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ABSTRACT

Genes have widely different pertinences to the etiology and pathology of diseases.

Thus, they can be ranked according to their disease-significance on a genomic scale, which

is the subject of gene prioritization. Given a set of genes known to be related to a disease, it

is reasonable to use them as a basis to determine the significance of other candidate genes,

which will then be ranked based on the association they exhibit with respect to the given

set of known genes. Experimental and computational data of various kinds have different

reliability and relevance to a disease under study. This work presents a gene prioritization

method based on integrated biological networks that incorporates and models the various

levels of relevance and reliability of diverse sources. The method is shown to achieve signif-

icantly higher performance as compared to two well-known gene prioritization algorithms.

Essentially, no bias in the performance was seen as it was applied to diseases of diverse

kinds, e.g., monogenic, polygenic and cancer. The method was highly stable and robust

against significant levels of noise in the data.

Biological networks are often sparse, which can impede the operation of association-

based gene prioritization algorithms such as the one presented here from a computational

perspective. As a potential approach to overcome this limitation, we explore the value

that transcription factor binding sites can have in elucidating suitable targets. Transcription

factors are needed for the expression of most genes, especially in higher organisms and

hence genes can be associated via their genetic regulatory properties.

While each transcription factor recognizes specific DNA sequence patterns, such pat-

terns are mostly unknown for many transcription factors. Even those that are known are

inconsistently reported in the literature, implying a potentially high level of inaccuracy. We

developed computational methods for prediction and improvement of transcription factor

binding patterns. Tests performed on the improvement method by employing synthetic pat-

terns under various conditions showed that the method is very robust and the patterns pro-

duced invariably converge to nearly identical series of patterns. Preliminary tests were con-
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ducted to incorporate knowledge from transcription factor binding sites into our network-

based model for prioritization, with encouraging results.

To validate these approaches in a disease-specific context, we built a schizophrenia-

specific network based on the inferred associations and performed a comprehensive pri-

oritization of human genes with respect to the disease. These results are expected to be

validated empirically, but computational validation using known targets are very positive.
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Chapter 1. INTRODUCTION

The chances of developing a disease are often greatly increased with aberrations in certain

genes or in accordance with particular genotypes. For example, the ε4 allele of the APOE

gene is known to significantly increase its carrier’s susceptibility to Alzheimer’s disease.

Mutations or deletions of certain genes such as BRCA and TP53 are found in a large part of

genomes of cancer patients. Genes have different degrees of implication and significance

toward the cause and development of a particular disease. Gene prioritization refers to the

problem of assessing gene significance with respect to a disease on a genomic scale. A

small number of genes (seed genes) that are already known to be relevant to the disease

are typically assumed as an input. Then the rest of genes from a genome are candidates,

the significance of which are to be quantified, typically via ranking. Various approaches

were proposed [11, 13, 15, 17, 21, 22, 39, 41]. Most utilize associations between genes in

translating the significance of seed genes to candidate genes.

Genes can be associated in a number of ways: (1) based on biochemical associations

such as protein interactions, (2) based on the similarity of biological processes in which they

participate, or (3) based on regulatory associations where a transcription factor regulates

the expression of its target genes. These associations can be seen as a biological network

relating the genes with each other in a genome. Biological networks based only on one

kind of associations are often sparse. From a computational perspective, such sparsity, or

absence of necessary associations, is often an impeding factor to the performance of many

gene prioritization algorithms. The model introduced here is thus based on an integrated

view of such associations.

The biological processes in which genes participate are obtained from the “Gene On-

tology” [12]. It provides a system of controlled terms which can be used to describe genes

from that perspective, as well as from the perspectives of molecular function and cellular

location. An ontological similarity between genes can be quantitatively assessed using over-
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laps in the Gene Ontology terms [14, 30] that describe them. Thus, genes with similarity

above an appropriate threshold can be associated from an ontological perspective.

The third type of association is more difficult to derive. Expression levels of genes are

regulated by transcription factors. The gene encoding a transcription factor and its targets

can be associated with one another from a genetic regulatory perspective. Transcription

factors comprise large parts of genomes. Nearly all eukaryotic gene expressions are under

regulatory controls of transcription factors, hence, their role in the biological processes of

organisms is essential. Each transcription factor functions by binding to specific patterns

located in the promoter regions of its target genes. Current level of knowledge on the

regulatory associations between transcription factors and their targets is still very poor,

with most transcription factors still lacking a comprehensive identification of their targets.

Thus, efforts for transcription factor target identification are of interest, given the need for

understanding the regulatory associations within organisms, and considering their role as a

critical performance determinant for gene prioritization algorithms.

Pattern-based identification of potential transcription factor targets is a challenging

problem. Since short patterns can occur merely by random chances in genomes, the infor-

mation content and specificity of binding patterns are, in general, low. Each transcription

factor recognizes and binds to multiple similar patterns. The sequence pattern was shown to

be a dominant determinant in the interaction of a transcription factor with its targets [122].

Binding sequence patterns of many transcription factors are still unknown. Hence, a reliable

computational approach to identifying them is of merit.

This work proposes a computational approach to identify binding patterns using the

interaction propensity between residues, which can be expressed in terms of affinity or

probability. Transcription factor-DNA interaction is fundamentally an energy-based pro-

cess, where a low energy combination and spatial arrangement of residues confer a high

affinity. Selex [8] and phage display [9] can be used in comprehensively probing inter-

action energies between protein amino acids and DNA nucleotides. Berg [111] employed

Boltzman’s statistical mechanics formulation to translate the interaction energy levels to the
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probability distributions of DNA bases at binding sites. We utilize Selex data from [87] and

the formulation from [111] to develop a method for predicting the binding patterns of zinc

finger (ZF) transcription factors, which comprise the largest class of transcription factors

in eukaryotes. Then we apply our method to a major subclass of ZF transcription factors,

C2H2 (cysteine-2, histidine-2), to predict their target patterns.

Additionally, we developed a method to utilize the ChIP-seq data together with previ-

ously known patterns of low accuracy to approximate true patterns as closely as possible.

When binding patterns of a transcription factor are reported in the literature, they often ex-

hibit a large degree of inconsistency. Many traditionally available patterns were based on

small numbers of transcription factor-bound sequences. The inherently high levels of de-

generacy of transcription factor binding patterns imply that the patterns of bound sequences

are diverse, which would hardly be represented by the small sets of sequences. Since the

presence and conformance of binding patterns are the most critical factors in the transcrip-

tion factor-target gene interactions, inaccurately represented patterns will render inaccurate

the subsequent association inferences that employ the patterns. Considering that the dis-

tribution of functional binding patterns would be a unique characteristic of a transcription

factor in a genome, it would be desirable to obtain a representation corresponding to such

uniqueness. The experimental platform of ChIP-seq [137] involves chromatin immuno-

precipitation of transcription factors and sequencing of the bound DNA, and can be used

in finding the patterns that are bound by transcription factors in vivo. While useful, the

loci reported as bound by transcription factors involve substantial tolerances ranging from

10’s to 100’s of bases. Traditional approaches addressing ChIP-seq data focused mostly

on finding new patterns, without assuming prior knowledge of patterns. Attempts by exist-

ing algorithms to find the transcription factor-bound patterns from more prevalent unbound

background sequences often produced inaccurate patterns. Furthermore, results often vary

each time algorithms are invoked, as they employ a substantial amount of randomness, so

as to reduce the problem complexity of finding de novo patterns.

Overall, this work contributes a novel integrative gene prioritization method, an algo-
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rithm for the prediction of binding patterns, and an approach for improving the accuracy

of binding patterns. We first introduce our method for integrative gene prioritization (IGP)

by multiple data integration (MDI) in Ch.2. Then we explain our methods to predict and

improve transcription factor binding patterns (IBP) in Chs.3 and 4 respectively. Finally

in Ch.5, we apply the developed methods to schizophrenia and EGR3 transcription factor,

a gene important in the disease, to obtain a comprehensive prioritization of genes in the

human genome with respect to their potential relevance to schizophrenia.
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Chapter 2. INTEGRATIVE GENE PRIORITIZATION

2.1 Abstract

Many methods have been proposed for facilitating the uncovering of genes that underlie the

pathology of different diseases. Some are purely statistical, resulting in a (mostly) undiffer-

entiated set of genes that are differentially expressed (or co-expressed), while others seek

to prioritize the resulting set of genes through comparison against specific known targets.

Most of the recent approaches use either single data or knowledge sources, or combine the

independent predictions from each source. However, given that multiple kinds of heteroge-

neous sources are potentially relevant for gene prioritization, each subject to different levels

of noise and of varying reliability, each source bearing information not carried by another,

we claim that an ideal prioritization method should provide ways to discern amongst them

in a true integrative fashion that captures the subtleties of each, rather than using a simple

combination of sources. Integration of multiple data for gene prioritization is thus more

challenging than its single data type counterpart. What we propose is a novel, general,

and flexible formulation that enables multi-source data integration for gene prioritization

that maximizes the complementary nature of different data and knowledge sources in order

to make the most use of the information content of aggregate data. Protein-protein inter-

actions and Gene Ontology annotations were used as knowledge sources, together with

assay-specific gene expression and genome-wide association data. Leave-one-out testing

was performed using a known set of Alzheimer’s Disease genes to validate our proposed

method. We show that our proposed method performs better than the best multi-source gene

prioritization systems currently published.

2.2 Introduction

Of particular relevance to researchers trying to track the molecular basis of disease is to

be able to increase the selectivity and sensitivity when predicting the potential association

of a phenotype or function with specific genes, an area referred to as “gene prioritization”.

5



Genome sizes of species of interest are typically large, and gene prioritization is an effective

means for data reduction. By ranking genes in terms of their relevance to a disease, and with

an appropriate thresholidng, a select set of genes can be generated by gene prioritization.

Time and cost considerations in disease research usually favor a reduced gene set which

enables more focused research and facilitates more effective use of the limited resources.

Over the years, many methods have been proposed for this purpose, with molecular

biologists usually favoring those that focus on the statistical analysis and consequent rank-

ing of lists of genes from the output data of high-throughput experiments. Thus, signif-

icance analysis of microarrays (SAM), analysis of variance (ANOVA), empirical Bayes

t-statistic, between group analysis (BGA), and other methods are used with the help of

biostatisticians, and are sometimes provided with commonly used commercial and open-

source bioinformatics tools such as Illumina’s Genome Studio or caBIG’s geWorkbench.

Knowledge about the significant genes is sometimes provided by the tools or by sought out

separately by researchers only as a way to annotate the genes, but is not used to prioritize

them. Researchers have to pick and choose using their own intuition and experience.

Integrating multiple kinds of heterogeneous data and knowledge sources is a challeng-

ing problem for which formulation of a flexible and general approach is sought. A number

of approaches employing protein interaction as a single knowledge source[28, 17, 31] have

been published. Other systems, the best of which are Kohler et al’s [21] GeneWanderer and

Aerts et al’s [11] Endeavour, use heterogeneous knowledge and data sources. GeneWan-

derer was shown to outperform many existing network-based gene prioritization algorithms

[40]. It assumes a set of seed genes known to be disease genes as input and proposes a

method where nodes in a protein interaction network are randomly visited (restarting the

walk randomly during the process), ranking candidates with respect to their relevance to

the given seed gene set. Aerts et al proposed Endeavour, a similarity-based approach that

uses heterogeneous data to calculate the similarity between a set of candidate genes and a

set of ‘training’ or seed genes. It was successfully employed in various biological studies.

Candidate genes are ranked independently by using a selection of knowledge sources. An
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N-dimensional order statistics is used for combining the multiple rankings. de Bie et al

[15] used similarity measures and kernels corresponding to each data source and integrated

rankings from multiple sources by weighting kernels. Li et al [22] employed Gene On-

tology (GO, [12])-derived gene similarity networks and a protein-protein interaction (PPI)

network, applied random walk with restart to each and combined the multiple rankings by

using a discounted rating system.

Albeit intended on a genomic scale, most of the currently available knowledge sources

and experimental platforms have rather low sensitivity. For example, current PPI databases

are estimated to capture only 10% of true interactions [18]. Often times data and knowl-

edge sources are orthogonal, with pieces of information absent in one being provided in

another. Thus, distinct sources tend to have a complementary nature such that a holistic

perspective on genes can be gained by appropriately complementing and integrating dis-

tinct sources. Existing approaches for multiple sources take data and knowledge sources

separately, whereby their complementarity can be easily lost. Also, many involve rather

high computational cost or assume specific types of data and limit the applicability to other

data types.

Given a known group of genes associated with a specific disease as a “seed”, we hy-

pothesized that the degree of association of a candidate gene with the seed genes signifies

its relevance to the disease. All knowledge about the genes was represented in a single

network, which can be appropriately configured based on types of data, availability and

reliability. Here, we used protein-protein interactions (PPIs), Gene Ontology annotations,

gene expression data and SNP data from a Genome-Wide Association Study for validating

our approach. Application to a large number of diseases of distinct kinds showed uniform

performance level and hence no bias for particular kinds of diseases. We report the results

of this general experiment, as well as a more extensive evaluation using genes related to

Alzheimer’s Disease (AD).
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2.3 Material and methods

PPI and Gene Ontology associations were used as knowledge sources in building an inte-

grated gene-gene association network used for gene prioritization. This is what we called

the base scheme (BS) for purposes of evaluation. Additionally, gene expression and GWAS

data were used as empirical data sources and incorporated in the prioritization by adding

a value (level of significance) to each node in the integrated network above. This is what

we called the incorporated scheme (IS). In the following subsections, we outline how the

associations for each component of the network are defined and integrated, and present

two experimental setups (the base scheme and the incorporated scheme) to validate the

approach.

Establishing Gene Ontology associations

The Gene Ontology (GO) consists of a directed graph of terms organized under three main

categories: biological process, cellular component and molecular function. Genes are an-

notated with those terms that apply to them. Resnik [30] defined similarity between two

GO terms t0, t1 under the same category as

sim(t0, t1) = ICms(t0, t1) = maxIC(tp) (2.1)

where tp ∈ parents(t0, t1), and IC(t) is the information content of term t which is defined

as IC(t) = −logP(t) with P(t) being the probability of occurrence of the term across a

genome.

Couto et al [14] defined similarity between two genes g0,g1 with respective terms ta ∈

{terms(g0)} and tb ∈ {terms(g1)} as

sim(g0,g1) = max
a,b

sim(ta, tb)IC(ta)IC(tb) (2.2)

Term similarity is a normalized quantity ranging between 0 and 1. We used GO annotations

[20] of the human genome, which included a total of 14,685 genes annotated with biological

process terms, with a total term occurrence count of 60,792 for an average of 4.140 terms
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per gene. In establishing a gene-gene association based on GO annotations, we varied the

similarity threshold from 0.30 to 0.70 in increments of 0.10 to retain gene pair similarity

only above or equal to the given threshold, obtaining five nested sets of associations.

Protein-protein interactions

Three protein interaction databases were employed, to match those used by Kohler et al in

[21] and allow a fair comparison: HPRD[29], STRING[25] and NCBI yeast protein inter-

actions. HPRD is a manually annotated protein interaction data set: the one we used had

2,125 homomeric interactions and 36,631 heteromeric interactions. The STRING database

contains information from four sources (genomic context, high-throughput experiments,

coexpression, and derived from text), including direct (physical) and indirect (functional)

associations. We used version 8.3, which covers 2.6 million proteins from 630 organisms.

Each interaction in STRING is assigned a significance score (non-linear) in the range be-

tween 150 and 1000. In addition, known protein interactions in yeast were downloaded

from NCBI[26]. Each yeast protein was mapped to a human ortholog using InParanoid[27].

Only interactions involving protein pairs that have a 100% match score to human orthologs

were retained (a total of 39,665).

Interacting proteins were each mapped to coding genes and then a set of interacting

genes were obtained. Some common interactions in the databases derive from single ex-

perimental evidence and hence there exists a degree of duplicity among the three databases.

The three PPI networks were combined into a single network by counting edges only once

irrespective of their duplicity:

{e′(g1,g2)}= ∪{eNi(g1,g2)},1≤ i≤ N (2.3)

with e′(g1,g2) being the edge between nodes g1 and g2 in the combined network and N

being the total number of PPI networks. Five distinct sets of associations were obtained by

using nested sets of interactions with different STRING significance score thresholds (300,

400, 500, 600 and 700).
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Gene expression

For this paper, we used microarray expression data sets by Webster et al [32], comprised of

control and AD case samples. Genes showing significantly distinct levels between normal

and disease cells were identified by using differential expression analysis. Wilcoxon rank

sum test was applied to expression levels from the two groups of samples and a P-value of

each gene’s differential expression was obtained. The P-value threshold was set to 0.05.

The significance of a gene G, S(G), from differential expression was calculated as:

S(G) =−log(P-value) (2.4)

Genome-wide association study

SNP genotyping is performed on genomes from normal and disease samples. Certain SNP

may show distinct presence in one group vs the other e.g., allele A constitutes 80% of

disease samples at a certain locus while it constitutes 30% in normal samples. A P-value

can be calculated for each SNP and hence for a corresponding gene if the locus of the

SNP is within or close to the gene, which would imply the gene is strongly relevant to a

specific disease. If a SNP is too distant from genes (more than 20kb away upstream or

5kb downstream), then it was not included in our experiments. Similar to expression data,

disease significance P-values were calculated and assigned to genes by using Eq 2.4.

Network representation

To construct the networks used for the base (BS) and incorporated (IS) schemes, the PPI

and GO associations described above were used as edges, with genes mapped to nodes. If

more than one knowledge source associated two genes g1 and g2, then the edge is weighted

according to the multiplicity of the number of associating sources. Thus, if N sources were

associating the two genes then weight(e(g1,g2)) = N.

Gene g may be completely missing or may not have a P-value above a threshold in the

outcome of some experimental data, and have P-values above thresholds only in Ne number

of effective sources. Given a significance Si(g) from empirical data source i (1 ≤ i ≤ Ne)
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for a given disease, gene g’s overall empirical significance is calculated as

S(g) =
Ne

∑
i=1

Si(g) (2.5)

That is, the sum of all significance values is assigned as a combined significance score for

the gene (its aggregate experimental significance).

Base scheme

Given a set of training seed genes {Si}, candidate gene C was scored as follows:

score(C,S) =
∀S

∑e(C,Si) (2.6)

where e(C,Si) is a non-zero value if an edge exists between C and S and 0 otherwise. Either

only the edge presence between C and S can be recognized for scoring, or its weight from

the aggregate network can be considered, i.e.,

e(C,S)BS1 = 1{e(C,S)} (2.7a)

e(C,S)BS2 = weight(e(C,S)) (2.7b)

with 1 being an indicator function corresponding to edge presence. If only the presence of

an edge is considered, then Eq 2.7a is used together with Eq 2.6. This will be referred to as

base scheme 1 (BS1). If edge weight is considered, then Eqs 2.7b and 2.6 are used which

will be referred to as base scheme 2 (BS2). Candidate genes are ranked according to their

scores.

Empirical data incorporation scheme

The network topology used in the empirical data incorporation scheme (IS) is the same as

the one in the base scheme. Candidate gene C can have an edge to jth seed gene Tj of an

overall empirical significance S(Tj). Then Tj’s contribution to the score of C is calculated

as

e(C,Tj)+ kS(Tj) (2.8)
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where k is a scaling factor, the value of which is to be set according to data reliability. If

an edge does not exist between them, then Tj’s contribution is 0. The contribution from

each training gene Tj, 1≤ j ≤ |T |, in the training set to candidate gene C is added up for its

combined score:

score(C) = k1S(C)+
|T |

∑
j=1

[e(C,Tj)+ k2S(Tj)] (2.9)

where k1 and k2 are scaling factors and |T | the total number of training genes. The ranking

of the candidate genes corresponds to the combined scores of the candidate genes. Pseudo-

code of the algorithm is shown in Algorithm 1.

