
A New RNS 4-moduli Set for the Implementation of FIR Filters

by

Gayathri Chalivendra

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2011 by the
Graduate Supervisory Committee:

Sarma Vrudhula, Chair
Aviral Shrivastava
Bertan Bakkaloglu

ARIZONA STATE UNIVERSITY

May 2011

ABSTRACT

Residue number systems have gained significant importance in the field of high-

speed digital signal processing due to their carry-free nature and speed-up provided by

parallelism. The critical aspect in the application of RNS is the selection of the moduli

set and the design of the conversion units. There have been several RNS moduli sets

proposed for the implementation of digital filters. However, some are unbalanced and

some do not provide the required dynamic range. This thesis addresses the drawbacks

of existing RNS moduli sets and proposes a new moduli set for efficient implementation

of FIR filters. An efficient VLSI implementation model has been derived for the design

of a reverse converter from RNS to the conventional two’s complement representation.

This model facilitates the realization of a reverse converter for better performance with

less hardware complexity when compared with the reverse converter designs of the

existing balanced 4-moduli sets. Experimental results comparing multiply and accu-

mulate units using RNS that are implemented using the proposed four-moduli set with

the state-of-the-art balanced four-moduli sets, show large improvements in area (46%)

and power (43%) reduction for various dynamic ranges. RNS FIR filters using the

proposed moduli-set and existing balanced 4-moduli set are implemented in RTL and

compared for chip area and power and observed 20% improvements. This thesis also

presents threshold logic implementation of the reverse converter.

i

dedicated to my brother Sai and friend Samatha

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude and sincere thanks to my advisor and men-

tor Dr. Sarma Vrudhula, for his continuous support and guidance, during the course

of the work. I am grateful to Dr. Aviral Shrivastava and Dr. Bertan Bakkaloglu for

agreeing to be on my defense committee and for their time and efforts in reviewing my

work.

I would like to acknowledge the valuable inputs provided by my friend and lab-

mate Vinay Hanumaiah and convey sincere thanks to him. I also thank all the members

of VEDA lab for their support and encouragement in finishing the thesis.

Finally, I take this opportunity to thank my family Srinivasulu, Sulochana, and

Sai, and friends who have been my pillars of strength through out my career, and who

helped me become who I am today.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER . 1

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Introduction to the Thesis . 2

1.3 Mathematical Background of RNS . 4

Basic Definitions . 4

Representation of RNS . 5

1.4 Arithmetic Operations . 7

1.5 Conversion Algorithms . 8

Forward Conversion . 9

Reverse Conversion . 9

1.6 Applications . 12

2 NEW RNS FOUR-MODULI SET FOR FIR FILTERS 13

2.1 Binary Vs RNS FIR Filter Architectures 13

2.2 A Study on Existing RNS Moduli Sets 17

Three-moduli Sets . 18

Four-moduli Sets . 21

2.3 Advantages of the Proposed Moduli Set 22

2.4 Design of Reverse Converter . 24

Reverse Converter Design for the Two-moduli Set {2k(22n−1),2n+1−1} 24

3 RNS FIR Filter Implementation . 29

Forward Converter . 29

iv

Chapter Page
Modulo FIR Filters . 33

Reverse Converter Design for the Two Moduli Set {2k(22n−1),2n+1−1} 38

4 Experimental Results . 41

4.1 Performance of MAC units . 41

4.2 Performance of Reverse Converter . 49

4.3 Performance of Filter . 52

5 Application of threshold logic . 58

5.1 RC design using threshold logic . 58

5.2 Experimental Setup . 62

6 Conclusions . 63

REFERENCES . 64

v

LIST OF TABLES

Table Page

1.1 Examples of residue encoding . 6

1.2 Examples of residue encoding of negative numbers 6

1.3 Forward conversion examples . 9

4.1 Dynamic ranges used in the experiments 42

4.2 Dynamic ranges used in the experiments 43

4.3 Maximum Area (um2) Improvements at 200MHz 46

4.4 Maximum Area (um2) Improvements at 500MHz 47

4.5 Maximum power (mW) Improvements at 200MHz 47

4.6 Maximum power (mW) Improvements at 500MHz 48

4.7 Area and delay comparison of 4-moduli sets 50

4.8 Different Filter Specifications [7] . 52

4.9 Comparison of delay and area of k-mod4 and cao-mod4 filters 53

4.10 Area and Power improvements of k-mod4 moduli set 54

4.11 Comparison of filters with single stage RC 54

4.12 Comparison of filters with two stage RC 54

5.1 Truth table of 5-input counter . 60

vi

LIST OF FIGURES

Figure Page

1.1 RNS Processor . 8

2.1 Direct form of FIR filters . 14

2.2 Transposed form of FIR filters . 14

2.3 RNS FIR filter architecture . 16

2.4 Modulo Filter . 16

2.5 Comparison of area of Binary and RNS FIR filters with 24 bit input width . 19

2.6 Comparison of delay of Binary and RNS FIR filters with 24 bit input width 20

2.7 Comparison of area of Binary and RNS FIR filters with 28 bit input width . 20

2.8 Comparison of delay of Binary and RNS FIR filters with 28 bit input width 21

2.9 Comparison of delay of arithmetic channels of MACs 22

3.1 RNS implementation of a FIR filter . 29

3.2 Example of a CSA with end-around-carry 30

3.3 Example of 5 input CSA . 31

3.4 Modulo 2n−1 adder . 32

3.5 Example of a CSA mod 2n +1 addition 32

3.6 Modulo 2n +1 adder . 34

3.7 RNS modulo filter components . 35

3.8 Partial product generation mod 24 . 35

3.9 Carry save addition mod 24 . 36

3.10 4:2 Carry save accumulator . 36

3.11 Partial product generation mod 24−1 . 36

3.12 Partial product generation mod 24 +1 . 37

3.13 Hardware realization of two-reverse converter 38

4.1 Comparisons of area of modular MACs for k-mod4 and Cao-mod4 synthe-

sized at 200MHz . 44

vii

Figure Page
4.2 Comparisons of power of modular MACs for k-mod4 and Cao-mod4 syn-

thesized at 200MHz . 45

4.3 Comparisons of area of modular MACs for k-mod4 and Cao-mod4 synthe-

sized at 500MHz . 45

4.4 Comparisons of power of modular MACs for k-mod4 and Cao-mod4 syn-

thesized at 500MHz . 46

4.5 Delay comparison of reverse converter . 50

4.6 Area comparison of reverse converter . 51

4.7 Layout of the Filter using Cao-mod4 moduli set 56

4.8 Layout of the Filter using k-mod4 moduli set 57

5.1 Threshold logic latch . 59

5.2 5-input counter . 59

5.3 5-input TLL counter . 60

5.4 Area improvements of TLL over CMOS RC 61

5.5 Power improvements of TLL over CMOS RC 61

viii

Chapter 1

INTRODUCTION

1.1 Motivation

Digital signal processors (DSP) are the core of wide range of applications like audio,

image and video processing and consumer electronics to name a few. Unlike general

purpose microprocessors, DSPs involve repetitive numerical computations at high data

rate. Most of the DSPs such as digital filters, correlators and FFT processors involve

repetitive operations of addition, subtraction and multiplication on large integers. Such

specialized needs of DSPs demand very high-speed VLSI implementation of arithmetic

units that perform computations in real time as the data arrives. For instance the typical

high data rate of a stereo equipment is 20KHz, which requires the computation speed

of the DSP in the range of hundreds of millions per second. There has been significant

research since the emergence of VLSI implementation of DSPs in 1970s on developing

algorithms for high speed arithmetic operations [18]. These traditional approaches to

improve speed have resulted in complex hardware and power hungry circuits to imple-

ment simple arithmetic operations.

The performance and complexity of an arithmetic circuit are highly dependent

on word length. A smaller word length results in a faster system with less complex

hardware. Residue number system (RNS) represents a large integer in slices of small

integers. Arithmetic operations performed on large integers now can be performed on

these small integers in parallel without carry propagation, thus improving the speed of

the processor. This simple feature of RNS to reduce the word length of an operation

makes it attractive for VLSI implementation of computational intensive DSP applica-

tions using low power architectures.

RNS speeds up simple arithmetic operations like addition, subtraction, and mul-

tiplication but it is complex to perform division, comparison, and sign-detection oper-

1

ations. Hence the advantages of RNS are apparent only to computationally intensive

applications that involve only addition and multiplication. For example digital finite

impulse response (FIR) filters involve only multiply and accumulate operations. This

thesis proposes a new four-moduli residue number system for implementation of high-

speed and low power FIR filters.

1.2 Introduction to the Thesis

Residue number system is represented by a set of relatively prime numbers called the

moduli set. The challenging task in the implementation of RNS arithmetic units is the

selection of moduli set. The moduli set selected should be able to cover the dynamic

range demanded by the application as well as ensuring high-speed and low-cost im-

plementation of the modular arithmetic units and the overhead units. For example, a

32 order FIR filter with 16 bit wide input data and co-efficients has dynamic range of

2∗16+ log232= 37 bits and the moduli set selected to implement this filter should have

a dynamic range of 237 or higher. Early researchers proposed moduli sets of arbitrary

integers which are pairwise prime. The realization of modular arithmetic operation

for such moduli sets were based on look-up tables as ASIC based implementations are

much complex. Example of such moduli set is {3,5,7,11,17,64} [10]. A detailed study

on the selection of moduli set based on the dynamic range of the application is carried

out by Wang et.al in [21]. It is shown that the moduli of the form 2n, 2n−1, and 2n +1

allow for efficient VLSI implementations of modulo arithmetic units. Additionally the

complexity of the conversion units, especially the reverse converter unit from RNS to

binary is simplified due to special properties of the moduli set. Increasing the number

of moduli in the moduli set increases the parallelism of arithmetic operations but it in

turn increases the complexity of the reverse converter design. Hence there is an optimal

choice in the selection of number of moduli in the moduli set.

For digital filter applications, initially three-moduli sets [15, 6, 12, 20] were

2

common with {2n,2n−1,2n+1} moduli set being most popular. Although three mod-

uli sets result in simple implementation of the reverse converter, the dynamic ranges

provided by them are insufficient for higher order filters. For high dynamic range fil-

ters, four-moduli set is considered the suitable choice [2]. There are several four-moduli

sets introduced in literature,

• {2n,2n−1,2n +1,2n+1−1}, n is even [2, 8]

• {2n,2n−1,2n +1,2n−1−1}, n is even [2]

• {2n,2n−1,2n +1,2n+1 +1}, n is odd [8]

• {2n−1,2n,2n +1,22n +1} [1]

• {2n−1,2n,2n +1,22n+1−1}, {2n−1,2n +1,22n,22n +1} [9]

Of these moduli sets, [1, 9] provide high dynamic ranges of 5n, 5n+ 1 and 6n bits

respectively but they suffer from the imbalance in speed in the RNS arithmetic chan-

nels. The slowest channels operate on 2n, 2n+ 1 and 2n bits respectively while the

fastest channels operate on n bits. This wide difference may result in in-efficient

distribution of computation load among the RNS channels and may not take much

advantage of parallelism provide by RNS. The relatively balanced moduli sets are

{2n,2n− 1,2n + 1,2n+1− 1} and {2n,2n− 1,2n + 1,2n−1− 1} for even n. For these

moduli sets the slowest channel operate on n+ 1 bits and the fastest channels operate

on n bits. However there is still some inherent difference in the speeds of the fastest

(2n) and slowest channels (2n +1) due the variable complexity in the hardware archi-

tectures of the arithmetic channels. Also, there is a constraint on the nature of n to be

even which limits the programmability of the moduli set for different dynamic ranges.

