coordinate point mean in the 
context of the situation? 
Answer: (3, 722.8) , if the platform is lowered by 3ft, then the weight the support 
structure must hold is 722.8 lb. And, (15,754)  if the platform is lowered by 15 ft, then 
the weight the support structure must hold is 754 lb. 
 
 
 
 
 
16. Consider only the platform held by chain (write its weight function here: 
y = 715 + 2.6x ). The engineer knows that rope stretches slightly as weight pulls down on 
it. He estimates that the actual length of the rope will be 3% longer than it was originally 
measured. He creates the function , where x is the original length of the rope (in 
feet) and y is the stretched length of the rope (in feet). 

 
Find the solution of the system involving the function  and the function you 
wrote in the space above. What does the solution mean in this context? Explain the 
significance of your answer in terms of systems of equations in general. 
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The second set of questions (Question 5-7 in Figure 5) led students to set 

up the system of equations (Question 5), define the variables (Question 6), and 

discuss what the rate of change meant within the context of the situation 

(Question 7). Other questions, (e.g. Questions 8 and 9 in Figure 5) further 

explored the meaning behind the equations. 

Paying attention to variables’ definitions also involved identifying the 

units in which they were measured. Rico did not provide an explanation as to why 

he thought the units were such an important part of defining variables. However, 

when the idea of rate of change came into play, paying attention to the units was 

essential to developing explanations about what the rate of change meant in the 

context of the situation.15 

                                                
15 I will further discuss this point in the section on rate of change. In general, 
Rico’s objective was that, when they discussed the idea of constant rate of 

change, as inm =
2
3

, they do so by focusing on the relationship between the 

variables, “whatever the change in one variable, the other changes by
2
3

as much” 

—instead of focusing on the numerical operation 2 divided by 3. 
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Figure 6 The cantilever problem—Part 4 (Homework Assignment—August 13, 

2007). 

Finally, Question 1616 (Figure 6) proposed setting up and solving a new 

system of equations. Rico designed the question in anticipation of students’ 

possible responses to it in one of three ways (Table 2): 

 

 

 

 

 

 

 

 

 

 

                                                
16 I do not discuss Questions 10-15 here. These questions further explore the 
context and ask students to solve the system of equations. I include these 
questions in the Appendix. 

5. Write a function that represents the weight the support structure must hold if: 
a. rope is used 
Answer: y = 750 + 2.24x   
b. chain is used 
Answer: y = 715 + 2.6x   

 
6. In Exercise 5, what do your variables stand for (include units)? 
x: number of feet (ft) the platform is lowered 
y: number of pounds (lb) the structure must hold 

 
7. What are the rates of change for each of the linear functions defined in Exercise 5? 
What does each rate of change mean in the context of this situation?  
Answer: If rope is used, the rate of change is 2.24lb / ft  and it means that whatever the 
number of feet the platform is lowered, the weight (in pounds) the support structure must 
hold increases by 2.24 times as much. If chain is used, then the rate of change is 
2.6lb / ft . It means that whatever the number of feet the platform is lowered, the weight 
(in pounds) the support structure must hold increases by 2.6 times as much. 

 
8. How much weight would be added to the amount the support structure must hold if the 
platform was held up by rope and the platform was lowered by 0.75 feet? 
Answer: (2.24lb / ft) ! (.75 ft) = 1.68lb   
9. Identify two pairs of coordinate points that are true for the function representing the 
weight of the platform held by chains. What does each coordinate point mean in the 
context of the situation? 
Answer: (3, 722.8) , if the platform is lowered by 3ft, then the weight the support 
structure must hold is 722.8 lb. And, (15,754)  if the platform is lowered by 15 ft, then 
the weight the support structure must hold is 754 lb. 
 
 
 
 
 
16. Consider only the platform held by chain (write its weight function here: 
y = 715 + 2.6x ). The engineer knows that rope stretches slightly as weight pulls down on 
it. He estimates that the actual length of the rope will be 3% longer than it was originally 
measured. He creates the function , where x is the original length of the rope (in 
feet) and y is the stretched length of the rope (in feet). 

 
Find the solution of the system involving the function  and the function you 
wrote in the space above. What does the solution mean in this context? Explain the 
significance of your answer in terms of systems of equations in general. 
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Table 2 

Rico's Anticipated Student Answers to Question 16 of the Cantilever Problem 

Student’s Answer Rico’s Explanation for the Student’s 
Answer 

Student (1): The answer is
x = !455.41 , y = !469.07  

The student uses one of the three 
different methods for solving systems 
of equations (elimination, substitution, 
or graphing method). This student just 
provides an answer. 

Student (2): The answer does not 
make sense because in this context 
we can’t have a negative number 

The student solves the system and then 
realizes that negative numbers do not 
make sense in the context of the 
problem.  

Student (3): There is no point in 
setting up the system, even though we 
are using the same notation, the 
variables stand for completely 
different quantities, and thus it does 
not make sense to set up the system. 

The student realizes that even though 
the same notation was used to represent 
the two functions, the variables in the 
two functions describe different 
quantities. It did not make sense to set 
up the system. 

 

Rico’s goal with Question 16 was to lead a class discussion addressing 

each of the answers he anticipated the students to give (Table 2). By having 

students compare their answers to the ones discussed in class, Rico wanted 

students to realize that they should continuously engage in trying to make sense of 

the situations presented in class; and one way to do so was by paying attention to 

the variables’ definitions.  

Example 3. Units of measurement. 

The following contextual problem (Figure 7) was included in the quiz on 

piecewise functions —which was the third instructional sequence in Unit 1. I 

present the solution to the problem drawing on ideas of constant rate of change 

and linear functions, which I explore in a later section of this chapter. This 
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example further explores ways in which Rico oriented students to pay attention to 

carefully defining variables, including the units in which they are measured.  

 
Figure 7. Determining John's speed—the context (Piecewise functions quiz—

August 28, 2007). 

The task (Figure 7) presents a contextual situation that can be modeled 

with a piecewise function defined in four parts. In Question 1, students are 

provided with a set of variables for the function and they are asked to determine 

what is wrong with the variable definitions. Both variable definitions are missing 

the units in which they are measured. According to the context, the variable t (the 

time since John first stopped at the light) should be measured in seconds and s(t) 

(John’s speed) should be measured in miles per hour. 

John pulls up to a stoplight in his car. He sits at the stoplight for 40 seconds before 
the light turns green. John then begins to accelerate, increasing his speed by 12 mph 
each second. Four seconds after the light turns green, another car swerves in front 
of John’s car and John hits the brakes. Over the next 2 seconds, John’s speed 
decreases by a total of 30 mph at a constant rate. He maintains his new speed for 3 
seconds. 
 

1. One student says that the variables for this piecewise function should be: 

 t is the time since John first stopped at the light 

 s(t) is John’s speed 

What is wrong with these variable definitions? 

2. Rewrite the variable definitions to clarify them. 

3. Write a piecewise function s(t) for the situation using your variable definitions. 

4. Find s(45.5) and describe what it means in the context of the situation. 

5. Find s(52) and describe what it means in the context of the situation. 
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Figure 8 illustrates the solution to the problem. For each part of the 

function, I provide a brief explanation of the ways of thinking that Rico expected 

students to use when solving problems like this one. 

 

 
Figure 8 Determining John's speed—the solution (Piecewise functions quiz—

August 28, 2007). 

Section 1: During the first 40 seconds, John sits at the stoplight, thus his 

speed does not change. The function that describes this situation is s(t) = 0 . This 

function definition only works for values of t between 0 and 40 seconds. Outside 

this domain, the function does not describe the situation. 

Section 2: During the next 4 seconds, John’s speed increases 12mph each 

second. This function only works for values of t between 40 and 44 seconds. 

Outside this domain, this function does not represent the situation. The function

s(t) = 12(t ! 40)  models this part of the trip. Note that 12 represents that the rate 

of change (in mph/s) of John’s speed (in mph) in relation to the time elapsed (in 

seconds) since he first arrived to the stoplight. Note that we use the expression

t ! 40  —instead of defining a new variable for this part of the problem, because 

we want to keep our control variable defined the same for all the four parts of the 

situation. 

John pulls up to a stoplight in his car. He sits at the stoplight for 40 seconds before 
the light turns green. John then begins to accelerate, increasing his speed by 12 mph 
each second. Four seconds after the light turns green, another car swerves in front 
of John’s car and John hits the brakes. Over the next 2 seconds, John’s speed 
decreases by a total of 30 mph at a constant rate. He maintains his new speed for 3 
seconds. 
 

1. One student says that the variables for this piecewise function should be: 
 t is the time since John first stopped at the light 
 s(t) is John’s speed 

What is wrong with these variable definitions? 
2. Rewrite the variable definitions to clarify them. 
3. Write a piecewise function s(t) for the situation using your variable definitions. 
4. Find s(45.5) and describe what it means in the context of the situation. 
5. Find s(52) and describe what it means in the context of the situation. 
 
 

 
   s(t) = 0                        s(t) = 12(t ! 40)            s(t) = !15(t ! 44) + 48              s(t) = 18  
 

 
 
 
 
 
 
 
 

  

s t( ) =
0                         if   0 < t ! 40
12(t " 40)        if   40 < t ! 44
"15(t " 44) + 48 if  44 < t ! 46
18                        if   46 < t ! 49

#

$
%
%

&
%
%

 

 
 
 
 
 
 
 
 
 
 
 
 

t = 44 t = 0 t = 40 t = 46 t = 49 
At stoplight Speed increasing by 

12 mph each second 
Speed decreases by 
a total of 30mph at 
a constant rate 

Speed remains 
constant 
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Section 3: Note that by the end of the previous portion of the trip, John’s 

speed was 48 mph. In this section of the trip, John’s speed decreases by 30 mph 

over a period of 2 seconds, or 15mph/s. This function only works for values of t 

between 44 and 46 seconds. Outside this domain, this function does not represent 

the situation. s(t) = !15(t ! 44) + 48models this part of the trip. 

Section 4: Once John’s speed reaches 18 mph it remains the same for the 

next 3 seconds. Thus, the function that defines this portion is s(t) = 18 and it 

describes the situation for when t is between 46 and 49 seconds. The resulting 

function is: 

  

s t( ) =
0                         if   0 < t ! 40
12(t " 40)        if   40 < t ! 44
"15(t " 44) + 48 if  44 < t ! 46
18                        if   46 < t ! 49

#

$
%
%

&
%
%

 

Finally, Question 4 (Figure 7) asks students to find s(45.5) and describe 

what it means in the context of the situation. We substitute t = 45.5 in the third 

part of the function and obtain that s(45.5) = 25.5 , which represents John’s speed 

41.5 seconds after he first stopped at the stoplight. 

Creating differences by operating on variables. In Rico’s redesign of 

the Algebra II course, the idea of differences became central in two ways. First,

x ! h (the change in x away from a reference point h) was a way for him to build 

toward the idea of function transformations. Second, y2 ! y1 (the change in y) and

x2 ! x1 (the change in x) as defining quantities, rather than numbers, were key to 

understanding rate of change —another key idea of the course. In what follows, I 
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provide a brief explanation of the images conveyed by Rico’s instruction 

regarding the two cases, x ! h (Case 1) and x2 ! x1 (Case 2).  

Case 1: Change in x away from a reference value h, x ! h . Rico 

emphasized that h be thought of as an arbitrarily selected value of the variable x. 

Thus, x ! h , the “change in x away from the reference value h”, represented a new 

varying quantity, whose values were determined as follows: 

Table 3  

Image of x ! h Conveyed by Rico's Instruction 

Suppose x is a variable 
defined over an interval
[a,b]   
 

 
Select x = h as a reference 
point 
 

 
 
x ! h is a new quantity 
whose magnitude varies 
according to x’s current 
value. 
 

