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ABSTRACT 

Item response theory (IRT) and related latent variable models represent modern 

psychometric theory, the successor to classical test theory in psychological 

assessment. While IRT has become prevalent in the assessment of ability and 

achievement, it has not been widely embraced by clinical psychologists. This 

appears due, in part, to psychometrists' use of unidimensional models despite 

evidence that psychiatric disorders are inherently multidimensional. The construct 

validity of unidimensional and multidimensional latent variable models was 

compared to evaluate the utility of modern psychometric theory in clinical 

assessment. Archival data consisting of 688 outpatients’ presenting concerns, 

psychiatric diagnoses, and item level responses to the Brief Symptom Inventory 

(BSI) were extracted from files at a university mental health clinic. Confirmatory 

factor analyses revealed that models with oblique factors and/or item cross-

loadings better represented the internal structure of the BSI in comparison to a 

strictly unidimensional model. The models were generally equivalent in their 

ability to account for variance in criterion-related validity variables; however, 

bifactor models demonstrated superior validity in differentiating between mood 

and anxiety disorder diagnoses. Multidimensional IRT analyses showed that the 

orthogonal bifactor model partitioned distinct, clinically relevant sources of item 

variance. Similar results were also achieved through multivariate prediction with 

an oblique simple structure model. Receiver operating characteristic curves  

confirmed improved sensitivity and specificity through multidimensional models 
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of psychopathology. Clinical researchers are encouraged to consider these and 

other comprehensive models of psychological distress. 
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Chapter 1 

Modern Psychometric Theory Improve in Clinical Assessment 

Overview 

Among the world’s least understood and ill-defined topics of study, the 

human psyche holds an eminent rank. While there has been no shortage of 

imaginative theories to explain human thought, behavior, and emotion, 

scientifically based definitions and quantifications of inherently subjective mental 

states have been less common. In an effort to lay the foundations for accurate 

assessment and effective treatment of psychiatric disorders, researchers have 

turned to empirical, mathematically-based theories of mental health. Under the 

banner of psychometrics, a movement to refine the art and science of 

psychological measurement has been underway for more than a century. One 

particular branch of this movement, item response theory (IRT), has 

revolutionized the theory behind measurement of ability and achievement (see 

Embretson & Hershberger, 1999; Embretson & Reise, 2000) and significantly 

impacted the development of commonly administered tests (e.g., McGrew & 

Woodcock, 2001). 

Curiously, psychologists interested in clinical domains have been slow to 

embrace modern psychometrics. Some assert that psychiatric disorders are simply 

too complex to be captured by quantitative measurement models based on 

reduced components (e.g., Fava, Ruini, & Rafanelli, 2004; Gordon, 2006). 

Unfortunately, little overt evidence has emerged to assuage these concerns. 

Despite great advancements in psychometric theory, clear demonstrations of 
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diagnostic benefits have been slow to come. The purpose of this project is to 

explore modern psychometric theory’s impact on test validity in the realm of 

clinical assessment. First, IRT is explained in comparison and in contrast to 

related theories of measurement. Second, applications of IRT in clinical 

assessment are reviewed. Third, an analysis of clinically relevant data is 

conducted in an attempt to elucidate the value of modern psychometric theory in 

the diagnosis and conceptualization of psychiatric disorders. 

The Evolution of Measurement 

 Psychometric models specify systems of mathematical relations between 

observed and unobserved variables. They should not be viewed as alternatives to 

semantic accounts of psychological phenomena. Instead, such models serve to 

open scientific hypotheses to empirical examination. In the spirit of Karl Popper’s 

(1964) promotion of risky predictions, mathematical models force researchers to 

test specific hypotheses. The empirical nature of scientific methodology 

invariably leads fields of study towards research focused on model development 

and evaluation. Refinement of psychological measurement through the use of 

comprehensive models ought to result in better science. In physics, for example, 

the laws of thermodynamics predict how changes in temperature, pressure, and 

volume will affect a physical system. Models are used to predict the consequences 

of changing one variable (e.g., temperature) on another variable in the system 

(e.g., pressure). The discovery of such comprehensive models is the objective of 
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many psychologists (as conveyed by the well-known colloquial term ―physics 

envy‖). 

 The attempt to characterize psychological events with mathematical 

models is by no means a modern endeavor. Cognitive psychologists have made 

such attempts since the inception of the discipline—consider the well-known 

Weber–Fechner law first described in the 1800s. Nevertheless, there has long 

remained a degree of reluctance towards modeling psychological constructs void 

of physical anchors (i.e., hypothetical variables without physical antecedents or 

consequences). Wilhelm Wundt, commonly regarded as the founder of 

experimental psychology, felt that advanced mental processes were too complex 

to be studied experimentally (Hergenhahn, 2001). In the United States, William 

James’s pragmatic approach towards psychology, along with the radical 

behaviorists’ movement of the early 20
th

 century, further entrenched this skeptical 

view of assessing cognition.  

 Louis Thurstone’s pioneering series of publications in the 1920s were 

among the first empirical attempts to measure complex thought (for a review see 

Thurstone, 1959). Thurstone (1928) took his law of comparative judgment—

based on the work of Weber and Fechner—and adapted it to create an equidistant 

interval scale of measurement for attitudes (called the Thurstone scale). In 1904 

Charles Spearman wrote two seminal papers that led to the development of 

common factor theory (further developed by Thurstone) and classical test theory 

(CTT), the 20
th

 century’s dominant model in psychological measurement 
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(Spearman, 1904a, 1904b). Both theories assume that traits or characteristics of an 

individual’s psyche can be meaningfully quantified—psychometrics. Well-known 

extensions of CTT provided by Guttman (1945) and Cronbach (1951), among 

others, allowed for widespread standards in the measurement of individual 

differences. Cronbach, Gleser, Nanda, and Rajaratnam (1972) later generalized 

the concepts of CTT in what came to be known as generalizability or G theory, a 

rich statistical framework for investigations of reliability. 

 CTT, as traditionally defined, appears to have reached a peak in 

conceptual and mathematical development during the mid 20
th

 century (e.g., 

Gulliksen, 1950). And, as is natural in the progression of any science, an 

emergent class of measurement models including common factor theory, IRT, and 

latent class analysis among others came to be known as more powerful branches 

of psychometric theory. Oddly, while many psychologists followed the 

development of common factor theory, they failed to embrace the development of 

IRT, creating an artificial split between the two theories. The divide seems 

artificial because there is no obvious reason why CTT, common factor theory, and 

IRT should remain separate; CTT, for example, is simply a less explicit model 

nested within the common factor theory or IRT framework (McDonald, 1999). 

Indeed, Lord and Novick (1968) introduced IRT in connection with CTT, not as a 

distinct theory. McDonald (1999) argued that all branches of psychometric theory 

are mathematically and conceptually unified: a difficult fact to escape once the 

formulas are examined in detail.  
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 CTT, also sometimes referred to as classical true-score theory, postulates 

that an examinee’s observed score (X) on a test or measure of any psychological 

construct is determined by his or her true score (T) measured with some amount 

of error (E):  

     ETX  .         (1) 

An examinee’s true score is commonly thought of as their expected score on an 

item or sum of items (i.e., the test). The CTT model has been described as being 

necessarily true rather than theoretical or falsifiable (Lord & Novick, 1968). That 

is, Equation 1 is difficult to disprove. While necessarily true models are 

superficially attractive, philosophical tenets suggest that they are ―weak‖ from a 

scientific perspective (Popper, 1964). To examine the meaningful qualities of a 

test (e.g., measurement error) a number of basic assumptions must be added to the 

model. Most importantly, it must be assumed that error scores are independent of 

true scores (i.e., 0TEr ) and that error scores among items are independent (i.e.,

0EEr ). Assumptions must also be made about the nature of true scores (i.e., 

strictly parallel, parallel, tau-equivalent, or congeneric), but are rarely verified in 

practice. No direct relation between the psychological construct being assessed 

(e.g., depression) and a person’s true score is postulated in the model. While 

relevant qualitative explanations are commonly offered for the meaning of a true 

score, the model itself remains ambiguous in this regard.  

 Some have argued that a potentially dangerous belief has emerged in 

which statistical analyses based on CTT are thought to equate with mathematical 
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modeling (Thurstone, 1959, pp. 9). The two should not be confused. Statistical 

analyses are used to describe samples, infer population parameters, and test 

hypotheses. Accordingly, a reliability coefficient derived from the CTT model is a 

descriptive statistic. A mathematical theory is more than a tool to describe 

samples or to confirm hypotheses: it is a hypothesis within itself. Theories 

comprise rules and predictions to which observations should conform. Modern 

psychometric models can be used to test distinct hypotheses about the relations 

between psychological constructs and item responses, which may or may not be 

validated with inferential statistics. CTT makes very restrictive hypothesis about 

these relations, ultimately limiting the practical utility of clinical tests when the 

model is incorrect. 

Perhaps this traditional lack of concern with measurement models is due 

primarily to psychologists’ principal interest in patients, not tests. Diagnoses of 

psychopathology are meant to aid in treatment. Thus, clinicians’ interests in tests 

are more practical than abstract. Nevertheless, there is a fundamental error in the 

CTT model that threatens to invalidate the utility of clinical tests’ parameters (i.e., 

the structural relations between variables in a model): test parameters are 

confounded with person parameters―the two cannot be separated. In such 

situations, psychologists can only make judgments about examinees and tests 

relative to each other. Theorists have long acknowledged that something akin to a 

―psychometric grail‖ exists in the development and understanding of 

measurement instruments independent of the object(s) of measurement 
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(Thurstone, 1928; Wright, 1980). A proper model ought to incorporate separable 

parameters for both person and test parameters. Clear definitions and 

quantifications of psychological constructs can emerge only through such models. 

 The great importance of IRT can be attributed to the development of a 

class of models where person parameters and item parameters can be separated 

(Lord & Novick, 1968; Rasch, 1960). This separation has two immediate benefits: 

(1) item and test parameters can be estimated independent of person parameters; 

and (2) person parameters can be estimated independent of item and test 

parameters. IRT dissects the various components of a testing system, allowing 

psychometricians to study tests without the nuisance of individual differences, 

and clinicians to study people without the nuisance of test idiosyncrasies. Any 

system is better understood when all relevant variables are accounted for. Indeed, 

Georg Rasch (1960), a pioneer of IRT, developed his model by aspiring to mimic 

the explicit measurement of mass and force in a physical system (Rasch, 1960, pp. 

115). Unlike CTT, a collection of models makes up the IRT family; each is 

characterized by increasingly comprehensive ―systems‖ of measurement. 

 The humble, and yet remarkably complex goal of IRT, is to provide 

models that directly quantify psychological phenomena. As the physicist 

measures mass and force, so to might the psychologist assign concrete value to 

the otherwise intangible qualities of the mind—the very structure of thought. This 

is no simple task, and we should expect no simple solution. If nothing else, IRT is 

complex. Fortunately, there is an intuitive elegance to the models that allows for 
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conceptual understanding without extensive knowledge of the underlying 

mathematics. 

IRT Explained 

 Contrary to popular belief, IRT models and their foundations have existed 

for some time. The models gained prominence with the work of Lawley (1943; as 

cited by Lord & Novick, 1968), Lord (1952; 1953), Birnbaum (1968), and Rasch 

(1960), but their roots can be traced as far back as the phi-gamma law—a model 

for the ability to discriminate between physical stimuli based on the integral of the 

normal distribution—and the logistic function (Verhulst, 1845) developed in the 

19
th

 century. Item analyses of Binet and Simon’s (1905) test of children’s mental 

development reveal obvious precursors to IRT (see Bock, 1997). And, inspired by 

what he saw in Binet and Simon’s data, Thurstone (1928) used the normal ogive 

curve—a standard model in IRT—to develop his law of comparative judgments 

for the measurement of attitude. Guttman (1944) and Coombs (1964) proposed 

methods for scaling data that can be characterized as deterministic (as opposed to 

probabilistic) IRT models. The study of biological assays in the first half of the 

20
th

 century led to the development of probit analysis and the logistic function as 

an alternative to the normal ogive model (Finney, 1952; Fisher & Yates, 1938; 

Hanley, 1952 as cited in Lord & Novick, 1968). But it was not until the 1970s and 

80s that IRT began to flourish with the advent of accessible computers and the 

development of equations with practical applications for scoring data (Bock, 

1997).  
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 IRT models tend to be stochastic (or at least partially stochastic); that is, 

examinees’ responses (e.g., ―True‖ vs. ―False‖) are assumed to be probabilistic. 

Also, IRT often models the existence of latent variables, constructs that cannot be 

directly measured, yet are inferred to exist based on peripheral associations 

among measurable qualities. For example, while eye color is observable, 

intelligence is not. There is no direct path to measuring intelligence. Instead, the 

―amount‖ of intelligence a person possesses is inferred from observed 

intercorrelated variables (e.g., academic success, processing speed, word 

knowledge, etc.). The concept of a latent variable is well established in the minds 

of many psychologists, as the common factor model (but not the principal 

components model) also assumes the existence of latent variables. In IRT, latent 

variables are symbolized with the Greek letter θ (―theta‖), which can represent 

any psychological construct under investigation (e.g., depression, intelligence, 

conscientiousness, etc.). It is normally assumed in IRT that a test measures only 

one θ (i.e., unidimensionality); however, extensions of IRT to multidimensional 

data exist. Fundamentally, it must be assumed that local independence can be 

achieved. That is, after removing all common sources of item covariance (i.e., all 

latent variables), pairs or patterns of items must demonstrate no remaining 

correlation (weak and strong local independence respectively). IRT models have 

historically been applied to dichotomous response items (e.g., pass vs. fail), but 

applications to polytomous data have become common.  
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 IRT models rest on the assumption that the probability of an examinee 

passing an item (where ―passing‖ may refer to responding correctly or 

affirmatively) is a function of two sets of parameters: (1) their standing on θ, the 

person parameter; and (2) the characteristics of the item, the item parameters. The 

conditional probability of a particular response (e.g., X = 1; where 1 = ―True‖) is a 

function of a person parameter (θ) and a set of item parameters (ξ; the Greek letter 

―ksi‖): 

    ),(),1(  fXP  .            (2) 

This conditional probability is fundamental to all IRT models. In essence, the 

function is the regression of the probability of an item response [ )1( XP ] on the 

person and item parameters (θ, ξ). It is a logical proposition for how variables in a 

system affect one another. Unfortunately, the relation is not linear, and thus it is 

not possible to employ the typical linear regression form. Fortunately, the relation 

does tend to take a lesser-known form, the normal ogive (the integral or 

summation of the normal curve). The relation is also well represented by the 

logistic ogive, an ―S‖-shaped function known for modeling the exponential rate of 

natural growth followed by saturation. It is somewhat intuitive that both functions 

would closely model the probability of success as each is inherently related to the 

mathematical constant ―e‖ (i.e., Euler’s number), sometimes referred to as ―the 

magic number of growth‖. 

An example of a logistic ogive is presented in Figure 1. The x-axis 

represents a normally distributed latent variable (e.g., depression) with μ = 0, and 
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σ = 1; however, it should be noted that non-normal as well as non-parametric data 

can be accommodated within the IRT framework. The y-axis represents the 

probability of a particular response (e.g., ―True‖), which can range from zero to 

one. Figure 1 is called an item characteristic curve (ICC), a graph of the 

probability of passing an item conditional on the continuum of latent variable 

values or θ. In Figure 1, an individual with a θ score of 0 would have a .50 

probability of answering the item affirmatively, while a person with a θ score of 3 

would have a .99 probability of answering the item affirmatively. Almost all IRT 

models ―link‖ the probability of an item response with person and item 

parameters using a normal or logistic ogive. The choice between the two concerns 

a disparity in scaling; models can be scaled in either logistic or normal metric. 

Including a multiplicative constant to the logistic model produces results nearly 

identically to the normal ogive model (Haberman, 1974). The normal ogive model 

is more intuitive, but the logistic model is easier to work with mathematically as 

the latter does not require integration. Therefore, most presentations of IRT are 

confined to logistic IRT models. The exact shape of the logistic functions (and the 

normal ogives) will vary depending upon the item parameters.  

Explanations of IRT are most easily understood for unidimensional scales 

with dichotomous items. The three most common are the Rasch or one-parameter 

model, the two-parameter model, and the three-parameter model. Each successive 

model estimates more parameters and can be considered a more accurate 

representation of the data. However, identification of the models and 
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interpretation of their results becomes increasingly complex as parameters are 

added. The three primary item parameters estimated in IRT models are item 

difficulty, item discrimination, and item lower asymptote (pseudo-guessing). 

More generally, the item parameters from IRT are directly related to item 

parameters from factor analysis with categorical variables. The models were 

developed in relative isolation, and hence take on superficially distinct forms (see 

Heinen [1996] for an overview of the relations between latent trait models); 

however, the equivalence of some IRT models and factor analysis with 

categorical variables has been demonstrated (Kamata & Bauer, 2008; Takane & 

de Leeuw, 1987). The decision to analyze data with the common factor model or 

the IRT model is a bit arbitrary. The decision will ultimately be made by the 

purpose of the analysis. IRT provides very clear parameterizations of item 

characteristics. Factor analysis provides factor loadings, parameters familiar to 

psychologists because of their direct relation to correlation coefficients, but less 

useful for item analysis. 

An item’s difficulty parameter (b) is the θ value along the latent variable 

continuum (i.e., the range of all possible θ values) at which an individual has a .50 

probability of passing that item (the parameter takes on a slightly different 

meaning for more complex models). Graphically, the difficulty parameter is the 

ICC’s point of inflection. For example, if an item has a difficulty parameter equal 

to 0 (as in Figure 1), examinees whose latent variable values fall above 0 have 

greater than a .50 probability of passing the item, while examinees whose latent 
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variable values fall below 0 have less than a .50 probability of passing the item. In 

the study of psychophysics this parameter is known as the threshold or limen and 

in biological assay research it is known as the median lethal dose. In 

psychological research, the latent trait distribution is often assumed to take the 

form of a normal distribution, and thus b is unbounded (i.e.,  b ). In 

relation to factor analysis, the item difficulty parameter (b) is a function of an 

item’s threshold (ν; the Greek letter ―nu‖) and an item’s standardized loading (λ; 

the Greek letter ―lambda‖):  

                                                



b .                                                       (3) 

An item’s discrimination parameter (a) is related to the slope of its ICC at 

its difficulty value (the ICC’s point of inflection). Items with higher 

discrimination values are more discriminating between distinct levels of θ. The 

discrimination parameter is also bound by infinity, but it normally takes on an 

absolute value of less than 4. (We typically limit our discussion to the odds of 

passing an item, and thus a will generally be positive). In relation to factor 

analysis, the item discrimination parameter is a function of an item’s standardized 

loading (λ): 

     
21 




a .                                             (4) 

Thus, the discrimination parameter is both conceptually and mathematically 

related to a factor loading.  
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Finally, the lower asymptote parameter (c), also known as the pseudo-

guessing parameter, is so named to account for the fact that with some types of 

response formats (e.g., multiple choice tests), examinees can pass items simply by 

guessing. The pseudo-guessing parameter might also be thought of as the 

probability of an examinee passing an item when they are void of the latent trait 

(i.e., when θ = - ∞). It is referred to as ―pseudo-guessing‖ because examinees 

rarely guess based on odds alone. For example, examinees that are distracted by 

an attractive incorrect response option could do worse than chance. On clinical or 

personality tests, the pseudo-guessing parameter has occasional been thought of 

as indicative of a response style (e.g., social desirability, true response bias, etc.). 

In bioassay toxicology research, the c parameter functions as an estimate of 

natural mortality. The lower asymptote parameter does not have an equivalent 

parameter in factor analysis. 

 Before IRT models and application of those models are presented, it is 

useful to discuss the language of IRT, which has long been the domain of those 

who study ability and achievement. Such literature has often served as the driving 

force for advancements in psychometric theory. This is true even with CTT, 

where researchers and test developers studying personality and mental health 

domains have mimicked test development methods from the measurement of 

ability and achievement (e.g., Jackson, 1976). A similar adaptation of IRT is 

driving the current revolution in psychometric theory. Unfortunately, this means 

that much of the IRT language is uniquely suited to the assessment of ability and 
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achievement. For example, item responses are commonly noted as passes or 

failures, latent variables are often referred to as abilities, and the lower asymptote 

parameter is considered to be a guessing parameter. It should be realized, 

however, that such terms are simply labels used to describe mathematical 

variables in the model. Latent ―abilities‖ can be thought of as latent ―traits‖, 

―factors‖, or any other general variable, ―passing‖ an item can be thought of as 

―affirming‖ or ―endorsing‖ an item, and item ―difficulty‖ can be thought of as 

―severity‖ (e.g., the severity of depression required to endorse the item, ―I’ve 

often thought of ending my own life.‖). 

IRT Models  

 The Rasch model. Georg Rasch, a Danish mathematician who took a 

special interest in statistics and measurement in cognitive testing, developed his 

model—known as the Rasch model—in an effort to achieve objective 

measurement in the social sciences (Rasch, 1960). Specifically, Rasch was 

concerned with the relativistic nature of psychological measurement. He felt that 

measures of psychological variables ought to behave like measures of physical 

variables (e.g., using a ruler to measure height has the same meaning whether we 

are measuring an elephant or a pencil). Rasch named this property of 

measurement specific objectivity: interpretation of measurement units independent 

of the object of measurement. Such objectivity was only achievable with a model 

that estimated person parameters and item parameters independently, an IRT 

model. Rasch (1960, p. 19) used Poisson process models to demonstrate how if 
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certain conditions are met, and person parameters are known (or are sufficiently 

estimated), test parameters can be estimated with specific objectivity.  