This thesis addresses the above issues by proposing a new balanced four moduli set

{2k,2n− 1,2n + 1,2n+1− 1}, where k ∈ [n,2n]. The proposed moduli set is well bal-

3

anced and has programmable dynamic range. The main contributions of this thesis

are:

1. Proposing a new balanced moduli set for implementing RNS based FIR filters.

The proposed moduli set addresses the issues present in the existing 4-moduli

RNS systems.

2. Design of efficient reverse converter from RNS to conventional number system

for the residue number stem proposed by deriving an implementation friendly

mathematical model.

1.3 Mathematical Background of RNS

Basic Definitions

This section detials some of the basic definitions used in discussing the mathematical

background of RNS.

• Modulo

Modulo of a number a with respect to number b is the remainder when a is

divided by b. The modulo is also called as residues in RNS terminology. Modulo

operation is represented in the thesis in either one of two forms: a mod b, or |a|b.

• Congruence

Two integers a and b are congruent modulo m (a∼= b(mod m)) if m divides exactly

the difference of a and b or equivalently it may leave the same remainder when

divided by m. For example 2∼= 7(mod 5), 4∼= 7(mod 3) etc.

• Multiplicative inverse

The multiplicative inverse of a modulo m, represented as |a−1|m is defined as

follows.

(a ∗ a−1) mod m∼= 1 (1.1)

4

There can be multiple multiplicative inverses of a modulo m. For example, some

of the multiplicative inverses of 5 modulo 3 are 2, 5, 7 and it can be observed that

these multiplicative inverses are congruent modulo m. Multiplicative inverse of

a modulo m exists only if a and m are relatively prime. For example there is no

multiplicative inverse for 4 modulo 6.

Representation of RNS

A RNS is defined by a set of relatively prime integers called moduli set. A large integer

in weighted number system like 2’s complement number system can be represented in

RNS as the remainders (residues) of the integer when divided by each of the moduli

in the moduli set. Consider an RNS defined by the moduli set {m1,m2, · · · ,mn} where

m1,m2, · · · ,mn are relatively prime integers. An integer X in binary number system can

be encoded using this RNS as n residues - {x1,x2, · · · ,xn}, where

xn = X mod mn. (1.2)

The range of binary numbers that can be represented by a given moduli set is called

the dynamic range of the RNS. It is calculated as the product of all the moduli in the

moduli set as follows,

M =
n

∏
i=1

mi. (1.3)

If M is the dynamic range of a moduli set {m1,m2, · · · ,mn}, then any number X ≤

M can be uniquely represented in RNS. It is the necessary condition that the moduli

set should comprise of relatively prime integers. If this condition is not met, two

or more numbers will have same RNS representation. The table 1.1 shows the RNS

representations of random numbers that fall within the dynamic range of the moduli set

{2,3,5}.

To represent negative numbers, the dynamic range is divided in to two equal

parts. If M is the dynamic range of the moduli set {m1,m2, · · · ,mn}, then any in-

teger that falls with in {−(M− 1)/2,(M− 1)/2} or {−M/2,M/2− 1} for odd and
5

Binary Number RNS Binary Number RNS
0 {0,0,0} 15 {1,0,0}
1 {1,1,1} 16 {0,1,1}
2 {0,2,2} 17 {1,2,2}
3 {1,0,3} 18 {0,0,3}
4 {0,1,4} 19 {1,1,4}
5 {3,2,0} 20 {0,2,0}
6 {0,0,1} 21 {1,0,1}
7 {1,1,2} 22 {0,1,2}
8 {0,2,3} 23 {1,2,3}
9 {1,0,4} 24 {0,0,4}
10 {0,1,0} 25 {1,1,0}
11 {1,2,1} 26 {0,2,1}
12 {0,0,2} 27 {1,0,2}
13 {1,1,3} 28 {0,1,3}
14 {0,2,4} 29 {1,2,4}

Table 1.1: Examples of residue encoding

even M respectively can be represented uniquely in RNS. If the RNS representation

of number X is {x1,x2,x3} then the RNS representation of the complement of X is

{|m1− x1|m1, |m2− x2|m2, |m3− x3|m3}. The table 1.2 shows the encoding of the nega-

tive numbers for the same RNS moduli set {2,3,5}.

Binary Number RNS Binary Number RNS
0 {0,0,0} -15 {1,0,0}
1 {1,1,1} -14 {0,1,1}
2 {0,2,2} -13 {1,2,2}
3 {1,0,3} -12 {0,0,3}
4 {0,1,4} -11 {1,1,4}
5 {3,2,0} -10 {0,2,0}
6 {0,0,1} -9 {1,0,1}
7 {1,1,2} -8 {0,1,2}
8 {0,2,3} -7 {1,2,3}
9 {1,0,4} -6 {0,0,4}
10 {0,1,0} -5 {1,1,0}
11 {1,2,1} -4 {0,2,1}
12 {0,0,2} -3 {1,0,2}
13 {1,1,3} -2 {0,1,3}
14 {0,2,4} -1 {1,2,4}

Table 1.2: Examples of residue encoding of negative numbers

6

1.4 Arithmetic Operations

All the arithmetic operations performed on two integers in binary number system are

performed as modulo arithmetic operations on the residues in the residue number sys-

tem. Consider two binary numbers X , Y and the corresponding RNS representations

{x1,x2, · · · ,xn} and {y1,y2, · · · ,yn}. If Z =X opY , where op represents one of the arith-

metic operations of addition, subtraction, or multiplication, then Z = {z1,z2, · · · ,zn} in

RNS, where

zi = (xi op yi) mod mi,1≤ i≤ n

The calculation of zi depends only on xi and yi and does not interact with the

calculation of z j for j 6= i [18]. This property is termed as carry-free property of RNS.

The carry-free property holds only for addition, subtraction and multiplication opera-

tions while division and scaling operations result in complicated operations that involve

interactions between the residues. This is one of the main drawbacks of RNS. Hence

RNS is more advantageous for computation intensive applications involving simple

arithmetic operations like addition and multiplication. The application of RNS in gen-

eral purpose processors in limited as division and comparison are common operations

in general purpose processing.

The modulo operation is distributive over addition, subtraction and multiplica-

tion represented as,

|X op Y |m1 = ||X |m1 op |Y |m1|m1.

Since RNS arithmetic is modular arithmetic, the hardware of units are more complex

to build compared to conventional 2’s complement binary arithmetic units.

7

1.5 Conversion Algorithms

The overhead associated with the implementation of an RNS processor are the con-

version units that convert from a binary number system to RNS, and vice versa. This

conversion is unavoidable as the peripheral interfaces of most digital systems are based

on binary number system. A block diagram of a typical RNS processor is as shown

in 1.1. The input X to the RNS system is available as binary input. It is first converted

to residues. After processing the data, the result in the form of residues is converted

to the conventional binary representation. The process of converting binary number

to residues is called forward conversion and process of converting residues to binary

numbers is called reverse conversion.

Binary to Residue Converter

Residue to Binary Converter

X

. . .Mod m1
Processor

Mod m2
Processor

Mod mn
Processor

x1 x2 xn

y1 y2 yn

To Binary Systems

Figure 1.1: RNS Processor

8

Forward Conversion

Forward conversion involves the computation of remainders of input X with respect to

each modulus in the RNS moduli set. There are well known algorithms for forward con-

version [14, 17, 13, 11] in literature. The hardware complexity of the forward converter

depends on the type of moduli set selected. For arbitrary moduli sets like {2,5,7,11,19},

the forward conversion involves conventional way of calculating the remainders using

division algorithm. This is much complex to implement as combinational logic. Hence

look-up tables are used to implement forward converters for arbitrary moduli sets. For

special moduli sets like {2n,2n− 1,2n + 1} the architecture of forward converters is

simple and can be implemented in hardware using modulo adders and or carry save

adders due to the periodicity properties of the modulus of kind 2n,2n− 1 and 2n + 1.

The architecture of forward converter for special moduli is discussed in 3.

Numerical Example: Consider an RNS system with moduli set 4,3,5. The dy-

namic range of the system is 60 and numbers from -30 to 29 can be uniquely repre-

sented as residues. Some examples are listed in table1.3.

Binary Number x1 x2 x3
0 0 0 0
1 1 1 1
5 1 2 0

15 3 0 0
-21 3 0 4
-30 2 0 0

Table 1.3: Forward conversion examples

Reverse Conversion

Compared to forward conversion, reverse conversion is a much complex process and

its complexity is completely determined by the chosen moduli set. Reverse conver-

sion calculates the binary number X given the residues {x1,x2, ..,xn} and the moduli
9

set {m1,m2, ..,mn}. Let M = ∏
n
i=1 mi be the dynamic range. There are two popular

algorithms in literature for reverse conversion.

• Reverse conversion (RC) based on the classical Chinese remainder theorem (CRT)

Given a set of relatively prime moduli {m1,m2, · · · ,mn}, the conventional repre-

sentation X of its residues {x1,x2, · · · ,xn} is calculated using the following math-

ematical model.

X = |
n

∑
i=1

xi|Mi|miMi|M, (1.4)

where, Mi = M/mi.

• RC based on New Chinese remainder theorem

Wang et.al [22] proposed a method for reverse conversion that is based on CRT

that is more efficient in terms of hardware implementation. It is mathematically

represented as,

X = |x1 +(x2− x1)k1m1 +(x3− x2)k2m1m2

+ · · ·+(xn− xn−1)kn−1m1 · · ·mn|M.

(1.5)

Notation |A|M indicates the remainder of A when divided with M. ki are the

multiplicative inverses such that,

k1m1 ∼= 1 (mod (m2 ∗m3 · · ·mn)),

k2m1m2 ∼= 1 (mod (m3 ∗m4 · · ·mn)),

...

kn−1m1m2 · · ·mn−1 ∼= 1(mod mn).

Example: Let the Binary representation of the residues {3,0,0} with respect to

the moduli set {4,3,5} be X . Here m1 = 4, m2 = 3, m3 = 5, and M = 60. The

multiplicative inverses of m1, m2 are k1 = 4, k2 = 3 respectively since k1m1 =

16 ∼= 1 mod m2m3, and k1m1m2 = 36 ∼= 1 mod m3. Substituting these values in

10

(1.5),

X = |3+(0−3)4∗4+(0−0)3∗4∗3|60,

X = |3−48|60 = |−45|60,

X = 60−45 = 15.

• Mixed radix conversion (MRC) algorithm

According to MRC [18], the mathematical model for the reconstruction of X is,

X = an

n

∏
i=1

mi + · · ·+a3m2m1 +a2m1 +a1, (1.6)

where a1 = x1, a2 =
∣∣∣(x2−a1)

∣∣m−1
1

∣∣
m2

∣∣∣
m2

and so on. |m−1
1 |m2 is the multiplica-

tive inverse of m1 modulo m2 such that |m−1
1 m1|m2 = 1.

