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ABSTRACT  
   

Some cyanobacteria, referred to as boring or euendolithic, are capable 

of excavating tunnels into calcareous substrates, both mineral and biogenic. 

The erosive activity of these cyanobacteria results in the destruction of 

coastal limestones and dead corals, the reworking of carbonate sands, and the 

cementation of microbialites. They thus link the biological and mineral parts 

of the global carbon cycle directly. They are also relevant for marine 

aquaculture as pests of mollusk populations. In spite of their importance, the 

mechanism by which these cyanobacteria bore remains unknown. In fact, 

boring by phototrophs is geochemically paradoxical, in that they should 

promote precipitation of carbonates, not dissolution. To approach this 

paradox experimentally, I developed an empirical model based on a newly 

isolated euendolith, which I characterized physiologically, ultrastructurally 

and phylogenetically (Mastigocoleus testarum BC008); it bores on pure 

calcite in the laboratory under controlled conditions. Mechanistic hypotheses 

suggesting the aid of accompanying heterotrophic bacteria, or the 

spatial/temporal separation of photosynthesis and boring could be readily 

rejected. Real-time Ca2+ mapping by laser scanning confocal microscopy of 

boring BC008 cells showed that boring resulted in undersaturation at the 

boring front and supersaturation in and around boreholes. This is consistent 

with a process of uptake of Ca2+ from the boring front, trans-cellular 

mobilization, and extrusion at the distal end of the filaments (borehole 

entrance). Ca2+ disequilibrium could be inhibited by ceasing illumination, 

preventing ATP generation, and more specifically, by blocking P-type Ca2+ 
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ATPase transporters. This demonstrates that BC008 bores by promoting 

calcite dissolution locally at the boring front through Ca2+ uptake, an 

unprecedented capacity among living organisms. Parallel studies using mixed 

microbial assemblages of euendoliths boring into Caribbean, Mediterranean, 

North and South Pacific marine carbonates, demonstrate that the mechanism 

operating in BC008 is widespread, but perhaps not universal. 
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INTRODUCTION 

Bioerosion as a geobiological process and its biological agents  

 Erosion is a natural weathering process that occurs on Earth’s 

landmasses as a consequence of geomorphologically relevant phenomena, 

typically understood as a combination of the destructive actions of wind, 

water, ice, or gravity, and ultimately involves the transport of solids such as 

rocks, sediments, soil and other particles. Living organisms can contribute, 

exacerbate and even drive the weathering processes through bioerosion, 

which is defined as the erosion of a hard substrate by biological means 

(Neumann, 1966). Bioerosion is a common process in marine, freshwater and 

terrestrial environments and many animals and microorganisms can colonize 

exposed substrates, either inorganic or biogenic in origin, actively eroding 

them as they create cavities that are in many cases incidental to their trophic 

or metabolic strategies. One typical mode of bioerosion is the case of 

herbivores, such as snails or sea urchins, that feed upon primary producers 

attached to a mineral substrate, such as the case of an algal biofilm and that 

in so doing, scrape off part of the mineral solid. Another example is the case 

of sulfide oxidizing bacteria growing on concrete sewer pipes, which release 

corrosive metabolic by-products, and by doing so weaken the pipe’s structure. 

A third mode of bioerosion is the result of active tunneling or burrowing on 

the part of the biological agents, such as the case of polychaetes or sponges 

who will initially create small burrows into a substrate surface, or the case of 

algae that actively excavate galleries into calcareous substrates as means of 
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securing a living space. 

 Many metazoans are agents of bioerosion, and erode hard substrates by 

mechanical means or a combination of mechanical and chemical dissolution, 

and do their impact by grazing, scraping or swallowing (Flugel, 2004). 

Examples include echinoids (sea urchins and sand-dollars) (Carreiro-Silva 

and McClanahan, 2001, Herrera-Escalante, et al., 2005, Toro-Farmer, et al., 

2004), gastropods (snails) (Carriker and Gruber, 1999, Herbert, et al., 2009, 

Wayne, 1987), polychaetes (worms) (Blake, 1969, Buschbaum, et al., 2006, 

Riascos, et al., 2009, Wayne, 1987), sponges (Nava and Carballo, 2008, 

Neumann, 1966, Zundelevich, et al., 2007), holothurians (sea cucumbers) 

(Hammond, 1981, Jansen and Ahrens, 2004), chitons (Barbosa, et al., 2008, 

Rasmussen and Frankenberg, 1990) and fish (Ong and Holland, 2010, Peyrot-

Clausade, et al., 2000, Rotjan and Lewis, 2005). Many of these contribute to 

the typical look of a maritime coast (i.e. sea urchins, sponges and chitons), 

colonizing exposed calcareous surfaces. Among metazoans, sponges and 

polychaetes can be considered true macroborers, as they will tunnel into the 

carbonate to attach themselves to the substrate. At the microscopic level, 

microborers including fungi (Bentis, et al., 2000, Golubic, et al., 2005), algae 

(green, brown and red) and cyanobacteria (Tribollet, 2008, Le Campion-

Alsumard, et al., 1995, Golubic, 1969) that can actively excavate tunnels in 

carbonates by means of chemical dissolution. They colonize calcareous and 

calcophosphatic subtrates, including bone, shells, skeletal carbonate, 

limestones and dolostones (Campbell, 1983). Among the  agents of bioerosion, 

microborers are some of the most common, widespread and environmentally 
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significant (Garcia-Pichel, 2006), found in variable geographic regions, from 

the cold (Wisshak, et al., 2005, Young and Nelson, 1988), to the temperate 

(Kaehler, 1999, Webb and Korrubel, 1994, Young and Nelson, 1988), sub-

tropical (Al-Thukair, 2002, Peyrot-Clausade, et al., 2000, Sheppard, et al., 

2002, Zubia and Peyrot-Clausade, 2001) and tropical (Chazottes, 1995, Che, 

et al., 1996, Laurenti and Montaggioni, 1995, Le Campion-Alsumard, 1991). 

 Bioerosion rates for many systems are in the order of kilograms of 

carbonate per meter squared per year. For example, in coral reefs one study 

found that grazers eroded 2.6 kg CaCO3 m−2 yr−1, while bioerosion by 

microborers was measured at 0.6 kg CaCO3 m−2 yr−1 (Chazottes, 1995 ). In 

another study, sponges where found to have bioerosion rates that varied 

between 4 to 16 kg m−2 year−1 (Holmes, et al., 2009). In yet a third study, five 

genera and 6 species of cyanobacteria, green and red algae and different 

kinds of heterotrophic microendoliths were found to erode  0.2–0.3 kg CaCO3 

m−2 yr−1 (Vogel, et al., 2000). These examples illustrate the impact of 

bioerosion in many communities and its importance in carbonate 

biogeochemical cycling.  

  

Cyanobacteria and their boring members 

 Among the microborers, cyanobacteria contribute significantly to 

bioerosion. Cyanobacteria are a unique and diverse phylum of oxygenic, 

photosynthetic bacteria capable of synthesizing chlorophyll a, splitting water 

as a source of electrons.  Intrinsic to the light gathering apparatus in 

cyanobacteria, the phycobilisome, are the phycobiliproteins phycocyanin and 
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allophycocyanin and in some cases phycoerithrin.  Different expression levels 

of these pigments will promote the display of a variety of colors, blue-green 

being the most typical, but including brown, red, olive, black, violet and other 

shades. Some cyanobacteria are able to express ultraviolet sunscreens, such 

as scytonemin (Garcia-Pichel, et al., 1992, Proteau, et al., 1993, Soule, et al., 

2007), which imparts a dark brown color to the sheaths of those that do so; 

other sunscreens, such the mycosporine-like aminoacids, are found in some 

cyanobacteria as well (Garcia-Pichel, et al., 1993). These bacteria were 

described initially by botanists, and referred to as blue-green algae or 

cyanophytes within the botanical taxonomy. Even today, a complete 

bacteriological treatment is missing and most of the descriptions available 

follow the botanical traditions, with all of their inherent shortcomings.  Some 

the oldest microfossils of cyanobacteria reach back to 3.5 billion years ago 

(Lee, et al., 1999). Cyanobacteria are the oldest known oxygen-producing 

organisms, with the appearance of cyanobacteria on Earth and the 

oxygenation of the planet going hand in hand (Dismukes, et al., 2001).  

 Cyanobacteria are cosmopolitan, found in a variety of geographical 

settings across the globe. Their generic niche is limited to temperatures 

above 4°C, and below 74 °C (Ward, 2002); many cyanobacteria have adapted 

to cold climates and contribute to primary productivity such as the case of 

Antarctic lakes (Pandey, et al., 2004) as well as being extremely important in 

hot spring mats (Miller and Castenholz, 2000). In terms of pH, cyanobacteria 

grow at neutral and alkaline pH and very rarely under acidic conditions, 

generally found in pHs above 4-5 (Brock, 1973). The upper limit for pH in 
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cyanobacteria is closer to 11, with some members thriving in very alkaline 

environments, such as the case of soda lakes in Eastern Africa (Mikhodyuk, 

et al., 2008) and Russia (Kupriyanova, et al., 2003). Their general habitat is 

not necessarily limited by salinity, as they are found in freshwaters, 

seawater, brackish waters and hypersaline environs; some with extreme 

halotolerance, such as Halothece, growing in salinities close to 12% w/v (ca. 

3.5 times open ocean salinity) (Garcia-Pichel, et al., 1998) and 3.0 M NaCl for 

Aphanothece halophytica (close to 17% w/v or almost 5 times open ocean 

salinity) (Takabe, et al., 1988, Waditee, et al., 2001). Cyanobacteria account 

for 20–30% of Earth's primary productivity and convert solar energy into 

biomass-stored chemical energy at the rate of ~450 TW (Waterbury, et al., 

1979). Many members are able to fix gaseous nitrogen from the atmosphere 

into organic chemical species; the vast majority (with the exception of some 

pelagic unicellular species) do it with specialized, thick-walled cells called 

heterocysts, which harbor the oxygen-sensitive enzyme nitrogenase, 

responsible for nitrogen fixation. Heterocystous species are considered truly 

multicellular organisms as their cells exchange nutrients and regulatory 

molecules (Flores, et al., 2006). Cyanobacteria have been used as food source 

by many cultures; the Mayans supplemented their diets with dried Spirulina 

cakes, which were sold in the antique markets of Tenochtitlan (today’s 

Mexico City) (Diaz del Castillo, 1928). In modern times Spirulina is consumed 

in China (Roney, et al., 2009), India (Kumar, 2004), Peru (Johnson, et al., 

2008) and Sudan (Ciferri, 1983), as well as part of a health-conscious diet in 

the United States.  Cyanobacteria have a rich nutritional value due to their 
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high protein content, in in addition to being a source of chemical and 

pharmaceutical products (Rodríguez, et al., 1989).  