Algorithm 1 Pseudo-code of integrative gene prioritization
network N = φ

for all sub-networks ni do
N∪= ni

end for
for all g do

S(g) = ∑
∀Ei SEi(g), (experimental data, Ei)

end for
for all g do

score(g)=k1 S(g) + ∑
∀Tj [e(g,Tj)+ k2S(Tj)], (seed gene Tj)

end for

Validation

The disease gene sets from Kohler et al [21] were used. Leave one out testing was performed

by holding out one disease gene as a true test gene to be (ideally) recalled from the disease

gene set by taking the remainder genes as a training gene set, and this was repeated for

each gene over all disease gene sets. Sensitivity and specificity values were calculated as

defined in ([11]). Specifically, ranking results were aggregated and the number of true test

genes above a given ranking threshold was counted as true positives. The number of test

genes below the threshold, non-test genes below the threshold and non-test genes above the

threshold were respectively counted as false negatives, true negatives and false positives. As

frequently done in literature, a narrowed-down set of genes (e.g., 100) in closest proximity
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Table 2.1: Ranking of Alzheimer’s disease genes by different algorithms

Base Endeavour GeneWanderer Incorp.
Gene Rank Rk100 Rk100 Rank Rk100 Rank Rk100
APOC1 93 2 5 275 7 1 1
APOE 1 1 4 17 4 1 1
APP 382 1 4 264 1 156 1
CLU 7 1 9 102 2 17 1
CR1 437 2 44 1158 3 352 2
GAB2 202 1 31 496 3 452 2
MSRA - 100 24 6511 11 - 100
PICALM 444 1 8 978 3 95 1
PSEN1 1 1 2 14 1 1 1
PSEN2 7 1 4 84 1 25 1
PVRL2 7 1 47 67 4 15 2
RELN 439 1 43 957 5 413 1
TOMM40 1261 10 86 3319 18 34 2

to the true test gene along its chromosome is given as a candidate set. We also show the

ranking obtained over all genes in the genome.

Current knowledge sources may involve degrees of incompleteness and incorrectness.

This would correspond to false positive and negative edges in networks. Facing this, we

randomly perturbed 10% of network edges by randomly reassigning them in an experiment.

Eight such instances of randomly perturbed networks were generated and the base scheme

was applied to each of them.

2.4 Results

Genes implicated in AD were collected from the literature ([10], [19], [24], [23], [33], [34])

(Table 2.1). For comparison of performance, gene prioritization based on random walk

with restart (RWR) as described by Kohler et al ([21]) was implemented. In RWR, nodes

are navigated in a random fashion starting from a gene randomly selected from a given set

of seed genes. Gene ranking in RWR is according to the visit frequency at the conclusion

of iteration following a convergence criteria. In addition, Endeavour [11] was downloaded

from the authors’ website. It randomly selects 99 genes other than true test gene to produce

a 100 gene candidate set together with the test gene. Even though the candidate gene sets
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used for Endeavour are different from the ones used for base scheme and RWR, we reasoned

the set size is sufficiently large from a statistical sense to facilitate sound comparisons and

show the rankings under the column name of Rk100.

The base gene prioritization scheme was applied to the AD gene set. The same set was

also used for Endeavour and GeneWanderer. When gene APOC1 was left out as a true test

gene to be recalled and the other genes were used as a training seed gene set (row 1 in Table

1), there were 92 other genes from the human genome which ranked more significantly

(column Base-Rank in Table 1). When the candidate gene set was reduced to the 100

genes of closest proximity (Loc100 set), APOC1 ranked 2nd highest (column Base-Rk100).

Endeavour’s ranking of the gene was 5th out of 100 genes and RWR’s ranking was 275th

among entire genome and 7th among Loc100 genes. Each subsequent row can be read in

a similar fashion. Thus, the base gene prioritization scheme ranked the AD set genes more

significantly than RWR (signed rank test P-value=6.836×10−3.) and Endeavour (P-value=

2.148×10−2).

In order to assess the applicability of the base scheme (BS1) to other diseases besides

AD, we applied it to disease gene set of Li et al [22] (Li10) which was derived from the

complete Kohler et al set. It includes 36 diseases and genes implicated therein. The receiver

Figure 2.1: ROC curves of specificity vs. 1-sensitivity (a) Base scheme has a larger AUC
than Endeavour and RWR. (b) Close-up of higher sensitivity range
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Table 2.2: AUC difference between base scheme 1 and base scheme 2 (units in 1e−4)

GO-PPI 300 400 500 600 700
30 -5.603 -12.101 -12.751 -14.561 -14.451
40 -0.265 +5.767 +9.010 +8.708 +4.035
50 +1.815 +5.567 -0.048 +6.935 +7.971
60 +0.986 +1.065 -0.157 +0.390 +0.000
70 +0.532 +0.464 +0.000 +0.165 +0.398

operating characteristic (ROC) curve of the base scheme BS1 is shown in Fig 2.1 together

with the curves of Endeavour and RWR for the same set. AUC value of the base scheme

was 0.9655 while, for Endeavour and RWR, the AUC values respectively were 0.9287 and

0.9442. The reasonable AUC value means the base scheme is applicable to other diseases

in general as well. Base schemes 1 and 2 were compared over the Li10 set and their AUC

values showed a marginal difference possibly suggesting edge multiplicity does not greatly

contribute in distinguishing true test gene from the other candidate genes (Table 2.2). Sub-

sequently, we used only base scheme 1 and will refer to it as the base scheme.

Knowledge sources such as PPI or GO may entail some levels of false and missing

annotations. In order to evaluate the influence of such noise on the performance of the base

scheme, 10% of the edges in the combined network were randomly rewired. Eight such

instances of the perturbed networks were generated, and then the base scheme was applied.

In all cases, AUC values decreased by small degrees, but consistently from that of the un-

perturbed network; average AUC value was 0.96070 and standard deviation 0.00223 (Fig.

2.2 and Table 2.3). Only a slight degradation in the AUC of the perturbed network means

our base scheme is robust with respect to a noticeable amount of possible mis-curations in

the knowledge sources and corresponding noise in the network.

Table 2.3: AUC values from perturbed networks

Instance 1 2 3 4 Average
AUC 0.96119 0.95875 0.96216 0.95869 0.96070
Instance 5 6 7 8 St.dev.
AUC 0.96533 0.95993 0.96101 0.95908 0.00223

Diseases were categorized as belonging to one of three types by Kohler et al: cancer,
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Figure 2.2: ROC’s from perturbed and unperturbed networks. Perturbed networks cause
slight decreases in the AUC.

Table 2.4: AUC values from application to different disease categories

Type Cancer Monogenic Polygenic Average
BS1 0.95727 0.96677 0.98025 0.96810
RWR 0.95414 0.90535 0.94978 0.95890
Endeavour 0.87947 0.94471 0.88191 0.90203

monogenic and polygenic. Cancer and polygenic categories each included 12 diseases, and

monogenic 86 diseases. We chose the 6 largest disease gene sets from each category to

form categories balanced in count and applied the base scheme, Endeavour and RWR to

each. AUC values were similar across disease categories (Table 2.4), thus suggesting that

the base scheme is not biased to a particular category of diseases. Higher AUC values were

produced by BS throughout the different categories.

The contribution of individual knowledge sources was assessed by using either PPI or

GO associations alone and by comparing the resulting AUC values with the ones obtained

with aggregate sources. Specifically, 5 sets of GO associations were produced with distinct

thresholds of 0.30 to 0.70 in increments of 0.10, and also 5 sets of PPIs with thresholds 300

to 700 in increments of 100. A total of 35 networks resulted; 5 with only GO associations
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as edges, 5 PPI only, and aggregate networks in 25 different combinations of GO and PPI

thresholds. The Base Scheme was applied to the Li10 set for each of the networks. The

AUC value monotonically increased as GO or PPI thresholds were lowered (resulting in

more network edges) (Figs 2.3(a), 2.3(b)). The highest AUC value was produced with the

aggregate network of least stringent threshold combination (PPI 300 and GO 0.30).

The PPI network alone shows reasonable AUC values under varying thresholds (bottom-

most curve of Fig. 2.3(a)). Aggregation with GO network consistently improves the AUC

values. However, GO networks alone show rather low AUC values especially at high thresh-

olds, but aggregation with PPIs, even at the highest threshold, drastically improves AUC

values. Clearly, aggregation of networks from distinct knowledge sources is an effective

way of comprehensively utilizing their respective information content, and our base scheme

indeed utilizes the higher information content.

Incorporation of empirical data

Alzheimer’s Disease GWAS and differential expression data were incorporated in the gene

prioritization process (Table 2.1 column Incorp.) as explained in the incorporated scheme.

Improvement over the base scheme was rather marginal (P-value=0.1934). This may be

Figure 2.3: AUC values from different knowledge source combinations (a) AUC vs. PPI
threshold (b) AUC vs. GO threshold. Using combined networks produces higher AUC
values.
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Figure 2.4: Network aggregation. Different networks are complementary to each other,
where missing associations in one can be complemented from the other.

attributable to a rather low reproducibility of significant genes between experiments, espe-

cially expression data [16, 37, 36]. A number of approaches have been suggested for an

appropriate interpretation and extraction of useful information from experimental data in-

cluding shifting of focus towards groups of genes rather than on individual genes[38]. A

new formulation of the incorporated scheme is left as a future work, which considers the

difference in nature of experimental data.

2.5 Discussion and conclusion

Two different knowledge sources were each represented in a network and unified in a model

that allows for additional sources to be added in a similar fashion. Each independent knowl-

edge source is likely incomplete and missing many associations between genes [18]. The

proposed knowledge integration method (base scheme) complements incomplete knowl-

edge sources to produce a more comprehensive view of genes. For example, among well

known AD genes, APOE has edges to genes APP, CLU, PSEN1 and PSEN2 in PPI network

and lacks an edge to PICALM (Fig 2.4). The GO network does not have the APOE-APP

edge but contains the APOE-PICALM edge. We compared our proposed method to two of

the best multi-source gene prioritization algorithms. Endeavour utilizes knowledge sources

separately and tended to produce the lowest AUC values among the compared algorithms.

The method proposed here effectively integrates individual knowledge sources to overcome

the incompleteness of each.

The base scheme alone showed better performance than Endeavour and RWR. Rank-
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ings based on combined networks were consistently better than rankings based on individual

networks. There is a degree of overlap between the two knowledge sources (PPI and GO),

since the same information from literature is frequently used to annotate genes. Still there

is information content in one source which is not captured in the other. The edge forma-

tion by similarity criterion in the GO network can associate genes that are highly related

in pathways or from biological perspectives which do not directly interact through their

protein products and hence is missed in a PPI network. The described schemes rely on the

association between genes to infer disease genes from known genes. The effectiveness of

this approach was shown through a series of experiments. The information from knowledge

sources and experimental data vary in reliability, degree of curation and level of acceptance.

For example, many protein interactions have been verified over time and are well accepted,

while high throughput interaction data tends to involve a high rate of false positives.

Our Gene ontology annotation of genes reflects a relatively high level of verification

and curation. On the other hand, experimental data is subject to a high level of noise and

variance and has not been extensively and thoroughly verified. Hence a network was not

directly formed from experimental evidence at this stage, and only node significance was

adjusted in accordance with the experimental significance. Our schemes are robust against

false positives and missing knowledge as shown in the perturbation experiment. Future

work will be directed at incorporating empirical data from experiments in a way that is more

consistent with the way knowledge sources are used. While particular knowledge sources

and experimental data were used for illustration, the described schemes are sufficiently

general to be used with other data types as well. After the preparation of our manuscript,

a gene prioritization method [39] was noted for its use of diverse data with a Bayesian

approach. While a readily accessible version of their algorithm was unavailable, it will be

interesting to perform a comparative study involving it.
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Chapter 3. PREDICTING BINDING PATTERNS

3.1 Abstract

Binding patterns are important characterizing features of transcription factors, yet, the pat-

terns of most transcription factors are still unknown. Considering their significance in find-

ing genetic regulatory associations, a computational approach to the prediction of binding

patterns deserves research attention. The interactions of many transcription factors with

DNA can be complicated, because they are comprised of constituent interactions between

multiple residues.

On the other hand, the zinc finger proteins, a specific class of transcription factors, inter-

act with DNA mainly via rather simple one-to-one residue interactions. Hence they permit-

ted the development of a quite a tractable, canonical interaction model. Then the prediction

of binding patterns for the zinc finger transcription factors reduces to the determinations of

nucleotide probabilities, with respect to given protein residues, which generally require a

matrix that provides the interaction propensity between residues. Given a propensity matrix

expressed in energy, we explored ways to obtain probability matrices of varying degrees

of conservation, by exploiting a degree of freedom conferred by a parameter set that orig-

inates from statistical mechanics. Here, we study the performance of predictions that are

obtained by using two well-known residue propensity matrices [87, 100] , thereby assessing

the feasibility of binding pattern predictions in general. They exhibited a low level of con-

sistency, implying that the set of data underlying at least one was rather small, or that there

was an unstability in the algorithm that was used to obtain the matrices. Moderate to large

deviations from the reported patterns [136] imply that the propensity matrices are not suffi-

ciently representative of true residue probability distributions, or that the zinc finger-DNA

interactions frequently deviate from the canonical model.
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3.2 Introduction

Transcription factors comprise an important class of proteins in genomes, which regulate

the expression of their target genes by binding to characteristic patterns in their upstream

regions. Zinc finger (ZF) transcription factors in turn comprise the largest subclass in mam-

malian genome transcription factors [92, 91, 98]. Patterns are typically degenerate: multiple

similar, yet different patterns exhibit binding activities to a given transcription factor, with

varying levels of affinity. The genetic regulatory associations between transcription factors

and their targets are mediated via the recognition of and binding to the characteristic DNA

patterns by the transcription factors. Identification of such binding patterns is an important

goal in computational biology research. In the interaction between a transcription factor

and DNA, each participating residue from one molecule may form bondings with multiple

residues from the other molecule. The resultant many-to-many interactions require a large

number of parameters in models of interactions, thereby weakening the tractability of mod-

els. On the other hand, the interactions of a class of transcription factors, C2H2 (cysteine-2,

histidine-2) ZFs, are believed to be mainly comprised of one-to-one residue interactions.

This greatly eases modeling efforts, and indeed, the transcription factor class has served

as a model case of transcription factor-DNA interactions. A unit of zinc finger recognizes

4 DNA bases, and multiple units can be combined in a rather modular fashion. It is be-

lieved that the modular flexibility has conferred a rich repertoire to the regulatory controls

of organisms [95].

The modularity and the simplicity of element-wise interactions encourages attempts to

predict binding patterns solely by using the sequence information of transcription factors.

Considering the importance of binding patterns, a reliable computational approach, if avail-

able, would greatly aid in the elucidation of genetic regulatory networks, which are still

far from a comprehensive understanding. A substantial amount of prior research exists,

which try to predict the binding patterns of transcription factors, e.g., [87, 88, 100]. They

mainly rely on the collections of DNA and protein sequences that were reported to have
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high affinities to bind to each other.

Since it is desired to predict the DNA binding pattern, given an arbitrary zinc finger

transcription factor protein sequence, what is called for is a generalized prediction scheme,

possibly represented via a matrix, that relates each amino acid of the protein to a proba-

bility distribution of nucleotides. The works by Benos et al [87] in 2002 (henceforth to be

abbreviated to Benos02) and by Kaplan et al [100] in 2005 (abbreviated to Kaplan05) are at-

tempts to relate arbitrary amino acid residues to their likely nucleotide interaction partners,

or vice versa.

Comparative studies involving the two were performed in rather partial manners. Per-

sikov [88] did compare them, while assuming a binary classification of interactions: binding

or no binding. Transcription factor-DNA binding events span a wide range of densely occu-

pied energy levels, due to the large number of possible amino acid-nucleotide combinations.

Then the binary classification of interactions of binding or no-binding would be rather too

coarse to suitably represent the diversity, complexity and the degeneracy of the binding

patterns [101, 102]. Here, we performed a comparison study of the two sets of propensity

matrices by using a representation scheme of the residue probability distributions of binding

patterns.

Patterns obtained by using the two matrix sets were compared against those retrieved

from the Jaspar database [136], that were assumed as standards. The residue propensity

data of Benos02 are in the units of energy, while what are desired are the probability distri-

butions of residues. Hence, we also explored systematic ways to convert the energy levels

to probability distributions. We discovered that the parameters involved in the formulation

of Benos02 can serve as a means to control the conservation levels of the patterns pro-

duced. Using obtained results, we discuss the biases of the data that underlie Benos02 and

Kaplan05 sets, and factors that render the prediction problem hard.
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3.3 Material and methods

C2H2 subfamily forms the largest subclass in the zinc finger transcription factor class, ac-

counting for approximately 40% of human transcription factors [98, 91]. Its name derives

from two cysteine (Cys) and two histidine (His) residues that coordinate a zinc ion to form

a strand-strand-helix protein structure. The motif shows a strong conservation in the se-

quence pattern: Cys-X2,4-Cys-X12-His-X3,4,5-His, with X being any amino acid. Shown

in the list below are three zinc fingers from the EGR3 transcription factor of M.mus, which

all conform to the canonical pattern.

1. Finger 1, position 275-299: HACPAEGCDRRFSRSDELTRHLRIH, E=4e-07

2. Finger 2, position 305-327: FQCRICMRSFSRSDHLTTHIRTH, E=1.3e-05

3. Finger 3, position 333-355: FACEFCGRKFARSDERKRHAKIH, E=5.6e-05

The strong conservation stems from a requirement for proper structural shaping of the zinc

fingers and their interactions with DNA. The second histidine is located at the 7th residue

in an alpha helix, and to be numbered +7. The residues at positions -1,+2,+3,+6 recognize

4 consecutive DNA residues, by respectively forming contacts with nucleotides at positions

3,4,2,1 (Table 3.1). When two zinc fingers are separated by 6 amino acids, they are arranged

to contact consecutive DNA bases, with one residue overlap.

Each amino acid-nucleotide interaction is rather independent of other interactions be-

tween different residues, in the interactions of zinc fingers with DNA. Additionally, each

zinc finger-DNA interaction is independent of others except the one residue overlap be-

tween adjacent fingers, which overall gives a high level of modularity to the zinc finger

transcription factor-DNA interactions. From a bioengineering perspective, a great flexibil-

ity in protein-DNA interaction can be achieved by arranging zinc fingers in a random linear

fashion, which would then facilitate a highly specific recognition of long consecutive DNA

residues. Experimental techniques such as selex [8] and phage display [9] have been used
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for the interrogation of binding affinities between amino acids and nucleotides in the zinc

finger-DNA interactions [103, 104, 105, 106].

Conversion of Benos02 matrices

We employ Table 2 of [87] which tabulates binding energies between all possible pairs of

amino acids and nucleotides. While the entries are in the unit of energy, we seek to obtain

a probability distribution of nucleotides, n’s, given an amino acid, a, at position p in a zinc

finger: p(n|a, p). Berg [111] used the Boltzman’s statistical mechanics formulation to relate

the binding energies of nucleotides to their probability values. Let a denote an amino acid

out of 20 possible alphabets, {ai}= {A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y},

1≤ i≤ 20, and let n j denote a nucleotide, {n j}= {A,C,G,T}. Given ai at position p in a

finger, we seek to evaluate the probability distribution of the nucleotides, p(n j|ai, p). Draw-

ing from statistical mechanics, Berg [111] interpreted each nucleotide as a state, which then

enables to relate their energy levels to probability values:

p(n j) = cexp(
−En j

kBT
) (3.1)

Here, c is a normalization factor specific to each (ai,p) pair, which ensures that the proba-

bility values sum to unity.

