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ABSTRACT 

Intuitive decision making refers to decision making based on situational 

pattern recognition, which happens without deliberation. It is a fast and effortless 

process that occurs without complete awareness. Moreover, it is believed that 

implicit learning is one means by which a foundation for intuitive decision 

making is developed. Accordingly, the present study investigated several factors 

that affect implicit learning and the development of intuitive decision making in a 

simulated real-world environment: (1) simple versus complex situational patterns; 

(2) the diversity of the patterns to which an individual is exposed; (3) the 

underlying mechanisms.   

The results showed that simple patterns led to higher levels of implicit 

learning and intuitive decision-making accuracy than complex patterns; increased 

diversity enhanced implicit learning and intuitive decision-making accuracy; and 

an embodied mechanism, labeling, contributes to the development of intuitive 

decision making in a simulated real-world environment. The results suggest that 

simulated real-world environments can provide the basis for training intuitive 

decision making, that diversity is influential in the process of training intuitive 

decision making, and that labeling contributes to the development of intuitive 

decision making. These results are interpreted in the context of applied situations 

such as military applications involving remotely piloted aircraft. 
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1     Introduction 

We make decisions during nearly every waking moment of our lives. 

Decisions can vary in complexity from the most simple, such as deciding what 

shirt to wear or what to have for breakfast, to the more complex, such as deciding 

which house or vehicle to purchase, the next play of the team you are coaching, or 

how to react in a tactical military situation. The previous examples of decision 

making in daily life are only a few of the types of circumstances in which we 

make decisions. Research into the processes underpinning decision making began 

decades ago (von Neumann & Morgenstern, 1944) and has persisted up to present 

day (Kahneman & Tversky, 1979; Kahneman & Klein, 2009; Milkman, Chugh & 

Bazerman, 2009).  

The literature has suggested that there are two primary types of processes 

involved in decision making: analytic processes and intuitive processes (Lopes & 

Oden, 1991; Hogarth, 2001; 2005; Nygren & White, 2002; Evans, 2008; 

Kahneman & Klein, 2009). Analytic processes are engaged when consciously 

considering or deliberating multiple options. These processes are primarily a rule-

based process. Thus they have been generally characterized as slow and effortful. 

The traditional approach to studying analytic decision making processes, which is 

typically conducted in a laboratory setting with context-free environments, has 

shown that, in general, we do not make subjective, probabilistic decisions under 

uncertainty very well (e.g. Kahneman & Tversky, 1979; Milkman et al., 2009).  

In contrast, intuitive decision making processes are relatively automatic, 

procedural, and therefore entail less awareness on the part of the decision maker 
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(Evans, 2008). Thus, these processes are generally characterized as being 

relatively fast, given that they involve context-dependent situational pattern 

recognition; and also operate well under conditions of high uncertainty and time 

pressure (Klein, 1989; 1998; 2008). A more recent approach to studying intuitive 

decision making, which primarily involves field studies of expert decision makers 

acting in real-world situations, is called naturalistic decision making (Klein, 1989; 

1998; 2008) and is an approach that eschews the context-free paradigms of the 

traditional approach discussed above.  

Naturalistic decision making is considered here and by others (Klein, 

1989; 1998; 2008) to be driven by the concept of the recognition primed decision 

model (Klein, 2008). The recognition primed decision model (RPD model), 

describes how people use their experiences within a given domain to learn how to 

combine experiences into patterns and recognize situational patterns within that 

domain. Furthermore, the RPD model proposes that there are two processes at 

work when making decisions in naturalistic environments. The core of the RPD 

model is the intuitive aspect that is in control of the situational pattern recognition 

and matching process, whereas the analytic aspect is used for mental simulation 

and comparison of possible alternative situations and patterns.  

Given its general characteristics, the intuitive decision making process 

associated with decision making in naturalistic settings should be particularly 

useful in tactical, time-compressed situations. That is, the situational pattern 

recognition process should allow individuals to make fast decisions without 

invoking full awareness and conscious deliberation. The naturalistic decision 
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making philosophy does not propose that the intuitive process is the only process 

involved when making decisions in real-world situations as discussed above (see 

Klein, 1989; 1998; 2008; and Kahneman & Klein, 2009). However, there is also 

not a considerable body of research involving systematic investigations into the 

mechanisms underlying intuitive decision making processes. Therefore, the 

purpose of the present study was to investigate properties of the pattern 

recognition process that underlies intuitive decision making. 

Non-analytical category formation 

It is generally accepted that the situational pattern recognition process, and 

thus the intuitive decision making process, are dependent upon a form of non-

analytical category formation (Brooks, 1978; Brooks & Vokey, 1991; Raab & 

Johnson, 2008). Such categories serve in the role of cognitive templates to which 

current situations are matched. The non-analytical categories are formed, or 

learned, through exposure to past experiences, which are called exemplars (e.g. 

Posner & Keele, 1968; Rehder & Hastie, 2004). An exemplar is an experience or 

event that induces the development of a template or schema that is stored or 

represented in memory. Specifically, as an individual is exposed to exemplars, he 

or she is thought to use inductive reasoning to infer properties about conceptual 

categories based on a combination of family resemblance, functional coherence 

and conditional probabilities (Rosch, 1978; Rehder & Hastie, 2004).  

When an individual encounters a novel situation, attributes about this new 

experience are classified as being a member of a given category (Klein, 1998; 

Heit, 2000; Holyoak, Gentner, Kokinov, 2001; Rehder & Hastie, 2004). To enable 
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this categorization process, analogy is used to transfer inferences across domains 

based on similarity of their relations among elements. As discussed by Hofstadter 

(2001) and Brooks (1978), analogy is generally non-analytical, relatively 

automatic, and efficient. Due to these properties, analogy likely plays a role in 

intuitive decision making. The categorization process depends upon memory 

representations, the nature of which has been the subject of continued controversy 

for many decades (Posner & Keele, 1968, Homa, 1984, Nosofsky & Zaki, 1998). 

In this controversy generally, two types of memory representations have 

been proposed: exemplar and prototype (Homa, 1984; Shin & Nosofsky, 1992; 

Nosofsky & Zaki, 1998). Exemplars, as mentioned previously, are considered to 

be a form of memory representation derived from individual experiences. 

Exemplar models propose that the subsequent recognition and categorization of 

an exemplar is determined by the degree of similarity among current and previous 

exemplars (Homa, 1984; Shin & Nosofsky, 1992; Nosofsky & Zaki, 1998). 

Research has demonstrated that this degree of similarity is based on an absolute 

summed similarity metric, which is anchored to the individual exemplars 

(Nosofsky & Zaki, 1998). Evidence in support of exemplar models has been 

derived from studies that have shown that the specific exemplars can be 

recognized even when the total number of exemplars is increased (for further 

discussion see Homa, 1984; Nosofsky & Zaki, 1998). 

In contrast, prototypes are considered to be a different form of memory 

representation that is derived from an abstracted or integrated average of the 

exemplars to which one is exposed (i.e. an ideal representation; Posner & Keele, 
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1968; Homa, 1984; Homa, Proulx, & Blair, 2008). Prototype frameworks propose 

that prototypes, abstractions or integrations of the most common elements that 

occur together within the exemplars, are used to define the extent of the category 

(Homa & Vosburgh, 1976). Interestingly, the prototype of a category is not 

considered to be fixed but can be altered by exposure to additional exemplars (e.g. 

Posner & Keele, 1968; Homa & Vosburgh, 1976). Evidence in support of 

prototype frameworks have been derived from studies that have revealed that 

prototypes of a category can be recognized even though the prototype has never 

been encountered previously (Franks & Bransford, 1971; Homa & Vosburgh, 

1976; Homa, 1984; Minda & Smith, 2001).  

The debate as to whether the categorization process consists of exemplar 

or prototypes has been enduring, and yet overly simplified. This 

oversimplification arises from the assumption that an abstraction process is 

involved in forming prototypes but not in representing exemplars (Nosofsky & 

Zaki, 1998). However, it seems reasonable to conjecture that detecting similarity 

among exemplars in order to categorize them should require at least some 

elementary form of abstraction. As a result, the notion that the process of 

categorization occurs only for prototypes is overly simplistic. Recently, some 

authors (see Malt, 1989; Smith & Minda, 1998; Minda & Smith 2001, Homa, 

Proulx & Blair, 2008) have argued for a framework in which exemplars and 

prototypes both are outcomes derived within a single categorization process.  

In particular, the proposed mixed categorization process would likely be 

affected by the complexity of the categories. That is, the categories themselves 
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would force the representation and use of exemplars, prototypes, or both. For 

example, it has been demonstrated that the level of complexity of the categories 

may alter their learning, such that smaller categories (less differentiated, less 

complex) tend to favor the learning of exemplars, whereas larger categories (more 

differentiated, more complex) tend to promote the learning of prototypes (Smith 

& Minda, 1998; Minda & Smith, 2001), although in some situations both 

exemplars and prototypes may be learned together (e.g. Homa, Proulx & Blair, 

2008). Smith and Minda (1998) examined category learning over time for both 

smaller and larger categories. They found that when learning to discriminate 

between different category sizes and complexities, over a period of time, 

individuals will transition from exemplar to prototype coding, and that this 

transition is dependent on the time requirements inherent to the discrimination. 

Thus, the size and complexity of the categories will determine whether a 

representation involves either exemplars, prototypes, or both.  

Turning back to non-analytical category formation, it is interesting to note 

that this process of development of a representation of non-analytical categories, 

through exposure to exemplars, is believed to involve an implicit learning process 

(Lopes & Oden, 1991). Implicit learning refers to learning that typically occurs 

without explicit intention, without full awareness of what has been learned, and 

possibly without the presence of feedback or knowledge of results to guide 

learning (e.g., Reber, 1989; Aslin, Saffran & Newport, 1998; Perruchet & Pacton, 

2006). Many different paradigms have been used to examine implicit learning 

processes, a few examples of which include: perceptual and motor learning 
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(Gibson & Gibson, 1955; Turvey, 1990), artificial grammar learning (e.g. Reber, 

1967, 1969, 1989; Mathews, Buss, Stanley, Blanchard-Fields, Cho & Druhan, 

1989), statistical learning (Aslin, Saffran, & Newport, 1998; Fiser & Aslin, 

2001;2002; Marsh & Glenberg, 2010), sequence learning (Gomez, Gerken, & 

Schvaneveldt, 2000), and the learning of the temporal order of images of objects 

and events (Brady & Oliva, 2008; Patterson, Pierce, Bell, Andrews & 

Winterbottom, 2009; Boydstun, Patterson, Pierce, Park & Shannan, 2010).  

As detailed above there are many different experimental paradigms, forms 

of stimuli, and contexts in which implicit learning can develop. Based on these 

findings, it seems reasonable that others have proposed that implicit learning is 

generally considered to be a primitive, robust phenomenon which involves the 

ability to relate spatial and temporal patterns as they unfold in the environment 

(Fiser & Aslin, 2001, 2002; Patterson et al., 2009). Furthermore, implicit learning 

of non-analytical categories provides, in part, a foundation for situational pattern 

recognition and intuitive decision making (Klein, 1988; 1998; 2008; Patterson et 

al., 2009). Implicit learning is likely the process by which tacit knowledge and 

procedural memory are developed and likely leads to situational pattern 

recognition, one of the possible mechanisms underlying intuitive decision making 

(Reber, 1989; Patterson et al., 2009).  

Intuition, and more specifically intuitive decision making, are broad 

concepts which date back to Plato and Aristotle and have endured as topics of 

great interest for the history of philosophy (Wescott, 1968). Intuition is 

conceptualized in varying ways by different individuals. Generally, intuition is 
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conceptualized as a kind of knowledge that cannot be fully explained by explicit 

knowledge. Intuitive decision making (see Klein, 1988; 1998; 2008; Patterson et. 

al, 2009) refers to a form of decision making that is largely implicit and cannot be 

explained entirely by explicit, deliberative processes. In this context, intuitive 

decision making can be conceptually connected to implicit learning, tacit 

knowledge, and procedural knowledge.  

With respect to training intuitive decision making, several authors (Reber, 

1989, 1993; Hogarth, 2001; Evans, 2008; Patterson et al., 2009) contend that 

implicit learning is one of the ways by which intuitive decision making ability is 

acquired. Additionally, it has been found that there could be explicit training 

procedures (like memorization) that can also increase the ability of an individual 

to make decisions based on implicit learning (i.e. Reber, 1989, 1993). In these 

studies by Reber, participants were memorizing the sequences of letters and he 

found generally that they were still using implicit processes to abstract the 

underlying patterns. They were able to perform the discriminations at test, though 

they demonstrated overall lower performance than participants who learned in the 

passive learning condition. Thus, learning can be of a form which follows explicit 

training such as memorization, but which still leads to the underlying implicit 

abstraction process. However, in this investigation, the passive learning process 

was explored within the context of implicit learning. The passive learning 

explored here was of a form that would occur within a naturalistic environment 

where via locomotion and interaction with the environment, individuals abstract 

environmental relationships without awareness and without intention.  
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Although tasks which require participants to explicitly learn are more in 

line with traditional approaches to cognition, they are still in the realm of the 

analytic. Thus, in order to develop the ideas and conceptualization of decision 

making, which relies on both an analytical and intuitive processes (Klein, 1988; 

1998; 2008), it is necessary to investigate how the intuitive component is learned 

via experience in the world. Furthermore, even though explicit learning may also 

lead to implicit learning, perceptual learning performed within naturalistic settings 

typically occurs in a somewhat passive manner in which the person is not directly 

trying to learn. Consistent with the approaches taken by Reber et al. (1989), Reber 

(1993), Hogarth (2001), Evans (2008) and Patterson et al. (2009), I will assume 

that implicit learning is one of the primary vehicles by which intuitive decision 

making is developed.  

Complexity and non-analytical categories 

When making intuitive decisions in real-world situations, the process of 

forming and utilizing non-analytical categories may be affected by the complexity 

of the situation. Situational complexity is generally a multifaceted issue. Here, 

situational complexity is discussed as it pertains to the following: (1) 

environmental complexity; (2) category complexity; and (3) task complexity. 

The first factor contributing to situational complexity is environmental 

complexity. Environmental complexity is produced by the diversity and 

interaction of cues and patterns in the environment. These cues and their 

associated patterns can be multivariate, higher-order and/or multimodal. 

Furthermore, complex environments can lead to more cognitively demanding 
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situations, given that an individual will need to integrate and encode the set of 

cues and their interactions in memory. These cognitively demanding situations 

may exceed the temporal and processing capacity of working memory (Cowan, 

2000) generally associated with analytical processes. Intuitive processes, on the 

other hand, are more reliant on procedural memory and are not thought to draw on 

capacity-limited working memory (Evans, 2008). Thus, when environmental 

complexity is high, it has been found that intuitive decision making is likely a 

more efficient option, given that intuitive decision making is suited for situations 

involving high uncertainty, time pressure, changing goals, and high stakes (e.g. 

Klein, 1989; 1998; 2008; Zsambok & Klein, 1997). On the other hand, when 

interacting and making analytical decisions within a complex situation, as 

described above, the ability to make such decisions would likely be degraded.  

The second factor contributing to situational complexity is category 

complexity. Recall that, the complexity of the categories can impact both category 

formation as well as the usage of existing category representations. As discussed 

previously, it has been found that complexity of the categories may alter learning, 

such that more complex and larger categories promote the learning of prototypes 

(Smith & Minda, 1998; Minda & Smith, 2001). Further, some situations may also 

necessitate the storage and use of individual exemplars (e.g. Homa, Proulx & 

Blair, 2008). When using these representations, it seems reasonable to conjecture 

that just as environmental complexity necessitates intuitive decision making, 

category complexity may also call for the use of intuitive decision making to 

manage complex situations (as described above). Specifically, it is likely that 
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larger, more complex categories will occur within the same complex situations 

involved with high levels of environmental complexity. Furthermore, it is likely 

that analytical decision making would be degraded in these time critical, complex 

situations which likely involve category complexity. Thus, category complexity 

will also likely necessitate the use of intuitive decision making.  

The third factor contributing to situational complexity is task complexity. 

Task complexity is defined here as involving multiple components, and involving 

higher-order relations among task components. When task complexity is high, 

intuitive decision making may be stronger, and less reliant on working memory 

(as discussed above). One example of learning of the interactions between 

multiple higher-order dependencies which is especially relevant to this discussion 

is the implicit learning paradigm employed by Reber (1967, 1969). Reber’s 

implicit learning paradigm requires that participants learn at least two symbols 

prior to the next symbol to learn the artificial grammar. Learning of these higher-

order dependencies is only one example of task complexity. Many other examples 

of task complexity exist such as dual or even multi-tasks, tasks which require split 

attention, and tasks involving dynamic situations. These types of tasks will 

introduce even more complexity into category formation, representation and 

utilization.  