 Several groups of cyanobacteria colonize carbonate rocks. Epilithic 

forms live on the surface, while chasmoliths take advantage of space provided 

in cracks or fissures. Cryptoendolithic cyanobacteria are those that live in 

natural pores of cavities in the rocks. Finally, euendolithic cyanobacteria 

(Golubic, et al., 1984) will actively excavate tunnels or burrows within the 

mineral solid. The latter are also referred to in the literature as boring, 

excavating, penetrating or tunneling cyanobacteria. Some of the earlier 

botanical articles from the late 19th and early 20th centuries mention them 

regularly, a variety being described as “perforating algae” (Bornet, 1888, 

Bornet, 1889, Ercegović, 1927, Frémy, 1936). Typical boring substrates 

include solid limestone and dolomite rocks as well as loose sand-size 

carbonate particles, shells and shell hash and other skeletal fragments 

(Golubic, 1975). In many cases, a common visual indication of boring by 

cyanobacteria is the formation of green bands within the substrate (Le 

Campion-Alsumard, et al., 1995). Microborers play a considerable role in the 

diagenesis of carbonates, producing fine grain sediments as a result of the 

crisscrossing tunnels in the mineral (Golubic, et al., 2005). The work of 

euendoliths is not always destructive, as they are known to also promote 

lithification in stromatolitic communities. Some cyanobacterial borers will 

excavate tunnels in carbonate sand grains, which eventually get filled with 

micrite (microcrystalline aragonite) that precipitates as the microorganism 

advances (Reid and Macintyre, 2000), likely due to calcium excretion by the 
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borers. The encrypted filaments become part of the scaffolding that holds the 

sand grains together and multiple cycles of this dissolution and re-

precipitation completely cements them, creating a solid substrate. 

Nevertheless, a euendolith’s impact is not restricted to just geologically 

relevant phenomena. Euendoliths will take advantage of the plentiful 

carbonate substrate provided by mollusk shells of clams, mussels and oysters. 

The infestation of bivalves by species such as Mastigocoleus testarum makes 

the shells brittle and the animals more prone to disease (Che, et al., 1996, 

Kaehler, 1999, Webb and Korrubel, 1994). This has large implications for 

commercial bivalve aquaculture operations.  

 Through the process of boring, euendoliths will leave clear traces of 

their activity in the substrates that they excavate, and these fossilize well. 

The fossil record presents evidence of euendoliths populating the Earth since 

the Precambrian. The oldest cyanobacterial euendolithic microfossil, Eohyella 

campbellii, was recorded in carbonate rocks as old as 1.5 billion years (Zhang, 

1987). Other evidence of euendolithic fossils is found in microbial 

assemblages from the Neoproterozoic, some 700-800 million year ago, where 

the cells penetrated aragonitic ooid grains (Knoll, et al., 1986, Knoll, et al., 

1989). Such is the case in ooid grains from the Upper Riphean/Vendian (570-

700 Myr), which were originally carbonaceous and underwent silicification 

after boring occurred, pointing to microbial boring evolving before the 

appearance of skeleton-bearing metazoans in the geological record (Campbell, 

1982). Some of these microfossils are commonly used, for example, in 

paleobathymetric reconstructions that use models based on the distribution 
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of microborers in ancient microbial assemblages (Budd and Perkins, 1980, 

Chazottes, et al., 2009, Vogel and Brett, 2009). 

 

Diversity of boring cyanobacteria 

 The first publications that describe some of the most common 

euendoliths date back to the late 1800’s, including the genera Mastigocoleus 

(Lagerheim, 1886), Plectonema (Thuret, 1875) and Hyella (Bornet, 1888). 

Common euendolithic genera (illustrated in Table 1) include Cyanosaccus, 

Hormathonema, Hyella, Solentia, Plectonema, Kyrthutrix, Schizotrix, 

Iyengariella and Mastigocoleus, which all have been described according to 

the botanical code. These morphogenera are fairly cosmopolitan, judging from 

literature reports, and are found boring in a variety of calcareous substrates. 

Some other forms have been described as being “euendolithic” (e.g. 

Lithococcus, Placoma, Chloroglea, Paracapsa, Lithocapsa ) but have 

questionable true boring capabilities (e.g. Enthophysalis deusta)  (Golubic, 

1975, Le Campion-Alsumard, 1970). All of them are of uncertain phylogenetic 

placement and even some of dubious taxonomic status. Their potential 

morphological plasticity and the lack of cultivated representatives or any 

phylogenetic information define the present situation of these “euendoliths”. 

Thus, these genera are not included in the table. A much less stringent 

listing was presented in a paper by May and Perkins (May and Perkins, 

1979).  

 We note that even using a conservative list, the cyanobacterial borers 

display a remarkable diversity, spanning 4 out of 5 Orders in the phylum. 
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This can be interpreted as a synapomorphy, in which a common ancestor  

already had a capability to bore. The boring capability,was kept only in 

certain species, according to its selective value, but lost in most others; a 

rather unlikely explanation considering the overwhelming diversity of 

cyanobacteria in the tree of life. Alternatively, we may have a case of lateral 

transfer of a capacity that evolved at some point in one of the groups.  Yet a 

third possibility is that boring represents a case of convergent evolution, in 

which the ability evolved multiple times as a result of selective pressure.  The 

first 2 explanations would allow us to predict a common  

mechanism and genetic basis in all, whereas the last would call for different 

mechanisms or genetic elements. These alternatives have  not been studied 

explicitly. 

 In terms of evolutionary advantage, the reasons why euendoliths 

penetrate into carbonates are not entirely clear.  As always the ‘why’ 

questions lie at the fringe of biological reasoning. Many habitats where 

euendoliths are found such as intertidal and supra-tidal zones, are considered 

extreme. Selection pressures such as temperature variation, desiccation, 

nutrient acquisition, excessive solar irradiance, and herbivore grazing 

activity could promote boring; none of these pressures is mutually exclusive 

and they probably act in concert to favor the development of microorganisms 

that bore (Garbary, 2007). Carbonates being a relatively soft and ample 

substrate, offer some protection from these demanding circumstances, and 

allow the establishment of a habitat only a few organisms can take advantage 

of.  
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Mechanisms of microbial boring and the thermodynamics of dissolution 

 But how do cyanobacteria bore? Our knowledge of the physiological 

mechanisms that drive euendolithic boring has remained in the shadows. 

There is minimal information, and many hypotheses, on how cyanobacteria 

bore into carbonates with no comprehensive experiments, before this 

dissertation, that aimed at testing these hypotheses. This may be a result of a 

lack of available cultures, as euendoliths have been mostly described in situ, 

and when cultures have been obtained, they have either not been submitted 

to collections or have lost their boring capacity. There have been some efforts 

in establishing cultures to better understand euendoliths (Al-Thukair and 

Golubic, 1991, Montoya-Terreros, 2006, Pari, et al., 1998, Vogel, et al., 2000) 

mostly with identification and characterization in mind. To bore into the 

carbonate, regardless of the mechanism, cyanobacteria must follow basic 

thermodynamic constraints that govern carbonate dissolution. To understand 

how a carbonate is dissolved, I will refer to Le Châtelier’s equilibrium 

reaction, which states that if a system in equilibrium is disturbed by changes 

in determining factors (temperature, pressure, and concentration of 

components) the system will tend to shift its equilibrium position so as to 

counteract the effect of the disturbance.  The solubility equilibrium thus 

governs when a substrate precipitates or dissolves.  

 The formation/dissolution of calcium carbonate is expressed as: 

Ca2+ + CO32- ⇔ CaCO3 
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Carbonate ions are a constituent part of the carbonate system in water, 

expressed as: 

H2CO3  ⇔ H + + HCO3 - ⇔ 2H + + CO3 2- 

                                                   Carbonic Acid                Bi-carbonate                   Carbonate 

 

 

whose equilibrium depends on pH. At a neutral to slightly alkaline pH 

(within oceanic range), the equation can be expressed as: 

 

H+ + CaCO3 ⇔ Ca2+ + HCO3- 

 

 It is obvious from this equation that to dissolve the carbonate, one has 

to either increase concentration of protons (lower pH), or decrease 

concentration of bicarbonate or Ca2+, or a combination of both. Both 

mechanisms affect the thermodynamics of the reaction by shifting the 

equilibrium towards dissolution.  

 The reactions of dissolution and precipitation of ionic compounds are 

governed by the solubility equilibrium, a dynamic equilibrium, which 

depends on the compound’s specific solubility product (Ksp) and the activities 

of the specific ions (IAP).  

 In an ionic dissociation reaction (calcium carbonate is used as an 

example) the equilibrium would be expressed as: 

 

                                   [Ca2+ (aq)][CO32-(aq)]     
                            Kθ = ________________________________ = [Ca2+ (aq) ][CO32-(aq)] 
                                           [CaCO3(s)]      
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where Kθ is the solubility equilibrium constant and the brackets indicate ion 

activity. The activity of solids is one by definition. In insoluble salts, (i.e. 

calcium carbonate) the ion activities are close to one, which reduces the 

equation to: 

Ksp= [Ca2+][CO32-] 

 

 When the reaction is in equilibrium, the activities of the ions equal the 

solubility product (IAP = Ksp) and the solid remains intact. When the 

activities of either of the ions increase stoichiometrically, the value of IAP 

becomes higher than the solubility product (IAP > Ksp) and thus precipitation 

of carbonates becomes thermodynamically favorable. When the activity of 

either of the ions decreases, the value of the IAP becomes lower than the 

solubility product constant (IAP < Ksp) and thus dissolution is 

thermodynamically favored. An approach that reduces the ion activity 

product must be used by cyanobacteria to excavate into the mineral. 