Example: Considering the same example as above. In this case,

a1 = x1 = 3,

a2 = |4−1(0−3)|3

= |1(0−3)|3 = 0,

a3 = |3−1([4−1(0−3)]−0)|5

= |2([4(−3)]−0)|5 = 1.

Substituting a1, a2, and a3 in (1.6),

X = a1 +a2m1 +a3m1m2,

X = 3+0+1∗3∗4 = 15.

Mixed radix conversion is a sequential process and is generally slow to implement

reverse conversion compared to CRT based algorithms but it is simple to implement.

The application of MRC algorithm is generally limited to two or three-moduli sets.

The most popular algorithm used to implement reverse converter is Chinese remainder

theorem.

11

1.6 Applications

Due to the carry-free nature, residue number encoding has gained importance in high-

speed data processing applications where the critical path is associated with the prop-

agation of the carry. Using RNS encoding, the word-length of the data operands is

reduced and results in the minimization of critical path timing and in lower power

consumption. RNS is fault tolerant and error detection and correction is easy as it fa-

cilitates the isolation of faulty residues. Due to these attractive properties of RNS, it is

a promising alternative to conventional two’s complement number system. Although

RNS representation speeds up arithmetic operations like addition and multiplication, it

is much more complex to perform other operations like division, shifting, comparison

etc. This limits the application of RNS only to computationally intensive applications

that require mainly addition and multiplication operations. Hence RNS has gained

much popularity in the field of DSP and active research is going on in application of

RNS in the following fields: Digital filtering- FIR and IIR filters, Digital convolution,

Cryptography, Discrete Fourier, transform (DFT), Fast Fourier transform(FFT) proces-

sors, Digital image processing.

The use of RNS in general purpose processors where operations like division

and comparison are common, is limited as it is more efficient to implement those op-

erations in the conventional binary number system. As the RNS arithmetic operations

are performed on inputs of smaller input width, lower power and higher speed can be

expected.

12

Chapter 2

NEW RNS FOUR-MODULI SET FOR FIR FILTERS

2.1 Binary Vs RNS FIR Filter Architectures

The most popular use of RNS in the design of digital finite impulse response(FIR)

filters. FIR filters are highly stable architectures and are less sensitive to quantization

errors than filters of recursive architectures like Infinite impulse response (IIR) filters.

A digital FIR filter response of N-taps is mathematically represented as (2.1) where xn

is the the input data and a1,a2, · · · ,ak are the filter co-efficients.

yn =
N

∑
k=0

akxn−k (2.1)

Generally, two’s complement system (TCS) representation is widely chosen for the

binary representation of the input and co-efficients of a digital filter. FIR filters can

be implemented in hardware either in the Direct form, shown in the Fig 2.1 or in the

Transpose form shown in the Fig 2.2. Direct form results in larger critical path delay of

tD + tmul + tadder(N) compared to the critical path delay of the transposed form imple-

mentation which is tD + tmul + tadder. Here, tmul is the delay of the multiplier, tadder(N)

is the delay of the adder tree adding N inputs and tadder is a two-input adder delay and

tD is the delay of the register element. The Transpose form requires larger input buffers

for the input xn for it to be able to drive N multipliers. In general for ASIC implemen-

tations, the transpose form is preferred. For high speed implementations of transpose

form FIR filters, the result of the multiplier is represented in carry-save format and the

accumulator is implemented as carry save adder. The final stage of the such implemen-

tation of transpose form FIR filter is a conventional adder to add the carry save vectors

of the last stage.

The dynamic range of a N-tap FIR filter with input width of M bits and co-

efficient width of L bits is M + L+ log2N. As the number of taps increases, the dy-

namic range of the filter increases, and the delay of the output adder increases due to
13

X X XX

Xn

Yn

ana1 a2a0

D D D

+

Figure 2.1: Direct form of FIR filters

MAC

X

+

X

+

X

+

X

Xn

Yn

an an-1 an-2 a0

DD D

Figure 2.2: Transposed form of FIR filters

longer carry-propagation [19]. Using RNS, the dynamic range can be decomposed into

smaller dynamic ranges and the MAC operations can be performed in parallel with-

out carry propagation among the channels. Consider an RNS system of p-moduli set

{m1,m2, · · · ,mp}. The mathematical representation of FIR filter using the p-moduli set

is,

y1,n =

∣∣∣∣∣ N

∑
i=0
|a1,k ∗ x1(n− k)|m1

∣∣∣∣∣
m1

,

y2,n =

∣∣∣∣∣ N

∑
i=0
|a2,k ∗ x2(n− k)|m2

∣∣∣∣∣
m2

,

...

yp,n =

∣∣∣∣∣ N

∑
i=0
|ap,k ∗ xp(n− k)|mp

∣∣∣∣∣
mp

.

(2.2)

Here, a1,k,a2,k, · · · ,ap,k represent the residues of the filter co-efficients and x1,x2, · · · ,xp

represents the residues of the input. In RNS FIR filter using p-moduli set, there are p

filters operating in parallel without any inter-dependency. Due to parallelism and carry

free-property nature of RNS, high-speed FIR filters are realizable compared to conven-
14

tional TCS representation. In addition to gain in performance, RNS filter architectures

result in low power in the following ways [5].

• Reduction in the peak current: Compared to conventional implementation of FIR

filters, RNS architectures uses smaller arithmetic units and less complex designs.

Hence, the peak current in each arithmetic unit decreases.

• Reduction in the switching activity: The reason mentioned above is applied for

smaller switching activities in RNS arithmetic units. As RNS systems operate

on smaller input widths, the switching activities are also relatively smaller. The

reduction in peak current as well as switching activity results in smaller dynamic

power.

• Several other circuit level power reduction techniques like voltage scaling in non-

critical paths using high threshold transistors can be applied very easily in RNS

circuits. The non-critical channel can be completely implemented using high

threshold transistors. In conventional binary systems, there are only specific

paths where high threshold transistors can be used.

The FIR filter architecture using RNS is as shown in Fig 2.3. The only overhead

in the implementation of RNS FIR filters is the conversion units from binary to RNS

and the reverse converter to convert the individual filter responses to binary response.

There are three basic steps in the implementation of RNS FIR filter using the moduli

set {m1,m2, · · · ,mp}.

1. Forward conversion: Let the input data sample at time n is X(n) and filter co-

efficients are ak. The data input and the filter co-efficients are converted to

15

FC RC

Filter mod m1

Filter mod m2

Filter mod mp

Xn Yn

x2

xp-1

xp

x1 y1

y2

yp-1

yp

Filter mod mp-1

Figure 2.3: RNS FIR filter architecture

residues using modulo operations as shown in the following equations.

x1(n) = x(n) mod m1, a1,k = ak mod m1

x2(n) = x(n) mod m2, a2,k = ak modm2

...

xp(n) = x(n) mod mp,ap,k = ak mod mp

(2.3)

2. Modulo filters: The modulo filters are conventional filter with all the arithmetic

operations being modulo arithmetic operations. The multipliers and the adders in

conventional filters are replaced by modulo multipliers and adders respectively

in RNS filters as shown in 2.4. For example multiplication in binary is converted

MAC mod m

|+|m

x1,n

a1,n a1,n-1 a1,n-2 a1,0

D

|X|m |X|m |X|m |X|m

|+|m
D |+|mD

Figure 2.4: Modulo Filter

in to p-modulo multiplications in parallel as shown in (2.4).

x(n− k)∗ak︸ ︷︷ ︸
Binary

= {(x1(n− k)∗a1,k) mod m1, · · · ,(xp(n− k)∗ap,k) mod mp}︸ ︷︷ ︸
RNS

(2.4)
16

3. Reverse conversion: Individual filter responses y1,n,y2,n · · · ,yp,n to the final re-

sponse Yn = RC(y1,y2, · · · ,yp) using popular conversion algorithms discussed in

chapter 1.

2.2 A Study on Existing RNS Moduli Sets

Selection of moduli set is critical factor in determining the performance and power

of an RNS system. The moduli set selected to implement FIR filters should cover

the dynamic range of the filter. This in turn impacts the through put of the filter and

the hardware efficiency of the forward converter, reverse converter, and modulo MAC

units.

If n is the input width and assuming the filter coefficient width to be n, for an

Nth order FIR filter, the output width without scaling is 2n+ log2N. Hence the dynamic

range of the selected moduli set of the filter should be at least 2n+ log2N. For example,

for a 40 tap RNS FIR filter with 16 bit input width and 16 bit co-efficient width, the

dynamic range of the moduli set selected should be 32+ log240 = 36 bits. There are

two ways to achieve a higher dynamic range.

• Use a large number of moduli each with smaller magnitude: The moduli set con-

sists of large number of relatively prime numbers. An example for this type of

moduli set with dynamic range of 40 bits is {16,17,19,53,127,129,257}. Imple-

menting modulo arithmetic units using the moduli set is not simple. For this

reason, ROM table-lookup tables are used to implement modulo addition, sub-

traction and multiplications. Also increasing the number of moduli increases

the reverse converter complexity. Hence for large dynamic range applications,

moduli set of arbitrary prime moduli is not suitable for ASIC implementations.

• Use of small number of moduli with large magnitude: Examples for this type of

moduli set are {2n,2n−1,2n+1}, {2n,2n−1,2n+1,2n+1+1} etc. In these types

17

of moduli sets, the moduli are of the form 2n, 2n−1 and 2n +1 and the modulo

arithmetic blocks with respect to such moduli can be efficiently implemented as

digital VLSI circuits due to the special properties of the moduli.

To implement a RNS FIR filter of 40 bits dynamic range, some of the choices are

{214,214− 1,214 + 1}, {210,210− 1,210 + 1,211 + 1}. The popular moduli sets

of this form are the 3-moduli sets and the 4-moduli sets. There are few 5-moduli

sets proposed in literature but the design of the reverse converter is complex and

its overhead is substantially larger in terms of delay and power.

Three-moduli Sets

The most popular three-moduli set in the literature is {2n,2n− 1,2n + 1}. Its main

drawback is the larger difference in the critical path delays of the arithmetic channels.

The binary channel 2n is the fastest channel and the non-binary channel 2n + 1 is the

slowest channel owing to the architecture difference in the modular arithmetic units.

Any arithmetic operation modulo 2n is performed as conventional arithmetic operation

by discarding the higher order bits positioned after the bit position n. The arithmetic

operations modulo 2n + 1 are much more complex, and involve addition of correc-

tion factors and carry save addition involves end-around carries. This difference in the

speeds results in an inefficient distribution of computation load among different chan-

nels. To address this imbalance, [3, 4] proposed three -moduli set {2k,2n−1,2n +1},

k > n which has wider binary channel.

However, for smaller input widths and higher order filters, this moduli set does

not provide any performance improvement over conventional binary filter. For exam-

ple, consider a 8 bit wide filter with 64 taps. The dynamic range is 16+ log264 = 22.

The best suitable moduli set with dynamic range of 22 bits is {28,27−1,27+1} . In this

case, the modulo 2k filter operates on 8-bit inputs, as does conventional filter. In such

case we did not gain much advantage using RNS over conventional filter. For some

18

dynamic ranges, 3-moduli sets are advantageous. For example, if the input width is 16

and the filter taps are 8, the dynamic range is 35. The moduli set {213,211−1,211+1}

gives better speed compared to 2’s complement implementation as the number of bits

of MAC operation are reduced from 16 to 13. Hence for smaller input-widths, the

parallelism provided by 3-moduli set is insufficient.