In summary, non-analytical category formation and utilization can be 

affected by situational complexity which, in turn, can be conceptualized to 

involve three components, namely the complexity of the environment, of the 

categories themselves, or of task performance. Two of these components are 
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important for distinction here, as they will directly shape the discussion that 

follows. In particular, the complexity of the categories can influence exemplar 

and prototype utilization which can, in turn, impact category learning and 

formation of associated memory representations (Posner & Keele, 1968; Malt, 

1989). Furthermore, the process of using non-analytical category representations 

may be additionally complicated by environmental complexity. Specifically, it is 

the environment which can create time pressure, which in turn can create 

decisional uncertainty. These types of conditions which lead to significant 

decisional uncertainty fall within the conceptual framework of robust decision 

making.  

Another issue that has not been addressed is the extent to which these 

situational patterns (here proposed to be learned via a non-analytical, implicit 

process) are of an abstract, symbol-based representation in accordance with more 

analytically-based symbolic processes. The traditional cognitive approach to 

representation proposes that representations consist of abstract symbols which are 

not directly tied to our interactions within the world (Barsalou, 1999, 2008; 

Glenberg, 2010; Shapiro, 2010). An alternative to this analytically based, abstract, 

symbol-driven process would be a process in which representations are more 

strongly grounded in their associated experiences and thus would contain more 

ecologically driven representations of the information which are directly linked to 

experience. 

As proposed here, the intuitive decision making process is conceived as 

being non-analytical, and that the mechanism behind its development is likely 
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implicit. Thus, it seems reasonable to conjecture that the situational patterns on 

which intuitive decision making is based would be directly coupled with the 

perception and action that an individual carries out in the world. Furthermore, that 

experience within the world could be learned via extraction of and representation 

of specific components of that experience. Generally, the form of the components 

may be in the form of perceptual statistics such as invariants and regularities 

which form some fundamental opportunity for action or which have an associated 

meaning for an action (Gibson, 1977). Those components of experience are likely 

also stored or represented in some form of associated memory representation. The 

form of representation and their associated neural substrates remains a topic of 

great interest.  

As discussed previously, categorization likely involves an abstraction 

process regardless of the associated memory representation that is formed. Here, 

the likely contents of abstraction in a naturalistic setting are conceived of as 

resembling a form of an invariant relationship present within the situational 

pattern within a given environment and the interactions within that environment. 

The associated memory representations created from this process would likely be 

directly grounded in the experience within the world. This suggestion is within 

the bounds of Barsalou’s perceptual symbol system hypothesis (1999, 2008). 

Barsalou proposes a theory of grounded perceptual symbols and contends that the 

perceptual symbols would be highly tied to both our experiences and our 

interactions within our environment. It is of profound interest to the current 

research that Barsalou’s proposal couples and grounds experience within an 
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environment and the information contained within an associated representation. 

As intuitive decision making and situational pattern recognition are highly 

perceptual processes, then the representation of information from the world would 

likely be in a form of grounded symbol that was extracted via interaction with the 

world.  

The concept of grounded symbols (Barsalou, 1999; 2008) and the proposal 

that associated memory representations would be linked with our experience in 

the world is in correspondence with an embodied approach to cognition. 

Generally, embodied cognition proposes that we have a much greater reliance on 

our bodily interactions than is generally conceived by much of cognitive 

psychology (Wilson, 2002; Glenberg, 2010; Shapiro, 2010). More specifically, it 

is proposed that a majority, if not all, of our learning from experience is driven by 

the way that we directly interact with the world. At the core of embodiment is the 

concept of Gibson’s (1977) affordances; the things that we perceive and learn are 

the things that directly afford some form of action or interaction.  

It seems likely that our experience within the world results in memory 

representations that are inherently grounded to that experience within the world. 

Thus, it also seems reasonable to conjecture that intuitive decision making would 

be driven by a more embodied process than would be proposed by traditional 

approaches to cognition. Furthermore, the type of learning that may be occurring 

in this paradigm may be of a form that is more tightly linked to remembering 

things that we encounter within the environment and which may provide 

opportunities for action. Specifically, it could also be conjectured that when we 
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are navigating through our environment and learning some of the relationships 

between objects and actors within that environment that we construct or generate 

some form of label for the objects and actors and associated interactions between 

ourselves and those objects and actors.  

Marsh and Glenberg (2010) recently investigated the forms of the labels 

linked to a form of grounded representation. Marsh and Glenberg suggest that 

there are likely three primary components to the learning process in which we can 

develop procedural knowledge through implicit/statistical learning. The first 

component of learning as proposed by Marsh and Glenberg is that people attend 

to stimuli and as a result of attention; they imitate the stimuli concurrently without 

awareness of having done so. This result is generally supported by many different 

examples from both behavioral and neuropsychological standpoints (Wilson, 

2002).  

The second component of Marsh and Glenberg’s theory is that overall, 

imitation is considered to be a neuromuscular process. Specifically, that imitation 

requires neurological mechanisms tied to specific effectors (hands, feet, speech 

articulators). Furthermore, that these neurological mechanisms generate similar 

motor commands to the motor commands that would produce stimuli if there was 

an opportunity to act on the stimuli in a naturalistic setting (e.g. there is a 

neuromuscular response of the laryngeal effectors when listening to a melody, as 

there would be if the person were actually humming along). The neuromuscular 

system in implicit learning is hence proposed by Marsh and Glenberg to be 

“tuning” to the transitions between the states of the imitated neuromuscular 



  16 

systems. The intent to which the authors use tuning is in the classical perceptual 

sense as tuning to the given energy within the transitions. This is one manner in 

which Marsh and Glenberg propose that statistical properties of the sequences are 

learned by participants tuning their neuromuscular imitations to transitions 

between components within a sequence developed by a finite state algorithm.  

The third component of Marsh and Glenberg’s theory is that the 

discriminations during the test phase are based on a form of fluency of imitation. 

Given that the structured sequences and transitions between components of the 

sequences have been previously experienced during the training phase, the 

fluency with which they are imitated during the test phase is higher than that for 

non-critical sequences. Thus, because participants have previously experienced 

and imitated the specific transitions of the patterns, experiencing these transitions 

in a structured sequence would activate the same trace of the original experience 

and thus this would consist of a more fluent pattern. Conversely, when a person is 

exposed to an unstructured transition, there is no tuning of the neuromuscular 

system to anticipate such a transition. This lack of fluency leads to a general sense 

of unfamiliarity with the un-structured stimuli.  

Marsh and Glenberg evaluated their proposed theory in two experiments. 

They used a paradigm similar to the one being used in the current investigation. 

The artificial grammar was used to generate structured bimodal sequences 

consisting of auditory tones paired with spatially defined visual stimuli. In the 

learning phase, participants were exposed to two sequences at a time in the 

bimodal grammar and were asked whether or not those two sequences were 
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identical (all sequences were structured). In the test phase, participants were 

exposed to structured and unstructured sequences separated by modality (auditory 

only, visual only, and alternating auditory and visual). Participants were informed 

that all of the sequences from the training stage of the study were constructed by a 

set of rules, and though the sequences would no longer contain bimodal stimuli, 

they may still follow these rules of construction. Participants were then asked to 

decide if each novel sequence was generated by the same rules or different rules 

from the ones given at training. Marsh and Glenberg found a significant 

difference between performance on the separated auditory and visual 

discriminations and performance on the alternating sequences. This finding is 

accordance with both the premise that the sequences are imitated by the two 

different modalities and that the participants may have been learning statistics 

associated with transitions between the components (auditory tones and visual 

elements) of the sequences.  

In their second experiment, Marsh and Glenberg attempted to disrupt 

participants’ fluency in imitating the tones at test with the sequences by having 

the participants perform secondary tasks during test. Specifically, in the test 

phase, participants either 1) hummed a siren sound to interfere with the laryngeal 

system 2) spoke the phrase “da-da” or 3) alternated stomping with the feet. Marsh 

and Glenberg found that the siren task “humming” interfered with the ability to 

imitate humming of the auditory aspects of the sequences. This result 

demonstrates the use of imitation in learning transitions within the sequences of 

an artificial grammar. Furthermore, by disrupting the participants’ ability to recall 
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those imitations at test, Marsh and Glenberg found a significant decrease in 

performance on the ability to discriminate between structured and random 

patterns. Generally, this finding demonstrates that tuning is likely embodied in 

different neuromuscular systems and is not of such a form that they need to be 

brought to the level of awareness or that need to be made explicit in order to 

learn. Though the embodied mechanisms underlying implicit learning have been 

investigated, it is not known what role they play in the development of the 

situational pattern recognition process underlying robust intuitive decision 

making. 

Robust decision making refers to decisions that are made successfully 

under conditions of high uncertainty and often under time pressure. Although 

interesting, this literature has typically dealt with the development of statistical 

techniques for coping with high levels of uncertainty (e.g. Krokhmal, Murphey, 

Pardalos, Uryasev, & Zrazhevski, 2003; Regan, Ben-Haim, Langford, Wilson, 

Lundberg, Andelman, & Burgman, 2005) and has focused primarily on the 

development of statistical approaches, incorporating concepts such as utility and 

probability. These studies are somewhat limited because their statistical 

approaches toward robustness fall under the dimension of analytical decision 

making. However, rather than approach robust decision making from an analytical 

perspective, I am interested in addressing robust decision making from an 

intuitive standpoint.  

Robust intuitive decision making is especially desirable within 

environments in which complexity and high uncertainty are the norm and 
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traditional analytical approaches would likely result in less effective decision 

making. Robust decision making typically emerges as a function of the 

complexity within a given environment and indeed, the overall situation. The 

environmental complexity produced by diversity and interaction of cues and 

patterns in the environment would likely leave a decision maker struggling to 

process all of the information required to enable performance of demanding tasks. 

Thus, the purpose of the present studies was to investigate exactly how robust 

intuitive decision making develops.  

The results of the present study could inform the development of training 

regimes in a variety of different applications. Specifically relevant are tasks 

requiring the ability to process perceptual information in a temporally dynamic 

setting with situational patterns unfolding over time. It is likely that a real-world 

situational pattern would consist of specific combinations of cues leading up to a 

decision point in critical situations, and those combinations of cues would have 

statistical dependencies, along the same lines of the statistical dependencies 

examined in the current investigation. Specifically, this investigation examined 

how the diversity and interaction of cues and patterns affects implicit learning and 

therefore the development of robust intuitive decision making.  

The development of robust intuitive decision making could likely be aided 

using simulations of real-world environments. Simulation enables realistic 

depictions of naturalistic environments designed to match important aspects of the 

real world. The United States military and the Air Force specifically have been 

utilizing simulation for training for over 40 years (Andrews & Bell, 2000). 
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Simulated environments have the advantage in that they stimulate the sensory and 

perceptual systems in a direct, albeit synthetic way, without the use of symbology 

or other elements that would require linguistically decoding and thus require extra 

processing time (Flin & Mitchell, 2009). Accordingly, immersive environments 

would be particularly useful for training within many tactical situations, although 

they could also be and are used successfully in more long-term strategic 

situations.   

Simulated real-world environments, as used for training applications, have 

a few major advantages over traditional explicitly-driven learning methods such 

as classroom training. They provide the opportunity to develop expert-level 

proficiency while embedding the trainee in complex, dynamic tasks and 

situations. Currently, many training applications utilizing immersive 

environments are based primarily on explicit observations from Subject Matter 

Experts (SMEs).  These training programs are developed with a general goal of 

making the details of performance of the task at hand explicitly available to the 

instructors.  The approach to using SMEs to develop training syllabi and scenarios 

is common and generally useful. However, not everything that a trainee is 

required to learn or that an expert has already learned is capable of being 

explicitly stated.   

A large proportion of expert knowledge may be in the form of procedural 

knowledge or stored in implicit memory, and thus may be difficult to explicitly 

incorporate into training requirements (Patterson et al., 2009). Additionally, there 

is evidence that experts when asked how they performed a task will give you the 
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incorrect details, especially for very procedural, automatic tasks (Bargh & 

Morsella, 2008). To ensure that immersive environments are providing a full 

range of both explicit and implicit information for training intuitive decision 

making in complex situations, it is necessary to determine the implicit aspects of 

training. Additionally, it remains to be determined as to the best methods to 

provide implicit aspects of training to the trainee to develop expert level 

knowledge that enables and advances intuitive decision making skills.   

In the current investigation, implicit learning was investigated utilizing a 

simulated, real-world environment. To do so, an implicit learning regime based on 

Reber’s paradigm was implemented. Specifically, Reber’s paradigm was extended 

and applied to a simulated, real-world environment depicting dynamic outdoor 

scenes viewed in perspective within a simulated world.  

Reber (1967) had participants memorize strings of letters derived from an 

artificial grammar, created using a finite state algorithm (FSA) which generates an 

artificial language based on a specific set of rules of “sentence” construction. The 

paradigm has two major phases, the training and test phases. In the training phase, 

to the participants, the letter strings appeared as simple random strings even 

though the entire set of strings possessed an underlying statistical structure. In the 

test phase, participants were asked to transfer their learning to recognition of a 

novel series of strings, some of which were created using the same grammar, and 

some which were random. Participants were able to reliably recognize the 

structured sequences during the test phase demonstrating that the implicit learning 

that occurred in the learning phase was successfully transferred to the novel 
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grammatical sequences they were shown in the test phase. However, participants 

were not able to verbalize much about how they performed the recognition, thus 

demonstrating that their learning was largely implicit.  

The findings discussed above from Reber’s original paradigm (1967) have 

been extended recently to include learning of sequences of objects presented 

within a virtual world (Patterson et al., 2009). Patterson et al. (2009) employed 

the same general form of implicit learning paradigm and FSA to create sequences 

of objects (e.g. military vehicles), each of which appeared to be random to the 

participants, yet the collection of sequences possessed a subtle statistical structure. 

Instead of memorizing strings, (as in Reber’s paradigm), participants were 

passively exposed to the sequences of objects by being flown over the sequences 

embedded on terrain within a simulated, real-world environment.  

Consistent with Reber’s paradigm, Patterson et al.’s (2009) paradigm also 

contained a training and test phase. In the training phase, participants were not 

given any specific instruction to attend to any specific aspects of the sequences. 

Consistent with the paradigm used by Reber (1967), in Patterson et al., 

participants were only exposed to grammatical sequences during this phase due to 

the passive nature of the learning and the absence of feedback in the training 

phase. Also consistent with Reber’s paradigm, after training completion, 

participants were informed that the set of object sequences to which they were 

exposed was created using an underlying rule constraining the sequences of 

objects. In the test phase, participants were asked to simply recognize whether 

sequences contained the pattern to which they were exposed (structured 
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sequences) or were random (non-structured sequences). The provocative result 

from Patterson et al. (2009) was that, although participants were not directed to 

learn anything and were learning in an unsupervised manner without any 

feedback, they were able to transfer the information that they had implicitly 

learned about the subtle statistical structure underlying the object sequences 

sufficiently well enough to successfully recognize the novel structured sequences 

compared to the truly random sequences. Furthermore, the authors found that 

participants could verbalize some aspects of the patterns (i.e. pairs of stimuli or 

single sequences), but could not completely explicitly describe the underlying 

pattern, that is learning was found to be largely implicit.  

The present investigations employed a paradigm similar to that used by 

Patterson et al. (2009) wherein a simulated, real-world environment was used to 

present the structured sequences to participants. The simulated, real-world 

environment was utilized in order to depict realistic simulations of natural 

environments designed to match important aspects of the real world (Andrews & 

Bell, 2000; Flin & Mitchell, 2009). As described previously, the research 

conducted by Patterson et al. (2009) into the mechanisms behind intuitive 

decision making have successfully demonstrated that implicit learning can occur 

within an simulated real-world environment with real world stimuli (i.e. objects 

embedded within an simulated real-world environment) and in an unsupervised 

learning paradigm without feedback. Furthermore, recall that the intuitive 

decision making process performs well in situations involving time pressure and 

high uncertainty (e.g. Klein, 1989; 1998; 2008), as well as in situations with 
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changing goals, high stakes and longer time frames. However, there is currently 

not a line of systematic research investigating how to develop robust decision 

making of an intuitive form.  