 The oceans are supersaturated with respect to Ca2+, with the average 

concentration close to 10mM. The spontaneous solubility of calcium carbonate 

in seawater does not happen readily under standard pH conditions (ca. pH = 

8.1-8.3).  Boring into a carbonate seems like a rather difficult endeavor, 

analogous to swimming against the current. Under normal pH conditions, the 

thermodynamics in seawater favor precipitation, not dissolution. Thus, seems 

obvious that the dissolution of carbonates in such an environments can only 

happen at the expense of energy. This of course, is dependent on 

concentration of carbonate ions, as the concentration on calcium does not 
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change significantly in the oceans. A direct example of this dependency can 

be seen in the recent work by Tribollet (2009) in which ocean acidification as 

the result of an increase in partial pressures of CO2 favor dissolution of 

calcium carbonate by euendoliths.  

 

The boring mechanism in cyanobacteria 

 The boring mechanism of euendolithic cyanobacteria remains obscure. 

The fact that dissolution happens in an environment where the opposite 

would be expected (i.e. the case of CaCO3 in seawater), adds a degree of 

complexity to the study of the mechanism. Some plausible mechanisms of 

boring had been suggested. Most authors call on the use of acidic substances 

secreted by the cells, that dissolve the carbonate and allow the cells to grow 

into the mineral (Schneider and Le Campion-Alsumard, 1999). This is the 

most widely accepted theory amongst scholars. Some have even wanted to see 

specialized organelles that would sustain this function (Alexandersson, 1975), 

but this could not be corroborated by ensuing decades of independent 

research. The big problem with this is that cyanobacteria are autotrophs and 

by nature will consume CO2 trough photosynthesis, thereby increasing the 

pH of their environment. Garcia Pichel (2006) tried to elucidate theoretical 

alternatives that would not contradict known metabolic pathways or the 

thermodynamics of the systems in which boring occurs. Strategies that utilize 

dissolution by acids for example could involve the temporal separation of the 

boring process, in which the euendoliths only bore at night, using the by-

products of respiration as the driver of boring. Another is the spatial 
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separation of the process, in which cells are photosynthetically active outside 

the carbonate matrix, and as they penetrate, the cells switch to respiration 

exclusively to power the carbonate dissolution. The proposed acid-dissolution 

mechanism, although plausible, has many conflicting physiological 

consequences. Additionally, cyanobacteria do not survive at pH levels below 

4, possibly due to proton damage to the cell membrane (Brock, 1973). Small-

molecular weight organic acids (products of carbon fixation) are metabolically 

unsustainable, with the maximal number of carboxyl moieties in such acids 

(1 in formic, 2 in oxalic, 3 in citric...) corresponding stoichiometrically to the 

moles of CO2 taken up from the medium and consequently to the protons 

already consumed (Garcia-Pichel, 2006). Using this method means that a 

great deal of carbon fixed has to go exclusively to the production of acids, 

which would be extremely expensive metabolically.  

 Apart from the acidic by-product hypotheses, another mechanism is the 

removal of the metal ion (in this case Ca2+) from the water by the action of 

Ca2+ transporting, energy-dependent enzymes. The dissolution process, under 

many of the geochemical conditions in which it has been described, occurs in 

waters saturated or supersaturated with respect to calcite and aragonite, and 

is thermodynamically unfavorable, therefore excavation would only be 

possible at the cost of energy (Garcia-Pichel, 2006). Removing Ca2+ from the 

water in the interstitial space (between cell and mineral) would create an 

under-saturated environment at the boring front, and consequently cause a 

small amount of the mineral to be dissolved, a result of thermodynamic 

equilibrium. The Ca2+ is mobilized intracellularly, and eventually released by 
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the cells opposite to the boring front. This alternative was previously 

suggested by Garcia-Pichel (2006), in which the primary driver in the boring 

process is Ca2+ transport, and not acid-dissolution.  

 The model for carbonate boring using Ca2+ transport is illustrated in Fig 

2. Initially, free-living filaments of the euendolith attach as a biofilm to the 

calcium carbonate. The cell in closest proximity to the mineral, initiates the 

boring process by mobilizing Ca2+ from the water in the interstitial space 

between the cell and the mineral. The Ca2+ activity is lowered, and the 

thermodynamic equilibrium is thus shifted towards dissolution. The mineral 

dissolves, giving off free Ca2+ to compensate for the lower ion activity. Once a 

small amount of the mineral is dissolved, the apical cell will grow to fill the 

void, and the process of dissolution is resumed. The Ca2+ taken is mobilized, 

from cell to cell, and eventually released from the distal cell (the one closest 

to the mineral’s surface) maintaining Ca2+ homeostasis in the cytoplasm. 

Dissolution will free CO32- in solution, and under normal seawater pH 

conditions, buffering will shift CO32- to HCO3-, which can be taken by the cells 

as source of inorganic carbon, achieving charge balance in the process. 

 

Ca2+ transport and homeostasis 

The previous model implicates transport processes of Ca2+; it is thus 

advisable to review some of the principles and condition of Ca2+ transport in 

living systems.  In higher organisms, Ca2+ plays an important role as 

secondary messenger.  For example it acts as a secondary messenger in 

cardiac myocytes (Kabakov and Hilgemann, 1995, Tan, et al., 1988, Wilde, et 
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al., 1991), skeletal muscle (Dirksen and Beam, 1995, Lynch, et al., 1997, 

Zhao, et al., 1996) and cancerous cells (Flourakis and Prevarskaya, 2009, 

Furuya, et al., 1993), as well as in processes like apoptosis (Criddle, et al., 

2007, Porn-Ares, et al., 1998), cell proliferation (Schreiber, 2005, Sperti and 

Colucci, 1991), motility (Hong, et al., 1985, Moon, et al., 2004, Young and 

Nelson, 1974) and signaling (Domínguez, 2004, Norris, et al., 1996). In 

bacteria,  Ca2+ regulates processes like chemotaxis (Ordal, 1977, Snyder, et 

al., 1981), chromosomal regulation and replication (Norris, et al., 1988). 

Cellular Ca2+ homeostasis is necessary and levels are kept rather constant at 

the cost of energy (Pandey, et al., 1999), with normal levels of intracellular 

Ca2+ maintained very low, ranging from 0.1–0.2 µM, to prevent toxicity to the 

cell metabolism, although transient levels may rise to 5 µM in some 

cyanobacteria (Torrecilla, et al., 2001). This homeostasis is achieved by the 

uptake and export of Ca2+  in the cell. A variety of Ca2+ transport strategies 

are described in living systems and include passive permeability, Ca2+-

specific channels,  Ca2+/H+ antiporters and  Ca2+-ATPases (Kretsinger and 

Nelson, 1976). Passive permeability does not use energy and typically occurs 

when extracellular concentration of Ca2+ is higher.  Ca2+ channels allow the 

selective transport of Ca2+ across membranes or between cells.  Ca2+  -proton 

antiporters are powered by proton motive force and the enzymes are involved 

in Ca2+ efflux, exchanging Ca2+ and protons across energized membranes.  

Ca2+ -ATPases are linked to ATP hydrolysis and the enzymes are involved in 

Ca2+ transport against concentration gradients.   
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   Ca2+ channels are found in cyanobacteria and thought to be involved 

in gliding motility (Hoiczyk, 2000, Hoiczyk and Baumeister, 1997, Hoiczyk 

and Baumeister, 1998) and phototaxis (Moon, et al., 2004, Toh, et al., 2009).  

Ca2+ -ATPases, which are responsible in actively exporting the cation out of 

the cell, have been described in cyanobacteria as well  (Berkelman, et al., 

1994, Geisler, et al., 1993). It appears that the building blocks needed for the 

Ca2+ pump-enabled dissolution can be present in cyanobacteria, so it is not 

difficult to envision the possibility of one or many of these mechanisms 

involved the carbonate excavation; the problem lies in identifying specifically 

(1) if is indeed caused by the transporting of Ca2+ enzymes and (2) by what 

type of enzyme it is and how does it do it. If euendoliths are dissolving the 

carbonate by Ca2+ mobilization, they must be using an equal or similar 

strategy to the ones previously described above.  

 Regardless of the cellular approach, without a culture, there is little 

that can be done to shed light on the mechanism. Therefore, there is a need 

for a thorough investigation of the specifics that drive boring in euendolithic 

cyanobacteria in at least one model organism. Any knowledge acquired, apart 

from being a significant contribution, would motivate the further 

characterization of other euendoliths alike.  

 

Research approach and considerations 

The primary goal of this dissertation is to unveil the mechanism by which 

euendolithic (boring) cyanobacteria bore into carbonates. This dissertation is 

divided in four chapters, each following the format of a scientific journal 
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article. In Chapter 1, I address our model organism, (illustrated in Fig. 4) 

which is a euendolithic cyanobacterium isolated from marine carbonates in 

Cabo Rojo, Puerto Rico. To resolve the mechanism of boring, the first 

requirement is to have a model in which it can be studied. This chapter 

presents the polyphasic approach used to characterize the organism, 

including its ecology, morphology, ultra-structure, adaptations and 

phylogeny.  

 In Chapter 2, I focus on the physiology and molecular basis of the 

boring mechanism in Mastigocoleus, which was cultivated and allowed to 

bore under controlled laboratory conditions (Fig. 3). This chapter presents 

data on the dynamics of the mechanism, and its relationship with the Ca2+ - 

pumping model. It will present as well the effects of blockers of Ca2+ 

transporters, including channels and ATPases, which where added to try to 

impair boring. Finally, we attempted to find genes encoding for Ca2+ - specific 

transporting enzymes and these findings are presented as well. 

 In Chapter 3, I evaluate the commonalities of the mechanism amongst 

a variety of euendolithic cyanobacteria by returning to the field. Euendolithic 

cyanobacteria are widespread and there is the possibility of alternative 

strategies being used to bore that differ from the proposed model. 

Euendolithic representative communities from all over the world, collected 

from beaches in Baja California, Mexico, Cabo Rojo, Puerto Rico, Sardinia, 

Italy and Whakatane, New Zealand, were evaluated with culture 

independent methods. Euendolithic populations were evaluated 
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simultaneously for the phylogenetic composition using the 16S rRNA gene, 

and for the response to specific boring inhibitors.  

 Lastly, Chapter 4 will present, both in written and video format, a 

modified method of disinterring live filaments from carbonates.  This method 

derives from an original protocol by Wade (Wade and Garcia-Pichel, 2003) 

and allowed the exhumation of the filaments while still alive. This method 

was key for the analyses presented in Chapter 2.  