An experimental study on RNS FIR filters implemented using the balanced 3-

moduli set {2k,2n− 1,2n + 1} was conducted to check the performance parameters.

Binary FIR filters and RNS FIR filter with the moduli set {2k,2n−1,2n+1} are imple-

mented in RTL and synthesized for minimum delay using commercial 65nm technology

library. Figure 2.5, and figure 2.6 show the area and delay comparison of Binary FIR

filters and RNS FIR filters with input and co-efficient widths of 24bits and figure 2.7,

and figure 2.8 are for input and co-efficient widths of 28 bits. From the delay plots, it is

observed that as the number of taps increases, the dynamic range increases and the ad-

vantage in speed by using RNS diminishes. It is also observed that the area advantage

in RNS filters is small, and is less than 9% in most of the designs.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Ar
ea

 (m
m

2)

Number of taps

Binary Filter
RNS Filter

Figure 2.5: Comparison of area of Binary and RNS FIR filters with 24 bit input width

The experimental results show that the three-moduli set {2k,2n−1,2n +1} has
19

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 20 40 60

De
la

y
(n

s)

Number of taps

Binary Filter
RNS Filter

Figure 2.6: Comparison of delay of Binary and RNS FIR filters with 24 bit input width

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60

Ar
ea

 (m
m

2)

Number of taps

Binary Filter
RNS Filter

Figure 2.7: Comparison of area of Binary and RNS FIR filters with 28 bit input width

smaller dynamic range and is not beneficial to implement higher order FIR filter archi-

tectures.

20

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

0 20 40 60

De
la

y
(n

s)

Number of taps

Binary Filter
RNS Filter

Figure 2.8: Comparison of delay of Binary and RNS FIR filters with 28 bit input width

Four-moduli Sets

Next, the implication of 4-moduli sets on the performance of RNS FIR filters is studied.

Several 4-moduli sets and their optimal reverse converter design have been described

in the literature: {2n−1,2n,2n+1,2n+1−1}[2], {2n−1,2n,2n+1,2n+1+1}[6], {2n−

1,2n,2n+1,22n+1}[1], {2n−1,2n,2n+1,22n+1−1}[7] and {2n−1,22n,2n+1,22n+

1}[7]. All these moduli-sets have imbalance in speeds of the arithmetic channels.

To quantify the amount of imbalance, an experiment was conducted to calculate

the delay of the modulo MAC units - MAC mod 2n, MAC mod 2n−1, MAC mod 2n+1.

The simulation delay of the fastest and slowest channels of RNS MAC units using the

popular 4-moduli sets are shown in Fig. 2.9. The differences in the speeds of the slowest

and fastest channel are 11%, 16%, 26%, 23% and 22% respectively. Of these four-

moduli sets, the relatively balanced moduli set is {2n−1,2n,2n +1,2n+1−1} referred

as Cao-mod4 moduli set through out the thesis.

21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

[2] [6] [1] [7] [7]
De

la
y

of
 M

AC
 c

ha
nn

el
 (n

s)

Moduli set

Slowest channel
Fastest channel

Figure 2.9: Comparison of delay of arithmetic channels of MACs

To address this issue of imbalance and for high dynamic range applications,

this work proposes a new moduli set {2k,2n− 1,2n + 1,2n+1− 1} where k ∈ [n,2n] is

the selectable parameter. There is limit set on the parameter k, as arbitrary increase

will again result in the imbalance in the modulo channels, with 2k channel being the

critical channel. The next section lists the advantages of the proposed 4-moduli set.

This moduli set is referred to as k-mod4 moduli set through out the thesis.

2.3 Advantages of the Proposed Moduli Set

Compared to the different four-moduli sets in literature, the proposed four-moduli set

is much balanced, programmable and has less number of unused states.

1. Programmable dynamic range:

The dynamic range of the proposed moduli set referred as k-mod4 moduli set

can be programmed by tuning k and fixing n. In case of other moduli sets for

e.g.,{2n,2n−1,2n +1,2n+1−1} referred as Cao-mod4, to increase the dynamic

range n has to be tuned. Changing the value of n would result in increase in

hardware complexity of all the arithmetic channels. While in case of k-mod4

moduli set, only the arithmetic channel 2k has to be modified to incorporate the

change in dynamic range. The additional hardware cost to increase the dynamic

22

range in case of k-mod4 system is smaller to that Cao-mod4 RNS system.

Consider an example of n = 4, the moduli set {2n,2n−1,2n +1,2n+1−1} pro-

vides a dynamic range of 17 bits. To implement an application with 18 bits dy-

namic range in RNS using Cao-mod4 moduli set, n has to be chosen as 6 and the

moduli set is {26,26− 1,26 + 1,27− 1}. As n is even, the next available value

of n to tune for the higher dynamic range is 6. This will result in more hard-

ware associated with increased power consumption and delay of all the modulo

arithmetic channels. In case of k-mod4 moduli set k can be tuned to k = 5 and

with n = 4, we can achieve the dynamic range of 18 bits using the moduli set

{25,24−1,24 +1,25−1}.

2. Reduced number of unused states:

The number of unused states in a moduli set is calculated as the difference be-

tween the dynamic range required by an application and the dynamic range of-

fered by the moduli set. The fine programmability of dynamic range of the k-

mod4 moduli set by tuning k would also result in less number of unused states

for certain dynamic ranges compared to Cao-mod4 moduli set.

For example, a 16 order FIR filter with 16 bit wide input data and co-efficients

has a dynamic range of (2 ∗ 16+ log216) = 36 bits and the moduli set selected

to implement this filter should have a dynamic range of 36 bits or higher. To

implement this filter, n = 10 for Cao-Mod4 moduli set and n = 8, k = 12 for

k-mod4 moduli set. In this case,

the number of unused states for the Cao-mod4 moduli set

= (210(220−1)(211−1))−236 = 2129227940864 and

the number of unused states for the k-mod4 moduli set

= (211(216−1)(29−1))−236 = 68448948224.

3. Balanced moduli set:

23

The gap between the speed of the fastest binary channel and the slowest channel

is reduced by overloading the number of bits, the channel 2k operates on. But

arbitrary increase of k would again result in imbalance in the arithmetic channels,

hence the upper bound of k is limited to 2n.

2.4 Design of Reverse Converter

For the proposed moduli set {2k,2n−1,2n +1,2n+1−1}, a simple reverse conversion

model is derived based on the standard approach of design of 4-moduli set reverse

converters proposed in [2]. Let x1, x2, x3, and x4 represent the residues of a binary

number X with respect to the moduli 2k, 2n + 1, 2n− 1, and 2n+1− 1 respectively.

Given the residues and the moduli set, X can be reconstructed in two steps.

1. Partially reconstruct the binary number X1 of the original binary X from the

residues x1, x2, x3 with respect to the three-moduli set {2k,2n− 1,2n + 1}. X1

is obtained using the 3-moduli reverse converter proposed in [4]. X1 is repre-

sented as 22nY1 + x1 where Y1 is the intermediate result of 2n bits wide.

2. Create a single modulus from the three moduli set (2k,2n− 1,2n + 1) by multi-

plying the moduli i.e., modulus 2k(22n−1). Given X1, x4 and the two-moduli set

{2k(22n−1),2n+1−1}, X is reconstructed using MRC algorithm.

Reverse Converter Design for the Two-moduli Set {2k(22n−1),2n+1−1}

Reconstruction of the binary result from the residues X1 and x4 w.r.t the moduli set

{2k(22n−1),2n+1−1} is computed using MRC algorithm as follows,

X = a1 +a2P1, (2.5)

24

where

a1 = X1 = x1 +2kY1, (2.6)

a2 =
∣∣∣(x4−X1)

(∣∣P−1
1

∣∣
P2

)∣∣∣
P2
, (2.7)

P1 = 2k(22n−1), and (2.8)

P2 = 2n+1−1. (2.9)

∣∣P−1
1

∣∣
P2

is the multiplicative inverse of P1 modulo P2 i.e,

|P−1
1 P1|P2 = 1. (2.10)

The multiplicative inverse of |P1|P2
is given by the following lemma.

Lemma:

|P−1
1 |P2 =


∣∣(−1

3

)
2n+3−k

∣∣
2n+1−1 , k < n+3∣∣(−1

3

)
22n+4−k

∣∣
2n+1−1 , k ≥ n+3.

(2.11)

Proof: First |P1|P2 is simplified as follows,

|P1|P2 = |2
k(22n−1)|2n+1−1

= |2k(2n−1(2n+1−1)+2n−1−1)|2n+1−1

= |2k(2n−1−1)|2n+1−1 = |2k−2(2n+1−4)|2n+1−1

= |2k−2(−3)|2n+1−1.

(2.12)

With this simplification, the lemma can be verified by substituting (2.11) and

(2.12) in (2.10).

Case 1: When k < n+3,

|P−1
1 P1|2n+1−1 =

∣∣∣∣(−1
3

)
2n+3−k2k−2(−3)

∣∣∣∣
2n+1−1

= |2n+1|2n+1−1 = 1.

(2.13)

25

Case 2: When k ≥ n+3,

|P−1
1 P1|2n+1−1 =

∣∣∣∣(−1
3

)
22n+4−k2k−2(−3)

∣∣∣∣
2n+1−1

= |22(n+1)|2n+1−1

=
(
|2n+1|2n+1−1

)(
|2n+1|2n+1−1

)
= 1.

(2.14)

In order to simplify the subsequent derivations,∣∣P−1
1

∣∣
P2
=
∣∣∣(−1

3)2
k′
∣∣∣
2n+1−1

, where

k′ =


n+3− k, k < n+3,

2n+4− k, k ≥ n+3.
(2.15)

Knowing the multiplicative inverse, X is computed by substituting a1, a2 and

P1 from (2.6), (2.7) and (2.8) respectively in (2.5),

X = X1 +2k(22n−1)
∣∣∣∣(x4−X1)

(
−1

3

)
2k′
∣∣∣∣
2n+1−1

= X1 +2k(22n−1)
∣∣∣∣(1

3

)
(X12k′− x42k′)

∣∣∣∣
2n+1−1

= X1 +2k(22n−1)Z = x1 +Y12k +2k(22n−1)Z

= x1 +2k(Y1 +22nZ−Z).

(2.16)

In the above equations,

Z =
∣∣∣(1

3

)
(X12k′− x42k′)

∣∣∣
2n+1−1

=C(A+B) (say), where

C =

∣∣∣∣(1
3

)∣∣∣∣
2n+1−1

,

A =
∣∣∣X12k′

∣∣∣
2n+1−1

,

B =
∣∣∣−x42k′

∣∣∣
2n+1−1

.

The simplifications of A, B and C are given below.

A =
∣∣∣X12k′

∣∣∣
2n+1−1

=
∣∣∣(x1 +2kY1

)
2k′
∣∣∣
2n+1−1

= |A1 +A2|2n+1−1 ,

(2.17)

26

where A1 = | x1︸︷︷︸
k

2k′|2n+1−1 and A2 = | Y1︸︷︷︸
2n

2k+k′|2n+1−1.