Purpose of Investigation 

The purpose of the present research was to investigate methods for the 

development of robust intuitive decision making utilizing a simulated real-world 

environment. In doing so, I investigated how the diversity of training affects 

learning and its robustness, as assessed by the transfer of learning to a novel set of 

test episodes. Specifically, this investigation examined methods to enhance the 

development of robust intuitive decision making by examining the effects of 

exemplar diversity (i.e. breadth of experience) on implicit learning and one aspect 

of its robustness, namely transfer. Furthermore, in an attempt to understand the 

nature of the development of intuitive decision making, I also investigated a 

possible embodied perceptual mechanism underlying development of this crucial 

ability. 

One goal of Experiment 1 was to establish that implicit learning of 

artificial episodes can occur without feedback in an unsupervised learning 

paradigm using a simulated, real-world environment. To do so, a FSA with a 

simple structure (Reber, 1967), which herein will be called the simple FSA, was 

employed to make contact with and replicate previous research (Patterson et al., 

2009). Experiment 1 also used a more complex FSA (Reber & Allen, 1978), 

which herein will be called the complex FSA, to generate a sufficient number of 

exemplars for use in Experiment 2. Thus, a second goal of Experiment 1 was to 
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determine whether a sufficient level of implicit learning could occur with the 

complex FSA. Employing a 2 x 2 factorial design, two levels of training (no 

training, training) were combined with two levels of FSA complexity (simple, 

complex) to create four experimental conditions. In this experiment, the number 

of exemplars used for training was eighteen, and each exemplar was repeated 

sixteen times. The dependent variable was percent correct recognition 

performance of novels structured sequences versus random sequences during the 

test phase.  

It was predicted that the paradigm should generally serve to foster implicit 

learning and that performance of participants within the training groups would be 

greater than that of the groups who did not receive training. It was also predicted 

that the added complexity of the FSA could require more diversity of information 

and repetition of information to demonstrate implicit learning than the levels of 

diversity that were originally used in the experiment of Patterson et al. (2009). 

The need for alternate levels of diversity and repetition would be indicated by a 

lower level of implicit learning for the more complex grammar. 

Experiment 2 assessed the impact of diversity of the sequences on implicit 

learning. Research on the cognitive operations of category learning and 

development of associated memory representations has shown that diversity (or 

breadth) of the exemplars within a category is influential in the process of 

categorization and representation. Specifically, the larger diversity of the 

exemplars to which participants are exposed, the more likely they are to develop a 

prototype (e.g. a memory representation) which can thus be transferred to a 
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different set of stimuli and persist over time (Homa & Vosburgh, 1976). It was 

hypothesized here that the diversity of exemplars to which participants were 

exposed would affect their ability to make intuitive decisions when asked to 

transfer learning or knowledge from the learning set of stimuli to the novel 

sequences used during the test phase.  

In this experiment, five levels of diversity and repetition of training 

exemplars were explored as well as a no-training, control condition. The complex 

FSA from Experiment 1 was used as it creates significantly more sequences than 

the simple FSA (103 sequences vs. 43 sequences respectively). Diversity was 

defined as the total number of different exemplars (i.e. different episodes) to 

which a participant was exposed. In the training phase, diversity was manipulated 

by holding constant the total number of exposures to the exemplars (at 288 

episodes), while allowing the total number of repetitions to vary. The comparison 

of interest for this experiment was the change in performance with the increase in 

diversity and decrease in repetition. It was predicted that as diversity increased 

and repetition decreased, performance would also increase.  

The goal of Experiment 3 was to investigate a possible mechanism behind 

implicit learning. In the embodied cognition literature (Marsh & Glenberg, 2010; 

Glenberg, 2010) it has been proposed that one method of learning for 

procedurally-based knowledge such as implicit learning is by neuromuscular 

imitations of the stimuli during learning. In the context of the present 

experiments, it may be that participants are labeling the stimuli, that is, using 

neuromuscular systems of speech articulation. Labeling successive stimuli would 
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then set the stage for neuromuscular tuning of transitions. The labels would not 

only consist of labels for the objects within a given sequence but also of the 

transitions within the sequences of objects. Thus, it was of theoretical interest to 

determine whether labeling and imitation is important to implicit learning within 

simulated, real-world environments.  

Employing a 2 x 2 factorial design, two levels of labeling during training 

(labeling, no labeling) were combined with two levels of suppression employed 

during test (toe tapping, verbal articulation) to create four experimental 

conditions. In the non-labeling condition, the training phase was identical to the 

training phase described in the general method. In the labeling condition, 

participants were asked to verbally label each of the objects as they encountered 

them in the virtual environment. During the test phase, participants were asked to 

perform secondary suppression tasks (articulatory suppression or toe tapping) 

while completing the test phase. It was predicted that participants in the non-

labeling group would demonstrate similar learning to participants in the simple-

algorithm, with-training group in Experiment 1. It was also predicted that 

participants in the labeling group would demonstrate greater levels of 

performance overall due to the creation of an implicit representation tied to the 

labels as a result of repeating the names of the vehicles during the training phase. 

The critical prediction was that articulatory suppression during the test phase 

would demonstrate interference with the ability to imitate the labels and thus 

affect the fluency and the usage of the labels at test. This result was predicted in 

accordance with the results demonstrated by Marsh and Glenberg (2010).  
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All experiments utilized a simulated, real-world environment as a tool to 

induce non-analytical categories and determine the requirements for implicit 

learning as a mechanism leading to the development of intuitive decision making. 

The simulated, real-world environment consisted of realistic terrain imagery upon 

which three dimensional models of vehicles were placed. The vehicles were 

placed in predetermined spatial locations within the virtual environment. Two 

finite state algorithms (FSA) were used to create the sequences of stimuli; both of 

which have been used in previous artificial grammar learning experiments (e.g. 

Reber, 1967; Reber & Allen, 1978). There are traditionally two phases within an 

implicit learning paradigm: training and test.  

In the training phase of the experiments, an exemplar consisted of the 

participants experiencing simulated flight over the sequences of vehicles (for ~ 5 

seconds). The number of exemplars to which participants were exposed and the 

number of repetitions they received varied depending on the individual 

experiment and conditions. After the training phase, participants were informed 

that the sequences of objects to which they were previously exposed had an 

underlying statistical pattern (they were not explicitly informed as to the specific 

underlying pattern). They were then asked to complete a test phase in which they 

were exposed to a different subset of stimuli generated using the same FSA and 

random stimuli and were asked to decide if each had the same statistical pattern 

they saw before (grammatical/structured) or not (ungrammatical/unstructured).  

In this investigation, I explored the effects of exemplar diversity and a 

possible mechanism underlying implicit learning. It was generally predicted that 
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there is an optimal combination of diversity that will serve to create robust 

intuitive decision making. Robust intuitive decision making will be indicated by 

participants demonstrating learning within an unsupervised learning paradigm by 

demonstrating transfer of training from the training set of sequences to the novel 

set of sequences presented during test. This result would further the development 

of training for robust intuitive decision making in naturalistic environments. 

Furthermore, labeling was investigated as a possible mechanism underlying 

implicit learning and thus intuitive decision making.  
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2     General Method 

Participants 

Participants were recruited from Arizona State University student 

populations at the Polytechnic and Tempe campuses. The number of participants 

is detailed separately for each experiment. All participants were given standard 

visual screening to ensure approximately normal vision (near visual acuity is 

approximately normal or corrected to normal (e.g. approximately 20/20), color 

vision, binocular vision, and vertical and lateral phoria). Participants provided 

informed consent consistent with the requirements of both the Arizona State 

University Institutional Review Board and the Air Force Research Laboratory 

Institutional Review Board.  

Stimuli 

Participants were seated in front of a large display upon which a dynamic 

scene (i.e. simulated perspective view of a natural terrain, horizon and sky) was 

presented. On the display, a structured set of object sequences was presented. The 

structured set of object sequences was composed of five vehicles (e.g. humvee, 

Abrams tank, Bradley tank, patriot missile launcher, and truck) positioned on the 

terrain, following the methods of Patterson, et al. (2009). In each episode, 

vehicles were placed in spatial locations that varied within a random offset (± 15 

meters) midline to the direction of locomotion (as shown in Figure 1). The first 

vehicle occurred 250 meters from the start of an episode and 150 meters 

thereafter. Figure 2 depicts a computer representation of the simulated real-world 

environment. 
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Figure 1. Depiction of starting location, distances between stimuli, and 
locomotion across the terrain within an episode. Object location (1-8) will vary 
±15m from zero (shown in middle) for each episode/sequence of objects.  
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Figure 2. Image depicting the simulated real-world environment including a three-
dimensional scene composed of a terrain and horizon in perspective view upon 
which vehicles will be positioned in a sequence stretching out along the z-axis. 
The scene underwent expansive optic flow motion which simulated passive 
movement of the participant in the forward direction toward the horizon. 

 

The order of the vehicles was determined using a finite state algorithm 

(FSA) (e.g. Reber, 1967). Figure 3 depicts state diagrams of the FSAs used to 

construct the temporal order of the vehicles within each episode. The FSA 

depicted in the top portion of Figure 3 was employed in Experiments 1 and 3 

(which will herein be called the simple FSA), whereas the FSA employed in the 

bottom portion of Figure 3 was used in Experiments 1 and 2 (which will herein be 

called the complex FSA). Vehicular sequences within an artificial episode began 

when the state diagram was entered from the left hand side and end when the last 

state in the diagram was exited. The algorithm selects each state randomly, but is 

limited by the probability of the arcs from each state as to what object can be 
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produced. For the simple algorithm there is a 50% probability that a given state 

will select one of the arcs exiting the state. For the complex algorithm, the 

beginning states are fixed at 50% and the end states are fixed at a 33% probability 

of occurrence. In both diagrams, transitions from one state to another (e.g. S0 to 

S1) produced the temporal order of the objects in the episodes. Thus, the actual 

sequences and their length varied depending on the particular path followed 

through the algorithm. There were two loops present in each algorithm. This loop 

allows the pattern to repeat and acts as a salient cue for participants.  

The set of all possible vehicular sequences that can be produced via a 

given FSA is called the ‘structured set’ of vehicular sequences. In the present 

investigation, the length of each sequence was restricted to between 4 and 8 

vehicles, which produced a structured set of 42 total sequences for the simple 

FSA, and 103 sequences for the complex FSA. A set of quasi-random vehicular 

sequences, using the same set of vehicles, was also produced for use in the test 

phase of the experiments.  

The quasi-random sequences were generated using a method to ensure that 

the beginning and ending objects of the sequences had the same probability of 

occurrence as the beginning and ending objects of the structured sequences 

(simple probability of occurrence at each end was 50%, complex probability of 

occurrence at the beginning was 50% and at the end was 33%). By fixing the ends 

to the same probabilities as the actual FSA sequences, the middle portions of the 

sequences remained truly random to the extent that the middle portions of the 

quasi-random sequences could be made up of any of the five objects of which the 
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structured sequences were composed. This method ensured that sequences did not 

directly occur to the participants as being random.  

Prior to use in the experiments, the quasi-random sequences were 

compared to the structured sequences to ensure that none of the random sequences 

were fully grammatical and did not correspond exactly to the structured 

sequences. However, due to the random selection of the objects for these 

sequences, there may have been some grammatical transitions within the 

sequences. There was however a violation of the algorithm contained within the 

random sequences therefore they are still considered to be unstructured, which is 

consistent with the methods used in other implicit learning experiments (Reber, 

1967; Patterson et al, 2009).   

Apparatus 

Stimuli were displayed on a 50 inch plasma television (Panasonic Viera). 

Terrain imagery was generated using commercial visual simulation database 

development software (World Perfect 2.0, MetaVR, Inc., Brookline, MA). Flight 

over the terrain was simulated using a PC based runtime system (Virtual Reality 

Scene Generator (VRSG), MetaVR). The vehicles were created and embedded 

upon the terrain using a combination of World Perfect and MetaVR VRSG. A 

two-button controller box was used to collect responses from participants. The 

button box is depicted in Appendix A. Two desktop PCs were used. One of the 

PCs ran MetaVR VRSG and the other ran the custom software to control the 

timing and order aspects of the trials as well as interface with the two-button 

controller box. The apparatus was the same for all experiments.  
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Figure 3. Top: Depiction of the Simple State Diagram after Reber (1967,1969). 
The algorithm has 6 states, 5 elements (vehicles), and 2 arcs (number of possible 
paths from each state). Also note that at states 1 and 3 there was a loop present in 
the grammar. This loop allows the pattern to repeat and acts as a salient cue for 
participants. Bottom: depiction of the Complex State Diagram after Reber & 
Allen (1978) consisting of 6 states, 5 elements (vehicles), and 2 to 3 arcs (number 
of possible paths from each state).  
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Procedure 

In an unsupervised learning paradigm, participants were asked to simply 

watch a series of episodes for a period of time without any specific instruction to 

learn or attend without feedback. There was no measure of attention taken nor 

were any of the participants provided feedback or tested during learning thus in 

this investigation their learning was deemed “unsupervised” and their experience 

was deemed “passive”. An episode consisted of the participant being passively 

flown, for 5 seconds, over the scene toward the horizon (participants will not be 

required to control their altitude, speed or heading). As participants progressed 

through the artificial episode they encountered a scene containing a given 

sequence of objects (order different for each episode) one at a time.  

Within an artificial episode, participants moved at a simulated speed of 

250 m/sec, at an altitude of 15 m and were flown over the objects one at a time in 

the order specified by the FSA. Participants were seated three meters from the 

display and handed the button box. Customized software written in C++ and 

experiment specification files controlled all aspects of the experiment. 

Specifically, the software interacted with MetaVR to present both the learning and 

test phases of the experiments and controlled the duration of the episodes during 

training and test, the speed of locomotion through the simulated environment, and 

interactions with the button box to collect responses from participants.  

Training Phase. Participants selected to complete the training phase were 

asked to observe a subset of the individual episodes. Between each episode, a blue 

screen (sky colored) appeared for one second, followed by the next episode. The 
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number of novel episodes that participants received and the number of repetitions 

of each varied dependent on the experiment and the individual experimental 

condition.  

Test Phase. All participants received a test phase in which they were 

shown presentations of novel structured sequences generated from one of the 

FSAs. Participants in the training groups were told that the sequences of vehicles 

within the set of episodes that they just watched were formed by a complex yet 

rigorous set of rules and thus contained an underlying structure. Specifically, the 

experimenter read the written instructions “The sequences of objects that you are 

about to see, will consist of some sequences that will follow the same rules and 

some which will not. It is going to be your job to determine whether you believe 

that the ones that you are about to see follow the same rules as the ones that you 

have previously viewed. Choose Y for yes or N for no on the button box.” Thus, 

participants were asked to recognize structured episodes (generated from one of 

the FSAs) as compared to the non-structured episodes (random). The no-training 

groups were informed that some of the vehicles within the episodes had an 

underlying pattern and some did not. They were then also asked to recognize 

structured episodes in a similar manner to the training groups. Instructions for all 

experiments and conditions are in Appendix A. The condition labels on the 

instructions are for documentation purposes only. 

The test procedures were similar across the experiments. All participants 

were exposed to twenty-two test episodes from both the structured and random 

sequences twice (creating a total of eighty-eight trials). Following exposure to an 
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episode, a sky blue screen with the instruction “Push only one button” appeared 

on the screen and remained until participants made a selection. All participants 

received one episode at a time and once they responded then they received the 

next episode until all sequences were exhausted.  

The training groups received sequences generated from the same FSA as 

the episodes they were exposed to in the training phase randomized with the 

quasi-random sequences. The no-training groups received episodes with 

sequences generated from one of the FSAs also randomized with the quasi-

random sequences. All participants were asked to perform a two alternative 

forced-choice task and asked to decide whether or not a given episode in the test 

condition belonged to the set of episodes that they were shown in the training 

phase.  

After the test phase was completed, each participant was asked to provide 

a description of the knowledge used during the test phase. One key result from the 

implicit learning literature is that generally, participants are unable to fully 

verbalize the basis of their recognition performance acquired during the training 

phase (Reber, 1967; Patterson et al., 2009). The lack of the ability to verbalize the 

basis of their performance will be considered here as evidence for implicit 

learning.  