 It is my greatest desire that this dissertation provides some insight on 

how the mechanism of cyanobacterial boring works, unveiling its obscurity. 

Hopefully, it will inspire the comprehensive study of other euendoliths as 

well. 
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Table 1. Genera of common euendolithic cyanobacteria. Classification of 
groups according to the botanical nomenclature. Drawings of typical 
morphotypes are shown for comparison. Bar, 10 µm. 
 
Order 
Pleurocapsales 
(Group 2) 

Ecology Substrate Reference Morphology 

 
Cyanosaccus 
(C. aegeus,  
 C. atticus 
C.piriformis) 

 
Greece, Spain 

 
Estuarine and 

marine 
mollusk shells, 

cave 
carbonates 
and other 
limestone 
substrates 

 
(Anagnostidis, 
1985, Anagnostidis, 
1988, Lukas and 
Golubic, 1981, 
Martinez, 2010, 
Pantazidou, et al., 
2006) 
 

  
 

Hormathonema 
(H. violaceo-nigrum, 
H. luteo-brunneum) 

Adriatic Sea, 
Mediterranean 

Sea, Indian 
Ocean, Puerto 

Rico 

Marine 
limestones 

(Budd and Perkins, 
1980, Ercegović, 
1929, Golubic, 
1969) 

 

 
Hyella 
(H. caespitosa, H. 
inconstans,  
H. reptans, H. 
conferta, H. 
salutans, H. stella, 
H. immanis) 

Arabian Gulf, 
Greece, Puerto 
Rico, Red Sea 

Marine 
mollusk shells, 

estuarine 
bivalve and 
gastropod 
shells and 

other 
limestone 
substrates 

(Al-Thukair and 
Golubic, 1991, Al-

Thukair, et al., 
1994, Budd and 

Perkins, 1980, Le 
Campion-

Alsumard, 1991, 
Radtke and 

Golubic, 2005) 

 
 
Solentia 
(S. achromatica, S. 
foveolarum, S. 
intricate, S. 
paulocellulare, S. 
sanguinea, 
S. stratosa ) 

 
Arabian Gulf, 

Bahamas, 
Mediterranean 
Sea, Red Sea 

 
Marine 

limestone 
shores, marine 
mollusk shells, 

estuarine 
bivalve and 
gastropod 
shells and 

other 
limestone 
substrates 

 
(Ercegović, 1927, 
Golubíc, 1996, Le 
Campion-
Alsumard, 1996, 
Radtke and 
Golubic, 2005, 
Schneider and Le 
Campion-
Alsumard, 1999, 
Stolz, et al., 2001) 
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*Not all the species actively bore into carbonates. † More than 80 species have been described 
for the genus, and only those that are suspected of boring 
are included. 
 

 

 

 

Table 1, Cont. 
 

 

Order Ocillatoriales 
(Group 3) 

Ecology Substrate Reference Morphology 

 
*Plectonema 
(P. capitatum, P. 
litorale 
P. radiosum, P. 
terebrans 
[Leptolyngbya 
terebrans] 
P. tomasinianum 
P. wollei) 

 

 
Belize, French 

Polynesia, 
Greece, India, 

Mexico 

 
Marine mollusk 
shells, estuarine 

bivalve and 
gastropod 

shells, 
calcareous 

skeletons of 
coralline alga. 

 
(Che, et al., 1996, 
Kaehler, 1999, Le 
Campion-
Alsumard, et al., 
1995, Pantazidou, 
et al., 2006, 
Raghukumar, et 
al., 1991, Thuret, 
1875) 

 

 
Order Nostocales  
(Group 4) 

 

 
Kyrtuthrix 
(K. dalmatica 
K. maculans) 

 
Mediterranean 

Sea, Sweden 

 
Marine 

limestones and 
calcareous 
substrates 

 
(Ercegović, 1957, 
Ercegović, 1929, 
Golubić and Le 
Campion-
Alsumard, 1973, 
Silva, 1996) 

 

 
†Schizothrix  
(S. calcicola, S. 
coriacea. S. 
perforans) 

England, 
Bermuda 

Freshwater 
carbonates, 

marine 
stromatolites, 

(Drouet, 1963, 
Gomont, 1892, 
Hoffmann, 1989, 
Pentecost, 1992, 
Sharp, 1969) 
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*Not all the species actively bore into carbonates.  
 

 

 

 

 

 
 

Table 1, Cont.     

Order Stigonematales 
(Group 5) 

Ecology Substrate Reference Morphology 

 
*Iyengariella 
(I. endolithica,  
I. tirupatiensis) 
 

 
Mexico, India 

 
Freshwater 
carbonates 

 
(Desikachary, 1953, 
Seeler and Golubic, 
1991) 

 

 

Mastigocoleus 
(M. testarum) 

Canada, New 
Zealand, 

Mexico, Peru, 
Puerto Rico, 
South Africa, 
Sweden, West 

Indies 

Marine 
mollusk 
shells, 

calcareous 
skeletons of 
dead coral 
and algae 

(Golubić and Le 
Campion-Alsumard, 
1973, Kaehler, 1999, 
Lagerheim, 1886, 
Montoya-Terreros, 
2006, Tribollet, et al., 
2006, Webb and 
Korrubel, 1994) 
 

 

 
Matteia 
(Matteia conchicola) 

Mediterranean 
Sea, Israel 

Marine 
carbonates 

and 
terrestrial 
limestones 

(Borzí, 1907, 
Friedman, 1993) 
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FIG. 1 An example of marine carbonates exposed to both physical and 
biological erosion on the Southwest coast of Puerto Rico, in the town of Cabo 
Rojo. The dark areas at the bottom of the carbonate cliff are extensively 
infested by metazoans and microborers (image courtesy of Lilliam Casillas). 
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FIG. 2  Model of boring by calcium pumping. One or more calcium pumping 
enzymes transport calcium ions from the water in the interstitial space (at 
the boring front) into the apical cell. This reduces the ion activity product of 
calcium, causing a small amount of the calcite to dissolve. The calcium is 
transported, cell-to-cell, and eventually released by the distal cell, closest to 
the mineral’s surface. Cartoon illustrates typical morphology of 
Mastigocoleus, with lateral heterocysts.  
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FIG. 4 Morphology of strain BC008, a euendolith isolated from marine 
carbonates. A. Free-living filaments. Bar, 10 µm; B. Typical colony 
morphology, grown on PES agar; C. Vertical cross-section of an infested chip, 
with boring filaments. Bar, 100 µm 
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CHAPTER 1 

POLYPHASIC CHARACTERIZATION OF A MARINE EUENDOLITHIC 

CYANOBACTERIUM AND THE REDESCRIPTION OF THE GENUS 

MASTIGOCOLEUS LAGERHEIM  
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ABSTRACT 

 Despite the well-described nature of euendolithic (true-boring) 

cyanobacteria, no actively boring culture exists in any of the public culture 

collections. A culture of a marine, filamentous, true-branching heterocystous 

cyanobacterium capable of boring into pure calcite under laboratory 

conditions, strain BC008, was characterized using a polyphasic approach that 

involved the study of its morphology, ultrastructure, physiology and 

evolutionary history. The strain contained many of the characters intrinsic to 

the Mastigocoleus genus, one of the key features being the display of lateral 

heterocysts.  Collectively, these observations point at BC008 being a 

representative of the genus Mastigocoleus, which allowed us to do a 

comprehensive redescription of the genus that includes those characters not 

mentioned in its original description by Lagerheim (1886). The new 

description includes new characters, such as morphological changes boring 

cells undergo inside the solid substrate, the display of complementary 

chromatic adaptation, ultrastructural features and multi-gene phylogeny. 

INTRODUCTION 

 Endolithic microbial communities in the photic zone of coastal marine 

carbonates are typically dominated by cyanobacteria that actively bore into 

the mineral substrate (Thuret, 1875, Fremy, 1936, Le Campion-Alsumard, et 

al., 1995, Radtke and Golubic, 2005, Stockfors and Peel, 2005, Vogel and 

Brett, 2009). Boring cyanobacteria can also be found in other aquatic and 

terrestrial habitats were carbonates are present (Campbell, 1983, 

Friedmann, 1993). Euendolithic cyanobacteria, as they are known, have a 
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rich and ancient fossil record (Knoll, et al., 1986, Seong-Joo and Golubic, 

1998), and even today are important agents of bioerosion (Tribollet, 2008, Le 

Campion-Alsumard, et al., 1995, Tribollet, et al., 2006). They are responsible 

for the weakening of carbonate shells of mussels, abalone and other mollusks 

in aquaculture settings (Dunphy and Wells, 2001, Webb and Korrubel, 1994), 

and are involved in the formation of lithified laminae in modern stromatolites 

(Macintyre, et al., 2000). Genera of cyanobacteria with members that have 

been described as true-boring include Cyanosaccus (Anagnostidis, 1985, 

Pantazidou, et al., 2006), Hormathonema (Budd and Perkins, 1980, Golubic, 

1969), Hyella (Al-Thukair and Golubic, 1991, Le Campion-Alsumard, 1991), 

Solentia (Macintyre, et al., 2000, Radtke and Golubic, 2005), Plectonema 

(Berman-Frank, et al., 2003, Forsterra and Haussermann, 2008), Kyrtuthrix 

(Ercegovic, 1957, Le Campion-Alsumard, 1973), Schizothrix (Drouet, 1963, 

Pentecost, 1992) Iyengariella (Seeler and Golubic, 1991), Mastigocoleus 

(Kaehler, 1999, Tribollet, et al., 2006) and Matteia (Friedmann, 1993).  

