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ABSTRACT

Infectious diseases are a leading cause of death worldwide. With the develop-

ment of drugs, vaccines and antibiotics, it was believed that for the first time in human

history diseases would no longer be a major cause of mortality. Newly emerging dis-

eases, re-emerging diseases and the emergence of microorganisms resistant to existing

treatment have forced us to re-evaluate our optimistic perspective. In this study, a sim-

ple mathematical framework for super-infection is considered in order to explore the

transmission dynamics of drug-resistance. Through its theoretical analysis, we identify

the conditions necessary for the coexistence between sensitive strains and drug-resistant

strains. Farther, in order to investigate the effectiveness of control measures, the model

is extended so as to include vaccination and treatment. The impact that these preven-

tive and control measures may have on its disease dynamics is evaluated. Theoretical

results being confirmed via numerical simulations.

Our theoretical results on two-strain drug-resistance models are applied in the

context of Malaria, antimalarial drugs, and the administration of a possible partially

effective vaccine. The objective is to develop a monitoring epidemiological framework

that help evaluate the impact of antimalarial drugs and partially-effective vaccine in

reducing the disease burden at the population level.

Optimal control theory is applied in the context of this framework in order to

assess the impact of time dependent cost-effective treatment efforts. It is shown that

cost-effective combinations of treatment efforts depend on the population size, cost of

implementing treatment controls, and the parameters of the model. We use these results

to identify optimal control strategies for several scenarios.
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Chapter 1

INTRODUCTION

Infectious diseases such as Tuberculosis, Malaria, Influenza, etc, are the leading cause

of death world wide. With the development of drugs, vaccines, and antibiotics, some

diseases would now be reduced from major causes of mortality to relatively minor

incovenieces. However, newly emerging diseases (e.g. AIDS, hantavirus pulmonary

syndrome, SARS) and re-ermerging diseases (e.g. malaria, pertussis, tuberculosis)

often involving drug-resistant variants, continue to challenge epidemiologist. Further,

the emergence of microorganisms resistant to existing treatment pose a serious threat

to human health [32]. The recent outbreaks of multidrug-resistant Mycobacterium

tuberculosis [35] provide but one example. In order to avoid a return to the era of

untreatable infections, a detailed understanding of the relationship between antibiotic

use and the spread of antibiotic resistance is essential.

Mathematical models have become important tools in analyzing the spread and

control of infectious diseases. The work of Kermack and McKendrick, published in

1927 [37], had a major influence on the way we model contagion. Kermack and

McKendrick introduced a compartmental SIR model, where the host population is

categorized by infection status as susceptible S, infectious I, and recovered R. The

classic SIR model provides a basis for understanding more complex epidemiology

disease contagion processes.

The classic infectious disease model provides a simple yet quite powerful

representation of disease outbreak dynamics. Naturally, quite often modeling

extensions are required. For example, most pathogens have evolved into multiple

variants. Hence, the importance of studying the competition (interference or direct )

between variants is important. For example, dengue appears in multiple variant and in

four major serotypes [33]. Further, infection involving serotypes in a particular order

1



may lead the hosts experiencing haemorrhagic fever, which often results in death [33].

Dengue models with several serotypes have been considered in ( [24], [27], and

references therein). The virus that causes influenza, a highly mutable virus, has

prompted scientists to derive epidemic models where infected individuals are tied in to

particular virus phenotypes [45]. Multi-strain influenza models have been introduced

to study their joint dynamics under crossimmunity([1], [46], [14], [15], [57], [58],

[59]). Also epidemic models which investigate multistrain interactions are found in

[10] and conclude that competitive exclusion is the ultimate outcome. Other models

explore the competitive exclusion and coexistence of strains in diseases like gonorrhea

and other sexually transmitted diseases [16], [17]. Models have also been developed to

study the dynamics of tuberculosis re-emergence and the spread of drug-resistant

strains [7], [13], [26] [18] .

Mathematical modeling can provide insight into the mechanisms that allows a

strain that would normally be excluded to coexist with a competitively dominant

strain. These mechanisms have been studied in the literature [1], [14], [15], [19], [48],

[56]. Some of the mechanisms that have been identified to promote coexistence of

pathogen variants are super-infection (one of the strains takes over a host infected with

another strain) [43], [48], [56] [19], [51], co-infection (a host can be infected with two

strains for a prolonged period of time) [49], cross-immunity (infection with one strain

in part protects against infection with another after recovery from the first) [14], [15],

[24], and mutation (one of the strains mutates into the other) [13], [26], [45].

This work focuses on understanding the competitive dynamics between drug

resistant strains and sensitive strains. A simple epidemic framework is built that puts

two strains, a drug sensitive and a drug resistant strain, into (interference) competition

and considers the case, in particular where the resistant strain can infect individuals

already infected by the sensitive strain. The aim of this work is to understand, predict

and control the emergence of a drug-resistant strains.
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The theoretical framework developed in this study is applied to a simplified

version that mimics the transmission dynamics of drug-resistant Malaria. Malaria is a

mosquito-borne infection caused by protozoa of the genus plasmodium. The parasites

are transmitted by the bite of infected female mosquitos. Mosquitos become infected

by feeding on the blood of infected people, and the parasites then undergo another

phase of reproduction in the infected mosquito. Clinical symptoms such as fever,

pains, and sweats may develop a few days after the infected mosquito bite [2].

In many parts of Africa, where malaria has long been endemic, treatment and

control have become increasingly difficult due to the spread of drug-resistant malaria

parasites strains [4], [72]. Drugs such as chloroquine, nivaquine, quinine, and fansidar

have been used for treatment [2], [5]. It is estimated that 267 million people are

presently infected, with 107 million clinical cases annually; the number of countries

affected is estimated to be 103 [72]. The emergence of malaria parasite of

drug-resistant strains has become a global health challenge.

In Chapter 2, a basic two-strain epidemic model with super-infection is

introduced. Through the analyses of this model, we identify the necessary conditions

for the coexistence between sensitive and drug-resistant strains.

In Chapter 3, the impact of two distinct control and prevention measures on

disease transmission of sensitive and drug resistant strains is explored. The effect of

introducing on the transmission dynamics of the two-strain model is studied, taking

into account the possibility of various levels of compliance. The impact of vaccination

as a preventative control measure is also studied. Theoretical results are illustrated

using numerical simulations.

In Chapter 4, we illustrate earlier theoretical results in the context of Malaria.

In over-simplified setting, the model considers a region of the world where Malaria is

endemic. For example, the model assumes that we are dealing with a structure that
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resembles the current Malaria disease conditions in sub-Saharan Africa. Focusing on

an endemic region, allows for the assumption that the vector population is at

steady-state and hence, it can be treated as a constant parameter, making it possible to

omit the vector dynamics over our time-scale of interest. Selective numerical

simulations are used to highlight the impact of implementing preventive and control

measures while assessing their effect on Malaria prevalence, mortality reduction, and

the reproductive number R0.

The implementation of optimal control strategies involving antimalarial

treatment and vaccination can reduce significantly the number of cases of Malaria.

Control measures must be carefully distributed specially in resource-limited

situations. In Chapter 5, we apply optimal control to the model with interventions and

evaluate the impact of antimalarial treatment and vaccination on spread of Malaria.

Three control strategies involving antimalarial treatment and vaccination are tested

under the ”unlimited” resource assumption. We conclude that the implementation of

antimalarial treatment at the start of the outbreak tends to reduce the magnitude of the

outbreak peak. The optimal strategy is the implementation of both control measures

starting at the onset of the outbreak.
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Chapter 2

DYNAMICS OF A TWO STRAIN MODEL OF DRUG RESISTANCE

It is well known that the emergence of drug resistant strains in infectious diseases such

as tuberculosis (TB), malaria, and HIV among others, pose a threat to both developed

and under-developed countries. Until recently, antibiotic discovery has kept ahead of

microbial resistance, but the recent outbreaks of drug-resistant infections have

prompted headlines in both the mainstream and the scientific press [6].

Most diseases are produced by a spectrum of closely related pathogens rather

than by a single strain. In drug-resistance, an analogous phenomenon to

superinfection (Nowak and May [56], May and Nowak [48] and Castillo-Chavez and

Velasco-Hernandez [19]) occurs. One strain invades the host population, produces a

brief period of temporary immunity to other strains but when the immunity is lost, the

host becomes susceptible to reinfection with another strain. Under this condition, one

important theoretical problem that we address here is that of the coexistence of

drug-sensitive and drug-resistant strains, or the eventual extinction of one of them. A

similar problem has been theoretically explore by several authors [43], [11], [44], [16].

The numerous published results discussing the problem of coexistence in

pathogen-host interactions. Levin and Pimentel [43] constructed a mathematical SI

model where the population in the absence of disease grows exponentially. Two

strains with different virulences compete with each other. The most virulent strain can

’takeover’ hosts already infected with the less virulent strain. With these assumptions

a globally stable equilibrium is possible where both strains may coexist. The stability

of the positive equilibrium is only guaranteed for certain range of values of

superinfection. Outside this range once of the boundary equilibria is asymptotically

stable.
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Bremermann and Thieme [11] postulate a competitive exclusion principle in an

SIR epidemic in a population with variable size. Several strains compete for a single

host population. The pathogens differ on their virulence. In this model virulence is a

strictly convex function of the transmission rate implying that the evolution of

virulence leads to a transmission rate that maximizes the basic reproductive number of

the pathogen [11].

Castillo-Chavez et al [44] find, for a SIS two-sex model with variable

population size, that competitive exclusion is the norm: the strain with the highest

reproductive number persists in both host types. Mena-Lorca, Velasco-Hernandez and

Castillo-Chavez [51] studied the effect of variable population, virulence and

density-dependent population regulation. Concluding that variable population size can

reduce the area of parameter space on which coexistence is possible. Castillo-Chavez

and Velasco-Hernandez [19], perform a qualitative analysis of three host pathogen

system and show that the pathogen’s competitive exclusion depends heavily on the

population dynamics of host population. In this model, coexistence is feasible only in

a certain window of parameter space.

In this model, we relax the assumption that the contact rate is a function of

virulence, hence virulence becoming the growth regulatory factor. We adopt the

Susceptible-Infective-Susceptible (SIS) framework and extend it to describe the

competition between two types of strains: sensitive and resistant to drugs. We expand

the SIS model by allowing hosts to be superinfected by a second strain, which may

possibly lead to the coexistence of sensitive and drug-resistant strains even within the

same patient. Sensitive and drug-resistant can indeed coexist in the same population

and in fact, epidemiology models with superinfection have shown that coesxitence of

many strains is possible and in particular the coexistence of strains with considerable

differences of transmission success [56], [48], [19], [51].
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2.1 Mathematical Model

In this section, we introduce a two strain epidemic model with super-infection. We

consider a population whose size at time t is given by N(t) whose demography is

regulated by assumed constant birth/recruitment rate Λ and a constant natural

per-capita mortality rate µ . The population is divided into the following

epidemiological classes: Susceptible, Infected with sensitive strain and Infected with

resistant strain. The susceptible population S(t), which can be infected by the

drug-sensitive strain at a the per-capita and per-infective rate β1; and the

drug-sensitive colonized class Is(t). Individuals in class Is are assumed to recover at a

rate α1, returning to the susceptible class. Susceptibles can also become infected by

the drug-resistant strain at the per-capita and per-infective rate β2; drug-resistant

individuals move to the class Ir. Drug-resistant strain infected individuals recover at a

per-capita rate α2, returning to the susceptible class.

This simple epidemic model incorporates the process of superinfection, where

an already infected host can be infected by another parasite strain. We assume

individuals infected with the drug-resistant strain can come into contact with

infectious individuals colonized by the drug-sensitive strain and become reinfected

with the first strain. In our approach, superinfection means that a more virulent (fit)

parasite can infect and ’take over’ a host that is already infected by a less virulent

parasite strain. We also do not consider the possibility that a particular host is infected

by more than one parasite strain at any given time [48], [56], [19]. We assume that more

virulent strain can out compete the less virulent strain on the level of intra-host

competition. The transmission coefficient in the case of super-infection is δ where δ is

the coefficient of reduction or enhancement of infection at reinfection. In particular, if

δ > 1 then reinfection is more likely than the regular infection while if 0 < δ < 1 then

reinfection is less likely than the regular infection. If δ = 0 there is no super-infection.
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Figure 2.1: Representation of the two strain model with superinfection

The basic two-strain model with superinfection is therefore given by the

system of differential equations, and takes the following form:

Ṡ = Λ−β1
SIs

N
−β2

SIr

N
−µS +α1Is +α2Ir (2.1)

İs = β1
SIs

N
+β1δ

IsIr

N
− (µ +ν1)Is−α1Is

İr = β2
SIr

N
−β1δ

IsIr

N
− (µ +ν2)Ir−α2Ir

where

N(t) = S(t)+ Is(t)+ Ir(t)

Table 2.1: Description and units for model variable and parameters.

Variable Description [Units]
S(t) susceptible individuals [individuals]
Is(t) drug-sensitive colonized individuals [individuals]
Ir(t) drug-resistant colonized individuals [individuals]

Parameters Description [Units]
Λ recruitment/birth rate [individuals/unit time]
µ natural death rate [1/unit time]
β1 drug-sensitive effective contact rate [1/unit time]
β2 drug-resistant effective contact rate [1/unit time]
α1 natural drug-sensitive infection rate [1/unit time ]
α2 natural drug-resistant infection rate [1/unit time ]
ν1 disease-induced drug-sensitive mortality rate [1/unit time ]
ν2 disease-induced drug-resistant mortality rate [1/unit time ]
δ fitness cost [N/A]
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2.2 Equilibria and stability

For this basic model 2.1, there exists a domain where the system of equations is

epidemiologically and mathematically well-posed. We define this domain System, S,

as:

S := {(S, Is, Ir) ∈ (R+
0 )3}

This domain, S, is valid epidemiologically as populations S, Is, and Ir are all

nonnegative. We use the notation f
′
to denote d f

dt

Theorem 1 Assuming that the initial conditions lie in S, the system of equations for

the basic model (2.1) has a unique solution that exists and remains in S for all time

t ≥ 0.

Proof The right hand side of the system of equations (2.1) is continuous with

continuous partial derivatives in S. It remains to show that S is forward-invariant. We

can see from (2.1) that if S = 0, then S
′ ≥ 0; if Is = 0, then I

′
s ≥ 0; and if Ir = 0, then

I
′
r ≥ 0. Therefore, none of the obits can leave S and a unique solution exists for all

time �

Basic reproduction number, R0

We calculate the basic reproduction number, R0, using the next generation operator

approach, as found in van den Driessche and Watmough [70]. Hence, it is important to

distinguish new infections from all other class transitions in the population. The

infected classes are Is and Ir. We can write system (2.1) in the form

Ẋ = f (X)⇔ Ẋ = F (X)−V (X) = F (X)− (V −(X)−V +(X)),

where X = (Is, Ir,S), F is the rate of appearance of new infections in each class; V +

is the rate of transfer into each class by all other means and V − is the rate of transfer
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out of each class. Specifically,

F ≡
(

β1
SIs

N
+β1δ

IsIr

N
,β2

SIr

N

)T

and the disease-free equilibrium is X0 ≡ (0,0, Λ

µ
). The matrices DF (X0) and DV (X0)

can be partitioned as

DF (X0) =

F 0

0 0

 ,DV (X0) =

V 0

J3 J4


where F and V correspond to the derivatives of F and V with respect to the infected

classes. Specifically, we have that

F =

β1 0

0 β2

 ,V =

(µ +α1 +ν1) 0

0 (µ +α2 +ν2)


The basic reproduction number is defined as the spectral radius (dominant eigenvalue)

of the next generation matrix, FD−1:

R0 = max{Rs,Rr}

where Rs and Rr are the two eigenvalues:

Rs =
β1

µ +ν1 +α1
(2.2)

Rr =
β2

µ +ν2 +α2
(2.3)

We interpret Rs and Rr as the average number of secondary cases that an

infectious individual (with sensitive or resistant strain, respectively) would generate in

a totally susceptible host population. It follows then that if R0 > 1, then the disease is

able to invade the host population. Otherwise, if R0 ≤ 1 the virus eventually

disappears from the host population (local result).