Data Analysis 

The primary dependent variable of interest in this investigation was the 

percent correct of the recognition responses made by the participants in the test 

phase of the experiments. The responses were scored as to whether individual 
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participants made the correct decision or not resulting in a binary index of their 

decision for each episode (0= incorrect; 1= correct). The responses were then 

averaged to create a mean rating for each trial across two instances within the 

recognition task. Mean recognition ratings were then averaged for each type of 

episode and the percent correct for each participant was calculated by dividing the 

total number of correct responses by the total number of episodes. The data 

analysis procedures are described separately for each experiment.
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3     Experiment 1: Replication of Patterson et al. (2009) 

The purpose of the first experiment was to make empirical contact with 

previous research on the implicit learning of artificial episodes presented within a 

simulated real-world environment. In recent research by Patterson et al. (2009), 

the authors investigated the implicit learning of artificial episodes within a 

simulated real-world environment and found that participants were able to 

implicitly learn the underlying statistical pattern inherent in a set of structured 

sequences of objects and were able to use this learning to make simple intuitive 

recognitions between structured and un-structured sequences. Patterson, et al. 

(2009) adapted the seminal implicit learning paradigm employed by Reber (1967, 

1969) by using 3-D object sequences in a simulated real-world environment in 

lieu of letter strings.  

The investigations reported here utilized a general form of the paradigm 

employed by Patterson et al. (2009), thus, it was deemed imperative to replicate 

the results from Patterson et al. The authors used the original FSA employed by 

Reber (1967, 1969; as depicted in Figure 3, top diagram) which provides a critical 

set of 41 strings. Specifically, it is of interest in this experiment to determine if the 

implicit learning that occurred within the paradigm used by Patterson et al. (2009) 

also occurs with a more complex FSA (as depicted in Figure 3, bottom diagram, 

as employed by Reber & Allen, 1978). Thus, this experiment endeavored to 

replicate the Patterson et al. paradigm and used the same FSA as well as a 

relatively more complex FSA (which creates 103 sequences) as the subsequent 
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experiments required a significantly larger number of stimuli than is created by 

the original FSA utilized by Reber and the Patterson et al. experiments.  

Two training types were explored (training vs. no training) in Experiment 

1. The no training condition served to validate the test procedure. Participants in 

the training conditions were learning implicitly in an unsupervised learning 

paradigm, that is, a passive process in which they were exposed to information 

and without awareness, acquire knowledge of that information.  

The two algorithms compared in this experiment were the simple and the 

complex algorithm. The simple algorithm was used in an attempt to replicate the 

implicit learning found in Patterson et al. (2009). The complex algorithm was 

used in an attempt to extend the implicit learning found in Patterson et al. (2009) 

to a more complex algorithm (which will be used in subsequent experiments and 

which was originally used by Reber & Allen, 1978). In the interest of applications 

to learning for military operations, military vehicles were used to create the object 

sequences.  

Participants in both training conditions (simple vs. complex algorithm) 

received a predetermined set of representative structured sequences. All 

participants received a test phase in which they were required to recognize 

structured scenes. Two groups of test only participants (control groups) also 

received the test phase and were exposed to episodes created from one of the 

algorithms (simple vs. complex).  

Participants who received training received a novel set of episodes during 

test. Because participants never were exposed to the actual episodes and 
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sequences used during the test phase, successful performance during the test 

phase implies that participants transferred knowledge about the subtle underlying 

structure of the structured sequences during the training phase to the novel 

sequences used during the test phase. This transfer of implicit learning likely 

enabled participants to recognize the structured sequences during the test phase. 

The purpose of the test-only conditions was to assess the validity of the 

recognition test and to ensure that participants were learning implicitly in this 

unsupervised learning paradigm. If participants were able to successfully 

recognize structured sequences at levels approximating the training conditions 

without any training, then the test would be deemed invalid. 

Performance was measured in percent correct by assessing the 

participant’s ability to recognize structured sequences (generated from the finite 

state algorithms) in comparison to the non-structured sequences (quasi-random). 

The purpose of the test episodes was to determine the degree to which the 

participants might be using non-representative rules to make their intuitive 

decisions, that is, decision rules that they used to make their decision, but that do 

not reflect the actual differences between structured and non-structured sequences 

(i.e., called non-representative category induction). This tendency can also be 

assessed by comparing the pattern of correct and erroneous classification 

responses participants make to each episode. An example of a non-representative 

rule is use of a rule stating something similar to “all pattern sequences have a 

repeating element” though this rule may hold for some of the structured 

sequences, it also holds for the unstructured sequences. 
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Method 

Participants. Forty participants (18 males and 22 females, Mean age 23 

years, Standard Deviation 5.8) were recruited from either the Polytechnic or 

Tempe Arizona State University campus. Participants all had approximately 

normal vision and provided informed consent consistent. Participants were paid 

10$ for participation.  

Stimuli. Details about the stimuli are provided in the general method. 

Only aspects which differ will be outlined here. The aspects which differ are the 

FSAs used, the number of sequences and the number of repetitions of each 

sequence.  

Figure 3 depicts schematics of the simple and complex FSAs which were 

both used for this experiment. The top diagram in Figure 3 depicts the simple 

FSA originally used by Reber (1967; 1969) that has been employed in many 

different artificial grammar learning studies. The bottom diagram in Figure 3 

depicts the complex FSA used by Reber & Allen (1978). The critical set of all 

possible sequences that can be generated with the two FSAs are listed in 

Appendix B and C. A set of alternate quasi-random vehicular sequences was also 

produced as described in the general method (with the same five carrier objects) 

for use in the test phase. 

Procedure. Participants were randomly assigned to one of four groups. 

Out of the four groups of participants, two groups received both the training and 

test phases (simple vs. complex training groups), and the other two groups only 
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received the test phases (simple vs. complex no training groups). Appendix A lists 

instructions for all participants.  

Training Phase. Two groups of participants were selected to complete the 

training phase. The training phase consisted of a sample of sequences taken out of 

the sequence lists from the simple or complex FSA. To replicate the procedures of 

Patterson et al. (2009) and Reber, (1967; 1969), each participant received eighteen 

sequences repeated sixteen times (total of 288 trials) over a period of 

approximately thirty minutes. The episodes were presented in six blocks and the 

repetitions were presented within the blocked order. Participants were asked to 

passively observe the individual episodes.  

Test Phase. All participants received a test phase. The two groups who 

completed the training phase were asked to recognize whether each individual 

sequence was structured (generated from one of the FSAs) or unstructured 

episode (quasi-random). Participants in the test only groups were informed that 

some of the vehicles within the episodes had an underlying pattern and some did 

not. They were then also asked to recognize structured from unstructured 

episodes. All other test procedures were as described in the general method.  
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Results 

Responses for all participants were scored according to the approach 

described in the general method. To evaluate whether participants in the training 

conditions demonstrated implicit learning and increased performance (over 

chance, 50%) when compared to the no training conditions, t- tests were 

computed comparing performance within each combination of the training 

conditions and the algorithm complexity conditions. The results from the t-tests 

are shown in Table 1. All conditions within the experiment except for the no 

training, complex algorithm condition demonstrated performance significantly 

above chance (all p < 0.05).  

This significant difference from chance in the no training condition was 

not predicted. A further analysis of participants’ responses over time was 

completed to examine whether or not they were learning during the test.  All 

responses for the no training participants were examined by creating means for 

both quarters (22 trials) and halves (44 trials) of the recognition responses in the 

test phase to create a metric of their decisions over time as a function of the two 

different complexities of algorithms. There were no significant differences within 

the two analyses (quarters or halves) across the two algorithms for the no training 

condition. Thus, given related research with a comparable design, stimuli, and 

procedures (i.e. Patterson et al., 2009), which showed that a no-training, control 

condition generally produces chance-level performance (as occurred in the no-

training, complex algorithm condition), I conclude that this result is likely a type I 

statistical error.  
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Table 1. Results from t- tests for training and algorithm complexity conditions. 
Training Algorithm t p(2 tailed) M Difference 95% CI 
None Simple 3.488 0.007* 7.386 [2.596, 12.177] 

 
Complex -0.057 0.584 -1.364 [-6.794, 4.067] 

Training Simple 5.027 0.001* 19.545 [10.750, 28.341] 

 
Complex 3.308 0.009* 8.523 [2.695, 14.351] 

Note: CI= Confidence Interval, Degrees of freedom for each test=9, *p < 0.05. 

 

Figure 4 depicts group mean recognition performance in percent correct (y 

axis) as a function of the complexity of the algorithm (legend) and training 

condition (x axis). Based on the results obtained by Patterson et al. (2009) it was 

predicted that participants in both training groups (simple vs. complex finite state 

algorithm groups) would learn implicitly (performance greater than 50%) when 

compared to groups who did not receive training (control groups whose 

performance is expected to be around 50%). Even in the face of the type 1 error in 

the no training, simple FSA condition, participants in the training groups (M = 

64.03, SD = 11.62) demonstrated higher performance than participants who did 

not receive the training phase (M = 53.01, SD = 8.29). A second prediction was 

that there would be a difference in performance due to the increase in complexity 

of the algorithm used to generate the sequences of objects. The performance of all 

participants who received the simple algorithm (used by Reber, 1967, 1969 & 

Patterson et al. 2009) was higher (M = 63.47, SD = 11.50) than participants who 

received stimuli generated by the more complex algorithm (M = 53.58, SD = 

9.19). 

The data shown in Figure 4 were subjected to a 2 × 2 between-subjects 

analysis of variance (ANOVA). This analysis shows a main effect of training 
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condition, F(1, 36) = 15.188, p < 0.001, partial η2 = 0.297, as well as a main 

effect of algorithm complexity, F(1, 36) = 12.22, p < 0.001, partial η2 = 0.253. 

This analysis did not reveal an interaction between training and algorithm 

complexity, F(1, 36) = 0.161, p = 0.69, partial η2 = 0.004. An ANOVA was also 

conducted to examine the effect of complexity on implicit learning in the training 

condition shows that there was a difference between the simple and complex FSA 

performance with training F(1, 18) = 5.585, p < 0.05, partial η2 = 0.237.  

 

Figure 4. Graph depicting the results for Experiment 1. Mean results show 
recognition performance (percent correct, y axis) for the simple and complex 
finite state algorithms under two training conditions (training and no training, x 
axis). Error bars represent Standard Error.  
 

Response Analysis. To determine whether or not training and algorithmic 

complexity influenced participants responses, Miss Rate, Correct Rejection Rate 

(CR Rate), Hit Rate, False Alarm Rate (FA Rate), Sensitivity (d’), Criterion (c), 
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Non-parametric sensitivity (A’), and Criterion (B’D) were calculated (as shown in 

Table 2). A visual examination of the values for each combination of training and 

algorithmic complexity in Table 2 demonstrates that Hit Rate was higher for 

training than no training conditions, and lower for the more complex algorithm; 

FA rate was lower for the training condition overall and higher for the more 

complex algorithm. The hit rate for the training and algorithm complexity 

conditions was statistically significant as indicated by a between-subjects 

ANOVA, (training, F(1, 36) = 0.230, p < 0.01, Partial η2 = 0.223; complexity, 

F(1, 36) = 0.234, p < 0.01, Partial η2 = 0.226).  Mean FA Rate was not 

statistically significant (p > 0.05). These results indicate that training significantly 

increased hit rate overall and that hit rate was slightly lower for the higher 

complexity condition. Thus, training did increase performance likely because of 

the exposure to the underlying pattern received during training. Furthermore, the 

added complexity of the patterns created by the complex FSA seems to have 

hindered learning of the underlying pattern resulting in a somewhat lower hit rate.   

Table 2. Signal Detection Analysis of Training and Algorithm Complexity 
Conditions. 
Algorithm  Training Miss 

Rate 
CR 
Rate 

Hit 
Rate 

FA 
Rate 

d' C A' B'D 

Simple None 0.549 0.439 0.568 0.432 0.302 0.025 0.594 0.034 
 Training 0.718 0.282 0.673 0.327 0.969 -0.222 0.710 -0.264 
Complex None 0.414 0.586 0.520 0.480 -0.173 0.121 0.464 0.110 
  Training 0.548 0.452 0.625 0.375 0.511 0.127 0.643 0.138 
Note. CR= Correct Rejection, FA= False Alarm 

Table 2 also shows the results from the d prime analysis. D prime 

measures the sensitivity of correctly recognizing “structured” vs. “unstructured” 
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sequences presented in the test phase of the experiment. Sensitivity (d’) was 

highest after training with the simple algorithm and lowest for the complex with 

training condition and lower for the no training condition especially for the 

complex algorithm. Generally, training increased sensitivity to the underlying 

pattern and complexity decreased sensitivity. D prime for the training and 

algorithm complexity conditions individually was also statistically significant as 

indicated by a between-subjects ANOVA, (training, F (1, 36) = 9.267, p < 0.01, 

Partial η2 = 0.205; complexity, F (1, 36) = 4.420, p < 0.05, Partial η2 = 

0.109).Criterion was also calculated to examine response bias. As shown in Table 

2, criterion was generally stable for the complex algorithm condition across the 

training conditions but lowest for the simple algorithm, with training condition. 

There was no statistical difference across the conditions for criterion. 

Also depicted in Table 2 are non-parametric measures of sensitivity and 

criterion, namely A’ and A’B. A prime represents the area under the Receiver 

Operating Characteristics (ROC) curve and corrects for non-normal signal and 

noise distributions. A’ indicates that with values less than 0.5 that signal cannot 

be distinguished from noise (Stanislaw & Todorov, 1999). The non-parametric 

measures of sensitivity and criterion generally followed the same trends as their 

non-parametric counterparts (d’ and c). Non-parametric sensitivity was 

significantly different for both training and complexity as indicated by a between-

subjects ANOVA, (training, F(1, 36) = 9.837, p < 0.01, Partial η2 = 0.215; 

complexity, F(1, 36) = 4.356, p < 0.05, Partial η2 = 0.108). The non-parametric 
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measure of criterion was not statistically different across the training and 

algorithmic complexity conditions (p >0.05).   

Overall, the response analysis indicates that the simple algorithm was 

likely much easier for participants to learn which enabled the participants’ ability 

to recognize the structured stimuli at test. Additionally, participants who received 

training demonstrated significantly higher ability to recognize structured 

sequences. The effect of training on participants responding was greater for the 

simple sequences than for the complex sequences. These results are similar to the 

findings of the percent correct analysis in that performance generally was greater 

for training than for participants who did not receive training and for the 

participants who received sequences generated by the Simple FSA in comparison 

to the Complex FSA.   

After completion of the test phase, all participants were asked to report the 

information that they used to make the yes/no judgments on the task. The majority 

of participants responded with non-representative rules that they were using to 

recognize the structured patterns such as using the left-right locations of the 

objects (which was random) and the colors of the objects. Specifically, a few 

participants reported at least one rule that could have been consistent with the 

sequences and consisted of statements such as “I used the objects that were 

repeating” or “I used the kinds of objects and the colors of objects”. A few 

participants mentioned naming the objects as they encountered them. When asked 

how they felt on a yes decision, many participants reported the decision as 

“feeling right” or “feeling weird” and one even used the description that the 
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decision “felt like intuition”. These types of responses are consistent with the 

literature on both intuitive decision making in simulated real-world environments 

(Patterson et al., 2009) and the literature on artificial grammar learning (Reber, 

1967, Reber & Allen, 1978) and are considered in this experiment to be indicators 

of implicit learning.  
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Summary 

One goal of this experiment was to connect with previous literature 

(Patterson et al., 2009) and investigate whether the general paradigm used in 

subsequent experiments would be capable of inducing implicit learning in an 

unsupervised learning paradigm with naturalistic stimuli presented within a 

simulated, real-world environment. The results of this experiment indicate that 

participants who received training demonstrated implicit learning when compared 

to participants who did not receive training. A second goal of this experiment was 

to determine specifically whether the complex algorithm could induce a level of 

implicit learning that would enable the issue of the diversity of exemplars to be 

examined. It was found that the more complex algorithm did induce implicit 

learning although the level of learning was lower relative to that of the learning 

that occurred with the simple algorithm. This result indicates that more training 

may be required to create comparable learning with the complex algorithm. The 

result that learning can occur with the complex algorithm enabled the subsequent 

experiment to be conducted to determine the effects of diversity of exemplars on 

implicit learning.  
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4     Experiment 2. Diversity of Exemplars for Implicit Learning 

The purpose of the second experiment was to examine the relationship 

between the diversity and repetition of exemplars experienced during training and 

which lead to implicit learning. Specifically, the goal of the present experiment 

was to determine the effects of different combinations of diversity of exemplars 

and the number of repetitions of exemplars on creating robust implicit learning. 