 In the Rasch model, item difficulty is estimated separately for each item. 

Thus, a test may contain any combination of low, medium, and high difficulty 

items. However, the Rasch model demands that all items in a test have the same 

discrimination value. Each must be equally related to the latent variable (this is 

required in order to produce a sufficient statistic for estimating person 

parameters). This implies that all items must have equivalent factor loadings and 

biserial correlations. The Rasch model is also sometimes referred to as the one-

parameter model, as only item difficulty is allowed to vary. This is apparent in the 

formula, where the probability of a person passing an item is conditional only on 

their ability (θ) and the item’s difficulty (b): 
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The form e
x
/1+ e

x
 is the logistic link function mentioned earlier (used in non-

linear regression), and can largely be ignored. Instead, the reader should instead 

focus on the θ - b term in parentheses. This part of the equation conveys that 

whether or not a person endorses an item is a function of the difference between 

the item’s difficulty and the person’s ability. The ICCs for three hypothetical test 

items that fit a Rasch model are displayed in Figure 2. The ICCs for each item 

take on identical S-shaped logistic functions, which reflect the fact that each has 

the same item discrimination value (equal slopes); however, the items are 

separated along the x-axis. Specifically, each of the three items has a unique 



17 

 

difficulty value (i.e., the point at which the probability of passing each item is 

.50). Item 1 has a low difficulty value, Item 2 has a medium difficulty value, and 

Item 3 has a high difficulty value.  

 Creating a test composed of items with identical discrimination values is 

not a simple task. Despite this, the Rasch model has enjoyed great popularity. To 

understand why, one very important feature of a Rasch model must be noted: the 

total number of items an examinee answers correctly is a sufficient statistic for 

knowledge of the θ distribution. This means that latent trait estimates are neither 

person nor item specific. Thus, a test fitting the Rasch model exhibits a strict form 

of specific objectivity that cannot be accomplished with other IRT models. Some 

argue that only items that the fit a Rasch model should be selected for tests 

because of the benefits the model provides (e.g., Wright, 1992). A 

counterargument is offered that forcing test items to conform to the Rasch model 

limits a test’s validity (e.g., Hambleton, 1992). The argument has taken on 

somewhat of a philosophical tone, and cannot likely be resolved through 

empirical means.   

 Rasch models enjoy great popularity in Europe, and have seen moderate 

use in the United States. They have been fit to measures and diagnostic criteria for 

anxiety (e.g., Ludlow & Guida, 1991), compulsive smoking (Breteler, Hilberink, 

Zeeman, & Lammers, 2004), depression (e.g., Bouman & Kok, 1987; Chambon, 

Cialdella, Kiss, & Poncet, 1990; Chang, 1996; Cole, Rabin, Smith, & Kaufman, 

2004; Maier & Philipp, 1986), general psychopathology (Olsen, Mortensen, & 
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Bech, 2004), health (Andrich & Van Schoubroeck, 1989), pain (Kalinowski, 

1985), paranoia (e.g., Kreiner, Simonsen, & Mogensen, 1990), schizophrenia 

(e.g., Bell, Low, Jackson, & Dudgeon, 1994; Lewine, Fogg, & Meltzer, 1983), 

and self esteem (e.g., McRae, 1991). The model has even been applied to a 

projective test (Tuerlinckx, De Boeck, & Lens, 2002). However, because the 

Rasch model demands identical item discrimination parameters, it often fails to fit 

scales developed with CTT technology (e.g., Tenenbaum, Furst, & Weingarten, 

1985).  

 The two-parameter model. The two-parameter model is a more general 

case of the Rasch model. It is often estimated using the logistic function, and thus 

is usually referred to as the two-parameter logistic (2PL) model. As with the 

Rasch model, item difficulty is estimated separately for each item. However, the 

2PL model estimates unique item discrimination parameters. Thus, two or more 

items may have different or identical difficulty values and different or identical 

discrimination values. This is apparent in the formula, where the probability of a 

person passing an item is conditional on their ability (θ), the item’s difficulty (b), 

and the item’s discrimination (a): 
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The 2PL model is also based on the difference between the item’s difficulty and 

the person’s ability, but the impact of the difference is weighted by item 

discrimination parameters (i.e., not all items are equally relevant to the construct). 

The ICCs for three hypothetical test items that fit a 2PL model are displayed in 
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Figure 3. As can be seen, the ICCs for each item take on non-identical S-shaped 

logistic functions. The differences in the shapes of the ICCs reflect varying item 

discrimination values. The steeper curves of items 1 and 3 reflect higher 

discrimination values. The flatter curve of item 2 reflects a lower discrimination 

value. As with the Rasch model, the ICC’s may vary along the x-axis as each 

item’s difficulty parameter is estimated separately. In general, higher 

discrimination parameters equate with more accurate assessment at an individual 

item’s difficulty value. 

 Some curious situations can arise with the 2PL model. In particular, the 

item ICCs can cross along the latent variable continuum. Crossed ICCs indicate 

that the ordering of local item difficulty is dependent on the θ distribution. In 

Figure 2, item 2 has the highest probability of endorsement for a person with a θ 

value of -4, but has the lowest probability of endorsement for a person with a θ 

value of +4. This occurrence seems rather illogical for those who have not 

examined the 2PL model’s formula in great detail. Yet these results are 

reasonable from a measurement perspective. The relation between an item with a 

low discrimination value and θ is more ambiguous than the relation between an 

item with a high discrimination value and θ. Items with low discrimination 

parameters may be passed or failed for a variety of reasons unrelated to θ (e.g., 

another, unaccounted for, latent trait). Thus, passing an item with a high 

discrimination parameter tells us more about a person’s standing on θ than does 

passing an item with a low discrimination parameter.  
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 Interpretations of the 2PL model are more ambiguous than interpretations 

of the Rasch model. Namely, total scores are not sufficient statistics in the 2PL 

model due to varying discrimination parameters. In order to estimate a person’s θ 

value, we must have knowledge of the specific items answered correctly or 

incorrectly so that they can be weighted by a. Therefore, item parameters cannot 

be estimated in accordance with Rasch’s strict concept of specific objectivity. The 

2PL model does have the distinct advantage of being much more flexible than the 

Rasch model. Fitting a 2PL model to data allows researchers to accept items that 

vary in difficulty and discrimination. Thus, not only is it easier to create tests 

based on the 2PL model, it is also easier to fit a 2PL model to existing tests. 

Because of such flexibility, the 2PL model is more congruent with existing 

clinical measures than is the Rasch model. It has been fit to measures and 

diagnostic criteria for adult attachment (e.g., Fraley, Waller, & Brennan, 2000), 

anxiety (Ietsugu, Sukigara, & Furukawa, 2007; Rodebaugh et al., 2004), 

children’s moods and feelings (Sharp, Goodyer, & Croudace, 2006), depression 

(e.g., Childs, Dahlstrom, Kemp, & Panter, 2000; Clark, Cavanaugh, & Gibbons, 

1983; Dorus, Kennedy, Gibbons, & Ravi, 1987; Gibbons, Clarke, VonAmmon 

Cavanaugh, & Davis, 1985), personality (e.g., Ferrando, 1994; Grayson, 1986; 

Haans, Kaiser, & de Kort, 2007; Kamakura & Balasubramanian, 1989; Waller, 

Thompson, & Wenk, 2000), job satisfaction (e.g., Hulin, Drasgow, & Komocar, 

1982; Parsons & Hulin, 1982), job selection (e.g., Raju, Steinhaus, Edwards, & 

DeLessio, 1991), modernity (e.g., Hui, Drasgow, & Chang, 1983), psychopathy 
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(e.g., Cooke & Michie, 1997; Cooke & Michie, 1999), sexual harassment (e.g., 

Donovan & Drasgow, 1999), stress (e.g., Smith & Reise, 1998), and substance 

use (Martin, Chung, Kirisci, & Langenbucher, 2006; Saha, Chou, & Grant, 2006). 

 The three-parameter model. The three-parameter model is a more 

general case of the 2PL model. As with the 2PL model, the three-parameter model 

is often estimated using the logistic function, and thus is typically referred to as 

the three-parameter logistic (3PL) model. The model adds the lower asymptote or 

pseudo-guessing parameter, which can be set to a constant or freely estimated for 

each item. As mentioned earlier in this paper, the pseudo-guessing parameter 

accounts for potential guessing or response bias. In the formula for the 3PL 

model, the probability of passing an item is conditional on θ, b, a, and c: 
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The ICCs for three hypothetical test items that fit a 3PL are displayed in Figure 4. 

As with the 2PL, the ICCs for each item take on non-identical S-shaped logistic 

functions. Also, as with the Rasch model and the 2PL model, the ICCs are 

separated along the x-axis as each item’s difficulty parameter is estimated 

separately. Unlike the Rasch and 2PL models, the additional pseudo-guessing 

parameter (c) creates a non-zero lower asymptote for some ICCs. Specifically, 

item 3 has a non-zero lower asymptote. 

 While the 3PL model is more general than both the Rasch model and the 

2PL model, it also adds mathematical complexity that makes item parameters 

more difficult to estimate. In addition, item parameters in the model have a more 
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ambiguous meaning. The difficulty parameter in the 3PL model no longer has the 

same interpretation as it did with the Rasch and 2PL models (specifically, the 

inflection point of the ICC will be greater than a .50 probability of passing an item 

for c > 0).   

 The 3PL model has only rarely been applied to clinical assessment (e.g., 

Harvey & Murry, 1994; Rouse, Finger, & Butcher 1999). Conceptualizing the 

impact of ―pseudo-guessing‖ on items related to personality and psychopathology 

is difficult. Most applications of the lower asymptote to non-cognitive measures 

have occurred under the pretext of a social desirability parameter. For example, if 

examinees are unwilling to respond openly to an item about sexual practices, drug 

use, mental health, etc., that item could bias all examinees’ responses towards a 

more conservative response option. Note, however, that this strategy assumes 

uniform response bias among examinees. The logic would suggest that items, not 

examinees, are biased towards particular response options. Therefore, the strategy 

cannot be used to differentiate between examinees with different response styles, 

and serves only to uniformly alter the probability of all examinees’ responses. 

Rouse et al. fit a 3PL model to 5 scales from the second edition of the Minnesota 

Multiphasic Personality Inventory (MMPI-2; Butcher, Graham, Ben-Porath, 

Tellegen, Dahlstrom, & Kaemmer, 2001) designed specifically to identity 

personality disorders. The authors found a substantial correlation between 

estimates of c and indices of social desirability. 
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 Models for polytomous data. The Rasch (1PL), 2PL, and 3PL models are 

all designed to model the odds of dichotomous item responses (e.g., correct vs. 

incorrect, true vs. false, yes vs. no). In contrast, clinical tests often present 

examinees with multiple response options (e.g., a Likert-type scale). Fortunately, 

extensions of IRT to polytomous item response formats emerged soon after 

dichotomous IRT models. As with the models presented thus far, polytomous IRT 

models tend be hierarchically nested; each makes more assumptions than the 

previous. The nominal response model (Bock, 1972), and an extension that 

accounts for guessing (Thissen & Steinberg, 1984), are the most general, simply 

requiring nominal response options. Polytomous Rasch models include the rating 

scale model (RSM; Andrich, 1978a, 1978b) and the partial credit model (Masters, 

1982), special cases of the nominal response model that assume ordered 

categorical response options and invariant item discrimination parameters. The 

models estimate thresholds or step difficulties between response categories: the 

points at which examinees endorse, or ―step into‖, higher response categories. The 

rating scale model assumes equidistant intervals between item response 

categories; the partial credit model does not. More closely related to the 2PL 

model, the generalized partial credit model (Muraki, 1992) allows for varying 

discrimination parameters. 

The graded response model (Samejima, 1969, 1996) is the oldest and best-

known polytomous IRT model. In the formula, an examinee’s probability of 

scoring in each of the specific ordered categorical response options is a function 
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of the varying item threshold parameters (similar to item difficulty parameters but 

specific to each response option) and the varying item discrimination parameters. 

The model is unique in that it comes from the Thurstone tradition of comparative 

judgments (sometimes referred to as difference models) rather than the Likert 

tradition of dominance ratings (sometimes referred to as divide-by-total models; 

see Thissen & Steinberg, 1986). For example, the graded response model can be 

used to determine the boundaries at which examinees’ become more likely to 

endorse successive response categories on an item offering multiple response 

options (e.g., never, rarely, sometimes, or always). Figure 5 presents the category 

response curves for an item with four response categories. The lines represent the 

probability of an examinee with a given θ value endorsing a particular option. In 

the example, an examinee with a θ value of -2 is most likely to endorse the 

―Never‖ category, while an examinee with a θ value of +2 is most likely to 

endorse the ―Sometimes‖ category. Muraki (1990) developed a modification of 

the graded response model in which the distance between response categories is 

assumed to be constant within items, while the difficulty of each item (set of 

category responses) is estimated separately. Samejima (1969) demonstrates that 

the graded response model produces better estimates of θ values than do 

dichotomous IRT models. Indeed, existing tests can improve reliability by 

changing to polytomous response formats (e.g., Lanyon & Thomas, 2009). 

The graded response model has been applied to measures and diagnostic 

criteria for affect and emotion (e.g., Baker, Zevon, & Rounds, 1994), anxiety 
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(Rodebaugh et al., 2004; Rodebaugh, Woods, Heimberg, Liebowitz, & Schneier, 

2006), childhood behavior (Lambert et al., 2003), criminal behavior (e.g., 

Osgood, McMorris, & Potenza, 2002), depression (e.g., Orlando, Sherbourne, & 

Thissen, 2000), inattention and impulsivity (Gomez, 2008), job satisfaction (e.g., 

Hanisch, 1992), obsessive-compulsive disorder (Williams, Turkheimer, Schmidt, 

& Oltmanns, 2005), personality (e.g., Bejar, 1977), post-traumatic stress (e.g., 

Orlando & Marshall, 2002), quality of life (e.g., Uttaro & Lehman, 1999), and 

self-esteem (e.g., Gray-Little, Williams, & Hancock, 1997). 

 Models for multidimensional data. The IRT models discussed so far 

have all assumed that a single latent variable accounts for the observed 

interercorretlations among items (i.e., unidimensional scales), a limiting 

requirement. The need for multidimensional models in psychological assessment 

has long been recognized (e.g., Thurstone, 1947). Researchers and test developers 

who make incorrect assumptions of unidimensionality are either forced to remove 

misfitting items from tests, or carry through with analyses despite the violations. 

While doing so can be acceptable (i.e., when it does not drastically alter results), 

there are tests and items for which unidimensional models of latent variables 

simply do not accurately account for empirical data. For example, in clinical 

assessment it can be difficult to create a depression item that is not also related to 

anxiety. While multidimensionality has often been considered something of a 

nuisance, researchers have begun to model the unaccounted for variance in the 

development of more fine-tuned concepts of latent traits. Figure 6 presents the 
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item characteristic surface for an item that is dependent on two latent variables 

(θ1 and θ2). A multidimensional system requires more parameters. Thus, the 

estimation of such models is much more complex than with those discussed 

previously. 

Multidimensional Rasch models have been developed (e.g., McKinley & 

Reckase, 1982; Fischer & Seliger, 1997), but may be too restrictive for clinical 

tests. Extensions of the 2PL and 3PL models to a multidimensional framework are 

available for dichotomous items (see Reckase, 1997) and polytomous items 

(Kelderman, 1997). Several authors (Christoffersson, 1975; McDonald, 1967; 

Muthén, 1978) have developed multidimensional normal ogive models for 

dichotomous items by extending common factor theory. The common factor 

model can serve as an approximation of the normal ogive model through the 

analysis of tetrachoric or polychoric correlation matrices. These models are 

directly related to factor analysis—through the equivalencies discussed earlier—

greatly facilitating psychologists’ understanding of results. However, there are 

some computational difficulties associated with analyzing tetrachoric correlation 

matrices. As an alternative, researchers can use a normal ogive model for 

multidimensionality data known as full-information item factor analysis (see 

Bock, Gibbons, & Muraki, 1988), and its extension to polytomous data (Muraki & 

Carlson, 1995), as more sound procedures. Full-information refers to the direct 

analysis of item responses instead of item correlations. For researchers interested 

in understanding the underlying structure of measured constructs—the ―building 
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blocks‖ of psychiatric disorders—componential IRT models can be used to 

analyze the related components of item difficult along with the traits required for 

endorsement (e.g., the multicomponent latent trait model; Whitely, 1980; 

Embretson, 1984).  

 Hierarchical models are routinely employed in psychological research 

through the use of structural equation modeling (SEM; see Bollen, 1989), but are 

less pervasive in IRT. Gibbons and Hedeker’s (1992) bifactor IRT model, and an 

extension to polytomous data (Gibbons et al., 2007), are appropriate when 

examinees’ observed responses are a function of their standing on a pervasive 

general trait as well as a series of domain specific traits. Higher-order IRT models 

are appropriate when examinees’ observed responses are a function of several 

lower-order traits, which are themselves a function of higher-order traits (Sheng 

& Wikle, 2008). Figure 7 presents an example of a bifactor model and Figure 8 

presents an example of a higher-order model. The models are mathematically 

equivalent under certain conditions; the higher-order model can be thought of as a 

constrained bifactor model (Chen, West, & Sousa, 2006; McDonald, 1999). 

However, the bifactor model is generally preferred, particularly when researchers 

want to examine predictive relations between domain specific factors and external 

criteria (Chen et al., 2006). Both add complexity to parameter estimation and 

interpretation, but likely provide more accurate representations of data. Kamata 

(2001) demonstrates how the hierarchical generalized linear model provides an 

IRT framework for 2 or more higher-order levels, but work in this area has been 
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sparse. In educational domains, the researchers sometimes employ the testlets 

(Wainer & Kiely, 1987), in which locally dependent items are combined. The 

testlet model can also be thought of constrained versions of the bifactor model 

(DeMars, 2006). 

Researchers have generally found that multidimensional and hierarchical 

models improve measurement precision in comparison with unidimensional 

models for tests of personality and psychopathology (e.g., Cabrero-García & 

López-Pina, 2008; Cole, Rabin, Smith, & Kaufman, 2004; Gardner, Kelleher, & 

Pajer, 2002; Gibbons, Rush, & Immekus, 2009; Gibbons et al., 2008; Michie & 

Cooke, 2006; Wang, Chen, & Cheng, 2004; Yao & Boughton, 2007). Using 

simulated data, DeMars (2006) demonstrated how using an independent items 

model (unidimensional) to estimate data with a true bifactor structure can lead to 

inaccurate parameter estimates. In addition, such models offer clinicians a 

glimpse into the underlying structure of clinical disorders. For example, Smits and 

De Boeck (2003) used a componential IRT model to identify three components 

contributing to the psychological experience of guilt: norm violation, worrying 

about what one did, and a tendency to restitute. Such explicit mathematical 

modeling can be used to enrich clinical descriptions of patients’ symptoms. The 

bifactor model can also be used to determine if underlying multidimensionality 

meaningfully alters interpretations of scales (Parsons & Hulin, 1982; Reise, 

Morizot, & Hays, 2007). For example, some researchers have found that even 

when bifactor models fit data, the variance contributed by domain specific factors 
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is too small to dismiss a more parsimonious unidimensional framework (Brouwer, 

Meijer, Weekers, & Baneke 2008; Reise et al., 2007).   

 The ever-increasing list of multidimensional IRT models provides for 

sophisticated modeling of cognitive processes through mathematical equations 

(van der Linden & Hambleton, 1997). Such modeling is conceptually similar to, 

and at times mathematically equivalent with, SEM. Unfortunately, many of the 

models are simply too complex to be of practical use to clinical researchers. 

Nonetheless, the advancement and unification of various latent trait analyses 

promises to increase access to such models, perhaps one day making their use 

routine. 

 Other extensions of IRT models. IRT models for nonparametric data 

(Mokken, 1971), nonmonotone responses (Andrich, 1988), multiple groups 

(manifest, Mislevy, 1984; and latent, Rost, 1990), and locally dependent data 

(Jannarone, 1997) have all emerged. Many of these extensions pose formidable 

challenges to those wishing to use them (e.g., complex formulas, lack of 

accessible software for performing the analyses, and unknown proprieties of the 

models). Technological and theoretical advances must be made before the wide 

array of IRT models becomes accessible. Some researchers argue that such 

models provide better fit for clinical data, as non-parametric IRT models have 

been successfully fit to measures of psychopathology (Meijer & Baneke, 2004; 

Roberson-Nay, Strong, Nay, Beidel, & Turner, 2007) and personality (Stark, 

Chernyshenko, Drasgow, & Williams, 2006).  
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Comparing and Contrasting Applications of CTT and IRT 

 While it may be apparent that IRT comprises a class of models 

substantially more complex than CTT, it may not be clear what practical 

advantages these models provide. Lord and Novick (1968) detail how item 

parameters in the CTT model can be used to predict and/or alter the behavior of 

an entire measurement instrument. Wiggins’ (1973) treatment of personality 

assessment emphasizes the practical implications of CTT on test development and 

use. An example of the more sophisticated use of CTT comes from Jackson’s 

(1976) utilization of internal consistency procedures in the development of a 

personality inventory. And, an extension of the CTT model mentioned earlier, 

generalizability theory (see McDonald, 1999), has added even more sophistication 

to test development and evaluation.  