∑
j

p(n j) = p(A)+ p(C)+ p(G)+ p(T ) = 1 (3.2)

c∑
j

exp(
−En j

kBT
) = 1 (3.3)

Inclusion of the Boltzman constant, kB, and the temperature, T , stems from the original

statistical mechanics setting which involved a system of particles. Berg [111] suggested

to adopt suitable constant factors in their places, since the macro-molecules of multiple

atoms are being addressed in the amino acid-nucleotide interactions. Then the formula

corresponding to the new system is:

c∑
i

exp(
Eai

kT ′
) = 1 (3.4)
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, with k and T ′ being the new factors to be determined. Since c is determined only to ensure

a proper normalization, one degree of freedom is given by the product, kT ′. Its determi-

nation would have to reflect the nature of the system: the molecular interactions between

amino acids and DNA. There exists a wide range of affinity in the interactions between

transcription factors and DNA. The measure of information content [150] can be used in

assessing the degrees of conservations of DNA residues. We empirically determine suitable

k values, based on the agreements between the patterns produced and typical transcription

factor binding patterns, in terms of the levels of conservations as quantified by information

contents.

Determination of k

The values of the physical constant, kB, in different units are: kB = 1.3806504e−23JK−1 =

8.617343e−5eV K−1 = 1.3806504e−16ergK−1. We used the k value, 3e−4, that is in the

vicinity of 8.617343e−5, as our initial guess at the k value, and T ′ = 300(K). The probabil-

ity values, p(n j|ai, p)’s that were obtained for positions p = 1,2,3,4 are shown in Tables

3.2, 3.3, 3.4 and 3.5. Under k = 3e−4, the information content (IC) values are close to 2 in

many rows. Considering a substantial range of diversity in typical binding sites of transcrip-

tion factors, this would imply that the dominant residue frequency values, f 1’s are rather

too high at k = 3e−4. So, the k-value was varied over {3e−4,5e−4,7e−4,1e−3,3e−3,5e−3}

in order to search for more appropriate ones.

The statistics of the information contents, the frequencies of the most frequent residues,

f 1’s, and the second highest frequencies, f 2’s, are shown in Tables 3.8, 3.9, 3.10 and 3.11.

There is a clear trend of a decrease in the information contents, or equivalently, an increase

in the residue diversity, with increasing k values (Table 3.12). We selected the values, k =

3e−3,1e−3,7e−4, as approximately good ones that would produce appropriate information

content values for most transcription factors.
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Probability calculation at the overlapping position

DNA bases at positions 1 and 4 contact two adjacent zinc fingers; the sixth amino acid of the

preceding finger (ZF1a6) contacts the fourth base, and the second residue of the following

finger (ZF2a2) contacts its complement. We complemented the entries of Table 3.5 to reflect

their complementary contact at the overlapping position. The energy contributions of the

residues from respective fingers were assumed to be additive, i.e., letting E1,2 denote the

combined energy from contributions, E1 and E2, of the preceding and following fingers at

the overlapping position, then E1,2 = k1E1 + k2E2. Here, k1,k2 are weighting factors that

reflect their relative contributions, hence, k1 + k2 = 1. We used the values, k1 = 0.50 and

k2 = 0.50, which corresponds to the case of equal energy contributions. Then, a table similar

to Table 3.2 is obtained, consisting of 400 rows which correspond to all possible two-amino

acid permutations. Then, we applied Eq.3.1 to obtain nucleotide probability values at the

overlapping position.

Impacts of energy level offsetting and of kT product changes

Energy levels can be expressed in reference to an arbitrary level. Given a set of energy

values, offsetting them by a constant does not change their relative magnitudes. Berg [111]

suggested to offset the energy levels of nucleotides by the lowest one, which would then

cause the new minimum value to be 0. We compared the effect of offsetting on the overall

distributions of probability values against the one without offsetting (Fig.3.1). They showed

very high correlation values across base positions, ranging from 0.9733 to 0.9952, which

imply that offsetting would not significantly affect the probability values.

In order to assess the impact of the product kT , its value was set to 1.0, and the re-

sulting probability matrices were compared with the matrices that were obtained by using

the values k = 1e−3 and T = 300 (Fig 3.2). While their correlation coefficients were high

across different base positions, their relations were highly non-linear. Altogether, it was

concluded that the relative magnitudes of probabilities would be preserved under energy

level offsetting and kT product value changes. The impact of offsetting was marginal, and
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the impact of using different parameter product values was more significant. We tentatively

used k values in the vicinity of 1e−3 and applied offsetting to energy values.

Conversion of Kaplan05 propensity matrices

Kaplan05 tables were normalized in a manner similar to the Benos02 case. Four tables were

obtained, which specify nucleotide probabilities, given an arbitrary amino acid residue. At

the overlapping position, two amino acids generally specify different probability values for

nucleotides. The arithmetic mean of the two probability values for each nucleotide was

taken as the nucleotide probability corresponding to the amino acid pair, which ensures an

appropriate normalization without further processing, due to the nature of the arithmetic

mean.

3.4 Results

Putative finger sequences from 1574 zinc finger transcription factors of human were ob-

tained from Pfam [90]. The number of fingers possessed by zinc finger transcription factors

is widely varying. The distribution of the finger counts of human proteins is shown in Table

3.13. It has been suggested that a small number of fingers have a rather low specificity,

since only a small number of DNA residues are specified [88]. Transcription factors with

large finger counts frequently have the spacing between their constituent fingers exceeding

6 residues, which would imply that the zinc fingers form separate modules that recognize

non-consecutive DNA residues. The fashion in which large finger count transcription fac-

tors bind DNA has been suggested to be more complicated than that of the smaller zinc

finger count transcription factors [46, 95].

Given a zinc finger sequence set from a transcription factor, ZF = {ZFi|ZF1,ZF2, . . . ,ZFn},

the characteristic residues that contact DNA bases were extracted. Each amino acid residue

specifies a vector of nucleotide probability values. At the overlapping DNA position, the

amino acid pair, ZF1a6 and ZF2a2, is used. Concatenating the vectors, which are spec-

ified by a single or pairs of residues, then forms a nucleotide residue probability matrix

corresponding to the ZF set.
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Application of the method to EGR3 transcription factor with the parameter k = 3e−3

produces a pattern with the consensus sequence GCGTGGGCG (Fig.3.8(a), Table3.14),

which is the same as one reported in the literature [48]. The first G residue shows the

strongest conservation, and the two C’s at positions 2 and 8, least conservations. The pa-

rameter k was varied to 1e−3 and 7e−4 to produce different patterns (Figs.3.8(b) and 3.8(c)).

The f 1 residues are seen to be invariant across positions, irrespective of the k value change.

The second C residue is very small at k = 3e−3 but larger at k = 7e−4. Selection of an

appropriate k value would depend on the conservation levels of transcription factors under

study, e.g., those of a specific transcription factor family from a species.

Since the same residue sets are used as indices to retrieve entries across the probabil-

ity matrices, by using the entry-wise correspondence among nucleotides and amino acids,

correlation coefficients between each pair of matrices can be calculated. The Kaplan05

matrices are highly similar across base positions, as evident from their high correlation

coefficients (Table 3.7). To the contrary, such correlations are nearly absent among the

Benos02 matrices (Table 3.6).

We then checked the consistency between the Benos02 and Kaplan05 matrices that

correspond to the same positions (Figs.3.3 and 3.4), via correlation coefficients. The high-

est correlation coefficient value was 0.53402511 at the 2nd position, and the lowest was

0.05788589 at the 4th position (Figs.3.3(a) to 3.3(d)). The median was 0.29506800. While

the median correlation value is rather significant against the null hypothesis of no corre-

lation (P-value=0.015431), still, the level of overall agreement between the two sets of

matrices is fairly low.

The matrices of binding patterns of zinc finger transcription factors were retrieved from

Jaspar [136] (Fig.3.7). While the matrices could involve some inaccuracy, in the absence

of more readily available alternatives, we used them as standards to compare the predicted

patterns against. Patterns were predicted by using the Benos02 and Kaplan05 matrices,

which are shown in Figs.3.5 and 3.6. The patterns that result from using the Kaplan05

matrices are seen to possess lower levels of conservation. They overall show moderate to
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rather large differences from the Jaspar matrices.

3.5 Discussion

Prediction of transcription factor binding patterns is an important research problem in view

of the importance of identifying genetic regulatory associations. Existing approaches com-

monly rely on the information about the interaction propensities between amino acid and

nucleotide residues. Such data typically come from previously known and reported interac-

tions.

While many transcription factors exhibit rather complicated ways of interactions with

DNA, the zinc finger transcription factors, especially the C2H2 subfamily, have permitted

a rather straightforward interaction model. By resorting to the model, the zinc finger-DNA

interactions can be decomposed into constituent, elementary amino acid-nucleotide interac-

tions. The quality and the reliability of predictions critically hinge on those of the propen-

sity data used. If the data are biased or unreliable, then predictions based on the data will

consequently be of low quality.

The EGR1 transcription factor (also known as zif268) reliably forms three active fin-

ger structures, and has served as a stable structural scaffold in many studies on the residue

specificities of general zinc finger-DNA interactions. The resultant data as a whole then

represent sequences similar to EGR1 well, while they rather poorly represent highly dis-

similar sequences. Other members of the EGR transcription factor family, EGR2, EGR3

and EGR4 have the same amino acid residues as EGR1, at the characteristics positions that

interact with DNA. Additionally, quite a number of points need to be addressed before or

during an application of the plain zinc finger transcription factor-DNA interaction model.

If the number of intervening residues between consecutive fingers exceeds 6, then the zinc

fingers are possibly located in different modules [95]. Alternatively, zinc fingers may inter-

act with RNA or protein [95, 46], rather than with DNA, hence, their interaction targets first

have to be determined. When a zinc finger transcription factor interacts with DNA, and a

large number of fingers are present therein, the modes of interactions of the zinc fingers are
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Table 3.1: DNA and protein residue pairs forming contacts

DNA Protein
3 -1
4 2
2 3
1 6

often very diverse and deviate from the canonical model. Within a zinc finger module, some

amino acid residues at the characteristic positions may not participate in the interaction with

DNA, and some others from non-canonical positions may. The relative contributions from

residues at the overlapping position have to be precisely determined, while they were as-

sumed to make equal contributions in the current study. A full computational model for

zinc finger-DNA interactions is required to 1) predict the constituent fingers comprising a

module 2) determine which residues are participating in the interactions and 3) determine

the contributions of individual participating residues to the overall binding. The rather large

discrepancies between the Jaspar and the Benos02-based and Kaplan05-based patterns, in

a fairly large number of cases, appear to suggest the insufficient representativeness of the

propensity data, or deviations from the canonical interaction model by the transcription fac-

tors that were studied. The performed comparison study serves to illustrate many issues to

be addressed, in order to realize a fully computational prediction of binding patterns.

We employed the propensity matrices of [87] and explored the implication of a product

of parameters that was pertinent in the process of converting the energies of states to their

probability values. Varying its value resulted in patterns of different conservation levels.

The overrepresentation of the EGR1-like sequences in publicly available data was manifest

as a close agreement between the predicted and reported patterns for the transcription factor.
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Table 3.2: Nucleotide Probability matrix at the 1st bp, finger position 6

aa\nuc. A C G T IC
A 0.90222042 0.00000001 0.09777184 0.00000774 1.53796603
C 0.97855660 0.01284231 0.00823424 0.00036685 1.82750844
D 0.00000000 0.00007912 0.00000022 0.99992066 1.99880260
E 0.13137117 0.00000000 0.00000030 0.86862853 1.43880644
F 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000
G 0.00000421 0.00000421 0.31479637 0.68519521 1.10120940
H 0.00000000 0.00000000 0.98960062 0.01039938 1.91657067
I 0.39068246 0.60931754 0.00000000 0.00000000 1.03476145
K 0.00000000 0.00000000 0.01612527 0.98387473 1.88090630
L 0.03444520 0.00000001 0.96555479 0.00000000 1.78378338
M 0.00000012 0.07204383 0.92781306 0.00014299 1.62447505
N 0.10802155 0.00000006 0.89197838 0.00000000 1.50607901
P 0.00000000 0.00000000 0.99723760 0.00276240 1.97254017
Q 0.99991065 0.00000000 0.00008842 0.00000093 1.99866190
R 0.00000000 0.00000000 1.00000000 0.00000000 2.00000000
S 0.05982310 0.00415672 0.49398394 0.44203625 0.70082355
T 0.99772000 0.00000020 0.00198030 0.00029950 1.97542109
V 0.00056812 0.00000004 0.97167544 0.02775640 1.81006495
W 0.00000000 0.00000000 0.00000000 1.00000000 2.00000000
Y 1.00000000 0.00000000 0.00000000 0.00000000 2.00000000
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Table 3.3: Nucleotide Probability matrix at the 2nd bp, finger position 3

aa\nuc. A C G T IC
A 0.00000001 0.00000000 0.00000000 0.99999999 1.99999978
C 0.00000000 0.00000000 0.00000000 1.00000000 1.99999999
D 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000
E 0.00006334 0.99963655 0.00000003 0.00030008 1.99507998
F 0.99997914 0.00000000 0.00000000 0.00002086 1.99964559
G 0.00017220 0.00000000 0.00000000 0.99982780 1.99759842
H 0.00000002 0.00000000 0.99999998 0.00000000 1.99999943
I 0.00000000 0.00000031 0.00000000 0.99999969 1.99999294
K 0.00000000 0.00000000 0.95257413 0.04742587 1.72464005
L 0.00000000 0.00072965 0.00000000 0.99927035 1.99134445
M 0.00221318 0.00000000 0.00000000 0.99778682 1.97729113
N 1.00000000 0.00000000 0.00000000 0.00000000 2.00000000
P 0.00000000 0.00000000 0.00000394 0.99999606 1.99992359
Q 0.99885179 0.00000002 0.00001070 0.00113750 1.98704270
R 0.00000000 0.00000017 0.00931596 0.99068387 1.92377236
S 0.00000000 0.00000000 0.00000000 1.00000000 2.00000000
T 0.00000000 0.96555480 0.00000000 0.03444520 1.78378368
V 0.00000000 0.52774924 0.00000000 0.47225076 1.00222295
W 0.00000000 0.00000000 0.00000000 1.00000000 2.00000000
Y 0.00000000 0.00000000 1.00000000 0.00000000 2.00000000
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Table 3.4: Nucleotide Probability matrix at the 3rd bp, finger position -1

aa\nuc. A C G T IC
A 0.01612308 0.98374125 0.00013567 0.00000000 1.87898370
C 0.00037784 0.09773566 0.00000000 0.90188650 1.53343858
D 0.00000000 0.99999999 0.00000000 0.00000001 1.99999975
E 0.00000012 0.70865402 0.00000948 0.29133638 1.12938863
F 0.00000000 0.00000000 1.00000000 0.00000000 2.00000000
G 0.00000000 0.58226089 0.00053095 0.41720816 1.01374088
H 0.00000000 0.00024031 0.00000000 0.99975969 1.99676412
I 0.01282032 0.00918616 0.97688104 0.00111247 1.81338165
K 0.00000006 0.00014478 0.24762793 0.75222723 1.19050573
L 0.00000001 0.00072965 0.00000000 0.99927034 1.99134411
M 0.00000000 0.00000000 0.00000000 1.00000000 2.00000000
N 0.00000024 0.00000000 0.00000020 0.99999956 1.99998961
P 0.00000000 0.00000000 0.00000000 1.00000000 2.00000000
Q 1.00000000 0.00000000 0.00000000 0.00000000 1.99999999
R 0.00000000 0.00000000 1.00000000 0.00000000 1.99999995
S 0.00000001 0.00000053 0.00000202 0.99999743 1.99994657
T 0.00000002 0.00000000 0.00000000 0.99999998 1.99999947
V 0.00000000 0.00000000 0.00072965 0.99927035 1.99134445
W 1.00000000 0.00000000 0.00000000 0.00000000 2.00000000
Y 0.00000000 0.00000000 1.00000000 0.00000000 2.00000000
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Table 3.5: Nucleotide Probability matrix at the 4th bp, finger position 2

aa\nuc. A C G T IC
A 0.00000394 0.99999596 0.00000000 0.00000010 1.99992110
C 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000
D 0.00000000 0.00005955 0.84108080 0.15885964 1.36751861
E 0.00000000 1.00000000 0.00000000 0.00000000 1.99999999
F 0.00000000 0.00000000 1.00000000 0.00000000 2.00000000
G 0.00000000 0.99998929 0.00000000 0.00001071 1.99980767
H 0.00000018 0.00015410 0.00000000 0.99984573 1.99782204
I 1.00000000 0.00000000 0.00000000 0.00000000 2.00000000
K 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000
L 0.00000000 0.00000000 0.00000000 1.00000000 2.00000000
M 0.00000000 0.00000000 0.00000000 1.00000000 2.00000000
N 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000
P 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000
Q 0.00000005 0.99999994 0.00000000 0.00000002 1.99999839
R 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000
S 0.00000000 0.99752737 0.00000000 0.00247262 1.97502476
T 0.00000034 0.99999966 0.00000000 0.00000000 1.99999216
V 0.00000000 0.98839266 0.00000002 0.01160732 1.90872982
W 0.00000000 0.10802154 0.00000020 0.89197826 1.50607606
Y 0.00000000 1.00000000 0.00000000 0.00000000 2.00000000

Table 3.6: Correlation coefficients of nucleotide probabilities between matrices of corre-
sponding base positions (Benos02)

Pos 1 2 3 4
1 +1.00000000 +0.08668779 +0.02111910 -0.22734421
2 +0.08668779 +1.00000000 +0.36890810 -0.04949463
3 +0.02111910 +0.36890810 +1.00000000 +0.10822308
4 -0.22734421 -0.04949463 +0.10822308 +1.00000000

Table 3.7: Correlation coefficients of nucleotide probabilities between matrices of corre-
sponding base positions (Kaplan05)

Pos 1 2 3 4
1 +1.00000000 +0.58178560 +0.58323553 +0.51080332
2 +0.58178560 +1.00000000 +0.83030163 +0.78016042
3 +0.58323553 +0.83030163 +1.00000000 +0.79996452
4 +0.51080332 +0.78016042 +0.79996452 +1.00000000
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Table 3.8: Statistics of the IC, f 1 and f 2 values of 1st bp matrices as f (k)

k 0.000300 0.000500 0.000700 0.001000 0.003000 0.005000
Avg-IC 1.705419 1.523435 1.379125 1.215411 0.725604 0.498666
Med-IC 1.854207 1.538386 1.343155 1.089204 0.586920 0.368370
Stdev-IC 0.379770 0.430004 0.470111 0.517887 0.640184 0.516942
Avg- f 1 0.913159 0.860172 0.813310 0.756941 0.582173 0.507376
Med- f 1 0.981215 0.903376 0.829929 0.751475 0.519760 0.455017
Stdev- f 1 0.145726 0.161950 0.171839 0.182779 0.221780 0.212093
Avg- f 2 0.083160 0.128290 0.164842 0.203425 0.265843 0.269138
Med- f 2 0.014483 0.071691 0.135411 0.214136 0.310171 0.295074
Stdev- f 2 0.136688 0.144987 0.149257 0.151925 0.146935 0.128673