Robust implicit learning as defined here was indicated by participants’ learning of 

the underlying pattern inherent to the artificial grammar with a minimal number 

of repetitions. The general assumption that motivated this experiment was that 

there is typically an optimal combination of repetition and diversity of experience 

required for learning. Here, diversity/breadth was operationally defined as the 

total number of novel sequences presented during training. Additionally, 

repetition was defined as the number of presentations of individual 

episodes/exemplars during training. These variables were combined in this 

evaluation to determine their associated effect on implicit learning. 

The ability to implicitly learn the underlying statistical patterns inherent 

within a set of stimuli, generated using a finite state algorithm, has been 

demonstrated using the following types of strings of stimuli: letters (Reber, 1967; 

1969; 1989); symbols (Pothos, Chater, & Ziori, 2006); and more recently 

sequences of 3-dimensional objects (e.g. vehicles) positioned on a terrain and 

viewed in an dynamic, simulated, real-world environment (Patterson et al., 2009). 

Due to the ability to implicitly learn with many different stimuli types and in both 

non-realistic and simulated environments, implicit learning is considered to be a 
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primitive form of learning which can occur under many different conditions and 

with many different types of stimuli. Although the ability to learn stimuli 

implicitly without full awareness has been demonstrated in the literature, there 

have not been any investigations that have endeavored to determine the diversity 

conditions under which rapid and robust implicit learning occurs.  

Typically, the design of implicit learning experiments revolves around a 

fixed number of exemplars and a fixed repetition of exemplars. One of example of 

this is given by Patterson et al. (2009) as they used 18 exemplars repeated a total 

of 16 times during training. This situation does serve to create implicit learning; 

however, it is also of interest to determine whether increasing the number of 

exemplars to which a participant is exposed, increases the level at which they 

implicitly learn the underlying pattern because exposing participants to more 

exemplars exposes them to more of the underlying pattern. In this investigation, 

the number of exposures and the number of repetitions were combined in order to 

examine how the two together impact the participants’ ability to form a non-

analytical category of the underlying statistical pattern.  

As discussed in the introduction, implicitly learned information is likely 

stored in a form of non-analytical category. Thus, in this investigation, an effort 

was made to determine the combined effects of diversity of exemplars and 

repetition of exemplars on the ability to represent information that has been 

implicitly learned. It was predicted that when participants learn the underlying 

pattern inherent to the structured sequences that they are abstracting information 

from the sequences which is likely incorporated into a prototype or into a mixed 
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representation. Thus, it seems reasonable to conjecture that in the current 

experiments, participants’ create a category for the information that they are 

abstracting from the episodes. Thus, here the learning that occurs will be 

considered within the framework of categorization. 

Based on previous work in categorization and prototype abstraction 

(Homa & Vosburgh, 1976) it was predicted that in the current experiment, a 

greater amount of diversity of exemplars will lead to more robust learning of the 

prototype. An exemplar, within in the current investigation, was defined as an 

individual exposure to an episode with a given sequence of objects. The 

prototype, within the context of current investigation was thus conceptualized as 

consisting of the underlying pattern inherent to the critical sets of sequences 

created by the FSAs. Additionally, it was also predicted that rapid and robust 

implicit learning will require less repetition when a greater amount of diversity is 

inherent to the set of episodes viewed by the participants.  

Homa and Vosburgh (1976) examined the effects of category breadth (in 

the present experiment labeled as diversity) on category learning, for which 

category breadth was defined as the range of distortions from a prototype that can 

still be considered acceptable to a category. Homa and Vosburgh manipulated 

category breadth by comparing learning from groups who received mixed 

category learning experience consisting of small, medium and large deviations 

from a prototype to only small deviations of a prototype. Homa and Vosburgh 

found that as category size increased, the percent correct for identification of 
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category membership increased for each distortion level as a function of category 

size (3, 6 and 9 members of a category).  

When the results from Homa and Vosburgh (1976) are considered within 

the context of the current experiment, it seems reasonable to conjecture that if 

individual exposures to the artificial grammar strings are considered as exposures 

to exemplars and participants are assumed to be abstracting statistical information 

from each string and storing it as a prototype, then the results from Homa and 

Vosburgh (1976) should be applicable to implicit learning with artificial 

grammars. Furthermore, it was also be expected that in accordance with Homa 

and Vosburgh (1976) that the larger diversity (or breadth) of exemplars to which a 

participant is exposed would lead to greater learning and higher performance at 

test.  

When considering implicit learning in this context, the presentation of 

higher levels of diversity of exemplars from the FSA could be thought of as large 

deviations from the prototype. This experiment was designed to explore whether a 

combination of diversity of exemplars and repetition of experience exists which 

will serve to create maximum robust learning. Based on the findings of Homa and 

Vosburgh (1976) it was predicted that seeing more exemplars, here considered as 

a higher level of diversity, will lead to better implicit learning of the patterns 

inherent to the artificial grammar compared to a less diverse set of exemplars.  

The second question that this experiment was designed to address is 

whether an optimal combination exists between diversity of exemplars and 

repetition of individual sub-sets of the sequences of vehicles that will serve to 
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create robust implicit learning. To create maximum robust learning, there is likely 

a combination of diversity of exemplars and the number of repetitions that a 

participant receives which will lead to optimal performance. This combination 

would both increase the strength of the memory trace through repetition and 

provide sufficient coverage of the pattern to enable participants to learn the 

underlying structure. As in the majority of standard training paradigms, a certain 

amount of repetition is required for even baseline levels of task performance. 

Though repetition is not explored separately in this experiment, it still remains 

necessary to determine what combination of diversity and repetition is required in 

order to learn the underlying pattern inherent to the episodes. Further, though 

repetition could be said to improve the memory of a given exemplar, it was also 

predicted that if the participant does not receive enough diverse exemplars this 

would result in a deficiency of exposure to the sequences of objects from which to 

abstract the underlying pattern. 

In this experiment, five levels of diversity and repetition were used as well 

as a control condition in which no training was received. The dependent variable 

was the recognition percent correct from the test phase. There were two phases in 

this experiment; the training phase and the test phase. The two phases were 

repeated twice to maximize learning outcomes and performance. 
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Methods 

Participants. Sixty participants (18 males and 42 females, Mean age 

18.76 years, S.D. 1.456) were recruited from the Psychology Participant pool at 

the Arizona State University Tempe campus. All participants had approximately 

normal vision, provided informed consent and were compensated with credit 

hours through the Psychology Department Participant Pool.  

Stimuli. The information about the stimuli for this experiment is detailed 

in the general methods. Only the aspects which differ will be outlined here. The 

aspects which differ are the FSA that will be used, the number of sequences and 

the number of repetitions of each sequence.  

The bottom portion of Figure 3 depicts a schematic of the complex FSA 

used for this experiment. A set of alternate quasi-random vehicular sequences was 

also produced (with the same five carrier objects) for use in the test phase of the 

experiment. The procedure for production of the quasi-random strings is detailed 

in the general method. 

Procedure. Participants were randomly assigned to one of six groups. Out 

of the six groups of participants, five groups received both training and test phases 

(diversity groups), and the other group only received the test phase. Appendix A 

lists instructions for all phases.  

Training Phase. Five groups of participants were selected to complete the 

training phase. The training phase consisted of a random sample of sequences 

taken out of the sequences generated by the FSA. The number of sequences varied 

dependent on the diversity condition. The diversity conditions included 3 novel 
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exemplars repeated 48 times (Group 1), 6 novel exemplars repeated 48 times 

(Group 2), 12 novel exemplars repeated 24 times (Group 3), 24 novel exemplars 

repeated 12 times (Group 4), and 48 novel exemplars repeated 6 times (Group 5). 

The number of exemplars within a block also varied dependent on the diversity 

condition. Group 1 received one novel exemplar per block, Group 2 received 1 

novel exemplar in two blocks and 2 novel exemplars in 2 blocks (number of 

exemplars per block was counterbalanced across participants), Group 3 received 3 

novel exemplars per block, Group 4 received 6 novel exemplars per block, and 

Group 5 received 12 novel exemplars per block. Exemplars were presented in a 

fixed order and repeated across the order. Appendix C lists the sequence sets from 

the complex FSA. Following the procedures outlined in the general method, 

participants were asked to passively observe the individual episodes.  

Test Phase. All participants received a test phase. All test procedures were 

the same as described in the general method. Groups 1-5 received the training 

episodes twice separated by two novel test conditions to maximize learning 

outcomes.  
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Results 

Responses for all participants were scored according to the approach 

described in the general method. Percent correct scores were then averaged to 

create group means for each condition. Figure 5 depicts group mean recognition 

performance in percent correct (y axis) as a function of the diversity and 

repetition conditions (x axis) for the two training and test sessions (light and dark 

bars). Note that the first test session generally did not produce any performance 

differences. A between-subjects ANOVA found that diversity did not increase 

performance in the first test session F(5, 54) = 2.059, p = 0.085. 

Figure 5. Graph depicting the results for Experiment 2. Mean results show 
recognition performance (percent correct, y axis) for no training and exemplar 
diversity and repetition conditions for both test sessions. Error bars represent 
Standard Error of the Mean. Each bar contains data from ten participants 
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However, Figure 5 also demonstrates that when participants completed a 

second training and test session, the effects of diversity on performance begin to 

manifest. Due to the lack of a diversity effect on implicit learning in the first 

training and test session, these data were not included in the final analysis. The 

difference in recognition performance across the first and second test sessions 

increased as a function of diversity (3 x 96 condition M difference= 4.77, 6 x 48 

condition M difference= 0.47, 12 x 24 condition M difference= 5.11, 24 x 12 M 

Difference= 9.20, 48x6 condition M difference = 14.65).  A between-subjects 

ANOVA found that the main effect of diversity was significant across the two test 

sessions, F(5, 54) = 3.30, p < 0.01 (partial η2 = 0.234) 

To evaluate whether Training increased performance when compared to 

the No Training condition, t-tests were computed comparing performance within 

each combination of Diversity and Repetition to chance performance (50%). The 

results from these t-tests are shown in Table 3. All conditions, except for No 

Training and 3 x 96 conditions, demonstrated performance significantly above 

chance. The non-significant difference between No Training and chance 

performance was predicted based on the results of the complex algorithm, no 

training group in Experiment 1, as well as the findings of Patterson et al. (2009). 

This result shows that for conditions with performance above chance that training 

was effective in producing implicit learning of the underlying pattern. The below 

chance performance found for the lowest diversity level was likely due to 

participants receiving three exemplars repeated 96 times and demonstrates that the 
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lowest level of diversity did not provide enough coverage of the underlying 

pattern during training to enable above chance performance during test.  

Table 3. Results from t-tests for no training and diversity and repetition 
conditions. 

Condition T p (2-tailed) 
M 
Difference 95% CI  

No Training -1.503 0.167 -3.523 [-8.825, 1.779] 
3 x 96 1.928 0.086 2.614 [-0.453, 5.68] 
6 x 48 3.441 0.007* 6.364 [2.179, 10.547] 
12 x 24 3.13 0.012* 10.455 [2.899, 18.011] 
24 x 12 2.898 0.018* 13.751 [3.017, 24.483] 
48 x 6 4.939 0.001* 21.023 [11.395, 30.651] 
Note: CI= Confidence Interval, Degrees of freedom for each test=9, *p < 0.05. 

Recall, it was predicted that because increased diversity of exemplars 

provides more exposure to the underlying pattern, as diversity was increased 

performance would also increase. This prediction is in accordance with the results 

of Homa and Vosburgh (1976) who found that as breadth of categories is 

increased, performance also increased. As shown in Figure 5, performance was 

overall higher generally with training than without. Performance also appears to 

increase linearly with the increase in diversity.  

A between-subjects ANOVA was conducted to examine whether the 

increase in diversity significantly increased performance. This analysis shows that 

the main effect of diversity was significant, F(5, 54) = 7.137, p < 0.001 (partial η2 

= 0.398). A Tukey’s Honestly Significant Difference (HSD) post hoc test found 

significant differences between the no training condition and the 48 x 6, 24 x 12, 

and 12 x 24 diversity conditions) and the 48 x 6 diversity condition and the 3 x 

96, 6 x 48, and 24 x 12, exemplar diversity conditions (all Tukey’s HSD p < 

0.05).  
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Response Analysis. To determine whether or not increases in diversity 

influenced participants responses, Miss Rate, Correct Rejection Rate (CR Rate), 

Hit Rate, False Alarm Rate (FA Rate), Sensitivity (d’), Criterion (c), Non-

parametric sensitivity (A’), and Criterion (B’D) were calculated(as shown in 

Table 4). The values in Table 4, demonstrate that miss rate decreased as a 

function of diversity, correct rejections increased as a function of diversity, hit 

rate increased as a function of diversity, and false alarm rate did not vary with 

diversity. These results indicate that as the coverage of the underlying structure 

increases as a function of diversity, the number of hits and correct rejections also 

increases and the miss rate decreases. The increase in hit rate was statistically 

significant as indicated by a between-subject ANOVA, F(5, 54) = 8.381, p< 

0.001, (partial η2 = 0.437).  

Table 4. Signal Detection Analysis of no training and diversity and repetition 
conditions.   

Condition 
Miss 
Rate 

CR 
Rate Hit Rate 

FA 
Rate d' c A' B'D 

No Training 0.611 0.541 0.389 0.459 -0.171 0.213 0.401 0.192 
3 x 96  0.673 0.725 0.327 0.275 0.185 0.499 0.536 0.523 
6 x 48 0.402 0.530 0.598 0.470 0.308 0.093 0.553 -0.090 
12 x 24 0.434 0.643 0.566 0.357 0.559 0.118 0.598 0.007 
24 x 12 0.330 0.600 0.670 0.400 0.740 0.088 0.618 0.034 
48 x 6 0.211 0.632 0.789 0.368 1.208 -0.236 0.701 -0.347 
Note. CR= Correct Rejection, FA= False Alarm 

Also depicted in Table 4 are the results from the d prime analysis. D prime 

values increased as a function of diversity indicating that as increased diversity 

led to increased sensitivity to structured patterns and decreased false alarm rates. 

This effect was also statistically significant as indicated by a between-subjects 
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ANOVA (F(5, 54) = 6.242, p< 0.001, (partial η2 = 0.366)). Criterion was also 

calculated to examine response bias with increases in diversity. The criterion 

decreased with increases in diversity with the exception of the highest diversity 

condition in which the criterion shifted towards participants being generally more 

likely to say yes (F(5, 54) = 2.412, p< 0.05, (partial η2 = 0.191)).  

Also depicted in Table 4 are non-parametric measures of sensitivity and 

criterion, namely A’ and A’B. As shown in Table 4, there was poor sensitivity for 

the structured sequences during the test for the no training condition, as well as 

for the 3 x 96 and 6 x 48 diversity conditions. Above this level, participants 

appear to increase in the ability to distinguish structured from quasi-random 

patterns during the test phase with large sensitivity increases in the highest two 

levels of diversity. This overall increase in sensitivity was also statistically 

significant as measured by a between subjects ANOVA (F(5, 54) = 6.396, p< 

0.001, (partial η2 = 0.372)). A non-parametric measure of criterion (B’D) was 

also calculated to examine response bias. Generally, the criterion significantly 

shifts towards participants being more likely to say yes as diversity was increased 

in (F(5, 54) = 3.374, p< 0.01, (partial η2 = 0.238)). 

After completion of the test phase, all participants were asked to report the 

information that they used to make the yes/no judgments on the task. The majority 

of participants responded with non-representative rules that they were using to 

recognize the structured patterns such as using the left-right locations of the 

objects and colors of the objects just as in Experiment 1. A few participants again 

reported at least one rule that was consistent with the sequences but no 
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participants gave significant indications of explicit knowledge of the underlying 

structure even considering that they received two sets of training and test phases. 

When asked how they felt on a yes decision, many participants reported the 

decision as “feeling right” or feeling good” and few even used descriptions like “I 

followed my gut”. These types of responses are consistent with the literature on 

intuitive decision making in simulated, real-world environments (Patterson et al., 

2009) and the literature on artificial grammar learning (Reber, 1967, Reber & 

Allen, 1978) and are considered here to be indicators of implicit learning.  
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Summary 

The principal goal of this experiment was to investigate the effect of 

diversity of exemplars experienced during training on implicit learning and 

intuitive decision making. The results of this study indicate that increased 

diversity of experience during training enhances implicit learning and, by 

implication, the accuracy of intuitive (i.e., pattern-recognition-based) decision 

making. Experiment 3, which will be discussed next, investigated a possible 

contributing mechanism to implicit learning and intuitive decision making.  
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5     Experiment 3: Implicit Learning Mechanism Exploration 

The previous experiments explored whether the paradigm used would 

create implicit learning (Experiment 1) and investigated the effects of diversity 

and repetition on the ability of participants to implicitly learn (Experiment 2). The 

results from these investigations demonstrate generally that 1) implicit learning 

can occur within a simulated real-world environment and 2) that as a result of the 

realistic exposure made available through the simulated real-world environment, a 

robust quality of implicitly learned stimuli can be created, such that the stimuli 

can be learned with a minimal amount of repetition. These components of robust 

implicit learning (learning with minimal repetition and transfer to novel stimulus 

sets) should enable participants to make intuitive decisions based on the 

knowledge that is learned implicitly in the current paradigm. 