 CTT should not quickly be discounted in test development. Indeed, it has 

served psychologists well for over 100 years of test development (though it 

should be noted that the techniques have often been used in tandem with factor 

analysis). However, CTT and its extensions share the common flaw mentioned 

earlier: an inability to separate item and person parameters. The estimation of 

item difficulty, item discrimination, and test validity and reliability coefficients 

using CTT are all dependent on specific populations and specific tests. For 

example, an item on an intelligence test may be very difficult for a population of 

developmentally delayed children while simultaneously very easy for a 

population of developmentally advanced children. CTT gives us no way to 
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determine which difficulty estimate is ―correct‖. Typically, test developers have 

circumvented this problem by collecting normative data. And, in many 

circumstances (e.g., when test examinees are well matched with the normative 

data), the strategy has sufficed. But it can also be limiting. For example, the 

practice of comparing the scores of ethnic minorities to the scores of a normative 

sample primarily made up of the ethnic majority can be inaccurate and unethical. 

 In addition, several odd mathematical consequences are the results of, and 

ill-explained by, the CTT model. For example, when items are not passed at a rate 

of 50% in the calibration sample, item-test correlations are attenuated. This results 

in a practical advantage to choosing items of ―average‖ difficulty. In addition, 

researchers often find that tests with high item intercorrelations have poor 

predictive validity. Yet adding items to a test in order to increase validity will in 

turn lower reliability: the attenuation paradox (Lord & Novick, 1968, p. 344). 

While such occurrences are not paradoxical from a mathematical point of view, 

they certainly do not make intuitive sense. Most would expect that adding items to 

a test ought to add some useful information, or at worst, add no information at all 

(i.e., neither helpful nor harmful). These limitations arise because the CTT model 

proposes no explicit relation between observed scores and the underlying cause of 

those scores (i.e., the latent variable). It should again be noted that the CTT model 

can be viewed as a less explicit latent variable model. Guttman-Cronbach alpha, 

for example, is a lower bound estimate of the more explicit common factor 

model’s reliability coefficient ―omega‖ (ω ;McDonald, 1999). IRT allows for 
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more fine-grained evaluations of existing measures, which are related to, but far 

superior than CTT-based evaluations of existing measures. Notable examples are 

described below. 

Reliability, information, and standard error. The CTT-based concept 

of reliability and the IRT-based concept of information are both inversely related 

to standard error of measurement. Higher information equates with higher 

reliability, lower standard error, and more precise latent trait estimates. However, 

whereas the traditional CTT-based notion of reliability is assumed to be constant 

for all examinees (although a conditional standard error of measurement equation 

does exist), the IRT-based notion of information is assumed to differ between 

examinees. Specifically, information is a function of θ called the item information 

function. Item information functions peak at item difficulty parameters (e.g., an 

item with a b parameter equal to 1 will produce the most information for 

examinees with θ values equal to 1). Intuitively, most would suspect that asking a 

kindergartner to solve a calculus equation would provide very little information 

about the child’s achievement in mathematics; however, asking a college student 

to solve the same question could be more informative. Questions that are too hard 

or too easy for an examinee provide little information about their ability.  

The information of an entire measure is called the test information 

function. Unlike reliability, information is additive when local independence 

holds. An item’s absolute contribution to a test is not dependent on the group of 

items already contained in the test (Lord, 1980, p. 72). The test information 
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function is simply the sum of all item information functions. Figure 9 is an 

example of a test information function from a measure that is most accurate at the 

higher end of the θ distribution, and least accurate at the lower end. The measure 

is well suited for use in populations with high severity of a disorder, but ill-suited 

for use in populations with low severity. The standard error of measurement 

function, also displayed in Figure 9, is inversely related to the test information 

function. 

Information functions are used to evaluate the precision of existing items 

(e.g., Marshall, Orlando, Jaycox, Foy, & Belzberg, 2002) and scales (e.g., 

Flannery, Reise, & Widaman, 1995; Frazier, Naugle, & Haggerty, 2006). For 

example, researchers have evaluated test information functions to determine 

where existing clinical measures are most accurate. Young, Halper, Clark, and 

Scheftner (1992) evaluated the Beck Hopelessness Scale (Beck, Weissman, 

Lester, & Trexler, 1974) and concluded that the test makes the most accurate θ 

estimates for mid to high θ values. Consequently, the authors concluded that the 

scale is of little diagnostic use for individuals low on the construct of 

―Hopelessness‖. Researchers have found that the Diagnostic and Statistical 

Manual of Mental Disorders’ (DSM; see American Psychiatric Association, 2000) 

diagnostic criteria for substance dependence (Langenbucher et al., 2004), 

depression (Aggen, Neale, & Kendler; 2005), and borderline personality (Feske, 

Kirisci, Tarter, & Pilkonis, 2007) each have highly peaked information functions. 

This suggests that the DSM’s criteria are best used to make dichotomous 
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classifications of individuals (e.g., dependent vs. non-dependent, depressed vs. 

non-depressed, and borderline vs. non-borderline) rather than continuous 

classifications. Similarly, Harvey and Murry (1994) found that the Myers-Briggs 

Type Indicator (Myers, 1962) functions best as an indicator of dichotomized θ 

values (i.e., types) rather than placing people on continuums. 

Tests can be reorganized into shorter and/or more informative versions by 

trimming away items that provide little information (e.g., Cooper & Gomez, 

2008; Kim & Pilkonis, 1999). For example, Grayson (1986) chose the ten most 

informative items from the Eysenck Personality Questionnaire subscales (Eysenck 

& Eysenck, 1975) in order to create shorter, more informative scales. Duncan-

Jones, Grayson, and Moran, (1986) did the same for the General Health 

Questionnaire (Goldberg, 1972). Lee and Smith (1988) fit a Rasch model to the 

California Psychological Inventory (Gough, 1956) and created a tailored version 

with 71% fewer items than the original measure. More deliberate attempts at test 

construction involve the use of target information functions (Luecht & Hirsch, 

1992), where test developers choose items that will maximize information for a 

predetermined range of θ values based on need, law, or precedent. The 

methodology is similar to criterion-based test construction, where the criterion is 

the target information function (Hambleton & de Gruijter, 1983). For example, 

mastery tests (Lord, 1980) or screening tests can be designed to provide peak 

information at a chosen threshold used to classify cases from non-cases 

(Biranbaum, 1968). Kessler et al. (2002) created a screening measure for 
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psychological distress by choosing items that contributed information in the 90-

99
th

 percentile of the θ distribution.  

Researchers have found that many existing screening or categorically 

diagnostic measures have information functions that dramatically peak at a 

diagnostic cutoff typically on the ―impaired‖ end of the θ distribution. For 

example, a screening version of the original Psychopathy Checklist-Revised 

(Hare, 1991) contributes less overall information than its full-version counterpart, 

but nearly as much information at the diagnostic cutoff (Cooke, Michie, Hart, & 

Hare, 1999). The mental health scales of Psychological Screening Inventory 

provide peak information near the test developer’s recommended cutoffs for 

concern versus no concern, but are relatively inaccurate for individuals with low 

symptoms of distress (Lanyon & Thomas, 2009). Curiously, this implies that test 

developers have achieved their hypothetical target information functions without 

the benefits of IRT. Why does this happen? Reise and Waller (2009) suggest that 

information functions peak on the higher ends θ distributions because clinical 

constructs are meaningful in one direction only. For example, they point out that 

the low end of depression is lack of depression, not happiness. Clinicians rarely 

ask questions on this end of the spectrum because they lack clinical relevance 

(e.g., ―Have you ever felt sad?‖).  In addition, items have historically been chosen 

based on their point-biserial correlations with a criterion group variable (e.g., 

individuals classified as ―normal‖ vs. ―abnormal‖). Items with the highest point-

biserial correlations, those endorsed frequently by the ―normal‖ group and 
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infrequently by the ―abnormal group‖, have difficulty parameters directly at the 

criterion point. Thus, test developers who chose items that best differentiated 

between criterion groups, had, by default, chosen items with overlapping 

difficulties values near the underlying criterion θ value: a target information 

function. 

 Perhaps the most opportunistic use of information functions comes 

through computer adaptive tests (CATs; e.g., Walter, Becker, Bjorner, Fliege, 

Klapp, & Rose, 2007). CATs tailor item administration to produce peak 

information for individual examinees’ θ estimates. Computers must be used to 

generate real-time iterative estimates of examinees’ θ values, as they are unknown 

prior to test administration. Once an initial estimate has been produced, 

subsequent items are chosen from a pre-calibrated item pool to maximize 

information. This normally involves administering a slightly harder item when an 

examinee answers correctly and administering a slightly easier item when an 

examinee answers incorrectly. To appreciate the strategy, consider a hypothetical 

situation where a clinical graduate student comes across their first depressed 

patient. After initial introductions, the student asks the patient, ―Are you feeling 

hopeless?‖ to which the patient replies, ―Yes, I am.‖ And then, given the student’s 

naïve understanding of depression, they follow up by asking the next question on 

their list, ―And have you been feeling a little blue lately?‖ It does not take a 

veteran clinician to realize that a person who is hopeless is almost certainly 

―feeling a little blue lately‖. The question contributes almost no useful 
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information to the assessment. A wiser clinician might have asked a more 

appropriate follow-up question, ―Have you thought of ending your own life?‖   

 CATs function like wise clinical interviewers. They make ongoing 

estimates of an examinees’ θ value, and choose to administer items that will 

provide the greatest amount of information. Doing so can drastically reduce 

testing time and burden. For example, Forbey and Ben-Porath, (2007) reduced 

MMPI-2 testing by 20% with an experimental simulation CAT. Waller and Reise 

(1989) simulated a CAT version of the Absorption Scale of the Multidimensional 

Personality Questionnaire (Tellegen, 1982) and were able to reach accurate 

estimates of latent trait values using on average only 25% of the original items. 

Kamakura and Balasubramanian (1989) did the same for socialization subscale of 

the California Psychological Inventory using on average only 33% of the original 

items. Reise and Henson’s (2000) simulated CAT version of revised Neuroticism-

Extroversion-Openness Inventory (Costa & McCrae, 1992) reduced item 

administration by half. 

Functional CATs require a large collection of items with precalibrated 

parameters (e.g., Lai, Cella, Chang, Bode, & Heinemann, 2003). Unfortunately, 

such complex ―item banks‖ are difficult to develop without the aid of heavily 

funded research projects or professional testing services. Private interest in 

developing CATs for industrial/organizational applicants has spurred some 

development (e.g., Borman, Buck, Hanson, Motowidlo, Stark, & Drasgow, 2001; 

Schneider, Goff, Anderson, & Borman, 2003). Several authors have 
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recommended national efforts to create large-scale item banks to facilitate the 

effort (e.g., Hahn, Cella, Bode, Gershon, & Lai, 2006; Revicki & Cella, 1997; 

Revicki & Sloan, 2007), and the National Institutes of Health is currently funding 

the most ambitious attempt to do so in the realm of clinical assessment. The 

Patient-Reported Outcomes Measurement Information System (PROMIS) is a 

multi-site collaborative research effort to standardize a large bank of physical and 

psychoemotional health items (Cella et al., 2007). While the PROMIS system 

currently invites researchers to utilize developmental CATs in collaborate 

research efforts, the scales are not yet available for clinical practice.  

 Scaling and equating. IRT’s explicit measurement models facilitate 

meaningful scaling of item and person parameters. CTT-based total scores do not 

directly quantify psychiatric disorders, nor are they directly related to the 

behavioral, cognitive, and/or emotional symptoms of distress. Nonetheless, a 

common assumption is that endorsement of more symptoms equates with a higher 

likelihood or severity of a disorder. That is, total scores are assumed to maintain 

ordinal properties with respect to latent variables. Percentile rankings are the only 

―permissible statistic‖ that can be used to meaningfully summarize ordinal data 

(Stevens, 1946). Unfortunately, this leaves clinicians in the unenviable position of 

explaining to patients’ how their responses compare with normative patients’ 

responses: the epitome of relative measurement. In contrast, it can be argued that 

IRT simultaneously scales the relations between item parameters and person 

parameters on what approaches an interval scale of measurement. That is, 
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increases in θ values equate with additive or linear increases in the log-odds of 

item endorsement. Patients’ scores can be described in direct relation to 

symptoms of distress. 

To understand why this is important, consider Juan and Erica’s 

hypothetical scores on measure of depression. Within a CTT framework, the 

relation between Juan and Erica’s scores can only be described in reference to a 

normative population (or to each other). For example, because Juan’s 99
th

 

percentile total score is higher than Erica’s 7
th

 percentile total score, we can 

conclude that Juan is more depressed. However, we can say nothing beyond this 

comparison. In IRT, the difference between Juan and Erica’s θ values can 

additionally be interpreted with respect to the behavioral, cognitive, and/or 

emotional symptoms related to the latent trait under investigation. Odds and/or 

probabilities of symptom endorsement can be provided because logistic and 

normal ogive models link θ values with the probability of affirming various items. 

For example, we might conclude that Juan’s standardized θ score of +2.50 equates 

with a 99% chance he is feeling sad, a 90% chance he is feeling hopeless, and a 

30% chance he is contemplating suicide. On the other hand, Erica’s standardized 

θ score of -1.50 equates with a 20% chance she is feeling sad, a 5% chance she is 

feeling hopeless, and a 1% chance she is contemplating suicide. We could even 

determine how much of a decrease in θ is required to reduce Juan’s suicidal 

ideation to 5%. (See ―Wright Maps‖ for another example of simultaneous scaling 

of parameters). Such meaningful descriptions of examinees’ scores are not only 
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useful in the diagnosis of psychiatric disorders, but also in the development of 

symptom oriented treatment plans. 

In research situations, simultaneous scaling of person and item parameters 

contributes to the theoretical understanding of latent variables. For example, 

analyses of the Psychopathy Checklist-Revised have revealed that individuals 

with a ―callous/lack of empathy‖ are more psychopathic than individuals with a 

―need for stimulation‖ (Cooke & Michie, 1997). The interpersonal and affective 

features of psychopathy have higher thresholds than the impulsive and antisocial 

features (Cooke et al., 1999). Analyses of the Beck Depression Inventory (Beck, 

Ward, Mendelson, Mock, & Erbaugh, 1961) reveal that items related to suicide 

have higher difficulty values than items related to crying (Gibbons, Clarke, 

VonAmmon Cavanaugh, & Davis, 1985). Activities of daily living related to 

mobility, bathing, dressing, and eating are more commonly impaired than 

activities related to communication, bowel continence, and orientation (Teresi, 

Cross, & Golden, 1989). Most of these results are somewhat obvious to both lay 

and professional observers; however, it should be appreciated that CTT cannot 

make such distinctions. 

IRT-based θ values are meant to estimate constructs, not total scores. 

Therefore, two or more tests of the same construct can be calibrated on the same 

scale of measurement irrespective of each scale’s content. For example, a 

clinician may wonder how the Beck Depression Inventory is related to the MMPI-

2 Depression scale. Within a CTT framework, these comparisons are complicated 
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by the nonidependence of person and item parameters. The CTT-based notion of 

item difficulty (proportion of examinees who pass the item within a sample) must 

diverge for the same item if administered to distinct groups of examinees with 

non-equivalent average abilities. Item difficulty is population specific. In addition, 

item reliability is typically evaluated based on each item's correlation with all 

other items on a test. Item reliability is also test specific. Item parameters in IRT 

have the same meaning regardless of the population being assessed or the test 

being evaluated.  

Test and item equating is simplified by only requiring that item parameters 

and person parameters for two or more tests of the same construct are calibrated 

on the same scale of measurement. Item calibration of this sort can be 

methodologically and computationally complex (see Stocking & Lord, 1983), but 

quite valuable when successful. For example, by equating distinct tests of 

depression (e.g., Carmody et al., 2006; Orlando, Sherbourne, & Thissen 2000) 

and general health (e.g., Martin et al., 2007) researchers have been able to 

simplify the diagnostic process while improving accuracy. Such gains occur 

because the information provided by two or more distinct measures of the same 

construct are additive. Thus, instead of having two related but psychometrically 

distinct measures (as with CTT), IRT allows clinicians to combine information 

into a single estimate. 

Differential item functioning. Item parameters derived from unique 

populations cannot always be calibrated on the same scale of measurement. This 



42 

 

occurs when item parameters are dependent on a specific population, not because 

of failure to model parameters separately, but because of group biases. Non-

biased items are those for which the probabilities of examinees from different 

populations passing them are equal when the examinees’ θ values are equal. 

Mathematically, the following equality must hold: 

    )1(),1(   XPCXP ,          (8) 

where C denotes membership within a given population or class of individuals. 

Thus, the probability of an item response is dependent on the person parameter 

but not on the population. Items that do not maintain the above property are said 

to display differential item functioning (DIF); items that do are said to display 

measurement invariance. Figure 10 presents two hypothetical item characteristic 

curves for the same item estimated within a male sample and again within a 

female sample. Clearly, the item’s parameters are dependent on the population of 

examinees; the item is less difficult for males than for females. Women and men 

of the same ability find the item unequally difficult. CTT makes discovering this 

bias more complicated when legitimate group differences in ability are 

confounded with item parameters.   

 Examinations of DIF have become common in multicultural settings. For 

example, Hulin, Drasgow, and Komocar (1982) found DIF for items in the 

English and Spanish versions of a job satisfaction measure due to discrepancies in 

translation. DIF has been evaluated across age (Balsis, Gleason, Woods, & 

Oltmanns, 2007; Kim, Pilkonis, Frank, Thase, & Reynolds, 2002), gender (e.g., 
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Bejar, 1977; Carle, Millsap, & Cole, 2008; Donovan & Drasgow, 1999; Jane, 

Oltmanns, South, & Turkheimer, 2007; McRae, 1991; Reise, Smith, & Furr, 

2001; Santor, Ramsay, & Zuroff, 1994; Smith & Reise, 1998), language (e.g., 

Hulin, Drasgow, & Komocar, 1982; Orlando & Marshall, 2002), patient 

population (Bedi, Maraun, & Chrisjohn, 2001), race, ethnicity, and culture (e.g., 

Bolt, Hare, & Neumann, 2007; Bontempo, 1993; Cooke & Michie, 1999; Ellis, 

Becker, & Kimmel, 1993; Hui, Drasgow, & Chang, 1983; Liu & Zhang, 2006; 

Williams, Turkheimer, Schmidt, & Oltmanns, 2005), and testing medium (Chuah, 

Drasgow, & Roberts, 2006). And, IRT has the additional advantage of examining 

in great detail potential bias in the predication of outcomes (e.g., Leung & 

Drasgow, 1986).  

 Longitudinal research. Differential item functioning can also be found in 

the context of longitudinal within group comparisons. Researchers who study 

change (e.g., due to time or treatment) must also be cautious of differential item 

functioning (Horn & McArdle, 1992). Changes in θ estimates ought to be caused 

by changes in examinees’ true θ values rather than changes in item parameters—

lack of metric invariance—or changes in the structure of constructs relating to the 

items—lack of configural invariance. IRT and confirmatory factor analysis are 

both valuable in the investigation of measurement invariance. However, 

confirmatory factor analysis is better suited for the assessment of configural 

invariance and IRT is better suited for the assessment of metric invariance 

(Meade, Lautenschlager, & Hecht, 2005). As mentioned earlier, item parameters 
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in IRT are directly related to item parameters in factor analysis. But, IRT presents 

a more explicit item parameterization, and thus better facilitates examinations of 

metric invariance. 

Millsap (2010) presents the methodology for testing measurement 

invariance in longitudinal data with IRT. As with between group comparisons of 

DIF, within group evaluations also involve estimating item parameters separately, 

and then comparing item parameters. For example, Long, Harring, Brekke, Test, 

and Greenberg (2007) demonstrated the longitudinal construct validity of a 

screening measure for psychological distress by showing invariance for parameter 

values (item discrimination and difficulty) across repeated measures. Meade, 

Lautenschlager, and Hecht (2005) demonstrated the use of longitudinal IRT with 

a job satisfaction survey, finding differential item function with respect to item 

difficulty across measurement occasions.  

 Model and person fit. One does not typically discuss model fit in the 

context of CTT. Indeed, as mentioned multiple times thus far, CTT does not 

specify the relation between true scores and θ values. Yet the study of reliability 

in CTT does involve rarely tested assumptions about true scores (i.e., strict 

parallelism, parallelism, or tau-equivalence). McDonald (1999) has demonstrated 

how such assumptions can be thought of as special cases of the Spearman single-

factor model, an assumption that all items measure a common symptom. Thus, 

model fit should be evaluated for CTT, even if it is not standard practice. 

Researchers employing IRT models, on the other hand, commonly test model 
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assumption using global and local fit indices. For example, researchers have 

questioned whether unidimensional, monotone IRT models are appropriate for 

clinical constructs. It seems likely, they argue, that item characteristic curves for 

achievement questions (e.g., ―If Billy has five apples, how many will he have left 

if he gives three to Tommy?‖) will look different than item characteristic curves 

for personality questions (e.g., ―I am as sociable as most people?‖). If the manner 

of response is different, the normal ogive and logistic functions may not 

accurately model observed data. As mentioned earlier, a variety of IRT models 

have been developed to account for such situations. 

 Reise and Waller’s (1990) successful fit of the 2PL model to personality 

data is commonly cited as evidence for the applicability of the logistic function. 