Table 3.9: Statistics of the IC, f 1 and f 2 values of 2nd bp matrices as f (k)

k 0.000300 0.000500 0.000700 0.001000 0.003000 0.005000
Avg-IC 1.919116 1.849680 1.769835 1.652969 1.122734 0.786046
Med-IC 1.999784 1.988140 1.938062 1.798150 1.122192 0.854499
Stdev-IC 0.228713 0.265627 0.303998 0.361082 0.491043 0.430636
Avg- f 1 0.971595 0.956201 0.936263 0.903920 0.737707 0.631588
Med- f 1 0.999987 0.998937 0.992692 0.968902 0.723038 0.622714
Stdev- f 1 0.105235 0.111007 0.118860 0.131545 0.177921 0.167690
Avg- f 2 0.028400 0.043590 0.062513 0.091328 0.210398 0.258962
Med- f 2 0.000012 0.001061 0.007285 0.030624 0.222065 0.268338
Stdev- f 2 0.105236 0.111069 0.119040 0.130625 0.148171 0.131009

Table 3.10: Statistics of the IC, f 1 and f 2 values of 3rd bp matrices as f (k)

k 0.000300 0.000500 0.000700 0.001000 0.003000 0.005000
Avg-IC 1.826941 1.739105 1.651512 1.528357 0.905378 0.581367
Med-IC 1.999968 1.994685 1.953842 1.778610 0.791565 0.451698
Stdev-IC 0.328815 0.396704 0.470512 0.548707 0.617685 0.521663
Avg- f 1 0.945197 0.918546 0.893937 0.860213 0.684045 0.574983
Med- f 1 0.999998 0.999611 0.995542 0.971768 0.662194 0.536812
Stdev- f 1 0.119459 0.144833 0.163961 0.186896 0.223519 0.207121
Avg- f 2 0.054227 0.076819 0.094210 0.114374 0.187846 0.219924
Med- f 2 0.000001 0.000245 0.002534 0.014527 0.151923 0.208588
Stdev- f 2 0.119521 0.142436 0.152932 0.158360 0.134352 0.111587
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Table 3.11: Statistics of the IC, f 1 and f 2 values of 4th bp matrices as f (k)

k 0.000300 0.000500 0.000700 0.001000 0.003000 0.005000
Avg-IC 1.937744 1.889097 1.843447 1.767169 1.167887 0.759916
Med-IC 2.000000 1.999975 1.999107 1.987855 1.342409 0.697607
Stdev-IC 0.174029 0.254491 0.303724 0.360790 0.547602 0.475335
Avg- f 1 0.985940 0.970537 0.956672 0.936251 0.783512 0.658848
Med- f 1 1.000000 0.999998 0.999942 0.998926 0.881065 0.705544
Stdev- f 1 0.041745 0.075815 0.097719 0.120289 0.185243 0.183328
Avg- f 2 0.014056 0.029330 0.042536 0.060036 0.147362 0.201326
Med- f 2 0.000000 0.000001 0.000057 0.001070 0.091752 0.193474
Stdev- f 2 0.041734 0.075413 0.095883 0.114430 0.127646 0.099203

Table 3.12: Average IC values of matrices at different base positions as functions of k

-logk k k bp-1 bp-2 bp-3 bp-4 Max-Min
3.523 3E-4 0.0003 1.7054 1.9191 1.8269 1.9377 0.2323
3.301 5E-4 0.0005 1.5234 1.8497 1.7391 1.8891 0.3657
3.155 7E-4 0.0007 1.3791 1.7698 1.6515 1.8434 0.4643
3.000 1E-3 0.0010 1.2154 1.6530 1.5284 1.7672 0.5518
2.523 3E-3 0.0030 0.7256 1.1227 0.9054 1.1679 0.4423
2.301 5E-3 0.0050 0.4987 0.7860 0.5814 0.7599 0.2874
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Table 3.13: Number of zinc fingers in human proteins

N-ZFs Proteins
1 142
2 109
3 179
4 119
5 103
6 89
7 84
8 88
9 119
10 63
11 99
12 81
13 66
14 67
15 36
16 27
17 27
18 20
19 22
20 5
21 15
22 4
23 2
24 3
25 0
26 2
27 0
28 0
29 0
30 1
31 0
32 1
33 1
34 0
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Table 3.14: IC of the calculated EGR3 matrix (k = 3e−03)

Position f 1 residue f 1 IC
0 g 0.965695 1.733784
1 c 0.499156 0.251648
2 g 0.826380 1.144139
3 t 0.486353 0.730754
4 g 0.844987 1.321063
5 g 0.826380 1.144139
6 g 0.780029 1.084716
7 c 0.499156 0.251648
8 g 0.826380 1.144139
9 g 0.438536 0.395198
Sum - 6.993053 9.201229
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(a) 1st bp (b) 2nd bp

(c) 3rd bp (d) 4th bp

Figure 3.1: Scatter plots of Benos02 matrix entries without energy level offsetting vs.
Benos02 with offsetting. Overall correlations are very high.
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(a) 1st bp (b) 2nd bp

(c) 3rd bp (d) 4th bp

Figure 3.2: Scatter plots of Benos02 matrix entries with kT ′ = 1 vs. Benos02 with k = 1e−3

(all with offsetting). Correlations are high, yet the relations are very nonlinear.
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(a) 1st bp (b) 2nd bp

(c) 3rd bp (d) 4th bp

Figure 3.3: Scatter plots of Benos02 matrix entries with kT ′ = 1 and without offsetting vs.
Kaplan05. Correlations between matrices from the two sets are rather low.
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(a) 1st bp (b) 2nd bp

(c) 3rd bp (d) 4th bp

Figure 3.4: Scatter plots of Benos02 matrix entries with kT ′ = 1 and with offsetting vs.
Kaplan05. Correlations are low, especially at the 4th position.
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(a) EVI1 (b) GFI

(c) MZF1-1-4 (d) MZF1-5-13

(e) RREB1 (f) SP1

(g) YY1 (h) ZNF354C

(i) REST (j) ZFX

(k) INSM1 (l) EGR1

Figure 3.5: Patterns calculated by using Benos02 matrices. The predicted patterns tend to
have strong levels of conservations.
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(a) EVI1 (b) GFI

(c) MZF1-1-4 (d) MZF1-5-13

(e) RREB1 (f) SP1

(g) YY1 (h) ZNF354C

(i) REST (j) ZFX

(k) INSM1 (l) EGR1

Figure 3.6: Patterns calculated by using Kaplan05 matrices. The predicted patterns have
low levels of conservations.
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(a) EVI1 (b) GFI

(c) MZF1-1-4 (d) MZF1-5-13

(e) RREB1 (f) SP1

(g) YY1 (h) ZNF354C

(i) REST (j) ZFX

(k) INSM1 (l) EGR1

Figure 3.7: Patterns from Jaspar. They were used as reference patterns to compare predicted
patterns with.
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(a) k = 3e−3

(b) k = 1e−3

(c) k = 7e−4

Figure 3.8: Changes in the calculated EGR3 binding patterns with varying k values. De-
creasing the k value results in patterns with higher information contents.
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Chapter 4. IMPROVING BINDING PATTERNS

4.1 Abstract

Transcription factors recognize particular DNA sequence patterns and regulate the expres-

sion of downstream target genes. ChIP-seq and ChIP-chip data provide information about

the loci of bound sequence patterns to a resolution of tens to hundreds of bases. Exist-

ing approaches to finding transcription factor-binding patterns from ChIP-seq data have

focused mostly on the de novo discovery of patterns, without addressing systematic ways

to properly utilize a priori knowledge on the binding patterns. Many existing matrices

that represent binding patterns are based on small numbers of sequences, or result from

the computationally challenging problem of de novo pattern discovery. Hence, they often

exhibit high degrees of deviation from true distributions of bound sequence patterns. Ac-

curate representations of the sequence pattern distributions through matrices are important

in understanding the relative contributions of residues to binding energy, and in estimating

the significance of putative pattern matches in the course of establishing target genes of

transcription factors.

We studied the problem of closely approximating truly representative matrices by uti-

lizing ChIP-seq data, together with matrices that are presumably inaccurate. An iterative

approach in combination with a proper parameter selection facilitates to reveal the enrich-

ment of true patterns in the sequence data. Applications to synthetic data demonstrate that

widely varying initial matrices stably converge to accurate matrices by using our approach.

4.2 Introduction

Transcription factors regulate the expression of their target genes by binding to specific

patterns in the upstream regions of the targets. Their bindings are typically characterized

by short DNA sequence patterns, ranging 5-20 base pairs (bp’s) in higher organisms. Fre-

quently, different nucleotide residues at a position show nearly identical binding energies,

or residues over multiple positions are substitutable without causing significant changes
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in binding energies: this has been often referred to as the degeneracy of patterns. Rel-

atively recent experimental techniques such as ChIP-seq [137] can provide important in-

formation on the in vivo binding of transcription factors to their cognate patterns. Such

patterns have typically been represented via letter probability matrices [150] which spec-

ify the expected frequencies of residues at each residue position. Additionally, position-

specific scoring matrices can be used, which specify the odds of pattern conformance

against random patterns originating from a background nucleotide distribution. While

the problem of de novo pattern discovery from ChIP-seq data has been studied by many

[114, 115, 116, 124, 127, 129, 133, 130], little attention has been paid to the problem of

improving inaccurate patterns. Traditionally available knowledge about patterns has been

often based on small scale experiments that involved only small numbers of transcription

factor-bound patterns. Such small sample sizes severely weaken the statistical representa-

tiveness of the patterns.

ChIP-seq [137] data produces a large number of transcription factor-bound patterns,

albeit with a substantial tolerance in locus. Candidate bound regions are 10’s to 100 bp

long sequence fragments that harbor the patterns bound by transcription factors. Finding

the bound patterns can be challenging, given the pattern degeneracy, large sequence count

and the substantial sequence lengths.

Most existing algorithms for ChIP-seq data focus on finding new patterns from the

data, typically relying on the inherent enrichment of the bound patterns therein, and do

not consider ways of systematically utilizing known patterns. Frequently, genes are under

a combinatorial regulation. It is especially prevalent in higher organisms, where multiple

transcription factors cooperatively regulate the target genes by binding to their respective

patterns that are located in close proximity to each other. Multiple patterns jointly enriched

in the data can mislead algorithms that mainly rely on pattern enrichments. Low complex-

ity regions in DNA were often implicated to be germane to the births of transcription factor

binding patterns [153]. The low complexity regions present another source of noise to the

enrichment-driven operation of the algorithms. Together with the computational complex-
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ity of the problem, these confounding factors pose a serious challenge to the algorithms, and

the resulting algorithm performance can be highly unstable; inferred patterns can be related

to ones that are different from the true bound patterns that were sought after. Addition-

ally, they can be highly inaccurate due to the mixed enrichment of heterogeneous patterns.

Hence, utilization of prior pattern knowledge, albeit weak and inaccurate, has the potential

to produce more specific and accurate patterns corresponding to the transcription factors

under study. Using letter probability matrices [150] is still a popular choice for represent-

ing binding patterns. The matrices specify frequency vector of nucleotides for each residue

position. Those vectors together specify a probability distribution of patterns, rather than a

small set of specific patterns.

Given a matrix, methods for the statistical assessments of the conformance of candi-

date patterns to the pattern represented by the matrix were studied in [118, 121]. In the

interactions between a transcription factor and the promoter regions of its target genes,

the presence and the conformance levels of sequence patterns to the transcription factor-

characteristic binding pattern were shown to be the most critical determinants [122]. Other

factors, such as the nucleosome occupancy and chromatin modification signals were far less

significant [122].

It is known that binding patterns frequently are highly degenerate. Patterns that are dis-

tinct from the one having the highest affinity, can still show moderate to high affinities to

bind to the transcription factors and play biological roles [147, 148, 135]. The specificity

levels of positions are typically different: the most dominant residue at a position can be

strongly conserved, and nearly no other residues may be found in transcription factor-bound

patterns. Alternatively, some positions bind less strongly to transcription factors, hence

more diverse residues are permitted. Accurate representations of precise residue probabili-

ties would be critical to subsequent inferences that employ the binding pattern information.

Identifying the relative specificities of positions facilitates a more precise estimation of the

significance of pattern matches that are obtained from searches for patterns in large se-

quence sets. Hence, it is important to have highly reliable probability matrices (PM) that
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are representative of true pattern distributions.

Here we propose a systematic way of utilizing ChIP-seq data together with known pat-

terns that are presumed to be inaccurate, to approximate the true binding pattern distribu-

tions as closely as possible. The proposed approach is iterative, and each step consists of

scanning sequence fragments from ChIP-seq data. The patterns with P-values more sig-

nificant than a threshold are retained, which then serve to form a new matrix for the next

iteration. Globally, two phases of p-value series are used: 1) a stringency phase where the

P-value is gradually decreased in order to successively approximate the true matrix, starting

from an initial matrix, and 2) a sensitivity phase where the P-value is progressively relaxed,

so as to gain sensitivity and to reach the residue diversity that is characteristic to each of the

transcription factors under study. Case studies on a set of transcription factor binding pat-

terns demonstrate that our method, combined with sensible P-value scheduling, facilitates

the discovery of true patterns.

4.3 Approach

Assume a set of N sequence patterns S = {s j| j = 1 . . .N} is given which putatively bind to

a transcription factor, all of length L. They can be aligned without permitting gaps and the

frequencies of residues can be calculated at each position. Then each aligned position will

have a vector of residue frequency values. Denoting by α a letter from a possible alphabet

set, each residue frequency at a position i is bounded, i.e., 0 ≤ fi(α) ≤ 1 which sum to

unity since they are frequency values: ∑
∀α fi(α) = 1. A matrix can be used to specify the

frequency values of residues over multiple positions. Map each position in the alignment

to a row of the matrix, and each alphabet to a column of the matrix. Henceforth, we focus

our attention on DNA sequences, then the alphabet set {α} = {A,C,G,T}. If a position

has nearly identical residue frequency values, then the residue diversity, and consequently

entropy are high, and its information content is low. Specifically, the entropy Hi(α) at a

position i is defined as

Hi(α) =
∀α

∑ fi(α) log( fi(α)) (4.1)

51



and the entropy of the entire matrix is defined as:

H(α) = ∑
i

Hi(α) =
L

∑
i

∀α

∑ fi(α) log( fi(α)) (4.2)

The information content at a position i is defined as:

ICi = log |{α}|−Hi(α) (4.3)

and that of the entire matrix is defined as:

IC =
L

∑
i=1

[log |{α}|−Hi(α)] (4.4)

with |{α}| the size of alphabet set, and is 4 in the case of DNA. The unit of bits can be

used by employing log base of 2. A highly divergent position will have a high entropy and

low IC, and a highly conserved position will have a low entropy and high IC. In the case

of perfect conservation, one of the nucleotides will have f (α) = 1.0 for some α , and then

IC = 2(bits). If all residues are equally likely, then f (A) = f (C) = f (G) = f (T) = 0.25,

and IC = 0(bits).

The letter probability matrix, M, can be interpreted to specify a zero-order Markov

chain, i.e., each row of the matrix is a state specifying the emission probability values of

nucleotides at the position. Then it can serve as a generative model, where the states are

traversed from the first to the last, to generate a sequence. Probabilities of nucleotides fol-

low the frequency vector specified at each position. By iterating the process k times, a total

of k sequences can be generated, distribution of which follows M (henceforth referred to as

M-sequences or S(∼M)). The k sequences generated in turn can form another matrix M′.

Denote the formation of matrix M from a sequence set S by ‘S→ M’, and the generation

of a set, Sx, of k sequences from matrix M by ‘M→k Sx’. While an aligned sequence set S

uniquely specifies a matrix, the matrices, Ma(∼ Sa),Mb(∼ Sb), . . ., formed from sequence

sets, Sa(∼ M),Sb(∼ M), . . . ,∃M∗, will in general not be the same, Ma 6= Mb 6= . . ., due to

the inherent stochasticity in the sequence generation following the Markov process. Matrix

identity between two matrices M and M′ can be defined in terms of the element-wise iden-

tity, where all elements are required to be identical: M = M′ if and only if ei, j = e′i, j with
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ei, j the ith row, jth column element of M, and e′i, j similarly defined. It would be convenient

to introduce a measure of difference between two matrices. Simply the absolute differ-

ence between each corresponding element of the two matrices, M and M′, can be taken and

summed for the overall difference between them:

∆(M,M′) = ∑
i

∑
j
|ei, j− e′i, j| (4.5)

Each position of a matrix specifies a normalized frequency distribution of residues inde-

pendently of others, which would form a vector of dimension 4 in the case of DNA. Then

a matrix is interpreted to be a sequence of vectors. Then a 2-norm vector difference can be

applied to each position, and then the differences summed over all positions:

∆(M,M′) = ∑
i

√
∑

j
(ei, j− e′i, j)2 (4.6)

They will be respectively termed the 1- and 2-norm differences of matrices: |M−M′|1

and |M−M′|2. Alternatively, the IC difference between two matrices can be calculated.

Contrary to the element-wise difference measures, IC is a scalar quantity calculated on in-

dividual matrices and would not reflect the vector-wise differences between the matrices.

For example, if residue A is of probability 1.0 at the first position of M1, and T is of proba-

bility 1.0 at the same position in M2, then the two have same IC values while having distinct

frequency vectors.

Let M1 and M2 denote two matrices generated by first using M∗→k S1, M∗→k S2, two

sets each of k sequences generated from M∗, and then using S1 → M1, S2 → M2. While

M1 6= M2 in general, the matrices Mi’s are expected to approach M∗ for sufficiently large

values of k, i.e., Mi(∼ Si) will be asymptotically the same as M∗:

lim
k→∞

|M−M∗| ≈ 0 (4.7)

lim
k→∞

M→M∗ (4.8)

Given a sequence pattern of length L, its conformance to a matrix M can be assessed by

using likelihood. Assuming the sequence was generated following M, respective prob-
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abilities of constituent residues can be multiplied together (assuming position indepen-

dence) to form a product of likelihoods, lM: lM = p1(α1)p2(α2) . . . p(αL) = Πi pi(αi), given

αi at position i, 1 ≤ i ≤ L. An alternative model to explain the sequence is obtained

by using random background distribution of nucleotide frequencies. If the nucleotides

have frequency values f (α) = πB(α) in a genome under study, then the likelihood that

the sequence pattern was generated according to the random background distribution is

lB = πB(α1)πB(α2) . . .πB(αL). The log-odd value can be calculated by taking the ratio of

the likelihood values, and then its log: log–odds = log(lM/lB).

Given a sequence pattern and πB, distinct matrices will clearly assign different log-odd

values to the sequence. If a normalized statistic is desired such as P-value, which would

facilitate comparison of significance of pattern matches on a uniform scale across different

matrices, then the log-odd values have to be converted to P-values. Exhaustive enumerative

generation of all possible L-mers, calculation of their log-odds and then mapping to p-

values is one way to do it. Its computational complexity is exponential (4L) which would

be prohibitively computationally expensive for large values of L. Efficient algorithms based

on function generation were studied in [118] and [121]. We used the FIMO implementation

from meme tool suite [109] for the calculation of P-values of pattern conformance.