 
 

Example 3 in page 79, from the previous section (Orienting Students to 

Pay Attention to Quantities) can be used to illustrate how Rico encouraged 

students to operate with differences. For example, the problem asks students to 

• Suppose x is a variable defined over an interval [a,b]  
 
 
 
 

 

 
 
 
 

 
• Select x = h  as a reference point 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

• x ! h  is a new quantity whose magnitude varies according to x’s current value 
over the interval [a ! h,b ! h]  

 
 
 
 
 

x = h 

x1 - h 

x2 - h 

a b 

a b 

a b 

a b 

x  

• Suppose x is a variable defined over an interval [a,b]  
 
 
 
 

 

 
 
 
 

 
• Select x = h  as a reference point 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

• x ! h  is a new quantity whose magnitude varies according to x’s current value 
over the interval [a ! h,b ! h]  

 
 
 
 
 

x = h 

x1 - h 

x2 - h 

a b 

a b 

a b 

a b 

x  

• Suppose x is a variable defined over an interval [a,b]  
 
 
 
 

 

 
 
 
 

 
• Select x = h  as a reference point 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

• x ! h  is a new quantity whose magnitude varies according to x’s current value 
over the interval [a ! h,b ! h]  

 
 
 
 
 

x = h 

x1 - h 

x2 - h 

a b 

a b 

a b 

a b 

x  
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construct a piecewise function that describes John’s speed s(t) as a function of the 

time elapsed (in seconds) t since he first arrived to a stoplight. Section 2 describes 

what happens to John’s speed after sitting still at the stoplight for 40 seconds. In 

this section, his speed increases 12mph every second. Section 2 of the piecewise 

function that models the situation is s(t) = 12(t ! 40)—for t between 40 and 44 

seconds. This means that whatever value of t that I input into the function, I will 

first calculate the change in t away from the reference value of 40. John’s speed is 

increasing by 12 mph every second, but this happens until 40 seconds after John 

arrives at the stoplight. The function s(t) = 12(t ! 40) can be thought of as a 

transformation of s(t) = 12t (John’s speed increasing 12mph every second). We 

just adjusted the definition of the function so that it can reflect the fact that we are 

not measuring the time since John first started moving.  

Case 2: Change in x, x2 ! x1 . Rico also treated x2 ! x1 as if it represented a 

quantity generated by additively comparing two different magnitudes of x —

rather than just the result of subtracting numbers. Depending on the context in 

which x2 ! x1 was used, it could either represent a varying quantity or a constant 

quantity. On the one hand, x2 ! x1 was a varying quantity in that values of x ( x1

and x2 ) could be selected as close or far apart as the domain of x allowed.17 On 

                                                
17 According to Rico, the idea that x can change by either a very large amount, say 

1,000,000 units, or a very small amount, say
1

1,000,000
of a unit, constituted a key 

aspect of defining the idea of constant rate of change, as we will see later in this 
chapter in the section on constant rate of change.  
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the other hand, the difference between two values of x could be held constant in 

order to generate subsequent intervals of equal size ( x j ! xi ) as x varied 

throughout a continuum —for example, in analyzing a function’s behavior by 

analyzing the average rate of change. The following table (Table 4) illustrates 

both cases. 

Table 4  

Image of x2 ! x1  Conveyed by Rico's Instruction 

Suppose x is a variable 
defined over an interval
[a,b]  
 

 
x2 ! x1 as a varying 
quantity. 
 

 

 
 

‘constant bits’ generating 
equally spaced intervals of 
size x1 ! x0  

 

 

 

• Suppose x is a variable defined over an interval [a,b]  
 
 
 
 

 

 
 
 
 

 
• Select x = h  as a reference point 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

• x ! h  is a new quantity whose magnitude varies according to x’s current value 
over the interval [a ! h,b ! h]  

 
 
 
 
 

x = h 

x1 - h 

x2 - h 

a b 

a b 

a b 

a b 

x  

a b 

x2 x1 

x1 x2 

x2 ! x1
 

x2 ! x1
 

a b 

a b 

x0 x1 x2 x3 

x1 ! x0
 

x2 ! x1
 

x3 ! x2
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Summary 

The notion of variable as representing more than just “a letter in an 

equation” was key in Rico’s redesign of the Algebra II course. For example, he 

included opportunities for students to utilize their previously developed meaning 

of variable and refine it. He also developed contextual situations for which 

students had to carefully define variables (and their units), as it was a means for 

students to make sense of the contextual situations presented in class.  

In summary, Rico’s efforts were geared toward helping students re-

conceive variables as representing quantities’ magnitudes as they vary. Then, he 

further used quantities to develop other ideas in the course, such as rate of change, 

which I explain in the following section. 

Rate of Change 

As mentioned in the introduction to this chapter, one of Rico’s main goals 

for the redesigned Algebra II course was to establish a few key mathematical 

ideas upon which new ideas could be continuously built. In the previous section I 

explained the ways in which Rico oriented students to thinking about variables as 

representing quantities’ values. In this section I will proceed to describe how he 

treated the idea of rate of change in instruction. It is important to clarify that, even 

though I talk about Rico developing the idea of rate of change after having 

developed the idea of variable, he actually addressed both from the beginning of 

the course. Thus, students were encouraged to extend their meanings of variables 

as they worked with ideas of constant rate of change, and vice versa.  
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At the beginning of the course, Rico had anticipated that students’ 

previous understandings about the idea of slope might be iconically related to a 

graph or to obtaining a numerical value as a result of plugging numbers into the 

formulam =
y2 ! y1
x2 ! x1

. Neither of these two ways of thinking about m conveyed to 

students anything about how one variable changes in relation to another. Thus, 

throughout Unit 1, Rico decided to include opportunities in instruction for 

students to reconsider their meaning of m, that is, for it to represent the constant 

rate of change between varying quantities, rather than simply being slope.  

Rico encouraged students to think about m as quantifying the relative 

changes between two variables, as y2 ! y1 = m(x2 ! x1) or!y = m!x .18 That is, 

define the two variables x and y and compare the relative changes between them. 

If the changes in one variable remain proportional to the changes in the other, 

then there is a constant rate of change between them. When the variable x 

                                                
18 I use this notation for presentation purposes—Rico did not use it in class. 
Instead, he presented the idea as follows: (change in y)= rate of change*(change 
in x). Rico presented the idea of rate of change in this manner so that students 
concentrate on the meanings and not be distracted by the symbols—which, for 
students, sometimes are void of meaning (Rico, RI#1 —March 09, 2010). Rico 
further explained that regarding notation, he followed one of two strategies 
depending on the situation. For example, if introducing the notation (e.g. function 
notation) was a way to avoid students’ misconceptions—as when thinking about 
why the substitution method works for solving systems of equations—then he 
would try to introduce the notation as early as possible. However, if the notation 
(e.g. sigma notation) was only a way to represent the ideas in a compact way, but 
did not provide any additional tools for thinking about the concept, then he would 
not introduce notation until students felt comfortable thinking about the ideas. 
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changes by any amount, then the variable y changes by m times as much, whether 

x changes by a very small amount or by a very large amount. 

For Rico, orienting students to think about constant rate of change in this 

way served two main purposes. First, it was a powerful way for thinking about 

linear functions. Second, if students first developed the idea of constant rate of 

change in the context of linear functions, then the idea of average rate of change 

would emerge later in the course and become an effective tool with which to think 

about functions and analyze their behavior within other contexts —for example, 

in comparing what happens to the changes in the outputs of the function as 

successive equally spaced intervals are selected for the input variable, regardless 

of the function that is being analyzed.  

In what follows, I first explain how Rico drew upon the idea of constant 

rate of change within the context of linear functions. I will then describe Rico’s 

use of average rate of change as a tool for analyzing functions. 

Constant rate of change as a way of thinking about linear functions. In 

the context of the instructional sequence on linear functions, Rico drew upon the 

idea of constant rate of change as an occasion to provide students with new ways 

of thinking about a previously learned procedure that had proved to be 

challenging for them—finding the equation of the line given two points. 

According to Rico (RI#2 —March 11, 2010), in the “traditional” curriculum, 

teachers only teach the standard form ( y = mx + b ) of the equation of the line 

when they work with linear functions. He further explained that prior to 
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redesigning the course, he had noted that students experienced great difficulty in 

finding the equation of a line—regardless of the many practice problems he would 

assign to students or the many times he would explain the process in instruction. 

After 2005, Rico came to realize that students were more inclined to 

memorize a procedure for solving this type of problem. Applying a memorized 

procedure required that they remember all the steps that were involved in the 

process of solving a problem. In his view, students had a hard time finding the 

equation because they did not understand the logical reasoning in performing the 

various steps of the mathematical procedure applied in solving the problem. The 

following example (Solution 1) illustrates the different steps that students had to 

follow in order to successfully find the equation of the line that crosses through 

(5,10) and (8,4).  

Solution 1. (Memorized Steps). 

Step 1: Start with the formula for obtaining the slope,m =
y2 ! y1
x2 ! x1

.  

Step 2: Substitute numbers into the formula and get the resultm = !2 .  

Step 3: Substitute for m in y = mx + b . It becomes y = !2x + b .  

Step 4: Substitute for x and y using one of the points provided, for example 

(5,10) 

Step 5: Solve for b in the equation10 = !2(5) + b .  

Step 6: Finally, substituteb = 20 in y = !2x + b . 
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In his redesign of the course, Rico decided to introduce the point-slope 

formula y = m(x ! h) + k as a way to provide students with a different means to 

addressing the problem of finding the equation of the line that passes through two 

points. In Rico’s view, using this representation would allow students to focus on 

changes in variables—rather than just values—more easily than with the standard 

form. In addition, by using !y = m!x as the guiding idea behind the method of 

finding the equation of the line, there was no need for students to memorize any 

steps. Rico’s learning goals for his students now went beyond having them 

successfully obtain the equation of the line. He now stressed that all the 

calculations had a certain meaning and that students could and should develop 

those meanings for themselves. Solution 2 below, emulates the way in which Rico 

encouraged students to think about the problem in his new approach to teaching 

linear functions. 

Solution 2. (Reasoning). 

Given the two points (5,10) and (8,4), we note that as x changes from 5 to 

8, it changes by 3, and as x changes by 3, y changes by -6.19 If we say that this is a 

constant rate of change (this is a given because we want to find the equation of the 

line), then y is changing by twice as much as x, whatever the change in x. But y 

decreases as x increases, so it changes by negative two times as much as x is. So, 
                                                
19 Rico commented in RI#3 (March 23, 2010) that he purposely tried not to use 

the formula:m =
y2 ! y1
x2 ! x1

. This prevented students from going back to their 

previous ways of plugging numbers into the formula without paying attention to 
the reasoning behind it. 
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the constant rate of change is -2, and I can substitute this information in the 

equation y = mx + b to get y = !2x + b . Now, if I think of the equation of the line 

as y = m(x ! 0) + b , then b is the value of y when x = 0 . In other words, the point 

(0,b) is my reference or starting point. So, let’s take one of the given points (5,10). 

If I think of x changing from 5 to 0, then x changes by -5. y will change by -2 

times as much, or 10. y’s current value is 10 and it changes by 10 as x changes 

from 5 to 0. This means that y changes from 10 to 20 as x changes from 5 to 0, so 

b (or the value of y when x is 0) must be 20. 

In Solution 2, the idea of!y = m!xwas used twice in finding the equation 

of the line. First, it was used to determine the actual value of the constant rate of 

change. Then, it was used to find the reference point (0,b) given that the value of 

m was already known. In RI#2 (March 11, 2010), Rico explained that whether 

students followed this line of reasoning every time they answered a similar 

problem was not the issue. The idea was that if at some point they could not 

remember the steps in the procedure, they still had a way to reason their way 

through the problem. 