Recall that the proposed mechanism behind intuitive decision making is a 

form of situational pattern recognition. Situational patterns are proposed here to 

be learned via an implicit, perceptually-based learning process. Specifically, the 

situational pattern recognition process could be in accordance with template 

matching theories or individual feature matching (Neisser, 1967). Within the 

current paradigm, the form of the situational pattern recognition process has not 

yet been investigated. However, regardless of the form of the pattern recognition 

process, it should be possible to determine whether or not specific aspects of the 

situation are stored and thus determine the possible associated contents of those 

representations.  



  68 

When the premises of embodiment and the results of Marsh and Glenberg 

are considered within the context of the current investigation, it is possible that 

when participants are passively flown over the object sequences during training 

that they are developing fluency with the sequences of object by labeling and 

imitating those labels using an articulatory system. If this is the case, then in the 

current investigation participants may be labeling the objects (e.g. Abrams, 

Hummer, Bradley, Truck, and Launcher) and thus simulating the neuromuscular 

activity of creating the labels at a level which does not directly reach awareness.  

The current experiment investigated whether participants are labeling 

stimuli in a similar manner as demonstrated by Marsh and Glenberg. To do so, 

participants were allowed to learn as they normally would during training or were 

asked to verbally label each of the stimuli for the duration of the training phase. In 

the test phase, participants were asked to either tap their left and right toes in 

alternation, or asked to speak the phrase “da-da. The two secondary tasks at test 

were included to assess whether labeling was occurring by suppressing simulation 

or imitation of the labels. The addition of the secondary tasks should 1) enable 

determination of the extent to which participants are using a form of labeling 

during learning and attempting to imitate the labels during test and 2) whether 

labeling is one of the mechanisms by which representations of implicitly learned 

information are created. Furthermore, if labeling is indicated by lower 

performance after articulatory suppression, it would demonstrate a possible 

mechanism for implicit learning and the subsequent situational pattern recognition 

that underlies intuitive decision making.  
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A 2 x 2 factorial design was used with two levels of labeling as one 

between subjects variable (no labels, labels) and two levels of suppression as the 

other between subjects variable (toe tapping, articulation). The dependent variable 

was the percent correct of recognition performance in the test phase. There were 

two phases in the experiment; the training and the test phase.  
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Methods 

Participants. Sixty participants (35 males and 25 females, Mean age 

19.18 years, Standard Deviation 2.4) were recruited from the Arizona State 

University Tempe campus. All participants had approximately normal vision, 

provided informed consent and were compensated with credit hours through the 

Psychology Department Participant Pool. 

Stimuli. The information about the stimuli for this experiment is detailed 

in the general methods. Only the aspects which differ will be outlined here. The 

structured set of training episodes was used from the simple FSA shown in the top 

portion of Figure 3. A set of alternate quasi-random vehicular sequences was also 

produced (with the same five carrier objects) for use in the test phase of the 

experiment. The procedure for production of the quasi-random strings is detailed 

in the general method. The full list of both structured and quasi-random episodes 

is listed in Appendix C. 

Procedure. Participants were randomly assigned to one of the four 

combinations of the label (no labels, labels) and suppression (toe tapping, 

articulation) conditions. Instructions for all participants for both training and test 

phases are listed in Appendix A. The remainder of the procedures was identical to 

those in the general method.  

Training Phase. All training conditions are identical to Experiment 1 

unless indicated. Participants assigned to the no labeling condition completed 

training in an unsupervised, passive manner as in the previous two experiments. 

Participants in the labeling condition were provided with a sheet with pictures of 
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the five objects and their associated labels and were asked to familiarize 

themselves with the names of each of the objects before test (shown in Appendix 

B). Participants were given up to two minutes to complete this aspect of the task. 

They were then instructed to verbally label each of the stimuli as they were flown 

over them for the duration of the training phase.  

Test Phase. All participants received a test phase. All procedures within 

the test phase were similar to those outlined in the general method, with the 

exception that all participants performed a secondary task during the test phase. 

All participants were asked to recognize structured episodes (generated from the 

simple FSA) from un-structured episodes (random). During the test phase, 

participants were instructed to either speak the phrase “da-da” or tap their toes in 

alternation at a rate of approximately two vocalizations or two pairs of toe 

alternations per second.  

After the test phase was completed, each participant was asked to provide 

a description of the knowledge that they used during the test phase. They were 

also asked how they felt when they made a yes response. A subset of the no 

labeling participants was also asked whether or not they were naming the objects 

during training and to what extent they used those labels during the test phase. 

They were also asked to indicate what the actual labels were that they were using.  



  72 

Results 

Responses for all participants were scored according to the approach 

described in the general method. The percent correct scores were then averaged to 

create group means for the labeling conditions (labeling vs. no labels) and for the 

suppression conditions (articulation vs. toe tapping). To evaluate whether training 

increased performance over chance, (50%), t-tests were computed comparing 

performance within each combination of labeling and suppression to chance 

performance. The results for each of these tests are shown in Table 5. All 

combinations of conditions within the experiment demonstrated performance 

significantly above chance.  

Table 5. Results from t- tests for labeling and suppression conditions. 

Labeling Suppression t 
p(2-
tailed) M Difference 95 % CI  

No Labels Toe Tapping 4.898 0.001* 20.568 [11.069, 30.067] 

 
Articulation 6.570 0.000* 25.227 [16.541, 33.913] 

Labels Toe Tapping 6.965 0.000* 25.000 [16.880, 33.120] 

 
Articulation 3.333 0.009* 14.318 [4.600, 24.037] 

Note: CI= Confidence Interval, Degrees of freedom for each test=9, *p < 0.05. 

Figure 6 depicts group mean recognition performance in percent correct (y 

axis) as a function of Suppression (x axis) and Labeling conditions (legend). It 

was predicted that verbal labeling should increase performance over that obtained 

when participants learn via passive, unsupervised learning. Performance was 

different between the No Labeling (M = 72.424, SD = 12.540) and Labeling 

conditions (M = 68.052, SD = 12.949). It was also predicted that there should be a 

difference in performance between groups who received the toe tapping and 

groups asked to complete the articulatory suppression during the test phase. 
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Performance was different between the toe tapping (M = 71.818, SD= 12.761) 

and Articulation conditions (M= 68.658, SD= 12.917). A 2 x 2 between-subjects 

ANOVA for the Experiment 3 data found that overall, having participants 

verbally label the stimuli did not significantly affect performance (F(1, 56) = 

1.846, p = 0.180. Additionally, there was not a significant difference between the 

toe tapping and articulatory suppression conditions (F(1, 56) = 0.964, p = 0.330) 

thus, suppression did not overall decrease performance as was predicted. 

 

Figure 6. Graph depicting results from Experiment 3. Results show Mean 
recognition performance in percent correct (y axis) as a function of the 
Suppression Condition (x axis) and the Labeling Condition (legend). Errors bars 
represent Standard Error of the Mean. Each bar contains data from fifteen 
participants. 
 

There was, however, a significant interaction between the suppression and 

labeling conditions (F(1, 56) = 3.700, p=0.059, partial η2= 0.062). The interaction 
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is in accordance with the prediction that articulatory suppression should act to 

suppress the ability of participants to use the verbal and neuromuscular labels 

created during the training phase and thus would act to decrease performance. 

This difference was significant and had a small effect size however, planned, 

simple contrasts comparing the With Labels and Articulation group to all others 

revealed significant differences between the No Labels and Toe Tapping group 

and the Labels and Articulation group (Difference = 10.562, p = 0.024), as well as 

the With Labels, Toe Tapping group and the With Labels and Articulation group 

(Difference = 9.350, p = 0.045). Thus, suppression did significantly decrease 

performance over that of unsuppressed levels of performance for the verbal 

labeling group. If interpreted in the context of Figure 9, it appears that though 

articulatory suppression did not act to suppress performance when participants 

were allowed to learn in a passive, unsupervised manner, suppression did appear 

to decrease performance when participants were asked to verbally label the 

stimuli in the training phase and then perform articulatory suppression during the 

test phase.  

Response Analysis. To determine whether or not labeling and suppression 

influenced participants responses, Miss Rate, Correct Rejection Rate (CR Rate), 

Hit Rate, False Alarm Rate (FA Rate), Sensitivity (d’), Criterion (c), Non-

parametric sensitivity (A’), and Criterion (B’D) were calculated (as shown in 

Table 6). A visual examination of the mean values in Table 6 demonstrates that 

Mean Hit Rate was generally stable for the no labeling condition and for the 

labeling with toe tapping conditions, however, when participants performed 
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articulatory suppression at test after labeling mean hit rate decreased.  Mean FA 

Rate was also relatively similar across all conditions except for the labeling, 

articulatory suppression condition.  There were no differences for either Hit Rate 

or FA Rate across the conditions as assessed by between-subjects ANOVAs (all p 

> 0.05).  

Table 6. Signal Detection Analysis of Labeling and Suppression Conditions. 
Labels  Suppression Miss 

Rate 
CR 
Rate 

Hit 
Rate 

FA 
Rate 

d' c A' B'D 

None Toe Tapping 0.262 0.718 0.738 0.282 1.894 -0.306 0.794 -0.217 
 Articulation 0.274 0.753 0.726 0.247 1.527 0.017 0.812 0.014 
Labels Toe Tapping 0.265 0.720 0.735 0.280` 1.340 -0.028 0.796 -0.048 
  Articulation 0.342 0.609 0.658 0.391 0.807 -0.060 0.693 0.024 
Note. CR= Correct Rejection, FA= False Alarm 

Sensitivity (d’) was overall lower for the two articulatory suppression 

conditions but lowest for the with-labeling condition. There was a significant 

difference in the sensitivity of the labeling conditions (F(1, 56) = 4.443, p < 0.05). 

Criterion was lowest for the no labels toe tapping condition, followed by the 

labeling and articulatory suppression condition, and the labeling, toe tapping 

condition and the no labeling and articulation condition. The difference in 

criterion across conditions was not statistically significant.  These results indicate 

that generally participants had a harder time recognizing the structured patterns 

during the test phase especially for the labeling and articulatory suppression 

condition.     

After test phase completion, all participants were asked to report the 

information that they used to make the yes/no judgments. As in the previous two 

experiments, the majority of participants responded with non-representative rules 
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that they were using to recognize the structured patterns such as using the left-

right locations of the objects and colors of the objects. For the no-labeling 

condition, a few participants again reported at least one rule consistent with the 

sequences, but no participants gave significant indications of explicit knowledge 

of the underlying structure. For the labeling condition, there were more statements 

that were consistent with actually learning the underlying patterns; this may have 

been aided by having participants label the objects during training. Even though 

there were more statements consistent with the underlying patterns, there were 

still not more than one or two beyond the no-labeling group. This result was thus 

interpreted as an indicator of implicit learning of the patterns.  

A subset of the participants in the no labeling group (ten participants out 

of thirty) was also asked whether or not they were naming or labeling the objects 

during the training phase. The majority of the participants asked about labels 

stated they were labeling, using the labels on more than half of the test trials, and 

gave labels analogous to the actual vehicle names. Finally, when asked how they 

felt on a yes decision, many participants reported the decision as “feeling right” or 

feeling good” and few even used descriptions like “I followed my gut”. These 

types of responses are consistent with the literature on both intuitive decision 

making in simulated real-world environments (Patterson et al., 2009) and the 

literature on artificial grammar learning (Reber, 1967, Reber & Allen, 1978) and 

are considered here to be indicators of implicit learning.  
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Summary 

This principle goal of this experiment was to investigate evidence for a 

possible embodied-mechanism contribution to the explanation for implicit 

learning and intuitive decision making. The results of this experiment suggest that 

labeling (as evidenced by decreased performance with articulatory suppression) is 

one possible mechanism contributing to the implicit learning of statistical 

patterns. This result, together with the results from Experiments 1 and 2, will be 

discussed in the next section.  
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6     Discussion 

The principal results of this investigation demonstrate, in general, that 

implicit learning (a route to the development of intuitive decision making) can 

occur within a simulated real-world environment involving complex, naturalistic 

stimuli. Moreover, the current results suggest that the diversity of experience is an 

influential factor in the development of implicit learning because it increases 

coverage of the associations embedded within the situational patterns. Finally, the 

results suggest that an embodied mechanism, namely labeling, can partially 

account for the implicit learning found in this investigation. Taken in concert, the 

results of this investigation have revealed several key factors that play an 

important role in the development of intuitive decision making.  

In Experiment 1, it was shown that, consistent with Patterson et al. (2009), 

participants were able to learn situational patterns (i.e. object sequences) 

implicitly in a simulated real-world environment. Implicit learning is thought to 

provide a route by which intuitive decision making is developed (Hogarth, 2001; 

Reber, 1989; Patterson et al., 2009). The keystone of intuitive decision making is 

the ability to recognize situational patterns which is likely based on non-analytical 

category formation created from implicit learning (Brooks, 1978; Brooks & 

Vokey, 1991; Raab & Johnson, 2008). The results of Experiment 1 substantiate 

the claim that implicit learning enables the development of the situational pattern-

recognition process which underlies intuitive decision making.  

Experiment 1 also explored whether implicit learning could occur with a 

more complex algorithm. It was found that implicit learning did occur using the 
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more complex algorithm, however, the level of learning with the complex 

algorithm was significantly lower (but still above chance level) than the learning 

that occurred with the simple algorithm. Nonetheless, it is inferred here that 

implicit learning can provide a foundation for intuitive decision making even 

when the patterns to be learned are complex.   

In Experiment 2, it was shown that increased diversity of experience 

during training enhances the accuracy of intuitive decision making and, by 

implication, increased diversity enhances implicit learning. It is likely that 

diversity is influential because exposure to a greater number of exemplars 

increases the chances for individuals to come into contact with more of the 

associations comprising the situational pattern (i.e. greater coverage) which, in 

turn, can reinforce learning. Reinforced learning, though greater coverage of the 

underlying patterns, should facilitate the establishment of a stronger memory 

representation of the pattern. This explanation is consistent with the findings of 

Homa and Vosburgh (1976), who revealed that exposure to a mixture of small, 

medium and large deviations from a prototype, enhances one’s ability to identify 

category members in comparison to exposure to only small deviations from a 

prototype. In the future, this result could be extended by an investigation of the 

relationships among diversity of experience, algorithmic complexity, and implicit 

learning. Based on the results of this set of experiments, I would predict that, as 

complexity is increased, diversity would also need to be increased in order to 

create comparable levels of implicit learning.  
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Learning in conditions of increased diversity was less prone to errors, 

fostered increased sensitivity to the underlying structure, and produced a balanced 

response criterion. These results are taken as evidence that increases in diversity 

not only increased correct responding but also increased sensitivity to the 

structured patterns during the recognition test, essentially demonstrating more 

robust learning and thus resulting in robust intuitive decision making. Recall from 

the introduction that robust intuitive decision making would be indicated here by 

learning which occurred with minimal repetition of stimuli. In this investigation, 

the minimal repetition of stimuli, together with more diversity, led to an implicitly 

learned representation of the structure of the underlying pattern and thus led to 

more robust intuitive decision making.   

The results of this investigation demonstrate that diversity of experience 

significantly enhances implicit learning and suggest that the formation of an 

enhanced memory representation can lead to increased transfer of learning to 

novel exemplars (i.e., the novel exemplars during test). From this result, I 

conjecture that diversity calibrates the learning process to the extent that the more 

diversity of exposure to the underlying patterns within an environment; the more 

complete the resulting representation of the patterns in memory. In this 

investigation, it is likely that a more complete memory representation of the 

underlying patterns led to increased performance, as demonstrated by the increase 

in sensitivity and stability of decision making as diversity was increased.  This 

more complete representation of the underlying patterns may have been 

contributed to both by the diversity of the patterns as well as the two training and 
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test sessions that participants received. Due to the two cycles of training and test, 

in the second cycle participants are familiar with the general procedures used in 

the experiment. Specifically, participants are aware that there is an underlying 

pattern and they know that they will be tested on it. By definition the procedure 

itself is no longer implicit. However, participants were still not able to explicitly 

define the underlying pattern even after the second test. The ability to explicitly 

define the underlying pattern has been considered by many to be a main indicator 

of implicit learning (Reber, 1967; Patterson et al., 2009). Thus, this result will be 

interpreted in the current investigation as still indicating that the learning is still of 

a level that does not reach conscious awareness and is still considered to be 

largely implicit.   