Given a sequence set S and a matrix M, the p-values representing the significance of

conformance to M of sequences therein will form a distribution, D = DP(S,M). If M→ S,

then being generated from M as a template, the sequences in S(∼M) are expected to tend

to have significant P-values when they are scored against M. It is the probabilistic nature of

the M-based sequence generation, M→ S that will inherently produce some insignificant

p-values which can be best comprehended by using the distribution of p-values. If the

set of entire sequence patterns S∗ that are targeted by a transcription factor (TF) is given,

then a corresponding matrix M∗ can be formed, S∗ → M∗. Assume another matrix, Mi is

given with a substantial difference from M∗, δ ≤ |Mi−M∗|, for some constant δ > 0. The

matrix Mi is presumably formed from a small number of M∗-sequences mixed with some

random sequence patterns of length L. Now using Mi as a generative model, generate a
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sequence set S using Mi, calculate their p-values against Mi and form a distribution of p-

values, DP(S,Mi). If the M∗-sequences are scored against Mi, then they are likely to form

a distribution Dp(S(∼ M∗),Mi) distinct from Dp(S(∼ Mi),Mi). Now assume there are a

total of N∗ of M∗-sequences, Ni of Mi sequences, and N∗� Ni. Form a matrix Mi+1 from

a concatenation of S(M∗) and S(Mi): S(M∗)∪S(Mi)→Mi+1. Then intuitively the S(Mi+1)

will form a distribution located closer to D(M∗) as scored against Mi. By iterating the above

steps, each successive Mi is expected to be closer to M∗ than previous Mi−1’s:

|Mi−M∗|> |Mi+1−M∗|> .. . > |M∞−M∗| ≈ 0 (4.9)

ChIP-seq data are inherently enriched in M∗-sequences since they are obtained from

the in vivo binding of TFs to their target patterns. A sequence of length L
′′

(L
′′
> L) has

N′ = L
′′−L+1 of L-mers. Then a ChIP-seq sequence set, C, of N sequences each of length

L′ is a set of N(L′−L+1) of L-mers. Given a matrix Mi, the p-values of the L-mers from C

are calculated and a threshold p-value θp is applied. Only L-mers with p-values p < θp can

be retained, and the L-mers with higher p-values are discarded. This step will be iteratively

applied to the set C with an appropriate sequence of threshold p-values. The skeleton of the

method is shown in Algorithm listing 2.

Algorithm 2 Binding pattern improvement algorithm
while true do

for all sequences s j do
scan s j with Mi and retain patterns with p-values < θp

end for
form Mi+1 with the retained patterns
if an appropriate condition then

break;
end if
i = i+1;

end while

Given NL number of random sequence patterns, scanning them with a matrix with a

threshold θp will produce a total of NLθp matches on average. A very lenient p-value will

produce an excessive number of matches, which randomly originate from background and
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do not reflect the presence of true binding patterns. Using a stricter p-value will produce

less number of random matches. On the other hand, applying a too strict p-value to M∗-

sequences will likely even discard a substantial sub-population of the M∗-sequences of

lower conformance levels, and iterating the S→M steps will no longer approximate M∗ due

to such loss. Hence it is suggested to start the process with an appropriate p-value which

finds a balance between the rejection of random noise and the retention of M∗-sequences.

The relative proximity of Mi+1 to M∗ over Mi suggests to use a sequence of successively

stricter p-values. Once an Mi obtained during iteration is sufficiently close to M∗ such

that it approximates M∗ well while rejecting the random noisy matches, then the p-value is

successively relaxed so that the search is sufficiently sensitive to the inherent diversity of

M∗-sequences.

We used ChIP-seq data from [107] which studied the TFs involved in the embryonic

stem cell development in mouse. Three TFs were chosen, binding patterns of which were

suspected to have a reverse complementary symmetry where one side is reverse comple-

ment of the other. Through iterations over data, reverse complementarity is expected to be

restored . The binding patterns were assumed to mostly reside in the promoter regions of

the genome. Loci of the 3’ boundary of promoter regions that are farthest from the tran-

scription start sites of genes were obtained from [123]. The 5’ upstream sequences 10kbp

long or spanning up to the boundary of the upstream gene were extracted, and the shorter

of the two was retained as the promoter sequence for each gene. The frequency values of

the mono-nucleotides of promoter sequences were as follows: A-0.256629, C-0.243552,

G-0.243132 and T-0.256288.

4.4 Results

We used various patterns, synthetic and real, to assess the performance of our approach.

Synthetic pattern

The synthetically generated pattern is shown in Fig.4.5). Specifically, the consensus of the

first half of the pattern was AGTC, and that of the latter half was GACT, which was a re-
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verse complement of the first. Hence, the pattern has a reverse complementary symmetry.

The most frequent residue value (henceforth referred to as f 1, and the second most frequent

f 2, and so on) was 0.90, and values from a geometric progression were assigned as frequen-

cies to remaining residues: i.e., G = {g1,g2,g3,g4} = {0.9000,0.0900,0.0090,0.0009} =

{ f 1, f 2, f 3, f 4}. Residues were taken in a circular manner, i.e., if value f 1 was assigned to

G then the value f 2 was assigned to T, f 3 to A, and so on. A gap of length 1 was placed

in the middle where residues had equal frequency values of 0.250. The information content

(IC) of each conserved position was 1.480001, and the overall IC of the pattern (to be re-

ferred to as the pattern Ps) was 11.840011. Scaling factors were randomly chosen among

S1 = {s j|1 ≤ j ≤ 2} = {0.70,0.80}, and the most frequent residue of each position was

scaled down by multiplying by the chosen factor: f 1′ = s j f 1. Resulting distortion could

be similar to the ones typically seen in disagreeing matrices of a given transcription fac-

tor (TF) found across the literature. The frequency values of the remaining residues were

increased by equal portions from the difference, f 1− f 1′ , so that they sum to one, i.e.,

f i′ = f i +δ/3 with δ = f 1− f 1′ and 2≤ i≤ 4. The resulting frequency and the IC values

after the perturbation were as shown in Table 4.1 and Fig.4.2(b) (referred to as P′S1
). Some

f 1 values decreased down to 0.630000, and correspondingly IC to 0.489850, which is a

large decrease from the IC of 1.480001. Note the overall IC decreased to 4.411192 which

is a drastic decrease from the initial IC of 11.840011. The extreme loss of the IC would

make searches for patterns based on the perturbed one hard, and hence the case is quite

challenging to discover the M∗-sequences from.

In order to mimic ChIP-seq data, N = 1000 random sequences of length 141 were

generated following the background mono- and di-nucleotide frequency distributions of the

mouse promoter sequences. By using the matrix M∗ corresponding to Ps as a generative

model, a total of N = 1000 patterns each of length 9 were generated, and inserted into

random positions. Then each of the resulting sequences was of length 150bp (= 141 + 9).

The perturbed matrix was used as an initial matrix, M0 for iterative improvement. The series
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of threshold P-values, Φ1, that was employed was

Φ
1 = Φd +Φi (4.10)

Φd = {1.0e−3,7.5e−4,5.0e−4,2.5e−4,1.0e−4} (4.11)

Φi = {2.5e−4,5.0e−4,7.5e−4,1.0e−3} (4.12)

which consists of a decrease and then an increase phase: Φ1 = Φd + Φi. Figures 4.2(c) to

4.2(k) show the change in the IC values of patterns formed along the iteration, and Table

4.2, the IC of each iteration step.

If the f 1 residues are the same between corresponding positions of two matrices, then

the standard deviation of the f 1 values can be used to measure their conformance, i.e., f 1

values are taken over all positions excluding gap. Standard deviation (stdev) of the initial

matrix M0 was 0.04657943, and stdev of the M1 matrix obtained after the first iteration was

0.01465860 (Table 4.3). Nearly constant f 1 and IC values across positions (excluding the

gap at position 4, Table 4.5) means that the pattern from the retained sequences with p-value

thresholding quickly converged to M∗ after the first iteration.

Given a matrix which is supposed to possess a reverse complementary symmetry, we

measure the degree of its deviation from such symmetry, i.e., how asymmetric frequency

vector sequence of one side is with respect to the other after reverse complementing it:

under 1-norm, AS1 =
L/2

∑
i=1
|ei− eL−i|1, and under 2-norm, AS2 =

L/2

∑
i=1
|ei− eL−i|2. Large re-

duction in the asymmetry in M0 is seen in matrices obtained from the iteration. At the 1st

iteration with p-value p = 1.0e−3, the IC value, 11.859641 is close to the IC = 11.840011 of

M∗. This suggests that the p-value may be interpreted to correspond to the inherent speci-

ficity level of the matrix which, when searching for bound patterns, would enable close

approximation to M∗, given the mixture of random and the M∗- sequences. Similar test was

performed a total of 10 times. The results with each perturbed matrix instance as an initial

matrix were overall similar to the above.

Another scaling factor set, S2 = {s j|1≤ j ≤ 3}= {0.60,0.70,0.80} was used to obtain

P′S2
by perturbing Ps, and then patterns were iteratively obtained (Figs.4.3(b) to 4.3(k)).
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A pattern sufficiently close to M∗ was obtained through iteration, while the early patterns

are somewhat more deviant from M∗ than the corresponding ones from the iteration that

resulted from the perturbation with S1 (tables 4.6 and 4.7). Results from a total of 10

random initial matrix instances were overall similar.

Swapping residue frequency

In another test, we randomly selected k = 2 positions and applied random derangement to

their chosen frequency vectors. By derangement of a set where no single element is same

as the other, frequency of each residue is assigned a value different from the previous one,

i.e., f ′(α) 6= f (α), for all α , with f (α) and f ′(α) respectively denoting the frequencies of

α before and after derangement. Figure 4.4(b) shows an instance of the derangement, P′k=2,

where the first and the last positions were selected (A to C and T to A) from Ps. After the

first iteration, each of the most frequent residues after derangement, f 1′ , is still dominant

over the f 1 residue at the deranged position. At the second iteration with p = 7.5e−4, the

f 1 residues are restored, albeit with significantly lower IC values than those of M∗. By

the iteration with p = 5.0e−4, IC heights at deranged positions are restored to around 1.5

bits, which are approximately the same as the per-position IC of M∗ (Table 4.8). A total

of 10 such instances of perturbed matrices were generated, and iterations were performed

with respective matrices as initial ones. Results were nearly constant in that patterns all

converged to M∗, regardless of particular positions deranged.

Additionally, k = 1 position was randomly selected and deranged. A pattern nearly the

same as M∗ was attained by iteration (Fig.4.5(e)). When k = 3 residues were selected and

deranged, patterns did not converge to M∗, which would suggest that the initial matrix is too

distant from M∗ and would instead converge to a different pattern (Figs. 4.6(b) to 4.6(k)).

Real ChIP-seq data

We applied our method to the data set from [107]. Four TF’s (Oct4, Sox2, Nanog, Smad1)

had highly homologous binding patterns according to [107] which would imply rather

promiscuous bindings and make the determination of patterns specific to each TF hard and
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were excluded. Zinc finger TF’s of large finger counts are known to have highly promiscu-

ous binding patterns [95], then the representativeness of the data set can be limited. Two

such TF’s, Ctcf and Zfx, were excluded.

Binding patterns of 3 TF’s were investigated first: Nmyc, Stat3 and Tcfcp2l1 (hereafter

abbreviated to Tcfcp). Matrices from Jaspar [136] were retrieved to be used as initial ma-

trices which are shown in Figs.4.7(a),4.7(b),4.7(c). They were suspected of having reverse

complementary symmetry. IC of the matrices were: Nmyc - 11.104085, Stat3 - 13.600680

and Tcfcp - 11.650291 (bits). We padded extra positions at the beginnings and the ends of

the matrices with equal residue frequency values so as to check for any conservations at

the fringes. Top N = 1000 sequences of the highest intensities were used, and the value of

pseudo-count parameter of FIMO was set to 2.0.

While the initial Stat3 TF pattern is highly asymmetric (asymmetry coefficient, AS1 =

1.83523400 and AS2 = 1.10530225), the asymmetry decreases by a large margin down to

AS1 = 0.25608466, or to AS2 = 0.16666693 by iteration 4 (Fig.4.8(e), Table 4.9). At each

iteration step, it was checked how many sequences out of N = 1000 were found to have

matching patterns with p-values < θp of the step. The counts were compared with the ones

obtained by using the initial Jaspar matrices, M0’s, at the same p-values without iteration

(Figs.4.13(a),4.11(a),4.12(a), Table 4.17). Matrices from iteration, Mi’s, 1 ≤ i ≤ 9, con-

sistently produced larger number of sequences than raw Jaspar matrices (signed-rank test

significance p-value=0.0027). Also checked was the total number of sites that were matched

out of the total sequence fragments, with the iteratively obtained matrices, Mi’s, and with

the raw M0’s: |S|iter and |S|raw (Figs.4.13(b), 4.11(b), 4.12(b)). Again |S|iter’s were consis-

tently larger than |S|raw’s of corresponding p-values. A similar trend was seen in the total

number of unique sequence patterns matched (Figs.4.13(c), 4.11(c), 4.12(c)). The higher

recall count at an identical p-value means that the sensitivity was improved at identical lev-

els of specificities, hence attesting to a true improvement of patterns. The f 2 residues in

the first half site (CGAT) form a reverse complement of the other half f 2 residues, as well

as the f 1 residues do with the corresponding ones. This is expected since the Stat3 TF is
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known to bind DNA as a homo-dimer [138], hence the matrix truly representative of the

distribution of its binding sequence patterns is expected to have a reverse complementary

symmetry. At the p-value, 1e−4, 6 out of 44 matrix entries were zero (Table 4.9) which

may be indicative of a rather stringent p-value or slight overfitting. The lowest AS1 value

attained was 0.06208051, and the lowest AS2, 0.04130808 at p-value p = 5.0e−4 during

Φi (table 4.11), which is more than a decade reduction from those of M0. Corresponding

logo (4.8(h)) reveals that the outer-most positions excluding fringes are the most conserved

( f 1 = 0.936242 and IC = 1.562637 at position 1, and f 1 = 0.940436 and IC = 1.588085

at position 9). This possibly suggests the mode of the interaction between Stat3 TF and

DNA, where the end residues are in a stronger contact than the rest. Residues at the fringe

positions were only marginally conserved (IC=0.144503 and 0.149006 bits, Table 4.11),

and the middle position showed nearly no conservation. It was seen that, while each half

site is overall conserved, there exists a discernible variation in the degrees of conservations

therein ( f 1 ranges from 0.795302 at position 2 to 0.936242 at position 1).

With more stringent, smaller p-values, the frequencies of non-dominant residues ( f 2, f 3

and f 4) decrease, whereas lenient p-values are more permissive of diverse patterns. While

it can be asked which p-value is the right one to choose, selection of an appropriate value

appears to be specific to each TF and to particular ChIP-seq data. Then another study on

a comprehensive scale would be called for its elucidation. Here we leave the problem of

picking an appropriate value to users facing specific TF’s, and instead focus on the problem

of approximating M∗ starting from a presumably inaccurate M0, which entails the rejection

of noisy patterns and the reflection of true distribution of bound patterns.

When applied to Tcfcp, the recall count statistics obtained with the Mi matrices from

iteration, and with raw M0 matrix, under varying p-values were as in Table 4.18. Sequences

and sites found with Mi’s consistently outnumbered those with M0 matrix (Figs.4.12(a),4.12(b)).

The lowest asymmetry values attained were AS1 = 0.41343279 and AS2 = 0.23105012 at

iteration 9 with p = 1.0e−3 (Figs.4.9(b) to 4.9(j)). Highest conservations in the first half

site were at the second and fifth positions (IC = 1.585289 and IC = 1.621942, Table 4.5).
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The third position had a significant fashion of frequency bipartition between C and T, and

the fourth position had quite an even frequency partition between A and G (Table 4.5).

Nucleotides C and T are pyrimidines of single ring structures, and A and G are purines

of double rings. This suggests another modes of conservations at the levels of purines or

pyrimidines, instead of conservations at single residue levels. From the initial matrix (Fig-

ure 4.9(a)), such modes of conservations could have been easily regarded as spurious and

missed out due to similar heights that are attained by positions of little conservations (e.g.,

positions 7 and 10).

Nmyc forms a bHLH leucine zipper structure and binds DNA as a dimer. At p =

5.0e−4, the position 4 strongly favors G, and alternatively favors A to somewhat less degree,

and the reverse complementarily corresponding position 7 had a similar preference to their

complements.

1. Position 4: A-0.35966387 C-0.02521008 G-0.61512605 T-0.00000000

2. Position 7: A-0.00000000 C-0.65042017 G-0.00000000 T-0.34957983

This mode of purine or pyrimidine preference is similar to what was seen in tcfcp. With in-

creasing p-values during Φi, the dinucleotide pattern GC becomes more prevalent through

patterns. This would be attributable to the enrichment of clustered CpG’s from CpG is-

lands ([154, 155]) in the ChIP-seq set which would be predominantly found in promoter

regions. It is well known that mammalian promoter regions often harbor enriched CpG

dinucleotides, and particular attention is called for, whenever a TF pattern contains many

CpG subpatterns. Although it attests to the tracking for patterns enriched in the data by

the algorithm, clearly the pattern was not sought after. The number of sites found with the

iteration, |S|iter, far exceeded those without, |S|raw, especially during the increase phase,

possibly due to spurious matchings with CpG (Fig.4.13(b)). During Φd where the CpG

subpattern had little impact, the numbers of sequences recalled with iteration still exceeded

by significant margins those without. In addition, the binding pattern changes of Esrrb and

Klf4 TFs through iterations are shown in Figs.4.21(f), 4.22(f). The numbers of sequences,
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sites and unique patterns detected, with the matrices from iteration and with the raw Jaspar

matrices were as shown in Figs.4.14(c), 4.15(c). During Φd , sequences recalled by using

Mi’s consistently exceeded those that were recalled by using M0. Our approach is intended

to be a supervised approach, and due discretion is called for, in selecting an appropriate

pattern and rejecting patterns which were not sought for, possibly by referencing the initial

matrices that were used.

Alternatively, we used a starting p-value p1 = 1.0e−2, and ran another iteration with the

p-value series:

Φ
2 = {Φd′ ,Φ

1,Φi′} (4.13)

Φd′ = {1.0e−2,7.5e−3,5.0e−3,2.5e−3} (4.14)

Φi′ = {2.5e−3,5.0e−3,7.5e−3,1.0e−2} (4.15)

, with Φ1 = Φd + Φi previously defined. When the series was applied to symmetric TF’s,

resulting patterns were too divergent or had far lower levels of symmetry. This would imply

the starting p-value 1e−2 does not have sufficient specificity to reject noisy patterns in the

data. As for the pivoting p-value, pp, where phase changes from Φd to Φi, many matrix

entries were observed to turn into zeroes by the p-value p = 1.0e−4, across the TF’s. Given

appreciable levels of diversity of many positions in TF’s in general, this appeared to signify

a large loss of such diversity information. Continued iteration with decreasing p-values

would then incur further loss of sensitivity. So we used the p-value p = 1.0e−4 as pp.

Taking the raw matrix of each TF, we decreased the f 1 frequency values of each position

randomly by using one of the scaling factors from S1 = {s1,s2} = {0.70,0.80}. For each

TF, 10 such perturbed matrices, Mp
0 ’s, were generated, each to serve as an initial matrix,

and the iterative method was applied. Given the series of matrices, {Mp
1 ,Mp

2 , . . . ,Mp
9 },

resulting from the iteration with a perturbed initial matrix, and the series of matrices,

{M1,M2, . . . ,M9}, resulting from the iteration with an unperturbed matrix, we measured the

differences between the matrices of corresponding iteration steps, |Mp
i −Mi|. Differences

in terms of 1-norm (Figs.4.19(a),4.19(c),4.19(e)), 2-norm (Figs.4.19(b),4.19(d),4.19(f)) and
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IC (Figs.4.20(a),4.20(b),4.20(c)) show that series all converge to within very small toler-

ances, while the initial matrices, Mp
0 ’s, exhibit large differences from M0. Overall, it is

implied that the space of initial matrices that converge to M∗ is quite large. The stable

convergences to series of highly similar matrices from both the substantially perturbed ma-

trices and the unperturbed ones as initial matrices imply that the matrices detected along

the iterations would indeed correspond to true M∗’s representing the true distributions of

the M∗-sequences.