Later analyses suggested that the 3PL model provides only negligible 

improvement in fit over the 2PL model (Reise & Waller, 2003). But, some have 

found only limited success with logistic models. Chernyshenko, Stark, Chan, 

Drasgow, and Williams (2001) could not successfully fit a 2PL model, a 3PL 

model, or a GRM to two separate measures of personality. The authors suggest 

that the misfit was likely due to two possible sources: (1) uncounted for 

multidimensionality; or (2) the inability of the logistic function to correctly model 

examinees’ responses to non-cognitive items. Stark, Chernyshenko, Drasgow, and 

Williams (2006) point out that the monotonic 2PL model explicitly assumes 

dominance (i.e., Likert’s model) as opposed to ideal response (i.e., Thurstone’s 

model). Dominance models assume that as θ increases the probability of a 
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response must also increase. Ideal response point models assume that as θ 

increases, an ideal response option (i.e., for which the person has the highest 

probability of responding) is approached. Once that ideal point has passed, the 

probability of responding decreases (i.e., a peaked ICC). Stark et al. argue that the 

unfolding model (an ideal response point model) is superior to the 2PL model 

because it can accommodate all types of data.  

 An unavoidable limitation of all assessment instruments is the potential for 

erroneous diagnostic outcomes. However, while most psychologists are willing to 

accept that true scores or θ estimates are accurate only within the limits of 

standard error, a more concerning situation arises when the relation between item 

parameters and person parameters are intentional or unintentionally distorted for 

particular examinees. That is, there are some individuals for whom the IRT model 

may not fit. In CTT, the only method available for detecting such aberrant results 

is to identify total scores falling in the extremes of the normative distribution. For 

example, if examinees endorse too many infrequently endorsed items on the 

MMPI-2, it is recommended that their test scores should not be interpreted. Using 

IRT, a researcher aiming to assess such distortion can employ two possible 

methods: (1) look for extreme θ values (similar to CTT methodology but with 

IRT sophistication; e.g., Zickar, Gibby, & Robie, 2004); or (2) look for 

improbable response patterns.  

 Analyses of person fit serve to identify examinees for whom the response 

model does not accurately predict their performance. Specifically, the strategy is 
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like an analysis of DIF at the person level. Take for example a measure that fits a 

Rasch model. For such a test, high difficulty items should be endorsed less often 

than low difficulty items. The likelihood of an examinee endorsing high difficulty 

items but not low difficulty items is highly improbably given the item parameters. 

Deviant item response patterns suggest that the test is not accurately estimating 

examinees’ θ values. Possible explanations for deviant response patterns include 

poor person-model fit, poor effort, or cheating/misrepresentation. Drasgow, 

Levine, and Williams (1985) developed a z-score index for maximum likelihood 

estimates (lz) that can be used to determine how deviant a response pattern is in 

comparison to an assumed normal distribution of response patterns. The 

maximum likelihood of θ estimates for examinees may differ even when each 

receives the same θ estimate. Reise and Waller (1993) applied the lz person fit 

statistic to items from a personality measure and concluded that it does have 

potential for identifying aberrant response styles, but was too unreliable to 

provide meaningful moderation of other variables. Reise and Due (1991) warn 

that the characteristics of item parameters (e.g., item difficulty) and characteristics 

of the entire measure (e.g., length) can affect the validity of the lz statistic. In 

addition, Reise (1995) expressed concerns about the distribution assumption and 

power of lz. The use of person characteristic curves, an alternative approach to 

examining person fit, can be used in conjunction with lz to help explore the causes 

of aberrant responses (Nering & Meijer, 1998). 
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 The accuracy of such person fit statistics with actual data is mixed. Zickar 

and Drasgow (1996) used person fit algorithms to assess misrepresentation on 

personality tests and found only limited success. Ferrando and Chico (2001) 

compared IRT person fit analyses of misrepresentation to traditional measures of 

misrepresentation (i.e., response bias scales) and found the IRT person fit 

approach to be less accurate. Perhaps the limitation with the approach is that it 

can only be used to identify sequentially improbably response options. If an 

examinee responds to a measure in an unusually exaggerated manner, but 

endorses items in the correct sequence, the person fit statistics will not identify the 

response style as aberrant. In the extreme example, the response pattern of an 

examinee who endorses 59 of 60 items from the F scale on the MMPI-2 would 

not be considered aberrant even though the CTT based T-score for such a pattern 

would literally be off the page. Nonetheless, whether indicative of 

misrepresentation or not, aberrant response patterns do lead to poor classifications 

of examinees (Frost & Orban, 1990; Hendrawan, Glas, & Meijer, 2005), and thus 

the identification of such patterns is warranted.  

Modern Psychometric Theory and Test Validity 

Decades of research have established that modern psychometric 

theory―inclusive of both common factor theory and IRT―is the preeminent 

statistical framework for reducing measurement error in psychological and 

educational testing. Modern psychometric theory’s impact on measurement 

validity, however, is less clear. The natural assumption that IRT improves test 
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validity by improving test reliability may be premature. Reliability is a necessary 

but not sufficient condition for what is classically considered to compose 

construct validity: The extent to which a test measures the subject material it 

purports to measure, predicts outcomes, converges with measures of similar 

constructs, and diverges from measures of dissimilar constructs (Rosenthal & 

Rosnow, 1991; Strauss & Smith, 2009). Strictly speaking, IRT models do not 

fully address such forms of test validity. Latent variables are mathematical 

entities, perhaps nothing more than vectors within a coordinate system. The extent 

to which a mathematical variable serves as a marker of disease or represents a 

meaningful psychological construct must be established through empirical 

investigation. Some accounts refer to the validity of a test with respect to internal 

structure (e.g., American Educational Research Association, American 

Psychological Association, and National Council on Measurement in Education, 

1999); however, this alone cannot validate a test instrument.  

Traditional treatment of measurement validity. Historically, validity 

has been at the forefront of clinical measurement; the majority of self-report 

inventories were developed using rational-theoretical and empirical 

methodologies (Lanyon & Goodstein, 1997). That is, after creating items in 

accordance with logic and theory (i.e., content validity), scales were refined by 

selecting only those items that accurately distinguished between groups with and 

without clinical conditions (i.e., criterion validity). The Beck Depression 

Inventory, California Psychological Inventory, Millon Clinical Multiaxial 
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Inventory (Millon, 1983), and MMPI were all influenced by such approaches. 

Measurement error was examined using typical CTT-based analyses of reliability 

(e.g., Guttman-Cronbach alpha coefficient); however, reduction of measurement 

error clearly took a secondary role in test development. Clinical psychologists 

deemphasized the reasons for item endorsement, instead focusing on outcomes. 

Despite good intent—a blatant emphasis on criterion validity sometimes referred 

to as ―blind‖ or ―dust bowl‖ empiricism—it was soon realized that neglecting 

measurement structure had detrimental consequences for practical use of 

measures. On the MMPI, for example, item and scale overlap contributed to poor 

discrimination between clinical criterion groups (e.g., depressed patients vs. 

anxious patients), rendering individual scale interpretations inadequate for 

differential diagnosis (e.g., Rubin, 1948). Scales on the Millon Clinical Multiaxial 

Inventory overlapped by as much as 60%, sharing more than 90% of variance 

(Wetzler, 1990).  

Further complicating matters, empirical data suggested that self-report 

inventories did not coincide with the discrete categories of psychiatric nosology 

(i.e., the ―neo-Kraepelinian‖ nomenclature). That is, both items and scales were 

not disorder specific. Depressed patients did not solely endorse depression items 

and anxious patients did not solely endorse anxiety items. Researchers soon 

realized, however, that configural patterns of clinical scale elevations were more 

often associated with unique disorders. For example, a number of MMPI 

―cookbooks‖ were published reporting clinical disorders most commonly 
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associated with code-types (e.g., Lachar, 1974). Interpretations based on multiple 

scales can provide greater discrimination than interpretations based on individual 

scales (see Meehl, 1950), but the practice highlights an apparent contradiction 

between the simplistic unidimensional models commonly employed in the 

evaluation of measurement error and the more complex multidimensional 

interpretations given to patients’ responses. Not surprising, configural patterns are 

inherently unreliable when evaluated by the CTT model (e.g., Vincent, 1990).  

Clinicians do not often question the validity of tests and scoring 

procedures developed using methodologies based on content and criterion 

validity. These simple and direct approaches to test development are, if nothing 

else, conveniently intertwined with observed psychiatric disorders. Nonetheless, 

unacceptably large measurement error, poor discrimination between criterion 

groups, and the atheoretical nature of configurable pattern interpretation have 

long jeopardized the scientific footing of clinical assessment. Strauss and Smith 

(2009) reviewed construct validity in psychological measurement, concluding that 

the practice of combining distinct facets of psychological distress into unitary 

scales unnecessarily confounds domains of psychopathology. Emphasizing test 

validity at the expense of test reliability has proven to be an untenable option.   

Modern treatment of measurement validity. As psychometric theory 

progressed, researchers turned to quantitative tools based on common factor 

theory to create new tests, refine existing scales, or simply to confirm theorized 

internal structure (see Comrey, 1988; Floyd & Widaman, 1995). While 
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applications of IRT to clinical test development and evaluation have been less 

prevalent, equivalence of the two models implies mutual utility in clinical 

domains. By combining rational-theoretical approaches to test development with 

modern statistical approaches, test developers began to embrace modern 

mathematics while accommodating some clinical theory. Specifically, test 

developers focused on the reduction of measurement error through the creation of 

unidimensional scales. Unitary total scores originating from unidimensional 

scales are more reliable than those produced from multidimensional scales 

(McDonald, 1999). Ostensibly, this movement seems aligned with prevailing 

conceptualizations of psychopathology in the DSM: distinct disorders. Thus, it 

might be expected that unidimensional test construction would increase both the 

reliability and the validity of clinical tests.  

Yet some clinical researchers and practitioners remain indifferent and/or 

skeptical of modern technologies. Some test developers, for instance, have been 

hesitant to alter existing test structure due to fears that major revisions will 

drastically change test properties and render preexisting research obsolete (e.g., 

Hare, 2003; see Knowles & Condon, 2000; Silverstein & Nelson, 2000). For this 

reason, only a select few have been willing to make dramatic changes to popular 

tests. Moreover, some authors have criticized unidimensional scale construction 

as being limited in clinical domains (e.g., Fava, Ruini, & Rafanelli, 2004). Ben-

Porath and Tellegen’s (2008) repackaging of items on the MMPI-2 Restructured 

Form (MMPI-2-RF) with the aid of both CTT and factor analytic techniques, for 
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example, has been the target of significant criticism. Nichols (2006) warned that 

such factor analytic refinements caused MMPI scales to drift far from clinically 

relevant constructs. Caldwell (2006) argued that the scales may represent nothing 

more than narrow or content specific areas of illness. Gordon (2006) criticized the 

―assumption that psychopathology can be reduced to the pure and distinct atoms 

of personality traits‖ (p. 870). And, early evidence suggests that such concerns 

may be warranted (Binford & Liljequist, 2008).  

Despite obvious improvements in test reliability, unidimensional factor 

analyses may not lead to overwhelming improvements in test validity. To 

appreciate this phenomenon, recall the apparent paradox within CTT whereby 

improved reliability can decrease validity. Incorporating diverse symptoms into 

scales will improve diagnostic accuracy by sampling a wider domain of 

predictors. This is particularly true when the target of assessment is a 

multidimensional variable. Yet, the reliability or information provided by a 

unidimensional scale is, in contrast, improved by amplifying shared variance 

among items (i.e., reducing diversity). This simple fact should not be taken for 

granted: unidimensional scales—through the very process of improving their 

reliability—cannot provide optimal prediction of multidimensional constructs. If 

psychiatric disorders are unidimensional in nature, we should expect 

unidimensional scales to provide strong construct validity. If psychological 

disorders are multidimensional in nature, we should not. 
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The latent structure of self-reported psychopathology. Beneath the 

conceptual veneer of diagnostic categories lies a persistent finding that 

complicates clinical assessment: many psychiatric disorders stem from multiple 

causes—common and unique (Krueger, 1999, 2002). It is not uncommon for 

patients to receive multiple diagnoses. Most prominently, the comorbidity of 

mood and anxiety disorders (Maser & Cloninger, 1990; Merikangas et al., 1996; 

Mineka, Watson, & Clark, 1998), as well as conduct, personality, and substance 

disorders (Armstrong & Costello, 2002; Waldman & Slutske, 2000) has been well 

documented. A brief glance through the DSM reveals that most disorders share 

common symptoms. For example, impulsivity is a symptom of Bipolar Disorder 

and Attention Deficient/Hyperactivity Disorder, memory impairment is a 

symptom of Major Depressive Disorder and Dementia, and disinterest in social 

interaction is a symptom of Autistic Disorder and Schizoid Personality Disorder.  

Such blurring of diagnostic categories and symptoms has led some to 

suggest the existence of underlying continuums uniting many psychological 

disorders (e.g., Angst, & Dobler-Mikola, 1985; Cassano, Michelini, Shear, & 

Coli, 1997). Krueger and Finger (2001), for instance, found that the DSM’s 

diagnostic categories of Major Depressive Episode, Dysthymia, Simple Phobia, 

Agoraphobia, Social Phobia, Panic Disorder, and Generalized Anxiety Disorder 

could all be located on a continuum of shared variance—an underlying variable 

the authors labeled internalizing. This construct was later found to be positively 

correlated with patients’ social functioning, missed days of work, and number of 
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lifetime psychiatric hospitalizations (McGlinchey & Zimmerman, 2007). Indeed, 

researchers have long been aware of telltale signs of underlying multidimensional 

structure in clinical data (e.g., Derogatis, Klerman, & Lipman, 1972). 

Specifically, both general and domain specific variables appear to play prominent 

roles in self-reported symptoms of psychological distress. Empirical 

confirmations of such structure have grown common (e.g., Brown, Chorpita, & 

Barlow, 1998; Cassano et al., 2009; Michie & Cooke, 2006; Tackett, Quilty, 

Sellbom, Rector, & Bagby, 2008; Waller, 1999). 

These findings will come as no surprise to clinical researchers and 

practitioners, for whom ignoring multidimensional structure might be considered 

professionally incompetent. For example, in the assessment of cognitive ability, 

the Wechsler Adult Intelligence Scale (WAIS-IV; Psychological Corporation, 

2008) is structured to assess four domain specific abilities (verbal comprehension, 

perceptual reasoning, working memory, and processing speed) in addition to a 

general ability (full-scale intelligence quotient). Multiple dimensions of 

interpersonal behavior have long been acknowledged in the assessment of 

personality (Leary, 1957). And, veteran clinicians will recall that early editions of 

the DSM hierarchically categorized mental illnesses into the psychodynamic-

based concepts of ―Psychoses‖ and ―Neuroses‖ (American Psychiatric 

Association, 1968; for a history of such terms see Beer, 1996). It is difficult to 

find any well-known clinical test that does not contain embedded higher-order 

constructs. The Child Behavior Checklist (Achenbach & Edelbrock, 1983), 
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MMPI, Personality Assessment Inventory (Morey, 1991), and Personality 

Inventory for Children (Lachar & Gruber, 2001) all make use of general and 

domain specific traits.  

In conceptual models of psychopathology, three general categories of 

distress are often proposed: (1) internalizing or neurotic distress – pervasive 

worry, melancholy, and general emotional difficulties; (2) thought or psychotic 

distress – a departure from reality characterized by delusions, hallucinations, or 

poor cognitive control; and (3) externalizing or character distress – 

aggressiveness, substance abuse, and immoral behavior. Watson (2005) has 

proposed a hierarchical model of emotional distress, integrating common and 

specific components of mania, depression, and anxiety under the umbrella of 

internalizing disorders. Krueger, Markon, Patrick, Benning, and Kramer (2007) 

describe a model in which substance use and aggressive behavior are thought to 

represented lower-order traits, and general externalizing is thought to represent a 

higher-order trait. There are, of course, seemingly infinite additional lower- and 

higher-order conceptual tiers that could be recognized (e.g., psychological vs. 

physiological distress). From a modeling perspective, Box and Draper (1987) 

notably argued that, ―…all models are wrong, but some are useful‖ (p. 424); 

model selection is a process of weighing the relative benefits and limitations of 

coherence with reality, statistical and conceptual parsimony, and confirmation of 

existing theory. 
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The true latent structure of the human psyche notwithstanding, there has 

long been a consensus among researchers and practitioners that multidimensional 

structure is intrinsic to examinees’ self-reported psychopathology. This explains 

the diagnostic value of configural patterns: analyzing multiple variables in a 

multidimensional system produces greater validity than interpreting individual 

scales. Unidimensional models, whether conceptualized under traditional or 

modern measurement theory, do not appear to be consistent with the structure of 

self-reported psychological distress. Unidimensional scales should not be 

expected to accurately assess psychopathology beyond homogenous symptoms 

(i.e., content specific distress). Nor should the value of multidimensional 

measurement be dismissed without empirical investigation. Emphasizing test 

reliability at the expense of test validity has also proven to be an untenable option. 

Towards a more valid measurement model. Progress in the 

development and refinement of clinical scales has been limited by poor 

integration of measurement reliability and validity. Namely, overt focus on 

validity has sacrificed test reliability, while overt focus on reliability has 

sacrificed test validity. This paper examines an integrated application of reliability 

and validity in the development, evaluation, and use of clinical measures. That is, 

purposeful as opposed to haphazard use of traditional and modern psychometric 

techniques.  

The common first step in test development is a thorough consideration of 

relevant content. Indeed, it has been noted that content validity is a necessary 
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condition for measurement validity (Lanyon & Goodstein, 1997). The 

researcher’s task, in this instance, is to define and sample the relevant universe of 

content; that is, to select a representative subset of items from the domain(s) the 

researcher is interested in measuring. A review of empirical, clinical, and 

theoretical literature is in order. It is at this point that a researcher can take 

advantage of previous psychometric analyses by selecting items with desirable 

parameters. If, for example, the intent is to measure depression, previous analyses 

of related inventories can be used to select items with appropriate characteristics.  

The second step in test development typically involves evaluation of item 

properties, test score reliability, and internal structure. It is at this point where the 

critical error of reducing complex psychological syndromes to narrow symptom 

clusters can be made. Researchers may sacrifice items that could have otherwise 

improved diagnostic accuracy in order to achieve scale homogeneity. To 

understand why, it is important to appreciate that both unique and common 

variance components contribute to item variability. Unique variance is due to both 

idiosyncratic characteristics of items and unpredictable measurement error. On a 

unidimensional test, common variance is due to a single latent factor. When tests 

are truly multidimensional, however, additional sources of common variance 

contribute to scale and item variability (see Rindskopf & Rose, 1988). This 

unaccounted for common variance, a violation of local independence, can bias 

parameter estimates (see DeMars, 2006). To avoid such bias, multidimensional 

items are often removed from scales during test development. Unfortunately, this 
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strategy will reduce test validity in instances where the construct being assessed is 

truly multidimensional. 

Mislevy, Levy, Kroopnick, and Rutstein (2008) note that the true value of 

modern psychometric theory lies in the ability to communicate increasingly 

complex psychological narratives. The ability to precisely partition item variance 

into multiple latent factors represents a clear advantage over previous 

methodology. The tools of multidimensional common factor theory and IRT 

allow for the creation of reliable multidimensional tests. While it cannot be denied 

that multidimensional models will complicate clinical assessment, it is clear that 

such complexity is not without purpose. Test developers’ reluctance to embrace 

alterative structures in clinical data may explain why some clinical psychologists 

have recoiled from modern psychometric theory. In order to move beyond the 

measurement of symptoms but not syndromes, we must learn to integrate clusters 

of items and scales into clinically relevant disorders. That is, we must be willing 

to explore these complex psychological narratives.  

Researchers from diverse fields have demonstrated great potential in 

multidimensional modeling. de la Torre and Patz (2005), for example, derived 

more precise θ estimates by allowing correlated educational variables (i.e., 

mathematics, spelling, and social studies skills) to work together in 

multidimensional frameworks. Wang, Chen, and Cheng (2004) increased the 

reliability of θ estimates by allowing education and personality factors to correlate 

through multidimensional IRT. And, in a simulation study, Yao and Boughton 
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(2007) demonstrated improved classification accuracy (i.e., false negatives and 

false positives for discrete levels of simulated mathematics proficiency) with 

multidimensional IRT models.  

The tools for multidimensional modeling of clinical constructs are at the 

field’s disposal. Evidence reviewed here suggests that the validity of clinical 

measures can be improved though the use of multidimensional models. A logical 

method for choosing an appropriate framework would be to include criterion-

related validity variables in the evaluation of tests; in essence, a type of empirical 

keying for model selection. This can be accomplished most readily through the 

evaluation of structural relations between latent constructs and measured validity 

variables. That is, validity variables can be treated much like scale items. A 

model’s ability to account for variance in validity variables, be it unidimensional 

or multidimensional, should be given significant weight in the selection of a 

measures’ internal structure. By allowing validity variables to influence this 

selection process, the apparent disconnect between modern psychometric theory 

and clinical practice can be diminished. 

Once an appropriate and valid model is selected, IRT’s well-established 

tools for analyzing items and measurement instruments, over and above 

traditional models, need only be applied to the data. Model derived θ estimates 

allow for comprehensive analysis and reduction of measurement error, the 

creation of computer adaptive tests, meaningful scaling of latent variables, 

objective calibration and equating, evaluation of test and item bias, greater 
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accuracy in the assessment of change due to therapeutic intervention, and the 

evaluation of model and person fit. As reviewed previously, IRT provides clear 

benefits over and above current practice. 

An additional benefit of IRT comes into effect when estimating patients’ 

disease status; total scores can give way to more accurate IRT-based θ estimates. 

Figure 11 demonstrates the relation between θ values and total scores through the 

use of a test characteristic curve: predicted total scores plotted against a range of 

θ values. As in the example, predicted total scores and θ values are generally 

related by a monotonically increasing function (Baker, 2001). Unfortunately, the 

association is nonlinear. As can be seen in Figure 11, total scores produce very 

imprecise θ estimates at the extremes of the distribution (see Dumenci & 

Achenbach, 2008)―troubling information for clinicians, who regularly assess and 

treat abnormal behavior. Mathematically, it can be demonstrated that total scores 

are inefficient estimates of θ values (McDonald, 1999). In essence, weighted item 

sums (i.e., IRT-based θ estimates) are more accurate than unweighted item sums 

(i.e., total scores); total scores cannot be more reliable or more valid than θ 

estimates when latent variable models accurately reflect observed data.  