Equilibria points

We are interested in the conditions that guarantee the permanence of drug-resistance

as an endemic disease. There are, in our model, two boundary equilibria (where only
10



one strain is present), and the coexistence equilibrium. In the following section we

analyze the equilibrium. Its existence is determined by the relative magnitude of the

basic reproductive number of each strain. After that, we present the numerical results

that characterize the stability of the equilibria points.

The system of differential equations has one disease-free equilibrium,

E0 = (Λ

µ
,0,0) and three endemic equilibria of the form Es = (S∗, I∗s ,0),

Er = (S∗,0, I∗r ), and Ec = (S∗, I∗s , I∗r ), corresponding, respectively, to states where only

sensitive strains, or resistant strains, or both types of strains are present.

The bifurcation diagrams in Figures 2.2 and Figure 2.3 divides the (Rs,Rr)

space into distinct regions as characterized by the long-term epidemiological

outcomes, each corresponding to a stable steady state of the system: disease

eradication (DFE), persistence of only drug-resistant strain, persistence of only

drug-sensitive strain, or coexistence i.e., persistence of both drug-sensitive and

drug-resistant strains. In Figure 2.2 we can see the corresponding stability regions for

δ = 0 (absence of superinfection) and δ = 0.8. This figure illustrates the idea that

superinfecetion makes coexistence possible [56], [48], [19], [51], [11]. Figure 2.3, shows

the long-term behavior of two strain model with superinfection when we change δ .

Notably, the resistant-strain only region decreases as the transmission coefficient in

the case of superinfection δ increases.

Stability of the disease-free equilibrium

The stability properties of the disease-free equilibrium (trivial equilibrium) E0,

corresponding to the threshold condition for endemicity are given in Theorem 2.

Theorem 2 Consider the quantities Rs, and Rr, given in (2.3)− (2.3). The

disease-free equilibrium E0 of system (2.1) is locally asymptotically stable, if R0 < 1,

i.e., if Rs < 1 and Rr < 1, and it is unstable for R0 > 1.
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Proof By Theorem 2 in van den Driessche and Watmough [70], it is sufficient to prove

the following conditions:

• (A1) if X ≥ 0, then F , V +, V − ≥ 0,

• (A2) if Xi = 0 then V −i = 0 (where i refers to a vector component),

• (A3) Fi = 0 for the components that correspond to uninfected classes,

• (A4) if X∗ is a disease-free equilibrium then Fi(X∗) = 0 and V +
i (X∗) = 0 for

the components that correspond to uninfected classes
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• (A5) if F is set to zero then all eigenvalues of D f (X0) have negative real parts.

The verification of (A-1)-(A-4) are straightforward.

The Jacobian of f at X0, with F set to zero, is

D fF=0(X0) =


−(µ +α1 +ν1) 0 0

0 −(µ +α2 +ν2) 0

−β1 +α1 −β2 +α2 −µ


The eigenvalues of the above matrix are λ1 =−(µ +α1 +ν1),

λ2 =−(µ +α2 +ν2) and λ3 =−µ , all of which have negative real part and the result

follows. �

Stability of boundary and coexistence equilibria

The system has three possible non-trivial equilibria, two boundary equilibria and a

coexistence equilibrium. The boundary equilibria correspond to the presence of only

one strain in the population, sensitive strain or resistant strain. The existence of the

two boundary equilibria, where only sensitive strains or resistant strains persists, is

given by the following theorems:

Theorem 3 The system of differential equations (2.1) has one boundary equilibrium

where the sensitive strain persists, Es = (S∗, I∗s , Ir = 0), for Rs > 1

Proof From the equations of the system (2.1) at equilibrium, we get a relation S, Is,

and Ir where

S =
Λ− (µ +ν1)Is− (µ +ν2)Ir

µ
= F(Is, Ir)

Suppose that Ir = 0. If Is is non-zero from the second equation in system (2.1) we get

[β1− (µ +ν1 +α1)]S− (µ +ν1 +α1)Is = 0.
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Equivalently, we can write this as follows:

[β1− (µ +ν1 +α1)]F(Is,0)− (µ +ν1 +α1)Is = 0

Now, if we solve for Is, we get

Is =
[β1− (µ +ν1 +α1)]Λ

µ

[β1− (µ +ν1 +α1)](
µ+ν1

µ
)+(µ +ν1 +α1)

.

We observe that if β1 > (µ +ν1 +α1) ⇐⇒ Rs > 1 and Is > 0, that is, we have exactly

one positive solution for Is; while β1 ≤ (µ +ν1 +α1) ⇐⇒ Rs ≤ 1, and Is ≤ 0, so

there are no positive solutions for Is. �

Theorem 4 The system of differential equations (2.1) has one boundary equilibrium

where the resistant strain persists, Er = (S∗, Is = 0, I∗r ), for Rr > 1

Proof From the equations of the system (2.1) at equilibrium, we get a relation S, Is,

and Ir where

S =
Λ− (µ +ν1)Is− (µ +ν2)Ir

µ
= F(Is, Ir)

Suppose that Is = 0. If Ir is non-zero from the third equation in system (2.1) we get

[β2− (µ +ν2 +α2)]S +(µ +ν2 +α2)Ir = 0.

We can write this as follows:

[β2− (µ +ν2 +α2)]F(0, Ir)+(µ +ν2 +α2)Ir = 0

Now, if we solve for Ir then we get

Ir =
[β2− (µ +ν2 +α2)]Λ

µ

[β2− (µ +ν2 +α2)](
µ+ν2

µ
)+(µ +ν2 +α2)

.

If β2 > (µ +ν2 +α2) ⇐⇒ Rr > 1, then Ir > 0 and we have exactly one positive

solution for Ir. If β2 ≤ (µ +ν2 +α2) ⇐⇒ Rr ≤ 1, then Ir ≤ 0, so there are no positive

solutions for Ir. �
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Two coexistence thresholds must be calculated: the first separates the region

where only sensitive strains persist from the region of coexistence; the second marks

the shift from coexistence to persistence of resistant strains alone.

In order to derive an expression for the region of stability of the boundary

equilibria we measure the capacity of the strains to invade and persist in a population

where either sensitive or resistant strains are at equilibrium. In the case where the

sensitive strain is at equilibrium, in this context, Es = (S∗, I∗s ,0) corresponds to an

equilibrium free of resistant strain. In order to apply the methods in van den Driessche

and Watmough [70], consider the case where the sensitive strain is at equilibrium and

ask whether or not the resistant strain can invade.

The infected compartment is Ir. We can write system (2.1) as X = (Ir,S, Is) and

F =
(

β2
SIr

N
,S,0

)T

.

The disease (resistant strain)-free equilibrium is (Is,S,0).

We can compute F and V that correspond to the derivatives at X0 = (0, Λ

µ
,0)

with respect to the infected classes of F and V , respectively:

F =
β2S2 +β2SIs

(S + Is)2

=
β2

Rs
,

V = (µ +ν2 +α2)+
β1δSIs +β1δ I2

s
(S + Is)2

=
Rs(µ +ν2 +α2)+β1δ (Rs−1)

Rs

The basic reproduction number of the resistant strain in a population where sensitive

strains are fixed is then the spectral radius of the next generation matrix, FV−1 [70]:

Rr(Es) =
β2

Rs(µ +α2 +ν2)+β1δ (Rs−1)
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Similarly, applying the methods in van den Driessche and Watmough [70]

once again, we find the basic reproduction number of the sensitive strains in a

population where resistant strains are fixed:

Rs(Er) =
Rs

Rr
[1+δ (Rr−1)]

This formulation permits the derivation of a threshold condition for

coexistence. Now equivalent to a threshold condition for resistant strain endemicity in

a population where sensitive strains are at equilibrium, Rr(Es) = 1: only sensitive

strains persist for Rr(Es) < 1, while for Rr(Es) > 1 resistant strains can invade a

population where sensitive strains are fixed, hence coexistence is possible. We also

have a similar threshold condition for sensitive strain endemicity in a population

where resistant strains are at equilibrium, Rs(Er) = 1 : only resistant strains persist for

Rs(Er) < 1, while for Rs(Er) > 1 sensitive strains can invade a population where

resistant strains are fixed, that is to say, coexistence is possible.

Theorem 5 and 6 below express these results in terms of stability for the

equilibrium Es and Er.

Theorem 5 If Rs > 1 the equilibrium Es of the system of differential equations (2.1) is

stable for Rr(Es) < 1 and unstable for Rr(Es) > 1.

Proof By Theorem 2 in van den Driessche and Watmough [70], it is sufficient to prove

conditions (A1)− (A5). Once more, conditions (A1)− (A4) are of trivial verification.

To prove the remaining condition (A5) we write the Jacobian of f at X0 = (Λ

µ
,0,0),

with F set to zero, ordering coordinates as (S, Is, Ir). Then, the Jacobian has the form

D fF=0(S∗, I∗s ,0) =

G1 G2

0 a


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where,

G1 =

−β1I∗s
S∗+I∗s

+ β1S∗I∗s
(S∗+I∗s )2 −µ

−β1S∗
S∗+I∗s

+ β1S∗I∗s
(S∗+I∗s )2 +α1

β1I∗s
S∗+I∗s

− β1S∗I∗s
(S∗+I∗s )2

β1S∗
S∗+I∗s

− β1∗S∗I∗s
(S∗+I∗s )2 − (µ +α1 +ν1)


and

a =
β2S∗

S∗+ I∗s
− β1δ I∗s

S∗+ I∗s
− (µ +α2 +ν2)

Therefore, the eigenvalues of the Jacobian are given by the eigenvalues of G1 and a.

For G1, the eigenvalues are the roots of the characteristic polynomial

p1(λ ) = λ
2−b1λ +b0

where

−b1 = −(β1− (α1 +ν1)),

b0 = [β1− (µ +α1 +ν1)][β1µ +ν1(β1− (µ +α1 +ν1))].

Now we must show that both −b1 and b0 are > 0.

We have the following,

−b1 = −(−β1 +(α1 +ν1))

= (β1− (α1 +ν1))+ µ−µ

= µ +(β1− (α1 +ν1 + µ))

> (β1− (α1 +ν1 + µ))

> 0

since Rs > 1. Hence −b1 > 0.

It is clear that b0 > 0 since Rs > 0. Since −b1 and b0 are positive for all

possible values of Rs > 1, then all eigenvalues of G1 have negative real part.

For a, at equilibrium Es, we get:

a =
β2

Rs
− β1δ (Rs−1)+Rs(µ +α2 +ν2)

Rs
17



Now, we have that a < 0 for all the possible values of β2
β1δ (Rs−1)+Rs(µ+α2+ν2)

< 1, i.e.,

Rr(Es) < 1, and a≥ 0 otherwise.

Hence, all the eigenvalues have negative real parts. Therefore if Rs > 1, then

Es is stable for Rr(Es) < 1 and unstable otherwise. �

Theorem 6 If Rr > 1 the equilibrium Er of the system of differential equations (2.1) is

stable for Rs(Er) < 1 and unstable for Rs(Er) > 1.

Proof Once again, we apply Theorem 2 in van den Driessche and Watmough [70], and

it is sufficient to prove conditions (A1)− (A5). Once more, conditions (A1)− (A4) are

of trivial verification. To prove the remaining condition (A5) we write the Jacobian of

f at X0 = (Λ

µ
,0,0), with F set to zero, ordering coordinates as (S, Ir, Is). Then, the

Jacobian has the form

D fF=0(S∗, I∗r ,0) =

H1 H2

0 z


where,

H1 =

−β2I∗r
S∗+I∗r

+ β2S∗I∗r
(S∗+I∗r )2 −µ

−β2S∗
S∗+I∗r

+ β2S∗I∗r
(S∗+I∗r )2 +α2

β2I∗r
S∗+I∗r

− β2S∗I∗r
(S∗+I∗r )2

β2S∗
S∗+I∗r

− β2S∗I∗r
(S∗+I∗r )2 − (µ +α2 +ν2)


and

z =
β1S∗

S∗+ I∗r
+

β1δ I∗r
S∗+ I∗r

− (µ +α1 +ν1)

Therefore, the eigenvalues of the Jacobian are given by the eigenvalues of H1

and z. For H1, the eigenvalues are the roots of the characteristic polynomial

p2(λ ) = λ
2− c1λ + c0

where

−c1 = −(β2− (α2 +ν2)),

c0 = [β2− (µ +α2 +ν2)][β2µ +ν2(β2− (µ +α2 +ν2))].
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Now we must show that both −c1 and c0 are > 0.

So we have the following,

−c1 = −(−β2 +(α2 +ν2))

= (β2− (α2 +ν2))+ µ−µ

= µ +(β2− (α2 +ν2 + µ))

> (β2− (α2 +ν2 + µ))

> 0

since Rr > 1. Hence −c1 > 0.

It is clear that c0 > 0 since Rr > 0. Since −c1 and c0 are positive for all

possible values of Rr > 1, then all eigenvalues of H1 have negative real part.

For z, at equilibrium Er, we get:

z =
β1 +β1δ (Rr−1)

Rr
− (µ +α1 +ν1)

Now, we have that z < 0 for all the possible values of Rs
Rr

(
1+δ (Rr−1)

)
< 1, i.e.,

Rs(Er) < 1, and z≥ 0 otherwise.

Hence, all the eigenvalues have negative real parts. Therefore, if Rr > 1, then

Er is stable for Rs(Er) < 1 and unstable otherwise. �

The curves the define the coexistence region are given by the following

relation: Rr(Es) = 1 ⇐⇒ Rr = f (Rs)

Rr(Es) = 1 ⇐⇒ Rr = f (Rs) (2.4)

= Rs +
β1δ (Rs−1)

(µ +α2 +ν2)

Rs(Er) = 1 ⇐⇒ Rs = g(Rr) (2.5)

=
Rr

1+δ (Rr−1)
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Relations (2.4) and (2.5) reveals that persistence of drug-resistant strains and

drug-sensitive strains depend on the superinfection process. Both expression have the

superinfection parameter δ . In the case when superinfection is not considered, δ = 0,

reveal that persistence of only drug-resistant strains is possible when Rr > Rs and

persistence of only drug-sensitive strains is possible for Rs > Rr. Coexistence is not

governed solely by the invasion capacities of each strain (Rs and Rr) but also by the

ability of sensitive strains to overcome the superinfection pressure exerted by resistant

strain and vice-versa. Numerical results support that above the curve defined by f and

below the curve defined by g, in the (Rs,Rr)- space both types of strains will persists,

thus allowing coexistence.

2.3 Fitness cost

A question that comes up over and over is may we expect drug resistant strains to be

less transmissible than the drug sensitive strains? To explore the epidemiological

consequences of resistance cost we fix the relative transmission coefficient, γ = β2
β1

,

and explore the system behavior by varying a parameter β such that

β1 ≡ β ,β2 ≡ γβ

As such, γ < 1 means that the resistant strains have lower transmissibility than the

sensitive. Despite being less likely, the possibility γ > 1 is also considered since this

topic is still an open discussion among many scientists [21], [29]. Figure 2.3 shows

the bifurcation diagrams obtained for various values of γ . When γ = 0.5 (dashed line)

for both low values and high values of β1 lead to only sensitive strains persisting in the

population, which is the ideal situation since this is considered ”best case scenario”

since the sensitive strain is treatable. For γ = 1.5 (dotted line), β1 and β2 line in all the

regions, hence for really low values of β1 lead to disease free region, and as β1

increases, we observe a transition to region where resistant strain persists, followed by

coexistence and finally the region where the sensitive strains persist.
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Figure 2.4: Decreased transmission plotted in the (β1,β2)-space. Bifurcation diagram
where the straight lines correspond to β1 = γβ2 for different values of γ . γ = 1.5 dotted
line, γ = 1 solid line, γ = 0.5 dashed line. The red line correspond to the critical value
of γ .

We derive a critical value for γ below which a reduction in the overall

transmission can open the possibility where the sensitive strains persist :

γc =
µ +ν2 +α2

µ +ν1 +α1

The critical value can be used to compare the impact of different control measures.