In Experiment 3, it was shown that labeling, by itself, did not increase 

implicit learning and suppression, by itself, did not decrease implicit learning. 

However, when participants were asked to label the stimuli verbally during 

training and then asked to perform articulatory suppression during the recognition 

test, suppression decreased performance. This finding is in accordance with the 

prediction that verbal labeling is one means by which participants learn the 

relations within the underlying pattern inherent in the set of object sequences. 

Moreover, this finding is also consistent with the prediction that articulatory 

suppression after verbal labeling would act to suppress recall of the labels 

assigned to those relations, which resulted in decreased performance. Thus, the 

results of Experiment 3 suggests that labeling is one possible mechanism for 
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implicit learning, and thus the development of intuitive decision making, within 

the simulated real-world environment used in the current investigation. 

The proposal that verbal labeling is one possible mechanism underlying 

the implicit learning in the present investigation is in accordance with the 

grounded perceptual-symbol system hypothesis proposed by Barsalou (2009). 

According to this hypothesis, verbal (or even subvocal) labels are created as a 

means of coupling the experience in the environment, the memory of the 

experience in that environment, and relevant perceptual variables, which serves to 

ground the learning. According to this hypothesis, in this study, as participants 

experienced sequences of objects while undergoing simulated flight over the 

terrain, the participants were creating a memory representation that not only 

contained perceptual information about the simulated environment but which also 

contained the verbal labels for the vehicles and the transitions between the labels.  

Neuromuscular labels as explored in the current investigation need not be 

verbally or subvocally grounded. The type of label created for a specific task 

would be contingent on the interaction completed in the task. As an example, if 

participants were also asked to control their locomotion, they may also embed in 

their neuromuscular representations of the task, a motorically-driven 

representation. The interactions between the types of labels represented as a 

function of the elements present within a task and the associated embodied 

representation of the task will be investigated in future research. 

The suggestion that, after labeling the stimuli during training, articulatory 

suppression acted to suppress the participants’ ability to imitate the labels during 



  83 

test is in accordance with the embodied statistical learning account of Marsh and 

Glenberg (2010). Recall that Marsh and Glenberg proposed that participants learn 

underlying patterns via a form of neuromuscular labeling whereby the participants 

are subvocally labeling stimuli during training and then imitating the labels during 

test. Furthermore, they found that performance after learning can be suppressed 

by having participants perform a task which inhibits the ability to imitate or 

simulate the labels created during training. Marsh and Glenberg used a paradigm 

similar to that reported here with the exception that the structured sequences used 

by Marsh and Glenberg were composed of auditory (tones) and visual patterns 

(boxes). The findings from the current study, if interpreted in light of Marsh and 

Glenberg, suggests a conclusion that one possible contributing mechanism 

underlying implicit learning and intuitive decision making is likely an embodied 

form of learning directly linked to the interaction with the information within an 

environment.  

The finding that suppression did not affect individuals who were not asked 

to label could be because these individuals learned the relationships embedded 

within the patterns through a different process. This could also be the reason that 

labeling alone did not act to significantly increase performance in the current 

investigation. Future research should explore what other possible mechanisms 

underlie implicit learning in our simulated real-world environment.  

Across the three experiments reported here, the highest level of 

recognition performance was on the order of 70 to 75% correct. This result raises 

the question of why performance saturated at this level and what could be done in 
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the future to elevate performance above that level. There are a number of 

interacting factors that should determine the level of performance within this 

implicit learning paradigm, such as the total number of training trials, algorithmic 

complexity, and the presence or absence of feedback.  

First, the number of training trials in the current investigation was 288, 

and this number of training trials was used because it induced sufficient levels of 

implicit learning without being onerous to the participants running in the 

experiments. It would be expected that a greater number of training trials would 

elevate learning to a higher level than that shown here, but the time commitment 

on the part of the participants would be greater. Second, the two levels of 

algorithmic complexity used in the current investigation were chosen based on 

previous research (Patterson, et al., 2009) and enabled the manipulation of 

diversity in Experiment 2. It would be expected that a simpler algorithm would 

produce higher levels of learning, but it would not generate a sufficient number of 

exemplars for examining diversity. Third, participants were not provided any 

feedback in order to simulate the kind of learning that occurs in many naturalistic 

contexts. It would be expected that feedback would elevate learning to a higher 

level than that found here but the presence of feedback would make the paradigm 

generalize less to those naturalistic contexts.  

Implicit learning is considered here, and by Patterson, Pierce, Bell and 

Klein, (2011) to be a ubiquitous form of learning that underlies and supports the 

acquisition of many different skills. In the current investigation, it is likely that 

the implicit learning was reflective of a naturally evolved, primitive ability 
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designed to extract patterns and relationships from our environment. Implicit 

learning is seen here as a primitive ability as it has been found to be a process 

which leads to the development of tacit knowledge and procedural memory 

(Reber, 1989; 1993; Perruchet & Pacton, 2006) as well as providing a foundation 

for intuitive decision making (Evans, 2008; Patterson, et al., 2009; Patterson et al., 

2011). 

The current results suggest that training intuitive decision making can 

occur within simulated real-world environments with naturalistic stimuli and that 

this training could be effectively transferred to novel sequences of objects with 

the same underlying statistical dependencies. Across the three experiments 

reported here, all participants were learning implicitly within a simulated real-

world environment with no instructions to learn, no instructions on where to 

direct attention, and no feedback. The results of the present study could be applied 

to the development of training regimes in many different tasks. Generally, the 

current results suggest that, in applied situations, it may be better to train 

individuals on a wide range of experiences even if that sacrifices repetition of 

those experiences. This wider range of experiences would lead to a more 

representative memory of their common elements, which should lead to increased 

robustness of decision making skills in natural environments with inherent 

complexity.  

One application could be operations with Remotely Piloted Aircraft 

(RPAs). In RPA ground control stations, a team including a pilot and sensor 

operator controls one or more RPAs and performs flight control, surveillance and 
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tactical aspects of the mission. It could be possible to train both the tasks of the 

pilot as well as the task of the sensor operator with the implicit learning paradigm 

used here. For example, a pilot in a given military operational environment might 

notice a drop in altitude in the video feed, combined with a change in the 

altimeter, followed by an engine indicator. This could mean that the pilot then 

needs to make a quick decision to ensure that the RPA does not crash. In the 

present context, this scenario might generate a pattern of cues on which the pilot 

might be trained using techniques analogous to the methods employed in the 

present investigation. 

Moreover, in the case of the sensor operator, they could be sent on a 

mission to monitor for improvised explosive devices (IEDs). The sensor operator 

must integrate cues across the small field-of-view from the RPV camera, the 

sensors available on a given RPV (such as an infrared sensor), as well as 

information about the content within the camera and sensors to search for cues 

relating to an IED. The operator might have been informed that the area has been 

known to have IEDs buried in the ground, which would require the operator to 

monitor the ground for some sort of pattern of disturbance. The pattern 

recognition process underlying intuitive decision making could also be helpful in 

recognition of cultural aspects of a task environment.  In the context of the IED 

task described above, it could be useful in the detection of cultural patterns in the 

task environment such as looking for the presence or absence of suspicious people 

or vehicles that could be planting an IED or who could serve as a threat. This 

scenario might also generate a pattern of cues on which the sensor operator might 



  87 

be trained using techniques analogous to the methods employed in the present 

investigation.  

An additional example would be applied situations involving command 

and control, which would require the processing and integration of large amounts 

of dynamic tactical and strategic information by a decision maker who has to 

make critical decisions in a timely manner under large amounts of uncertainty and 

time pressure. The team leader or commander in a command and control situation 

must process and understand a large amount of information coming from multiple 

sources (such as RPVs, ground commanders, and other aircraft), maintain 

awareness of communication between the players in the tactical scenario, and 

make decisions consistent with the overall goal of the mission. Here again, this 

command and control scenario might generate a pattern of cues on which the team 

leader or commander might be trained using techniques analogous to the methods 

employed in the present investigation.  

The results of the current investigation could also be applied to many other 

tasks.  In the applications presented here, exposure to a diversity of patterns 

should lead to a memory representation of the underlying statistical dependencies 

and invariants within the pattern that should allow for the pattern to be transferred 

to novel situations with the same underlying statistical dependencies. A similar 

training regime based on the paradigm utilized in the current investigation could 

be developed for many different tasks. Development of a training regime based on 

the findings of the current investigation may enable crucial intuitive decisions to 

be made which, in some cases, could result in the saving of resources or lives. 
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Further research is required to determine how to apply the results of the current 

investigation to training applications. 

In summary, the results of this investigation show that intuitive decision 

making can be trained within a simulated, real-world environment through the 

development of implicit learning. This training was accomplished with exposure 

to either simple or more complex situational patterns. However, if the underlying 

situational pattern is more complex, then an increase of diversity of exposure to 

the pattern is likely to be required to ensure maximum learning outcomes. 

Moreover, there is likely to be an embodied mechanism, namely neuromuscular 

labeling, which can partially account for the implicit learning and development of 

intuitive decision making that occurs as a result of the increased diversity.  
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Decision Making Study Instructions (Training Groups Exp. 1, 2, & 3) 
 

 

 
 
 
 
You will be seated in front of a computer display. You will be asked to 

view a series of objects on the screen. Please watch them and the experimenter 
may discuss what you have just viewed. The experiment should take 
approximately 45-60 minutes with scheduled breaks. If you need additional 
breaks, please let me experimenter know/ Once the experimenter tells you to 
begin, please push either button (as shown in the figure below).You will appear to 
be flying over a series of objects. These sequences will consist of five different 
objects in various orders on a desert-type terrain. Please watch them until you 
receive a message that all trials have been completed.  

 

 

 

 

 

 

 

 

 

 

 

 

PLEASE TURN OFF YOUR CELL PHONE AND PUT IT AWAY! THE 
FOLLOWING TASK REQUIRES A HIGH LEVEL OF CONCENTRATION. A 

RINGING CELL PHONE WILL DISQUALIFY YOU FROM THE STUDY. 

 N Y 
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Decision Making Study Instructions: (Training Groups Exp. 1, 2 & 3) 
 

 
 
 
 

 
Part Two 

 
For this portion of the experiment you will again be seated in front of a 

computer display with a button box (See picture below). The series of objects that 
you just watched form a sequence which follows a specific underlying structure. 
For this portion of the experiment, you will be viewing the same objects you have 
just viewed but in sequences you have not seen before. Some of these sequences 
will follow the same underlying structure you saw in the previous task and some 
will not. Your job is to determine if the sequences follow the same underlying 
structure or not. If the sequence appears to have the same underlying structure, 
then please press the button on the button box marked “Y” for Yes. If the 
sequence does not follow the same underlying structure, then please press the 
button on the button box marked “N” for NO. You will continue to do this until 
you receive a message that all trials are complete. 

 

 

 

 

 

 

 

 

  

PLEASE TURN OFF YOUR CELL PHONE AND PUT IT AWAY! THE 
FOLLOWING TASK REQUIRES A HIGH LEVEL OF CONCENTRATION. A 

RINGING CELL PHONE WILL DISQUALIFY YOU FROM THE STUDY. 

N Y 
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Decision Making Study Instructions: (Test Only Groups Exp. 1 & 2) 
 

 
 
 
 
 
You will be seated in front of a computer display with a button box (See 

picture below). You will be viewing sequences of five objects. To begin please 
push either button. You will appear to be flying over a series of objects. Some of 
these sequences will follow an underlying structure and some will not. Your job is 
to determine if the sequences follow the underlying structure or appear to be 
random. If the sequence appears to have the same underlying structure, then 
please press the button on the button box marked “Y” for Yes. If the sequence 
does not follow the same underlying structure, then please press the button on the 
button box marked “N” for NO. You will continue to do this until you receive a 
message that all trials are complete. 

 

 

 

 

 

 

 

 

 

PLEASE TURN OFF YOUR CELL PHONE AND PUT IT AWAY! THE 
FOLLOWING TASK REQUIRES A HIGH LEVEL OF CONCENTRATION. A 

RINGING CELL PHONE WILL DISQUALIFY YOU FROM THE STUDY. 

N Y 
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Decision Making Study Instructions: (Training Exp. 3, Labeling Groups) 
 

 
 
 
 
 
You will be seated in front of a computer display. You will be asked to 

view a series of objects on the screen. Please watch them and the experimenter 
may discuss what you have just viewed. While you are watching the series of 
objects you will be asked to verbally label the objects as you are flown over them 
according to the object labeling sheet. The experiment should take approximately 
45-60 minutes with scheduled breaks. If you need additional breaks, please let me 
experimenter know. Once the experimenter tells you to begin, please push either 
button (as shown in the figure below).You will appear to be flying over a series of 
objects. These sequences will consist of five different objects in various orders on 
a desert-type terrain. Please watch them until you receive a message that all trials 
have been completed.  

 

 

 

 

 

 

 

 

 

PLEASE TURN OFF YOUR CELL PHONE AND PUT IT AWAY! THE 
FOLLOWING TASK REQUIRES A HIGH LEVEL OF CONCENTRATION. A 

RINGING CELL PHONE WILL DISQUALIFY YOU FROM THE STUDY. 

N Y 
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Experiment 3. Labels and Objects 
 

  
 

Truck      Abrams 
 

  
 

Launcher      Hummer 
 

 
 

Bradley 
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Decision Making Study Instructions: (Exp. 3, Secondary task Groups) 
 

 
 
 
 

Part Two 
 
For this portion of the experiment you will again be seated in front of a 

computer display with a button box (See picture below). The series of objects that 
you just watched form a sequence which follows a specific underlying structure. 
For this portion of the experiment, you will be viewing the same objects you have 
just viewed but in sequences you have not seen before. Some of these sequences 
will follow the same underlying structure you saw in the previous task and some 
will not. Your job is to determine if the sequences follow the same underlying 
structure or not. If the sequence appears to have the same underlying structure, 
then please press the button on the button box marked “Y” for Yes. If the 
sequence does not follow the same underlying structure, then please press the 
button on the button box marked “N” for NO. You will continue to do this until 
you receive a message that all trials are complete. 

You have been selected to complete another activity while performing the 
decision. Specific activities will be described to you before beginning this portion 
of the experiment. Specifically, you may be instructed to tap your toes or told to 
repeat a syllable like “da-da”.  