Since x1 is a k bit vector and n≤ k≤ 2n, x1 is split into two vectors x11 and x12,

each of n+1 bits. This is done to remove the modular operation w.r.t 2n+1−1.

x11 = 0x1,k−1, · · · ,x1,k−n︸ ︷︷ ︸
n+1

. (2.18)

x12 = 00 · · ·0︸ ︷︷ ︸
2n−k+1

x1,k−n−1, · · · ,x1,0︸ ︷︷ ︸
k−n

. (2.19)

With x = x11x12, A1 in (2.17) is computed as

A1 =
∣∣∣(x112k−n + x12

)
2k′
∣∣∣
2n+1−1

=
∣∣∣x112k−n+k′+ x122k′

∣∣∣
2n+1−1

= |A11 +A12|2n+1−1 .

(2.20)

where

A11 = x11,n−k′11
, · · · ,x11,0︸ ︷︷ ︸

n+1−k′11

x11,n, · · · ,x11,n−k′11+1︸ ︷︷ ︸
k′11

, (2.21)

A12 = x12,n−k′, · · · ,x0︸ ︷︷ ︸
n+1−k′

x12,n, · · · ,x12,n−k′+1︸ ︷︷ ︸
k′

, and (2.22)

k′11 = |k−n+ k′|n+1. (2.23)

In a similar fashion to splitting of x1, Y1 is also split into two vectors of n+ 1

bits.

Y11 = 00Y1,2n−1, · · · ,Y1,n+1︸ ︷︷ ︸
n−1

. (2.24)

Y12 = Y1,n, · · · ,Y1,0︸ ︷︷ ︸
n+1

. (2.25)

27

A2 is computed with Y11 and Y12 as follows,

A2 =
∣∣∣(Y112n+1 +Y12)2k+k′

∣∣∣
2n+1−1

=
∣∣∣Y112n+1+k+k′+Y122k+k′

∣∣∣
2n+1−1

= |A21 +A22|2n+1−1 ,

(2.26)

where

A21 = Y11,n−k′21
, · · · ,Y11,0︸ ︷︷ ︸

n+1−k′21

Y11,n, · · · ,Y11,n−k′21+1︸ ︷︷ ︸
k′21

, (2.27)

A22 = Y12,n−k′22
, · · · ,Y11,0︸ ︷︷ ︸

n+1−k′22

Y12,n, · · · ,Y12,n−k′22+1︸ ︷︷ ︸
k′22

, (2.28)

k′21 = |n+1+ k+ k′|n+1, k′22 = |k+ k′|n+1. (2.29)

Simplifying B and C,

B =
∣∣∣−x42k′

∣∣∣
2n+1−1

= x̄4,n−k′, · · · , x̄0︸ ︷︷ ︸
n+1−k′

x̄4,n, · · · , x̄4,n−k′+1︸ ︷︷ ︸
k′

. (2.30)

C =

∣∣∣∣(1
3

)∣∣∣∣
2n+1−1

=
n/2

∑
i=0

22i [2]. (2.31)

28

Chapter 3

RNS FIR Filter Implementation

RNS implementation of FIR filter using the proposed moduli set comprise of the fol-

lowing components forward converters, modulo MAC blocks and a reverse converter

as shown in Figure 3.1. This chapter details the implementation of each component in

building the complete RNS FIR filter.

FC RC

Filter mod 2k

Filter mod 2n-1

Filter mod 2n+1

Filter mod 2n+1-1

Xn Yn

x2

x3

x4

x1 y1

y2

y3

y4

Figure 3.1: RNS implementation of a FIR filter

Forward Converter

The forward converter for this moduli set has 4 units that calculate the residue of the

input with respect to moduli 2k, 2n−1, 2n +1, and 2n+1−1.

• Modulo 2k: If X is the input of p bits wide, then X mod 2k is simply calculated

by discarding the most significant bits to the kth bit position. This does not

require additional hardware except routing. For example if X is represented as

Xp−1Xp−2 · · ·X0, then X mod 2k = Xk−1 · · ·X0.

• Modulo 2n − 1(Modulo 2n+1 − 1): There are popular algorithms to calculate

residues of the modulo of kind 2n−1. For the present implementation of modulo

29

2n− 1 and modulo 2n+1− 1 operations, architecture proposed in [11] is used.

First step in the process of modulo calculation is to represent input X in slices

of n (n + 1) bits. These operands generated are added using a multi-operand

modulo adder (MOMA). A MOMA comprises of carry save adders (CSA) with

end-around-carry to reduce multiple operands to two vectors (carry vector and

save vector) of n bits wide. These two vectors are added using a modulo 2n− 1

adder. An example of a carry save addition of three inputs with EAC is shown in

Figure 3.2. An example of CSA tree that reduces 5 input operands of n bits wide

to two carry and save vectors is as shown in Figure 3.3. If S, C are the output

x1x2x3 x0
Y1 Y0Y3 Y2

S1 S0S3 S2
C1 C0C3 C2 C3

Z1 Z0Z3 Z2

1011
1101
0101

0011
1011

EAC

Figure 3.2: Example of a CSA with end-around-carry

vectors of CSA tree then,

(S+C) mod (2n−1) =


S+C, S+C < (2n−1),

S+C− (2n−1), S+C ≥ (2n−1).
(3.1)

The modulo 2n−1 adder can be implemented using a ripple carry adder with its

carry out bit being fed back as its carry in (cin) bit. The critical path of such

adder of n bits wide will be 2n full adder delays. Instead, it can be implemented

as two ripple carry adders operating in parallel with cin=0 and cin=1 as carry in

bits and a mux as shown in Figure 3.4. The critical path delay in this case is n full
30

CSA

CSA

CSA

Figure 3.3: Example of 5 input CSA

adder delay and a 2:1 mux delay. This high speed implementation of the modulo

adder is used in the current design.

• Modulo 2n +1 : The architecture of modulo 2n +1 residue generator is same as

that of modulo 2n−1 residue generator. The general architecture of it has three

units - operand generation unit, CSA tree with EAC and a modulo 2n +1 adder.

The input bits are arranged using the periodicity property of the moduli 2n+1 as

operands of n bits. The operands generated and the correction factor are added

using carry save adders modulo 2n + 1. The modulo 2n + 1 carry save addition

is as explained in Figure 3.5. The final result is calculated using modulo 2n + 1

adder. If S, C are the output vectors of CSA tree, then the result of the modulo

adder is as follows:

(S+C) mod (2n +1) =


S+C, S+C ≤ (2n +1),

S+C− (2n +1), S+C > (2n +1).
(3.2)

31

Mux
0 1

S C

Cin=0 Cin=1
Adder Adder

Sel

Cout

n n

(S+C) mod 2n-1

n

Figure 3.4: Modulo 2n−1 adder

x1x2x3 x0
Y1 Y0Y3 Y2

S1 S0S3 S2

C1 C0C3 C2 ~C3

Z1 Z0Z3 Z2

0011
0101
1000

1110
0011

EAC Cor = -1

Figure 3.5: Example of a CSA mod 2n +1 addition

A modulo 2n + 1 adder again requires two adders operating in parallel and a

2:1 mux to select the correct output. But the hardware requirements of modulo

2n +1 adder in the implementation of FIR filters can be reduced by representing
32

output as intermediate sum. Instead of representing the output as the final modulo

result, an intermediate result is generated by adding the sum and carry vectors

from the CSA tree using conventional addition. As there are n+1 bits available

to represent the result and S,C are of only n bits wide, S+C mod (2n + 1) can

always be represented as S+C. For example, consider n = 4. The outputs of

the CSA tree are of 4 bits wide and the final modulo is of 5 bits wide. Let

S = 9, C = 12. Then according to 3.2,

S+C mod (2n +1) = S+C− (2n +1),

9+12 mod (24 +1) = 9+12−17 = 4.

By using conventional addition, the result is S +C = 21 which can be safely

represented in 5 bits. This intermediate result still carry information about the

final modulo result as 21mod(24+1) = 4. As there are further modulo operations

in the modulo filters, this intermediate representation would not impact the filter

output. The hardware architecture of the residue generator of modulo 2n+1 is as

shown in Figure 3.6

Modulo FIR Filters

Modulo FIR filters are realized in transpose form to reduce the critical path delay of

the RNS filter. The output of each tap is represented in carry save (CS) form. CS rep-

resentation avoid the computation of modular addition in each tap and computation of

final moduli in each channel is carried out in the last stage. The only drawback in the

CS representation of the accumulated result of each tap is increase in the number of

registers required in each stage. Compared to conventional representation of accumu-

lated result as final sum, CS representation requires double the number of registers to

propagate both carry and save vectors to the next stage. The general architecture of a

modulo filter is as shown in Figure 3.7.

The three different kinds of modulo filters are explained below:
33

.. .

Operand
Generation

CSA mod 2n+1

Adder

X
m

n
O0O(m/n-1)

nn

n+1

(S+C) mod 2n+1

Figure 3.6: Modulo 2n +1 adder

• Filter mod 2k: If X is the input residue and Y is co-efficient of a filter tap, each of

4 bits wide then the partial product tree of the filter mod 2k for k = 4 is as shown

in Figure 3.8. The partial products are added using carry save adders with the

carry out bit discarded as shown in Figure 3.9. The carry save representation of

the multiplication result (X ∗Y mod2k) is added with the carry save vectors from

the previous stage using a 4:2 carry save adder modulo 2k. A 4:2 CSA mod 2k is

as shown in Figure 3.10.

• Filter mod 2n−1 : Similarly if X and Y are the input residue and co-efficients of

the filter mod 24− 1, the partial products of (X ∗Y mod(24− 1)) is as shown in

Figure 3.11. The ordering of partial products is based on the periodicity property

34

.. .
Mod PPG

Mod CSA

4:2 Mod CSA

Xi

P0Pn

Yi

S C

Si Ci

Si-1

Ci-1

Figure 3.7: RNS modulo filter components

x0x0x0 x0Y1 Y0Y3 Y2

x1x1x1 0Y0Y2 Y1

x2x2 0Y1 Y0 0

x3 0Y0 00
Figure 3.8: Partial product generation mod 24

of the moduli 2n−1 as explained in the equation 3.3.

|2i|2n−1 = 2|i|n (3.3)

35

x1x2x3 x0
Y1 Y0Y3 Y2

S1 S0S3 S2
C1 C0C2

Z1 Z0Z3 Z2

1011
1101
0101

0011
1010

0

Figure 3.9: Carry save addition mod 24

CSA mod m

CSA mod m

Si-1 Ci-1Sm Cm

Si Ci

Figure 3.10: 4:2 Carry save accumulator

x0x0x0 x0Y1 Y0Y3 Y2

x1x1x1 Y0Y2 Y1

x2x2Y1 Y0

x3Y0

x1Y3
x2Y3 x2Y2

x3Y3 x3Y2 x3Y1
Figure 3.11: Partial product generation mod 24−1

The partial products generated are added using carry save adders modulo 2n−1.

The carry save adder with end around carry is as shown in 3.2. The final carry and

36

sum vector result of the multiplication is added with the carry and save vectors

from the previous stage using a 4:2 carry save adder modulo 2n−1.