In the case illustrated by γ = 1.5, as the transmission coefficient, β , increases

the system evolves from dominance of the resistant strains to coexistence, and finally

dominance of the sensitive strains. This can be interpreted as follows. The minimal

transmissibility above which sensitive strains can be sustained in the population where
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Figure 2.5: Equilibrium curves, the figure to the left is for γ = 1.5 with vertical blue
lines marking the epidemic threshold of resistant strains and the super-infection thresh-
old of sensitive strains. The figure to the right is for γ = 0.5 with vertical blue lines
marking the epidemic threshold of sensitive strains.

resistant strains are endemic, is given by the condition Rs(Er) = 1. This marks a

threshold in transmission above which superinfection of resistant by sensitive strains

occurs. This superinfection threshold is marked in Fig 2.5. Below the threshold,

sensitive strains are outcompeted by the resistant due to a higher transmission

coefficient of the latter (recall that γ > 1)

For the case where γ = 0.5, the system evolves to dominance of the sensitive

strain. Recall that γ = 0.5 is below the critical value for γ . It is important to remark

that as long as the value of γ is kept equal to or below the critical value defined earlier,

the long term epidemiological outcome of the resistant strain will always be kept at

zero. Hence it will not pose a threat to the population.
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Chapter 3

TWO STRAIN MODEL WITH DRUG RESISTANCE AND INTERVENTIONS

In this chapter, the impact of two distinct control and prevention measures on disease

transmission of sensitive and resistant strains is studied. Treatment is an important

control measure, and its impact on the spread of diseases has been widely studied.

However, the benefit of treatment can be compromised if drug-resistant strains arise,

especially when treatment regimen is not completed. In this chapter, we develop a

mathematical model to explore the impact of treatment on the transmission dynamics

of sensitive and drug-resistant strains. A mathematical model that explores the impact

of vaccination as a preventative control measure in the dynamics of drug-sensitive

strains and drug-resistant strains is also formulated. We analytically find an expression

for a critical vaccination rate which will contain the resistant strain and allow for the

sensitive strain to prevail.

3.1 Two strain model with treatment

We extend the simple two strain model by including a treatment class and vital

dynamics (recruitment and mortality). The new model allows us to study the effect of

treatment on the prevalence of both drug-sensitive and drug-resistant strains.

Mathematical properties of the model system are analytically studied. It is shown that

the system has three possible equilibrium points, a disease free equilibrium, a

drug-resistant only equilibrium, and an endemic equilibrium at which both strains are

present. A detailed analysis of stability is conducted, which shows that the dynamic

behaviors of the system are determined by the quantity Rs(Er).

Formulation of the model

In this section, we introduce a drug-resistance two strain epidemic model with

super-infection and treatment. We consider a population N(t) whose demography is
23



regulated by a constant birth/recruitment rate Λ and a natural mortality rate µ . The

susceptible population S(t) can be infected by the drug-sensitive strain at a

transmission rate β1 and go the drug-sensitive colonized class Is(t). The infected

individuals in class Is naturally recover at a rate α1 and return to the susceptible class.

Infected individuals with the sensitive strain can naturally die at a rate µ or a

disease-induced death at a rate ν1. Alternatively, susceptibles can be infected by the

drug-resistant strain at a transmission rate β2, in which case they go to the class Ir.

Infected individuals with the drug-resistant strain naturally recover at a rate α2, and

upon recovery return to the susceptible class. Individuals in this class can either die of

natural causes at a rate µ or disease-induced death at a rate ν2. One assumption is that

those infected with the drug-resistant strain can come into contact with infectious

individuals colonized by the drug-sensitive strain and become reinfected with the

sensitive strain. This process is referred to as super-infection. The transmission

coefficient in the case of super-infection is β1δ where δ is the coefficient of reduction

or enhancement of infection at reinfection. In particular, if δ > 1 then reinfection is

more likely than the regular infection while if 0 < δ < 1 then reinfection is less likely

than the regular infection. If δ = 0 there is no super-infection.

This model captures two different ways of getting infected with the resistant

strain; one is as a primary infection and the other is acquired resistance. Drug resistant

cases may emerge when individuals are infected with a resistant strain (primary

resistance) or as a result of treatment failure (acquired resistance). The model

introduces a new class, the recovered class R, treatment is administered to the

individuals colonized by the sensitive strain and as a result, some recovered and others

acquired resistance through failing to comply to the medication guidelines. It is

assumed that a fraction of infectious individuals colonized with drug-sensitive strain

(Is) progress into the drug-resistant class (Ir) due to treatment failure at a rate of

(1− s)σ , where s is the probability of compliance and σ is the treatment rate. These
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correspond to cases of acquired resistance. Another portion of individuals colonized

with the drug-sensitive strain finish the treatment regime and move to the recovered

class at a rate of σ .
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Figure 3.1: Representation of the model super-infection with treatment

Ṡ = Λ−β1
SIs

N
−β2

SIr

N
−µS +α1Is +α2Ir (3.1)

İs = β1
SIs

N
+β1δ

IsIr

N
− (µ +ν1)Is−α1Is−σ Is

İr = β2
SIr

N
+(1− s)σ Is−β1δ

IsIr

N
− (µ +ν2)Ir−α2Ir

Ṙ = sσ Is−µR

Equilibria and stability

For system (3.1), the simplex

S := {(S, Is, Ir,R) ∈ (R+
0 )4}

is a positively invariant set, and thus we restrict the study of the solutions of the

system to S. By the fundamental theory of ODE’s, we know that (3.1) defines a

dynamical system on S as uniqueness, global existence and continuous dependence of

solutions on initial data is guaranteed when initial values are in S.
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Table 3.1: Description and units for model variable and parameters.

Variable Description [Units]
S(t) susceptible individuals [individuals]
Is(t) drug-sensitive colonized individuals [individuals]
Ir(t) drug-resistant colonized individuals [individuals]

R recovered ’uncolonized’ individuals [individuals]
Parameters Description [Units]

Λ recruitment/birth rate [individuals/unit time]
µ natural death rate [1/unit time]
β1 drug-sensitive effective contact rate [1/unit time]
β2 drug-resistant effective contact rate [1/unit time]
α1 natural drug-sensitive infection rate [1/unit time ]
α2 natural drug-resistant infection rate [1/unit time ]
ν1 disease-induced drug-sensitive mortality rate [1/unit time ]
ν2 disease-induced drug-resistant mortality rate [1/unit time ]
δ fitness cost [N/A]
σ treatment rate[1/unit time]
s probability of compliance [N/A]

Basic reproduction number, R0

We now calculate the basic reproduction number, R0 using the next generation

approach. R0 is defined as the dominant eigenvalue of the next generation matrix,

R0 = max{Rs,Rr}

where Rs and Rr are the following two eigenvalues:

Rs =
β1

µ +ν1 +α1 +σ
(3.2)

Rr =
β2

µ +ν2 +α2
(3.3)

Steady states

System (3.1) has one disease-free equilibrium, E0 = (Λ

µ
,0,0,0) and two endemic

equilibria of the form Er = (S∗,0, I∗r ,0) and Ers = (S∗, I∗s , I∗r ,R∗), corresponding,
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respectively, to the states were only resistant strains, or both types of strains are

present.

The bifurcation diagram in Figures 3.2, 3.3, and 3.4 divides the (Rs,Rr)-space

into distinct regions as characterised by the long-term epidemiological outcomes, each

corresponding to a steady state of the system: disease eradication (DFE), persistence

of only drug-resistant strain or coexistence i.e., persistence of both drug-sensitive and

drug-resistant strains.
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Figure 3.2: Long-term epidemiological outcome of the (Rs,Rr) space. The parameter
values are as follows: µ = 0.01, ν1 = 0.6, ν2 = 0.65, α1 = 0.03, α2 = 0.02, and δ = 0.8.
σ = 0 and β1 and β2 vary.

Note that, infectious cases with sensitive strains give rise to new cases of

resistant strains at rate (1− s)σ > 0, due to acquisition of resistance through treatment

failure. It is, therefore, not possible to have an equilibrium where only sensitive strains

are present. Figure 3.3 illustrates the long-term epidemiological outcome when the

treatment rate (σ ) is positive. In this case, only three outcomes are possible, disease

free equilibrium, drug-resistant strain only, and coexistence. In particular, this result

can be compared to the analysis of Castillo-Chavez and Feng [13]. However, the

drug-senstive strain only equilibrium exists in the limit case σ = 0, which corresponds
27
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Figure 3.4: Long-term epidemiological outcome of the (Rs,Rr) space. The parameter
values are as follows: µ = 0.01, ν1 = 0.6, ν2 = 0.65, α1 = 0.03, α2 = 0.02, σ = 0.2,
β1 and β2 vary. Figure to the left δ = 2, and figure to the right δ = 20.

to no acquired resistance. The resulting equilibrium has the form Es = (S∗, I∗s ,0,0)

and in Figure 3.2 we can see the corresponding stability region (marked as sensitive

strain only equilibrium). We explore this limit case in more detail in chapter 2 (two

strain model of drug-resistance with super-infection). In Figure 3.4, we explore the

effect of the superinfection term (δ ) on the long-term epidemiological outcome. We
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observe that as δ increases, the region where of the drug-resistant equilibrium only

becomes smaller.

Stability of disease-free equilibrium

The stability properties of the disease-free equilibrium (trivial equilibrium) E0,

correspond to the threshold conditions for endemicity are given by Theorem 7, stated

and proved below.

Theorem 7 Consider the quantities Rs and Rr given in (3.2) -(3.3). The disease-free

equilibrium E0 of system (3.1) is locally asymptotically stable, if R0 < 1 i.e., if Rs < 1

and Rr < 1, and it is unstable for R0 > 1.

Proof By Theorem 2 in van den Driessche and Watmough [70], it is sufficient to prove

conditions:

• (A1) if X ≥ 0, then F , V +, V − ≥ 0,

• (A2) if Xi = 0 then V −i = 0 (where i refers to a vector component),

• (A3) Fi = 0 for the components that correspond to uninfected classes,

• (A4) if X∗ is a disease-free equilibrium then Fi(X∗) = 0 and V +
i (X∗) = 0 for

the components that correspond to uninfected classes

• (A5) if F is set to zero then all eigenvalues of D f (X0) have negative real parts.

The verification of (A-1)-(A-4) are straightforward. The Jacobian of f at X0 with F

set to zero, is

D fF=0(X0) =



−(µ +α1 +ν1 +σ) 0 0 0

0 −(µ +α2 +ν2) 0 0

−β1 +α1 −β2 +α2 −µ 0

sσ 0 0 −µ


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The eigenvalues of the above matrix are λ1 =−(µ +α1 +ν1 +σ),

λ2 =−(µ +α2 +ν2), λ3 =−µ , and λ4 =−µ , all of which have negative real part and

the result follows �.

Numerical results suggest that the disease-free equilibrium is in fact globally

asymptotically stable for R0 < 1.

Stability of boundary and coexistence equilibria

The existence of an equilibrium for which only resistant strains persist is given by

Theorem 8, stated and proved below.

Theorem 8 System (3.1) has exactly one non-trivial boundary equilibrium,

Er = (S∗,0, I∗r ,0) for Rr > 1.

Proof From the equations of the system (3.1) at equilibrium, we get a relation for S,

Is, and Ir where

S =
Λ− (µ +ν1 + sσ)Is− (µ +ν2)Ir

µ
= F(Is, Ir).

Suppose that Is = 0. If Ir is non-zero from the third equation in system (3.1) we get

(µ +ν2 +α2)S +(µ +ν2 +α2)Ir = 0.

We can write this as follows:

(µ +ν2 +α2)F(0, Ir)+(µ +ν2 +α2)Ir = 0

Now, if we solve for Ir then we get

Ir =
[β2− (µ +ν2 +α2)]Λ

µ

[β2− (µ +ν2 +α2)](
µ+ν2

µ
)+(µ +ν2 +α2)

.

If β2 > (µ +ν2 +α2) ⇐⇒ Rr > 1, then Ir > 0 and we have exactly one positive

solution for Ir. If β2 ≤ (µ +ν2 +α2) ⇐⇒ Rr ≤ 1, then Ir ≤ 0, so there are no positive

solutions for the Ir. �
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In order to derive an expression for the region of stability of the boundary

equilibrium we measure the capacity of sensitive strains to invade and persist in a

population where the resistant strain is at equilibrium. In this context,

Er = (S∗,0, I∗r ,0) corresponds to an equilibrium free of sensitive strains. Applying the

methods in van den Driessche and Watmough [70], once again we find the basic

reproduction number of the sensitive strains in a population where resistant strains are

fixed,

Rs(Er) =
Rs

Rr
[1+δ (Rr−1)].

The formalism permits the derivation of a threshold condition for coexistence, now

equivalent to a threshold condition for sensitive strains endemicity in a population

where resistant strains are at equilibrium, Rs(Er) = 1: only the resistant strain persists

for Rs(Er) < 1, while for Rs(Er) > 1 sensitive strains can invade a population where

resistant strains are fixed, which implies that coexistence is possible.

Theorem 9 If Rr > 1 the equilibrium Er of system (3.1) is stable for Rs(Er) < 1 and

unstable for Rs(Er) > 1.

Proof Once again, we apply Theorem 2 in van den Driessche and Watmough [70], and

it is sufficient to prove conditions (A1)− (A5). Once more, conditions (A1)− (A4) are

of trivial verification. To prove the remaining condition (A5) we write the Jacobian of

f at X0 = (S∗, I∗r ,0,0), with F set to zero, ordering coordinates as (S, Ir, Is,R). Then,

the Jacobian has the form

D fF=0(S∗, I∗r ,0,0) =

H1 H2

0 H3


where,

H1 =

−β2I∗r
S∗+I∗r

+ β2S∗I∗r
(S∗+I∗r )2 −µ

−β2S∗
S∗+I∗r

+ β2S∗I∗r
(S∗+I∗r )2 +α2

β2I∗r
S∗+I∗r

− β2S∗I∗r
(S∗+I∗r )2

β2S∗
S∗+I∗r

− β2S∗I∗r
(S∗+I∗r )2 − (µ +α2 +ν2)


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and

H3 =

 β1S∗
S∗+I∗r

+ β1δ I∗r
S∗+I∗r

− (µ +α1 +ν1 + sσ) 0

σ −µ


Therefore, the eigenvalues of the Jacobian are given by the eigenvalues of H1 and H3.

For H1, the eigenvalues are the roots of the characteristic polynomial

p2(λ ) = λ
2− c1λ + c0

where

−c1 = −(β2− (α2 +ν2)),

c0 = [β2− (µ +α2 +ν2)][β2µ +ν2(β2− (µ +α2 +ν2))].

Now we must show that both −c1 and c0 are > 0.

So,

−c1 = −(−β2 +(α2 +ν2))

= (β2− (α2 +ν2))+ µ−µ

= µ +(β2− (α2 +ν2 + µ))

> (β2− (α2 +ν2 + µ))

> 0

since Rr > 1. Hence −c1 > 0.

It is clear that c0 > 0 since Rr > 0. Since −c1 and c0 are positive for all possible

values of Rr > 1, then all eigenvalues of H1 have negative real part. For H3, at

equilibrium Er, the eigenvalues are

λ1 = −µ

λ2 =
β1 +β1δ (Rr−1)

Rr
− (µ +α1 +ν1 +σ).

Now, we have that λ1 < 0 and λ2 < 0 for all the possible values of

Rs
Rr

(
1+δ (Rr−1)

)
< 1, i.e., Rs(Er) < 1.
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Hence, all the eigenvalues have negative real parts. Therefore, if Rr > 1, then Er is

stable for Rs(Er) < 1 and unstable otherwise. �

The curve that defines the coexistence region is given by the following relation:

Rs(Er) = 1 ⇐⇒ Rs = g(Rr) (3.4)

=
Rr

1+δ (Rr−1)

Numerical results support that below the curve defined by g, in the (Rs,Rr)-

space both types of strains will persist, thus giving coexistence.