 Our knowledge of cyanobacterial euendolith biology comes mainly 

from field observations, as does largely the present classification of the 

genera and species involved. Microscopic accounts can be done better: 

observations can be conducted after exhumation from the substrate (Perkins 

and Tsentas, 1976, Vogel, et al., 2000)) or by studying their boring marks or 

boreholes (Golubic, 1970). In some occasions petrographic thin sections with 

contrast-enhancing chromophores such as Toludine blue have been used 

(Tribollet, 2008), or ethylene-diamine-tetraacetic acid (EDTA) solutions 

(Chacon, et al., 2006). Recently, we have also used laser scanning confocal 
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microscopy of boring filaments to aid in their observation in situ (see Chapter 

2 of this dissertation). Some descriptive work has been done on cultivated 

isolates (e.g. Al-Thukair, 1991, Seeler and Golubic, 1991, Montoya-Terreros 

et al., 2006) but this has not involved any genetic, physiological or 

ultrastructural characterization, being restricted to morphological 

characterization only.  All of these aspects are required for sound 

phylogenetic description (Castenholz, 2001). Not a single complete 16 S rRNA 

sequence, has been submitted to public databases stemming from an isolation 

of euendolithic members [a partial 16S rRNA sequence of BC008 was 

submitted by Chacon (2006)] 

 The genus Mastigocoleus and its only species, Mastigocoleus testarum 

Lagerheim, is one of the first described euendoliths (Lagerheim, 1886). It is a 

marine form, found originally boring in shells on the coast of Kristineberg, 

Sweden.  By now, it is commonly recognized in surveys around the world 

(Chazottes, et al., 2009, Che, et al., 1996, Le Campion-Alsumard, et al., 1995, 

Raghukumar, et al., 1991, Tribollet, et al., 2006). It is a morphologically 

unique and easily recognizable morphogenus that develops lateral 

heterocysts, the only marine cyanobacterium to do so. There are currently no 

cultivated Mastigocoleus representatives in public culture collections, and no 

information regarding this genus in public sequence databases.   

 We undertook a polyphasic study with the triple aim of providing an 

assessment of the old generic description that was based on restricted 

morphological observations, as well as enhancing the characterization of 

these morphogenus by including physiological, ultrastructural and genetic 
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data, and, finally, establishing a firm phylogenic placement of these 

important euendoliths.  

MATERIALS AND METHODS 

Cultivation. Strain BC008 was isolated from a marine snail shell in Cabo 

Rojo, Puerto Rico (latitude N 17.93386, longitude W 67.1924) (Chacón, et al., 

2006).  These cultures were kept growing and boring on small calcite chips, 

submerged in liquid sterile Provasoli’s Enriched Seawater (PES) medium 

(Provasoli, 1968) containing 30 grams per liter of Instant Ocean® salts 

(Spectrum Brands Inc., Atlanta, GA, USA) at a salinity of 35 ‰ and pH of 

8.3.  For transferring stock cultures, infested chips were cleaned of any 

superficial growth with a small brush and rinsed in medium, and then 

transferred into new culture flasks alongside sterile chips of commercially 

available blocky calcite (CaCO3; WARD’S Natural Science, Rochester, NY).  

The chips were prepared by cleaving blocks of calcite into suitable size (2 

mm3 to 6 mm3) fragments with the aid of a flame-sterilized hammer. After 

cleaving, the chips were placed in ethanol 95% and each one flame-sterilized 

before transferring to the culture flasks. The purity of the calcite was 

evaluated by powder X-ray diffraction and confirmed against the ICDD 

Powder Diffraction Database. Stock cultures were kept at 25°C, under white 

incandescent light bulbs providing 30 µmoles of photons with no period of 

darkness. Cultures were monitored for growth and boring activity by visual 

inspection using a dissecting microscope.  
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Obtaining axenic cultures . BC008 filaments where collected and 

transferred to a fresh PES-medium 1.5% agar Petri plate. Under the 

dissecting microscope, filaments were dragged across the surface of the agar 

plate using a small glass hook, to clean the filaments and reduce the number 

of heterotrophic contaminants (Vischer, 1937). Afterwards, the filaments 

were placed in additional fresh PES agar plates and allowed to grow for a 

period of 3 to 4 weeks.  Filaments where again collected from the plates, and 

the drag-and-transfer continued for several months, monitoring the number 

of heterotrophic colonies that grew around the filaments under the dissecting 

microscope. After several transfers, we choose the cleanest filaments from the 

agar and washed them 5 times in small volumes (approx. 3 mL) of sterile 

PES medium in a small, sterile flask with a magnetic stirring bar. After 

washing, the filaments where then re-plated in PES agar, and monitored 

once more for contaminants. This process was repeated until no more 

bacterial colonies where observed under the microscope. Axenicity was 

verified by plating filaments in PES agar supplemented with peptone, glucose 

and yeast (PGY-PES; Reddy). Filaments where incubated in the light, on 

PGY-PES plates for 48h at 25º C. Plates where monitored once more for 

bacterial growth, and only those that showed no signs of heterotrophic 

growth after 48 hours where kept as stock inoculums. Filaments where 

observed with Phase contrast optics. 

 

Microscopy of free-l iving fi laments. Wet mounts of BC008 were 

prepared with fresh, free-living filaments PES medium and observed under 
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the compound microscope with phase-contrast optics. Cell color, cellular 

types, branching pattern, and filament tapering where recorded. Cell, length 

and width, sheath thickness, and heterocysts frequencies were measured on 

approximately 200 individual cells to attain statistical significance.  Sheaths 

where stained with a 1% alcian blue solution (EMS, Hatfield, PA) to improve 

contrast. Heterocyst where classified as terminal or lateral, with intercalary 

heterocysts being the least common, and thus omitted from our counts.  

Hormogonia production was evaluated by plating filaments in PES agar, and 

allowing them to grow for approximately 4 months.  Hormogonia were located 

as peripheral short filaments with a typical EPS trail moving away from the 

central inoculum. Their size and shape where recorded under the dissecting 

microscope.  

 

Microscopy of boring fi laments.  To address morphological variability 

during boring, cells where grown and allowed to infest calcite chips for a 

period of approximately 3 months. Afterwards, chips where harvested and 

cleaned of any superficial growth with a small watercolor brush in sterile 

PES medium. Filaments where disinterred from the carbonate matrix using a 

modified ethylene-diamine-tetraacetic-acid (EDTA) carbonate dissolution 

method (Wade and Garcia-Pichel, 2003). Chips where placed on a small, 

stainless steel basket at the top of the column of a glass, 15 mL vacuum 

filtration apparatus.  A peristaltic pump was used to deliver a 200 mM 

sodium-EDTA solution at pH 5, on top of the chip at a rate of 1ml per minute. 

Filaments were gradually exposed, and at 30 minute intervals, the filaments 
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were gently brushed from the chip, washed with sterile distilled water and 

collected on a 2 µm pore polycarbonate filter on the filtration apparatus. Each 

dissolution interval removed 5 mg of calcium carbonate and each fraction 

collected corresponded to a 50 µm layer. Fractions where classified as 

superficial, intermediate and deep.  After collecting the fractions, filaments 

were rinsed in 10 mL of sterile PES to remove any excess precipitate, 

centrifuged for 10 minutes at 4,000 RPM and then the pellet re-suspended in 

PES medium. Cells were placed on a microscope slide under a microscope and 

observed at 400X magnification with brightfield optics.  Measurements were 

then carried out as explained above.  

 

Transmission electron microcopy. Ultra-structural characteristics were 

determined for free-living filaments as well as disinterred filaments. Cells 

were concentrated by centrifugation (10 min. @ 10,000g) and prepared for 

microscopy following van de Meene, et al. (2006). Briefly, pellets were 

transferred to a Bal-Tec HPM010 high pressure freezing apparatus for 

cryofixation using B type planchettes and dextran as a cryoprotectant.  After 

cryofixation, the samples were submerged in liquid nitrogen and freeze-

substituted in a 1% gluteraldehyde: 1% tannic acid in acetone solution for 72 

hours at -80°C. Afterwards, samples were gradually warmed to room 

temperature for 3 hours in a 1% osmium tetroxide in acetone solution. 

Samples were embedded in Spurr’s resin at 61°C overnight and thin sections 

ranging from 65 to 75 nm in thickness were cut with a microtome onto 300 

mesh copper grids. Post-staining followed with 1% uranyl acetate in 
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methanol and Sato’s lead citrate solutions respectively.  Samples where 

observed using a Phillips CM12 microscope with an accelerating voltage of 

80kV.  

 

Determination of complementary chromatic adaptation. BC008 

cultures, containing calcite chips, where grown under different light 

wavelengths, attained with Rosco polyester-based light filters (Rosco 

Laboratories Inc., Stamford, CT), placed in front of white fluorescent lights. 

The filters achieved peak percent transmittance in the 400nm (blue), 520nm 

(green) and 620 (red) regions, verified with a Shimadzu UV-1601 

spectrophotometer. Controls where grown under white fluorescent lights with 

no filters. All cultures where exposed to constant light with similar 

intensities, averaging 15 µmols of photons, and grown for a period of 

approximately 3 months.  

 

DNA extraction. Genomic DNA was extracted from BC008 cells using the 

phenol:chloroform:isoamyl alcohol (PCI) extraction method, described 

elsewhere (Countway, et al., 2005). Briefly, cells where pelleted by 

centrifugation and lysed by zirconium-silica bead beating, with alternating 10 

minute cycles of heating at 70°C. Sodium chloride (NaCl) and cetyltrimethyl 

ammonium bromide (CTAB) where added to a final concentration of 0.7M 

NaCl and 0.01% CTAB respectively and the mixture heated at 70°C for 10 

minutes. An equal volume of PCI solution (25:24:1) was added and after 

gentle vortexing the supernatant was removed and placed in a fresh 
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microcentrifuge tube, where another addition of PCI followed, repeated twice. 

Afterwards an equal volume of chloroform:isoamyl alcohol (CI) (24:1) added 

and repeated twice. Nucleic acids where precipitated overnight at -20°C with 

95% ethanol and 10.5 M ammonium acetate. Next day the nucleic acids 

where centrifuged at 14,000 RPMs, 4°C for 30 minutes. The nucleic acid 

pellet was rinsed with 70% ice-cold ethanol, centrifuged once more and air-

dried in a laminar flow hood. Nucleic acids where re-suspended in 40 uL of 

sterile water. DNA concentration was quantified by gel electrophoresis on a 

4% agarose gel stained with ethidium bromide using the Quantity One 

analysis software (Biorad Laboratories, CA, USA). 

  

PCR amplification and sequencing. Four genes where chosen to 

independently measure phylogeny in strain BC008 including the small 

subunit ribosomal RNA gene (16S rRNA), the nitrogenase reductase gene 

(nifH), the large subunit ribulose-bisphosphate carboxylase enzyme gene 

(rbcl) and a member of the circadian clock genes (kaiC). Approximately 10 ng 

of DNA extract was used as template for Polymerase Chain Reaction (PCR) 

amplification. A 1100 bp-long 16S rRNA gene fragment was amplified, using 

the primer set BAC-GM5F / BAC-907R, universal for the domain Bacteria 

(Nagy, et al., 2005). The thermal cycle consisted of an initial denaturation at 

94°C for 5 min, 40 cycles of 94°C for 45 s, 51°C for 45s, and 72°C for 1:30 min, 

and a final extension at 72°C for 7min.  