4.5 Discussion

In the current study, we developed a method to find approximations to the true binding

pattern distributions of transcription factors, using ChIP-seq data together with presumably

inaccurate letter probability matrices. The two kinds of data are highly complementary

in nature; the ChIP-seq data are enriched in the true patterns, albeit mixed with random

patterns, and the initial matrix for a transcription factor is often inaccurate while having a

potential to guide the search for the accurate pattern along a right path. Existing algorithms

did not address formal ways to approximate the correct pattern, when an inaccurate ma-

trix representation for the pattern is given. Due to the computational complexity, patterns

found by the de novo discovery algorithms were often inaccurate. Our proposed method

can be used to find precise patterns from ChIP-seq data, when an initial matrix of a rather

low accuracy is given. Alternatively, it can be employed during a post-processing stage to

improve or validate the patterns found by using the de novo algorithms. Residues in the

in vivo transcription factor-bound patterns typically exhibit substantial levels of variability

and diversity. Then using the most frequent residues alone to represent the binding patterns,

as done in the consensus representation, would incur a large loss of information. It is be-

lieved that a substantial fraction of the binding patterns have affinities that are far lower than

the highest possible affinity. Elucidating the true distribution of patterns would be an im-

portant step in statistically assessing the significance of patterns targeted by a transcription

factor, and further using them to find out the genes that are regulated by the transcription
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factor. An important observation was that some conservations were at the levels of purines

or pyrimidines, instead of the levels of single residues, in some transcription factor bind-

ing patterns. In conserved regions of multiple, consecutive residues, the most dominant

residues frequently showed substantial variability in the level of conservation. They would

result from the differences in the structural and chemical interactions between constituent

molecules, and imply that the relative contributions of residues to the overall binding are

different.

The iterative nature of the algorithm is somewhat similar to that of the expectation

maximization [145]. A sensible p-value schedule has been devised so that random, noisy

background patterns are maximally rejected, while the in vivo transcription factor-bound

patterns are maximally retained, so as to enable approximations to truly representative ma-

trices. Starting from moderately or highly perturbed initial matrices, stable convergences

to nearly accurate matrices were achieved, over the synthetic and real transcription factor

cases. Hence, our approach was shown to be robust against significant degrees of perturba-

tion to the initial patterns.

In the current work, we assumed an independence between positions, and employed the

letter probability matrices that reflect a zero order Markov model. While the positional inde-

pendence assumption is believed to provide a fairly good modeling power, still substantial

correlations can exist between residues in some transcription factors, especially among the

neighboring ones [146]. While utilizing such inter-residue dependency was suggested not

to significantly improve the accuracy of transcription factor-binding pattern models [149],

it would be still interesting to use such higher order interactions so as to obtain even more

realistic representations of patterns, and see if they can make any contributions to the prob-

lems such as predicting the target genes of transcription factors.
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Table 4.1: Perturbed matrix that was obtained by applying S1 to synthetic pattern, Ps

Position A C G T
0 0.720000 0.150081 0.069016 0.060902
1 0.069016 0.060902 0.720000 0.150081
2 0.150081 0.069016 0.060902 0.720000
3 0.090902 0.630000 0.180081 0.099016
4 0.250000 0.250000 0.250000 0.250000
5 0.099016 0.180081 0.630000 0.090902
6 0.630000 0.090902 0.099016 0.180081
7 0.180081 0.630000 0.090902 0.099016
8 0.090902 0.099016 0.180081 0.630000

Table 4.2: IC of the matrix perturbed with S1

position f 1 residue f 1 IC
0 a 0.720000 0.736047
1 g 0.720000 0.736047
2 t 0.720000 0.736047
3 c 0.630000 0.489850
4 a 0.250000 0.000000
5 g 0.630000 0.489850
6 a 0.630000 0.489850
7 c 0.630000 0.489850
8 t 0.630000 0.489850

Table 4.3: IC and other measure changes along iteration (initial matrix was obtained by
applying S1 to Ps)

∑ f 1 IC Zeros AS1 AS2 Stdev-max Iter.
5.560000 4.657389 0 0.54000000 0.31176915 0.04657943 00
7.482307 11.859641 0 0.09791565 0.06057295 0.01465860 01
7.524837 12.075690 0 0.05017562 0.03547952 0.01657152 02
7.639758 12.503471 0 0.02855575 0.02019196 0.02106235 03
7.767442 13.098560 6 0.00000000 0.00000000 0.01105833 04
7.892319 14.019979 18 0.00000000 0.00000000 0.03489020 05
7.841004 13.653412 10 0.00000000 0.00000000 0.03416863 06
7.667785 12.586329 0 0.00000000 0.00000000 0.01803142 07
7.531282 12.095856 0 0.00000000 0.00000000 0.01532486 08
7.469183 11.796485 0 0.00191112 0.00135137 0.01467024 09
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Table 4.4: M1 from iteration 1

Position A C G T
0 0.92244304 0.06980126 0.00484731 0.00290839
1 0.00920989 0.00436258 0.92050412 0.06592341
2 0.09646146 0.00533204 0.00290839 0.89529811
3 0.00145419 0.89626757 0.09597673 0.00630150
4 0.25399903 0.24236549 0.24672807 0.25690742
5 0.00678623 0.09306835 0.89869123 0.00145419
6 0.87736306 0.00678623 0.01211827 0.10373243
7 0.07658749 0.90790111 0.00484731 0.01066408
8 0.00290839 0.01017935 0.07998061 0.90693165

Table 4.5: IC of M1

Position f 1 residue f 1 IC
0 a 0.922443 1.562712
1 g 0.920504 1.534886
2 t 0.895298 1.466927
3 c 0.896268 1.474106
4 t 0.256907 0.000383
5 g 0.898691 1.480109
6 a 0.877363 1.369251
7 c 0.907901 1.482424
8 t 0.906932 1.488843

Table 4.6: Matrix perturbed with the scaling factor set S2

Position f 1 residue f ′1 IC
0 a 0.720000 0.736047
1 g 0.540000 0.297386
2 t 0.540000 0.297386
3 c 0.630000 0.489850
4 a 0.250000 0.000000
5 g 0.630000 0.489850
6 a 0.720000 0.736047
7 c 0.540000 0.297386
8 t 0.720000 0.736047
Sum - - 4.079997
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Table 4.7: IC values from iteration (initial matrix obtained by applying S2 to Ps)

∑ f 1 IC Zeros AS1 AS2 Stdev-max Iter.
5.290000 4.079997 0 0.09000000 0.10392305 0.08332381 00
7.508885 11.871491 0 0.03455084 0.04272715 0.02531132 01
7.523262 12.056275 0 0.01350676 0.01910144 0.01433933 02
7.658699 12.562435 0 0.00722624 0.01021944 0.02051380 03
7.769753 13.159174 8 0.00000000 0.00000000 0.01225274 04
7.892319 14.019979 18 0.00000000 0.00000000 0.03489020 05
7.841004 13.653412 10 0.00000000 0.00000000 0.03416863 06
7.667785 12.586329 0 0.00000000 0.00000000 0.01803142 07
7.531282 12.095856 0 0.00000000 0.00000000 0.01532486 08
7.469183 11.796485 0 0.00047778 0.00067568 0.01467024 09

Table 4.8: Changes along iteration in various measures, given the initial matrix of k = 2
derangements

∑ f 1 IC Zeros AS1 AS2 Stdev-max Iter.
7.450000 11.840011 0 1.79819512 1.20741005 0.00000000 00
6.857143 9.866572 5 1.71428571 1.00749068 0.14696018 01
7.814414 13.481942 6 0.45765764 0.28912339 0.07804965 02
7.687429 12.628391 1 0.14722537 0.09934551 0.01561927 03
7.777641 13.144441 9 0.10073708 0.06545160 0.01272891 04
7.904271 13.914492 17 0.17378498 0.12288454 0.03166972 05
7.827676 13.405019 7 0.16710184 0.11319936 0.02305679 06
7.685746 12.620194 1 0.18181817 0.11776472 0.02008365 07
7.516385 12.040598 1 0.16683219 0.10847425 0.01895917 08
7.471770 11.825734 1 0.17224878 0.10850121 0.01879911 09

Table 4.9: IC values along the iteration of Stat3 TF

∑ f 1 IC Zeros AS1 AS2 Stdev-max Iter.
8.741026 13.600680 3 1.83523400 1.10530225 0.22929127 00
7.959973 10.074737 0 1.23202173 0.74477111 0.19084167 01
8.016487 10.468826 0 0.75555553 0.45669236 0.18688752 02
8.103766 11.085177 0 0.46861924 0.28998010 0.19383665 03
8.274074 11.858616 0 0.25608466 0.16666693 0.20016995 04
8.481982 12.965770 6 0.18918922 0.12814643 0.20491349 05
8.279616 11.911774 0 0.09605119 0.06490790 0.19998989 06
8.103188 11.119593 0 0.06208051 0.04130808 0.19488000 07
7.971616 10.635525 0 0.07569143 0.04887949 0.19227716 08
7.839695 10.176923 0 0.07506361 0.04757993 0.18654629 09
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Table 4.10: IC of Stat3 TF (iteration=3)

Position f 1 residue f 1 IC
0 c 0.418410 0.126405
1 t 0.905439 1.402181
2 t 0.759833 1.023485
3 c 0.875314 1.287309
4 c 0.841004 1.294243
5 a 0.285356 0.017800
6 g 0.896234 1.480910
7 g 0.898745 1.396351
8 a 0.835983 1.229791
9 a 0.951464 1.660001
10 g 0.435983 0.166701
Sum - - 11.085177

Table 4.11: IC of Stat3 TF (iteration=7)

Position f 1 residue f 1 IC
0 c 0.423658 0.144503
1 t 0.936242 1.562637
2 t 0.795302 1.115277
3 c 0.885906 1.342946
4 c 0.859899 1.343904
5 t 0.275168 0.007066
6 g 0.865772 1.366794
7 g 0.888423 1.353798
8 a 0.808725 1.145577
9 a 0.940436 1.588085
10 g 0.423658 0.149006
Sum - 8.103188 11.119593

Table 4.12: IC values over the iteration steps of Tcfcp TF

∑ f 1 IC Zeros AS1 AS2 Stdev-max Iter.
9.824523 11.650291 0 2.90228100 1.87883315 0.25512101 00
9.030560 9.850817 0 1.86247879 1.18468062 0.23884510 01
8.962775 10.194990 0 1.26903552 0.79887896 0.23929739 02
9.012322 10.690545 1 0.90236965 0.56474865 0.24200261 03
9.270992 11.566697 5 0.66921120 0.41822132 0.24383441 04
9.485380 12.743679 11 0.63157892 0.39453408 0.24676533 05
9.292181 11.776022 4 0.55967079 0.33198134 0.24581214 06
9.083588 10.911586 1 0.57492353 0.34724792 0.24093670 07
8.907191 10.339027 0 0.42809362 0.24994807 0.23890038 08
8.809702 9.980596 0 0.41343279 0.23105012 0.23775316 09
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Table 4.13: The letter probability matrix of Tcfcp TF (iteration=9)

Position A C G T
0 0.35754190 0.08119181 0.29757914 0.26368715
1 0.00260708 0.92662942 0.06331471 0.00744879
2 0.12551210 0.54562384 0.00335196 0.32551210
3 0.40335196 0.00707635 0.46443203 0.12513966
4 0.00446927 0.05139665 0.94264432 0.00148976
5 0.20260708 0.34078212 0.07821229 0.37839851
6 0.11098696 0.32290503 0.10800745 0.45810056
7 0.17690875 0.33333333 0.19217877 0.29757914
8 0.29757914 0.19180633 0.33370577 0.17690875
9 0.45735568 0.10689013 0.32476723 0.11098696
10 0.37839851 0.07970205 0.34078212 0.20111732
11 0.00148976 0.93966480 0.05437616 0.00446927
12 0.12253259 0.46964618 0.00744879 0.40037244
13 0.32774674 0.00335196 0.54189944 0.12700186
14 0.00744879 0.06108007 0.92886406 0.00260708
15 0.26219739 0.30018622 0.08119181 0.35642458

Table 4.14: IC of Tcfcp TF matrix (iteration=9)

Position f 1 residue f 1 IC
0 a 0.357542 0.147894
1 c 0.926629 1.571023
2 c 0.545624 0.592687
3 g 0.464432 0.532016
4 g 0.942644 1.650707
5 t 0.378399 0.186018
6 t 0.458101 0.258669
7 c 0.333333 0.051949
8 g 0.333706 0.052246
9 a 0.457356 0.260076
10 a 0.378399 0.184000
11 c 0.939665 1.638331
12 c 0.469646 0.535418
13 g 0.541899 0.587905
14 g 0.928864 1.579736
15 t 0.356425 0.147883
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Table 4.15: IC change along the iteration of Nmyc TF

∑ f 1 IC Zeros AS1 AS2 Iter. P-value
7.123932 9.485116 0 0.36431624 0.46610597 01 1.0e−3

6.946809 9.706180 0 0.22841051 0.29306899 02 7.5e−4

6.795440 10.215353 2 0.15244300 0.19035724 03 5.0e−4

6.934996 11.163767 12 0.09349955 0.12499055 04 2.5e−4

7.374790 12.641752 19 0.07647059 0.10106718 05 1.0e−4

7.190993 10.913690 0 0.06672227 0.08620041 06 2.5e−4

7.105651 9.742728 0 0.04766584 0.06115612 07 5.0e−4

6.984073 9.155316 0 0.04015588 0.05134455 08 7.5e−4

6.846623 8.730967 0 0.02717115 0.03405713 09 1.0e−3

Table 4.16: Numbers of sites, sequences and patterns recalled, by using iteratively obtained
matrices, and by using Jaspar matrices (Nmyc)

N-sites N-sequences N-patterns Seq./Patterns Iter. P-value iter/Jaspar
744 549 457 - 00 - -
970 608 543 1.1197 01 1.0e-3 iter
938 569 494 1.1518 02 7.5e-4 iter
816 487 395 1.2329 03 5.0e-4 iter
591 397 250 1.5880 04 2.5e-4 iter
301 218 121 1.8017 05 1.0e-4 iter
597 376 253 1.4862 06 2.5e-4 iter
1122 495 494 1.0020 07 5.0e-4 iter
1645 539 734 0.7343 08 7.5e-4 iter
2127 553 973 0.5683 09 1.0e-3 iter
722 540 448 - 01 1.0e-3 Jaspar
608 477 373 - 02 7.5e-4 Jaspar
492 408 286 - 03 5.0e-4 Jaspar
313 282 172 - 04 2.5e-4 Jaspar
163 158 81 - 05 1.0e-4 Jaspar
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Table 4.17: Numbers of sites, sequences and patterns recalled, by using iteratively obtained
matrices, and by using Jaspar matrices (stat3)

N-sites N-sequences N-patterns Seq./Patterns Iter. P-value iter/Jaspar
779 607 560 1.0839 01 1.0e-3 iter
701 576 492 1.1707 02 7.5e-4 iter
610 531 409 1.2983 03 5.0e-4 iter
469 416 288 1.4444 04 2.5e-4 iter
345 320 184 1.7391 05 1.0e-4 iter
459 407 277 1.4693 06 2.5e-4 iter
608 529 406 1.3030 07 5.0e-4 iter
710 587 494 1.1883 08 7.5e-4 iter
793 626 569 1.1002 09 1.0e-3 iter
717 567 517 - 01 1.0e-3 Jaspar
651 532 455 - 02 7.5e-4 Jaspar
538 462 374 - 03 5.0e-4 Jaspar
396 361 257 - 04 2.5e-4 Jaspar
257 237 152 - 05 1.0e-4 Jaspar

Table 4.18: Numbers of sites, sequences and patterns recalled, by using iteratively obtained
matrices, and by using Jaspar matrices (Tcfcp)

N-sites N-sequences N-patterns Seq./Patterns Iter. P-value iter./Jaspar
1333 804 1295 0.6208 01 1.0e-3 iter
1212 782 1174 0.6661 02 7.5e-4 iter
1070 748 1035 0.7227 03 5.0e-4 iter
792 615 763 0.8060 04 2.5e-4 iter
500 427 473 0.9027 05 1.0e-4 iter
760 601 731 0.8222 06 2.5e-4 iter
1054 743 1021 0.7277 07 5.0e-4 iter
1231 810 1192 0.6795 08 7.5e-4 iter
1383 840 1340 0.6269 09 1.0e-3 iter
1178 749 1150 - 01 1.0e-3 Jaspar
1013 685 988 - 02 7.5e-4 Jaspar
822 593 802 - 03 5.0e-4 Jaspar
596 473 581 - 04 2.5e-4 Jaspar
375 326 367 - 05 1.0e-4 Jaspar
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Figure 4.1: A synthetic pattern with reverse complementarity. A gap with no conservation
is present at the middle position.
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(a) Ps (b) P′S1

(c) Iter.=1 (d) Iter.=2

(e) Iter.=3 (f) Iter.=4

(g) Iter.=5 (h) Iter.=6

(i) Iter.=7 (j) Iter.=8

(k) Iter.=9

Figure 4.2: Iteration from an initial pattern obtained by perturbing Ps with S1. Patterns
stably converge to the unperturbed pattern, Ps.
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(a) Ps (b) P′S2

(c) Iter.=1 (d) Iter.=2

(e) Iter.=3 (f) Iter.=4

(g) Iter.=5 (h) Iter.=6

(i) Iter.=7 (j) Iter.=8

(k) Iter.=9

Figure 4.3: Iteration from an initial pattern obtained by perturbing Ps with scaling factor
set, S2. Patterns converge to the unperturbed Ps.
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(a) Ps (b) P′k=2

(c) Iter.=1 (d) Iter.=2

(e) Iter.=3 (f) Iter.=4

(g) Iter.=5 (h) Iter.=6

(i) Iter.=7 (j) Iter.=8

(k) Iter.=9

Figure 4.4: Iteration from an initial pattern with two residues deranged. While the degree
of deviation from Ps of the initial pattern is substantial, patterns invariably converged.
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(a) Ps (b) P′k=1

(c) Iter.=1 (d) Iter.=2

(e) Iter.=3 (f) Iter.=4

(g) Iter.=5 (h) Iter.=6

(i) Iter.=7 (j) Iter.=8

(k) Iter.=9

Figure 4.5: Initial pattern with one residue deranged. Convergence behavior is similar to
that of the two residue perturbation case.