• Filter mod 2n+1: The architecture of multiplication modulo 2n+1 is as followed

in [23]. The partial products if the input residues of n+1 bits wide are arranged

as vectors of n bits wide. The partial product generation for inputs of 5 bits

wide is as shown in Figure 3.12. The carry save adder with end around carry

for modulo 24 + 1 is as shown in Figure 3.5. The arrangements of the partial

x0x0x0 x0Y1 Y0Y3 Y2

x1x1x1 Y0Y2 Y1

x2x2Y1 Y0

x3Y0

x1Y3

x2Y3 x2Y2

x3Y3 x3Y2 x3Y1 Cor = -7

x1Y3

x2x2Y3 Y2

x3Y1x3x3Y3 Y2

x0Y4

x1Y4

x2Y4

x3Y4

x4Y3 x4Y2 x4Y1 x4Y0
x4Y0x4x4Y2 Y1x4Y3x4Y4

x1Y4x2Y4x3Y4

x4Y4

x0Y4

Cor = -3

Cor = -1

Cor = -15

Cor = -15

Figure 3.12: Partial product generation mod 24 +1

products is based on the periodicity property of moduli 2n+1 as explained in the

equation 3.4.

|2i|2n+1 = 2|i|2n ,2 j ≤ i < (2 j+1)

|2i|2n+1 =−2|i|n,(2 j−1)< i≤ 2 j

j > 1

(3.4)

The partial product vectors are added using carry save adders modulo 2n+1. The

carry save results of the multiplication are added to the carry save vectors of n+1

bits wide from the previous stage using a 4:2 CSA mod 2n +1.

37

Reverse Converter Design for the Two Moduli Set {2k(22n−1),2n+1−1}

In this section the details of the Step 2 of the reverse converter design mentioned in

chapter 2 is presented. The details of the derivation of this reverse converter can be

found in the reverse converter design section in chapter 2. Fig. 3.13 shows the different

components of the two moduli reverse converter. The two-moduli reverse converter

Bit Positioning Layer 1

MOMA Layer 1

Bit Positioning Layer 2

MOMA Layer 2

Subtracter

A11 A12 A21 A22 B

Z

|A+B|2n+1-1

On/2 O1 O0

{

X1x4

x1
Xi

X

Y1

Figure 3.13: Hardware realization of two-reverse converter

consists of following components.

• Bit positioning layer 1: The inputs to the two-moduli reverse converter are X1,

38

the partial reconstructed binary number from the three-moduli reverse converter

of the moduli set {2k,2n−1,2n +1} and x4, the residue of X with respect to the

modulus (2n+1−1). X1 is computed as [3]

X = 22nY1 + x1, (3.5)

where Y1 is 2n bit wide intermediate result of the three-moduli reverse converter.

The output of the bit positioning layer 1 are A11, A12, A21, A22 and B, each is

n+1 bits wide. The bit ordering of these outputs defined in derivation of reverse

converter model are as follows.

A11 = x11,n−k′11
, · · · ,x11,0︸ ︷︷ ︸

n+1−k′11

x11,n, · · · ,x11,n−k′11+1︸ ︷︷ ︸
k′11

, (3.6)

A12 = x12,n−k′, · · · ,x0︸ ︷︷ ︸
n+1−k′

x12,n, · · · ,x12,n−k′+1︸ ︷︷ ︸
k′

, and (3.7)

k′11 = |k−n+ k′|n+1, (3.8)

A21 = Y11,n−k′21
, · · · ,Y11,0︸ ︷︷ ︸

n+1−k′21

Y11,n, · · · ,Y11,n−k′21+1︸ ︷︷ ︸
k′21

, (3.9)

A22 = Y12,n−k′22
, · · · ,Y11,0︸ ︷︷ ︸

n+1−k′22

Y12,n, · · · ,Y12,n−k′22+1︸ ︷︷ ︸
k′22

, (3.10)

k′21 = |n+1+ k+ k′|n+1, (3.11)

k′22 = |k+ k′|n+1,and (3.12)

B =
∣∣∣−x42k′

∣∣∣
2n+1−1

= x̄4,n−k′, · · · , x̄0︸ ︷︷ ︸
n+1−k′

x̄4,n, · · · , x̄4,n−k′+1︸ ︷︷ ︸
k′

. (3.13)

Computation of B requires n+1 inverters and no additional hardware is required

for the ordering of the bits.

• Multi-operand modulo addition (MOMA) layer 1: A MOMA [11] is basically a

modulo adder, but can be doubled as a compressor as the output bit width is fixed

by the modulo operation irrespective of the number of operands. The MOMA

39

used here takes five input vectors A11, A12, A21, A22 and B of n + 1 bits and

added using carry save adders (CSA) with end-around carry (EAC). The carry

and save bits of the output of the adder are added with a modulo (2n+1 − 1)

adder to produce the output denoted by |A+B|2n+1−1, which is n+ 1 bit wide.

This MOMA layer requires 4(n+1) full adders (FA), including the (n+ 1) FAs

required by the 2n+1−1 modulo adder.

• Bit positioning layer 2: This layer is same as the bit positioning layer 1, except

that this layer generates (n/2+ 1) operands, O0, O1, . . . , On/2, each of n+ 1

bits obtained from ordering of the bits of |A+B|2n+1−1, from the output of the

MOMA layer 1. The details of the ordering the bits can be found in the derivation

of reverse converter model in chapter 2. Unlike the bit positioning layer 1, this

layer does not require any gates.

• MOMA layer 2: This layer is similar to MOMA layer 1, except that the number

of inputs are (n/2+1), viz. O0, O1, . . . , On/2. The total number of FAs required

to implement this MOMA is (n/2)(n+ 1), including (n+ 1) FAs of the modulo

(2n+1−1) adder. The output of this layer is n+1 bit and is denoted by Z.

• Subtracter: Here the output Z of MOMA layer 2 is left shifted by 2n bits and

added to Y1. The resultant 3n+1 bit vector is as shown below

Zn, · · · ,Z1,Z0︸ ︷︷ ︸
n+1

,

2n︷ ︸︸ ︷
Y1,2n−1, · · · ,Y1,1,Y1,0

Z is subtracted from this result to generate the intermediate result Xi, which is

left shifted by k bits and added to the residue x1 (k bit wide) to get the final result

X .

X = x1 +Y12k +2k(22n−1)Z

The 3n+1 bit subtracter is implemented as a 2’s complement adder and requires

(3n+1) FAs.

40

Chapter 4

Experimental Results

4.1 Performance of MAC units

In this section, the advantages of the proposed 4-moduli set k-mod4 moduli set over

the Cao-mod4 moduli set is illustrated by implementing modulo MAC units. Area, de-

lay and power consumption of an RNS filter is usually dominated by the MACs as the

conversion overhead of the forward and the reverse converter remains constant, while

the number of MACs increases linearly with the order of the filter. Hence the measure-

ments of the area and the power of the MAC units alone is considered to compare the

advantages of the k-mod4 moduli set with the Cao-mod4 moduli set.

An RNS MAC unit consists of modulo MACs for each moduli in the moduli

set. Of all the modulo MACs, the modulo MAC for the modulus 2n +1 has the longest

delay [3]. There have been several implementations to minimize the delay of the MAC

associated with the 2n + 1 channel. Of these [23] was found to be efficient and it is

used in the RNS filter implementations. MACs for moduli 2n and 2k are implemented

as conventional binary MACs with the MSB bits greater than 2n and 2k discarded re-

spectively. MACs for moduli (2n−1) and (2n+1−1) are implemented as conventional

binary MACs with end around carry added to the LSB.

In the experiments, the area and the power of the modulo MACs for the dynamic

ranges 9–105 are compared. Selection of n and k for the moduli sets {2n1,2n1−1,2n1+

1,2n1+1− 1} (Cao-mod4) and {2k,2n2− 1,2n2 + 1,2n2+1− 1} (k-mod4) are shown in

Table ??. Due to the absence of the programmable k, Cao-mod4 uses higher n, while

the k-mod4 moduli set can be programmed to cover the intermediate dynamic range

with smaller n as can be seen from the table. However, k cannot be increased arbitrarily

as it is upper bounded by the critical path of the 2n+1 channel (critical path condition),

which cannot exceed the delay of the binary channel 2k.

41

Dynamic Range n1 n2 k Dynamic range n1 n2 k
9 2 2 2 55 14 12 18

10 4 2 3 56 14 12 19
11 4 2 4 57 14 14 14
12 4 4 4 58 16 14 14
13 4 4 4 59 16 14 15
14 4 4 4 60 16 14 16
15 4 4 4 61 16 14 17
16 4 4 4 62 16 14 18
17 4 4 4 63 16 14 19
18 6 4 5 64 16 14 20
19 6 4 6 65 16 16 16
20 6 4 7 66 18 16 17
21 6 4 8 67 18 16 18
22 6 6 6 68 18 16 19
23 6 6 6 69 18 16 20
24 6 6 6 70 18 16 21
25 6 6 6 71 18 16 22
26 8 6 7 72 18 16 23
27 8 6 8 73 18 18 18
28 8 6 9 74 20 18 18
29 8 6 10 75 20 18 19
30 8 6 11 76 20 18 20
31 8 6 12 77 20 18 21
32 8 8 8 78 20 18 22

Table 4.1: Dynamic ranges used in the experiments

42

Dynamic Range n1 n2 k Dynamic range n1 n2 k
33 8 8 8 79 20 18 23
34 10 8 9 80 20 18 24
35 10 8 10 81 20 20 20
36 10 8 11 82 22 20 21
37 10 8 12 83 22 20 22
38 10 8 13 84 22 20 23
39 10 8 14 85 22 20 24
40 10 8 15 86 22 20 25
41 10 10 10 87 22 20 26
42 12 10 11 88 22 20 27
43 12 10 12 89 22 22 22
44 12 10 13 90 24 22 23
45 12 10 14 91 24 22 24
46 12 10 15 92 24 22 25
47 12 10 16 93 24 22 26
48 12 10 17 94 24 22 27
49 12 12 12 95 24 22 28
50 14 12 13 96 24 22 29
51 14 12 14 97 24 24 24
52 14 12 15 98 26 24 25
53 14 12 16 99 26 24 26
54 14 12 17 100 26 24 27

Table 4.2: Dynamic ranges used in the experiments

43

For the experiments, the modulo MACs are implemented in RTL and synthe-

sized using a 65nm standard cell library. The area and the power comparisons of the

MAC units using the k-mod4 and the Cao-mod4 moduli sets synthesized at the maxi-

mum frequency of 200 MHz and 500 MHz are presented in Figs. 4.1 and 4.2, and in

Figs. 4.3 and 4.4 respectively. Improvement in area and power reduction is observed

for all dynamic ranges. From the plots, area reduction as much as 46% and power

reduction as much as 43% are observed.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0 20 40 60 80 100

A
re

a
 (

m
m

2
)

Dynamic range (bits)

k-mod4

cao-mod4

A

B

46%

Figure 4.1: Comparisons of area of modular MACs for k-mod4 and Cao-mod4 synthe-
sized at 200MHz

It can be seen that the synthesized area of MACs using Cao-mod4 moduli set for

the dynamic range spanned between two consecutive ns i.e, n and n+ 2 remains con-

stant (Annotated portion A in Fig. 4.1). This is due to the absence of a programmable

moduli set, which can customize the hardware corresponding to the required dynamic

range. For example the dynamic range of the Cao-mod4 moduli set, when n = 4 is

4n+ 1 = 17bits. But for the next immediate dynamic range of 18 bits, n = 4 is not

sufficient and the next available value is n = 6. However in case of k-mod4 moduli set,

to achieve dynamic range of 18 bits, k can be programmed to k = 5, with n = 4.