 

 

 

 

 

 

 

 

N Y 

PLEASE TURN OFF YOUR CELL PHONE AND PUT IT AWAY! THE 
FOLLOWING TASK REQUIRES A HIGH LEVEL OF CONCENTRATION. A 

RINGING CELL PHONE WILL DISQUALIFY YOU FROM THE STUDY. 
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APPENDIX B 

SIMPLE FINITE STATE ALGORITHM TRAINING AND TEST SEQUENCES 
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Simple Algorithm (Reber, 1967; Patterson, et al. 2009) and example Quasi-random 
sequences by length 
Simple Algorithm Quasi-Random Sequences 
EDEC 

 
ACDC 

EEBC 
 

EBCC 
ABAC 

 
ABCC 

AADEC 
 

ACDC 
EDDEC 

 
ECDCC 

ABBAC 
 

ACDCC 
EDEBC 

 
EBCBC 

ABADEC 
 

AABCDC 
AADDEC 

 
EBCDEC 

AADEBC 
 

ABCDEC 
EDDEBC 

 
EDEABC 

EEBDEC 
 

ACDEAC 
ABBBAC 

 
ECDEAC 

EDDDEC 
 

AABCDC 
EDDDDEC 

 
AABCDEC 

ABADEBC 
 

EBCDEAC 
ABBBBAC 

 
ADEABCC 

EDEBDEC 
 

EEABCDC 
EEBDEBC 

 
ADEABCC 

ABADDEC 
 

EABCDEC 
EEBDDEC 

 
AABCDEC 

AADDEBC 
 

EABCDEC 
AADDDEC 

 
ADEABCC 

ABBADEC 
 

ECDEABC 
EDDDEBC 

 
ABCDEAC 

AADEBDEC 
 

EABCDEAC 
EDDEBDEC 

 
ADEABCDC 

ABBBBBAC 
 

EBCDEABC 
ABBADEBC 

 
AABCDEAC 

EDEBDDEC 
 

ECDEABCC 
EEBDDEBC 

 
AABCDEAC 

EEBDDDEC 
 

EDEABCDC 
AADDDEBC 

 
AEABCDEC 

ABADDDEC 
 

EBCDEABC 
AADDDDEC 

 
AEABCDEC 

EDEBDEBC 
 

EBCDEABC 
Simple Algorithm 

 
Quasi-Random Sequences 
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ABBADDEC 
 

ADEABCDC 
EDDDDEBC 

 
EBCDEABC 

ABADDEBC 
 

ADEABCDC 
EDDDDDEC 

 
EEABCDEC 

ABBBADEC 
 

AEABCDEC 
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APPENDIX C 

COMPLEX FINITE STATE ALGORITHM TRAINING AND TEST 

SEQUENCES 
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Complex Algorithm (Reber & Allen, 1978) and example Quasi-random sequences 
by length 
Complex Algorithm     Quasi-Random Sequences 

ACDE 
  

AACA 
ABCB 

  
ACBD 

CEBC 
  

ADBA 
CECB 

  
CCAA 

CEDA 
  

ADED 
ABBC 

  
AAEE 

CEDD 
  

CBAB 
ABBCB 

  
CDBEC 

CECDE 
  

AECBE 
CEDDD 

  
CBCEB 

ACDEC 
  

ABCBD 
ABCDE 

  
ACBDA 

ABBBC 
  

AECAE 
CEBCB 

  
AEABD 

ACDEA 
  

CDACA 
CEDDA 

  
AEDDB 

ACDED 
  

ABECB 
CEBBC 

  
ACCDA 

ABCDEC 
  

AEDDBC 
ACDEDA 

  
ADCADC 

ABBBCB 
  

ADAAEC 
ACDEBC 

  
AEBABE 

CECDEA 
  

CEEBED 
CEBBCB 

  
CDABBE 

CECDED 
  

ABCAEE 
ABBBBC 

  
CABDEC 

ABCDED 
  

ADABEE 
ACDECB 

  
ACABDE 

CECDEC 
  

AAEAEA 
ABBCDE 

  
AECACE 

CEBCDE 
  

CAACBA 
ACDEDD 

  
AECAAA 

ABCDEA 
  

CEBDEC 
CEBBBC 

  
CDBDCA 

CEDDDA 
  

CAEAAC 
CEDDDD 

  
ABABAC 
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Complex Algorithm Quasi-Random Sequences 
ABBCDEA 

  
ADABBCB 

 CECDEBC 
  

CABDBEA 
 ABCDECB 

  
AEBCEAC 

 ABCDEDD 
  

CBADDAB 
 CEBCDED 

  
CDBEBAC 

 CEBBBBC 
  

CCDEEEE 
 ACDEBBC 

  
CDABBCA 

 ABCDEBC 
  

CDCDEBE 
 CECDEDA 

  
AACDDEB 

 ABBBBCB 
  

CBACABC 
 CECDEDD 

  
ADEDADA 

 ABBBBBC 
  

CEEBDDC 
 ABBBCDE 

  
CEBDEDA 

 CECDECB 
  

CCCCEED 
 ACDEBCB 

  
AEEADDD 

 ABCDEDA 
  

CBCCCCE 
 CEBBCDE 

  
CBAEBEC 

 ACDEDDA 
  

CBABCCC 
 CEBBBCB 

  
CBBDAAB 

 CEDDDDA 
  

ADBADBD 
 ACDEDDD 

  
ABDBAEA 

 ABBCDED 
  

ABECAAE 
 ABBCDEC 

  
CCEACAC 

 CEBCDEC 
  

AEBBAAD 
 ACDECDE 

  
CEBCDDE 

 CEDDDDD 
  

CCEEABD 
 CEBCDEDD 

  
CADDBABE 

 CECDEDDA 
  

CCAADDCA 
 CEBBBBBC 

  
ADACABBE 

 ABCDEBBC 
  

ABBEBAAD 
 ABBCDEDA 

  
ACCCDCBD 

 ACDEBBBC 
  

AADEEAEE 
 ABBBBCDE 

  
ABDBDECB 

 CEBBCDEA 
  

AADDCEBC 
 CEBCDECB 

  
AEEADDEA 

 ACDEDDDA 
  

CAEDCACA 
 CEBBCDED 

  
CEBDBEAE 

 ABCDEDDA 
  

CDADDEEC 
 ABBCDEDD 

  
ABEDDEAA 
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Complex Algorithm     Quasi-Random Sequences 
 ACDEDDDD 

  
CEADADDD 

ABCDEBCB 
  

CDBBDCAD 
CECDECDE 

  
AEBCBAAA 

ABBBCDEC 
  

ADBDAABD 
ABBBBBCB 

  
CBDAADEE 

ABBCDECB 
  

AECCADBC 
ABBBCDEA 

  
CAEECAEE 

ABCDEDDD 
  

ABADCCAA 
ABBBBBBC 

  
AADDCDDB 

ABCDECDE 
  

ABBCBCAA 
ACDECDEC 

  
CAAEAADE 

CEDDDDDA 
  

ABCDDBCA 
CEDDDDDD 

  
CACADECD 

ACDEBCDE 
  

CDADCEDE 
ACDECDED 

  
CAEECCDE 

CEBBBBCB 
  

AECBCBEB 
CEBCDEDA 

  
CDDEDBBD 

CECDEBBC 
  

CAAEBBDD 
CECDEBCB 

  
CCBDBDDE 

ABBCDEBC 
  

AEBBADDD 
CECDEDDD 

  
CCEAEABD 

CEBCDEBC 
  

ABADDBDE 
ABBBCDED 

  
AABDEADE 

ACDECDEA 
  

ADEAECCC 
CEBBBCDE 

  
ACBCADAE 

ACDEBBCB 
  

AACBBEAC 
CEBBCDEC 

  
CBDBDACC 
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APPENDIX D 

INSTITUTIONAL REVIEW BOARD DOCUMENTS: 

ARIZONA STATE UNIVERSITY 
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APPENDIX E 



 

INFORMED CONSENT DOCUMENTS: 

AIR FORCE RESEARCH LABORATORY 



 

INFORMATION PROTECTED BY THE PRIVACY ACT OF 1974 
  

Informed Consent Document 
For 

Entity Modeling and Simulated real-world Decision Environments 
  

AFRL/RHAE, Mesa Research Site, Mesa, AZ 

 
Principal Investigator: Dr. Byron Pierce, Simulated real-world 
Environments Principal Scientist, DSN 474-6219, AFRL/RHAE, 
Byron.pierce@mesa.afmc.af.mil 
 
Associate Investigators: Ms. Christine Covas-Smith, Associate Research 
Psychologist, DSN 474-6547, Cell 602-315-3608, AFRL/RHAE, ASU, 
Christine.Covas@mesa.afmc.af.mil, ccovas@aol.com 
  
Dr. Robert Patterson, Senior Research Psychologist, (509) 432-3078, 
Robert.patterson@mesa.afmc.af.mil 
 

1. Nature and purpose: You have been offered the opportunity to participate in the 
“Simulated real-world Decision Environments Research: Replication” study. Your 
participation will occur at the Mesa Research Site Simulated real-world Decision 
Environments Research Laboratories or at the Arizona State University Campus. The 
purpose of this research is to evaluate Human Factors performance in flight simulation and 
training applications.  
 
The time requirement for each volunteer participant is anticipated to be a total of 2 to 12 
visits of approximately 0.5 hour to 2 hours each. A total of approximately 600 participants 
may be enrolled in this experiment and related research experiments. In order to participate 
you must have normal or corrected to normal vision. At the beginning of the study, a number 
of eye tests will be administered. You may be excluded from the study if your vision does not 
test as normal (or corrected to normal), however if you are a paid volunteer, you will be 
compensated for your time during the testing procedure. If you are an AFRL/RHA SME or 
Air Force pilot on TDY who has volunteered to participate in this research, you will have to 
arrange for the time to participate through your supervisor or host. If you are an ASU 
Psychology pool participant you will be compensated in credit hours through the subject pool 
list. 
 
2. Experimental procedures: If you decide to participate, you will be asked to view a 
visual display and detect or identify a simulated air or ground model, read or identify text and 
symbology, track a moving object, or control heading or altitude of a simulated aircraft. You 
may be asked to perform two or more of these tasks simultaneously. While performing these 
tasks your reaction time, accuracy, tracking error, or direction of gaze may be recorded. To 
record your responses you will be asked to provide input via a mouse, joystick, keyboard, or 
flight control deck. Prior to performing the task, or immediately following the task, the 
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experimenter may also ask you a series of questions. The questions will relate only to the 
quality of the visual display or whether or not you experience any headache, eyestrain, 
nausea, or other physiological discomfort after viewing the visual display. No other questions 
or personnel data will be requested of you. Prior to beginning the experiment, the 
experimenter will provide you with a document detailing your task for this experiment (i.e. 
which buttons to press on the input device, etc.). The experimenter will also verbally describe 
the task, and you will be given an opportunity for practice. If you have any questions at all 
regarding the procedure please feel free ask the experimenter at any time. 
 
You will be seated in a chair in an air conditioned room and the lights may be dimmed. Your 
participation may be a maximum of two hours per day for no more than two weeks. 
Opportunities for rest breaks will be given at the end of each set of trials. Should you require 
additional rest breaks at any time, please inform the experimenter and he or she will pause 
the experiment. Restrooms, water, and vending machines are available. Should you feel 
uncomfortable at any time or wish to discontinue the experiment for any reason, please 
inform the experimenter and he or she will end the experiment. 
 
3. Discomfort and risks: There are minimal risks involved in participating in this 
experiment. These risks are possible fatigue, eye strain, nausea, and/or headache as a result of 
viewing the display systems in this experiment. The frequency of occurrence of such risks is 
no more likely than that which you might experience when working at a computer 
workstation or watching a television or movie. Preventative measures you may take include 
proper posture while sitting/standing, frequent breaks, and wearing proper corrective lenses if 
applicable. If at any time you feel uncomfortable please let the experimenter know and 
he/she will stop the experiment.  

 
4. Precautions for female subjects, or subjects who are or may become pregnant 
during the course of this study: There are no known additional precautions required for 
female participants. 

 
5. Benefits: The benefits to you from participating in this study will be the potential 
discovery of visual dysfunction, such as poor visual acuity or lack of binocularity, during the 
initial screening procedures, and the educational experience of participation in a formal 
research project. 

 
6. Compensation: If you are a paid volunteer your compensation for volunteering to 
participate in this research experiment will be $10 per hour. At the end of the week you will 
receive a voucher with your pay information. You will be required to take this voucher to the 
Cognitive Research Institute (CERI) on Fridays between the hours of 11:00am and 4:00pm 
for payment. Their address is 5810 South Sossaman Rd. Ste. 106 Mesa, AZ 85212 -5826 and 
their phone number is 480-988-9306. ASU Psychology Participants will be compensated by 
the ASU subject pool office using credit hours. Note that participants who are active duty, 
RHA contract support and RHA government employees will not be compensated for 
participation.  
 



 

7. Alternatives: Participation in this experiment is entirely voluntary. Choosing not to 
participate is your alternative to participating. There are no penalties for withdrawing for any 
reason. Should you choose to discontinue participation, and if you are a paid volunteer, you 
will be compensated for the time that you did participate. 

 

8. Entitlements and confidentiality:  
a. Records of your participation in this study may only be disclosed according to 
federal law, including the Federal Privacy Act, 5 U.S.C. 552a, and its implementing 
regulations. Your personal information will be stored in a locked cabinet in an office that 
is locked when not occupied. Electronic files containing your personal information will 
be password protected and stored only on a DoD server. It is intended that the only 
people having access to your information will be the researchers named above and the 
AFRL Wright Site IRB or any other IRB involved in the review and approval of this 
protocol. When no longer needed for research purposes your information will be 
destroyed in a secure manner (shredding). Complete confidentiality for military personnel 
cannot be promised because information bearing on your health may be required to be 
reported to appropriate medical or command authorities.  
Your entitlements to medical and dental care and/or compensation in the event of injury 
are governed by federal laws and regulations, and that if you desire further information 
you may contact the base legal office (88 ABW/JA, 257-6142 for Wright-Patterson 
AFB). In the event of a research related injury, you may contact the medical monitor, 
Sarah Fortuna/MAJ/IRB Chair and/or Medical Monitor 711 HPW/IR 4-8100 
sarah.fortuna@wpafb.af.mil . 

 
b. If an unanticipated event (medical misadventure) occurs during your participation 
in this study, you will be informed. If you are not competent at the time to understand the 
nature of the event, such information will be brought to the attention of your next of kin 
or other listed emergency contact.  

 

Next of kin or emergency contact information: 

 

Name______________________   Phone#_________________ 

 
c. The decision to participate in this research is completely voluntary on your part. 
No one may coerce or intimidate you into participating in this program. You are 
participating because you want to. Dr. Byron Pierce, or an associate, has adequately 
answered any and all questions you have about this study, your participation, and the 
procedures involved. Dr. Byron Pierce can be reached at (480) 988-9773 x219. Dr. Byron 
Pierce or an associate will be available to answer any questions concerning procedures 
throughout this study. If significant new findings develop during the course of this 
research, which may relate to your decision to continue participation, you will be 
informed. You may withdraw this consent at any time and discontinue further 
participation in this study without prejudice to your entitlements. The investigator or 
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medical monitor of this study may terminate your participation in this study if she or he 
feels this to be in your best interest. If you have any questions or concerns about your 
participation in this study or your rights as a research subject, please contact Dr. Byron 
Pierce, Simulated real-world Environments Principal Scientist at (480) 988-9773 x219, 
Byron.Pierce@mesa.afmc.af.mil or Sarah Fortuna/MAJ/IRB Chair and/or Medical 
Monitor 711 HPW/IR 4-8100 sarah.fortuna@wpafb.af.mil .  
 
d. Limited personal information will be collected. This may include your name, age, 
gender, and visual screening results. This information will be kept in a password 
protected electronic database and will remain there for approximately five (5) years. No 
personal information will be stored on removable storage devices, laptops, or personal 
computers. Data collected from you will not be stored with identifying information but 
will be coded by the experimenter. This data will also be stored in a password protected 
electronic database and will remain there indefinitely.  
 
e. Your participation in this study may be photographed, filmed or audio/videotaped. 
You consent to the use of these media for training and data collection purposes. Any 
release of records of your participation in this study may only be disclosed according to 
federal law, including the Federal Privacy Act, 55 U.S.C. 552a, and its implementing 
regulations. This means personal information will not be released to unauthorized source 
without your permission. These recording may be used for presentation or publication. 
They will be stored in a locked cabinet in a room that is locked when not occupied. Only 
the investigators of this study will have access to these media. They will be maintained 
for 5 years. 
 

YOU ARE MAKING A DECISION WHETHER OR NOT TO PARTICIPATE. YOUR 
SIGNATURE INDICATES THAT YOU HAVE DECIDED TO PARTICIPATE HAVING 
READ THE INFORMATION PROVIDED ABOVE. 

  
 
Volunteer Signature_________________________________________Date___________ 
 
Volunteer Name (printed)_________________________________________ 
  
Advising Investigator Signature ______________________ Date ___________ 
  
Investigator Name (printed)_________________________________________ 
 
Witness Signature __________________________________Date ___________ 
 
Witness Name (printed)_________________________________________ 

 

Privacy Act Statement 
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Authority: We are requesting disclosure of personal information, possibly to include your 
Social Security Number. Researchers are authorized to collect personal information (including 
social security numbers) on research subjects under The Privacy Act-5 USC 552a, 10 USC 55, 
10 USC 8013, 32 CFR 219, 45 CFR Part 46, and EO 9397, November 1943.  
Purpose: It is possible that latent risks or injuries inherent in this experiment will not be 
discovered until sometime in the future. The purpose of collecting this information is to aid 
researchers in locating you at a future date if further disclosures are appropriate. 
Routine Uses: Information (including name and SSN) may be furnished to Federal, State and 
local agencies for any uses published by the Air Force in the Federal Register, 52 FR 16431, to 
include, furtherance of the research involved with this study and to provide medical care. 
Disclosure: Disclosure of the requested information is voluntary. No adverse action whatsoever 
will be taken against you, and no privilege will be denied you based on the fact you do not 
disclose this information. However, your participation in this study may be impacted by a 
refusal to provide this information. 
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