One important aspect of using the point-slope formula as opposed to using 

the standard formula is that for any given linear function, there can exist infinitely 

many ways to represent the function algebraically, depending on the choice of the 

reference point (h,k) . Rico addressed this idea in instruction by presenting two 

different algebraic formulas: y = !2(x ! 4) + 3 and y = !2(x ! 6) !1 . He asked 

students to substitute different values for x and obtain their corresponding y-
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values. He then used this as an opportunity to point out that, even though the 

formulas “looked” different, both represented the same function, the reason being 

that all the inputs for each of them were associated with exactly the same outputs, 

thus defining the same relationship between the variables (Videotaped Lesson—

August 27, 2007).20 Oehrtman, Carlson and Thompson (2008) also raise this 

point: “Any means of defining the same relation is the same function. That is, a 

function is not tied to specific computations or rules that define how to determine 

the output from a given input” (p.159).21 

Finally, another way in which Rico used the idea of!y = m!x in 

instruction was by conveying the message to students that the definitions that they 

used should be “powerful” (Rico, RI#2—March 11, 2010). For example, he noted 

in the reflective interviews that students in their previous courses had been 

successful in answering questions in class by just providing memorized facts as an 

answer. For instance, a typical answer to the question “What does it mean for a 

line to have a constant rate of change of zero?” is “it’s a horizontal line”. In the 

redesigned Algebra II, Rico encouraged students to use the definitions stated in 

class as tools for thinking about problems and communicating their meanings. For 

example, for “What does it mean for a line to have a constant rate of change of 

                                                
20 In a ‘traditional’ approach to teaching function transformations the choice of
h,k( )  always leads to defining a new function. However, not all choices for h,k( )

end up defining a new function. And this is an issue that is simply not raised. 
 
21 I further explore this idea and its implications in the section on functions, which 
will appear later in this chapter. 
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zero?” Rico held a discussion in class using the idea of!y = m!x as a way to 

answer the question. The class concluded that a constant rate of change of zero,

m = 0 , implies that whatever the change in x, m times the change in x will be 

zero, 0!x = 0 . Thus, y, which is what gives rise to the horizontal line, will not 

change (Videotaped lesson—September 10, 2007). 

Throughout the first weeks of the course, regardless of the context—

whether working with systems of equations, linear inequalities or linear 

programming—Rico continually revisited the notion of constant rate of change. 

For example, he did this by orienting students to pay attention to the quantities 

and their units, as in Example 2—the cantilever problem— described in the 

previous section (Orienting Students to Pay Attention to Quantities). He also, 

later, used the idea of constant rate of change in linear programming as a way to 

justify why the maximum occurred in specific corners of the feasible region 

(Videotaped Lesson—September 4, 2007). Finally, Rico drew from the idea of 

constant rate of change to build toward the idea of average rate of change, and 

thus nonlinear functions—which do not follow a constant rate of change 

(Videotaped Lessons—September 11-13, 2007). 

Average rate of change. Building on the idea of constant rate of change, 

Rico encouraged students to use the idea of average rate of change as a way to 

analyze the behavior of nonlinear functions. In the introductory assignment 

associated with Unit 2, Rico pointed out that “Not all functions in math are linear 

(in fact, few really are). But we can apply some similar reasoning to nonlinear 
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functions in order to examine their behavior” (Homework Assignment—

September 10, 2007). During the following lessons (September 11-12, 2007), 

Rico held discussions with the class regarding ideas such as: “what causes a 

function’s graph to curve?”, “what does it mean for a function not to have a 

constant rate of change?”, “why would someone use a linear approach to analyze 

a nonlinear function?”, etc. 

In general, the image of average rate of change that Rico promoted in class 

can be explained as follows: suppose f is a nonlinear function. And we want to 

analyze the function’s behavior over some interval, say x1, x2[ ] . Since f is a 

nonlinear function, we know that the rate of change of the function might have 

varied within the interval. We can calculate the total change in x: x2 ! x1 . We can 

also calculate the total change in f (x) : f (x2 ) ! f (x1) . In order to describe the 

function’s behavior, we can compare it to that of a linear function that crosses 

through the endpoints, (x1, f (x1))and (x2 , f (x2 )) . If the function f had followed a 

constant rate of change over the interval, then the output would have changed by 

the same amount as the original function did over x1, x2[ ] .22 

The paragraph above describes the idea of average rate of change applied 

to a specific interval. In class, Rico promoted that students use average rate of 

                                                
22 In class, Rico addressed the idea of average rate of change in both contextual 
and non-contextual problems. One example of a contextual problem was 
determining the average speed of a car that had been accelerating over a certain 
period of time. The class concluded that the average speed was as if the car had 
traveled at a constant speed the entire time covering the same distance in the same 
amount of time (Videotaped lesson—September 18, 2007). 
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change as a way of thinking for analyzing a function’s behavior by selecting 

equally spaced subintervals for either x or f (x) , and comparing the relative 

changes to the other variable (Table 5).  

Table 5 

Image of Average Rate of Change Conveyed by Rico’s Instruction 

Case 1: “As I keep changing x by the 
same amount, f(x) is changing by more 
and more for the same change in x”. 

Case 2: “As I keep changing f(x) by the 
same amount, x is changing by less and 
less each time for the same change in 
f(x)”. 

  
 

In what follows, I present an example from Rico’s videotaped lessons. The 

example is from the first lesson of the instructional sequence on radical functions 

(October 4-15, 2007). I use this example to illustrate Rico’s use of average rate of 

change as a tool to analyze a function’s behavior. 

Example 4. Using average rate of change to think about an inverse relationship 

between ( f (x) = x vs. f (x) = x2 ) (Videotaped Lesson—October 4, 2007). 

 

 

 

 

 

 

 

 

 

y x2=
y 3.5 x 1.5+( )! 2.25+=
y 2.5 x 1+( )! 1+=

 

 

 

 

 

 

y x2=
y 3.5 x 1.5+( )! 2.25+=
y 2.5 x 1+( )! 1+=
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The homework assignment previous to this lesson was an exploration.23 

Rico used the exploration as an opportunity to discuss the idea of average rate of 

change in a contextual problem, and as a way to introduce radical functions. His 

goal of the lesson was to have students understand specific characteristics of the 

function f (x) = x that made it different from other functions in the course. In 

other words, he wanted students to analyze the effect the square root had in the 

relationship between the variables. 

Rico started the discussion by writing y = x on the board. He then asked 

students to create a table of values for each, noting that the relationship was not 

defined for negative numbers. Then, he wrote on the board a table of values, such 

asTable 6 below, and started a discussion about the changes in the output relative 

to the changes in the input. Excerpt 5 outlines the conversation. 

 

 

 

 

                                                
23 The previous lesson discussed ladders and rulers. This exploration gave 
students an opportunity to work in groups. The context was a 12-foot ladder 
leaning against a wall in an almost vertical position. Students were asked to 
analyze the relationship between the distance the ladder moved down the wall in 
relation to the distance the ladder was pulled away from the wall. The resulting 

function that modeled the situation was: y = 144 ! x2  
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Table 6  

Table of Values for y = x  

 
Excerpt 5. Exploring changes in the output relative to changes in the input for 

y = x  (Videotaped Lesson—October 4, 2007). 

Rico:  Already in the table what do we know about this function?   

Students: It's not linear. 

Rico:  S1, how come? 

S1:  Because there's not a constant rate of change. 

Rico:  So, from 0 to 1 we saw a change by 1 in the values of the function. From 

1 to 2, we saw the function changed by… 

Students: .41 

Rico: .41, so it's not linear. We also notice what’s happening to the changes, at 

least so far. 

S1:  They are getting smaller. 

!

!
!
!
!
!

! !

x y 
0 0 

1 1 

4 2 

9 3 

16 4 

x y 

0 0 

1 1 

2 1.4 

+1 

+1 

+1 

+1 

+1 

+3 

+5 

+7 
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Rico:  The relative changes here, the amount y changes for the same change in x, 

appears to be decreasing.24 Now, whether that continues or not, we have to 

see. We can keep going 3,4, and so on [he writes numbers on the board as 

the students dictate the values to him] [...] Does that pattern seem to be 

continuing? So, why is this happening? Why is y changing less and less 

for the same change in x? What about the relationship of the numbers is 

causing it? How could you explain it to somebody else?  

At this point in the course, the class had already established a way to test 

whether a function was linear or not, by inspecting a table of values for the 

function. In this particular conversation, Rico made the choice of selecting x to 

change by one unit each time. However, he did not do so in other instances, in an 

effort to orient students’ attention to the relative changes between the variables, 

and not just on the changes in the output variable—which can be promoted 

unintentionally if x is selected to always change by 1-unit increments.  

In Excerpt 6, Rico continues the previous conversation. He went to the 

board and wrote y = x2 next to the table of values for y = x  that he had 

constructed before. 

Excerpt 6. Comparing y = x  and y = x2  (Videotaped Lesson—October 4, 

2007). 

                                                
24 Despite’s Rico’s attempts to redirect students’ attention to focus on the relative 
changes of one variable with respect to the other, it seems that the students kept 
paying attention to only one of the variables. I will later present Rico’s insights 
regarding this type of problem. 
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Rico: Okay, so when we looked at this function y = x2 , and we talked about as x 

changes by the same amount, the y values continued to change more and 

more as x increased… starting at zero and x is increasing, right?25 So x 

changes by the same amount, y changes by a larger and larger amount 

each time. Could we also describe what's happening to this function [

y = x2 ] by changing y by the same amount each time? And talking about 

the change in x required such that y would change by the same amount 

each time? So, what would be true if we wanted to change y by, say 2 each 

time, what would be true about the amount that x would have to change? 

Talk to the person next to you. [The students break in groups and talk to 

each other for approx. 3 minutes. Then, they go back to the group 

discussion.] 

Rico: So, what would be true about the change in x for us to fill out a table that 

looks like this [table of values for which y changes by 2-unit increments] 

for y = x2 ? The x values would be getting larger? 

S2:  Yes. 

Rico:  What else? 

S3:  It’s getting smaller. 

                                                
25 Rico was referring to a problem with which they had worked on in a previous 
homework assignment, and which they analyzed in a similar way as he describes 
in the excerpt. The context referred to the distance (in feet) an object travels when 
starting from rest and falling for t seconds:d(t) = 16t 2 . The domain starts at t = 0 . 
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Rico:  You have to decrease your x values? So, I go from 10 to 9 to 8 to 7? You 

mean like that?... The x values are getting larger. But, what else do we 

know?  

S4:  x changes by a smaller amount each time? 

Rico:  x changes by a smaller amount each time? You guys agree with that? So, 

if when we change x by the same amount each time, y changes by larger 

and larger amounts. If we turn that around when we talk about, if y is 

changing by the same amount, that x would be changing by less and less 

and less, in order to make that true. Well, let's see if we can kind of apply 

this “backwards thinking” over to y = x . For y to change by the same 

amount each time, let's just choose 1... for y to change by 1... from 0 to 1, 

from 1 to 2, from 2 to 3, from 3 to 4 and so forth. What has to happen to 

x? x has to increase but… 

S5:  x has to increase slow. 

Rico:  What do you mean by increase slow?... What has to happen to the change 

in x each time for y to change by the same amount for y = x ? …As y 

goes from 0 to 1 how much did x change by? 

Students: 1 

Rico:  As y goes from 1 to 2 how much did x have to change by? 

Students: 3 

Rico:  3? As y goes from 2 to 3 how much did x have to change by? 

Students: 5 
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Rico:  And for y to go from 3 to 4, x would have to change by 7. So if you are 

thinking about your perfect squares as kind of benchmark points as you 

are going, you have to change x by larger and larger amounts in order to 

continue to get the same change in y, right? [See part a) from Table 7 as a 

reference] And so, that means that for equal changes in x then the change 

in y is getting smaller, and smaller, and smaller [see part b) from Table 7 

as a reference]. 

S4:  Is that because the perfect squares keep getting farther and farther apart? 

Rico:  Well, yeah, basically... if you are thinking of those as your benchmark 

points, then yeah, in the x values. 

Table 7  

Analyzing the Behavior of y = x  by Setting Equal Increments for One Variable 

and Comparing the Relative Changes on the Other Variable 

Part a) 1-unit increments in y Part b) 1-unit increments in x 

  
Rico:  And really there is a relationship between y = x and y = x2 , right? 

Because in this function [he points to the table of values for y = x ], 

when you think about the perfect squares over here [he points to the 

!

!
!
!
!
!
! !

x y 
0 0 

1 1 

4 2 

9 3 

16 4 

+1 

+1 

+1 

+1 

+1 

+3 

+5 

+7 

!

!
!
!

!