Another observation from the area and the power plots for the k-mod4 moduli
44

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 20 40 60 80 100

Po
w

er
 (W

)

Dynamic range (bits)

k-mod4
cao-mod4

43%

14%

Figure 4.2: Comparisons of power of modular MACs for k-mod4 and Cao-mod4 syn-
thesized at 200MHz

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0 20 40 60 80 100

A
re

a
 (

m
m

2
)

Dynamic range (bits)

k-mod4

cao-mod4

45%

20%

Figure 4.3: Comparisons of area of modular MACs for k-mod4 and Cao-mod4 synthe-
sized at 500MHz

set is that there are sudden jumps in the area and the power at certain dynamic ranges

(Annotated portion B in Fig. 4.1). This is due to the critical path condition , that

disallows k from increasing beyond a certain value, and forces to choose the next higher

n.

45

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100

Po
w

er
 (

W
)

Dynamic range (bits)

k-mod4
cao-mod4

42% Same power when n=k

18%

Figure 4.4: Comparisons of power of modular MACs for k-mod4 and Cao-mod4 syn-
thesized at 500MHz

Compared to Cao-mod4 moduli set, k-mod4 moduli set gives maximum im-

provements for dynamic ranges of the form 4n+2. While the dynamic range of Cao-

mod moduli set is 4n+1, to achieve the next dynamic range, the next available value of

n has to be chosen. The area and power improvements of k-mod4 moduli set for such

dynamic ranges is listed in tables Table 4.3, Table 4.4 and Table 4.5, Table 4.6 for the

MACs synthesized at 200MHz and 500MHz respectively.

Dynamic range Cao-mod4 k-mod4 %Improvement
10 1844.00 720.00 60.95
18 3643.00 1966.00 46.03
26 6104.00 3840.00 37.09
34 9179.00 6290.00 31.47
42 12857.00 9376.00 27.07
50 17269.00 12410.00 28.14
58 22375.00 17569.00 21.48
66 27794.00 22695.00 18.35
74 34627.00 27014.00 21.99
82 42277.00 32867.00 22.26
90 50364.00 42795.00 15.03
98 59285.00 51283.00 13.50

Table 4.3: Maximum Area (um2) Improvements at 200MHz

46

Dynamic range Cao-mod4 k-mod4 %Improvement
10 0.871 0.397 54.42
18 1.656 0.943 43.08
26 2.775 1.772 36.16
34 4.128 2.840 31.21
42 5.716 4.217 26.23
50 7.606 5.892 22.53
58 9.834 7.702 21.68
66 12.147 9.973 17.90
74 15.340 11.957 22.05
82 18.960 14.443 23.82
90 22.859 19.154 16.21
98 27.325 23.347 14.56

Table 4.4: Maximum Area (um2) Improvements at 500MHz

Dynamic range Cao-mod4 k-mod4 %Improvement
10 1793.000 721.000 59.79
18 3526.000 1917.000 45.63
26 6354.000 3742.000 41.11
34 10241.000 6590.000 35.65
42 14448.000 10485.000 27.43
50 20212.000 14552.000 28.00
58 26714.000 20544.000 23.10
66 34077.000 27207.000 20.16
74 42659.000 33201.000 22.17
82 55011.000 41832.000 23.96
90 68419.000 55652.000 18.66
98 87410.000 69753.000 20.20

Table 4.5: Maximum power (mW) Improvements at 200MHz

47

Dynamic range Cao-mod4 k-mod4 %Improvement
10 1.143 0.48835 57.27
18 2.2066 1.2334 44.10
26 4.0892 2.3703 42.04
34 6.9681 4.2489 39.02
42 10.468 7.128 31.91
50 15.564 10.543 32.26
58 21.068 15.8 25.00
66 27.666 21.592 21.95
74 35.006 26.51 24.27
82 45.809 34.334 25.05
90 59.098 46.26 21.72
98 73.871 60.131 18.60

Table 4.6: Maximum power (mW) Improvements at 500MHz

48

4.2 Performance of Reverse Converter

In this section, the hardware complexity and the delay of the proposed k-mod4 reverse

converter is compared with the existing 4-moduli reverse converters. Cao-mod4 moduli

set {2n,2n−1,2n +1,2n+1−1} [2] has been chosen for comparison with the proposed

reverse converter as it is the most balanced among the existing 4-moduli sets.

In the proposed k-mod4 moduli set {2k,2n−1,2n +1}, if k = n, then the hard-

ware complexity and the delay of k-mod4 reverse converter is identical to the Cao-mod4

reverse converter. Hence it is assumed that k > n for comparison in this section.

Recall that reverse converter design of a 4-moduli set consists of two stages as

mentioned in design of reverse converter section. In the first stage, the residues are

processed through a 3-moduli set. For k > n, k-mod4 reverse converter will contain an

additional CSA layer of 2n FAs over Cao-mod4 in the first stage. Also, k-mod4 incurs

an additional FA delay over Cao-mod4 in stage 1. Similarly, in the second stage, the

reverse converter for the two-moduli set {2k(22n−1),2n+1−1} requires an additional

CSA layer of n+ 1 FAs and incurs extra FA delay over the reverse converter of the

two-moduli set {2n(22n−1),2n+1−1}.

Table 4.7 shows the detailed comparison of area, delay of the reverse converters

for the proposed k-mod4 and the Cao-mod4 reverse converters. Note that tINV , tMUX

and tFA denote the gate delays of inverter, MUX and full adder respectively. l is the

number of stages in the n/2+1 CSA tree.

The proposed reverse converter and the four-stage reverse converter for the Cao-

mod4 moduli set [2] are synthesized using a 65nm standard cell library. The designs

are optimized for minimum delay. The minimum delay of the reverse converters for

different dynamic ranges are compared in Fig. 4.5 and their corresponding areas are

compared in Fig. 4.6. The synthesis results show that for a given dynamic range, our

49

Gates k-mod4 RC Cao-mod4 RC
INV 2n+ k+2 3n+2
HA 0 1
FA n2/2+27n/2+2 n2/2+21n/2+4

MUX 0 2

Delay
tINV+ tINV + tMUX

(11n+10+ l)tFA +(11n+8+ l)tFA
Dyn. range 3n+ k+1 4n+1

Table 4.7: Area and delay comparison of 4-moduli sets

k-mod4 reverse converter has 23% less delay and 54% less area. Note that the reverse

converter implementations of both the moduli sets are same when k = n.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

11 21 31 41 51 61 71 81

De
la

y
(n

s)

Dynamic range

k-4mod
cao-4mod

Figure 4.5: Delay comparison of reverse converter

50

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

11 21 31 41 51 61 71 81

Ar
ea

 (m
m

2)

Dynamic range (bits)

k-mod4
cao-mod4

Figure 4.6: Area comparison of reverse converter

51

4.3 Performance of Filter

In this section, RNS filters implemented using Cao-mod4 moduli set and the proposed

k-mod4 moduli set are compared for chip area and power. The specifications of the

different types of filter- Butterworth, Elliptical, Least Square, Park Mc-Clennan filters

as used in reference [7] are shown in Table 4.8. In the table, Fs represents the stop band

frequency and Fp represents the pass band frequency.

Filter Type Order Fs Fp
Butterworth 20 0.25 0.3

Elliptical 6 0.25 0.3
Least Square 41 0.25 0.3

Park Mc-Clennan 28 0.25 0.3
Butterworth 71 0.27 0.2875

Elliptical 8 0.27 0.2875
Least Square 172 0.27 0.2875

Park Mc-Clennan 119 0.27 0.2875
Elliptical 13 0.27 0.29

Least Square 326 0.27 0.29
Park Mc-Clennan 189 0.27 0.29

Table 4.8: Different Filter Specifications [7]

For this experiment, filter of input width 24 bits and with the following specifi-

cations is chosen:

• Filter type : Elliptical

• Stop band frequency : 0.3

• Pass band frequency : 0.25

• Pass band ripple : 3dB

• Stop band ripple : -50dB

• Order : 6

52

The dynamic range of the filter with 24 bit input width and 6 taps is (2 ∗ 24+

log26)=51 bits. To implement this RNS filter of 51 bit dynamic range, using Cao-

mod4 moduli set, n = 14 has to be chosen according to the Table 4.2. Using the k-

mod4 moduli set, the parameters of n,k chosen to satisfy the required dynamic range

are n = 12 and k = 14 (from Table 4.2). Therefore the moduli sets chosen for Cao-

mod4 and k-mod4 are {214,214−1,214+1,215−1} and {214,212−1,212+1,213−1}

respectively.

Two filters using Cao-mod4 moduli set and k-mod4 moduli set are implemented

in RTL based on the RNS filter architecture as represented in Figure 3.1. The filters

implemented in verilog are simulated for functionality checking and synthesized under

no delay constraints. This analysis gives the total negative slack of the circuit which

denotes the minimum clock period required to synthesize the circuits. The following

table 4.9 shows the maximum frequency of operation and the cell area corresponding

to zero delay synthesis of the two filters.

Parameter Cao-mod4 k-mod4 %Improvement
Gate count 13812 11279 18.3

Cell area(um2) 78829 64188 18.5
Net area(um2) 61967 50025 19.2

Total area(um2) 140796 114213 18.8
Delay (ns) 4.13 4.07 1.4

ADP (mm2*ns) 0.573 0.471 17.6

Table 4.9: Comparison of delay and area of k-mod4 and cao-mod4 filters

From the synthesis results, it can be seen that there is significant improvement

in cell area but the performance is comparable for both the designs. The synthesis tool

tries to improve the performance of the design boosting the circuit area to reduce the

total negative slack. Hence ADP is compared for the two designs which gives accurate

estimate of the performance for designs synthesized using zero delay.

After knowing the maximum frequency of operation, the two filters are synthe-

sized and placed and routed for the same clock frequency of 200Mhz. At this frequency,
53

both the designs meet timing at post-synthesis as well as post-place and route levels.

Table 4.10 compares the post-place and route performance parameters of the two de-

signs.

Parameter Cao-mod4 k-mod4 %Improvement
Gate count 20875 16485 21.0

Power(mW) 17.3 14.0 19.0
Cell area(um2) 92870 74167 20.1

Chip Area(mm2) 0.20 0.16 20.6

Table 4.10: Area and Power improvements of k-mod4 moduli set

The reverse converter used in the filter designs are implemented as single stage

and two stage pipeline. The frequency of operation of the filters with single stage RC

is 344MHz and with two stage RC is 250MHz. Table 4.11 and Table 4.12 compare the

post-place and route performance parameters of the filters using single stage RC and

two stage RC.