 A ca. 400 bp-long nifH gene fragment was amplified, using the primer 

set PolF / PolR (Poly, et al., 2001). The thermal cycle consisted of an initial 
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denaturation at 94°C for 2 min, 40 cycles of 94°C for 1 min, 52°C for 1 min, 

and 72°C for 1 min, and a final extension at 72°C for 10 min.   

 A ca. 500 bp-long rbcl gene fragment was amplified, using the primer 

set RbclF / RbclR (Rajaniemi, et al., 2005) with a thermal cycle consisting 

94°C for 2 min, 40 cycles of 94°C for 1 min, 45°C for 1 min, and 72°C for 1 

min, and a final extension at 72°C for 10 min. 

 Lastly, a ca. 600 bp-long kaiC gene fragment was amplified, using the 

primer set kaiC 488F / kaiC 489R (Lorne, et al., 2000), with a thermal cycle 

consisting of an initial denaturation at 94°C for 5 min, 40 cycles of 94°C for 

45 s, 51°C for 45 s, and 72°C for 1 min, and a final extension at 72°C for 5 

min.  

 Each 100 µL reaction contained the following: 10 µL of 10× Takara Ex 

Taq DNA polymerase, 8 µL of Takara dNTP mixture (2.5 mM each), 50 pmol 

of each primer (synthesized by Operon Technologies, Inc., Alameda, CA, 

USA) and 5–10 ng of template DNA. Quantification of PCR products was 

verified as described for genomic DNA. 

 

Phylogeny reconstruction. To establish the molecular evolutionary 

history of the strain, a phylogenetic reconstruction was performed using the 

four independent genes sequenced. For the 16S rRNA, a partial sequence was 

obtained by sequencing the 16S rRNA amplified PCR product in triplicate 

and aligning forward and reverse complement sequences with MEGA 4.0 

(Tamura, et al., 2007). Sequences were checked for non-coding bases, which 

accounted for less than 1% of the total sequence number and all non-coding 
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ends were cleaned. A high-quality consensus sequence of 1094 bp was 

obtained, and this sequence was verified against other cyanobacterial 

members using the Basic Local Alignment Search Tool (BLAST). The closest 

cyanobacterial sequences where used to establish the initial alignment, and 

representative cyanobacteria of all groups where used thereafter to populate 

the alignment, as well as plant plastids and one heterotrophic bacterium. A 

final alignment of 35 taxa was used to construct phylogenetic trees. Two 

algorithms where used, the Neighbor-Joining (NJ) and the Maximum 

Parsimony (MP), both with 10,000 bootstrap replicates. Trees were bottom-

rooted with a heterotrophic bacterium. The percentage of replicate trees, 

where the sequences clustered together in the bootstrap test, is shown next to 

the branches. All positions containing gaps and missing data were 

eliminated. Sequences for all other genes where obtained in a similar way, 

with final consensus sequences for nifH being a 325 bp partial sequence, a 

438 bp partial sequence for rbcl and a 594 bp partial sequence for kaiC. Trees 

with translated protein sequences where made for nifH and rbcl, and showed 

similar topologies to DNA ones. 

RESULTS 

Microscopic characterization. Observation by light microscopy of free-

living filaments revealed a heterocystous, true-branching cyanobacterium. 

Trichomes produce a dense exopolysaccharide sheath (Fig. 1D). True 

branching occurs when a cell changes its plane of division by 90°, and 

branches taper towards the apex (Fig. 1B), elongating into thin filaments of 

about half the width of mature vegetative cells The filaments are always 
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uniseriate. Calothrix-like terminal hairs are not formed under standard 

conditions. This strain develops intercalary, lateral and terminal heterocysts, 

even in a single branch, which are paler, having a slight green-yellow tint.  

Heterocyst formation is constitutive, regardless of the presence of fixed 

nitrogen sources. Intercalary heterocysts are barrel-shaped, while terminal 

and lateral heterocysts are dome-shaped, and without apparent pore plug. 

Seven to ten-celled motile hormogonia are formed, whose cell resemble 

vegetative cells in shape, but are only about half as wide. No akinetes were 

detected.  Individual cells in mature filaments are 12.4 ± 1.8 µm in width and 

9.9 ± 1.5 µm in length. BC008 varies from reddish-brown, brownish-green, to 

blue-green, to violet depending on illumination, due to changes in phycobilin 

complement. No scytonemin nor other sheath pigments are present, nor are 

they formed under UV exposure. The cytoplasm is remarkably heterogeneous 

and granular. 

 

Morphological changes during boring. BC008 filaments can penetrate 

solid, crystalline calcite, and will branch and produce heterocysts inside the 

solid while boring (Fig. 1C). The filaments do not seem to prefer a particular 

angle of penetration with respect to the surface, and do not necessarily follow 

the crystal’s cleavage planes, as has been reported for other endoliths 

(Golubic, 1969). However, this strain undergoes clear changes in cell size, 

heterocyst frequency, and the frequency of particular heterocyst types as the 

filaments penetrate the mineral. Fig. 2A illustrates these changes with the 

most superficial filaments having an average width of 6.9 ± 1.7 µm and 
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length of 7.3 ± 3.5 µm. Deeper filaments are 5.7 ± 0.9 µm wide and 8.9 ± 1.6 

µm long. The deepest filaments are 5.2 ± 0.9 µm wide and 7.9 ± 1.5 µm long. 

Student T tests were calculated taking into count all possible comparisons for 

cell width and length, with values being significantly different (p value of at 

least 0.039 and 0.018, respectively). The results indicate a trend in which 

cells become thinner and longer as they bore. As for the heterocysts, lateral, 

terminal and intercalary types are found in all fractions, albeit the latter 

were quite rare. Lateral heterocyst frequency, relative to other types, 

increases as filaments bore deeper into the mineral (Fig. 2B,). In contrast, 

overall frequency of heterocysts (Fig. 2C) decreases as filaments bore deeper 

(linear regression, r2 = 0.9823). Only the ratio of lateral vs. terminal was 

measured, as intercalary ones are not as common in this strain. 

 

Ultrastructure. BC008’s thylakoid membranes have no preferred 

orientation, and are found randomly arranged, with no apparent stacking. 

The cytoplasm is conspicuously granular owing to the presence of a multitude 

of structures of about 20-40 nm in size, that sometimes appear polyhedral at 

high magnification. These granules are widespread, filling in most of the 

cytoplasm, but are never found in  the intrathylakoidal lumen. Both boring 

and non-boring vegetative cells contain these structures, but heterocysts do 

not. The sheath appears as a laminated and dense structure surrounding the 

trichomes, ranging from 0.2 to 1 µm in thickness. Heterocysts are 

transparent, with thickened cell walls, and do not contain granules or 

inclusion bodies inside and have no junctional pores. In vegetative cells 
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intracellular bodies such as carboxysomes, cyanophicin granules, lipid bodies, 

and polyphosphate granules were observed (data not shown).  

 

Complementary chromatic adaptation. BC008 cells exhibit 

complementary chromatic adaptation when grown under variable light 

wavelengths. When grown under red light (maximum peak λ = 620 nm) 

cultures display a bright green color, likely due to a decrease of phycoerytrhin 

levels (Fig 4). Cultures grown under green light (maximun peak λ = 520 nm) 

display a reddish-brown color, a result of higher phycoerythrin. These color 

changes reflect the predicted shift of constituents of the phycobilisome 

(phycoerithrin and phycocyanin) during red and green light exposure. 

Changes in the expression of phycoerithrin were verified by whole-cell 

spectra measurements (data not shown) and correspond to observed changes 

in coloration (e.g. higher levels of phycoerythrin under green light). Blue light 

had a detrimental effect on the cells caused by photobleaching and the vast 

majority of them did not survive. The bleaching effect of blue light on the 

phycobilins has been described in other cyanobacteria elsewhere (Sinha, et 

al., 2002), so this result was not surprising. 

 

Phylogeny. Phylogenetic trees based on the neighbor joining (NJ) and the 

maximum parsimony (MP) algorithms were constructed for each gene with 

10,000 bootstrap replicates to infer confidence values on phylogenetic trees. 

Independently of the algorithms used, the trees show a similar topology; we 

only show the NJ trees for the sake of simplicity. Trees constructed with both 
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nucleic acid sequences and (translated) protein sequences (for the cases of 

nifH, and rbcl) had a similar topology. Fig. 5 illustrates the phylogenetic 

analysis of 16S rRNA sequences of 35 taxa, placing BC008 amongst the 

heterocystous cyanobacteria, in a deep branch within the Nostocales. The 

strain fits basally to cyanobacteria within the Rivularia or Calothrix genera 

and has a 7% sequence divergence from the closest cyanobacterial taxa. Fig. 6 

illustrates a phylogenetic reconstruction of 22 nifH partial sequences, placing 

the strain within the heterocystous group. The strain is found on a deep 

branch within members of the Nostocales. Fig. 7 shows a phylogenetic 

reconstruction of rbcl partial sequences of 20 taxa, placing the strain once 

more within the heterocystous group, on a deep branch, basal to 

cyanobacteria with Calothrix morphology. Fig. 8 illustrates a phylogenetic 

reconstruction in with 12 partial kaiC gene sequences. The strain appears 

once more, on a deep branch, within the heterocystous, between the 

Nostocales and Stigonematales.  

DISCUSSION 

 BC008 was successfully kept in the lab in its actively boring state for 

more than 5 years, without loosing its boring ability, an improvement taking 

in account how common is for euendolith cultures, that are indeed 

established, not to keep their actively boring state in the laboratory for long. 

Such is the case of a culture of Matteia conchicola, provided to us by 

Friedmann, previously reported as boring (Friedmann et al., 1993) which did 

not bore in our lab. We attribute our success to a more efficient sub-culturing 

method that excluded, for the most part, non-boring filaments, by using 
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infested chips rather than free-living filaments as inocula. We recommend 

this approach, in which the infested substrate is used instead of biomass in 

the upkeep of actively boring cultures. 