!

x y 
0 0 

1 1 

4 2 

9 3 

16 4 

x y 
0 0 

1 1 

2 1.41 

3 1.73 

4 2 

+1 

+1 

+1 

+1 

+1 

+3 

+5 

+7 

+.41 

+.32 

+.27 

+1 

+1 

+1 

+1 

+1 
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following values (1,1), (4,2), (9,3)] wouldn't those appear as your y 

values? Whereas over here [as he speaks, he constructs a table of values 

for y = x2 , including the same points he highlighted before, but the inputs 

and outputs are reversed, see Figure 9] they are your x values and the 

number that's being squared is your x values here [ y = x2 ], but it is your y 

value in this relationship y = x . […] So, when x changes by constant 

amounts for y = x2 and the output values change by more and more and 

more each time ... then if you reverse that relationship and you want your 

output values here [ y = x ] to be changing by the same amount those x 

values would have to be changing more and more. Or we can go back to 

our thinking of changing x by the same amount and the output y would be 

changing by less and less [for y = x ]. So then, what does the graph of 

y = x would look like to support this understanding of the behavior of 

the function? Sketch what you think it looks like just real quick on your 

paper and then graph it in your calculator. But, sketch it first. How does it 

have to look like to support the behavior we just discussed? 
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Figure 9. Comparing the table of values for y = x and y = x2 . 

As the students constructed their graphs, Rico went around the classroom 

looking at students’ graphs. Finally, he went back to the board and sketched the 

graph of the function, pointing out that the graph did support the function’s 

behavior that was discussed before —as x changes by the same amount each time, 

y changes by less and less. 

In the post-lesson reflection, Rico explained that his choice to bring in

y = x2 as a way to analyze y = x had been intended for students to start noticing 

the relationship between the two functions. He had decided to discuss the idea of 

the perfect squares as possible benchmarks as a way to bring to students’ attention 

to the fact that the input and output variables were reversed for y = x2 and y = x . 

Rico noted that for him, “to understand the behavior of a square root function was 
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to understand what has to happen for x for all those perfect squares —x has to 

change by more and more, to hit those perfect square points, as y changes by the 

same amount” (Rico, Post-Lesson Reflection 20071004).  

Rico further explained that the idea of setting equal changes for the input 

and analyzing the relative changes in the output, and vice versa, was a way of 

thinking that they, as a class, had already talked about in another context.26 This 

time, he had brought it up with the goal of making the link between y = x2 and

y = x .27 

Summary 

 Throughout Unit 1 of his redesigned Algebra II course, Rico encouraged 

students to use the idea of constant rate of change as a way to think about linear 

functions. He did so, by encouraging students to extend their meaning of slope, 

and provide new meanings to procedures (e.g. find the equation of a line that 

crosses through two points) and facts (e.g. if m = 0 , then the line is horizontal) 

that they had learned in previous courses. He then drew on constant rate of change 

to develop the idea of average rate of change as a tool for analyzing a function’s 

behavior. 

                                                
26 Rico was referring to the instructional sequence on accelerating objects —Unit 
2. 

27 Rico further noted in the post-lesson reflection (20071004) that making the link 
between y = x2  and y = x , was a way to “plant the seed” (Rico’s words) for 
students, so that they could keep building on the idea of an inverse relationship 
between the variables. Later, he would formalize it in the instructional sequence 
on inverse functions. I come back to this idea in the section on Functions. 
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In RI# 6 (April 13, 2010), Rico commented that when he taught the course 

in 2007, his goal had been to get students to develop a general understanding of 

average rate of change. In the introductory lessons to Unit 2, there was a 

discussion in which the class concluded that selecting smaller and smaller 

intervals led to an increase in the accuracy of describing a function’s behavior 

(Videotaped Lesson—September 12, 2007). And, in some cases, Rico selected the 

intervals to be so small that comparing subsequent intervals might be perceived as 

running through a continuum (Videotaped Lesson—October 04, 2007). However, 

Rico had made the conscious decision not to formalize the idea of rate of change 

to the extent of dealing with the idea of instantaneous rate of change, which is the 

limit of taking smaller subintervals for calculating the average rate of change. 

Rico further explained in RI#6 (April 13, 2010) that if he were to teach the 

Algebra II course again, this would be the section of the course where he would 

make the most adjustments to instruction. In Excerpt 7 he shares his insights. 

Excerpt 7. Rico's insights about his instruction on average rate of change (RI#6—

April 13, 2010). 

Rico:  [This second way through the redesigned course] I was still experimenting 

and trying to see what would work with my students. I still wasn't 

completely satisfied with how this went [in the previous academic year] 

because with all those things said about how to analyze the functions, I 

don't think I did enough to help the students appreciate what average rate 

of change meant and really what it was that they were finding. And I think 
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that had I made a larger effort to do that, I could've leveraged that to assist 

their understanding of other functions and not have it be so, sort of...not... 

inexact about the way we were talking about this…. We sort of talked 

about that, if you keep changing x by the same amount, here's how y 

changes, we compared the actual changes in the y's. But we didn't really 

compare average rates of change and what would that mean for different 

intervals28 […] But again, it took me going through and trying what I did 

in this unit to realize that I didn't do a good job with average rate of 

change. I think that if I had… it just kept feeling like I was a little bit 

limited by the choice that I made to not, I guess, to not make it so 

important that the students understand specifically what the average rate of 

change is. 

Function  

In the introduction to this chapter, I explained some of the reasons that led 

Rico to redesign the curriculum for his Algebra II course. Among these reasons 

was, after 2005, Rico came to realize that his previous instructional approach to 

function transformations—and the course in general—did not orient his students 

to developing powerful understandings about functions. Specifically, in the 

function transformations chapter, as he used to teach it, Rico had students practice 

graphing complicated transformations throughout the chapter. Sometimes, these 

                                                
28 I interpret Rico to mean that he was not encouraging students to compare the 
slopes of the secant lines for different intervals. 
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transformations, as he recalled back in RI# 4 (March 25, 2010), would take 

students more than five minutes to graph by hand. And in the end, as he notes in 

the following excerpt (Excerpt 8), he did not orient his students to thinking about 

functions in the ways he now wanted them to.  

Excerpt 8. Rico's insights about his approach to teaching function 

transformations prior to redesigning the course (RI#4—March 25, 2010). 

Rico: [Rico’s approach to teaching function transformations prior to his 

redesign] There was no connection between what was happening in the 

function itself and what the graph was actually representing […] To me, 

there is nothing about meaning in that at all. Nor was there even anything 

about functions. […] As I vary my argument what is happening to the 

outputs of the function? That discussion was completely absent from 

anything going on in function transformations. 

There are two main ideas that I want to highlight from Excerpt 8. First, 

Rico came to realize that students’ interpretation of the tasks he assigned about 

constructing the graphs of the transformed functions was different from his own. 

That is, while he assigned tasks with the idea that students construct graphs of 

functions, the tasks for them did not necessarily involve thinking about a 

functional relationship at all. Second, Rico also came to realize that his previous 

approach to teaching the topic did not provide the means for students to develop 

an understanding of function as a relationship between covarying quantities.  
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In the previous sections of this chapter I explained that, in his redesign of 

the course, Rico encouraged students to pay attention to defining variables and to 

think of them as varying. He also oriented students to thinking of rate of change 

as a tool for comparing the relative changes between the variables that conform a 

functional relationship. In this section, I expand upon two ideas. First, I describe 

ways in which Rico oriented students to build a sustained image of two quantities 

as their values (x, f (x))  vary. Then, I describe what Rico did in instruction 

building toward inverse functions. I do this with the goal of providing a sense to 

the reader of the ways in which he encouraged students to build an image of 

function as an invariant relationship between varying quantities. 

Building a sustained image of two quantities as their values vary. A 

common instruction Rico gave in the homework assignments was to find the input 

value for a given value of the output. Rico encouraged students to solve the 

problem either algebraically or graphically. While this type of question frequently 

appears in most Algebra II courses, it is asked generally only in a section on 

solving equations. In Rico’s case, he asked his students to find the input value for 

a given value of the output in many varied settings to reinforce the need for 

students to pay attention to the meaning behind each operation that they 

performed as they worked their way to a solution.  

The following examples demonstrates the line of reasoning that Rico 

promoted for his students to follow for evaluating a function for a given value of 

the input (Solution 3) and finding the value of the input for a given value of the 
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output (Solution 4).29 Both examples are drawn from the instructional sequence 

on linear functions.  

Solution 3. Rico’s approach to answering, “How the function calculates the 

output value for a given input value?” 

Consider the linear function y = !2(x ! 5) +10 . When you input a value of 

6, how is the function calculating what the output value will be? 

First, we put in 6 for x: y = !2(6 ! 5) +10 and we get 1 inside the 

parenthesis y = !2(1) +10 . This means that the change in x away from 5 is 1. So x 

increased by 1, right from where we had our arbitrary starting value. Next, we 

multiply -2 times 1, which is -2. This value now represents the change in y away 

from its starting value of 3. If y decreased by 2 units from its starting value of 3, 

this means that the actual value of y is 1. 

Solution 4. Rico’s approach to answering: How does the function calculate the 

input for a given output value? 

Consider the linear function y = !2(x ! 5) +10 . If the value of y is 7, what 

is the value of x? 

First, we can rewrite the equation as y !10 = !2(x ! 5) . y’s current value 

is 7, and it changed away from its original value of 10. 7-10 represents the change 

in y away from 10, which in this case is -3. This means that the value of y 

decreased by 3 units !3 = !2(x ! 5) . We know that the constant rate of change is 
                                                
29 Both examples draw from the idea of constant rate of change to explain the 
meaning behind the calculations. 
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-2. This means that whatever the change in x, y changes -2 times as much. In 

addition, if y changed by -3, then the change in x was
1
m

(or
1
!2

) times as large as 

the change in y. So the change in x was 
1
!2

"
#$

%
&'
( (!3)or

3
2

. Finally, we know that 

x’s reference value was 5 and it changed by
3
2

. This means that x’s current value 

is5 +
3
2
=
13
2

. 

As noted before, Rico did not expect that every time the students solved 

similar problems, they did so by following each of the steps outlined above. 

However, Rico felt that knowing what each operation meant was as important as 

obtaining a result. Thus, he encouraged students to practice this way of thinking 

in class. He even included similar questions in the quizzes. 

Later in the course, Rico encouraged students to graph the function f(x) in 

their calculators and use the function’s graph or table of values to estimate x. This 

method was suitable for cases where solving the problem algebraically was not 

viable, for example, with polynomial functions.  

Excerpt 9 illustrates the method described above. The excerpt is from a 

videotaped lesson (September 28, 2007) in Unit 2. In the previous class meeting, 

Rico posed a contextual problem that could be modeled with a cubic function. He 

expected the students to answer a series of questions (e.g. finding the appropriate 

formula for the function, determining the domain and range, graphing the 

function, explaining the meaning of the function in terms of the context of the 
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situation) as homework. The next day, Rico allotted some time for students to 

discuss their answers with each other. Then, he started a class discussion in order 

to highlight some aspects about the homework. It is in the context of the class 

discussion that Excerpt 9 takes place. 

The prior lesson’s contextual problem was about an artist (Amy) who was 

selling sculptures. As part of the assignment, students had to come up with a 

function that modeled Amy’s income in dollars f(n) as a function of n, the number 

of replicas that she could create and sell. The function that modeled the situation 

was the following: f (n) = !.3n3 +1500 . 

Excerpt 9. How many replicas did she create if you knew Amy’s income was 

$36,704.70? (Videotaped Lesson—September 28, 2007). 

Rico:  How many replicas did she [Amy] create if we knew her income was 

$36704.70, assuming that our model is perfect in terms of what it predicts? 

So, what do we do with this? [Rico writes on the board:

36704.70 = 1500n ! n3 ] 

S1:  Same as we did last time: plug in 36704.70. y equals that, and then, find 

where the line of intersect goes. 