Parameter Cao-mod4 k-mod4 %Improvement
Gate count 21493 16857 21.5

Power(mW) 22.1 17.0 19.7
Cell area(um2) 92364 73551 20.4

Chip Area(mm2) 0.155 0.124 19.4

Table 4.11: Comparison of filters with single stage RC

Parameter Cao-mod4 k-mod4 %Improvement
Gate count 60079 46204 23.0

Power(mW) 31.8 23.5 26.1
Cell area(um2) 93724 72079 23.1

Chip Area(mm2) 0.153 0.123 19.6

Table 4.12: Comparison of filters with two stage RC

The following figures Figure 4.7 and Figure 4.8 show the chip layouts of the

filters implemented using the Cao-mod4 moduli set and k-mod4 moduli set respectively

using two stage RC. The annotated values are the width and height of the chip. The

two filters are place and routed for the same initial densities and frequencies.
54

The reduction in chip area and post-pnr power with the proposed moduli set is

20%. Power estimation was done using PrimeTime Px providing VCD (vector change

dump) file as input to estimate the realistic switching activities of the primary inputs

and internal nets.

55

Figure 4.7: Layout of the Filter using Cao-mod4 moduli set

56

Figure 4.8: Layout of the Filter using k-mod4 moduli set

57

Chapter 5

Application of threshold logic

5.1 RC design using threshold logic

Reverse converter is the critical path unit in the filter. Pipelining is one alternative to

speed up the reverse conversion but it costs in additional registers. To speed up the

reverse conversion without sacrificing the power, it is implemented in threshold logic.

Threshold logic is an alternate logic style to CMOS that achieves better per-

formance with lower power. The standard cell in threshold logic in called threshold

logic latch (TLL). It is a clocked differential sense amplifier based circuit. TLL can

implement threshold functions up to fan in of 13. A threshold function is defined as a

boolean function y = f (x1,x2, · · · ,xn) if it can be represented as:

y =


1, ∑

n−1
i=0 xiwi ≥ T,

0, otherwise
(5.1)

where, wi is the weight of the input xi and T is the threshold. The circuit implementation

of threshold logic latch [16] is shown in figure 5.1. The critical aspect in designing a

circuit using TLL is identification of threshold functions in the circuit. The reverse

converter comprises of CSA and modulo adders. A CSA tree can be replaced by set

of counters. Counter function is a threshold function and can be implemented by few

TLL gates. In the two stage implementation of reverse converter, a 5-input CSA tree

feeding D flipflops shown in figure 5.2 is replaced by 5-input counter implemented

using threshold gates shown in figure 5.3. Here the logic depth of 3-FAs and DFF is

reduced to a single TLL gate depth. The delay of 6 XOR gates and the setup time of

DFF is replaced by setup time of a TLL gate. This absorption in logic depth results in

larger speed up at the cost of larger number of sequential gates.

The truth table of 5 bit counter is shown in table5.1. y2, y1, and y0 represent the

output of the 5-bit counter with number of 1’s in the input bits represented as Cnt.
58

Figure 5.1: Threshold logic latch

Figure 5.2: 5-input counter

From the truth table:

y0 = 1, if (cnt ≥ 1 and cnt < 2) or (cnt ≥ 3 and cnt < 4) or (cnt ≥ 5),

y1 = 1, if (cnt ≥ 2 and cnt < 4),

y2 = 1, if (cnt ≥ 4).

59

TLL7

TLL5

TLL7

TLL9

TLL9

1 of 5

2 of 5

3 of 5

4 of 5

5 of 5

AND

AND

AND

OR
X[4:0]

y2

y0

y1

Figure 5.3: 5-input TLL counter

y2 y1 y0 Cnt
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5

Table 5.1: Truth table of 5-input counter

The output of the TLL counter is in the form of three bits and it is reduced to

two bits using a CSA.

By identifying the 5-input counters in the reverse converter design, a hybrid

implementation of the two stage reverse converter is built using TLL and CMOS gates.

The CMOS and hybrid form of reverse converter of k-mod4 moduli set (n=8,k=10)

in two stage is implemented in RTL and place and routed. Figure 5.4 and figure 5.5

show the area and power improvements of the hybrid reverse converter at different

60

frequencies. The TLL design provides faster design with smaller power. At the

Figure 5.4: Area improvements of TLL over CMOS RC

Figure 5.5: Power improvements of TLL over CMOS RC

closing frequency of CMOS design of 400MHz, the area and power improvements of

TLL designs are 17.3% and 18.8% respectively. While for the same power consumption

of 3.7mW, the TLL design can run 20% faster than the CMOS design.

61

5.2 Experimental Setup

The EDA tools used in the experiments are listed below:

• Verilog Simulator : Cadence NCverilog

• Synthesis tool : Cadence RC

• Timing Analysis tool : Synopsys PrimeTime

• Place and Route tool : Cadence Encounter

• Static power analysis : Synopsys PrimeTime PX

62

Chapter 6

Conclusions

The thesis is a study of application of residue number system in the implementation of

FIR filters. The key contributions of the thesis are:

• It proposes a new RNS 4-moduli set for efficient implementation of FIR Filters

that addresses the drawbacks of existing 4-moduli sets. Compared to the exist-

ing 4-moduli sets, the proposed moduli set is more balanced, programmable for

various dynamic ranges and results in efficient distribution of computation load

among the RNS modulo channels.

• A reverse converter model has been derived based on mixed radix conversion

algorithm. The reverse converter model is CMOS implementation friendly. The

reverse converter circuit for the proposed moduli set outperformed the reverse

converter of state-of-the-art balanced moduli set both in terms of delay and area.

• MAC units implemented using the proposed moduli set and balanced 4-moduli

set in literature are synthesized and compared for power and cell area. Power

improvements of as much as 43% and cell area improvements of as much as 46%

are observed over various dynamic ranges.

• RNS FIR filters of 6-taps are implemented following the complete ASIC design

flow. The chip area and power are compared to demonstrate the advantages of

using the proposed RNS moduli set over the existing balanced moduli set.

• Proposed an application of new logic style to improve the speed of the reverse

converter. Using threshold logic, the reverse converter is sped up by 20% for the

same power.

63

REFERENCES

[1] B. Cao, C.H. Chang, and T. Srikanthan. An efficient reverse converter for 4-
moduli set {2n−1,2n,2n+1,22n+1} based on new Chinese Remainder Theorem.
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 50:1296–1303, 2003.

[2] B. Cao, T. Srikantham, and C. H. Chang. Efficient reverse converters for four-
moduli sets {2n− 1,2n,2n + 1,2n+1− 1} and {2n− 1,2n,2n + 1,2n−1− 1}. IEE
Proc. Comput. Digit. Tech., 152:687–696, 2005.

[3] R. Chaves and L. Sousa. {2n−1,2n+k,2n +1}: A New RNS Moduli Set Exten-
sion. In Proc. DSD, pages 210–217, 2004.

[4] R. Chokshi, K.S. Berezowski, A. Shrivatsava, and S.J. Piestrak. Exploiting
residue number system for power-efficient digital signal processing in embedded
processors. In Proc. International Conference on Compilers, Architecture, and
Synthesis for Embedded systems, pages 19–27, 2009.

[5] M. Re G.C. Cardarilli; A. Del Re; A. Nannarelli. Low Power and Low Leakage
Implementation of RNS FIR Filters . In Thirty-Ninth Asilomar Conference on
Signals, Systems and Computers, pages 1620–1624, 2005.

[6] A. Hiasat and H. S. Abdel-Aty-Zohdy. Residue-to-binary arithmetic converter for
the moduli set (2k,2k− 1,2k−1− 1). IEEE Trans. Circuits Syst. II, 45:204–208,
1998.

[7] A. Hosangadi; F. Fallah; R. Kastner. Simultaneous optimization of delay and
number of operations in multiplierless implementation of linear systems . In Proc.
Int. Workshop Logic Synthesis, 2005.

[8] P.V.Ananda Mohan and A.B. Premkumar. RNS-to-Binary Converters for Two
Four-Moduli sets {2n−1,2n,2n +1,2n+1−1} and {2n−1,2n,2n +1,2n+1 +1}.
IEEE Trans. Circuits Syst. I, 54(6):1245–1254, 2006.

[9] A.S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, and S. Timarchi. Efficient
Reverse Converter Designs for the New 4-Moduli Sets {2n−1,2n,2n+1,22n+1−
1} and {2n− 1,2n + 1,22n,22n + 1} Based on New CRTs. IEEE Trans. Circuits
Syst. I, 57:823–835, 2010.

[10] Alberto Nannarellli, Macro Re, and Gian Carlo Cardaralli. Tradeoffs Between
Residue Number System and Traditional FIR Filters. In International Symposium
on Circuits and Systems, pages II305–II308, 2001.

64

[11] S.J. Piestrak. Design of residue generators and multioperand modulo adders using
carry-save adders. IEEE Trans. Computers, 43:68–77, 1994.

[12] F. Pourbigharaz and H. M. Yassine. A signed-digit architecture for residue to
binary transformation. IEEE Trans. Comput, 46:1146–1150, 1997.

[13] A. B. Premkumar, E.L. Ang, and E. M.-K. Lai. A formal framework for conver-
sion from binary to residue numbers. IEEE Trans. Circuits Syst. II:Analog and
Digital Signal Processing, 49:135–144, 2002.

[14] A. B. Premkumar, E.L. Ang, and E. M.-K. Lai. Improved Memoryless RNS
Forward Converter Based on the Periodicity of Residues. IEEE Trans. Circuits
Syst. II, 53:133–137, 2006.

[15] B. Premkumar. An RNS to binary converter in 2n + 1; 2n; 2n 1 moduli set. IEEE
Trans. Circuits Syst. II, 39:480–482, 1992.

[16] X.Yao G.Chalivendra S. Patel S. Leshner, K.Berezowski and S.Vrudhula. A low
power, high performance threshold logic-based standard cell multiplier in 65nm
CMOS. In IEEE Symposium on VLSI (ISVLSI) 2010, 2010.

[17] Ming-Hwa Sheu, Su-Hon Lin, Yung-Tai Chen, and Yu-Chun Chang. High-Speed
and Reduced-Area RNS Forward Converter Based on (2n−1,2n,2n+1). In Proc.
APCCS, pages 821–824, 2004.

[18] M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, and F.J. Taylor. Residue Num-
ber System Arithmetic: Modern Applications in Digital Signal Processing. IEEE
Press, Newyork, 1986.

[19] N Stamenkovi. Digital fir filter architecture based on the residue number system.
Facta Universitatis - series : Architecture and Civil Engineering, 22:125, 2009.

[20] W. Wang, M. N. S. Swamy, M. O. Ahmad, and Y. Wang. A parallel residue-to-
binary converter. In IEEE Inte. Conf. Acoustics, Speech, and Signal Processing,
1999.

[21] Wei Wang, M.N.S Swamy, and M.O. Ahmad. Moduli Selection in RNS for Effi-
cient VLSI Implementation. In International Symposium on Circuits and Systems,
pages IV–512–IV–515, 2003.

65

[22] Yuke Wang. Residue-to-Binary converters based on new Chinese remainder
theourems. IEEE Trans. Circuits Syst. II:Analog and Digital Signal Processing,
47:197–205, 2000.

[23] R. Zimmermann. Efficient VLSI Implementation of Modulo (2n + 1) Addition
and Multiplication. In Proc. ISCA, pages 158–167, 1999.

66