77



(a) Ps (b) P′k=3

(c) Iter.=1 (d) Iter.=2

(e) Iter.=3 (f) Iter.=4

(g) Iter.=5 (h) Iter.=6

(i) Iter.=7 (j) Iter.=8

(k) Iter.=9

Figure 4.6: Initial pattern with three residues deranged. Patterns do not converge to the
synthetic pattern. It implies the degree of deviation of the initial pattern from the synthetic
template pattern Ps is too large.
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(a) Nmyc

(b) Stat3

(c) Tcfcp

(d) Esrrb

(e) Klf4

Figure 4.7: Initial patterns from Jaspar that were used in case studies. The first three pat-
terns have potential reverse complementary symmetries, to be discovered through iterative
refinements.
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(a) Initial (b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.8: Stat3 TF binding pattern changes. Symmetry in the binding pattern is discovered
through iteration.
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(a) Initial (b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.9: Tfcfcp TF binding pattern changes. Units of conservation are purines or pyrim-
idines rather than single nucleotides, at positions 3 and 4.
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(a) Initial (b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.10: Nmyc TF binding pattern changes. During the Φi phase, patterns converge to
CpG dinucleotides that are abundant in mammalian promoters.
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(a) Number of sequences recalled-Stat3

(b) Number of sites recalled-Stat3

(c) Number of patterns recalled-Stat3

Figure 4.11: Number of sequences, sites and unique patterns found with iteratively obtained
matrices and with raw Jaspar matrices without iteration-Stat3. Substantially larger number
of sequences are recalled in a consistent manner, with the iteratively obtained matrices.
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(a) Number of sequences recalled-Tcfcp

(b) Number of sites recalled-Tcfcp

(c) Number of patterns recalled-Tcfcp

Figure 4.12: Number of sequences, sites and unique patterns found with iteratively obtained
matrices and with raw Jaspar matrices without iteration-Tcfcp. Substantially larger number
of sequences are recalled in a consistent manner, with the iteratively obtained matrices.
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(a) Number of sequences recalled-Nmyc

(b) Number of sites recalled-Nmyc

(c) Number of patterns recalled-Nmyc

Figure 4.13: Number of sequences, sites and unique patterns found with iteratively obtained
matrices and with raw Jaspar matrices without iteration-Nmyc. Recall counts resulting from
using iteratively obtained matrices are larger than those resulting from using raw matrices.
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(a) Number of sequences recalled-Esrrb

(b) Number of sites recalled-Esrrb

(c) Number of patterns recalled-Esrrb

Figure 4.14: Number of sequences, sites and unique patterns found with iteratively obtained
matrices and with raw Jaspar matrices without iteration-Esrrb. Larger number of sequences
are recalled by using the iteratively obtained matrices than by using raw matrices, especially
during the Φd phase.
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(a) Number of sequences recalled-Klf4

(b) Number of sites recalled-Klf4

(c) Number of patterns recalled-Klf4

Figure 4.15: Number of sequences, sites and patterns found through iteratively obtained
matrices and with raw Jaspar matrices without iteration-Klf4. The overall trends of higher
recall counts are similar to those of other TFs.
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(a) P′S1
(b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.16: Nmyc binding pattern changes with a perturbed initial matrix. The series of
patterns obtained are nearly identical to the ones that were obtained without perturbation.
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(a) P′S1
(b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.17: Stat3 binding pattern changes with a perturbed initial matrix. Stable conver-
gence is exhibited through iteration.
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(a) P′S1
(b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.18: Tcfcp binding pattern changes with a perturbed initial matrix. Pattern enrich-
ment in the ChIP-seq data attracts the initial pattern to the series of patterns that are similar
to those of the unperturbed case.
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(a) Nmyc-∆M1 (b) Nmyc-∆M2

(c) Stat3-∆M1 (d) Stat3-∆M2

(e) Tcfcp-∆M1 (f) Tcfcp-∆M2

Figure 4.19: Convergence from perturbed Jaspar matrices-∆M1,∆M2. Large differences of
the initial matrices from the unperturbed matrix are greatly reduced through iteration.
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(a) Nmyc

(b) Stat3

(c) Tcfcp

Figure 4.20: Convergence from perturbed Jaspar matrices-∆IC. Overall decreases in devi-
ation with respect to the unperturbed cases are evident.
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(a) P′S1
(b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.21: Esrrb TF binding pattern changes. Using different P-values causes changes in
the degree of residue conservations.
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(a) P′S1
(b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 4.22: Klf4 TF binding pattern changes. Residues at different positions exhibit dif-
ferent degrees of conservations.
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Chapter 5. GENE PRIORITIZATION WITH NEW ASSOCIATIONS

5.1 Introduction

Genes have different levels of relevance and significance in the etiology and pathology of

diseases. Gene prioritization algorithms attempt to computationally predict the disease rel-

evance of genes, typically on a genomic scale. Genes that are implicated to be significant

by experimental platforms, such as genome wide association study, are often poorly char-

acterized, and their functions and protein interaction partners are unknown. Associations

between genes in functional or genetic terms provide important clues in elucidating their

ontologies, hence, finding such associations is an important research problem. Most gene

prioritization algorithms base their inference on genetic associations. This provides another

significance to the problem of finding associations. Genes can be associated with each

other in various ways. Expressions of most genes in cells are controlled by transcription

factors. Regulatory associations, where a transcription factor as a gene product regulates

the expression of its target genes, are an example of such associations. The gene EGR3 is

gaining attention in the study of schizophrenia [171]. Regulatory associations involving the

gene are inferred in the current study through a computational approach. It is a transcription

factor of three C2H2 zinc fingers, and plays important roles in the expressions of early re-

sponse genes upon environmental stimuli [160]. Inferred associations are then incorporated

in the gene prioritization scheme that was introduced in Ch.2, to provide a comprehensive

prioritization of the human genes with respect to schizophrenia.

5.2 Approach

Binding patterns of a large number of transcription factors are unknown, which is one of

the most limiting factors in the inference of regulatory associations between transcription

factors and their targets. Patterns that are reported for a transcription factor in the litera-

ture, as represented via letter probability matrices or consensus [150], often exhibit a large

discrepancy. Then the challenge of selecting or determining the correct pattern is posed.
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While binding patterns typically exhibit a high level of degeneracy and variability, it is still

sought to obtain accurate representations of the distributions of functional binding patterns,

which are unique characteristics of transcription factors. Given genome sequences, such

representations will then facilitate searches for the loci of functional binding patterns with

higher levels of sensitivity and specificity. We first use the methods developed in Chs.3 and

4 together to infer putative binding patterns of the EGR3 transcription factor.

Inference of transcription factor binding patterns

The letter probability matrices of EGR3 that were previously obtained in Ch.3 with varying

pseudo-Boltzman constants, k’s, are shown in Tables 5.1,5.2 and 5.3. Their logo represen-

tations are shown in Figs.5.1(a), 5.1(b) and 5.1(c). Decrease in the k value coincides with

an increase in the information contents of the patterns.

Binding patterns typically reside in the 5’ upstream (promoter) regions of target genes.

Upstream region sequences of length 1kbp’s of the entire genes from the human genome

were obtained. A sequence set enriched in the EGR3 binding patterns is needed to apply

the iterative binding pattern improvement method (Ch.4). It is known that the EGR family

transcription factors 1,2,3 and 4 all have the same characteristic residues that recognize

DNA bases [90]. Given a C2H2 transcription factor, our approach from Ch.3 mainly utilizes

the characteristic protein residues of the factor to infer its binding patterns. This implies that

the target genes of other EGR members can be used for the training of a classifier for EGR3

targets. The list of known target genes of the EGR transcription factors (EGR+ genes) is

shown in Table 5.4, which would harbor the binding patterns that are specific to the EGR

family in their promoters. The set of their promoter sequences is far more enriched in the

binding patterns of the EGR transcription factors, compared with the sequences that are

randomly selected from the genome. The set, then, is also enriched in the binding patterns

of the EGR3 transcription factor. This encourages an application of the iterative binding

pattern improvement method that was shown in Ch.4. We first use our binding pattern

prediction method (Ch.3) in order to obtain a putative EGR3 binding pattern, and apply
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the iterative binding pattern improvement method so as to refine its accuracy. Since the

search region length of 1kbp’s per sequence is rather large, measures against the matches

randomly originating from background patterns are necessary, which means a matrix with a

rather high information content is desired. So we used the predicted pattern corresponding

to the k value, 7e−4.

The matrix was then used as an initial matrix in the iterative improvement with the EGR

promoter set. Figures 5.2(b) to 5.2(j) show the iteration steps. The numbers of the matching

sites, genes with a match and the detected unique patterns, varied in accordance with the

pattern match significance p-value along the iteration (Table 5.5). We tentatively chose the

matrix from iteration 1 corresponding to the p-value 1e−4. Information contents (IC) of the

different positions were as shown in Table 5.6.

Classification of EGR +/- sets

Given the EGR+ gene set, a pseudo negative EGR- gene set was formed by excluding the

EGR+ genes from the human genome and then randomly selecting from the remainder the

same number of genes as the EGR+ genes. Then, the respective +/- promoter sequence sets

were searched for the presence of EGR binding patterns. Distinct scanning results were ob-

tained under different P-values (Table 5.7). Frequently, more than one matching site were

found in the promoters of genes. Remarkably, the promoters of 57 EGR- genes have a total

of 146 matching sites, while there were 84 EGR+ promoters having 234 sites, at p-value

5e−5. Hence, it would be very challenging to distinguish the EGR+/- sets apart, solely

based on the criteria of binding pattern conformance. Transcription factor binding patterns

are mostly located in proximity to the transcription start sites of genes, hence their precise

coordinates potentially bear a level of signal that is pertinent to the target gene classifica-

tion problem. Hence we introduced additional features: the locus of minimum distance

to transcription start site (min-loc) out of matching sites of a gene, the farthest locus from

transcription start site (max-loc), and the number of matches (sites). We used the median

p-value of the matches of each gene as its summary p-value. Scatter plots of possible two
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feature combinations are shown in Figs. 5.3(a) to 5.3(f). Support vector machine [159]

(SVM) is known to be a method that shows good performance in the classification prob-

lems from diverse domains. When the SVM was applied with different kernels, the training

performance levels were as in Table 5.8. Considering that the sample size was rather small,

and in order to avoid potential overfitting that could result from using complex kernels, the

quadratic kernel was chosen.

The promoter sequences from the human genome (Sh) were searched in for the presence

of the obtained EGR binding patterns, under different p-values (Table 5.9). At the threshold

p-value 5e−5, there were 8342 genes with promoters harboring one or more matches with

the significance levels exceeding the threshold (to be referred to as S′h set).

When the SVM classifier formed above was applied to S′h, 6394 genes were classified

as EGR+ (the initially classified EGR+ set, or EGR+
i ), and 1948 genes as EGR-. Since

the set of genes that were classified to be positives, EGR+
i , is supposed to have a rather

low level of specificity, further measures have to be applied to it, in order to increase the

level of the enrichment of EGR3 targets therein. Among the EGR+
i genes, some genes

showed extremely large numbers of matching sites in their promoters (Table 5.10), which

is notable considering that a rather moderate length of promoter region was used together

with a strict p-value threshold. Genes with matching sites≥ 10 were retained to obtain a set

of 183 putative target genes (Gt , Table 5.11). The genes have strong signals to bind to the

transcription factors of the EGR family, hence they would be highly enriched in the EGR3

targets.

Schizophrenia gene prioritization

Exhaustive associations were formed between every two genes from Gt to form a schizophre-

nia disease-specific subnetwork. This was merged with the GO0.30 and HNS300 networks

from Ch.2, resulting in a single aggregated network. Genome wide association studies

(GWAS) for the schizophrenia disease were performed in [156], [157] and [158]. We used

the GWAS data from [157] and reflected them to the significance levels of genes using
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Eq.2.4 from Ch.2. Allen et al. [7] provides a list of genes implicated in the schizophrenia,

which was compiled from the literature. We use the set of 42 genes that were graded A,B

and C, as a seed gene set. Then the integrative gene prioritization method of Ch.2 was

applied to the human genome with the parameter k = 1/3 in Eq.2.9. Out of a total of 9061

genes that had positive scores, the 100 genes with the highest scores are shown in Table

5.12. The top 50 and 100 most significant genes were respectively characterized in terms of

over-represented Gene Ontology terms (Tables 5.13 and 5.14) by using [175]. Especially

prevalent were terms that are specific to neural cells such as the neural signal transmission.

5.3 Discussion

Here we performed a comprehensive prioritization of human genes with respect to the

schizophrenia disease. Notably, a subnetwork specific to the schizophrenia disease was

formed by drawing associations between putative target genes of the EGR3, a gene highly

relevant to the disease. When the search for the loci of binding patterns for a transcription

factor is on a genomic scale, a large number of patterns conforming to a given pattern can

occur by random chances. This results in a large number of genes that are not truly regu-

lated by the transcription factor, yet are classified as such. Measures are needed to reduce

such a high rate of false positives. Additional features such as the loci of binding patterns

were employed, together with a kernel of adequate complexity in the classification scheme,

so as to model the inherent structure within the features. Significantly-ranked genes from

the prioritization result were highly enriched in Gene Ontology terms that are specific to

neural cells, such as neural signal transmissions, and may serve well as interesting genes

for further research in the schizophrenia disease. The procedure for target gene prediction

was purely computational and maximally utilized the existing data. The data from [86] was

derived from a fairly large set of experiments, and encourages computational prediction of

the binding patterns for transcription factors. The procedure that was adopted realizes, to a

great extent, the potential of such data.
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Table 5.1: Calculated EGR binding pattern with k = 3e−3

Position A C G T
0 0.01565242 0.01295830 0.96569470 0.00569458
1 0.18985339 0.49915606 0.08918355 0.22180701
2 0.05936601 0.00487306 0.82638039 0.10938054
3 0.01150165 0.03693489 0.46521054 0.48635292
4 0.14440979 0.01049011 0.84498739 0.00011271
5 0.05936601 0.00487306 0.82638039 0.10938054
6 0.00003541 0.04197646 0.78002908 0.17795904
7 0.18985339 0.49915606 0.08918355 0.22180701
8 0.05936601 0.00487306 0.82638039 0.10938054
9 0.02159215 0.16866006 0.43853550 0.37121229

Table 5.2: Calculated EGR binding pattern with k = 1e−3

Position A C G T
0 0.00000426 0.00000242 0.99999312 0.00000021
1 0.04790999 0.87072318 0.00496621 0.07640062
2 0.00036975 0.00000020 0.99731738 0.00231267
3 0.00000705 0.00023351 0.46660369 0.53315575
4 0.00496679 0.00000190 0.99503130 0.00000000
5 0.00036975 0.00000020 0.99731738 0.00231267
6 0.00000000 0.00015399 0.98811233 0.01173368
7 0.04790999 0.87072318 0.00496621 0.07640062
8 0.00036975 0.00000020 0.99731738 0.00231267
9 0.00007175 0.03419713 0.60112834 0.36460277

Table 5.3: Calculated EGR binding pattern with k = 7e−4

Position A C G T
0 0.00000002 0.00000001 0.99999997 0.00000000
1 0.01515852 0.95472191 0.00059480 0.02952477
2 0.00001255 0.00000000 0.99981525 0.00017220
3 0.00000006 0.00000872 0.45252043 0.54747079
4 0.00051469 0.00000001 0.99948530 0.00000000
5 0.00001255 0.00000000 0.99981525 0.00017220
6 0.00000000 0.00000363 0.99822342 0.00177295
7 0.01515852 0.95472191 0.00059480 0.02952477
8 0.00001255 0.00000000 0.99981525 0.00017220
9 0.00000165 0.01105552 0.66392425 0.32501858
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Table 5.4: Target genes of EGR transcription factor family

ID Name EGR TF Source

25 ABL1 1 [162]

207 AKT1 1 [162]

355 FAS 1 [162]

387 RHOA 1 [161]

388 RHOB 1 [161]

467 ATF3 1 [161]

468 ATF4 1 [162]

672 BRCA1 1 [162]

677 ZFP36F1 1 [161]

811 CALR 1 [162]

819 CAMLG 1 [162]

867 CBL 1 [162]

928 CD9 1 [161]

1019 CDK4 1 [162]

1021 CDK6 1 [162]

1326 MAP3K8 1 [162]

1388 TNXB 1 [161]

1397 CSRP2 1 [161]

1445 SRC 1 [161]

1525 CXADR 1 [161]

1612 DAPK1 1 [162]

Continued on next page. . .
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Table 5.4 – Continued

ID Name EGR TF Source

1662 DDX10 1 [162]

1674 DES 1 [161]

1786 DNMT1 1 [161]

1855 DVL1 1 [161]

1938 EEF2 1 [161]

1958 EGR1 1 [161, 162]

2004 ELK3 1 [161]

2073 ERCC5 1 [161]

2119 ETV5 1 [162]

2152 F3 1 [161]

2202 EFEMP1 1 [161]

2253 FGF8 1 [161]

2289 FKBP5 1 [162]

2353 FOS 1 [161]

2523 FUT1 1 [162]

2551 GABPA 1 [162]

2885 GRB2 1 [162]

3065 HDAC1 1 [162]

3066 HDAC2 1 [162]

3075 CFH 1 [161]

3087 HHEX 1 [162]

3159 HMGY 1 [161]

Continued on next page. . .
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Table 5.4 – Continued

ID Name EGR TF Source

3161 HMMR 1 [162]

3339 HSPG2 1 [161]

3397 ID1 1 [161]

3399 ID3 1 [162]

3481 IGF2 1 [161]

3491 CYR61 1 [161]

3725 JUN 1 [161, 162]

3880 KRT19 1 [161]

3945 LDHB 1 [161]

3953 LEPR 1 [161]

4088 SMAD3 1 [162]

4254 KITLG 1 [162]

4299 AFF1 1 [162]

4615 MYD88 1 [162]

4616 GADD45B 1 [162]

4869 NPM1 1 [162]

4881 NPR1 1 [161]

5054 SERPINE1 1 [161]

5108 PCM1 1 [162]

5154 PDGFA 1 [161]

5155 PDGFB 1 [161]

5329 PLAUR 1 [162]

Continued on next page. . .
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Table 5.4 – Continued

ID Name EGR TF Source

5359 PLSCR1 1 [162]

5573 PRKAR1A 1 [161]

5591 PRKDC 1 [162]

5594 MAPK1 1 [162]

5605 MAP2K2 1 [162]

5728 PTEN 1 [165]

5730 PTGDS 1 [161]

5734 PTGER3 1 [161]

5829 PXN 1 [161]

5880 RAC2 1 [161]

5888 RAD51 1 [162]

5889 RAD51C 1 [161]

6095 RORA 1 [161]

6125 RPL5 1 [161]

6134 RPL10 1 [161]

6193 RPS5 1 [161]

6464 SHC1 1 [162]

6598 SMARCB1 1 [162]

6609 SMPD1 1 [162]

6647 SOD1 1 [162]

6667 SP1 1 [162]

6774 STAT3 1 [162]

Continued on next page. . .
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Table 5.4 – Continued

ID Name EGR TF Source

7043 TGFB3 1 [161]

7056 THBD 1 [161]

7057 THBS1 1 [161]

7178 TPT1 1 [162]

7409 VAV1 1 [162]

7422 VEGF 1 [161]

7431 VIM 1 [161]

7533 YWHAH 1 [162]

7538 ZFP36 1 [162]

7803 PTP4A1 1 [161]

8503 PIK3R3 1 [162]

8517 IKBKG 1 [162]

8635 RNASET2 1 [161]

8835 SOCS2 1 [161]

8864 PER2 1 [162]

8887 TAX1BP1 1 [161]

9590 AKAP12 1 [161]

9757 MLL4 1 [162]

9988 DMTF1 1 [162]

10456 HAX1 1 [162]

10915 TCERG1 1 [162]

10957 PNRC1 1 [161]

Continued on next page. . .
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Table 5.4 – Continued

ID Name EGR TF Source

10962 MLLT11 1 [162]

11170 FAM107A 1 [161]

23157 6-Sep 1 [162]