Rico:  So, S1 is saying we should solve this with a graph. Can we solve it 

algebraically? [Some students say “yes” and others say “no”] 

Rico:  Well, with quadratics your technique is to set the equation equal to zero, 

so you can employ either your factoring approach or the quadratic 

formula. Do we know any formulas that work with cubic functions? 
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Students: No. 

Rico:  And, if we subtract, we end up with [he writes 3n3 !1500n + 36704.70  

on the board as he speaks]. Can we factor that down? 

Students: No. 

Rico:  Not very easily. Your best approach here is going to be to use a graph, just 

as S1 said. We are going to plug in our original function [Rico shows the 

calculator’s screen on the overhead and graphs the following functions on 

the same screen: f (n) = 1500n ! .3n3and g(n) = 36704.70 . Figure 10 

shows what is shown on the screen. 

 

Figure 10. Graphs of f (n) = 1500n ! .3n3and g(n) = 36704.70 . 

Rico:  Here’s our income function… What does the horizontal line represent? 

S2: y = 36704  

graphs g(n) = 36704.70 ] Here's our income function. What does this horizontal line 
represent? 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
S2: y=36704 
Rico: It’s an income of…? 
S2: 36704.70  
Rico: 36704.70 dollars. So what you want to figure out is when is Amy's income (tracing 
the graph of f(n) with his finger as he speaks)... when is her income equal to 36704.70 
dollars (tracing the graph of  g(n) as  he speaks). So we find the intersection of those two 
functions and we get 29.72 sculptures... and let's check the other one, because there are 
two intersection points here... and we get 51 sculptures. Now, assuming that our model is 
perfectly accurate, how many sculptures did she sell? 
S3: 51 
Rico: Did she really sell the 29.72 sculptures? 
S3: We need to cut it down. 
Rico: Well, we really don't even think about that in terms of fractions of sculpture, right? 
So really the answer to this one, we really want to choose 51 sculptures. The other answer 

y 0.3x3! 1500x+=
y 36704.7=

f(x) 

g(x) 
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Rico:  36704.70 dollars. So, what you want to figure out is when Amy’s income 

[tracing the graph of f (n)with his finger as he speaks]... When is her 

income equal to 36704.70 dollars [tracing the graph of g(n)with his finger 

as he speaks]? So we find the intersection of those two functions and we 

get 29.72 sculptures... and let's check the other one, because there are two 

intersection points here... and we get 51 sculptures. Now, assuming that 

our model is perfectly accurate, how many sculptures did she sell? 

S3:  51 

Rico:  Did she really sell the 29.72 sculptures? 

S3:  We need to cut it down. 

Rico:  Well, we really don't even think about that in terms of fractions of 

sculpture, right? So really the answer to this one… We really want to 

choose 51 sculptures. The other answer doesn't seem to make sense in this 

context. And again, this is assuming that our price function... if she really 

followed the price function30 on how to price the items, then this is a 

perfect model for her income. 

Rico oriented students to paying attention to all the operations31 that they 

performed to the input in order to obtain the output and vice versa. That is, Rico 

                                                
30 The function was stated in the contextual problem. It refers to the price p(n)
that collectors are willing to pay (in dollars) as a function of the number of 
replicas that Amy creates, p(n) = 1500 ! 0.3n2 . 

31 I must clarify, as I did before, that in this case I am referring to operating with 
quantities, not numbers.  
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also encouraged students to find the value of the input for a given value of the 

output. In this sense, Rico was promoting to his students the development of a 

sustained image of the two quantities involved in the functional relationship.  

In what follows, I explain what Rico did in instruction as he built toward 

the idea of inverse functions. It is in this context that a sustained image of the two 

quantities involved in the functional relationship was key to the students’ 

understanding. Specifically, Rico introduced the idea of a logarithmic function as 

the function that reversed the relationship between the input and the output 

variables for an exponential function. 

The instructional sequence on inverse functions was a sequence in the 

second semester of the course. However, in his redesign of Algebra II, Rico 

decided to include questions throughout the course that built toward a notion of an 

inverse relationship between the variables. For example, in the section on average 

rate of change, I presented excerpts from the introductory lesson to the 

instructional sequence on radical functions. In that particular lesson, Rico used 

f (x) = x2  as a resource to further explore f (x) = x . He did so by orienting 

students to analyze the relationship between the inputs and outputs of the 

functions and what happened to changes in one variable relative to changes in the 

other variable for the two functions. 

Later in the course, after having defined and worked with exponential 

functions, Rico drew from reversing the relationship between the variables —just 
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as he did before with f (x) = x2  and f (x) = x —to define logarithmic functions 

as follows: 

Consider the following: 4 x = 10 . Without graphing the function and using 
Trace or the Table, we can’t answer the question “What exponent on 4 
gives us 10?” (Although we do know the answer is somewhere between 1 
and 2). We have a function whose input, x, is the exponent and whose 
output, 10, is the result of using that exponent on a base 4 (4x = 10). A 
logarithmic function, however, reverses this. It takes the result (10) of 
raising 4 to some exponent and uses this result (10) as its input. The value 
the function returns is the exponent necessary on 4 to get 10. Since we are 
working with an exponential of base 4, the logarithmic function would be 
called a “base 4 logarithm” or “log base 4”. So if you want to know the 
answer to the question “What exponent on 4 gives us 10?” the answer 
would be “The log base 4 of 10” (which again means the output of the log 
function, which is the exponent you are looking for, and will be some 
number between 1 and 2). (Rico, Homework Assignment 20080124) 

 

There are three key aspects of the previous excerpt that I would like to 

highlight. First, Rico’s choice of sequencing the ideas (exponential, logarithmic, 

and inverse functions) was different from the textbook’s sequencing. Second, this 

equation 4 x = 10 in the context of exponential functions, was about finding the 

input x such that f (x) = 10 . Third, Rico introduced logarithmic functions by 

attending to the meaning of the relationship between the quantities of an 

exponential function.  

Regarding the first aspect, Rico’s sequencing of ideas regarding 

exponential functions, logarithmic functions, and inverse functions was different 

from the textbook’s approach. The textbook introduces the topic in this order: 1) 

exponential functions, 2) inverse functions, and 3) logarithmic functions. In 

Rico’s case, he reversed the order between inverse functions and logarithmic 
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functions. I do not consider whether one approach is better than the other in terms 

of which topic should go first. Instead, I point to what Rico did in the course prior 

to the instructional sequences on logarithmic functions and inverse functions that 

was aimed at preparing students’ thinking to get to a point in which reversing the 

order of the topics was intended to help students develop more powerful meanings 

about exponential functions, inverse functions, and logarithmic functions (and 

about functions, in general). 

In the lessons prior to the homework assignment from which the excerpt 

above was taken, the class had worked with exponential functions of the form 

f (x) = abx where a represents the initial value and b denotes the growth factor. 

Also, as I had explained before, the question of finding the input—in this case x—

for a given output of the function f (x) = 10 , was already established as a natural 

question to ask about functions, including exponential functions. Up to this point 

in the course, students’ methods for answering the question of what input will 

produce a given output included creating a table of values or a graph of the 

function, rather than employing the algebraic method.  

Together, these two examples of defining functions that are inverses of 

each other ( f (x) = x2  and f (x) = x , and f (x) = 4 x  and f (x) = log4 (x) )32 point 

                                                
32 I also refer the reader to a previous example from the section on constant rate of 
change. In that example, Rico’s instruction brought to students’ attention that 
even though the formulas y = !2(x ! 4) + 3and y = !2(x ! 6) !1 looked different, 
both represented the same function, the reason being that all the inputs for each of 
the formulas were associated with exactly the same outputs, thus defining the 
same relationship between the variables. 
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to an important characteristic of how Rico treated functions in instruction: what 

made a function be a function was not specific features of the graph (e.g. a u-

shaped graph) or specific features of the formula (e.g. the one with or log ). 

Instead, he constantly oriented students to paying attention to the relationship 

between quantities, regardless of the representation with which they were 

working. 

Throughout the course, Rico kept orienting conversations so that students, 

as a group, talked about aspects of the functional relationships rather than features 

of the representations per se. He did so in many ways. For example, he always 

asked students to plot a point and explain its meaning in the context of the 

situation. He held discussions with students contrasting features of the phenomena 

that they modeled vs. features of the graphs used to represent the phenomena. 

Finally, as I showed in the introductory lesson to radical functions, Rico first 

discussed the properties of the function with the students and then he asked them 

to sketch the graph according to what they had just discussed. He encouraged 

students to sketch the graph according to their interpretation and then compare 

their graphs to that provided by their calculator. 

In his new Algebra II, Rico encouraged students to use different 

representations for functions. However, for Rico, the ultimate goal was no longer 

that his students move flexibly from one representation to another, as was his goal 

when he previously asked students to construct graphs from algebraic formulas. 

Instead, his goal was that students come to conceptualize functions in such a way 
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that regardless of the representation they were using at the moment, they were still 

thinking about a function—an invariant relationship between covarying 

quantities. 

 

Figure 11 Introduction to Inverse Functions (Homework Assignment--February 8, 

2008). 

This is not to say that Rico did not value using multiple representations of 

functions. In fact, in the definition shown in Figure 11 from the introductory 

homework pertaining to the instructional sequence on inverse functions (February 

8, 2008), Rico introduced the idea of an inverse function by means of four 

different representations (algebraic, graphic, table of values, and a written 
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Inverse Functions 
(You may work with the people around you to complete this) 

 
The relationship between exponential and logarithmic functions that we have studied in great depth 
recently is a great example of inverse functions. Consider the functions  and 

. 
 
For f (x):                   For g (x) 

 

 
The relationship between these two functions should be clear to us – the input and output 

values show the same relationships, but the variables are switched. In one function, the exponent is in 
the input and the result of raising 5 to that exponent is the output, in the other function the result of 
raising 5 to an exponent is the input and the corresponding exponent is the output. The functions f and 
g given above are inverses of each other. An inverse function is a function that shows the same 
relationship as another function but reverses the inputs and outputs (so what used to be x is now y and 
what used to be y is now x). 
 You’ll notice in this case that the inverse of f (which is g) is also a function since each input 
value has a single unique output. This may not always be the case. Other examples of inverses include 

 and  or  and  (although we have to be careful with this 
second inverse pair – we’ll get to that). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x y 
-3  1/125 
-2  1/25 
-1  1/5 
0 1 
1 5 
2 25 
3 125 

 
 

x y 
1/125 -3 
1/25 -2 
1/5 -1 
1 0 
5 1 

25 2 
125 3 
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description).33 The difference now, however, was that, what Rico oriented 

students to pay attention to was what remained the same across representations —

the functional relationship between the variables. In other words, the idea of 

function that Rico now envisioned for students was such that, “the core concept of 

‘function’ is not represented by any of what are commonly called the multiple 

representations of function, but instead our making connections among 

representational activities produces a subjective sense of invariance” (Patrick W. 

Thompson, 1994b, p. 23). 

A brief comparison between Rico’s curriculum design and the 

textbook’s presentation of topics. According to Rico, other colleagues (and 

himself in the past) used to follow the textbook much more closely than he did in 

his redesign of the course. He stated in RI#1 (March 9, 2010) that he used the 

textbook in his redesign as a source of contextual problems, but he never used the 

follow up questions because, to him, those questions were just “procedures with 

words around them”. To further understand what Rico meant by this, I present a 

brief comparison between the textbook’s approach and Rico’s approach to 

teaching inverse functions. 