3.2 Two strain model with vaccination dynamics

We extend the simple two strain model by including a vaccinated class and vital

dynamics (recruitment and mortality). The new model allows us to study the effect of

vaccination on the prevalence of both drug-sensitive and drug-resistant strains.

Mathematical properties of the model system are analytically studied. It is shown that

the system has three possible equilibrium points including an endemic equilibrium at

which both strains are present. A detailed analysis of stability is conducted, which

shows that the dynamic behaviors of the system are determined by two quantities,

Rs(Er) and Rr(Es).

Model formulation

Vaccination is most effective against those viruses or bacteria that have little tendency

to vary antigenically [5], [31]. The presence of multiple variants of the pathogen has a

very significant impact on vaccination. Typically vaccines contain one or several

strains called vaccine strains.

In this section, we introduce a vaccinated class and include vital dynamics. As

the main purpose of this model is to look at the interaction between vaccination and

different strains. Note, the main purpose of this model is to look at the effect of
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vaccination only on the dynamics of the two strains, hence we exclude treatment from

the model. Let N denote the total number of the population which is divided into four

subclasses: susceptible (S), vaccinated (V ), infected with drug sensitive strain (Is), and

infected with drug resistant strain (Ir). Assume that there is a constant recruitment rate

Λ (into the susceptible class), and a per capital natural death rate µ . A transition

diagram between these epidemic classes is shown in Fig. 3.5. Susceptible individuals

are vaccinated at per-capita rate η and the immunity wanes at per-capita rate ω . β1

and β2 represent the rates at which a susceptible individual becomes infected with the

drug sensitive and drug resistant strains, respectively. In this model, we also consider

the possibility of natural recovery, hence α1 and α2 represent the natural recovery

rates, and assume that α1 > α2. We also assume that those infected with the

drug-resistant strain can come into contact with infectious individuals colonized by

the drug-sensitive strain and become reinfected with the first strain. This process is

referred to as super-infection. The transmission coefficient in case of super-infection

is β1δ where δ is the coefficient of reduction or enhancement of infection at

reinfection. In particular, if δ > 1 then reinfection is more likely than the regular

infection while if 0 < δ < 1 then reinfection is less likely than the regular infection. If

δ = 0 there is no super-infection.

Based on the transition diagram in Figure 3.5, the model is described by the

following system of differential equations:

Ṡ = Λ−β1
SIs

N
−β2

SIr

N
+ωV +α1Is +α2Ir−µS−ηS (3.5)

V̇ = ηS−ωV −µV

İs = β1
SIs

N
+β1δ

IsIr

N
−α1Is−µIs

İr = β2
SIr

N
−β1δ

IsIr

N
−α2Ir−µIr

34



!"

#$"

#%"

! 

"
s

I
s
S

N

! 

"
r

I
r
S

N

! 

"
s
#
I
r
I
s

N! 

"S

! 

"

! 

µV

! 

µS

! 

µI
s

! 

µI
r

&"
! 

"V

! 

"
s
I
s

! 

"
r
I
r

Figure 3.5: Representation of the model super-infection with vaccination

where

N = S +V + Is + Ir

.

Equilibria and stability

For system (3.5), note that the total population size N satisfies the equation

Ṅ = Λ−µN

and that N(t)→ Λ

µ
as t→+∞, we know that the biologically feasible region

Γ = {(S,V, Is, Ir) : 0≤ S,V, Is, Ir, S +V + Is + Ir ≤
Λ

µ
}

is positively invariant for the system (3.5). Therefore, in what follows, we consider

only solutions with initial conditions inside the region Γ, in which the usual existence,

uniqueness of the solutions and continuous dependence of solutions results hold.
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Table 3.2: Description and units for model variable and parameters.

Variable Description [Units]
S(t) susceptible individuals [individuals]
Is(t) drug-sensitive colonized individuals [individuals]
Ir(t) drug-resistant colonized individuals [individuals]
V vaccinated individuals [individuals]

Parameters Description [Units]
Λ recruitment/birth rate [individuals/unit time]
µ natural death rate [1/unit time]
β1 drug-sensitive effective contact rate [1/unit time]
β2 drug-resistant effective contact rate [1/unit time]
α1 natural drug-sensitive recovery rate [1/unit time ]
α2 natural drug-resistant recovery rate [1/unit time ]
δ fitness cost [N/A]
η rate at which susceptible individuals are vaccinates [1/unit time]
1
ω

average time of losing vaccine-induced immunity [1/unit time]

The system (3.5) always has the disease-free equilibrium (DFE) E0 = (S0,V 0,0,0),

where

S0 =
ω + µ

ω + µ +η
N0, V 0 =

η

ω + µ +η
N0, N0 =

Λ

µ

represent the numbers of susceptible, vaccinated, and total populations, respectively,

in the absence of infection. The existence of other equilibria are determined by the

two quantities, Rs and Rr, given by

Rs =
β1(µ +ω)

(µ +α1)(µ +ω +η)
(3.6)

Rr =
β2(µ +ω)

(µ +α2)(µ +ω +η)
(3.7)

The biological interpretations of these quantities are as follows. Notice that

(µ +ω)/(µ +ω +η) is the fraction of the population that is susceptible. Thus, Rs

represents the number of secondary sensitive cases produced by a typical sensitive

case during the period of infection in a population where vaccination is implemented.

Similarly, Rr represents the number of secondary drug resistant cases produced by a

typical resistant case, i.e., the control reproduction number of the resistant strain,
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during the period of infection in a population where the fraction of susceptibles is

(µ +ω)/(µ +ω +η).

Steady states

The system of differential equations has one disease-free equilibrium,

E0 = (S∗,V ∗,0,0) and three endemic equilibria of the form Es = (S∗,V ∗, I∗s ,0),

Er = (S∗,V ∗,0, I∗r ), and Ec = (S∗,V ∗, I∗s , I∗r ), corresponding, respectively, to states

where only sensitive strains, or resistant strains, or both types of strains are present.

The bifurcation diagram in Figures 3.6, 3.7, and 3.8 divides the (Rs,Rr) space

into several regions as characterized by the long-term epidemiological outcomes, each

corresponding to a stable steady state of the system: disease eradication (E0),

persistence of only drug-resistant strain (Er), persistence of only drug-sensitive strain

(Es), or coexistence, i.e., persistence of both drug-sensitive and drug-resistant strains

(Ec). Figures 3.6 and 3.7 illustrate the effect of the superinfection parameter δ . When

δ = 0, no superinfection, only three equilibria are plausible: DFE, sensitive strain only

equilibrium and resistant strain only equilibrium. When superinfection is included in

the model, δ positive, reveals that coexistence is now possible. Figure 3.8 considers

two different values of δ and illustrates how the long-term epidemiological outcome

changes as δ increases. The diagram shows that as δ increases, the region where the

resistant strain is at equilibrium becomes smaller, making both the coexistence region

and the sensitive strain only equilibrium region bigger.

Stability of the disease-free equilibrium

The stability properties of the disease-free equilibrium (trivial equilibrium) E0,

corresponding to the threshold condition for endemicity are given in Theorem 10.
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Figure 3.6: Long-term epidemiological outcome of the (Rs,Rr) space. The parameter
values are as follows: µ = 0.01, ω = 0.3, η = 0.5, α1 = 0.03, and α2 = 0.02. δ = 0
and β1 and β2 vary.
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Figure 3.7: Long-term epidemiological outcome of the (Rs,Rr) space. The parameter
values are as follows: µ = 0.01, ω = 0.3, η = 0.5, α1 = 0.03, and α2 = 0.02. δ = 0.8
and β1 and β2 vary.

Theorem 10 Consider the quantities Rs and Rr given in (3.6)-(3.7). The disease-free

equilibrium E0 of system (3.3) is locally asymptotically stable, if R0 < 1, i.e., if Rs < 1

and Rr < 1, and it is unstable for R0 > 1.
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Figure 3.8: Long-term epidemiological outcome of the (Rs,Rr) space. The parameter
values are as follows: µ = 0.01, ω = 0.3, η = 0.5, α1 = 0.03, and α2 = 0.02, β1 and
β2 vary. Figure to the left δ = 2, and figure to the right δ = 20.

Proof By Theorem 2 in van den Driessche and Watmough [70], it is sufficient to prove

conditions:

• (A1) if X ≥ 0, then F , V +, V − ≥ 0,

• (A2) if Xi = 0 then V −i = 0 (where i refers to a vector component),

• (A3) Fi = 0 for the components that correspond to uninfected classes,

• (A4) if X∗ is a disease-free equilibrium then Fi(X∗) = 0 and V +
i (X∗) = 0 for

the components that correspond to uninfected classes

• (A5) if F is set to zero then all eigenvalues of D f (X0) have negative real parts.

The verification of (A-1)-(A-4) are straightforward.

The Jacobian of f at X0 with F set to zero, is

D fF=0(X0) =



−(µ +α1) 0 0 0

0 −(µ +α2) 0 0

−β1 +α1 −β2 +α2 −µ 0

0 0 η −(ω + µ)


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The eigenvalues of the above matrix are λ1 =−(µ +α1), λ2 =−(µ +α2), λ3 =−µ ,

and λ4 =−(ω + µ) all of which have negative real part and the result follows. �

Stability of boundary and coexistence equilibria

The system has three non-trivial equilibria corresponding to the presence of each type

of strains alone and coexistence. The existence of equilibria of the first two, only

sensitive strains or resistant strains persists, is given by the following theorems:

Theorem 11 The system of differential equations (3.5) has one boundary equilibrium

where the sensitive strain persists, Es = (S∗,V ∗, I∗s , Ir = 0), for Rs > 1

Proof From the equations of the system (3.5) at equilibrium, we get a relation S, Is,

and Ir where

S =
(Λ−µIs−µIr)(ω + µ)

µ(µ +η +ω)
= F(Is, Ir)

Suppose that Ir = 0. If Is is non-zero from the second equation in system (3.5) we get[
β1(ω + µ)− (µ +α1)(µ +ω +η)

(ω + µ)

]
S− (µ +α1)Is = 0.

We can write this as follows:[
β1(ω + µ)− (µ +α1)(µ +ω +η)

(ω + µ)

]
F(Is,0)− (µ +α1)Is = 0

Now, if we solve for Is we then get

Is =
[β1(ω + µ)− (µ +α1)(µ +ω +η)]Λ

µ

β1(µ +ω)
.

If β1(ω + µ) > (µ +α1)(µ +ω +η) ⇐⇒ Rs > 1, then Is > 0 and we have exactly

one positive solution for Is.

If β1(ω + µ) < (µ +α1)(µ +ω +η) ⇐⇒ Rs ≤ 1, then Is ≤ 0, so there are no

positive solutions for the Is. �

Theorem 12 The system of differential equations (3.5) has one boundary equilibrium

where the resistant strain persists, Er = (S∗,V ∗, Is = 0, I∗r ), for Rr > 1
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Proof From the equations of the system (3.5) at equilibrium, we get a relation S, Is,

and Ir where

S =
(Λ−µIs−µIr)(ω + µ)

µ(µ +η +ω)
= F(Is, Ir).

Suppose that Is = 0. If Ir is non-zero from the third equation in system (3.5) we get[
β2(ω + µ)− (µ +α2)(µ +ω +η)

(ω + µ)

]
S− (µ +α2)Ir = 0.

We can write this as follows:[
β2(ω + µ)− (µ +α2)(µ +ω +η)

(ω + µ)

]
F(0, Ir)− (µ +α2)Ir = 0

Now, if we solve for Ir we then get

Ir =
[β2(ω + µ)− (µ +α2)(µ +ω +η)]Λ

µ

β2(µ +ω)
.

If β2(ω + µ) > (µ +α2)(µ +ω +η) ⇐⇒ Rr > 1, then Ir > 0 and we have exactly

one positive solution for Ir.

If β2(ω + µ) < (µ +α2)(µ +ω +η) ⇐⇒ Rr ≤ 1, then Ir ≤ 0, so there are no

positive solutions for the Ir. �

Two coexistence thresholds must be calculated: the first separates the region

where only sensitive strains persist from the region of coexistence; the second marks

the shift from coexistence to persistence of resistant strains alone.

In order to derive an expression for the region of stability of the boundary

equilibria we measure the capacity of the strains to invade and persist in a population

where either sensitive or resistant strains are at equilibrium. In the case where the

sensitive strain is at equilibrium, in this context, Es = (S∗,V ∗, I∗s ,0) corresponds to an

equilibrium free of resistant strain.

In order to apply the methods in van den Driessche and Watmough [70],

consider the case when only the resistant strain is transmissible, in a population where
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the sensitive strain is at equilibrium. The infected compartment is Ir. We can write

system (3.5) as X = (Ir,S,V, Is) and

F =
(

β2
SIr

N
,S,V,0

)T

.

The disease (resistant strain)-free equilibrium is X0 = (Is,S,V,0).

We can compute derivatives at X0 with respect to the infected classes of F and

V , respectively:

DFIr =
β2S2 +β2SV +β2SIs

(S +V + Is)2

=
β2(µ +α1)

β1
,

DVIr = (µ +α2)+
β1δSIs +β1δV Is +β1δ I2

s
(S +V + Is)2

=
Rs(µ +α2)+β1δ (Rs−1)

Rs

The basic reproduction number of the resistant strain in a population where

sensitive strains are fixed is then the spectral radius of the next generation matrix:

Rr(Es) =
Rr(α2 + µ)

Rs(µ +α2)+β1δ (Rs−1)

Similarly, we find the capacity of the sensitive strains to invade and persist in a

population where the resistant strains are fixed. Er = (S∗,V ∗,0, I∗r ) corresponds to an

equilibrium free of sensitive strain. Following van den Driessche and Watmough [70],

we write the system of differential equations of our model (3.5) as X = (Ir,S,V, Is) and

F =
(

β1
SIs

N
+β1δ

IsIr

N
,S,V,0

)T

.

The disease (sensitive strain)-free equilibrium is (Ir,S,V,0).
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As before, we compute the derivative at X0 with respect to the infected classes

of F and V , respectively:

DFIs =
β1S2 +β1SV +β1SIr +β1δSIr +β1δ IrV +β1δ I2

r
(S +V + Is)2

=
Rs(µ +α1)+β1δ (Rr−1)

Rr
,

DVIs = (µ +α1)

The basic reproduction number of the sensitive strains in a population where resistant

strains are fixed, is given by the spectral radius of the next generation matrix:

Rs(Er) =
Rs

Rr
+

β1δ (Rr−1)
Rr(α1 + µ)

This formulation permits the derivation of a threshold condition for

coexistence. Now equivalent to a threshold condition for resistant strain endemicity in

a population where sensitive strains are at equilibrium, Rr(Es) = 1: only sensitive

strains persist for Rr(Es) < 1, while for Rr(Es) > 1 resistant strains can invade a

population where sensitive strains are fixed, hence coexistence is possible. We also

have a similar threshold condition for sensitive strain endemicity in a population

where resistant strains are at equilibrium, Rs(Er) = 1 : only resistant strains persist for

Rs(Er) < 1, while for Rs(Er) > 1 sensitive strains can invade a population where

resistant strains are fixed, that is to say coexistence is possible.

Theorem 13, and 14 below express these results in terms of stability for the

equilibrium Es and Er.

Theorem 13 If Rs > 1 the equilibrium Es of the system of differential equations is

stable for Rr(Es) < 1 and unstable for Rr(Es) > 1.

Proof By Theorem 2 in van den Driessche and Watmough [70], it is sufficient to prove

conditions (A1)− (A5). Once more, conditions (A1)− (A4) are of trivial verification.
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To prove the remaining condition (A5) we write the Jacobian of f at X0, with F set to

zero, ordering coordinates as (S,V, Is, Ir). Then, the Jacobian has the form

D fF=0(S∗,V ∗, I∗s ,0) =

G1 G2

0 a


where,

G1 =


x− (µ +η) β1S∗I∗s

(S∗+V ∗+I∗s )2 +ω y+α1

η −(ω + µ) 0

−x −β1S∗I∗s
(S∗+V ∗+I∗s )2 −y− (µ +α1)


where,

x =
−β1I∗s

(S∗+V ∗+ I∗s )
+

β1S∗I∗s
(S∗+V ∗+ I∗s )2

y =
−β1S∗

(S∗+V ∗+ I∗s )
+

β1S∗I∗s
(S∗+V ∗+ I∗s )2

and

a =
β2S∗

(S∗+V ∗+ I∗s )
− β1δ I∗s

(S∗+V ∗+ I∗s )
− (µ +α2)

Therefore, the eigenvalues of the Jacobian are given by the eigenvalues of G1

and a.