Total score efficiency is directly related to item parameters. As 

discrimination parameters diverge, total scores become less efficient estimators. 

Fortunately, these parameters do not tend to vary a great deal for existing 

unidimensional scales, as items were typically chosen for their high factor 

loadings or biserial correlations. Therefore, item weighting should not be 



62 

 

expected to significantly improve diagnostic accuracy with respect to scoring 

patients’ responses. Researchers have long noted that the choice between 

weighted and unweighted item sums makes little practical difference in 

psychological assessment (e.g., Aiken, 1966; Guilford, Lovell, & Williams, 1942; 

Potthoff  & Barnett, 1932; Retzlaff, Sheehan, & Lorr, 1990). However, great 

divergence between weighted and unweighted item sums is not required for them 

to produce different validity coefficients (McCornack, 1956). And, it would be 

quite unlikely to find equivalent item discrimination parameters when items are 

allowed to load onto multiple variables. To the extent that such variability in the 

relations between items and θ values increases, the efficiency of total scores 

decreases. By using appropriate model parameters to estimate patients’ θ values, 

researchers and clinicians can avoid unnecessary and limited assumptions of the 

relation between total scores and patients’ θ values. 

An Example: The Brief Symptom Inventory 

The intent of this analysis is to demonstrate improved diagnostic accuracy 

through purposeful integration of test reliability and validity using modern 

psychometric techniques. To accomplish this task, analyses will be conducted on 

a data set containing item level responses to a general measure of 

psychopathology and clinically relevant criterion-related validity variables.  

Outpatient mental health clinics routinely utilize patient self-report 

screening measures to assess for symptoms of psychological distress. The Brief 

Symptom Inventory (BSI; Derogatis, 1993) was specifically designed to assess 
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the ―psychological symptom status of psychiatric and medical patients…‖ 

(Derogatis & Melisaratos, 1983, p. 596). The test consists of 9 primary symptom 

dimensions: (1) Somatization (SOM) – psychological distress manifested through 

bodily dysfunction; (2) Obsessive-Compulsive (O-C) – unwanted, irresistible 

impulses; (3) Interpersonal Sensitivity (I-S) – feelings of inadequacy and 

inferiority; (4) Depression (DEP) – depressed affect, hopelessness, and withdrawn 

behavior; (5) Anxiety (ANX) – persistent nervousness, fear, and panic; (6) 

Hostility (HOS) – aggressive and irritable thoughts, feelings, and actions; (7) 

Phobic Anxiety (PHOB) – fear of specific objects or general situations; (8) 

Paranoid Ideation (PAR) – suspicion, distrust, and hostility directed towards 

others; (9) Psychoticism (PSY) – alienated life style and disturbed thought. The 

BSI is a condensed version of the Symptom Checklist–90 (SCL-90; Derogatis, & 

Cleary, 1977) which itself has an extensive lineage (Derogatis, Lipman, & Covi, 

1973). The Symptom Checklist–90 was developed using the rational-empirical 

tradition along with factor analytic techniques to identify primary symptom 

dimensions. Scale interpretations are based on percentile rankings of total scores 

in comparison to normative samples of psychiatric inpatients or outpatients.  

Researchers have generally been able to recover most of the 9 primary 

symptom dimensions of the BSI through unidimensional factor models (Derogatis 

& Melisaratos, 1983; Hayes, 1997; Heinrich & Tate, 1996; Kellett, Beail, 

Newman, & Hawes, 2004) and IRT models (Long, Harring, Brekke, Test, & 

Greenberg, 2007), though secondary evidence suggests variation in the number of 
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factors and patterns of loadings (e.g., Holcomb, Adams, & Ponder, 1983). In 

addition, sizeable correlations between scales’ total scores (Boulet & Boss, 1991), 

and between factors (Hayes, 1997), have led some to question the proposed 

dimensionality of the test. Some researchers, for example, have argued that 

covariance on the BSI can be attributed to just one dominant variable (Cyr, 

McKenna-Foley, & Peacock, 1985; Loutsiou-Ladd, Panayiotou, & Kokkinos, 

2008). Such inconsistencies might better be explained by multidimensional latent 

structure. Finding such structure on the BSI would be consistent with empirical 

research on related measures of self-reported psychopathology.  

There are numerous models that might reasonably account for non-

unidimensional latent structure on the BSI. From a predictive standpoint, it can be 

argued that complexity in such models is beneficial. All things being equal, 

accounting for additional relevant sources of variance should increase diagnostic 

accuracy. However, such complexity comes at a price. Estimation of complex 

models, as well as meaningfully interpretations of their parameters, becomes 

increasingly difficult. It is commonly advised that structural models should be 

informed by prevailing theory. Evidence reviewed previously suggests that 

clinical measures likely maintain three sources of multidimensionality: (1) 

disorders may be correlated; (2) symptoms of distress may load onto multiple 

disorders; and (3) self-reported psychopathology may maintain a bifactor 

structure. It seems plausible that all such sources of multidimensionality are 

present in clinical data. Unfortunately, a model becomes increasingly saturated as 
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additional layers of complexity are added. One must search for a balance between 

complexity and parsimony. That is, some restrictions must be made in order to 

help organize the data―the very purpose of modeling. 

Of the multidimensional models considered in this study, the bifactor 

model seems most aligned with prevailing theories of psychopathology (e.g., 

Simms, Grös, Watson, & O’Hara, 2008). Applying a bifactor model to the BSI 

would suggest that each item is related to a general factor (e.g., internalizing) and 

to a domain specific factor (e.g., depression). In Figure 7, for example, an 

examinee's response to item 1 (symptom 1) is a function of their severity of 

depression and their severity of internalizing. Such a model preserves precision in 

measurement at the level of symptom clusters while accounting for meaningful 

dimensionality at the level of syndromes.  

Aims of the Present Study 

 Modern psychometric theory will be used to study the construct validity of 

distinct modeling frameworks for the BSI—a general measure of psychological 

distress. It is hypothesized that all multidimensional models will provide better fit 

for the measure than will a unidimensional model. Specifically, models that allow 

for crossloadings and/or correlated latent variables will provide the most accurate 

representations of the BSI’s internal structure. Variance accounted for in 

criterion-related variables will be compared for the multidimensional versus 

unidimensional frameworks. It is hypothesized that multidimensional models will 

explain more variance in criterion-related variables than will the unidimensional 
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model. These analyses will be used to select a single model that best accounts for 

the BSI’s internal structure while maintaining strong criterion-related validity. 

This model will then be examined more thoroughly using IRT techniques.  

Finally, the diagnostic accuracy of the chosen latent variable model will be 

compared to the diagnostic accuracy of the unidimensional total score model by 

comparing sensitivity and specificity estimates for each. It is hypothesized that the 

chosen latent variable model will provide better diagnostic accuracy than the 

unidimensional total score model. Such findings would support the combined use 

of modern and traditional psychometric techniques in the development and 

refinement of psychological measures.   

Chapter 2 

Method 

Participants 

Archival data from 688 outpatients seeking psychological counseling 

(68%) or assessment (32%) between 1999 and 2009 at an Arizona State 

University mental health clinic were utilized in this study. The sample included 

students from the university and persons from the community. Table 1 provides 

demographic information for the sample.  

Item Data 

Patients’ item level responses to the Brief Symptom Inventory (BSI; 

Derogatis, 1993) provided the basis for the IRT analyses. The 53-item BSI 

instructs respondents to rate how much they have been distressed by each 
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symptom within the past 7 days on a 5-point scale (0 = not at all, 1 = a little bit, 2 

= moderately, 3 = quite a bit, 4 = extremely). All patients seeking counseling or 

treatment at the clinic were asked to complete the BSI as part of a routine intake 

procedure.  

Validity Variables 

Of the 688 participants in the sample, 515 (75%) were assigned formal 

diagnoses based on the criteria from the text revised fourth edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American 

Psychiatric Association, 2000). Doctoral students with 1 or more years of training 

in clinical psychology assigned DSM-IV-TR multi-axial diagnoses under the 

supervision of a licensed clinical psychologist. The DSM-IV-TR provides specific 

diagnostic criteria for empirically established psychiatric disorders through a 

multi-axial system including five levels of disorder and disability. Of primary 

interest in the current study were disorders classified under Axis I – principal or 

major disorders.  

To facilitate data analyses, diagnoses were hierarchically collapsed into 

the following general categories of distress: (1) mood disorders – including 

depressive disorder (n = 139), bipolar disorder (n = 21), mood disorder not 

otherwise specified (n = 4), and mood disorder due to a general medical condition 

(n = 1); anxiety disorders – including phobias and panic disorders (n = 41), 

generalized anxiety disorder (n = 71), obsessive-compulsive disorder (n = 19), 

post-traumatic stress disorder (n = 15), and anxiety disorder not otherwise 
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specified (n = 4); (3) somatoform disorders – including conversion disorder (n = 

1), hypochondriasis (n = 1), body dismorphic disorder (n = 1),  pain disorder (n = 

7), and undifferentiated somatoform disorder (n = 2); and (4) other DSM-IV-TR 

disorders (e.g., attention-deficit/hyperactivity disorder, schizophrenia, etc.; n = 

264). These three primarily categories of psychological distress were chosen due 

to their relative high frequency within the sample, along with the relative scarcity 

of any other category of psychological distress. Multiple DSM-IV-TR diagnoses 

can be given to a single patient; thus, it became beneficial to treat each general 

category of distress as a single dichotomous variable: presence or absence of a 

mood, anxiety, or somatoform disorder. One supplementary diagnostic variable—

presence of just an anxiety disorder (n = 78) versus just a mood disorder (n = 

112)—was created to examine the ability of the models to differentiate between 

clinical groups (somatoform disorders could not evaluated in this manner due to 

too few cases).  

In addition, patients’ self-reported primary concerns in seeking counseling 

or assessment were coded by undergraduate research assistants. The author 

trained three undergraduate raters to categorize patients’ existing intake or 

assessment summaries working in pairs of two. As with DSM-IV-TR diagnoses, 

presenting concerns were hierarchically collapsed into three general categories of 

distress: mood, anxiety, and health concerns. Fifty files were re-coded to compute 

an estimate of inter-rater agreement; agreement between groups of raters was 
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moderately high (κ = .68). Table 2 provides sample frequencies and percentages 

for each presenting concern and diagnostic category. 

The validity of patients’ self-reported primary reasons for seeking 

counseling and DSM-IV-TR diagnoses cannot be directly compared against a 

gold-standard for accuracy. Indeed, DSM-IV-TR diagnoses are themselves often 

considered to hold a gold-standard position in clinical research. To help clarify 

the nature of these criterion-related validity variables, patients’ scale level 

responses to the second edition of the Minnesota Multiphasic Personality 

Inventory (MMPI-2; Butcher, Graham, Ben-Porath, Tellegen, Dahlstrom, & 

Kaemmer, 2001) were examined for concurrent validity. The 567-item MMPI-2 is 

the most widely used measure of psychopathology in psychological assessment 

(results from MMPI-2 extended score reports were used to code validity and 

clinical scales’ T-scores). Of the 688 participants in the study, 142 (21%) were 

administered the MMPI-2 based on treatment or diagnostic need.  

Table 2 provides means and standard deviations for each scale within the 

sample. MMPI-2 configural profiles for patients presenting with a mood, anxiety, 

or health concern are presented in Figure 12. MMPI-2 configural profiles for 

patients diagnosed with a mood disorder, anxiety disorder, somatoform disorder, 

or no DSM-IV-TR disorder are presented in Figure 13. Unfortunately, just 15 

patients presenting with a mood concern, 13 presenting with an anxiety concern, 3 

presenting with a health concern, 38 diagnosed with a mood disorder, 34 

diagnosed with a anxiety disorder, 3 diagnosed with a somatoform disorder, and 



70 

 

20 diagnosed with no DSM-IV-TR disorder also competed the MMPI-2. As such, 

the data presented in Figures 12 and 13 are greatly limited by sample size. 

Nevertheless, some generalizations can be made. 

The profiles in Figure 12 reveal that patients presenting with a mood 

concern tended to have their highest elevations on the Depression scale (T = 69), 

the Psychasthenia scale (T = 68), and the Schizophrenia scale (T = 68). As can be 

seen in Figure 13, patients diagnosed with a mood disorder also had high 

elevations on the Depression, Psychasthenia, and Schizophrenia scales (T = 72 for 

each). Such profiles can be referred to as 2-7-8 code types, and are typically 

associated with neurotic traits and diagnoses of mood and/or anxiety disorders 

(Friedman, Lewak, Nichols, & Webb, 2001). Patients presenting with an anxiety 

concern (Figure 12) tended to have their highest elevations on the Psychasthenia 

scale (T = 68) and the Schizophrenia scale (T = 68). Patients diagnosed with an 

anxiety disorder (Figure 13) had their highest elevations on the Psychasthenia 

scale (T = 74), the Depression scale (T = 72), and the Schizophrenia scale (T = 

69). Such profiles can be referred to as 2-7 or 2-7-8 code types, and are also 

typically associated with neurotic traits and diagnoses of mood and/or anxiety 

disorders (Friedman et al., 2001). Patients presenting with a health concern 

(Figure 12) tended to have no scale elevations. Patients diagnosed with a 

somatoform disorder (Figure 13) had their highest elevations on the Depression 

scale (T = 71), followed a number of lesser elevations on the Hysteria (Hy) scale 

(T = 67), the Psychopathic Deviate (Pd) scale (T = 67), the Paranoia (Pa) scale (T 
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= 68), the Hypochondriasis scale (T = 66), and the Psychasthenia scale (T = 66). 

Such profiles can be referred to as spike 2 code types (Friedman et al., 2001); 

however, the average profile for this group was poorly differentiated due to co-

occurring elevations on multiple clinical scales.  

Two primary conclusions can be gleaned from Figures 12 and 13. First, 

patients in the criterion groups (i.e., those presenting or diagnosed with some 

form of emotional distress) tended to endorse an elevated number of clinical 

symptoms on the MMPI-2. Second, the MMPI-2 configural patterns did not 

provide clear differentiation between clinical groups. This is not a surprising 

finding, as it has already been mentioned that clinical measures often perform 

poorly in differentiating between clinical groups. While the descriptive results 

presented here were likely influenced by small sample size, they also reflect the 

inherent ambiguity in clinical data. These results suggest that the MMPI-2 profiles 

of the diagnostic groups are generally consistent with previous findings; 

unfortunately, they do not confirm the validity of the criterion-related variables 

considered in the present analyses. As such, the reader is encouraged to consider 

these variables as fallible indicators of latent constructs; variables that are 

consistent with, although not diagnostic of, psychopathology. Random error in 

such variables, while unfortunate, can be modeled in latent variable analyses.  

Data Analyses 

Model comparisons. No consensus exists on the latent dimensionality of 

the BSI. As mentioned earlier, some researchers have found evidence supporting 
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a factor structure similar to the heuristic unidimensional scales proposed by the 

BSI’s authors, while others have found evidence that just one dimension accounts 

for the majority of variance on all scales. In essence, it has been argued that 

orthogonal (uncorrelated factors) factorially-simple structure cannot account for 

observed item covariance on the measure. In the present study, it was 

hypothesized that several types of multidimensional models could account for 

these discrepancies: oblique (correlated factors) factorially-simple structure, 

oblique and orthogonal factorially-complex structures, or oblique and orthogonal 

bifactor structures. However, there remains significant ambiguity with respect to 

the patterns of loadings and number of factors within each model. The purpose of 

the present analysis was not to ―prove‖ any one model of psychopathology, but 

rather to examine the structural relations between measurable constructs on the 

BSI and criterion-related validity variables related to the diagnosis of mood, 

anxiety, and somatoform disorders. Thus, it was beneficial to consider clusters of 

symptoms on the BSI primarily related to depression, anxiety, and somatization. 

Previous research on the dimensionality of the BSI suggests that the DEP scale 

primarily captures symptoms of depression, the ANX and PHOB scales primarily 

captured symptoms of anxiety (with each representing a subtype), and the SOM 

scale primarily captures symptoms of somatization. 

All proposed orthogonal structures are depicted in Figure 14. The absence 

of double-headed arrows between the latent variables in Figure 14 conveys that 

covariance between these nodes was constrained to 0. All proposed oblique 
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structures are depicted in Figure 15. The presence of double-headed arrows 

between the latent variables in Figure 15 conveys that covariance between these 

nodes was freely estimated. For the simple structure models, orthogonal (left 

panel of Figure 14) and oblique (left panel of Figure 15) structures were specified 

in which items from the DEP scale were allowed to load onto a single latent 

variable (depression), items from the ANX and PHOB scales were allowed to 

load onto a single latent variable (anxiety), and items from the SOM scale were 

allowed to load onto a single latent variable (somatization).  

For the complex structure models, orthogonal (center panel of Figure 14) 

and oblique (center panel of Figure 15) structures were specified in which all but 

one item from each scale could load onto three possible latent variables 

(depression, anxiety, and somatization). One item from each scale was 

constrained for convergence; these items were chosen based on their strong 

conceptual association with three primary domains of interest (i.e., content 

validity). 

 For the bifactor structure models, orthogonal (right panel of Figure 14) 

and oblique (right panel of Figure 15)  structures were specified in which items 

from all scales loaded onto a general latent variable―referred to hereafter as 

internalizing―and items from the DEP scale were additionally allowed to load 

onto a unique domain specific latent variable (depression), items from the ANX 

and PHOB scales were additionally allowed to load onto a unique domain specific 

latent variable (anxiety), and items from the SOM scale were additionally allowed 
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to load onto a unique domain specific latent variable (somatization). For the 

oblique bifactor model, only the domain specific latent variables were allowed to 

correlate (as is necessary for convergence).  

Confirmatory factor analyses were conducted to evaluate the proposed 

models. The metrics of the latent factors were defined by fixing their variances to 

unity. Correlations between measurement errors were all fixed at zero. The 

software package Mplus (Muthén & Muthén, 2006) was used to estimate all 

models. Two types of estimators are commonly used with ordered polytomous 

data in the program: (1) a robust limited-information weighted least squares 

estimator with a pairwise present approach for missing data (78 out of 16,512 

item responses; 0.005%); and (2) a full-information marginal maximum 

likelihood estimator with robust standard errors using all available data under 

missing data theory (missing at random or missing completely at random). 

Limited-information estimators are not as efficient as full-information estimators, 

yet full-information estimators cannot be used to evaluate the fit of ordered 

polytomous data with a large number unobserved response patterns in the 

program (i.e., due to sparse contingency tables). However, the full-information 

estimator can be used for model comparisons. For these reasons, the limited-

information estimator was used to evaluate model fit, while the full-information 

estimator was used to estimate model parameters and for comparisons of 

likelihood values. 
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Overall goodness-of-fit was evaluated using root mean square error of 

approximation (RMSEA), the comparative fit index (CFI), and the Tucker-Lewis 

index (TLI). Hu and Bentler (1999) suggest that a RMSEA ≤ .06, a CFI ≥ .95, and 

a TLI ≥ .95 are indicative of acceptable fit. The Akaike information criterion 

(AIC; Akaike, 1987) and Bayesian information criterion (BIC; Schwarz, 1978) 

statistics―both decreasing as model fit improves―were used to compare models. 

In addition, the difference between the log-likelihoods for models―distributed as 

a chi-square (adjusted for Satorra-Bentler scaling) with DF1 – DF2 degrees of 

freedom―was used to determine if the more constrained simple structure models 

significantly worsened fit in comparison the less constrained bifactor and complex 

structure models.  

These direct model comparisons are possible because the simple structure 

models are generally nested within both the complex and bifactor structure 

models (DeMars, 2006; Rindskopf & Rose, 1988). With respect to both 

orthogonal and oblique models, the simple structure model is a special case of the 

complex structure model in which all crossloadings have been constrained to zero. 

The simple structure model is also a special case of the bifactor model in which 

the item loadings onto a general factor have all been constrained to zero. It is also 

apparent that orthogonal models are nested within oblique models of similar 

structures. That is, the orthogonal simple structure model is nested within the 

oblique simple structure model, the orthogonal complex structure model is nested 

within the oblique complex structure model, and the orthogonal bifactor structure 
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model is nested within the oblique bifactor structure model. This can be seen most 

readily by noting that the structures in Figure 14 can all be made more general by 

allowing for covariance between the factors (i.e., as is depicted in Figure 15). 

Unfortunately, the nesting of all possible model comparisons is not clear. For 

example, it is unclear whether orthogonal complex or bifactor structure models 

are necessarily more general than the oblique simple structure model. Therefore, 

comparisons of this sort were not pursued in the present study. 