Contrasting Rico’s curriculum design with the curriculum as suggested by 

the textbook, opens up new insights about Rico’s design of instruction at different 

levels (from particular tasks, to their overall treatment of the mathematics). To 

                                                
33 In the next section of this chapter, I expand on Rico’s treatment of inverse 
functions. 
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further expand on those insights, I would like to bring into the discussion, 

Simon’s (2007) contrast between a teacher with perception-based perspective and 

a teacher with a conception-based perspective to teaching. A key difference 

between both perspectives (as I understand them) is the teacher’s philosophy that 

guides his selection (or design) of tasks to use in instruction. I use the word 

philosophy, because it seems that in appearance either teacher, informed by 20 

years of reform, would select tasks that revolve around real world applications, or 

promote that students work in groups, or even both teachers would expect to hold 

whole group conversations in which attending to students’ strategies behind their 

solutions are valued and encouraged. However, a teacher with a perception-based 

perspective might fail to provide substantiated reasons as to what purpose these 

“in vogue” activities might serve in students coming to learn the intended ideas 

behind the tasks. In contrast, a teacher with a conception-based perspective about 

his practice, would be able to develop a personal theory of student learning that 

would inform his practice. In this sense, holding whole group conversations 

allows the teacher to make better sense of how the students are interpreting 

instruction, rather than, “let’s engage in a whole group discussion in which you, 

students, participate in trying to guess what I have in mind”. Now, going back to 

the contrast between the textbook and Rico’s curriculum design, I stretch34 

                                                
34 I use “stretch” because I’m extending a researcher’s lens to analyze a teacher’s 
practice into an author’s intended ideas as conveyed by the textbook. However, I 
am the first one to understand how hard it is to convey one’s ideas in written 
form. So I do not make claims about the author’s perspective. I do make claims 
about the author’s conveyed message. 
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Simon’s (2007) two perspectives (conception- and perception-based) to contrast 

the two approaches. I take the idea of inverse function as an example. I first 

describe very briefly the textbook’s approach, and then I expand on what I 

discussed in the previous sections of this chapter regarding Rico’s treatment of 

inverse functions.  

Textbook’s approach to inverse functions. The instructional sequence 

starts by providing a contextual problem. The contextual problem involves a 

skating track that is .4 km long. The number of laps a skater needs to skate 

depends on the distance of the race. Students are asked to fill in a table that relates 

the distance in km, and the number of laps. 

Speed Skating Races 
Distance 

(km) 
Number of 

laps 
10 ? 

5 ? 

3 ? 

? 3.75 

? 2.5 

? 1.25 
 

Figure 12. Table that relates the number of laps to the distance (in km) of the 

race. Source: (Rubenstein, Craine, & Butts, 2002). 

Then, the problem asks students to write a rule that describes the number 

of laps skated as a function of the distance of the race and the rule that describes 
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the distance of a race as a function of the number of laps skated. Finally, the 

students are asked to graph both relationships on the same set of axes. 

Then, the textbook provides a definition: “Two functions f and g are 

inverse functions if g(b) = awhenever f (a) = b ” (Rubenstein, et al., 2002, p. 297)  

and shows students that the graph of the inverse is the reflection of the graph of 

the function. Also, students are directed to be careful not to confound the 

exponent -1 in f !1(x)  with the reciprocal of the function 
1
f (x)

. In addition, a 

procedure for finding an inverse function by reflecting the original function over 

the line y = x  is provided, noting that students should use the vertical line test 

whenever they reflect the graph, so that they can make sure that the reflected 

graph represents a function. Finally, a method for finding the inverse function 

algebraically is provided. The section is followed by practice problems. 

Comments to the textbook’s approach to inverse functions. 

1. The definition of an inverse function is provided as a mere fact and it is 

not used in any other context—not even to justify the algebraic procedure 

for finding an inverse function. 

2. The image of an inverse function conveyed by the textbook—with careful 

attention to notation and to outline the different steps in the procedures to 

determine inverse functions either graphically or algebraically—promotes 

at most a pseudo-empirical abstraction of what inverse functions are. 

3. The following section in the textbook introduces logarithmic functions as 

the inverse function of an exponential, but based on the previous image, 
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one can imagine that the logarithmic function f (x) = log5 (x)becomes a 

‘switched graph of f (x) = 5x ’.  

Comments to Rico’s approach to inverse functions. 

1. As I explained in previous sections, Rico was ‘planting seeds’ towards 

building the idea of inverse function since the first semester of the course.  

2. Rico introduced inverse functions, by means of comparing functions that 

had the characteristic that the relationship between the quantities was 

‘reversed’.35 

3.  Drawing from function composition (which was an instructional sequence 

in the first semester), Rico then asked students to compose the graphs of 

f (x) = 5x  and g(x) = log5 (x)  (Figure 11) and further explore what it 

means for two functions to be inverse of each other. (Figure 13) 

 

                                                
35 Someone might argue that by introducing the contextual problem, the textbook 
was doing the same. However, a student might also interpret the relationship 
between the numbers in the table (Figure 1) as letting the .4 float around the table 
without paying attention to the actual relationship between the variables: distance 
traveled (in km) vs. the number of laps. 
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Figure 13 Continuation of Introduction to Inverse Functions (Homework 

Assignment—February 8,2008). 

4. Then, Rico provided a list of functions (  f (x) = 0.5x3 ,   f (x) = x2 , 

  
f (x) =

2
3

x ! 4 , and f (x) = 2
x ) for the students to create the table of 

values, graph the function and its inverse according to the table of value, 

determine whether the relationships described a function or not, and to 

create formulas for the inverse functions. Once the students had followed 

the same process for different functions. Rico asked the students to graph 

Alan 20080208.doc 
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Function Composition and Inverse Functions 
 Remember function composition? Composing functions involves taking the output of a 
function and using it as the input of another function. Use the graphs above (and the corresponding 
tables), create the graph of each composed function give below. 
 

   
What happened when you composed the functions?  
 
 
Why did this happen, and do you think it will happen every time you have two functions that are 
inverses of each other? Explain. 
 
 
Now, try algebraically composing the functions (create the formula for the composed function, then 
simplify). Remember that  and . 
 
Find the formula for .    Find the formula for . 
 
 
Do the formulas support what you found in the graphs? Explain. 
 
 
In the functions  and , does “x” mean the same thing? Explain. 
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all functions and their inverses on a set of axes and to see if they noted 

something interesting about the graphs. He further asked students to graph 

y = x . (See Figure 14 for an example) 

 

 

Figure 14 Graphs of  f (x) = 0.5x3 ,   f (x) = x2 , f (x) = 2x  and
  
f (x) =

2
3

x ! 4 , and 

their inverse relationships (not all functions).  

In summary, from a general perspective, Rico was paying attention to the 

long-term development of ideas and ways of thinking, such as the development of 

the idea of function as a covariation of quantities. From a fine-grained perspective 

he paid careful attention to the logical development of every method, formula, 

operation within formula, etc. that emerged in the discussions throughout the 

course. 
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A student experiencing instruction about inverse functions as treated by 

the textbook would probably develop substantially different understandings 

(about inverse functions, functions in general, where methods and algorithms 

come from, etc) than a student in Rico’s Algebra II. Coming back to Simon’s 

perspectives, even though the textbook starts the discussions with contextual 

problems, and deals with multiple representations of functions, etc. it addresses 

the mathematical ideas from a perception-based perspective. Whereas, I would 

argue, based on the multiple examples that I’ve tried to construct from his design 

of instruction, that Rico is an example of a teacher with a conception-based 

perspective towards his instructional practice. 

I referred to inverse functions as just an example, but if we were to zoom 

in into other parts of Rico’s curriculum design, we would be able to appreciate a 

similar pattern: his careful attention to the integrity of the mathematical ideas and 

the development of tasks and discussions around them that attend to the logical 

necessity of someone who does not already understand the ideas, to develop 

meaningful and powerful understandings of them. 

Rico’s course aimed at helping students develop long-term ways of 

thinking and ideas. This aspect of his MKT cannot be described by attending to 

particular lessons. It has to do with long-term learning goals for his students. 

However, if we were to discuss Rico’s curriculum design only from a general 

view, then we would fail to truly describe the many ways in which he provided 

his students with multiple opportunities to engage in an intellectually challenging 
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and fun Algebra II course. Thus, a balance of the two views (a general view of 

Rico’s overall curriculum design and fine-grained analyses of his lessons) is what 

better helps to characterize Rico’s MKT. 

Summary 

In this chapter, I discussed ways in which Rico treated important 

mathematical ideas in his redesign of the Algebra II course. Specifically, I 

addressed Rico’s ways of thinking about variable, rate of change, and function. 

Through various examples from Rico’s instructional material, videotaped lessons, 

and reflective interviews, I highlighted ways in which Rico oriented his students 

to paying attention to variables as quantities, to developing an idea of rate of 

change as a way of quantifying the relative changes between two quantities, and 

to function as defining an invariant relationship between covarying quantities. 

In the following chapter, I will use Rico’s Algebra II as data in order to 

further explore Rico’s MKT. I now delve into what allowed Rico to create the 

course that he created and to interact with students in the way he did. 



!

! 128 

CHAPTER 7—RICO’S MATHEMATICAL KNOWLEDGE FOR TEACHING 

Introduction 

In Chapter II, I proposed Silverman and Thompson’s (2008) framework 

for MKT as a way to describe how a person transforms his mathematical 

understandings into pedagogical actions. According to the framework, a teacher 

has developed a KDU when he constructs a scheme of meanings that proves 

central for understanding a wide range of other ideas and methods. However, it is 

until the teacher becomes reflectively aware of the KDU and realizes that students 

would benefit from thinking in similar ways, that he is developing a KPU. A 

teacher has a fully developed KPU when he has further developed a mini-

instructional theory about how he can support students in building the KDU. 

In the previous chapter I provided details regarding the progression of 

ideas in Rico’s Algebra II. I divided my descriptions of the progression of ideas 

into themes according to three of the key mathematical ideas in which Rico 

anchored the Algebra II course: variable, rate of change, and function. For each of 

these ideas, I provided details about the images that Rico promoted in instruction 

by drawing upon instructional material, videotaped lessons, and excerpts from the 

stimulated-reflection interviews. In this chapter, I use the images conveyed by 

Rico’s instruction to further explore his MKT that supported his redesign and 

teaching of the Algebra II course. To do so, this chapter is divided into three 

sections. In the first section, I describe the KDUs that I attribute to Rico, as they 

relate to the Algebra II course. The second section provides explanations 
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regarding what allowed Rico to envision an alternative approach to teaching the 

Algebra II course. In the third section, I discuss Rico’s KPUs that supported his 

instructional design of the course. And in the last section of this chapter, I 

comment on other aspects of Rico’s MKT, such as how he envisioned student 

engagement and how he assess his practice. 

Rico’s KDUs  

In what follows, I provide explanations of the KDUs that I attribute to 

Rico in relation to his instructional design and teaching of the Algebra II course. I 

focus on the schemes of meanings that Rico operated on specifically addressing 

his notion of variable, rate of change, and function—key ideas from which the 

rest of the course emerged. 

• Rico was fluent in conceiving of and operating with quantities. For 

Rico, a variable represented a quantity’s magnitudes. 

• Rico imagined variables moving smoothly. This means that, if x 

represents a quantity’s magnitudes, then as x varies throughout its 

domain, it does so by taking on all the possible values along a 

continuum. 
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• Rico’s understanding of constant rate of change was deeply embedded 

in proportional reasoning. For him, m represented a rate36(P. W. 

Thompson & Thompson, 1992)—a quantity that is the result of a 

multiplicative comparison between two other quantities. For example, 

suppose thatm =
1
3

then, for Rico: 

o Whatever the change in x, y changes m or
1
3

times as much as 

the change in x. 

o Whatever the change in y, x changes by
1
m

or 3 times as much 

as the change in y. 

• In thinking of average rate of change for analyzing the rate of change 

of a function, Rico could imagine secant lines of a fixed length 

running all the way through either the domain or range of the function, 

in order to describe how the values of one variable changed in relation 

to values of the other variable. In addition, Rico could vary the length 

                                                
36 It is not always the case that m is conceived as a rate. Suppose, for example, 

that someone holds either of the two following images ofm =
1
3

: “for every unit 

that y changes, x changes by 3 units” or “for every unit that y changes, x changes 

by
1
3

of a unit”. In both cases, the person is coordinating the changes in one 

quantity to changes in another quantity. However, in both cases, the changes are 
fixed by 1-unit increments. It might be possible that the person holding either of 
the previous images present some difficulties in imagining the proportional 
relationship between x and y being maintained if the change in either of the 
variables is .001 or 1,000, 000. 
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of the secant lines to the point of making their length almost 0, 

allowing him to describe the behavior of the function as if he were 

referring to instantaneous rate of change. 