For G1, the eigenvalues are −µ and the roots of the characteristic polynomial

p1(λ ) = λ
2−b1λ +b0

where

−b1 = −
[−β1(ω + µ)−ω(η + µ +ω)+α1(η + µ +ω)

(ω + µ)

]
,

b0 = β1(ω + µ)− (η + µ +ω)(µ +α1).

Now we must show that both −b1 and b0 are > 0.
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So,

−b1 = −
[−β1(ω + µ)−ω(η + µ +ω)+α1(η + µ +ω)

(ω + µ)

]
=

β1(ω + µ)+ω(η + µ +ω)−α1(η + µ +ω)+ω(η + µ−ω)−ω(η + µ +ω)
(ω + µ)

=
β1(ω + µ)− (α1 +ω)(η + µ +ω)+2ω(η + µ−ω)

(ω + µ)

>
β1(ω + µ)− (α1 +ω)(η + µ +ω)

(ω + µ)

> 0

since Rs > 1. Hence −b1 > 0.

It is clear that b0 > 0 since Rs > 0. Since −b1 and b0 are positive for all

possible values of Rs > 1, then all eigenvalues of G1 have negative real part.

For a, at equilibrium Es, we get:

a =
Rr(µ +α2)

Rs
− β1δ (Rs−1)+(µ +α2)Rs

Rs

Now, we have that a < 0 for all the possible values of Rr(µ+α2)
β1δ (Rs−1)+(µ+α2)Rs

< 1, i.e.,

Rr(Es) < 1, and a≥ 0 otherwise.

Hence, all the eigenvalues have negative real parts. Therefore if Rs > 1, then

Es is stable for Rr(Es) < 1 and unstable otherwise. �

Theorem 14 If Rr > 1 the equilibrium Er of the system of differential equations is

stable for Rs(Er) < 1 and unstable for Rs(Er) > 1.

Proof Once again, we apply Theorem 2 in van den Driessche and Watmough [70], and

it is sufficient to prove conditions (A1)− (A5). Once more, conditions (A1)− (A4) are

of trivial verification. To prove the remaining condition (A5) we write the Jacobian of

f at X0, with F set to zero, ordering coordinates as (S,V, Ir, Is). Then, the Jacobian

has the form

D fF=0(S∗,V ∗, I∗r ,0) =

H1 H2

0 z


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where,

H1 =


u− (µ +η) β2S∗I∗r

(S∗+V ∗+I∗r )2 +ω v+α2

η −(ω + µ) 0

−u −β2S∗I∗r
(S∗+V ∗+I∗r )2 −v− (µ +α2)


where,

u =
−β2I∗r

(S∗+V ∗+ I∗r )
+

β2S∗I∗r
(S∗+V ∗+ I∗r )2

v =
−β2S∗

(S∗+V ∗+ I∗r )
+

β2S∗I∗r
(S∗+V ∗+ I∗r )2

and

z =
β1S∗

(S∗+V ∗+ I∗r )
+

β1δ I∗r
(S∗+V ∗+ I∗r )

− (µ +α1)

Therefore, the eigenvalues of the Jacobian are given by the eigenvalues of H1 and z.

For H1, the eigenvalues are −µ and the roots of the characteristic polynomial

p2(λ ) = λ
2− c1λ + c0

where

−c1 = −
[−β2(ω + µ)−ω(η + µ +ω)+α2(η + µ +ω)

(ω + µ)

]
,

c0 = β2(ω + µ)− (η + µ +ω)(µ +α2).

Now we must show that both −c1 and c0 are > 0.

So,

−c1 = −
[−β2(ω + µ)−ω(η + µ +ω)+α2(η + µ +ω)

(ω + µ)

]
=

β2(ω + µ)+ω(η + µ +ω)−α2(η + µ +ω)+ω(η + µ−ω)−ω(η + µ +ω)
(ω + µ)

=
β2(ω + µ)− (α2 +ω)(η + µ +ω)+2ω(η + µ−ω)

(ω + µ)

>
β2(ω + µ)− (α2 +ω)(η + µ +ω)

(ω + µ)

> 0
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It is clear that c0 > 0 since Rr > 0. Since −c1 and c0 are positive for all possible

values of Rr > 1, then all eigenvalues of H1 have negative real part.

For z, at equilibrium Er, we get:

z =
β1(µ +α2)

β2
+

β1δ (Rr−1)
Rr

− (µ +α1)

Now, we have that z < 0 for all the possible values of Rs
Rr

+ β1δ (Rr−1)
Rr(µ+α1)

< 1, i.e.,

Rs(Er) < 1, and z≥ 0 otherwise.

Hence, all the eigenvalues have negative real parts. Therefore, if Rr > 1, then

Er is stable for Rs(Er) < 1 and unstable otherwise. �

The curves the defines the coexistence region are given by the following

relation: Rr(Es) = 1 ⇐⇒ Rr = f (Rs)

Rr(Es) = 1 ⇐⇒ Rr = f (Rs) (3.8)

=
β1δ (Rs−1)+Rs(α2 + µ)

(µ +α2)

Rs(Er) = 1 ⇐⇒ Rs = g(Rr) (3.9)

= Rr−
β1δ (Rr−1)
(α1 + µ)

Numerical results support that above the curve defined by f and below the

curve defined by g, in the (Rs,Rr)- space both types of strains will persist, thus giving

coexistence.

Critical Vaccination Rate

All that is required for the incidence of an infectious disease to go into decline is that

each case should generate, on average, less than one other case. The number of

secondary infections caused by one infectious individual is often referred to as the

effective reproductive number and denoted R. Epidemics often peak and go into

decline as R falls below 1 because the pool of susceptible individuals has been
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temporarily exhausted. For the trajectory of incidence to remain on a downward

course until the agent is eradicated requires that the effective reproductive rate should

remain below 1, even when the number of susceptible individuals is at its maximum.

R0η , the basic reproductive number under vaccination is the number of secondary

cases caused by one primary case introduced into a population in which the

vaccination rate is given by η . For a vaccine that takes into account the loss of

protection, i.e., ω > 0 in (3.5)

R0η =
µ +ω

µ +η +ω
R0

Note that when ω = 0, denotes the case of a perfect vaccine that confers life-long

protection.

The critical vaccination rate that will achieve eradication, ηc, is that for which

the basic reproductive number under vaccination is just equal to 1. This yields:

ηc = µ(R0−1)+ω(R0−1)

Since R0 = max{Rs,Rr} then ηc = max{ηcs,ηcr}, where

ηcs = µ(Rs−1)+ω(Rs−1)

ηcr = µ(Rr−1)+ω(Rr−1)

Figure 3.9 illustrates the critical vaccination rate for any given natural death

rate. Hence, if the model is capturing the dynamics for a disease in a region like

Southern Africa, where the life expectancy is 40 years, (µ = 0.025 ), then we can

conclude that if the vaccination rate is above 0.125, then the sensitive strain will

prevail.
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Figure 3.9: The figure shows the required vaccination rate to eradicate the resistant
strain for a given the natural death rate. β1 = 0.65, β2 = 0.45, α1 = 0.3, α2 = 0.2,
ω = 0.1, µ varies and η also varies.

3.3 Numerical Simulations

The following initial conditions are assumed for the simulations, S(0) = Λ

µ
,

V (0) = 10, Is(0) = 10, Ir(0) = 1 and T (0) = 1. Simulations were run for different sets

of initial conditions and the qualitative form of the solution were similar.

The model (3.1) is simulated using the parameters in Table 3.3 (unless

otherwise stated) to illustrate some of the theoretical results established in this chapter.

The competitive exclusion property of the model is illustrated by considering the case

when Rs > 1 and Rr > 1. First of all, it can be shown that, in such a case,

(i) Rs > Rr (for the stability of Ec) corresponds to

1 <
Rs

Rr
[1−δ (Rr−1)]≡A
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Table 3.3: Parameter values for models 3.1 and 3.5

Param. Description (value/year) Approx. Ref.
Λ birth rate variable
µ natural death rate 0.025 [62]
β1 drug-sensitive effective contact rate 0.75 [55]
β2 drug-resistant effective contact rate 0.75 [55]
α1 natural drug-sensitive recovery rate 0.00078 [34]
α2 natural drug-resistant recovery rate 0.00078 [34]
ν1 disease induced mortality rate 0.0014 [12]
ν2 disease induced mortality rate 0.0014 [12]
σ treatment rate variable
s probability of compliance variable
δ fitness cost variable
η vaccination rate variable
ω loss of vaccine-induced immunity 0.5 Assumed

(ii) Rr > Rs (for the stability of Er) implies that

1 > A

The above calculations allow us to investigate the competitive exclusion

principle by simulating the model with various parameter values. Simulating the

model using the parameters in Table 3.3 with τr = 0.2, δ = 0.4, σ = 0.2 and s = 0.5

(so that Rs = 3.5411 and Rr = 3.0864) shows convergence to the coexistence

equilibrium (Fig. 3.10).

Using the same parameter values above but with δ = 0.2 (so that Rs = 1.7705

and Rr = 2.1605), the solution profile converges to the resistant strain only

equilibrium (Fig. 3.11). It should be noted that, in this case, the drug-sensitive strain

dies out even though Rs > 1, provided that the condition Rr > Rs holds. Thus, these

simulations suggest that the result of Theorem 3 can be extended to the case Rs > 1.

Recall that for the treatment model, Rs given in (3.2), depends on the treatment
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Figure 3.10: Simulations of the model with treatment (3.1). The figure depicts the
temporal course of the classes for the case when Rs > Rr. Parameter values used are:
τr = 0.2, δ = 0.4, σ = 0.2 and s = 0.5 , Λ = 100, and the rest are as in Table 3.3. In
this case Rs = 3.5411 and Rr = 3.0864

rate σ . Hence, the effect of drug treatment (σ ) is monitored by noting,

∂A

∂σ
=−Rs

Rr

[1+δ (Rr−1)]
(µ +ν1 +α1 +σ)

Thus, A is decreasing function of σ . Therefore, increasing treatment could

lead to a scenario where 1 > A , so that Rr > Rs. In which case, the resistant strain

could displace the drug-sensitive strain. This result is illustrate in Fig 3.12, where

simulations are carried out with varying values of σ and the other parameter values

chosen so that Rr = 3.0864, and Rs varies.
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Figure 3.11: Simulations of the model with treatment (3.1). The figure depicts the
temporal course of the classes for the case when Rr > Rs. Parameter values used are:
τr = 0.2, δ = 0.4, σ = 0.2 and s = 0.5, Λ = 100, and the rest are as in Table 3.3. In
this case Rs = 1.7705 and Rr = 2.1605

Numerical Simulations: Vaccination Model

The model (3.5) is simulated using the parameters in Table 3.3 (unless otherwise

stated) to illustrate some of the theoretical results established in this chapter. The

competitive exclusion property of the model is illustrated by considering the case

when both Rs > 1 and Rr > 1. First of all, it can be shown that in such a case,

(i) the stability of Es corresponds to,

Rr < Rs +
β1δ (Rs−1)
(α2 + µ)

≡B
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Figure 3.12: Simulations of the model with treatment (3.1). The figure depicts the long
term dynamics for varying treatment rate. For values of σ (treatment rate), coexistence
is achieved and as the treatment rate increases, it leads to drug-resistant only equilib-
rium. Parameter values used are: τr = 0.2, δ = 0.4, and s = 0.5, Λ = 100 , and the rest
are as in Table 3.3. In this case Rs varies and Rr = 3.0864

(ii) the stability of Er corresponds to

Rs <
Rr(µ +ω)

(µ +ω)+δ (Rr−1)(µ +ω +η)
≡ C

(iii) the stability of Ec corresponds to

Rr > B

Rs > C

The above calculations allow us to investigate the competitive exclusion

principle by simulating the model with varying parameters. Simulating the model
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Figure 3.13: Simulations of the model with treatment (3.5). The figure depicts the
temporal course of the classes for the case when Rr < B . Parameter values used are:
τr = 0.3, δ = 0.5 and η = 0.4, and the rest are as in Table 3.3. In this case For values of
σ (treatment rate), coexistence is achieved and as the treatment rate increases, it leads
to drug-resistant only equilibrium. Parameter values used are: τr = 0.2, δ = 0.4, and
s = 0.5 , Λ = 100, and the rest are as in Table 3.3. In this case Rs = 1.7613, Rr = 2.6419

using parameters in Table 3.3 with τr = 0.3, δ = 0.5 and η = 0.4 so that Rs = 1.7613,

Rr = 2.6419, and B = 2.942 (which implies that Rr < B) shows convergence to the

drug-sensitive strain (Fig 3.13). Thus, the drug-sensitive strain out competes the

drug-resistant strain even though Rs < Rr
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Figure 3.14: Simulations of the model with treatment (3.5). The figure depicts the
temporal course of the classes for the case when Rr > B and Rs > C . Parameter values
used are: τr = 0.45, δ = 0.5 and η = 0.4, Λ = 100, and the rest are as in Table 3.3. In
this case Rs = 1.7613 and Rr = 3.968

Using the same parameters as above but with τr = 0.45 which implies that

Rs = 1.7613 and Rr = 3.968, B = 1.3468 and C = 1.6045, gives Rr > B and Rs > C .

Hence the solution profile converges to the coexistence of both the drug-sensitive

strain and the drug-resistant strain (Fig 3.14). To illustrate the competitive exclusion

principle showing the convergence to the drug-resistant strain, the same parameters

were used but with τr = .27, thus Rs = 1.7613, Rr = 2.377 and C = 1.9502 (Fig.

3.15).
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Figure 3.15: Simulations of the model with treatment (3.5). The figure depicts the
temporal course of the classes for the case when Rs < C . Parameter values used are:
τr = 0.27, δ = 0.5 and η = 0.4, Λ = 100, and the rest are as in Table 3.3. In this case
Rs = 1.7613, Rr = 2.377

The effect of vaccination on the emergence of drug-resistant strains (η) is

plotted in Fig. 3.16. The vaccination rate is varied and the long term dynamics of the

drug-sensitive strain and drug-resistant strain are noted. The plot shows that for low

rates of vaccination, the drug-sensitive strain out competes the drug-resistant strain,

resulting in the drug-sensitive equilibrium. As the vaccination rate increases, the

dynamics of the model promote the coexistence of both the drug-senstive and the

drug-resistant strain. Followed by the competitive exclusion of the drug-senstive strain

which leads to the equilibrium where the drug-resistant is stable. Its interesting to

note, that high vaccination rates, lead to the extinction of both the drug-sensitive and

the drug-resistnat strains, leading to an equilibrium free of the disease.
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Figure 3.16: Simulations of the model with treatment (3.5). The figure depicts the
long term dynamics for varying vaccination rate. For values of η (vaccination rate), all
three equilibria are achieved: drug-sensitive only, coexistence, drug-resistant only, and
as vaccination rate increases, it leads to DFE. Parameter values used are: τr = 0.27,
δ = 0.4 , Λ = 100, and the rest are as in Table 3.3. In this case Rs and Rr vary.
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Chapter 4

EPIDEMIOLOGICAL MODELS FOR THE SPREAD OF ANTI-MALARIAL

RESISTANCE

Malaria remains a major cause of mortality and morbidity in the tropical and

subtropical areas of the world. According to World Health Organization, around 30%

of the global population is at constant risk of infection, with sub-Saharan Africa being

the worst affected region [73]. Malaria has also recently been identified as a candidate

for global eradication. Despite the effort aimed at eradicating malaria globally, the

disease continues to be a major cause of morbidity and mortality in the tropical and

sub-tropical regions of the world, with some parts of Africa being the most affected

[72]. Malaria accounts for 300 million cases and over a million fatalities globally

every year (World Health Organization Expert Committee on Malaria, [73], and such

burden is expected to significantly increase.