Validity estimates. Validity coefficients were estimated in a two-step 

process. First, models were re-estimated, but with their item parameters fixed to 

values from previous analyses (i.e., parameter estimates from the model 

comparisons). Second, criterion-related validity variables were added to each 

model, and the loadings of each onto the previously identified latent factors were 

freely estimated. That is, validity variables were treated as ―items‖ (i.e., observed, 

fallible indicators of the latent constructs). It is often noted that latent variable 

models can be thought as regression models where the dependent variables are 

observed and the independent variables are latent. In this sense, the validity 

variables in the present analyses were regressed onto the latent factors. Doing so 

allowed for the estimation of communalities (i.e., variance accounted for) in 

patients’ self-reported presenting concerns and DSM-IV-TR diagnoses. Each 

loading (i.e., regression weight) was estimated within a separate analysis in order 

to prevent the variables from affecting one another. 
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In multiple regression analyses it is typically to either explore the 

influence of all predictors on an outcome, the influence of just the most impactful 

predictors on the outcome (i.e., through some iterative strategy), or the influence 

of a substantively meaningful subset of predictors on the outcome. In the present 

analysis, the third strategy was chosen to explore criterion-related validity. That 

is, the ability of the depression factors to explain mood concerns/diagnoses, the 

ability of the anxiety factors to explain anxiety concerns/diagnoses, and the ability 

of the somatization factors to explain health/somatoform concerns/diagnoses was 

examined. When differentiating between mood and anxiety disorder diagnoses, 

both the depression and anxiety factors were used to explain variance in the 

variable (i.e., the validity variable is conceptually related to both factors). In the 

bifactor models, both the domain specific factors (i.e., depression, anxiety, or 

somatization) as well as the general factor (i.e., internalizing) were used to 

explain variance in the validity variables.  

IRT parameter estimates. Multidimensional IRT parameter estimates 

were generated under a graded response model in logistic metric for the model 

shown to demonstrate the greatest construct validity (i.e., acceptable internal 

structure and strong criterion-related validity). Parameter estimates were 

generated for the criterion-related validity variables by (again) treating these 

variables as ―items‖. IRT parameters were found by converting confirmatory 

factor analysis parameter estimates from Mplus into an IRT metric using the 

formulas given by Kamata and Bauer (2008). The authors show that 
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discrimination (a) and loading (λ) parameters for item j can be made equivalent so 

that 

                                                   
jja 
 
,                                                  (9) 

by constraining the residual variance of the latent response variates to unity and 

by standardizing the common factor variance. Under these same scaling 

constraints, the authors show that 
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That is, the IRT difficulty parameter (b) for item j is equal to the common factor 

threshold parameter (ν) divided by the IRT discrimination parameter. 

It is traditional in multidimensional IRT to present item parameters in the 

slope/intercept form. In the expression a (θ – b), multiplying through by a results 

in aθ – ab. From this, the item intercept is defined as d = – ab (note that ν in 

Equation 10 has the same meaning as -d). Using this notation, a two-parameter 

multidimensional IRT model for dichotomous items is given as 
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where ajk is the discrimination parameter for the j
th

 item on the k
th

 latent variable, 

dj is the intercept for the j
th

 item, and θik is ability parameter for the i
th

 person on 

the k
th

 latent variable (Reckase, 2009). The formula is similar to that of a two-

parameter logistic model with the exception that the probability of item 

endorsement is now dependent on multiple θ values. In the case of a bifactor 
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model, only two of the ajk parameters are allowed to be non-zero for the j
th

 item 

(Gibbons & Hedeker, 1992). Thus, items are associated with multiple 

discrimination parameters―one for each relevant latent variable. Generalizations 

to polytomous items are easily made (see Reckase, 2009). The multidimensional 

graded response model in logistic metric is given by 
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where ajk and θik have been previously defined, and djt is the intercept for the t
th

 

category of the j
th

 item. In the case of a bifactor model, again, only two of the ajk 

parameters will be non-zero for the j
th

 item (Gibbons et al., 2007).  

The multidimensional discrimination parameter (MDISC; A) is defined as 
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A is related to the overall discriminability of an item, and conveys the maximum 

slope of the item characteristic surface. The multidimensional difficulty parameter 

(MDIFF; B) is defined as 
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B is related the overall difficulty of an item, and conveys the multidimensional 

location of an item in the direction of maximum discrimination. Multiple B 

parameters exist in polytomous multidimensional IRT models—one for each 

transition between response categories.  
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The relations between latent variables and items in the model can be made 

explicit through item characteristic surfaces and equi-probably contour plots. Due 

to the compensatory nature of the bifactor IRT model (as given in Equations 11 

and 12), the probability of endorsing an item can increase due to either domain 

specific or general latent variables. That is, an infinite combination of low and 

high θ values from each latent variable can result in the same probability of item 

endorsement. Equi-probable contour plots take advantage of the trigonometric 

relations between multidimensional IRT parameters to show the combinations of 

θ values that result in equal probabilities of outcome. Equi-probable contour plots 

were produced in the current analyses to explore the predictive value of the 

bifactor IRT model. 

Diagnostic accuracy. Finally, the classification accuracy of latent variable 

estimates generated under the selected multidimensional model were compared to 

total scores (observed test data) with respect to predicting DSM-IV-TR diagnoses. 

Total scores for depression were computed by summing items from the DEP 

scale, total scores for anxiety were computed by summing items from the ANX 

and PHOB scales, and total scores for somatization were computed by summing 

items from the SOM scale. Estimates of latent factors for each participant were 

produced with the expected a posteriori method. These person parameters were 

then used to compute the expected probability of positive diagnoses—using 

Equation 11—for each participant on all DSM-IV-TR diagnoses.  
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Sensitivity and specificity estimates for the total score model were then 

compared to sensitivity and specificity estimates for the multidimensional model 

as summarized through receiver operating characteristic (ROC) curves. ROC 

curves plot sensitivity (x-axis) by the inverse of specificity (y-axis) in relation to 

increasing values of predictor variables (i.e., scores from the total score vs. 

bifactor models). Doing so allows researchers to visualize the relative balance 

between true positives and false positives for various cutoffs of a predictor. Area 

under the curve (AUC)―a one number summary equal to the probability that a 

patient with a positive diagnosis will be rated higher than a patient with a negative 

diagnosis―was used to summarize the results for each model. DSM-IV-TR 

diagnoses were used as the criteria for the ROC curve analyses (i.e., the predicted 

criteria); however, as mentioned previously, considering DSM-IV-TR diagnoses 

as criteria (i.e., gold-standards) is likely a flawed assumption. Thus, the ROC 

curves should be interpreted with caution. They are included in the present 

analysis only to give a sense of the practical benefits of each model. 

Chapter 3 

Results 

Model Comparisons 

Model fit results are presented in Table 3. The solution for the orthogonal 

complex structure model returned an improper parameter estimate when using 

robust weighted least squares estimation. However, the model successfully 

converged after constraining this parameter to its closest real value. All remaining 
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models converged without difficulty. Absolute and relative fit statistics suggest 

that the orthogonal simple and complex structure solutions provided poor fit for 

the observed data. However, it should be noted that the results for the orthogonal 

complex structure model may be in error due to convergence problems. The 

oblique simple structure, oblique complex structure, oblique bifactor structure, 

and orthogonal bifactor structure models all provided marginal to good fit for the 

observed data.  

The chi-square difference tests indicated significantly worse fit when 

comparing the orthogonal simple structure model to the oblique simple structure 

model (diff χ
2
 (3) = 418.65, p < .001), the orthogonal complex structure model to 

the oblique complex structure model (diff χ
2
 (3) = 18.76, p < .001), and the 

orthogonal bifactor structure model to the oblique bifactor structure model (diff χ
2
 

(2) = 158.61, p < .001). In addition, the orthogonal and oblique simple structure 

models provided significantly worse fit than the orthogonal and oblique complex 

structure models (diff χ
2
 (42) = 728.17, p < .001 and diff χ

2
 (42) = 169.09, p < 

.001 respectively) and the orthogonal and oblique bifactor structure models (diff 

χ
2
 (25) = 219.78, p < .001 and diff χ

2
 (24) = 144.48, p < .001 respectively). The 

AIC and BIC statistics give the same conclusions regarding model comparisons. 

Factor loadings for the orthogonal and oblique simple structure models are 

presented in Table 4. The items in both models loaded highly onto their respective 

dimensions. It should be noted that the correlations between factors in the oblique 

model are very high, and in agreement with previous research on the BSI. It 
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appears as though constraining the shared variance between these latent factors to 

zero in the orthogonal solution greatly contributed to the model’s poor fit.  

Factor loadings for the orthogonal and oblique complex structure models 

are presented in Table 5. The items in both models tended to load highly onto 

their respective dimensions (e.g., items from the DEP scale tended to load most 

highly onto the depression dimension). However, it is notable that items from the 

ANX scale loaded poorly onto the anxiety dimension in the oblique solution. The 

authors of the BSI note that the anxiety-related scales from the BSI appear to 

assess sub-domains of the more general anxiety construct. Thus, it seems 

plausible that the anxiety factor should be split into separate dimensions. 

However, attempts to allow items from the scale to load onto separate factors 

were unsuccessful. It is also noteworthy that despite allowing items to crossload, 

the three factors continued to correlate highly in the oblique structure solution 

(albeit less highly than in the oblique simple structure model). Crossloadings 

alone could not account for residual correlations between items in the orthogonal 

model (yet again, convergence problems made it difficult to evaluate fit in this 

instance).  

Factor loadings for the orthogonal and oblique bifactor structure models 

are presented in Table 6. The items in both models loaded highly onto their 

respective domain specific factors as well as a common general factor. An 

exception to this can be found in the orthogonal model, where items from the 

ANX scale tended to load poorly onto the domain specific anxiety dimension. As 
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with the oblique complex structure model, this can be taken as evidence that the 

anxiety factor comprises multiple dimensions. Yet, again, attempts to allow items 

from the scale to load onto separate factors were unsuccessful.  In contrast to the 

orthogonal simple and orthogonal complex structure models, the orthogonal 

bifactor structure model provided acceptable fit for the data. This result can be 

better understood by examining the item loadings onto the general dimension. In 

the oblique bifactor model, the depression, anxiety, and somatization factors 

correlated highly with one another. However, loadings onto the general factor, in 

this solution, were modest. In the orthogonal bifactor model, where the 

depression, anxiety, and somatoform factors were not allowed to correlate, item 

loadings onto the general factor were much stronger. It appears as though local 

dependencies between items caused by correlated domain specific factors were 

effectively accounted for by the introduction of a general factor. That is, it 

became possible to form orthogonal dimensions by explaining item variance with 

respect to both domain specific and general factors.  

The results of model fit suggest that the BSI does not comprise orthogonal 

factors with simple structure. Allowing factors to correlate (i.e., oblique 

solutions), whether through simple, complex, or bifactor structure solutions, 

improved model fit. Allowing items to crossload, either through complex or 

bifactor structure solutions, also generally improved model fit. Four 

multidimensional models were found to provide acceptable fit for the internal 

structure of the BSI: the oblique simple structure model, the oblique complex 
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structure model, the oblique bifactor structure model, and the orthogonal bifactor 

structure model. Standard practice is to select the least complex, adequately fitting 

model of internal structure (i.e., the oblique simple structure solution). However, 

it has been asserted in the present paper that examining evidence related to 

criterion-related validity variables should be used to determine the overall value 

of a latent variable model. Therefore, the four models were next subjected to 

criterion-like validation in order to determine which model provided the greatest 

overall construct validity. 

Validity Estimates  

Factor loadings for the criterion-related validity variables onto the oblique 

simple, oblique complex, oblique bifactor, and orthogonal bifactor structure 

models are presented in Table 7. Estimated communalities (variance accounted 

for) in each validity variable are also presented in Table 7. For ease of 

interpretation, communality estimates for the four models are shown graphically 

in Figures 16 and 17. As can be seen in Table 7 and Figure 16, the models were 

generally comparable in their ability to account for variance in presenting 

concerns and DSM-IV-TR diagnoses. Notably, however, the orthogonal bifactor 

structure model outperformed all other models in the assessment of health 

concerns presentations and somatoform disorder diagnoses. While these results 

appear promising, it should be noted that the estimates were associated with 

relatively large standard errors. Thus, while a trend can be noted in the data, some 

skepticism is warranted. 
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Table 7 also reveals that the bifactor models (both oblique and orthogonal) 

outperformed the oblique simple and oblique complex structure models in 

differentiating between mood disorder diagnoses and anxiety disorder diagnoses. 

Figure 17 shows the relationship graphically. As can be seen, communalities were 

estimated in three separate runs for each model: first, using just the depression 

factor; second, using just the anxiety factor; and third, using both the depression 

and the anxiety factors. (Note that the internalizing factor was always used to 

differentiate between the two disorders in the bifactor models as well.) When 

differentiating between the two disorders using just the depression factor or just 

the anxiety factor, the oblique and orthogonal bifactor models demonstrated clear 

superiority in comparison to the oblique simple and oblique complex structure 

models. These findings appear to be the direct result of modeling common 

variance with a general (internalizing) factor.  

These results can be better understood by noting that the oblique simple 

and oblique complex structure models performed as well as the bifactor structure 

models in differentiating between mood and anxiety disorders when the variable 

was allowed to load onto both the depression and the anxiety factors 

simultaneously (Figure 17). This likely occurred because the depression and 

anxiety factors in the oblique simple and complex structure models comprised 

amalgams of general and domain specific variance. Thus, the individual factors 

alone could not separate the three apparent sources of measurement variance on 

the BSI: that due specifically to depression, specifically to anxiety, and 



87 

 

specifically to internalizing. However, a multiple regression-like weighted 

composite of both factors (i.e., similar to the current practice of using configural 

patterns of scales to differentiate between clinical groups) successfully teased 

apart the various sources of variance (i.e., similar to partial regression weights). 

The bifactor models―through their initial separation of depression specific, 

anxiety specific, and internalizing specific variance―successfully differentiated 

between disorders by incorporating the internalizing factor. 

The oblique and orthogonal bifactor structures appear to have provided the 

greatest construct validity for the BSI. Both models successfully represented the 

internal structure of the measure, and both demonstrated superiority with respect 

to their relationships with criterion-related validity variables. However, in 

examining the validity variable loadings presented in Table 7, it becomes apparent 

that the orthogonal bifactor model provided clearer conceptual organization for 

the BSI (i.e., better content validity). In the oblique bifactor solution, it can be 

observed that the internalizing factor tended to overlap with the depression factor. 

Note, for example, that diagnoses of a mood disorder loaded more highly onto the 

internalizing factor than the depression factor in the oblique bifactor solution. In 

the orthogonal bifactor solution, conversely, the internalizing, depression, anxiety, 

and somatization factors appear to represent more distinct constructs.  

IRT Parameter Estimates 

The orthogonal bifactor model provided good fit for the internal structure 

of the BSI, demonstrated advantages with respect to predicting criterion-related 
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validity variables, and made for relatively parsimonious interpretations of the 

latent constructs. Accordingly, the model was chosen for a subsequent 

multidimensional IRT analysis. Item parameter estimates from a bifactor graded 

response model in logistic metric are presented in Table 8. In some respects, the 

item parameters for the bifactor graded response model in Table 8 convey much 

of the same information as the factor loadings presented above. Indeed, there is a 

direct relation between the strength of item loading parameters and the strength of 

item discrimination parameters. However, the A and B parameters provide unique 

perspectives on the overall relations between items and sets of latent variables. It 

can readily be observed that some items were highly discriminating overall in the 

bifactor model (e.g., item 17), while others were less discriminating (e.g., item 

49). Nevertheless, allowing each item to load onto multiple latent variables 

generally assured some meaningfully discrimination (i.e., the A parameters are 

consistently above 1). Most of the B parameters in Table 8 are positive. This 

implies that items on the BSI were difficult to endorse. In other words, the 

symptoms were endorsed only by individuals with more severe levels of 

psychological distress. 

 The bottom rows in Table 8 present parameter estimates for the 

dichotomous criterion-related validity variables. Both the presenting concerns and 

DSM-IV-TR diagnoses variables had smaller A parameters than did items from 

the BSI. This implies that scale items were more closely related to the bifactor 

model than were validity variables. In addition, the presenting concerns variables 



89 

 

tended to have smaller A parameters in comparison to the DSM-IV-TR diagnosis 

variables; the latent structure of the bifactor model was more closely related to 

patients’ diagnoses than patients’ self-reported concerns. It can also be observed 

that B parameters for the mood and anxiety presenting concerns variables were 

larger than the B parameters for the mood and anxiety diagnosis variables. That is, 

patients were more likely to be diagnosed with a mood or anxiety disorder than 

present with a mood or anxiety concern. This likely reflects the high number of 

patients within the current sample who primarily sought assessment for a 

neurocognitive disorder (e.g., Attention-Deficit/Hyperactivity Disorder and 

Learning Disorders) rather than emotional distress. 

The bifactor model was most discriminating for the health concerns 

presentation and somatoform disorders diagnosis variables; however, both events 

were quite rare. Indeed, the B parameters for both are substantially higher than 

those for mood and anxiety concerns/diagnoses. The A parameters for the mood 

concerns presentation and mood disorders diagnosis variables were also relatively 

high. This suggests that the bifactor model adequately assessed mood-related 

distress. The anxiety concerns presentation and anxiety disorders diagnosis 

variables, on the other hand, were less accurately assessed by the bifactor model. 

These results, along with the diminished factor loadings for ANX items onto the 

anxiety factor (Table 6), suggest that anxiety-related distress was not well 

captured by the bifactor model. Parameter estimates for discriminating between 

diagnoses of an anxiety disorder and a mood disorder are also provided in Table 
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8. As can be seen, the B parameters for each variable were near 0. This reflects a 

relative overall balance between the two (pure) disorders within the current 

sample. The A parameter estimates suggest that the disorders were well 

differentiated by the combination of the depression and internalizing latent 

variables, but poorly differentiated by the combination of anxiety and 

internalizing latent variables.  

It is of interest to consider the relative contribution of each latent variable 

towards the probability of being diagnosed with a DSM-IV-TR disorder. This can 

be accomplished by examining the a values in Table 8—the item/validity variable 

specific discrimination parameters. With respect to the mood and anxiety 

disorders diagnosis variables, domain specific (depression or anxiety) and general 

(internalizing) factors exerted relatively balanced influences on the validity 

variables (i.e., the ratios of the a parameters are all less than 2:1). That is, the 

probability of patients being diagnosed with a mood disorder increased along with 

both depression and internalizing, and the probability of patients being diagnosed 

with an anxiety disorder increased along with both anxiety and internalizing. This 

was less true for the somatoform disorders diagnosis variable, where internalizing 

contributed relatively little towards the probability of a positive diagnosis. As 

such, the results suggest that mood and anxiety disorders are closely related to 

internalizing, but somatoform disorders are less influenced by the construct.  

These relations can be visualized through item characteristic surfaces for 

the mood disorders diagnosis variable in Figure 18, the anxiety disorders 
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diagnosis variable in Figure 19, and the somatoform disorders diagnosis variable 

in Figure 20. As can be seen in the figures, the probability of patients being 

diagnosed with a mood disorder (Figure 18) or an anxiety disorder (Figure 19) 

increased as both the domain specific (depression or anxiety) and the general 

(internalizing) factors increased. This result is confirmed in Figure 21, the .50 

equi-probable contour for the diagnosis of a mood disorder. Careful study of 

Figure 21 confirms that both domain specific depression and internalizing played 

prominent roles in the diagnosis of a mood disorder. This is less true in Figure 20, 

where the probability of a somatoform disorder diagnosis was almost exclusively 

related to somatization.  

The final two rows of Table 8 concern parameter estimates for the bifactor 

model’s ability to differentiate between patients diagnosed with just an anxiety 

disorder and patients diagnosed with just a mood disorder. As can be seen, when 

differentiating between the disorders by means of the depression and internalizing 

latent variables or the anxiety and internalizing latent variables, the internalizing 

latent variable played a small role. Indeed, the item characteristic surfaces in 

Figures 22 and 23 suggest that patients’ levels of internalizing had almost no 

impact on differentiating between the disorders. The nearly vertical equi-probable 

contour in Figure 24 for a .50 probability of discriminating between the disorders 

by means of the depression and internalizing latent variables also conveys that the 

latter plays almost no role in the probability of diagnosis. This is precisely what 

one would expect from the orthogonal bifactor solution. The model appears to 
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have redistributed common variance between factors (i.e., the strong positive 

correlation in the oblique solution) into an orthogonal internalizing dimension. 

These results imply that domain specific depression and domain specific anxiety 

do indeed capture the unique components of their respective disorders. 

Internalizing contributed to the probability of a patient being diagnosed with a 

mood or anxiety disorder, but played almost no role in discriminating between 

disorders—it is a construct shared by both groups. 

Diagnostic Accuracy 

ROC curves for prediction of a mood disorder diagnosis are presented in 

Figure 25. As can be seen, the total score model and the bifactor model were very 

similar in their diagnostic accuracy. The AUCs for the mood disorders diagnosis 

variable predicted from the total score model and from the bifactor model were 

both .78. Thus, it appears as though the bifactor model provided no better 

diagnostic accuracy in the assessment of mood disorders. The ROC curves for 

prediction of the anxiety disorders diagnosis variable are presented in Figure 26. 

Again, the total score model and the bifactor model were very similar in their 

diagnostic accuracy. The AUC for the total score model was .69, slightly better 

than the .68 AUC for the bifactor model. Thus, it appears as though the bifactor 

model provided no better diagnostic accuracy in the assessment of anxiety 

disorders. The ROC curves for prediction of the somatoform disorders diagnosis 

variable are presented in Figure 27. As can be seen, the bifactor model appears to 

have provided better diagnostic accuracy than the total score model. This was 
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confirmed by the AUC for total scores of .74 in comparison to the AUC for the 

bifactor model of .77. It appears as though the bifactor model provided better 

diagnostic accuracy in the assessment of somatoform disorders. It should be 

noted, however, that these particular ROC curves are relativity imprecise due to 

the rarity of somatoform diagnoses (this is reflected in the jagged contour of the 

curves). 