• Rico seemed to have an understanding of function as an invariant 

relationship between covarying quantities. It was an invariant 

relationship in that, regardless of the representation being used, what 

defines a function is the relationship between the quantities and not the 

representation per se.  

• Rico imagined the quantities defining a function as existing 

simultaneously, (x, f (x)) . That is, for Rico, if x = a then, he could find

f (a) ; and vice versa, if he knew f (a) , he could also find a. This 

image is opposed to an image in which if x = a then, one can find 

f (a) , but the question about finding x for specific values of f (x) is 

never asked. In the latter case, f (x) only exists as a consequence of 

knowing specific values of x.  

• Rico’s view of the domain and range of a function was compatible 

with how Oehrtman, Carlson and Thompson (2008) define someone’s 

understanding of domain and range from a process view of function: 

“Domain and range are produced by operating and reflection on the set 

of all possible inputs and outputs” (p. 36); as opposed to conceiving 

them as either the solution to an algebra problem (e.g. the denominator 

cannot be zero) or as a property of a graph. 
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• Rico conceived of graphs of functions as composed of points, each 

point representing the simultaneous state of the two quantities in the 

functional relationship (Saldanha & Thompson, 1998). In addition, 

Rico could differentiate between the attributes of a physical situation 

and the attributes of the graph of the function that modeled the 

situation. 

• More specifically, in envisioning function transformations, Rico did 

not think of f (x) = x + 2 as the result of adding two units to the 

algebraic expression of the function f (x) = x , so that, in order to 

calculate an output of the function there is one more operation to 

perform, ‘adding a two’. Nor did Rico think of function 

transformations as shifting the graph of the function ‘two units up’. 

Instead, Rico performed operations on functions. He envisioned a new 

function g(x) , which could be described in terms of the function f (x)

as follows: g(x) = f (x) + 2 . ‘Adding the two’ was an operation 

performed on all the outputs of a previously defined function and not 

on single input values. 

• Rico did not conceive of inverse functions as the result of an algebra 

problem, in which one has to solve for x and interchange the literals in 

the problem. Instead, he conceived of inverse functions as “the 

reversal of a process that defines a mapping from a set of output values 
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to a set of input values” (Oehrtman, Carlson, and Thompson, 2008, 

p.36). 

Envisioning an alternative approach to teaching the Algebra II course  

In Chapter 5, I explained that, according to Rico’s report, he had always 

enjoyed mathematics and that, for him, mathematics was about reasoning his way 

through novel problems. Specifically, Rico demonstrated a strong personal 

understanding in the two courses that he took as part of his participation in the 

TPCC project. 

Rico’s understandings of the mathematical ideas in Algebra II seemed to 

have supported his curriculum redesign. Despite Rico’s powerful understandings, 

his instructional approach prior to joining the TPCC, according to both his own 

narrative and sample materials that he shared, did not aim at helping students 

develop powerful understandings such as the ones he himself held. It seems that it 

was not until he became reflectively aware of his own understandings that he was 

able to envision a new instructional approach for the course. By becoming 

reflectively aware I mean that Rico became able to ‘see’ his own understandings 

and take them as a point of reference for comparison (or objects for reflection) in 

relation to his hypotheses of how someone else (his students) might come to learn 

the mathematical ideas of the course.  

In addition, it seems that Rico also became reflectively aware that his 

students’ mathematical realities were different from his own. Meaning that in 

envisioning pedagogical actions to help students develop the ways of thinking he 



!

! 134 

held as learning goals, he also needed to attend to his hypotheses of where the 

students were coming from and how they might end up interpreting his 

pedagogical actions, leading him to develop mini-theories about how he could 

best support his students as he redesigned the course. 

As a result of trying to come up with new ways to help his students 

develop powerful was of thinking, Rico came to realize that if students 

experienced instruction from a traditional approach—consistent with the 

textbook, other colleagues, and Rico’s previous instruction—the students were 

likely to develop misconceptions and might not develop powerful understandings 

of the course material. According to Rico, (RI#1, March 9,2010), this was the 

case with the function transformations chapter that he used to teach prior to 

joining the TPCC. His previous approach reinforced students’ impoverished ways 

of thinking about graphs and did not help them develop an understanding of 

functions as a relationship between covarying quantities.  

In revamping the course, Rico came to realize that for students to develop 

ways of thinking about functions that were compatible with what he had in mind, 

he would need to begin establishing student thinking from the beginning of the 

academic year. In order to do so, Rico anchored the course in a few mathematical 

ideas that would provide students with tools for reasoning about functions. Rico’s 

curriculum was not about topics or sections from the book anymore, which led 

students to develop isolated and disconnected meanings, but instead it was about 

helping students develop ways of thinking that allowed them to internalize the 
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curriculum as a coherent system of ideas. As a system, meanings were 

interconnected and built on each other.  

Rico’s KPUs 

Variable. Rico anticipated that students’ previous understanding of 

variable might be based on the idea that a variable is a letter in an equation. Rico 

realized that he had to provide opportunities for students to extend their 

previously developed meanings, so that they could come to imagine variables as 

taking on any range of values through a certain domain for which the variable was 

defined. However, at the beginning of the course, Rico did not emphasize 

variables varying smoothly. He did this as he talked about average rate of change. 

All throughout Unit 1, Rico did emphasize variables assuming many different 

values, but it seems—from what can be interpreted from videotaped lessons and 

instructional material—that variables varying smoothly, came into play until the 

class discussed ideas of average rate of change in Unit 2. Rico’s emphasis in Unit 

1 seems to have been in students becoming aware that variables could take on any 

of a wide range of values, and that those values were not always integers. 

Rico designed contextual problems as tools for helping students conceive 

of situations mathematically. He constantly oriented students to pay attention to 

the quantity whose values a variable represented.  Every time a variable came into 

play, Rico put special emphasis on the variable’s definition and its units. Also, he 

stressed that in a problem, a variable is free to vary —it can assume any of a range 

of values for which the variable is defined.   
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Furthermore, Rico anticipated that if students could come to think about 

variables in the ways that he now intended for them, then, they would be 

encouraged to think about constant rate of change as the result of operating with 

quantities rather than numbers. Also, he was laying the groundwork so that 

students could develop a dynamic view of variable, which at the same time would 

empower students to thinking about functions as composed of covarying 

quantities. 

Rate of change. Rico anticipated that students’ previous understandings of 

slope were tied to an iconic image of a line. In Rico’s view, this way of thinking 

about slope was not about quantifying the relative changes between variables. It 

was just about finding a number m, the result of dividing two numbers. Rico 

encouraged students to pay attention to the proportional relationship between the 

variables. Furthermore, Rico seemed to be aware of the problems that might cause 

to students to consider whole-unit changes, so he emphasized that, whatever the 

change in one of the variables, the other changed by m times that amount.  

According to the new ways of thinking about functions that Rico wanted 

his students to develop, the idea of constant rate of change (with linear functions) 

and later average rate of change (with non-linear functions) could become a 

powerful way to orient students to analyzing a function’s behavior by means of 

assessing how the values of the variables changed in relation to one another. For 

Rico, this way of thinking about rate of change provided students with a new tool 

for analyzing a function’s behavior, regardless of the type of function, without 
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having to memorize a set of parent functions provided by the teacher, as he had 

done in the past. 

Function as an invariant relationship between covarying quantities. 

Rico’s goal regarding the concept of function was to set up a way of thinking 

about functions that remained coherent throughout the course, regardless of the 

specific operations that defined each type of function. Different operations 

defined different functions, but in essence, all the functions in the course 

represented a relationship between covarying quantities, and that relationship 

remained the same regardless of the representation that was used to describe the 

relationship. 

In order to develop such a sophisticated view of function, Rico promoted 

that his students develop an algebraic reasoning based on reasoning about 

quantities. That is, Rico oriented students to think of algebraic expressions as 

tools for reasoning about contextual situations. As students manipulated those 

algebraic expressions, they were encouraged to reflect on the operations they 

performed, shifting away from mere manipulation of symbols. In Rico’s view, his 

previous instructional approach and the textbook’s presentation of topics 

encouraged students to memorize endless sets of algorithms and formulas (e.g. the 

algorithm for finding the equation of the line that passes through two points) and 

students were not equipped with the ways of thinking and reasoning that gave rise 

to those formulas and algorithms. Rico’s efforts were geared toward helping 
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students first develop a way of reasoning about the problems, and then, let the 

formulas emerge as a way of generalizing such reasoning.  

It was this way of thinking about functions that empowered students to 

come to think about function transformations—defining new functions in terms of 

previously defined functions—and inverse functions—reversing the relationship 

between the variables—in more powerful ways.  

Other Aspects of Rico’s MKT 

Rico’s pedagogical actions were geared toward helping students develop 

powerful meanings of variable, rate of change, and function as supporting all the 

different topics in the course, instead of treating each topic as isolated from the 

rest. By setting these few key ideas and building upon them, Rico’s new message 

to students was, “you are not always learning something new; we are just 

advancing your reasoning a little bit” (Rico—March 9, 2010). In addition, Rico 

came up with new ways to engage his students in the course. They had to become 

aware that their role in a mathematics course changed, too. They now had to 

engage in making sense of what others said and to become adept at 

communicating their meanings. Furthermore, Rico considered that if he could 

successfully frame his discussions around interesting practical situations and pose 

natural questions that might come up if someone started to think about the 

problems, then it was a way to engage students in applying some reasoning that 

they otherwise would not apply. Instead of having students successfully apply 
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techniques to get to a solution, Rico now intended for students to actually practice 

thinking mathematically about situations.  

As Rico tried new ways of teaching the ideas of the course, he sometimes 

felt constrained by the time he had throughout the year to cover all the topics of 

the District’s mandated timeline. However, he also found it worth to spend more 

time working on what he considered the foundational ideas of the redesigned 

course, finding himself at times pleasantly surprised with what students were now 

able to do.  

Finally, Rico established a new way for assessing student learning, and in 

turn, he developed a means of evaluating his own instruction. He did so in two 

ways. First, he structured his exams in ways that differed considerably from his 

previous exams and the District’s final examination for students. For example, in 

the past, he used to give a considerable weight in the exams to questions in which 

students were asked standard problems, such as, ‘find the equation of the line that 

passes through two points’. Whether the student used memorized facts to get to a 

solution or reasoned her way through the problem in order to obtain one, or if the 

student was able to solve contextual problems regarding linear functions, was not 

part of the final examinations nor Rico’s assessments.  

In contrast, the philosophy Rico followed to write the assessments that he 

used with the redesigned curriculum was very different. Although he included 

problems similar to the one described above, about finding the equation of the 

line, usually those problems came at the end of the exam. In their place, Rico 
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included contextual problems for which students had to set up the function that 

modeled the situation. They also were asked to define the variables paying close 

attention to the units in which they were measured. Students were asked to 

explain the meaning behind each part of the algebraic expressions they used. Rico 

valued his students learning to communicate their meanings and explain their 

thinking behind the operations they performed, rather than merely coming up with 

a solution without ever providing their rationale behind it. In a sense, Rico now 

evaluated student understanding rather than just right answers—which may or 

may not be indicative of student understanding. 

It was in providing feedback to students in class conversations and in the 

assessments that Rico was able to develop certain theories for himself about the 

ways in which students might have understood certain ideas in the course and 

how his pedagogical actions might have led students to think in unanticipated 

ways.37 In other words, by reflecting on his own instructional practice, Rico 

devised a way for generating new MKT. 