Malaria infection is caused by the protozoan Plasmodium, and transmitted to

humans by Anopheles mosquitoes, after taking a blood meal from humans. Four

species of the parasite, (P. falciparum, P. vivax, P. ovale, and P. malarie) infect

humans. These species differ in geographical distribution, microscopic appearance,

and clinical features such as potential of infection, potential for severe disease and

ability to cause relapses. Of the four species, P. falciparum is the most virulent, and

potentially deadly to humans.

Although numerous control strategies, such as mosquito-reduction strategies,

personal protection, and treatment exists, it is unlikely that a single strategy would be

applicable to all nations and epidemiological situations. Further, global changes in

weather, together with changes in demographics structures, development of resistance

to antimalarial drugs, and the absence of an effective vaccine, constitute additional

challenges in the global effort to effectively control the malaria parasite. Thus,
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antimalaria control strategies need to be designed for the specific environment in

which they will be used taking into account the available resources.

Although there is currently no effective anti-malaria vaccine available for use

in humans, a number of candidate vaccines are under development and/or undergoing

various stages of clinical trials [22], [31], [52], [64]. For the most part, some of these

vaccines are designed to target the liver stages (pre-erythrocytic stages) of the parasite

to reduce the changes of a human being infected, while others are designed to target

the asexual blood stages (erythocytic stage) of the parasite, to reduce disease severity

and risk of death during infection [22], [31], [64], [71]. In addition, there are other

vaccines that are designed to target the sexual stages of the parasite to prevent its

transmission to a mosquito vector and ultimately to another human [22], [64]. An ideal

vaccine should be cheap, extremely safe, induce life long immunity, be active against

all types of the plasmodiun falciparum parasite, and result in substantial interruption

of the malaria life cycle through vaccine-induced responses. Unfortunately, this

remains a daunting and impossible task. Consequently, the current strategies for

malaria vaccine development are focused on achieving more modest goals of reducing

the risk of infection and reducing the transformation of the sexual staged gametocytes

to gametes in the mosquito [71]. In fact, efforts for vaccine development against the

pre-erythrocytic and the erythrocytic stages have focused on strategies aiming at a

50% or more efficacy rate [71], which are considered as a sizeable scale

implementation by many public-health officials [71]. Thus, it is instructive to design

models for assessing the potential impact of a future anti-malaria vaccine. Such a

vaccine is expected to be imperfect and may possess some important therapeutic

characteristics such as, blocking infection (at some efficacy level), reducing

transmissibility in breakthrough infection, slowing onset of symptoms, slowing

mortality rate and accelerating the rate.
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4.1 A model for anti-malarial resistance transmission

The model assumes that the population of humans is subdivided into three classes.

Assume S(t) be the density of susceptible human population, V (t) be the density of

vaccinated human population, Is(t) be the density of infected with sensitive strain of

malaria human population, Ir(t) to be the density of infected with anti-malarial

resistance human population and R(t) to be the density of the recovered population.

Since we are interested in long term dynamics, the model does not include any latent

or exposed classes. In this model we assume that hosts can be superinfected by a

second parasite, which leads to a mixture of sensitive and resistant parasites in the

same patient. We further assume that sensitive and resistant parasites develop

independently within their host.

The susceptible population is increased by the recruitment of individuals

(assumed susceptible) into the population (at a rate Λ) and decreased by natural death

at a rate µ . The susceptible population is further decreased by the administration of a

malaria vaccine (at a rate η). In the presence of the disease, susceptible population

also increases by the loss of infection-acquired immunity by individuals who

recovered from malaria (at the rates αs and αr for individuals infected with the

sensitive and resistant strain, respectively). It is assumed that infection-acquired

immunity is higher for sensitive strain population then for the resistant strain

population (αs > αr). The susceptible population if further increased by the loss or

vaccine immunity (at a rate ω). The vaccinated population is generated by the

administration of malaria vaccine to susceptible individuals (at a rate η) and

diminished by the loss of acquired vaccine immunity (at a rate ω), and natural death

(at a rate µ). The infected population with sensitive strain is generated by the infection

of susceptible individuals with sensitive strain and diminished by natural death (at the

rate µ), natural recovery (at a rate αs), disease induced mortality (at a rate νs) and
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administration of antimalarial drugs (at a rate σ ). The infected population with

resistant strain is generated by the infection of susceptible individuals with resistant

strain and diminished by natural death (at the rate µ), natural recovery (at a rate αr),

and disease induced mortality (at a rate νr). The infected population with resistant

strain is further increased by acquired resistant due to failure to comply with

antimalarial drugs regimen (at a rate (1− s)σ ), where s is the probability of

compliance. The recovered population is generated by the treatment of the population

infected with the sensitive strain who complied with the antimalarial drugs regimen

and hence cleared the infection (at a rate sσ ). It is decreased by the natural death (at a

rate µ).

The susceptible population is further decreased by infection acquired via

mosquito bites from female vectors carrying either the wild or the resistant strain. The

infection rate of humans (λs(t) and λr(t)) is dependent on the biting rate of

mosquitoes, the transmission probability per bite, and the proportion of infected

mosquitoes in the population. The force of infection, (λs(t) and λr(t)), depends on the

density of mosquitoes and hence varies between regions. Since our study focuses on

understanding the dynamics of resistant malaria in Sub-Saharan Africa, a region

where Malaria is endemic and hence of high transmission, it is reasonable to exclude

the vector dynamics and assume that the proportion of infected humans is a good

estimate for the force of infection [67], [2]. Then the force of infection for sub-Saharan

Africa is given by

λs(t) = ps(t)Is
N and λr(t) = pr(t)Ir

N

where ps(t) and pr(t), is the transmission probability at time t of the sensitive strain

and resistant strain, respectively. For now, it is assume to be constant for all t.

61



The governing equations for the transmission of the disease in the presence of

demographic parameters, and preventive and control measures are

Ṡ = Λ−λs(t)
S
N
−λr(t)

S
N
−µS−ηS +ωV +αsIs +αrIr (4.1)

V̇ = ηS−ωV −µV

İs = λs(t)
S
N

+λs(t)δ
Ir

N
− (µ +νs)Is−αsIs−σ Is

İr = λr(t)
S
N

+(1− s)σ Is−λs(t)δ
Ir

N
− (µ +νr)Ir−αrIr

Ṙ = sσ Is−µR

where λs(t)=
ps(t)Is

N and λr(t)=
pr(t)Ir

N . Since the study focuses on modeling the

disease dynamics of Malaria in sub-Saharan Africa, where Malaria is considered to be

endemic, the dynamics of the vector population are negligible. Entomological studies

have shown that is reasonable to estimate the force of infection in high transmission

areas as λ =−ln(1− I
N ) [67][2]. Hence the force of infection can be considered

proportional to the infected population. Therefore, this study we assume that the

vector population does not fluctuate and can be treated as a constant population

proportional to the infected humans Therefore, ps(t) is proportional to the population

to the sensitive strain population and pr(t) is proportional to the resistant strain

population.

4.2 Parameter values

We compile a reasonable set of baseline values for the parameters in the model for

areas of high transmission (R0 = 5.0).

Baseline parameter values

We show baseline values and ranges in Table 4.1. We include for areas of low

transmission. We also describe our reasons for using these values and the references,

where available. We estimate parameter values from published studies and
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country-wide data. For human population in our model, we consider villages, small

towns, or small regions. We assume high transmission occurs in parts of Africa, more

specifically in sub-Saharan Africa. We use two significant figures of accuracy for all

parameters.

Table 4.1: Parameters values for Malaria disease dynamics in sub-Saharan Africa of
4.1

Parameter Baseline value Range Reference
η 0.00273 Days−1 0.00136986 - 0.3 Assumed
αs 0.005 Days−1 [25][23][63]
αr 0.005 Days−1 [25][23][63]
νs 0.000082079 Days−1 [3]
νr 0.000082079 Days−1 [3]
σ 0.04 Days−1 0.0035 - 0.4 Assumed
δ 0 -1 Assumed
s 0 -1 Assumed
ω 0.000548 Days−1 0.0055 - 0.00027397 Assumed
µ 0.025 years−1 [20]

Population data for humans

Table 4.2 shows the life expectancy and birth rate estimates for the year 2010 for some

African countries with areas of high malaria transmission. Using this data we assume

a birth rate of 40 births per year per 1000 people so Λ = 40/365.25/1000. We set the

values of µ = 6.8x10−5, which corresponds to, in the absence of malaria, a life

expectancy of 40 years.

To determine the range of these parameters, we allow the birth rate to vary

from 10 births per 1000 people per year to 50 births per 1000 people per year. We

allow µ to vary so that the minimum removal rate corresponds to a life expectancy of

80 years and the maximum removal rate corresponds to a life expectancy of 30 years.

The exact value of µ , for a given life expectancy, would depend on the values of the

birth rate.
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Table 4.2: Demographic data for countries with areas of high levels of malaria trans-
mission. The unit for life expectancy is years and the unit for the birth rate is total births
per 1000 people per year.

Country Life Expectancy Birth Rate Reference
Bostwana 33.87 23.33 CIA (2005) [20]

Congo, DR 49.35 44.38 CIA (2005) [20]
Kenya 47.99 40.13 CIA (2005) [20]
Malawi 36.97 43.95 CIA (2005) [20])
Zambia 39.7 41.38 CIA (2005) [20]

Data for νs and νr

The value of the disease-induced death rate varied considerably across different

regions, depending on the diagnosis and treatment facilities available. Arudo et al.

(2003) [3] give the mortality rate for malaria for children under 5 years old in Asembo

(a region in western Kenya) as 32.9 deaths per year per 1000 children. Although this

data is only for children and for all children (not only those that are infectious), we use

it as an estimate for the per capita disease-induced death rate. This assumption is

reasonable because in areas of high malaria transmission like Asembo, almost all

children suffer from clinical malaria and most adults do not contract clinical malaria.

We assume that the range of νs and νr can vary from no disease-induced deaths to 150

deaths per year per 1000 infected people.

Data for αs and αr

The model assumes that people infected with sensitive strain and resistant strain clear

at a constant per-capita rate, αs and αr, respectively. The waiting time to clear a

simple infection is an important parameter. Estimates of the waiting time to clear an

infection come from several different sources. One important source was data from the

malaria therapy of neurosyphilis patients, which estimated an average duration of 220

days [25]. The 200-day waiting time was also consistent with an older study in Puerto
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Rico [23], and with recent studies that compared models and estimated waiting time to

clear infections of 150 days in northern Ghana [63]. We assume that the range of αs

and αr can vary from 150 days to naturally clear the infection to 220 day, with αs > αr

4.3 Simulations of the anti-malarial resistance model with interventions

Further simulations of the anti-malarial resistance model (4.1) are performed, using a

reasonable set of parameter values that are in line with the literature on malaria

transmission, transmission intensity as shown in Table 4.1 (unless otherwise states),

are carried out in this section. Since there are currently no effective anti-malaria

vaccines, the vaccine-related parameters of the malaria model are assumed (making

them as biologically feasible and realistic as possible). The impact of preventive and

control measures on the disease dynamics of sensitive and drug-resistant strains is

evaluated by depicting a plot of the prevalence as a function of time in Fig. 4.1. It

follows from Fig. 4.1 that the number of infections is reduced dramatically if both the

preventive (vaccination) and control (treatment) measures are implemented in a

population where Malaria is at an endemic state. The impact of these measures is not

significant in the number of Malaria cases until after the about 1.5 years. The major

impact on reducing Malaria prevalence is observed when both vaccination and

treatment are implemented in the population. However, after roughly 13, the reduction

in Malaria prevalence when only treatment is implemented as a control measure is

comparable to one where both preventive and control measures are implemented. It is

important to note that for this specific scenario the vaccine induced immunity is set to

3 years and the vaccination rate is assumed to be 300 people per year per 1000 people.

The impact of the vaccination program is assessed by depicting contour plots

of the reproduction number in the presence of vaccination as a function of the vaccine

induced immunity (ω) and vaccination rate (η) in Fig. 4.2. It is shown that for

relatively low values of the basic reproduction number (R0), such as R0 = 1.5,
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Figure 4.1: Simulations of the model Malaria model (4.1) assessing the impact of in-
terventions. Malaria prevalence is defined as the number of individuals infected with
the sensitive strain of Malaria and resistant stain. The parameter values are: treatment
rate(σ ) is 200 people per year per 1000 people, vaccination rate (η) is 300 people per
year per 1000 people and the vaccine immunity (ω) is assumed to be 3 years. The rest
of the parameter values are as in Table 4.1.

increasing the vaccine induced immunity and increasing the vaccination rate can lead

to disease elimination (since, such levels of vaccine induced immunity and vaccination

rate will result in R0 < 1; which may lead to disease elimination) On the other hand, if

the associated reproduction number is relatively high (e.g., R0 = 5.5), the most

effective way to reduce or eliminate the disease. The greatest impact would be

increasing the vaccine induced immunity. Increasing the vaccination rate alone will

not help reduce the disease. The treatment rate (σ ) assumed for this simulation is 300

people per year per 1000 people. Increasing the treatment rate affects the value of R0
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but it does not affect the qualitative behavior of R0.
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Figure 4.2: Simulations of the Malaria model (4.1) showing contour plots of the R0 as a
function of the vaccination rate (η) and vaccine-induced immunity (ω). The treatment
rate (σ ) is assumed to be 200 people per year per 1000 people. All other parameters as
in Table 4.1

The effect of varying the values of treatment rate (σ ) on the basic reproduction

number (R0) are illustrated in Fig. 4.3. Two different scenarios are depicted on this

plot, one where a vaccination regimen is not implemented in the population, hence

only treatment is used a control measure to reduce Malaria prevalence. In the other

scenario, an established vaccination regimen is implemented in the population, with a

vaccination rate (η) of 300 people per year per 1000 people and a vaccine induced

immunity (ω) of three years. The plot shows that for low values of treatment rate, less

than roughly 200 people per year per 1000 people, the value of R0 drops significantly.
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If treatment rate is increased, treating more than 200 per year per 1000 people, will

have no effect on the value of R0. At that point, increasing the vaccination rate (η) and

increasing the vaccine induced immunity (ω) will further lower the R0.
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Figure 4.3: Simulation of the Malaria model (4.1) showing R0 as a function of treatment
rate (σ ). The figure shows two curves, blue curve is for R0 without vaccination and the
red curve is for R0 with vaccination. The figure depicts the impact of treatment rate (σ )
on R0. All other parameters as in Table 4.1

The impact of the preventive measure (vaccination) and control measure

(treatment) are assessed by depicting a plot of the total population size with respect to

time under various scenarios, Fig 4.4. The first scenario is a population where Malaria

is endemic however no measures have been implemented. In this case, the population

size is the lowest. The second scenario is a population where a vaccination regimen is

implemented as a attempt to reduce the Malaria prevalence. In this scenario, the

68



0 200 400 600 800 1000 1200
1.36

1.38

1.4

1.42

1.44

1.46

1.48
x 106

time (days)

To
ta

l P
op

ul
at

io
n

Mortality Reduction

 

 
No Interventions
With Vaccination
With Treatment
Treatment and Vaccination

Student Version of MATLAB

Figure 4.4: Simulation of the Malaria model (4.1) showing the impact the intervention
measures have on the total population size. The plot illustrates that a control strategy
for Malaria that includes both vaccination and treatment will save the most lives. The
parameter values are: treatment rate(σ ) is 200 people per year per 1000 people, vacci-
nation rate (η) is 300 people per year per 1000 people and the vaccine immunity (ω) is
assumed to be 3 years. The rest of the parameter values are as in Table 4.1.

population size increases. Similarly, a population where Malaria is endemic and

treatment is the only control measure implemented will also increase the population

size. It is interesting to note that the impact of the implementations is not noticeable

until after almost a year. Also, at during the first years, vaccination has a larger

population size, hence a lower mortality rate. However, after the third year, both of the

measures, vaccination and treatment, have the same population size. The last scenario,

is the implementation of both the preventive and control measures. It is clear that this

scenarios produces the least mortality rate, hence the largest population size.
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However, for the first year and a half, the population size is the same as a population

where only vaccination is implemented.