The ROC curves for differentiating between just an anxiety disorder 

diagnosis and just a mood disorder diagnosis by means of the depression and 

internalizing variables in the bifactor model versus depression scores in the total 

score model are presented in Figure 28. It can be observed that the bifactor model 

tended to provide better diagnostic accuracy than did the total score model. This 

was confirmed by the AUC for the total score model of .72, which was lower than 

the AUC for the bifactor model of .76. The ROC curves for differentiating 

between the disorders by means of the anxiety and internalizing variables in the 

bifactor model versus anxiety total scores in the total score model are presented in 

Figure 29. Neither model provided great accuracy in differentiating between the 

two disorders. However, the total score model ROC curve was particularly poor, 

suggesting that some patients diagnosed with just an anxiety disorder actually had 

lower anxiety total scores than patients diagnosed with just a mood disorder. The 

ROC curve for the bifactor model, in contrast, was consistently positive. In 

addition, the AUC for total scores of .52 was lower than the .58 AUC for the 
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bifactor model. Thus, it appears as though the bifactor model provided better, but 

not good, diagnostic accuracy in comparison to the total score model. 

Chapter 4 

Discussion 

Findings 

Confirmatory factor analysis and IRT techniques were applied to a clinical 

data set to explore modern psychometric theory’s impact on test validity in 

clinical assessment. Specifically, the analyses demonstrated purposeful 

integration of traditional and modern psychometric techniques in model selection. 

The hypotheses of this study can generally be accepted. To summarize, in 

comparison to the unidimensional/total score model, multidimensional models 

provided better representation of the BSI’s internal structure and demonstrated 

improved diagnostic accuracy by explaining more variance in some criterion-

related variables. 

Criterion-related validity variables consisted of DSM-IV-TR diagnoses 

and patients’ self-reported reasons for seeking psychological treatment or 

assessment. Configural MMPI-2 profiles revealed that patients diagnosed with 

DSM-IV-TR psychiatric disorders reported more symptoms of psychological 

distress than did patients who were not; however, the profiles could not 

meaningfully differentiate between disorders. Therefore, criterion-related validity 

variables were treated as fallible indicators of latent constructs, and were analyzed 

much like scale items in latent variable analyses. The variables were treated as 
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criteria in the ROC curve analyses for the purposes of estimating familiar 

statistics related to the diagnostic accuracy of clinical measures (i.e., sensitivity 

and specificity). 

Confirmatory factor analyses revealed that all multidimensional latent 

factor models provided better fit for the BSI than did a unidimensional model. 

The oblique simple structure, oblique complex structure, oblique bifactor 

structure, and orthogonal bifactor structure models all provided acceptable overall 

fit for the measure. However, the orthogonal complex structure model was not 

successfully estimated, and thus could not be accurately evaluated. In addition, 

variance in the ANX scale was poorly captured by the oblique complex and 

orthogonal bifactor structure models. It appears that the ANX scale requires its 

own domain specific factor (e.g., a bifactor within bifactor model). Although not 

reported with the present results, attempts to account for such latent sub-structures 

were made (e.g., correlated errors, correlated factors, and bifactor within bifactor 

models), but were met with convergence problems and peculiar parameter 

estimates. As such, the anxiety factor, in this instance, more prominently 

represents phobic distress rather than general anxiety. 

All models were generally comparable with respect to explaining variance 

in criterion-related validity variables; however, two exceptions were noted in the 

data. First, the bifactor models (both oblique and orthogonal) explained more 

variance in health concerns presentations and somatoform disorder diagnoses in 

comparison to simple or complex structure models. ROC curve analyses 
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confirmed that the orthogonal bifactor structure model provided better diagnostic 

accuracy in comparison to unidimensional total scores. Second, the bifactor 

models explained more variance when used to differentiate between patients 

diagnosed with just an anxiety disorder and patients diagnosed with just a mood 

disorder. ROC curve analyses again confirmed that the orthogonal bifactor 

structure model provided better diagnostic accuracy in comparison to 

unidimensional total scores. However, this was only true when the depression and 

anxiety factors were used in isolation. When both factors (and total scores) were 

used simultaneously to differentiate between disorders, there were no observed 

differences in variance accounted for and diagnostic accuracy among the models.  

Of the multidimensional structures considered in the present analyses, the 

orthogonal bifactor model appeared to provide the greatest construct validity: 

good representation of internal structure, strong criterion-related validity, and 

relatively parsimonious partitioning of variance with respect to content validity. 

IRT analyses revealed that the orthogonal bifactor model formed four distinct 

constructs: domain specific depression, domain specific anxiety, domain specific 

somatization, and general internalizing. Diagnoses of mood disorders and anxiety 

disorders were both strongly related to their respective domain specific latent 

variables (i.e., depression and anxiety respectively) and to the general 

internalizing latent variable. Diagnoses of somatoform disorders were strongly 

related to domain specific somatization, but were weakly related to internalizing. 

When differentiating between patients diagnosed with just an anxiety disorder and 



97 

 

patients diagnosed with just a mood disorder, the depression latent variable and 

the anxiety latent variable (to a lesser extent) provided meaningful discrimination, 

but the internalizing factor did not. The results suggest that domain specific latent 

variables can effectively be used to discriminate between related psychiatric 

disorders.  

Limitations 

 The results of this study are limited by the validity of the criterion-related 

variables. Uncertainty in these variables could have resulted from three primary 

issues. First, DSM-IV-TR diagnoses were made by clinical psychology graduate 

students with one or more years of training. It is likely that these diagnoses were, 

on occasion, inaccurate. Indeed, even if the DSM-IV-TR diagnoses had come 

from expert clinicians, it is likely that some false positives and some false 

negatives would have been present. Compounding this, using multiple clinical 

psychology graduate students to assign psychiatric diagnoses is itself a source of 

error variance (i.e., variance between raters). Second, DSM-IV-TR diagnoses 

were collapsed into three general categories of psychological distress: mood 

disorders, anxiety disorders, and somatoform disorders. This was done, in part, to 

provide clarity in the results. It was beneficial, for example, to have the 

depression latent variable predict the mood disorders diagnosis variable. Having 

the depression latent variable predict multiple unique mood disorder variables 

(e.g., dysthymic disorder, major depressive disorder, mood disorder due to a 

general medical condition, etc.) could have obscured the results. Third, the DSM-
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IV-TR is itself a latent variable model. Like most models, it does not flawlessly 

represent reality. Indeed, the DSM is regularly revised with the goal of making 

the model more congruent with evolving clinical theories. Therefore, the DSM-

IV-TR, as well as the more general process of psychiatric diagnosis, should be 

regarded as imperfect. 

 These limitations in validity variables complicated the process of criterion 

validation. Fortunately, latent variable models are designed to account for this 

very issue. Although DSM-IV-TR diagnoses used in the present study were 

undoubtedly flawed, they likely maintained some degree of validity. In such 

instances, it is useful to look for converging evidence. Indeed, philosophers of 

science would assert that these sorts of conclusions are both natural and 

unavoidable. In the present situation, it can be argued that even with considerable 

error being introduced into the criterion-related variables, there is no reason to 

expect systematic bias. That is, all models should have been equally affected by 

the error. The questions posed in the present study concerned the relative, not the 

absolute, validity of each model. Therefore, the topic could still be addressed 

despite attenuations in validity coefficients. 

 The results of the current study were also limited by small sample size. 

While 688 participants is relativity large for a study involving clinical 

populations, it is not ideal for the types of analyses conducted in this study. 

Indeed, latent variable models, particularly those that employ complex or bifactor 

structures, place heavy demands on the information provided by samples. Also, 
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researchers who conduct latent variable analyses without explicit hypotheses 

about the latent structure of their data are at risk of capitalizing on sample specific 

nuances. That is, chosen models may mimic the characteristics of a particular 

sample rather than the larger population that the sample is meant to represent. In 

such situations, it is always best to split the sample in two for the purposes of 

cross validation. In the current study, specific hypotheses were made about the 

latent structure of the BSI; however, the work was clearly both exploratory and 

confirmatory in nature. Thus, it would have been best to replicate the results in a 

second sample. However, splitting an already limited sample into two subgroups 

would have seriously threatened most conclusions regarding the models.  

Limitations in sample size also restricted the operationalization of 

criterion-related validity variables. As already mentioned, specific DSM-IV-TR 

disorders were collapsed into general categories of psychological distress. This 

was done for clarity, but also out of necessity. A sample of 688 patients in an 

outpatient setting is far too small to produce large frequencies of specific DSM-

IV-TR disorders; sample sizes within most of the specific diagnostic categories 

were not large enough for statistical inference. Even with collapsed categories, the 

somatoform disorders variable had very few cases (n = 12), leaving all associated 

parameter estimates subject to considerable error.  

 It should also be noted that two major subgroups of patients were present 

in the data: a group primarily seeking psychological counseling and a group 

primarily seeking psychological assessment. There is potential for measurement 
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variance in samples comprising multiple populations. That is, differential item 

functioning may have been present with respect to the treatment and assessment 

subgroups. It is notable that diagnostic rates differed between groups. In the 

assessment group, 25% of patients were diagnosed with a mood disorders, 24% 

were diagnosed with an anxiety disorder, 1% were diagnosed with a somatoform 

disorder, and 82% were diagnosed with some other DSM-IV-TR disorder. In the 

counseling group, 36% of patients were diagnosed with a mood disorders, 29% 

were diagnosed with an anxiety disorder, 3% were diagnosed with a somatoform 

disorder, and 89% were diagnosed with some other DSM-IV-TR disorder. These 

discrepancies pose the possibility of differential item functioning, but certainly do 

not assure it. It is likely that the treatment and assessment groups differed on 

meaningful psychological characteristics as well (possibly explaining the 

differential rates of diagnoses). Only explicit evaluations of the latent variable 

models’ parameters could have adequately addressed this question. However, the 

subgroups were not large enough to perform meaningful differential item 

functioning analyses for the complex latent structures considered in this study. 

That is, differential item functioning would have been difficult to detect even if 

present in the data. 

Hypotheses Revisited 

 There is little question that the conclusions rendered in the present study 

are complicated by methodological limitations; however, some conclusions seem 

apparent despite the challenges. For example, it does seem clear that the internal 
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structure of the BSI was not accurately represented by the orthogonal simple 

structure model. Model fit, in this instance, was exceedingly poor, and left little 

doubt that that sample data were best represented with some type of 

multidimensional latent structure. Models that allowed for crossloadings and/or 

correlated latent variables appeared to provide much better representations of the 

BSI’s internal structure. However, conclusions related to criterion-related validity 

of the models were less robust. Ambiguity in the validity criteria and limitations 

in sample size left these results subject to doubt.  

An examination of participants from a less diverse population could have 

diminished some of the problems arising from the previously mentioned 

limitations. Indeed, much of the work on modern psychometric modeling involves 

the use of simulation data and homogeneous samples. In contrast, an explicit goal 

of the present study was to examine the value of modern psychometric theory in 

clinical practice. Thus, while the present results were limited by ambiguity, they 

were also reinforced by generalizability. These issues reflect the inevitable trade-

off between highly controlled experimental research, which can lack real world 

meaning, and archival research of existing clinical data, which can lack control 

and precision. It is noteworthy that the orthogonal bifactor model demonstrated 

improved construct validity despite poorly defined and measured criterion 

variables. Furthermore, the conclusions are bolstered by their convergence with 

emerging clinical and measurement theories. While caution is necessary in 

interpreting the results, there is cause to draw meaningful conclusions. 
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Implications 

 The results of the present study suggest that orthogonal simple structure 

models are not appropriate for the latent structure of depression, anxiety, and 

somatization as measured by self-report inventories. Whether or not these results 

apply more generally to all types of clinical measures is an empirical question; 

however, literature reviewed earlier in this paper suggests that this is likely true. It 

is noteworthy that the internal structure of the BSI was adequately modeled with 

the oblique simple structure model. Thus, allowing factors to correlate may 

dramatically improve the fit of simple structure models for some types of clinical 

instruments―a technique that has long been used to improve factor analytic work 

(see Mulaik, 2010).  

McDonald (1999) noted that factorially-simple (independent clusters) 

solutions greatly simplify parameter estimation and model interpretations in 

comparison to factorially-complex solutions. Allowing items to load onto multiple 

factors can create confusion. Because of this, McDonald recommends that 

composite measures be deconstructed into their more basic unidimensional, and 

potentially correlated subtests. That is, researchers should alter tests to fit 

desirable psychometric models. Doing so would allow psychologists to maintain 

useful content domains of psychological distress while improving the 

psychometric properties of their clinical measures. In some respects, the authors 

of the BSI―as well as the authors of other well-known psychological 

measures―have taken this very path. Years of factor analytic refinements have 
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focused on reducing psychological measures to their more basic components. 

And, although the strategy has improved the dimensionality of clinical measures, 

it has also left a notable byproduct―oblique factors. By focusing on specific 

symptoms or clusters of psychological distress, models have not explicitly 

accounted for the higher-order and/or hierarchical associations in clinical data. 

These unexplained covariances could represent meaningful elements of clinically 

theory.  

In the current study, the oblique simple structure model provided a 

parsimonious representation of the BSI’s internal structure. However, strong 

positive correlations between the depression, anxiety, and somatization factors in 

the model suggest that further complexity underlies the data. Just as observed 

correlations between test items are interpreted as indications of latent variables, 

model-implied correlations between latent variables can be interpreted as 

indications of additional unexplained latent structure. Thus, while we may choose 

to interpret the depression, anxiety, and somatization factors of the BSI as 

unidimensional-like entities, correlated factors within the model suggest that there 

remains a substantial amount of unexplained common variance. This common 

variance appears to have manifested itself on the BSI through strong positive 

correlations between anxiety-related items, depression-related items, and, to a 

lesser extent, somatization-related items. 

An alternative strategy to scale refinement is to alter psychometric models 

to fit desirable tests. That is, a test developer may instead choose to fit more 
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complex latent structures to scales already shown to provide useful clinical 

measurement. In the present study, complex models of latent 

psychopathology―the complex and bifactor structure solutions―outperformed 

the oblique simple structure model. In particular, the orthogonal bifactor structure 

model emerged as an approach to scale refinement that provides a good balance 

between accurate representation of internal structure and strong criterion-related 

validity.  

The orthogonal bifactor structure model has the ability to tease apart the 

latent relations between otherwise correlated factors and/or items. On the BSI, 

correlations between the depression, anxiety, and somatization factors were 

effectively accounted for through the inclusion of a general internalizing 

construct. Unfortunately, this more complex solution also altered the meaning of 

the depression, anxiety, and somatization factors within the model: each 

represents domain specific variance that is free of internalizing. The depression 

factor, for example, represents depression-specific variance that is independent of 

internalizing variance. The meaning of domain specific latent constructs such as 

these is likely foreign to most clinical psychologists. What would it mean, for 

example, for a patient to be low on domain specific depression but high on 

general internalizing? The answer is not apparent. McDonald’s (1999) 

recommendation for factorially-simple models would appear to avoid these 

complex interpretation issues.  
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Users of the MMPI-2-RF have run into similar challenges in interpreting 

patients’ scores. The measure differs from the MMPI-2 in that the clinical scales 

have been restructured so that each represents a domain specific construct that is 

independent of a more general ―demoralization‖ construct. Critics of the MMPI-

2-RF argue that these content specific scales are ―alien‖ to clinical psychologists 

(Nichols, 2006). Yet, the MMPI-2-RF developers did not use factorially-complex 

models to create domain specific factors; rather, the authors deconstructed the 

MMPI-2 clinical scales into their more basic (oblique) unidimensional 

subtests―the very recommendation offered by McDonald (1999). Thus, there 

may be no avoiding that refinements of clinical scales based on modern 

psychometric theory will alter meaning. This may be true whether done through 

factorially-simple models or through factorially-complex models.  

It is offered that refinements of scales based on these two seemingly 

opposing methods are, as it is said, two sides of the same coin. Both methods 

attempt to account for multidimensionality on supposedly unidimensional scales. 

Oblique factorially-simple models do so by deconstructing measures into more 

basic unidimensional, correlated components. Orthogonal factorially-complex 

models do so by deconstructing conglomerations of variance into more basic, 

uncorrelated domains. In sum, a primary difference between these 

multidimensional factorially-simple models and multidimensional factorially-

complex models is the formation of oblique versus orthogonal factors. The 

othrogonal bifactor solution represents a factorially-complex model where latent 
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relations between factors are explained by a general source of variance shared by 

all items (McLeod, Swygert, & Thissen, 2001). Such models seem appropriate 

when general domains of distress are relevant to psychological constructs. The 

oblique simple structure model represents a factorially-simple model where latent 

relations between factors are not explicitly explained, but are acknowledged 

through correlations among factors. Such models also seem appropriate when 

general domains of distress are relevant for various forms of psychopathology, but 

are, for obvious reasons, less comprehensive and less accurate. The results of the 

present study suggest that there are important differences between the manner in 

which external validity is maximized in the oblique simple structure model and 

the orthogonal bifactor structure model. 

When used to diagnose psychiatric disorders―to differentiate between 

impaired versus non-impaired populations―the orthogonal bifactor model and the 

oblique simple structure model performed equally well. The reason for this was 

revealed in the multidimensional IRT analyses―both general and domain specific 

sources of variance contributed to diagnoses. Thus, while the latent variables 

formed in the oblique simple structure model confounded combinations of 

common and unique variance, both sources of variances were pertinent to the 

matter at hand. Althouh imprecise, it was not necessary to separate the two 

sources of variance with respect to modeling the overall probability of positive 

diagnoses.  
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The oblique simple structure model and the orthogonal bifactor structure 

model also provided equivalent diagnostic accuracy when all latent variables were 

used simultaneously to differentiate between patients diagnosed with just an 

anxiety disorder and patients diagnosed with just a mood disorder. However, the 

oblique simple structure model performed less well when the factors were used in 

isolation. The reason for this was again revealed in the multidimensional IRT 

analyses. When differentiating between clinical groups, only domain specific 

variance contributed to accurate diagnoses. Thus, the latent variables in the 

oblique simple structure model confounded combinations of useful domain 

specific variance and useless general variance. By using all factors simultaneously 

to differentiate between clinical groups, a regression-like multivariate prediction 

equation emerged that suppressed the general (useless) variance and expressed the 

domain specific (useful) variance. The bifactor model, on the other hand, 

separated these distinct sources of variance from the onset. A complex regression-

like equation is not needed when meaningful variance has already been partialed 

out of the observed variables. It is somewhat ironic that factorially-simple models 

lead to complex prediction schemes, while factorially-complex models lead to 

simple prediction schemes.  

Combining principles of modern and traditional psychometric theory leads 

to a richer understanding of clinical measures and improves measurement 

validity. Yet, there remains an obvious question as to which multidimensional 

latent variable model should be selected for scale development, refinement, and 
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interpretation. It must be realized that this is a question without a definitive 

answer. The multidimensional models considered in this study are all but certain 

to be incorrect approximations of true latent structure. A more appropriate 

question to ask is which model provides the best overall construct validity within 

specific assessment circumstances. It has been argued that the oblique simple 

structure model and the orthogonal bifactor structure model hold great promise in 

general for improving measurement in clinical psychology. The models represent 

related methods of solving the same problem―complexity in clinical data. Some 

general comments can be made about the appropriateness of each. 

First, it is likely that the orthogonal bifactor model more closely 

approximates the true latent structure of psychopathology. This statement rests on 

the assumption that truth is complex. The orthogonal bifactor model, which 

appears to be a more general structure of latent psychological distress, poses 

fewer assumptions about reality. When a model is made simpler―constrained―it 

is likely true that the simplification was done in error. As such, generality is 

typically closer to truth. If a researcher or clinician whishes to employ the model 

that most closely approximates truth, the orthogonal bifactor solution is to be 

preferred. 

Second, it must also be acknowledged that complexity comes at a price. 

Factorially-complex, multidimensional latent variable models have the potential 

to greatly complicate psychometric modeling and the interpretability of clinical 

measures. Indeed, such complications were observed in the present study with the 
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orthogonal bifactor solution. The formation of domain specific continuums of 

variance led to unrecognizable constructs of psychopathology as well as 

unexpected patterns of item loadings. Simple structure models are made more 

palatable by their ability to maintain recognizable constructs. In addition, the 

simple structure model represents a riskier prediction of reality. The purpose of 

proposing models in science is to give structure to the world. As models become 

increasingly vague, so too does our knowledge. There is good reason to favor 

simplicity when simple models make accurate predictions. Such models make 

scientists more efficient in their work. To the extent that the oblique simple 

structure model can simplify the world while making accurate predictions, it is to 

be preferred. 

Finally, it should also be apparent that some simplifications can be made 

to models without drastically diminishing their validity. As a more general 

structure, the bifactor model should provide validity coefficients that are at least 

equivalent to those provided by the oblique simple structure model (Mulaik & 

Quartetti, 1997). Divergence among the item discrimination parameters for the 

internalizing latent variable would likely diminish the value of the oblique simple 

structure model. However, the orthogonal bifactor structure model’s ability to 

improve accuracy may not excuse its added complexity. Necessity of the model is 

dependent on particular assessment circumstances. In the present study, it was 

found that the oblique simple structure model generally performed as well as the 

bifactor structure model in identifying psychiatric disorders among outpatients. 
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However, the bifactor model demonstrated superiority when differentiating 

between disorders―a more complex task. Thus, it can be argued that the simple 

structure model is appropriate for the identification of any psychiatric disorder, 

while the bifactor model is appropriate for the identification of specific 

psychiatric disorders. Yet there was convergence in the diagnostic accuracy of the 

models when all available sources of variance were called upon. Much like the 

practice of using confirgural patterns to evaluate MMPI-2 scales, multivariate 

interpretations of oblique simple structure models can be used in lieu of the 

bifactor structure model. The decision as to which structure is preferred is perhaps 

best made by test users and substantive theorists rather than test developers and 

psychometricians. 