Summary 

Rico’s re-design of his Algebra II course seems to have been driven by his 

ability to envision what students might learn from different instructional 

approaches and by his strong command of the mathematics with respect to how 

students might experience the course material more coherently. In his curriculum 

                                                
37 As an example, I refer the reader to the section in the previous chapter about 
average rate of change. 
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redesign, Rico always considered (1) what someone might need to understand 

already in order to understand “this” in the way he was thinking of it, and (2) how 

would understanding “this” in the way he was thinking of it help students 

understand related ideas or methods. In a sense, Rico’s constant reflection on the 

mathematics he knew so as to make it more coherent, and his continual 

orientation to how these meanings and ways of understanding might work for 

students’ learning of mathematics, made Rico’s mathematics become a 

mathematics of students. In addition, by listening to his students communicate 

their meanings, and developing hypotheses about the sense the students made 

from instruction, Rico now had developed a new way to developing MKT from 

his practice.  
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CHAPTER 8—CONCLUDING COMMENTS 

Rico, a high school mathematics teacher, with only a few years of teaching 

experience when he joined the TPCC, made the decision to undertake the arduous 

task of redesigning the entire curriculum for his Algebra II course. As a result of 

his efforts, Rico’s students began to appreciate their newly found interest in 

mathematics, and other colleagues began to notice that Rico’s students were well 

prepared for their courses. 

In attempting to answer the question “what are the sources of Rico’s 

effectiveness?” my objective was to better understand what about Rico’s 

mathematical understandings (Rico’s mathematics) and his understandings of his 

students’ mathematics (Rico’s mathematics of students) enabled him to teach, 

according to Rico, from a different perspective from what he had experienced in 

the past. I emphasize that I do not claim that Rico’s approach to teaching Algebra 

II is not necessarily the “right way” to do it. In fact, Rico was the first person to 

recognize his teaching as part of an ongoing process of improvement. By 

assessing student understanding of the mathematical ideas presented in the course, 

Rico was able to consistently evaluate the effectiveness of his instructional 

approach. In this sense, Rico has engaged in a process of learning from his own 

practice (Simon, 2007). 

I must also clarify that this was not a study about teacher change. At the 

time that Rico taught the Algebra II course that is the subject of this study, he was 

in the second year of his innovative   curriculum. The purpose of this study was to 



!

! 143 

explore Rico’s strategic ways of thinking that enabled him to develop a different 

approach to teaching the course. Specifically, I attempted to gain insight into 

Rico’s MKT by asking the following research questions: 

• What are the mathematical ideas and ways of thinking that Rico 

envisions for his students, as suggested by his design of instruction? 

• What are the mathematical understandings that support Rico’s 

pedagogical actions and design of instruction? 

• What are Rico’s conceptions of his students’ mathematics? 

• In what ways do the above express themselves in Rico’s teaching? 

The data for this study was generated in three phases. The data derived for 

Phase 1 included videotaped lessons from the first semester of Rico’s Algebra II 

course during academic year 2007-2008; semi-structured post-lesson reflections; 

and Rico’s self-constructed instructional material for the entire academic year.  

A preliminary analysis of the data allowed me to develop specific 

hypotheses regarding the mathematical concepts and ways of thinking that Rico 

envisioned for his students to learn. From this first approach to data analysis, it 

was evident that Rico paid special attention to mathematical concepts such as 

variable, rate of change, and functions. One problem that I faced in evaluating the 

data was that I did not have videotapes of the first two weeks of the course. 

Therefore, I looked ahead to the stimulated-reflection interviews with three 

primary objectives in mind. First, I planned to ask Rico to address his overall 

organization of the course to better understand the learning goals that he had 
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established for his students. Second, I planned to ask Rico to provide details 

regarding the steps he took in the first two weeks of the course and why. Since I 

did not have video for those first two weeks, I used the instructional material that 

he developed to generate talking points in order to discuss his practice. My final 

objective for the stimulated-reflection interviews was to further investigate Rico’s 

understandings of his students’ mathematics regarding variable, rate of change, 

and functions. 

Phase II of data collection took place during the months of March through 

April 2010. During this period, I conducted a total of eight stimulated-reflection 

interviews with Rico. The interviews were videotaped, transcribed, and analyzed. 

Finally, Phase III consisted of a conceptual analysis of the prior phases, with the 

primary objective of creating models of Rico’s mathematical conceptions, his 

perceptions of students’ mathematical knowledge, and his images of instruction 

and instructional design.  

The findings revealed that Rico’s schemes of meanings regarding 

quantities, variation, constant rate of change, average rate of change, and 

functions supported him in developing a course aimed at helping his students 

develop powerful understandings. However, other studies have demonstrated 

(e.g., Silverman, 2005; A. G. Thompson & Thompson, 1996) that developing 

powerful personal knowledge regarding  mathematics that one teaches does not 

necessarily extend to enabling students to grasp the same level of understanding.  
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With the education reform efforts that have evolved over the past two 

decades, it is anticipated that Rico’s Algebra II course redesign was not an 

isolated incident, yet this appears to be the case. I will not provide explanations 

regarding why this might be the case, since this is not within the scope of this 

study. However, I will emphasize key areas of Rico’s MKT that are likely to 

provide insights to teacher educators and researchers in developing new resources 

to support other teachers in their development of MKT.  

As I discussed in the previous chapter, it appears that the interplay 

between two aspects of Rico’s MKT supported him in his curriculum design and 

teaching of Algebra II course. Specifically, he was reflectively aware of his 

mathematical knowledge; and also, his deep concern for his students’ 

mathematical understandings. For example, Rico began to understand that 

students’ previous experiences in mathematics courses did not provide a 

conceptual basis for building new ideas in Algebra II in the way he now intended. 

Thus, Rico included numerous opportunities in his lessons for students to rethink 

key ideas (e.g. variable, rate of change, function).  

Another important aspect of Rico’s instruction, which was also reflective 

of his MKT, was the myriad of connections among ideas that he persistently kept 

in mind while designing his units and conducting his lessons. He repeatedly 

included hints of connections to come—or as he called it, “planting those seeds” 

in students’ thinking—that he anticipated leveraging later during instruction.  
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Finally, Rico’s instructional design suggests that he was trying to 

encourage his students to become reflectively aware of their own knowledge to 

develop new methods of thinking. He also developed strategies to help students 

acquire the means that were necessary to make sense of the formulas and methods 

that they had memorized in the past but did not fully comprehend. Along with 

these efforts, Rico also developed new means of assessing whether students were 

making sense of the lessons that they learned. The key to this assessment was that 

students had to become adept at communicating their mathematical meanings by 

talking to each other, in group discussions, and in writing. Although he did not 

articulate it as such, Rico appeared to have developed a personal theory of student 

learning that was facilitated by the interaction between his anticipations of 

students’ reactions to the homework assignments and students’ actual reactions. 

Rico’s case illustrates the potential for viewing MKT from a point of view 

that pays close attention to the teacher’s understandings, with the ultimate 

objective of uncovering mechanisms by which we can help teachers to become 

reflectively aware of their own understandings in favor of advancing their 

instructional design and student learning. These observations resemble similar 

efforts at the elementary level (Simon, 2007; Simon & Tzur, 1999). At the 

secondary level, Silverman and Thompson’s (2008) framework for MKT provides 

a tool for exploring how teachers’ personal understanding is transformed into 

pedagogical understanding, and how they might engage in further development of 

their MKT based on their practice. 
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To conclude, earlier I referred to Fenstermacher and Richardson’s (2005) 

differentiation among successful, good, and quality teaching. I further explained 

that for this study I would adopt a perspective of good teaching from a learner-

sensitive perspective rather than a learner-dependent perspective. In this sense, 

although I was made aware of student participation in whole group conversations, 

I did not possess access to further explore the sense that individual students made 

of the ideas provided in the course. Thus, I was unable to present a comprehensive 

assessment of the effects of Rico’s instructional approach on student learning. I 

view this as both a limitation to this study and at the same time, an opportunity for 

further research into this area. 

Regarding the quality of instruction (Fenstermacher & Richardson, 2005), 

efforts undertaken by individual teachers are most likely to fail if other teachers at 

all school levels do not engage in similar efforts. By the time students were 

enrolled in Rico’s Algebra II course, they had not only developed schemes of 

meanings that might be incompatible with what Rico wanted them to learn in the 

course, but at the same time, students had already developed theories regarding 

their roles in a mathematics classroom, making it difficult for them to realize their 

own level of responsibility for their own learning. Rico invested a significant 

amount of time and effort in providing students with opportunities to extend their 

meanings and, at the same time, to enable them to engage in the course in a 

different and more effective manner. From Rico’s point of view, the effort was 

worthwhile because by the second semester of the course, the students were 
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already familiar with his expectations regarding their involvement in the course. 

The learning goals that Rico had established for his students at the beginning of 

the course were gradually being met. However, the question remains in regards to 

what might have happened with those same students if after one year they went 

back to a traditionally taught mathematics course. It is hoped that their newly 

discovered enjoyment of mathematics and mathematical thinking might have been 

powerful enough so that they didn’t go back to old habits of mind in which 

striving to make sense was not a norm. 
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APPENDIX  

THE CANTILEVER PROBLEM 
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Name: _____________________________ Period: ____ Assignment#: ____ 
 

Systems of Equations 
Honors Math Topics 5 

 

An engineer is designing a new platform for tall buildings so that window washers, repairmen, 
painters, etc. can move up and down the side of the building. He needs to attach either rope or 
metal chain to the platform, which will hang from a system of pulleys attached to a support 
structure on top of the building. 

 
This is a sketch of this situation: 

 

 
 
In order to attach the ropes securely and use the proper pulleys, the engineer must attach 50 
pounds of additional equipment to the platform, which already weighs 200 pounds. Using the 
chain, however, will only require attaching 15 pounds of additional equipment. The platform is 
designed to carry workmen and supplies weighing 500 pounds. 

1. What is the total weight that must be supported (so far) if he plans to use rope (don’t forget the 
workmen and their supplies)? 
 

2. What is the total weight that must be supported (so far) if 
he plans to use chain (don’t forget the workmen and their 
supplies)? 

 
The chain weighs slightly more than the rope per linear 
foot. A foot of rope weighs 0.56 pounds. A foot of chain 
weighs 0.65 pounds. The platform needs four ropes or four chains to hold it. 

3. As the platform is lowered what happens to the total weight that must be supported from the top of 
the building (the support structure)? Why? 

 
4. For each foot that the platform is lowered, how much weight is added to the total weight that the 

support structure must hold if (remember that there are four ropes or chains): 
a. rope is used 
 
b. chain is used 

 
5. Write a function that represents the weight the support structure must hold if: 

a. rope is used 
 
b. chain is used 

 
6. In Exercise 5, what do your variables stand for (include units)? 
 
7. What are the rates of change for each of the linear functions defined in Exercise 5? What does each 
rate of change mean in the context of this situation?  
 
 
 

Platform 

Support 
Structure 

Note: The rope or chain is unwound 
from this location to lower the 
platform (in other words, the excess 
chain or rope is not dangling from the 
support structure or stored on the 
platform). 

By the way…the support 
structure in this exercise is an 
example of a cantilever – a 
horizontal beam that is fixed at 
one end and supports weight at 
the other end. 

Rope or 
chain 
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8. How much weight would be added to the amount the support structure must hold if the platform was 
held up by rope and the platform was lowered by 0.75 feet? 

 
9. Identify two pairs of coordinate points that are true for the function representing the weight of the 

platform held by chains. What does each coordinate point mean in the context of this situation? 
 
10. What is the solution to this system? What does it represent in this situation (be as descriptive as 

possible)? 
 
11. What is true about the weights the support structure must hold when the platform is lowered less 

than the distance described in Exercise 10? 
 
12. What is true about the weights the support structure must hold when the platform is lowered more 

than the distance described in Exercise 10? 
 
13. The engineer knows that the support structure can only safely hold 1150 pounds. How far down the 

side of the building can the platform be safely lowered if: 
 

a.  rope is used 
 

b. chain is used 
 
14. What information must the engineer know (or find out) in order to determine if his platform design 

will work safely? 
 
15. Are there any other considerations that might come into play for the engineer as he decides whether 

to use rope or chain? 
 
16. Consider only the platform held by chain (write its weight function here: ______________). The 

engineer knows that rope stretches slightly as weight pulls down on it. He estimates that the actual 
length of the rope will be 3% longer than it was originally measured. He creates the function 

, where x is the original length of the rope (in feet) and y is the stretched length of the rope 
(in feet). 

  Find the solution of the system involving the function  and the function you wrote in 
the space above. What does the solution mean in this context? Explain the significance of your 
answer in terms of systems of equations in general. 