 The results show that strain BC008 has many of the diacritical 

morphological characters of Mastigocoleus according to its botanical 

description. The formation of lateral heterocysts, filament tapering and true 

branching are key features of the original genus description, even though its 

ability to bore is not. BC008 forms sheathed, uniseriate trichomes that 

exhibit true, irregular branching and tapering, display terminal and lateral 

heterocysts that only rarely appear in pairs, produce hormogonia, and do not 

produce akinetes (“sporae”). Nevertheless, three characters mentioned in the 

original genus description that do not match. These are: (1) homogeneous 

cellular content, which is granular in BC008, (2) reproduction by 

chroococcoidal cells, absent in BC008 and (3) the absence of intercalary 

heterocysts, which although rare, are present in BC008. As for the species 

description (M. testarum), BC008 shares the majority of the characters as 

well. It forms vegetative cells that are cylindrical to semi cylindrical in shape, 

and display a bluish color. Heterocysts for the most part are small and dense, 

vary in form (dome vs. barrel shaped) and have a thickened (“firmae”) 

“membrane” (cell wall) with a yellowish content. In the description, trichomes 

are said to range from 6 to 10 µm in width and vegetative cells range from 3.5 

to 6 µm in width. The only two mismatches found in BC008 are: (1) the 

ability of vegetative cells to change color (i.e. violets, reds, browns and 

greens) which is a result to its ability for complementary chromatic 
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adaptation, and (2) the size range of cells, which varies significantly from 

those in the description (4-19 µm, taking into account all growth modes). It is 

not difficult to envision the reasons why characters that we see in BC008 

were not included in the original description; non-boring mode morphology 

and life cycle observations can only happen with a culture in hand. 

Altogether, BC008 seems to be a likely good representative for the original 

description and a good candidate for a recharacterization that includes 

aspects beyond simple morphology. 

 The obvious changes in morphology that we detected in BC008 (Fig. 2) 

are also intriguing and of unknown physiological significance. According to 

our calculations, an average cell in free-living mode is 7 times more 

voluminous, than a deeply boring cell is (1130 um3 vs. 153 um3 respectively). 

Heterocyst frequency also diminishes as the filaments bore deeper, with free-

living filaments producing approximately 1 heterocyst per every 12 

vegetative cells, compared to 1 per every 33 at depth. Lateral heterocysts 

become clearly more prominent while boring: inside the mineral heterocysts 

are almost exclusively lateral. One cannot help to wonder if such 

morphological adaptations might be related to the efficiency or mechanism of 

boring, an aspect that will be probed in the following chapters.  

 The reasons for the reduction in heterocysts frequency as the strain 

bores are not immediately obvious, but an explanation can be approached 

logically, if the frequency of heterocyst diminishes as a result of reduced need 

for nitrogen, as it is know in other cyanobacteria (Castenholz, 2001). In this 

case one and alternative nitrogen source would be needed, such as nitrogen-
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containing impurities or traces in the substrate, which would partially supply 

the cellular needs. This of course, is not the case, as we know that the calcite 

used in our experiments is pure. This explanation assumes that both cell 

volume and nitrogen need remain constant. However, our data show that in 

reality cell volume in BC008 decreases with depth and naturally, a smaller 

cell would be expected to have less of a nitrogen requirement than a bigger 

cell. An average heterocyst in free-living mode has a volume of 144 µm3 and 

provides N to a cellular volume of 13,560 µm3 (12 vegetative cells). At depth, 

however, a heterocyst has an average volume of only 57 µm3 (data not shown) 

and provides nitrogen to an overall cellular volume of 5049 µm3 (33 vegetative 

cells). Both situations indicate a similar need of cell volume allocation to 

heterocysts, around 1%, which would indicate that the N needs have not 

varied, and that the change in heterocyst frequency, is an adjustment needed 

as a result of the change in cell dimensions.  

 The ability of BC008 to chromatically adapt could maximize their 

efficiency during photosynthesis under a changing light quality. This may 

enable Mastigocoleus members to bore into calcareous benthic substrates at 

varying depth in the water column, and might also play an important role 

inside the substrates, as light availability and quality can also change, for 

example, due to self-shading or multiple scattering. By contrast, no known 

function can yet be attributed to the unusually small structures that fill in 

the cytoplasm of BC008, as they are the first reported of their kind, in terms 

of size and shape. Although smaller in size and much more numerous than 

the previously described bacterial micro-compartments found in 
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Synechococcus PCC7942 and some heterotrophic bacteria (Yeates, et al., 

2008), these intracellular bodies do share some structural analogy with them, 

as they are all polyhedral or pseudo-spherical in shape. 

In terms of evolutionary placement, our multiple, independent 

reconstructions place the strain clearly within Group IV  (REF) of the 

cyanobacteria, amongst the “Nostocales”, and not close to members of the 

“Stigonematales” (Group V), even though BC008 shares defining 

morphological characteristics with the latter, like true branching. The genus 

Mastigocoleus has traditionally been placed in the “Stigonematales” since its 

inception (Desikachary, 1959, Geitler, 1932, Komárek, 1999). BC008 was 

significantly divergent from any other cyanobacteria represented in the 

public databases with respect to sequences from any of our four loci, to 

suggest that Mastigocoleus, as represented by BC008, is very likely a well-

defined genetic entity. In fact, in all phylogenetic trees, the strain emerges as 

branches with deep nodes, basal to some groups of Calothrix /Rivularia.  

Morphologically, BC008 shares with this group the presence of tapering 

filaments. Even so, its 16S rRNA sequence is 7% divergent from its closest 

cyanobacterial neighbor, Rivularia sp. PCC7116, a marine form, which 

typically is sufficiently different to classify it as a separate genus 

(Stackebrandt 1994). Thus, it appears that it is convenient to maintain the 

standing of the original taxon of Lagerheim’s, if perhaps with a revised 

characterization.  

 Mastigocoleus represents a widespread taxon. Among euendoliths, the 

genus and its only described species, Mastigocoleus testarum Lagerheim is 
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found abundantly in marine endolithic communities around the world 

(Chazottes, et al., 2009, Che, et al., 1996, Le Campion-Alsumard, et al., 1995, 

Raghukumar, et al., 1991, Tribollet, et al., 2006). It is the only marine 

member of the heterocystous cyanobacteria that develops lateral heterocysts, 

a trait that is rare in cyanobacteria, reported in only two other genera, 

Nostochopsis (Tiwari, 1978) and Mastigocladopsis (Hoffmann, 1990), both 

from freshwater settings. There is at least one modern, published attempt to 

culture the microbe (Montoya-Terreros, 2006) but there are no Mastigocoleus 

in public culture collections.  

 Our novel physiological and molecular data allows a more 

comprehensive re-characterization of Mastigocoleus and M. testarum, that 

integrates its ecology, morphology, physiology and evolutionary placement. A 

redescription of the genus and species is presented below.  

 

Mastigocoleus  (ex Lagerheim) Ramírez-Reinat & Garcia-Pichel 

Marine, benthic, filamentous, heterocystous cyanobacteria, capable of boring 

in calcareous substrates, developing mostly lateral and terminal, but 

sometimes also intercalary heterocysts. In boring mode, most heterocysts are 

lateral. Filaments are uniseriate, true-branch by a 90° change in division 

plane, and display tapering. Mature trichomes are cylindrical averaging 12 

(ranging from 4 to 19 ) µm in width in free-living filaments and 5 µm in width 

in boring filaments. Hormogonia are produced. No akinetes are observed. 

Thylakoid membranes have a random arrangement, with no stacking. No 

junctional pores are observed. Molecular phylogeny reconstructions of 16S 
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rRNA, nifH, rbcl and kaiC genes place the organism among the heterocystous 

cyanobacteria, on a deep branch amongst the “Nostocales”.  

 

Mastigocoleus  testarum  (ex Lagerheim) Ramírez-Reinat & Garcia-

Pichel 

Cells are barrel-shaped, averaging 9 µm in length. Growth optimum 

temperature ranges from 15-42 °C. Capable of complementary chromatic 

adaptation, with colors varying from dark brown, blue-green, olive-green, 

reddish-brown to violet. Sheaths are transparent and colorless. 

Cytoplasmatic content of vegetative cells has a granular consistency, with 

small, 20-40 nm granular bodies comprising most of its volume which are 

never found in the intrathylakoidal lumen, or inside heterocysts. A 

translucent sheath, averaging 1µm in width surrounds the trichomes. 

Heterocysts have thickened cell walls and display a yellowish-green tint. 

Hormogonia are produced, ranging from 7 to 10 cells in length. Type strain is 

BC008, isolated from submerged snail shells, in sunlit ponds of the intertidal 

zone of a carbonate beach, on the southwest coast of Cabo Rojo, Puerto Rico.   

AKNOWLEDGEMENTS 

We thank Robert Morris and Johanna Rodríguez for their help with 

microscopy cell counts. We would also like to thank Hugo Beraldi for his help 

with the X-ray diffraction analysis.  

 This work was supported by a National Science Foundation grant 

0311945. 