70



Chapter 5

OPTIMAL CONTROL OF DRUG-RESISTANT MALARIA MODEL WITH

TREATMENT AND VACCINATION

5.1 Introduction

Presently, the strategy for controlling Malaria consists of the use of drugs for early

treatment of the disease, managing severe and difficult cases, and prophylactic use in

vulnerable population, such as pregnant women. Chloroquine is still the preferred

therapy for Malaria, but the startling rise in resistance in eastern and southern Africa

demands that sulfodoxine-pyrimethamine replaces chloroquine. Despite the efforts to

eradicate Malaria, it continues to affect a vast majority of the population. However,

new hope is now set on the possible availability of a safe and effective vaccine against

Malaria. Various candidate vaccines targeting different stages of the parasite are in

pre-clinicaland clinical development [5].

In this section, we formulate an optimal control problem of the Malaria model

with interventions, in order to study the best strategies to eradicate the epidemic.

5.2 Optimal control analysis

For the optimal control problem, we consider the following equations:

Ṡ = µN−βs
SIs

N
−βr

SIr

N
−µS−u2(t)S +ωV +αsIs +αrIr (5.1)

V̇ = u2(t)S−ωV −µV

İs = βs
SIs

N
+βsδ

IsIr

N
− (µ +νs)Is−αsIs−σ Is

İr = βr
SIr

N
+(1−u1(t))σ Is−βsδ

IsIr

N
− (µ +νr)Ir−αrIr

Ṙ = u1(t)σ Is−µR

The model represents the dynamics for increasing vaccination, waning of

vaccine and treatment rates.
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Table 5.1: Variables and parameters explanations

Variable/Parameter Explanation
S Susceptible individuals
V Vaccinated individuals
Is Infected and infectious with sensitive strain
Is Infected and infectious with resistant strain
R Recovered individuals
N Total population (N = S +V + Is + Ir +R)
Λ Rate at which new recruits enter the population
η Rate at which susceptible individuals are vaccinated
βs Effective contract rate for sensitive strain
βr Effective contract rate for resistant strain
αs Natural drug-sensitive recovery rate
αr Natural drug-resistant recovery rate
νs Disease induced mortality rate for sensitive strain
νr Disease induced mortality rate for resistant strain
σ Treatment rate
δ Fitness cost for resistant strain
ω Rate at which the vaccine based immunity wanes
µ Natural death rate for each class

We use the following control variables: u1(t) to measure the effectiveness of

treatment and u2(t) which measures the effectiveness of vaccination. The effectiveness

of the vaccine could be linked to the way it is administered, how early or late is the

vaccine given. Also, the choice of a risk group could save help save the cost: Should it

be administered to the entire population or only a specific targeted group. How early

treatment starts after a positive diagnosis, could be crucial to the effectiveness of the

treatment strategy and hence the effectiveness of the drug. One question to be

answered is: will there be optimal values for u1(t), and u2(t) that improves

(maximizes) the efficacy of vaccine and minimizes the cost, the side effects of the

drug usage and the total number of infected population within a given community?

The control problem involves a model in which the number of individuals with

resistant strain Malaria and the cost of applying controls on vaccination and treatment

rates u1(t), and u2(t), respectively, are minimized subject to the differential equations
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in model 5.1. Our objective functional is defined as:

J(u1,u2) =
∫ t f

0

[
Ir +

B1

2
u2

1(t)+
B2

2
u2

2(t)
]
dt (5.2)

where t f if the final time and the coefficients, B1 and B2 are balancing cost

factors. This performance specification involves minimizing the number of individuals

with resistant strain Malaria, as well as the cost for applying controls on treatment

(u1(t)), and vaccination (u2(t)), in individuals with Malaria. The costs can include

finds needed to control implementation, hospitalization and lost of many hours of

work due to illness. Using the results of Lukes [47] an optimal control, u∗1(t) and

u∗2(t), exists such that

J(u∗1(t),u
∗
2(t)) = min{J(u1(t),u2(t))|u1(t),u2(t) ∈U } (5.3)

where U = {(u1(t),u2(t))|(u1(t),u2(t)) measurable,

ai ≤ (u1(t),u2(t))≤ bi, i = 1,2,ai = 0,bi = 0t ∈ [0, t f ]} is the control set.

The necessary conditions that an optimal control must satisfy come from the

Pontryagin’s Maximum Principle [61]. This principle converts the system of

differential equations 5.1 and 5.2 into a problem of minimizing pointwise a

Hamiltonian H, with respect to (u1(t),u2(t)). First we formulate the Hamiltonian

from the cost functional 5.2 and the governing dynamics 5.1 to obtain the optimality

conditions.

H = Ir +
B1

2
u2

1(t)+
B2

2
u2

2(t)+λ1(µN−β1
SIs

N
−β2

SIr

N
−µS−u2(t)S (5.4)

+ωV +α1Is +α2Ir)+λ2(u2(t)S−ωV −µV )+λ3(β1
SIs

N
+β1δ

IsIr

N

−(µ +ν1)Is−α1Is−σ Is)+λ4(β2
SIr

N
+(1−u1(t))σ Is−β1δ

IsIr

N

−(µ +ν2)Ir−α2Ir)+λ5(u1(t)σ Is−µR)

where the λ1, λ2, λ3, λ4, and λ5 are the associated adjoints for the states S,V, Is, Ir,R.

The system of equations is found by taking the appropriate partial derivatives of the

Hamiltonian 5.4 with respect to the associated state variable.
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Theorem 15 There exists an optimal control u∗1,u
∗
2 and corresponding solution, S∗,

V ∗, I∗s , I∗r , and R∗ of the corresponding state system 5.1, that minimizes J(u1,u2) over

U . Furthermore, there exists adjoint functions, λ1(t), . . . ,λ5(t), such that

λ̇1 = λ1(β1
Is

N
+β2

Ir

N
+ µ +u2(t))−λ2(u2(t))−λ3(β1

Is

N
−λ4(β2

Ir

N
) (5.5)

λ̇2 = −λ1ω +λ2(ω + µ)

λ̇3 = λ1(β1
S
N
−α1)−λ3(β1

S
N

+β1δ
Ir

N
− (µ +α1 +σ))

−λ4((1−u1(t))σ −β1δ
Ir

N
)−λ5u1(t)σ

λ̇4 = λ1(β2
S
N
−α2)−λ3(β1δ

Is

N
)−λ4(β2

S
N
−β1δ

Is

N
− (µ +α2))

λ̇5 = λ5µ

with transversality conditions

λi(t f ) = 0, i = 1, . . . ,5

and N = S∗+V ∗+ I∗s + I∗r +R∗. The following characterization holds

u∗1 = min(max(a1,
1

B1
σ I∗s (λ4−λ5),b1). (5.6)

and

u∗2 = min(max(a2,
1

B2
S∗(λ1−λ2),b2). (5.7)

Proo f Corollary 4.1 of [28] gives the existence of an optimal control pair due

to the convexity of integrand of J with respect to u1 and u2, a priori boundedness of

the state solutions, and the Lipschitz property of the state system with respect to the

state variables. Applying Pontryagin’s Maximum Principle, we obtain

dλ1

dt
=−∂H

∂S
,λ1(t f ) = 0 (5.8)

...

dλ5

dt
=−∂H

∂R
,λ4(t f ) = 0
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evaluated at the optimal control pair and corresponding states, which results in the

stated adjoint system 5.8, [36]. By considering the optimality condition,

∂H
∂u1

= 0

and solving for u∗1 and u∗2, subject to the constraints, the characterization 5.6 and 5.7

can be derived. To illustrate the characterization of u∗1, we have

∂H
∂u1

= B1u1 + I∗s (λ5−λ4) = 0

at u∗1 on the set {t|a1 < u∗1(t) < b1}. On this set,

u∗1 =
1

B1
I∗s (λ4−λ5)

Taking into account the bounds on u∗1, we obtain the characterization of u∗1 in

5.6 Similarly, the characterization of u∗2, is obtained from

∂H
∂u2

= B2u2 +S(λ2−λ1) = 0

at u∗2 on the set {t|a2 < u∗2(t) < b2}. On this set,

u∗2 =
1

B2
S∗(λ1−λ2)

Taking into account the bounds on u∗2, we obtain the characterization of u∗2 in

5.7�

Next, we discuss the numerical solutions of the optimality system and the

corresponding results of varying the optimal controls u1(t) and u2(t), some parameter

choices, and the interpretations from various cases using the baseline parameter values

in Table 5.2. Due to lack of some data, parameter values are assumed within realistic

ranges for a typical scenario in a rural community for the purpose of illustration. The

units where applicable are per days.
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Table 5.2: Parameters values used in the optimal control simulations of 5.1

Parameter Baseline value Range Reference
Λ 0.041 Humans x Days−1 0.0027 - 0.27 [20]
η 0.00273 Days−1 0.00136986 - 0.3 Assumed
βs 11.04 years−1 0.12 - 43.97 [2]
βr 9.25 years−1 0.12 - 43.97 [2]
αs 0.005 Days−1 [25][23][63]
αr 0.005 Days−1 [25][23][63]
νs 0.000082079 Days−1 [3]
νr 0.000082079 Days−1 [3]
σ 0.04 Days−1 0.0035 - 0.4 Assumed
δ 0 -1 Assumed
ω 0.000548 Days−1 0.0055 - 0.00027397 Assumed
µ 0.025 years−1 [20]

Table 5.3: Computational parameters

Computational Parameters Symbol Value
Final time t f 100 days
Timestep duration dt 0.01 days
Upper bound for controls 0.95
Lower bound for controls 0.05
Initial population size N(0) 12, 918,000
Initial susceptible individuals S(0) N(0)
Initial vaccinated individuals V(0) 1000
Initial sensitive strain infected individuals Is(0) N(0)*0.035
Initial resistant strain infected individuals Ir(0) N(0) * 0.015
Initial recovered individuals R(0) 1000

5.3 Numerical Simulations

Numerical solutions to the optimality system comprising of the state equations 5.1 and

adjoint equations 5.2 are carried out using MatLab and using parameters in Table 5.2

together with the following weight factors and initial conditions: B1 = 50, B2 = 50,

N(0) = 12,918,000, S(0) = 12,918,000 V (0) = 1000, Is(0) = N(0)∗0.035,

Ir(0) = N(0)∗0.015, and R(0) = 1000. The algorithm is the forward-backward
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scheme: starting with an initial guess for the optimal controls u1 and u2, the state

variables are then solved forward in time from the dynamics in 5.1 using a

Runge-Kutta method of the fourth order. Then, those state variables and initial guess

for u1 and u2 are used to solve the adjoint equations 5.5 backward in time with given

final conditions 5.6 and 5.7, again employing a fourth order Runge-Kutta method. The

controls u1 and u2 are updated and used to solve the state and then the adjoint system.

This iterative process terminates when current state, adjoint, and control values

converge significantly [41].

For the figures presented here, there is no set relationship between the weight

factor B2 associated with control u2 and B1 which is associated with control u1

because vaccination for Malaria is not currently available, hence there is no reference

as to the cost pertaining the application of the Malaria vaccine. Therefore, we explore

several scenarios between the relationship of the weight factor B2 associated with

control u2 and B1 which is associated with control u1. Other epidemiological and

numerical parameters are presented in table 5.1 and 5.2, respectively.

Three different control strategies are explored. This approach can be use to test

various options. Here, however, we only look at the following three alternative:

• Strategy 1: Anti-malarial treatment control on sensitive strain infectious cases

(control u1(t) alone)

• Strategy 2: Vaccination control on susceptible individuals (control u2(t) alone)

• Strategy 3: Anti-malarial treatment control on sensitive strain infectious cases

and vaccination control on susceptible individuals (controls u1(t) and u2(t) )

We evaluate the impact of optimal anti-Malarial treatment and vaccination for

the dynamics of resistant Malaria under distinct values of transmissibility as measured

by the reproductive number R0 and under the assumption that we have an unlimited
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supply of anti-Malarial treatment and vaccination. The graphs of the two computed

optimal controls under strategies 1, 2, and 3 are shown in Fig. 5.1 (the parameter

values used are provided in Table 5.2 with R0 = 1.78. In the absence of control and

preventive interventions, both sensitive strain Malaria and resistant strain Malaria

persist in the population, with the sensitive strain malaria dominating the population.

In Fig. 5.1, we can compare the impact of each strategy on the epidemic state variables

in the absence of control when R0 = 1.78. These graphs show the daily number of

cases in each class under no controls and under Strategies 1, 2, and 3. The black solid

epidemic curves (under no interventions) are shown to highlight the differences from

those generated via the implementation of optimal strategies. Strategy 3, which is the

use of both vaccination and treatment (blue solid line), shows significant reduction

(roughly 90% reduction when compared to the no interventions scenario). On the

other hand, implementing only treatment, generated a reduction of about 10% and

Strategy 2, vaccination only generated a reduction of roughly 80%. Optimal strategies

for Strategy 1 and Strategy 3 demand the implementation of intensive efforts for the

duration of the outbreak, while Strategy 2 requires half effort for the duration of the

outbreak. The use of a single optimal control does not have a significant impact

comparatively speaking, that is, the use of both strategies is more efficient.

Fig. 5.2 explores the case where both sensitive Malaria and resistant Malaria

persist in the population, however the resistant strain Malaria is most prevalent of the

two. Similarly to the previous scenario, the case when both Strategies are

implemented simultaneously yields the best results.

In general, high reproduction numbers imply high epidemic peaks. In the two

strain epidemic model, high values of R0 can occur in two different scenarios, one

where the sensitive strain out-competes the resistant strain, hence a population where

only the sensitive strain persists. The second scenario takes place when the resistant

strain is the one that out-competes the sensitive strain and persists in the population.
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Figure 5.1: The figures shows optimal control functions as a function of time computed
for Strategy 1, 2, and 3. The figure also shows the daily number of cases in each
state class under no controls, and those generated with Strategies 1, 2, and 3. Optimal
Strategy 3, implementing both control efforts, shows significant reductions in all state
solutions. Parameter values used are δ = 0.3, and σ = .001, all other parameter values
are given in Table 5.2. The weight factors associated with each control are B1 = 50 and
B2 = 100. Rs = 1.7823 and Rr = 1.277 which results in a R0 = 1.7823

Fig. 5.3 depicts the scenario where the competitive exclusion favors the sensitive

strain, hence becoming endemic in the population and Fig 5.4 illustrates the opposite

scenario, where the competitive exclusion favors the resistant strain. In both scenarios,

the implementation of Strategy 3, where both controls are implemented
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Figure 5.2: The figures shows optimal control functions as a function of time computed
for Strategy 1, 2, and 3. The figure also shows the daily number of cases in each
state class under no controls, and those generated with Strategies 1, 2, and 3. Optimal
Strategy 3, implementing both control efforts, shows significant reductions in all state
solutions. Parameter values used are δ = 0.3, and σ = .005, ω = 0.000391; all other
parameter values are given in Table 5.2. The weight factors associated with each control
are B1 = 50 and B2 = 100. Rs = 1.3981 and Rr = 1.6533 which results in a R0 = 1.6533

simultaneously throughout the course of the epidemic, results in a decrease of the

daily number of resistant strain cases of roughly 80% to 90%. In Fig. 5.3, no

interventions produces the highest peak (solid black curve), followed by Strategy 1

where only a control on anti-malarial treatment administration is implemented (dotted
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red line). The next best scenario is Strategy 2, where only the vaccination control is

implemented (dashed green line). This case can be handled optimally through the

implementation of an initial full effort followed by a sharp effort reduction towards the

end of the epidemic. The weight factors associated with each control are B1 = 50 and

B2 = 50. In Fig. 5.4, the number of daily resistant strain cases is the lowest when a

combination of controls is implemented, Strategy 3. Strategy 1, effort in treatment

implementation, produces the next second least daily number of infected resistant

strain. Hence, if the population is in a scenario where the resistant strain is endemic

and there are limited resources, the best scenario would be to implement Strategy 1,

put all the effort in the anti-malarial treatment. The R0 = 3.768 and the weight factors

associated with this simulations are B1 = 50 and B2 = 50.