Future Directions and Conclusion 

Simulation work is needed to compare the diagnostic benefits between the 

oblique simple and orthogonal bifactor structures. Specifically, comparisons of 

diagnostic sensitivity and specificity between models under various conditions 

would help test developers and clinicians decide if the added complexity of the 

bifactor model is warranted. Such work must be guided by modern and traditional 

psychometric techniques. As has been demonstrated, both are important in the 

evaluation of construct validity. Finding that the orthogonal bifactor model better 

represents the internal structure of a measure is not necessarily sufficient for it to 

replace an oblique simple structure model. Rather, it should be demonstrated that 

the model meaningfully improves diagnostic accuracy. It is of interest to 
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determine if scales can be designed to more effectively account for domain 

specific and general variance. Computer adaptive testing represents an area of 

growth where the bifactor model could be utilized to maximize diagnostic 

accuracy in this regard.  

 In the interim, there is good reason for test developers and test users to 

consider complex models of psychological distress in their work. Clinical 

theorists have long proposed models of psychopathology that are much richer 

than the supposedly unidimensional constructs measured by existing tests. As 

measurement theory progresses, so too will clinical psychologists’ ability to 

measure psychiatric populations in accordance with complex theories. 

Exploration of complex latent variable models―particular those in harmony with 

clinical theory―is encouraged. Traditional practice of selecting just a single 

model to represent the internal structure of a measure may no longer be 

appropriate. Rather, objective analyses of the overall construct validity of multiple 

and diverse models of internal structure are warranted. For example, users of the 

BSI should consider the measure as having several potential multidimensional 

latent structures. Patients’ responses can be interpreted through an orthogonal 

bifactor structure model or through an oblique simple structure model dependent 

upon the circumstances of assessment. Users of the MMPI-2-RF might consider 

these same interpretive strategies. For example, it is probable that diagnoses of 

psychiatric disorders will be more accurate when assigned based upon patients’ 

endorsement of content specific items (i.e., items from a specific Restructured 



112 

 

Clinical scale) as well as general items (i.e., items from the 

Emotional/Internalizing Dysfunction [EID] scale or the Demoralization [RCd] 

scale). 

Work must also progress in determining the suitability of the bifactor 

model for various forms of psychological distress. The model is but one of many 

possible multidimensional structures that could account for latent 

psychopathology on clinical measures. It is important to note that the bifactor 

model is not a panacea for all possible psychiatric disorders. There are numerous 

forms of psychological distress, and the structure of each is likely distinct. Latent 

psychopathology might consist of combinations of unidimensional and 

multidimensional structures for both continuous and discrete latent variables. 

While the task of organizing this latent structure may seem daunting, modern 

psychometric theory is primed for this goal. A former instructor of the author was 

fond of citing the philosopher of science Otto Neurath, who likened ―the overall 

process of science-building…to the process of rebuilding a boat, plank by plank, 

not in dry dock but at sea‖ (Rosenthal, 1997, p. 121). Scientists must not be 

rendered stagnant by the difficult tasks confronting them. Complexity, in and of 

itself, is not a valid reason to avoid modern psychometric theory. Rather, 

psychologists should move forward confident that they possess the tools to sort 

through the intricacy of the human mind. We must improve our measures, plank 

by plank, steadfast in the goal of complete scientific description of psychiatric 

disorders. 
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 IRT and related latent variable models have the potential to dramatically 

change and improve psychological assessment. Past methodologies in scale 

development have often focused primarily on criterion validity or on reliability 

and internal structure, at the expense of the other. Comprehensive models of latent 

psychopathology can meet the requirements of both modern and traditional 

psychometric theories, thereby maximizing overall construct validity. To that end, 

we must continue the arduous process of evaluating and refining models of 

psychological phenomena. 
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Table 1 

Demographic Information 

 

Variable 

 

 

n 

 

Valid % 

 

% 

 

Age 

     18-20 

     21-30 

     31-40 

     41-50 

     51-60 

     61-70 

     71 + 

     Missing  

 

 

 

91 

309 

158 

74 

35 

11 

2 

8 

 

 

13 

45 

23 

11 

5 

2 

< 1 

 

 

 

13 

45 

23 

11 

5 

2 

< 1 

1 

Gender 

    Male 

    Female 

    Transgender 

    Missing  

 

 

272 

415 

1 

0 

 

40 

60 

< 1 

 

 

40 

60 

< 1 

0 

Ethnicity 

     White 

     Latino 

     Asian 

     Black 

     American Indian 

     Multicultural 

     Other 

     Missing  

 

 

470 

68 

22 

14 

5 

10 

12 

87 

 

78 

11 

4 

2 

1 

2 

2 

 

 

68 

9 

3 

2 

1 

2 

2 

13 

Total 

 

688 100 100 
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Table 2 

Diagnostic Information 

 

Variable 

 

 

n 

 

Valid % 

 

% 

 

M 

 

SD 

 

Presenting Concern 

     Mood 

     Anxiety 

     Health  

     Other 

     Missing  

 

 

 

173 

152 

45 

370 

13 

 

 

 

26 

23 

7 

55 

 

 

25 

22 

7 

54 

2 

 

  

Diagnosis 

    Mood Disorder 

    Anxiety Disorder 

    Somatoform Disorder 

    Other Diagnosis 

    No Diagnosis 

    Missing  

 

 

165 

134 

12 

264 

72 

173 

 

32 

26 

2 

51 

14 

 

24 

20 

2 

38 

11 

25 

  

 

MMPI-2  

     Hypochondriasis  

     Depression 

     Hysteria 

     Psychopathic Deviate 

     Masculinity-Femininity 

     Paranoia 

     Psychasthenia 

     Schizophrenia 

     Mania 

     Social Introversion 

 

 

142 

142 

142 

142 

142 

142 

142 

142 

142 

142 

 

   

 

57.50 

62.30 

57.72 

60.56 

51.59 

58.19 

66.09 

65.43 

57.41 

55.36 

 

 

11.29 

13.30 

12.15 

12.17 

10.33 

13.07 

12.31 

12.21 

12.78 

12.02 
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Table 3 

Model Fit with Robust Limited-Information Weighted Least Squares (WLSMV) 

and Full-Information Marginal Maximum Likelihood (MLR) Estimation 

 WLSMV  MLR 

Model CFI TLI RMSEA  lnL Free 

Parameters 

AIC BIC 

Simple 

Structure 

        

     Orthogonal  0.47 0.51 0.35  -16109.99 120 32459.9 33004.0 

     Oblique 0.94 0.98 0.07  -15752.04 123 31750.0 32307.7 

Complex 

Structure 

        

     Orthogonal  0.88 0.96 0.11  -15670.95 162 31665.9 32400.3 

     Oblique 0.96 0.99 0.06  -15641.38 165 31612.7 32360.8 

Bifactor 

Structure 

        

     Orthogonal  0.96 0.99 0.06  -15969.98 145 32229.9 32887.3 

     Oblique 0.99 0.99 0.06  -15647.10 147 31588.2 32254.6 

 

Note. CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root 

mean square error of approximation; lnL = log-likelihood; AIC = Akaike 

information criterion; BIC = Bayesian information criterion.  
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Table 4  

Standardized Loadings onto Orthogonal and Oblique Simple Structure Models 

  Factor 

  Orthogonal  Oblique 

Scale Item Dep Anx Som  Dep Anx Som 

DEP 9 .64    .67   

 16 .88    .88   

 17 .91    .91   

 18 .79    .80   

 35 .81    .82   

 50 .82    .83   

ANX 1  .69    .72  

 12  .80    .82  

 19  .73    .77  

 38  .64    .69  

 45  .80    .81  

 49  .48    .51  

PHOB 8  .74    .75  

 28  .73    .74  

 31  .74    .74  

 43  .70    .71  

 47  .71    .72  

SOM 2   .71    .74 

 7   .64    .65 

 23   .57    .65 

 29   .75    .80 

 30   .71    .72 

 33   .72    .72 

 37   .78    .79 

 Factor        

 Dep        

 Anx .00    .79   

 Som .00 .00   .61 .83  

 

Note. Dep = depression; Anx = anxiety; Som = somatization; PHOB = phobia.  
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Table 5  

Standardized Loadings onto Orthogonal and Oblique Complex Structure Models 

  Factor 

  Orthogonal  Oblique 

Scale Item Dep Anx Som  Dep Anx Som 

DEP 9 .60 .12 .09  .55 -.06 .18 

 16 .87 .05 .08  .90 -.25 .20 

 17 .92 .04 .12  .91 -.28 .26 

 18 .76 .12 .08  .74 -.04 .10 

 35 .81 .00 .00  .80 .00 .00 

 50 .79 .15 .09  .73 -.04 .15 

ANX 1 .39 .36 .39  .14 .07 .55 

 12 .48 .51 .26  .28 .33 .28 

 19 .63 .37 .12  .52 .27 .09 

 38 .49 .20 .39  .29 -.13 .57 

 45 .40 .60 .27  .18 .43 .28 

 49 .29 .21 .30  .12 .01 .42 

PHOB 8 .00 .79 .00  .00 .81 .00 

 28 .15 .73 .20  -.02 .73 .08 

 31 .28 .71 .11  .13 .75 -.04 

 43 .38 .62 .05  .28 .65 -.10 

 47 .42 .50 .15  .26 .38 .17 

SOM 2 .17 .25 .63  -.15 -.14 .91 

 7 .00 .00 .61  .00 .00 .59 

 23 .32 .24 .43  .06 -.11 .69 

 29 .22 .36 .59  -.12 .06 .79 

 30 .15 .21 .65  -.18 -.20 .97 

 33 .14 .16 .67  -.19 -.25 .98 

 37 .35 .11 .68  .03 -.41 1.07 

 Factor        

 Dep        

 Anx .00    .57   

 Som .00 .00   .63 .81  

 

Note. Dep = depression; Anx = anxiety; Som = somatization; PHOB = phobia.   
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Table 6  

Standardized Loadings onto Orthogonal and Oblique Bifactor Structure Models 

  Factor 

  Orthogonal  Oblique 

Scale Item Int Dep Anx Som  Int Dep Anx Som 

DEP 9 .52 .37    .41 .53   

 16 .65 .61    .79 .40   

 17 .70 .60    .86 .40   

 18 .61 .49    .59 .51   

 35 .62 .51    .55 .64   

 50 .66 .57    .52 .71   

ANX 1 .72  -.05   .41  .58  

 12 .79  .15   .47  .64  

 19 .76  .05   .58  .52  

 38 .72  -.21   .53  .43  

 45 .77  .21   .38  .72  

 49 .51  -.07   .30  .39  

PHOB 8 .64  .56   .20  .79  

 28 .62  .53   .21  .72  

 31 .66  .44   .27  .71  

 43 .65  .38   .34  .63  

 47 .68  .23   .38  .60  

SOM 2 .57   .41  .26   .66 

 7 .46   .46  .17   .61 

 23 .59   .20  .41   .48 

 29 .63   .43  .22   .73 

 30 .53   .47  .24   .64 

 33 .48   .58  .20   .67 

 37 .61   .50  .41   .66 

 Factor          

 Int          

 Dep .00     .00    

 Anx .00 .00    .00 .70   

 Som .00 .00 .00   .00 .45 .73  
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Note. Dep = depression; Anx = anxiety; Som = somatization; Int = internalizing; 

PHOB = phobia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

Table 7  

Standardized Loadings and Communalities for Validity Variables onto the Oblique Simple, Oblique Complex,  

Oblique Bifactor, and Orthogonal Bifactor Structure Models 

 

Note. Dep = depression factor; Anx = anxiety factor; Som = somatization factor; Int = internalizing factor.

 Oblique Simple Oblique Complex Oblique Bifactor Orthogonal Bifactor 

Variable Dep Anx Som R2 Dep Anx Som R2 Int Dep Anx Som R2 Int Dep Anx Som R2 

Concern 

 

                  

     Mood .44   .19 

 

 

.44   .19 

 

.41 .18   .20 

 

.24 .41   .23 

 

     Anxiety  .29  .08 

 

 .29  .08 

 

.04  .26  .07 

 

.22  .14  .07 

 

     Health    .34 .11 

 

  .34 .11 

 

.07   .40 .17 

 

.11   .56 .32 

 

Diagnosis                    

     Mood  .57   .33 

 

.57   .33 

 

.41 .40   .33 

 

.38 .45   .34 

 

     Anxiety   .45  .21 

 

 .45  .21 

 

.07  .43  .19 

 

.35  .24  .18 

 

     Somatoform    .46 .21 

 

  .46 .21 

 

-.01   .57 .32 

 

.20   .68 .49 

 

     Mood vs. Anxiety -.43   .19 

 

-.43   .19 -.36 -.29   .28 

 

-.09 -.61   .39 

 

     Mood vs. Anxiety  .17  .03 

 

 .17  .03 

 

-.45  .26  .21 

 

-.09  .31  .10 

 

     Mood vs. Anxiety -.75 .56  .40 

 

-.75 .56  .40 -.34 -.78 .64  .44 

 

-.11 -.59 .22  .41 

 

1
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8
 



   

Table 8  

Item Parameter Estimates for the Bifactor Graded Response Model in Logistic Model  

  Int Dep Anx Som          

Scale Item a1 a2 a3 a4 d1 d2 d3 d4 A B1 B2 B3 B4 

DEP 9 1.22 0.88   1.56 3.19 4.21 5.97 1.50 1.04 2.12 2.80 3.97 

 16 2.54 2.40   -2.60 0.15 2.08 4.61 3.49 -0.74 0.04 0.59 1.32 

 17 3.27 2.81   -3.19 0.17 2.76 6.21 4.31 -0.74 0.04 0.64 1.44 

 18 1.80 1.43   -0.71 1.11 2.36 4.34 2.29 -0.31 0.48 1.03 1.89 

 35 1.86 1.52   -1.12 0.88 2.37 4.12 2.40 -0.47 0.37 0.98 1.71 

 50 2.05 1.45   -0.47 1.34 2.79 4.25 2.51 -0.19 0.53 1.11 1.69 

ANX 1 1.89  -0.12  -1.83 0.20 1.74 3.97 1.90 -0.96 0.10 0.92 2.09 

 12 2.38  0.45  1.20 2.81 4.07 6.20 2.42 0.50 1.16 1.68 2.56 

 19 2.10  0.13  -0.34 1.36 2.59 4.53 2.11 -0.16 0.65 1.23 2.15 

 38 1.96  -0.58  -2.13 -0.21 1.27 3.19 2.04 -1.04 -0.10 0.62 1.56 

 45 2.34  0.63  1.29 2.66 3.72 5.16 2.43 0.53 1.09 1.53 2.13 

 49 1.07  -0.15  -0.35 0.99 1.96 3.13 1.08 -0.32 0.92 1.82 2.90 

PHOB 8 2.16  1.89  2.71 4.58 5.53 7.36 2.87 0.94 1.60 1.93 2.56 

 28 1.94  1.64  3.25 4.39 5.36 6.15 2.54 1.28 1.73 2.11 2.42 

 31 1.98  1.32  1.52 2.86 4.04 5.06 2.38 0.64 1.20 1.70 2.12 

 43 1.80  1.03  0.96 2.12 3.04 4.27 2.08 0.46 1.02 1.46 2.05 

 47 1.76  0.59  1.17 2.49 3.55 4.74 1.85 0.63 1.34 1.91 2.55 

SOM 2 1.46   1.04 0.82 2.91 4.39 7.13 1.79 0.46 1.63 2.45 3.98 

 7 1.11   1.10 0.89 2.50 3.58 5.57 1.56 0.57 1.60 2.29 3.56 1
4
9
 

 



   

 23 1.36   0.47 0.06 1.48 2.40 3.66 1.44 0.04 1.03 1.67 2.55 

 29 1.77   1.22 1.58 3.17 4.46 6.36 2.15 0.74 1.47 2.08 2.96 

 30 1.38   1.21 0.97 2.55 3.71 5.02 1.83 0.53 1.39 2.03 2.74 

 33 1.30   1.58 0.89 2.39 3.60 5.40 2.05 0.43 1.17 1.76 2.64 

 37 1.79   1.46 0.63 2.25 3.75 5.36 2.31 0.27 0.97 1.62 2.32 

Concern              

Mood  0.49 0.85   1.26    0.98 1.28    

Anxiety  0.42  0.26  1.30    0.49 2.64    

Health  0.23   1.23 3.26    1.25 2.61    

Diagnosis              

Mood  0.58 1.00   1.00    1.31 0.76    

Anxiety  0.71  0.48  1.17    0.85 1.37    

Somatoform  0.50   1.72 4.89    1.79 2.72    

Depression vs. Anxiety 0.21 1.42   -0.36    1.44 -0.25    

Depression vs. Anxiety -0.18  0.58  0.39    0.37 0.64    

 

Note. Dep = depression; Anx = anxiety; Som = somatization; Int = internalizing; a = item discrimination; d = item  

intercept; A = multidimensional discrimination parameter (MDISC); B = multidimensional difficulty parameter 

(MDIFF).
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APPENDIX B 

FIGURES 
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Figure 1. Example of an item characteristic curve (ICC). 

 

 

 

 

 

 

-4 -3 -2 -1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Theta 

P
ro

b
ab

il
it
y
 o

f 
E

n
d
o
rs

em
en

t



153 

 

Figure 2. Item characteristic curves (ICCs) for three items fitting the Rasch or 

one-parameter logistic model. 
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Figure 3. Item characteristic curves (ICCs) for three items fitting the two-

parameter logistic (2PL) model. 
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Figure 4. Item characteristic curves (ICCs) for three items fitting the three-

parameter logistic (3PL) model. 
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Figure 5. Category response curves for a single item with four response 

categories fitting the graded response model (GRM). 
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Figure 6. Item characteristic surface for a multidimensional item response model. 
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Figure 7. Bifactor model of an internalizing general factor with anxiety and 

depression domain specific factors. 
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Figure 8. Second-order model of an internalizing higher-order factor with anxiety 

and depression lower-order factors. 
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Figure 9. Test information and standard error functions. 
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Figure 10. Differential item functioning for the same item with parameters 

estimated within a male sample and a female sample. 
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Figure 11. Example of a test characteristic curve (TCC).  
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Figure 12. MMPI-2 configural patterns for patients presenting with a mood, anxiety, or health concern. T-scores have  

a mean or 50 and a standard deviation of 10. 
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Figure 13. MMPI-2 configural patterns for patients diagnosed with a DSM-IV-TR mood disorder, anxiety disorder, 

somatoform disorder, or no diagnosis. T-scores have a mean or 50 and a standard deviation of 10. 
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Figure 14. Proposed orthogonal simple, complex, and bifactor structure models. INT = internalizing; SOM = 

somatization; DEP = depression; ANX = anxiety. 
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Figure 15. Proposed oblique simple, complex, and bifactor structure models. INT = internalizing; SOM = somatization;  

DEP = depression; ANX = anxiety.   
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Figure 16. Communalities for validity variables loaded onto the oblique simple, oblique complex, oblique bifactor, and  

orthogonal bifactor structure models. 
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Figure 17. Communalities for the diagnosis of just a mood versus just an anxiety disorder variable loaded onto the 

oblique simple, oblique complex, oblique bifactor, and orthogonal bifactor structure models. The x-axis displays the 

factor(s) from each model that the variable was allowed to load onto. (Note that the variable was also allowed to load 

onto the internalizing factor in the bifactor models).  
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Figure 18. Item characteristic surface plotting the probability of a mood disorder 

diagnosis by depression and internalizing within an orthogonal bifactor model. 
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Figure 19. Item characteristic surface plotting the probability of an anxiety 

disorder diagnosis by anxiety and internalizing within an orthogonal bifactor 

model. 
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Figure 20. Item characteristic surface plotting the probability of a somatoform 

disorder diagnosis by somatization and internalizing within an orthogonal bifactor 

model. 
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Figure 21. Equi-probable contour for a .50 probability of a mood disorder 

diagnosis by depression and internalizing within an orthogonal bifactor model. 
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Figure 22. Item characteristic surface plotting the probability of being diagnosed 

with just an anxiety disorder versus just a mood disorder by depression and 

internalizing within an orthogonal bifactor model. 
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Figure 23. Item characteristic surface plotting the probability of being diagnosed 

with just an anxiety disorder versus just a mood disorder by anxiety and 

internalizing within an orthogonal bifactor model. 
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Figure 24. Equi-probable contour for a .50 probability of just an anxiety disorder 

vs. just a mood disorder diagnosis by depression and internalizing within an 

orthogonal bifactor model. 
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Figure 25. Receiver operating characteristic curve for the diagnosis of a mood 

disorder by the orthogonal bifactor model and total scores. 

 

 

 

 

 

 

 

 

 

 



177 

 

Figure 26. Receiver operating characteristic curve for the diagnosis of an anxiety 

disorder by the orthogonal bifactor model and total scores. 
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Figure 27. Receiver operating characteristic curve for the diagnosis of a 

somatoform disorder by the orthogonal bifactor model and total scores. 
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Figure 28. Receiver operating characteristic curve for the diagnosis of just an 

anxiety disorder vs. just a mood disorder by the orthogonal bifactor model and 

total scores. 
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Figure 29. Receiver operating characteristic curve for the diagnosis of just an 

anxiety disorder vs. just a mood disorder by the orthogonal bifactor model and 

total scores. 
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APPENDIX C 

DOCUMENTATION OF THE APPROVAL OF  

RESEARCH USING HUMAN SUBJECTS 
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