26013 L3MBTL 1 [162]

26959 HBP1 1 [162]

54806 AHI1 1 [162]

55904 MLL5 1 [162]

57591 MKL1 1 [162]

64857 PLEKHG2 1 [162]

79870 BAALC 1 [162]

84324 CIP29 1 [162]

91663 MYADM 1 [162]

114034 TOE1 1 [169]

117178 SSX2IP 1 [162]

139285 FAM123B 1 [162]

64783 RBM15 1 [162]

4099 MAG 2 [172]

4155 MBP 2 [172]

50846 DHH 2 [172]

356 FASL 3 [163]

1959 EGR2 3 [167]

2098 ESD 3 [168]

Continued on next page. . .
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Table 5.4 – Continued

ID Name EGR TF Source

2247 BFGF 3 [170]

2557 GABRA4 3 [166]

4804 P75NTR 3 [164]

9956 HS3ST2 3 [168]

23237 ARC 3 [174]

27074 TSC403 3 [163]

7124 TNF 1,3 [173, 162]

4665 NAB2 1,3 [162, 167]
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Table 5.5: Recall counts from IBP (Ch.4) iterations over the EGR+ gene promoter set

N-sites N-genes N-patterns Iter P-value
261 95 130 01 1.0e−4

282 96 131 02 7.5e−5

255 91 107 03 5.0e−5

190 78 66 04 2.5e−5

120 60 30 05 1.0e−5

181 73 63 06 2.5e−5

248 85 104 07 5.0e−5

352 98 154 08 7.5e−5

429 102 198 09 1.0e−4

Table 5.6: IC values of the EGR3 matrix obtained by applying IBP (Ch.4), first iteration

Position f 1 residue f 1 IC
0 g 0.777778 0.922372
1 g 0.950192 1.643711
2 c 0.770115 0.892723
3 g 0.946360 1.624380
4 g 0.942529 1.611300
5 g 0.923372 1.522369
6 g 0.693487 0.760520
7 g 0.934866 1.562416
8 c 0.704981 0.746882
9 g 0.900383 1.425357
Sum - 8.544061 12.712031

Table 5.7: Numbers of genes matched from EGR+/- sets with varying P-values

N-sites N-genes N-patterns ± p-value
5579 136 2870 pos 5e-3
3810 135 2184 neg 5e-3
357 105 114 pos 1e-4
210 69 88 neg 1e-4
234 84 61 pos 5e-5
146 57 50 neg 5e-5
94 55 14 pos 1e-5
56 28 11 neg 1e-5

Table 5.8: Training performance of SVM with different kernels

Kernel Err.rate% FN FP TP TN Sensitivity% Specificity% F-measure%
Linear 36.1702 2 49 82 8 97.6190 14.0351 24.5417
Quad. 29.0780 16 25 68 32 80.9524 56.1404 66.3010
Poly. 22.6950 9 23 75 34 89.2857 59.6491 71.5187
RBF 22.6950 10 22 74 35 88.0952 61.4035 72.3666
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Table 5.9: Number of genes with EGR family TF-matching patterns from the human
genome

N-sites N-genes N-patterns p-value
21824 8342 71 5e-5
8280 4276 14 1e-5
4018 2919 7 5e-6
1233 997 1 1e-6

Table 5.10: Distribution of matching sites of genes with p-values ≤ threshold

Sites Genes
1 3739
2 1762
3 1065
4 587
5 374
6 246
7 160
8 96
9 77
10 69
11 38
12 29
13 18
14 15
15 23
16 11
17 4
18 10
19 7
20 2
21 1
22 3
23 4
24 0
25 0
26 1
27 0
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Table 5.11: Putative EGR transcription factor family target genes

ID Name ID Name

10815 CPLX1 27087 B3GAT1

5527 PPP2R5C 162494 RHBDL3

26053 AUTS2 375790 AGRN

57338 JPH3 108 ADCY2

7392 USF2 2063 NR2F6

5455 POU3F3 147657 ZNF480

80816 ASXL3 91461 PKDCC

11044 PAPD7 65265 C8orf33

144699 FBXL14 1960 EGR3

51305 KCNK9 8324 FZD7

79832 QSER1 6929 TCF3

56666 PANX2 26040 SETBP1

10846 PDE10A 140688 C20orf112

399664 MEX3D 57666 FBRSL1

64067 NPAS3 79047 KCTD15

196528 ARID2 284207 METRNL

23389 MED13L 63926 ANKRD5

222389 BEND7 26173 INTS1

57134 MAN1C1 8239 USP9X

4858 NOVA2 6314 ATXN7

27161 EIF2C2 80145 THOC7

Continued on next page. . .
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Table 5.11 – Continued

ID Name ID Name

359948 IRF2BP2 51317 PHF21A

8912 CACNA1H 6874 TAF4

10000 AKT3 2850 GPR27

4010 LMX1B 3363 HTR7

2776 GNAQ 1454 CSNK1E

170394 PWWP2B 83855 KLF16

140862 ISM1 727800 RNF208

23774 BRD1 9394 HS6ST1

55061 SUSD4 23170 TTLL12

84733 CBX2 9693 RAPGEF2

255783 PRR24 11193 WBP4

140730 RIMS4 58489 FAM108C1

340529 PABPC1L2A 90 ACVR1

375056 MIA3 221061 FAM171A1

9382 COG1 246175 CNOT6L

3784 KCNQ1 57446 NDRG3

23118 TAB2 64864 RFX7

388336 SHISA6 84894 LINGO1

89853 FAM125B 154215 NKAIN2

4784 NFIX 79718 TBL1XR1

222553 SLC35F1 79145 CHCHD7

9612 NCOR2 5324 PLAG1

Continued on next page. . .
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Table 5.11 – Continued

ID Name ID Name

57524 CASKIN1 729830 FAM160A1

4150 MAZ 100290519 LOC100290519

1002 CDH4 148479 PHF13

84133 ZNRF3 343472 BARHL2

6256 RXRA 1459 CSNK2A2

109 ADCY3 161882 ZFPM1

157922 CAMSAP1 64976 MRPL40

100133142 LOC100133142 23152 CIC

7528 YY1 266722 HS6ST3

23023 TMCC1 9672 SDC3

79774 GRTP1 114815 SORCS1

202018 TAPT1 23129 PLXND1

9734 HDAC9 2887 GRB10

152 ADRA2C 23543 RBM9

353116 RILPL1 92714 ARRDC1

84961 FBXL20 134957 STXBP5

6497 SKI 27092 CACNG4

23462 HEY1 2736 GLI2

100132074 FOXO6 79789 CLMN

9715 FAM131B 10801 SEPT9

5782 PTPN12 25817 FAM19A5

94032 CAMK2N2 60678 EEFSEC

Continued on next page. . .
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Table 5.11 – Continued

ID Name ID Name

56899 ANKS1B 113000 RPUSD1

3767 KCNJ11 3953 LEPR

5522 PPP2R2C 8863 PER3

23313 C22orf9 55160 ARHGEF10L

57479 PRR12 10498 CARM1

4644 MYO5A 3064 HTT

3480 IGF1R 10320 IKZF1

3749 KCNC4 644246 LOC644246

79364 ZXDC 284058 KIAA1267

23359 FAM189A1 342865 VSTM2B

11122 PTPRT 678 ZFP36L2

2817 GPC1 64109 CRLF2

4248 MGAT3 57118 CAMK1D

4756 NEO1 2894 GRID1

22880 MORC2 23513 SCRIB

23284 LPHN3 2010 EMD

4325 MMP16 8535 CBX4

9969 MED13 10273 STUB1

57621 ZBTB2 55274 PHF10

1979 EIF4EBP2 126567 C2CD4C

57584 ARHGAP21 1000 CDH2

84376 HOOK3 79772 MCTP1

Continued on next page. . .
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Table 5.11 – Continued

ID Name ID Name

92 ACVR2A 57593 EBF4

29072 SETD2 55323 LARP6

9874 TLK1 7468 WHSC1

6324 SCN1B 286 ANK1

57554 LRRC7 - -
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Table 5.12: Most significantly ranked 100 genes in schizophrenia

disease

ID Name Score N-edges ∑GWAS

627 BDNF 40.5482 28 37.645

773 CACNA1A 38.0438 27 33.131

3553 IL1B 37.5542 27 31.662

1812 DRD1 37.3631 26 34.089

7124 TNF 37.0937 27 30.281

1813 DRD2 36.9797 26 32.939

6622 SNCA 36.5542 26 31.662

1141 CHRNB2 36.2898 26 30.869

1814 DRD3 36.1641 26 30.492

3458 IFNG 35.9281 26 29.784

5663 PSEN1 35.3427 25 31.028

3064 HTT 35.2898 25 30.869

3717 JAK2 35.1683 25 30.505

3479 IGF1 34.9281 25 29.784

324 APC 34.9280 25 29.784

857 CAV1 34.9151 25 29.745

538 ATP7A 34.9151 25 29.745

1815 DRD4 34.5808 24 31.743

6531 SLC6A3 34.2485 24 30.746

9370 ADIPOQ 33.9511 24 29.853

Continued on next page. . .
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Table 5.12 – Continued

ID Name Score N-edges ∑GWAS

5027 P2RX7 33.9280 24 29.784

7042 TGFB2 33.7719 24 29.316

1020 CDK5 33.6304 24 28.891

1906 EDN1 33.6175 24 28.852

1136 CHRNA3 33.6174 24 28.852

7040 TGFB1 33.2889 24 27.867

596 BCL2 32.6636 23 28.991

135 ADORA2A 32.6174 23 28.852

1956 EGFR 32.4613 23 28.384

186 AGTR2 32.4613 23 28.384

5743 PTGS2 32.4063 23 28.219

6647 SOD1 32.3930 23 28.179

183 AGT 32.3429 23 28.029

5021 OXTR 32.2889 23 27.867

100 ADA 32.2659 23 27.798

154 ADRB2 32.2498 23 27.750

6868 ADAM17 32.1327 23 27.398

5468 PPARG 32.1002 23 27.301

100133941 CD24 32.0155 23 27.046

5578 PRKCA 31.9913 23 26.974

2185 PTK2B 31.9783 23 26.935

6648 SOD2 31.9560 23 26.868

Continued on next page. . .
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Table 5.12 – Continued

ID Name Score N-edges ∑GWAS

2903 GRIN2A 31.9013 23 26.704

7054 TH 31.7998 23 26.399

3643 INSR 31.7719 22 29.316

207 AKT1 31.7719 22 29.316

595 CCND1 31.5766 22 28.730

2064 ERBB2 31.5257 22 28.577

7533 YWHAH 31.5245 22 28.573

7157 TP53 31.3501 22 28.050

7248 TSC1 31.3198 22 27.959

4092 SMAD7 31.3198 22 27.959

7043 TGFB3 31.2498 22 27.750

27185 DISC1 31.2375 22 27.713

3630 INS 31.2186 22 27.656

351 APP 31.0812 21 30.243

1855 DVL1 31.0623 22 27.187

1312 COMT 31.0558 22 27.167

3611 ILK 30.9913 22 26.974

2898 GRIK2 30.9913 22 26.974

2066 ERBB4 30.9047 21 29.714

4803 NGF 30.8683 22 26.605

2149 F2R 30.7049 22 26.115

811 CALR 30.6807 22 26.042

Continued on next page. . .
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Table 5.12 – Continued

ID Name Score N-edges ∑GWAS

3570 IL6R 30.6807 22 26.042

4035 LRP1 30.6407 21 28.922

5467 PPARD 30.6239 22 25.872

2247 FGF2 30.4742 21 28.423

2690 GHR 30.4613 21 28.384

4846 NOS3 30.4493 22 25.348

3162 HMOX1 30.3867 22 25.160

4842 NOS1 30.3541 22 25.062

10371 SEMA3A 30.2997 20 30.899

9463 PICK1 30.2776 22 24.833

1816 DRD5 30.2531 21 27.759

3667 IRS1 30.1867 21 27.560

6934 TCF7L2 30.1636 21 27.491

23411 SIRT1 30.1636 21 27.491

5194 PEX13 30.1625 21 27.488

5970 RELA 30.1327 21 27.398

6507 SLC1A3 30.1199 21 27.360

348 APOE 30.0954 21 27.286

6777 STAT5B 30.0772 21 27.232

43 ACHE 30.0625 21 27.187

6532 SLC6A4 30.0156 21 27.047

2730 GCLM 30.0078 22 24.023

Continued on next page. . .
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Table 5.12 – Continued

ID Name Score N-edges ∑GWAS

960 CD44 29.9913 21 26.974

51738 GHRL 29.9913 21 26.974

4763 NF1 29.9913 21 26.974

5025 P2RX4 29.9542 21 26.863

4929 NR4A2 29.9433 21 26.830

5590 PRKCZ 29.9209 21 26.763

552 AVPR1A 29.9209 21 26.763

7046 TGFBR1 29.8351 21 26.505

8651 SOCS1 29.8237 20 29.471

7057 THBS1 29.8221 21 26.466

6011 GRK1 29.8221 21 26.466

6850 SYK 29.7962 21 26.388

8877 SPHK1 29.7666 21 26.300

3356 HTR2A 29.6942 21 26.083
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Table 5.13: Gene Ontology term enrichment in top N=50 significant genes

Term Description Pvalue
GO:0051952 Regulation of amine transport 3.08E-4
GO:0014059 Regulation of dopamine secretion 3.63E-4
GO:0051969 Regulation of transmission of nerve impulse 7.48E-4
GO:0050804 Regulation of synaptic transmission 7.48E-4
GO:0032225 Regulation of synaptic transmission,dopaminergic 9.35E-4

Table 5.14: Gene Ontology term enrichment in top N=100 significant genes

Term Description Pvalue
GO:0042391 Regulation of membrane potential 3.62E-6
GO:0051952 Regulation of amine transport 2.15E-5
GO:0019725 Cellular homeostasis 2.61E-5
GO:0032225 Regulation of synaptic transmission, dopaminergic 8.87E-5
GO:0006873 Cellular ion homeostasis 9.62E-5
GO:0055082 Cellular chemical homeostasis 9.62E-5
GO:0050801 Ion homeostasis 9.62E-5
GO:0051940 Regulation of catecholamine uptake 2.14E-4

involved in synaptic transmission
GO:0051584 Regulation of dopamine uptake 2.14E-4
GO:0051580 Regulation of neurotransmitter uptake 2.14E-4
GO:0050804 Regulation of synaptic transmission 2.19E-4
GO:0014059 Regulation of dopamine secretion 2.45E-4
GO:0032880 Regulation of protein localization 2.85E-4
GO:0051588 Regulation of neurotransmitter transport 3.31E-4
GO:0051969 Regulation of transmission of nerve impulse 3.55E-4
GO:0007628 Adult walking behavior 3.71E-4
GO:0031644 Regulation of neurological system process 5.57E-4
GO:0010638 Positive regulation of organelle organization 8.27E-4
GO:0048148 Behavioral response to cocaine 8.97E-4
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Figure 5.1: Changes in the calculated EGR3 binding patterns with varying k values. Smaller
k value coincides with higher information contents of the patterns.
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(a) Iter.=0 (b) Iter.=1

(c) Iter.=2 (d) Iter.=3

(e) Iter.=4 (f) Iter.=5

(g) Iter.=6 (h) Iter.=7

(i) Iter.=8 (j) Iter.=9

Figure 5.2: Application of IBP method (Ch.4) to EGR binding pattern. Initial pattern and
the patterns resulting from iteration. Sequence set was the 1kbp promoter regions of the
known target genes.
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Figure 5.3: Scatter plots of feature combinations. The positive examples (cyan) do not
clearly separate from the negative ones (magenta circles).

123



Chapter 6. DISCUSSION AND CONCLUSION

The levels of relevance and significance of genes in the causes and developments of dis-

eases are widely varying. Focusing on the most relevant ones first helps economize the

efforts to prevent and cure diseases. Gene prioritization algorithms rank genes by their dis-

ease relevance and provide a means for data reduction, i.e., only the genes above a certain

threshold rank can be retained for a more focused research. When the gene prioritization

is formulated as a computational problem, algorithms rely, to great extents, on the associa-

tions between genes in translating the significance of seed genes to the candidate genes to

be ranked.

Distinct data have different levels of reliability and relevance to a disease. In Ch.2,

we developed a method to discern and model such aspects of data. Comparisons with two

well-known algorithms demonstrated that our method exceeds them in performance. The

method was shown to be robust to small inaccuracies that can be present in data, via random

perturbation experiments.

Transcription factor-DNA interactions typically consist of many-to-many residue inter-

actions. The C2H2 zinc finger transcription factors, on the other hand, mainly use one-

to-one amino acid-nucleotide interactions in their interactions with DNA, which yielded

quite a tractable interaction model. The amino acid-nucleotide residue propensity tables

are critical components in putting the model to practical use, such as predicting the binding

patterns of transcription factors. The sets of tables from [87] and [100] are two well-known

examples. In Ch.3, we compared the predicted patterns that were obtained by using them,

against the set of patterns from Jaspar [136] that were presumed as standards. Overall, the

patterns obtained by using [100] showed lower levels of conservations across positions and

transcription factors. Those obtained by using [87] were closer to the Jaspar patterns. While

it is important to obtain high quality data of propensities between residues, it was seen to

be equally important to accurately group the zinc fingers of a transcription factor into ap-
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propriate DNA-interacting modules. Additionally, it was seen to be necessary to predict the

deviations from the canonical model in the participation of residues. We studied the prob-

lem of improving transcription factor binding patterns, that are quite inaccurate, by using

the enrichment of true bound patterns in particular types of data such as ChIP-seq, in Ch.4.

The reliability and robustness of the developed method were shown via the convergence of

widely varying initial patterns to nearly identical series of patterns. Patterns obtained with

the method showed far higher levels of sensitivity at identical levels of specificity, com-

pared with those obtained with raw initial patterns, as they were applied to the transcription

factor-bound data from [107].

Biological networks are far sparser than necessary to achieve a reliable performance

level for most gene prioritization algorithms. In Ch.5, we comprehensively utilized the

methods for gene prioritization, target pattern prediction and improvement, to prioritize

human genes with respect to the schizophrenia disease, on a genomic scale. A genetic

association network specific to the disease was built. Genes with significant ranks showed

enrichment of the Gene Ontology [12] terms that are specific to neural cells, which can

serve as interesting lead genes in schizophrenia research.

There often exist, in the literature, different sets of genes that are believed to be sig-

nificant in a disease. It would be interesting to explore how different gene prioritization

results can be, if different input gene sets are used. Frequently, different transcription fac-

tors have the same or similar set of characteristic residues that mediate their interactions

with DNA. Then naturally arising is the question on the specificity of their target recogni-

tion - whether they would bind the same targets or different ones. If targets are different,

then a number of potentially relevant factors may be cited, such as nucleosome modification

signals or combinatorial regulations of transcription factors. Combinatorial regulations are

quite common, especially in higher organisms, where multiple transcription factors cooper-

atively regulate the expression of their targets. If specificity is conferred by the difference in

the combination of transcription factors, it would be reflected via the presence of patterns in

the promoter regions of targets, which correspond to the different factors. Such difference
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in the presence of patterns may be utilized in further refining computationally predicted,

putative target sets.

The significance of pattern matching was mostly assessed by using the measure of p-

value, which was assumed to have a strong correlation with the binding energy. Choosing an

appropriate threshold p-value in classifying patterns as matching or not matching typically

entails a tradeoff between sensitivity and specificity. The problem of the p-value selection

was especially conspicuous when multiple threshold p-values had to be selected in a series,

where the impact of selection at preceding steps would propagate down the iterative pro-

cess. While they were determined on a rather empirical basis in the present study, a more

systematic method for determining the threshold p-values would be interesting to pursue in

the future.
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