The impact of optimal Strategies 1-3, in terms of the cumulative number of

resistant strain cases as a function of R0 is presented in Fig 5.5. The black star curve

corresponds to the no interventions case. Strategy 1 (red circle curve) generates higher

reductions than Strategy 2 corresponds to the green diamond curved, that is the use of

anti-malarial treatment for reduction of resistant strain malaria can be more effective

than the use of vaccination in the unlimited resources case. Combined control strategy

(Strategy 3) generates significant reduction in resistant malaria cases when compared

to those generated via the use of a single control.

Sensitivity Analyses

The sensitivity of the weight constants on controls (B1 and B2), has been assessed via

extensive simulations. Figs. 5.6 - 5.11 provide a glance at the impact of varying the

weight constants in terms of the epidemic curve for the resistant strain malaria. The

case of no interventions versus the scenarios generated when controls are in place are

illustrated. The three selected strategies are compared using distinct values of the

weight factors. The role of the weight constants for all three strategies is explored, the
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Figure 5.3: The figures shows optimal control functions as a function of time computed
for Strategy 1, 2, and 3. The figure also shows the daily number of cases in each
state class under no controls, and those generated with Strategies 1, 2, and 3. Optimal
Strategy 3, implementing both control efforts, shows significant reductions in all state
solutions. Parameter values used are δ = 0.3, and σ = .001 η = 0.001826; all other
parameter values are given in Table 5.2. The weight factors associated with each control
are B1 = 50 and B2 = 50. Rs = 4.1005 and Rr = 1.9587 which results in a R0 = 4.1005

outcome however, turned out no to be too sensitive to large variations in these weights.

The focus of this study is on the role of relative costs as the exact costs are not always

known, hence the weights factors range from 10 to 1500.
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Figure 5.4: The figures shows optimal control functions as a function of time com-
puted for Strategy 1, 2, and 3. The figure also shows the daily number of cases in
each state class under no controls, and those generated with Strategies 1, 2, and 3.
Optimal Strategy 3, implementing both control efforts, shows significant reductions in
all state solutions. Parameter values used are δ = 0.2, and σ = .09 η = 0.00667 and
ω = 0.000913; all other parameter values are given in Table 5.2. The weight factors
associated with each control are B1 = 50 and B2 = 50. Rs = 1.3484 and Rr = 3.769
which results in a R0 = 3.769

In Fig. 5.6 and Fig. 5.7, the case were the two strains, sensitive and resistant,

coexists in the population, in one the sensitive strain dominates and the other the

resistant strain dominates, respectively. In these two simulations we explore the
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Figure 5.5: The cumulative number of resistant strain cases under no control and under
Strategies 1-3 as a function of R0. Strategy 3, generates a significant reduction in the
cumulative number of resistant Malaria cases.

scenario where the weight constants are relatively low and equal (B1 = B2 = 50), and

one where one is 30 times bigger than the other (B1 = 50 and B2 = 1500; B1 = 1500

and B2 = 50). In all of these three scenarios for the case where sensitive strain

dominates in the population, the combination optimal strategy has the biggest impact

on the reduction of resistant strain cases. Looking at the control efficacy needed for

each of these scenarios, we note that in the case where both are equal and relatively
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low, full control effort is needed from the start of the epidemic of both of the controls,

u1(t) and u2(t), with a sharp decrease of the vaccine effort towards the end of the

epidemic. In the scenario where the cost associated with vaccination, B2, is 30 times

higher than the cost associated with treatment, B1, u2(t) has a slight decrease long

before the epidemic ends. In the last case, where the cost associated with treatment B1

is 30 times higher than the cost associated with B2, full treatment effort is necessary

throughout the epidemic in order to reduce the number of resistant Malaria. In the

case where resistant malaria dominates in the population, the case where the cost

associated with vaccination B2 is 30 times higher than the cost associated with the

treatment B2, produces and interesting behavior in the control effort. Full effort of

both controls is required for the first few days of the epidemic, followed by a slight

drop in effort of the vaccination rate until half way through the epidemic, when the

effort for vaccination must be increased again, and finally decreased one last time

towards the end of the epidemic. This interesting behavior is probably due to the fact

that the cost associated with B2 is so high that full effort is only optimal for the start of

the epidemic, and not for the on-course of it.

In Fig. 5.8 and Fig. 5.9, we explore the scenario where both of the costs

associated with each of the controls are kept the same, but increased from case to case.

We explore the values of B1 = B2 = 10, B1 = B2 = 100 and B1 = B2 = 250. In all

three cases for both coexistence scenarios, the curves of the efforts require full effort

at the start of the epidemic and decrease accordingly depending on the cost. For all the

cases, no matter the weight associated with treatment, full effort of treatment is

required for the length of the epidemic.

The objective of optimal control strategies explored so far has been to reduce

the number of daily cases of resistant strain Malaria, ignoring the outcome of the

sensitive strain Malaria. In Fig. 5.12 - 5.16, we explore the case where the objective of

the optimal control is to minimize the number of infections, both sensitive and
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Figure 5.6: The daily number of resistant malaria cases are plotted for three different
values scenarios of weight constants. The general curves of the control efforts are very
similar with slight changes in the time when the reduction of effort associated with
vaccination is reduced. The epidemiological curves illustrate a scenario where both
strains coexist in the population and the sensitive strain dominates. Rs = 1.7823 and
Rr = 1.277. We illustrate the scenario where the costs are not the same and differ by a
factor of 30.

resistant Malaria, by exploring the impact of different weight factors. Fig. 5.12 and

Fig. 5.13, illustrate the case of competitive exclusion with the sensitive strain

surviving in the population. In Fig. 5.12, we explore different weight factors and we

conclude that implementing both control strategies simultaneously results in a
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Figure 5.7: The daily number of resistant malaria cases are plotted for three different
values scenarios of weight constants. The general curves of the control efforts are very
similar with slight changes in the time when the reduction of effort associated with
vaccination is reduced. The epidemiological curves illustrate a scenario where both
strains coexist in the population and the resistant strain dominates. Rs = 1.3981 and
Rr = 1.6533. We illustrate the scenario where the costs are not the same and differ by
a factor of 30.

reduction of infected cases. Full effort must be employed since the onset of the

epidemic and stay through out the entire epidemic if both of the weight factors are low

and equal. For the case where the B1 is 10 times bigger than B2, we see a reduction in

effort of the treatment control versus when B2 is 10 times bigger than B1, a reduction
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Figure 5.8: The daily number of resistant malaria cases are plotted for three different
values scenarios of weight constants. The general curves of the control efforts are very
similar with slight changes in the time when the reduction of effort associated with
vaccination is reduced. The epidemiological curves illustrate a scenario where both
strains coexist in the population and the sensitive strain dominates. Rs = 1.7823 and
Rr = 1.277. We consider the case where the costs associated with vaccination and
treatment are both the same but change in value.

in effort of the vaccination control is required towards the end of the epidemic. In Fig.

5.13, we explore the case where both of the weight factors are equal but they increase,

B1 = B2 = 10, B1 = B2 = 500, B1 = B2 = 1000. In this case, full treatment efforts are

required for the duration of the epidemic. However, if the weight factor associated
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Figure 5.9: The daily number of resistant malaria cases are plotted for three different
values scenarios of weight constants. The general curves of the control efforts are very
similar with slight changes in the time when the reduction of effort associated with
vaccination is reduced. The epidemiological curves illustrate a scenario where both
strains coexist in the population and the resistant strain dominates. Rs = 1.3981 and
Rr = 1.6533. We consider the case where the costs associated with vaccination and
treatment are both the same but change in value.

with the vaccination efforts is low, (i.e. 10) then full vaccination effort is required

through out the course of the epidemic. As the weight factor increases, the vaccination

effort must be decreased before the end of the epidemic, depending on the value of the

weight factor. Similar behavior is observed in Fig. 5.14 and Fig. 5.15 where the we
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Figure 5.10: The daily number of resistant malaria cases are plotted for three different
values scenarios of weight constants. The general curves of the control efforts are
very similar with slight changes in the time when the reduction of effort associated
with vaccination is reduced. The epidemiological curves illustrate a scenario where
resistant strain out-competes the sensitive strain. Resistant out-compete: Rs = 2.3068
and Rr = 4.7501. We illustrate the scenario where the costs are not the same and differ
by a factor of 3.

illustrate a scenario where the resistant strain outcompetes the sensitive strain and

becomes endemic in the population. In this scenario, implementing both control at full

effort for most of the length of the epidemic will yield in a significant reduction in the

daily number of Malaria cases. In Fig. 5.16, we explore the case where both strains

90



0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

C
on

tr
ol

s

B1 = 10 and B2 = 10

 

 

u1
u2

0 50 100
0

2

4

6

8

10

12

14
x 105

Time (days)

In
fe

ct
ed

 w
ith

 R
es

is
ta

nt
 S

tr
ai

n

 

 

Without Control
u1(t) only

u2(t) only

Two controls

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

C
on

tr
ol

s

B1 = 50 and B2 = 50

0 50 100
0

2

4

6

8

10

12

14
x 105

Time (days)

In
fe

ct
ed

 w
ith

 R
es

is
ta

nt
 S

tr
ai

n

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

C
on

tr
ol

s

B1 = 150 and B2 = 150

0 50 100
0

2

4

6

8

10

12

14
x 105

Time (days)

In
fe

ct
ed

 w
ith

 R
es

is
ta

nt
 S

tr
ai

n

Student Version of MATLAB

Figure 5.11: The daily number of resistant malaria cases are plotted for three different
values scenarios of weight constants. The general curves of the control efforts are
very similar with slight changes in the time when the reduction of effort associated
with vaccination is reduced. The epidemiological curves illustrate a scenario where
resistant strain out-competes the sensitive strain. Resistant out-compete: Rs = 2.3068
and Rr = 4.7501. We consider the case where the costs associated with vaccination and
treatment are both the same but change in value.

are present in the population. In this scenario, full control effort for both vaccination

and treatment is necessary in the case where B1 = B2 = 10 and where B1 is 100 times

bigger than B2. However, in the case where B2 is 100 times bigger than B1, then full

vaccination effort is only required for the first half of the epidemic, followed by a
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steady drop in effort. That is due to the weight associated with the effort for

vaccination.
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Figure 5.12: The daily number of malaria cases are plotted for three different values
scenarios of weight constants. The general curves of the control efforts are very similar
with slight changes in the time when the reduction of effort associated with vaccina-
tion is reduced. The epidemiological curves illustrate a scenario where sensitive strain
outcompetes the resistant strain and is endemic in the population. We illustrate the
scenario where the costs are not the same and differ by a factor of 100.
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Figure 5.13: The daily number of malaria cases are plotted for three different values
scenarios of weight constants. The general curves of the control efforts are very similar
with slight changes in the time when the reduction of effort associated with vaccina-
tion is reduced. The epidemiological curves illustrate a scenario where sensitive strain
is endemic in the population. We consider the case where the costs associated with
vaccination and treatment are both the same but change in value.

5.4 Conclusions

Estimating the reproductive number, R0, is the first step in the process of assessing the

potential impact of control interventions. However, optimal control theory is another

tool that allows for a more detailed assessment of when and how much effort should

be put each of the control measures in order to minimize a targeted objective. In the

scenarios illustrated here, the best, most optimal strategy, is one that includes both

control efforts, treatment and vaccination. Both of these efforts must be implemented
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Figure 5.14: The daily number of malaria cases are plotted for three different values
scenarios of weight constants. The general curves of the control efforts are very similar
with slight changes in the time when the reduction of effort associated with vaccina-
tion is reduced. The epidemiological curves illustrate a scenario where resistant strain
outcompetes the sensitive strain and is endemic in the population. We illustrate the
scenario where the costs are not the same and differ by a factor of 10.

at full capacity at the onset of the epidemic, regardless of the weight factors associated

with each. Treatment efforts must be fully implemented through out the course of the

epidemic, regardless of the weight associated with the control and regardless whether

resistant Malaria is endemic in the population, sensitive Malaria, or both of the strains

are present in the population. However, full vaccination effort is not needed for the

course entire course of the epidemic. The reduction in vaccination effort is sensitive to

the weight effort associated with it.
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Figure 5.15: The daily number of malaria cases are plotted for three different values
scenarios of weight constants. The general curves of the control efforts are very similar
with slight changes in the time when the reduction of effort associated with vaccina-
tion is reduced. The epidemiological curves illustrate a scenario where resistant strain
is endemic in the population. We consider the case where the costs associated with
vaccination and treatment are both the same but change in value

Finally, our analysis assumes that control can be implemented very fast, which

may somehow be unrealistic because in most situations, it will take a while before an

active control program can be implemented, even on a small population, and even

when preparations were made before introduction of the infection. Similarly, the

assumption that we have limited resources, may be unrealistic. Hence putting

constraints on the supply and running the optimal control may yield different results

and is worth investigating further.
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Figure 5.16: The daily number of malaria cases are plotted for three different values
scenarios of weight constants. The general curves of the control efforts are very similar
with slight changes in the time when the reduction of effort associated with vaccina-
tion is reduced. The epidemiological curves illustrate a scenario where both strains of
Malaria are present in the population, coexistence. We illustrate the scenario where the
costs are not the same and differ by a factor of 100.
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Chapter 6

CONCLUSIONS

This study presents a simple deterministic model of the transmission dynamics of two

strain, sensitive strain and drug-resistant strain, with superinfection. The model allows

for the assessment of the role of super-infection on disease spread. The simple model

is extended to incorporate a preventive measure (vaccination) and a control measure

(treatment). Rigorous mathematical analyses are carried out to gain insights into

qualitative dynamics of the three models.

The expressions for the reproduction numbers, Rs and Rr of the sensitive and

drug-resistant strains, respectively, are given in the terms of the model parameters.

The study shows that the spread of the disease can be effectively controlled in a

population if R0 = max(Rr,Rs) less than unity. If R0 > 1, the two strains can coexists

when Rs = Rr ¿1 holds. In this case, there is a continuum of coexistence equilibria and

depending on the initial conditions (the initial number of state variables of the model),

the infected populations will evolve to one of them. The model predicts competitive

exclusion when Rs 6= Rr, where the strain with the higher reproduction number

eventually displaces the other. The threshold determining which strain will dominate

depends on the fitness of the resistant strain, and the infection period. For the models

that include the intervention measure, the threshold also depends on the treatment rate,

the vaccination rate and the vaccine induced immunity.

When resistance development due to transmission occurs, both strains coexist

if Rs > 1 and Rs > Rr. In such a case, increasing the transmission rate of the sensitive

strain induces an indirect impact on resistance development by increasing the number

infected cases. Furthermore, resistance can emerge and persist without primary

transmission of the resistant strain. On the other hand, if Rr > 1 and Rr > Rs, the

resistant strain displaces the sensitive strain, and the prevalence of the resistance strain
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is higher than that of the case when the two strains co-exists. When the rate of

resistance development increases, the transmission rate of the sensitive strain

decreases, and the likelihood of displacing this sensitive strain by the resistant strain

increases. Numerical simulation indicate that when both strains coexist, the endemic

value of the resistant strain decreases as the rate of resistance development increases,

probably due to the fact that, in this case, transmission of the resistant strain depends

mainly on the number of individuals infected with the sensitive strain, and the number

decreases with increasing the rate of resistance development.

A model that incorporates both the preventive measure and the control

measure (vaccination and treatment) is studied numerically using parameter values the

disease transmission dynamics of Malaria in sub-Saharan Africa. It is shown

numerically, that the best strategy for controlling the drug-resistant strain cases of

Malaria, is to implement both measures simultaneously. In order to perform a more in

depth analysis of the appropriate control strategies, we performed an optimal control

analysis. We consider three scenarios, one where only treatment is administered, one

where only vaccination is administered and the third that incorporates both

vaccination and treament. We conclude, that the best, most optimal strategy, is one

that includes both control efforts, treatment and vaccination. Both of these efforts

must be implemented at full capacity at the onset of the epidemic, regardless of the

weight factors associated with each.
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