 



  49 

 

FIG. 1 (A) Morphology of strain BC008 as seen by brightfield optics, showing 
the typical morphology of a filamentous, true branching, and heterocystous 
cyanobacterium. Formation of lateral heterocysts (*), characteristic of the 
strain, can be observed as well as the granular consistency of the cytoplasm. 
(B) Tapering filament, with lateral heterocysts alongside. (C) Boring 
filaments penetrating a chip of Iceland spar calcite, down to a depth of 
approx. 200 µm. Micritization can be observed at the surface of the chip. (D) 
A transparent exopolysaccharide sheath (*) surrounds the filaments. Arrow 
shows terminal cell growing past the EPS sheath. (E) Hormogonia can be 
produced by the strain, and range from 7 to 10 cells in length and about half 
the width of mature vegetative cells. 
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FIG. 2 Morphological changes of boring filaments. (A) Average cell length 
(white circle) and width (black circle) measurements with standard deviation 
from free-living cells, n=225, surface cells (1st fraction), n=180, middle cells 
(2nd fraction), n=208 and the deepest cells (3rd fraction), n=210. (B) Ratio of 
lateral vs. terminal heterocysts in free-living and boring fractions. (C) 
Heterocysts frequency in free-living and boring fractions, with best-fit linear 
regression. 
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FIG. 3 Ultrastructure of BC008 cells, observed by transmission electron 
microscopy. (A) Free-living cell as growing in liquid culture without calcite. 
(B) Actively boring BC008 cells after exhumation with EDTA. Granular 
bodies are observed in vegetative cells, but not in heterocysts under both 
growing conditions. Arrows point at filament sheath. Asterisk indicates a 
heterocyst. Scale bar on panel A is 1 µm, and 0.5 µm in panel B.  
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   FIG. 4  Cultures displaying complementary chromatic adaptation when  
   grown in white light (“Control”), green light (“Green”) and red light (“Red”).  
   Blue light proved to be detrimental, and cells did not grow under it (“Blue”).   
   Light intensity = 3 µmoles of photons. 
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FIG. 5  Neighbor-Joining phylogenetic tree based on 35 16S rRNA complete 
sequences.  Other trees constructed with partial 16S rRNA sequences (ca. 600 
bp-long, not shown) show a similar topology. The sequence of 
Chromobacterium violaceum  (ATCC12472) was used as the outgroup. 
Brackets and roman numerals illustrate cyanobacterial groups and plastid 
sequences. Denomination of particular strains corresponds to those in the 
database, and are not necessarily taxonomically correct. Bootstrap values of 
10,000 trees are included and indicated at the nodes. Scale bar represent 1% 
estimated sequence divergence.  
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FIG. 6 Neighbor-Joining phylogenetic tree based on 23 nifH partial 
sequences. The sequence of Rhizobium CCBAU was used as the outgroup. 
Brackets and roman numerals illustrate botanical cyanobacterial groups. 
Denomination of particular strains corresponds to those in the database, and 
are not necessarily taxonomically correct. Bootstrap values of 10,000 trees 
are included and indicated at the nodes. Scale bar represent 2% estimated 
sequence divergence.  
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FIG. 7 Neighbor-Joining phylogenetic tree based on 20 rbcl partial 
sequences. The sequence of Rhodospirillum ATCC 11170 was used as the 
outgroup. Brackets and roman numerals illustrate botanical cyanobacterial 
groups. Denominations of particular strains correspond to those given in the 
database, and are not necessarily taxonomically correct. Bootstrap values of 
10,000 trees are included and indicated at the nodes. Scale bar represent 5% 
estimated sequence divergence. 
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FIG. 8 Neighbor-Joining phylogenetic tree based on 12 kaiC partial 
sequences. The sequence of Gloeobacter PCC7421 was used as the outgroup. 
Brackets and roman numerals delimit “botanical” cyanobacterial groups. 
Denominations of particular strains correspond to those in the database, and 
are not necessarily taxonomically correct. Bootstrap values of 10,000 trees 
are included and indicated at the nodes. Scale bar represent 2% estimated 
sequence divergence. 
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CHAPTER 2 

HOW CYANOBACTERIA BORE 
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ABSTRACT 
 

 Cyanobacteria bore into carbonates by a mechanism that has 

remained elusive. We present evidence that clarifies the key aspects of this 

mechanism in one euendolithic cyanobacterium, Mastigocoleus testarum 

strain BC008. Temporal separation of photosynthesis and the boring process 

does not play a role, since cells are able to bore under constant illumination. 

Spatial separation is also not involved, as cells remain photosynthetically 

active in deep layers of the bored mineral. The evidence is consistent with a 

carbonate dissolution mechanism driven by the cellular uptake of free Ca2+ at 

the boring front. This is an alternative strategy to simple acidification that 

still allows dissolution to become thermodynamically favorable. Boring 

entails a measurable release and accumulation of free-Ca2+ on the surface of 

the mineral (opposite of the boring front), which was quantified using the 

fluorescent reporter Calcium Green-5N and laser scanning confocal 

microscopy. This accumulation of free Ca2+ is not due to spontaneous 

chemical dissolution of the mineral and is (1) dependent on light, (2) 

dependent on chemical energy and (3) dependent on calcium-transporting 

ATPase enzymes as demonstrated by exposure to light and dark cycles and 

the addition of oxidative-phosphorilation inhibitors, ATP-production 

inhibitors and calcium-transport inhibitors. 

INTRODUCTION 

 Cyanobacterial euendoliths, otherwise referred as boring, excavating, 

perforating or tunneling cyanobacteria, are widespread. They are found in 

many geographically distinct locations, in both marine (Al-Thukair and 
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Golubic, 1991, Fremy, 1936, Golubic, et al., 1970, Lagerheim, 1886, Le 

Campion-Alsumard, 1991, Vogel, et al., 2000) and terrestrial (Campbell, 

1983, Friedmann, et al., 1993) settings. This notwithstanding,  a 

comprehensive study of the physiological mechanism that enables 

cyanobacterial boring has never taken place, possibly due to the lack of  

appropriate cultivated isolates. Typically, euendoliths have been mostly 

described in situ (Golubic, et al., 1970, Le Campion-Alsumard, et al., 1995, 

Tribollet, et al., 2006), with only a few efforts made to try to establish 

cultures (Al-Thukair and Golubic, 1991, Friedmann, 1993, Montoya-Terreros, 

2006, Pari, et al., 1998, Vogel, et al., 2000) mostly with identification and 

characterization in mind. However, in cases where cultures have been 

obtained, they have either not been submitted to collections or have lost their 

boring capacity. 

 The generally accepted hypothesis regarding the boring mechanism is 

that dissolution of carbonates is enabled in these organisms by the excretion 

of acidic byproducts of respiration (Golubic, et al., 1984, Haigler, 1969), 

although no experiments have been done to prove or disprove this 

conclusively. Conversely, boring by euendolithic phototrophs is nothing less 

than a geochemical paradox due to the fact that photosynthesis consumes 

CO2 (a weak acid), raising the pH of the medium and promoting the 

precipitation of carbonates, rather than their dissolution. Yet, euendoliths 

are able to penetrate into carbonates regardless of this fact. One explanation 

for the dissolution of carbonates under these conditions is the temporal 

separation of boring and photosynthesis, which would allow boring only in 
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the absence of light. Intracellular glycogen accumulated during the daytime 

could provide the energy, and the release of products of respiration, namely 

CO2 and/or organic acids (e.g. formic and lactic) would promote carbonate 

dissolution in the same manner proposed for most acid-producing 

microorganisms. This type of temporal metabolic exclusion has been 

demonstrated for non-boring Oscillatoria and other cyanobacteria in the case 

of nitrogen fixation (Berman-Frank, et al., 2001, Stal and Krumbein, 1987). A 

second explanation is based on the spatial separation of boring and 

photosynthesis. Here, cells at the boring front would exclusively respire, 

producing the acidic moieties necessary for localized dissolution, but would 

benefit from photosynthate provided from cells away from the boring front, as 

a result of net intracellular transport. This proposed acid-dissolution 

mechanism, although plausible, has many conflicting physiological 

consequences. Small-molecular weight organic acids (products of carbon 

fixation) are metabolically unsustainable, with the maximal number of 

carboxyl moieties in such acids (1 in formic, 2 in oxalic, 3 in citric...) 

corresponding stoichiometrically to the moles of CO2 taken up from the 

medium and consequently to the protons already consumed (Garcia-Pichel, 

2006). Additionally, it has been demonstrated that cyanobacteria do not 

survive at pH levels below 4, possibly due to proton damage to the cell 

membrane (Brock, 1973); sustained acidification would prove detrimental to 

the cells. All these consequences point to deposition of acids not being 

physiologically favorable to euendolithic phototrophs, and acid deposition 
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might not necessarily be what drives phototrophic boring, at least 

exclusively. 

 An alternative explanation, in which acids are not used to drive 

dissolution, involves the active transport of Ca2+ by the cyanobacterial 

filament, so that low concentrations of Ca2+ at the excavation front of the 

boring tunnel are created, decreasing ion activity products to levels that 

would make dissolution plausible (Garcia-Pichel, 2006). Dissolution of a 

carbonate will occur if any of the activities of either ion, Ca2+ or CO32-, are 

reduced shifting the thermodynamic equilibrium. Because this occurs in an 

environment where precipitation rather than dissolution is favored (alkaline 

pH, Ca 2+ supersaturation), it will most likely require energy input. Calcium 

transporters in charge of calcium metabolism and homeostasis, analogous to 

those described in other eukaryotic and prokaryotic models, might play a 

role. Examples of these transporters include calcium antiporters, calcium 

channels, and energy-dependent, cation-specific enzymes such as (P-type) 

ATPases. Ca2+ -ATPases, which are responsible in actively exporting Ca2+ out 

of the cell, are found in some cyanobacteria (Berkelman, et al., 1994, Geisler, 

et al., 1993). It appears that the building blocks needed for the Ca2+ pump-

enabled dissolution can be present in cyanobacteria, so it is not difficult to 

envision the possibility of one or many of these mechanisms involved the 

carbonate excavation; the problem lies in identifying specifically (1) if is 

indeed caused by the transporting of Ca2+ enzymes and (2) by what type of 

enzyme it is and how does it do it. If euendoliths are dissolving the carbonate 
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by Ca2+ mobilization, they must be using an equal or similar strategy to the 

ones previously described above.  

  It is the main goal of this project to pursue a solid 

understanding of the dynamics of cyanobacterial excavation in at least one 

model organism by gathering comprehensive evidence using quantitative and 

qualitative techniques. 

MATERIALS AND METHODS 

Strain and growth conditions.  Mastigocoleus testarum BC008 was 

obtained from marine carbonates, and grown in blocky calcite chips as  

previously described (Chapter 1 of this dissertation). Briefly, calcite chips 

were prepared by cleaving crystalline blocky calcite into suitable size 

fragments (2-6 mm3) with the aid of a flame-sterilized hammer. After 

cleaving, the chips where placed in ethanol 95% and each one flame-sterilized 

before transferring to sterile culture flasks. Calcite purity was evaluated and 

confirmed by X-ray diffraction. Sub-culturing was performed with previously 

infested chips, in which superficial biomass was removed with a small 

watercolor paintbrush and rinsed twice in sterile PES 30.  Cultures where 

inoculated only with infested chips, so that the amount of non-boring 

filaments was minimized and the useful life of the euendolith cultures was 

extended for long-term observations. Cultures where kept at 25° C under 

constant light provided by fluorescent lamps (light intensity = 30 µmoles of 

photons). Cultures where monitored for growth and boring activity by visual 

inspection using a dissecting microscope. 
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Determination of photosynthesis rates in exhumated filaments .  

Filaments were exhumated using a modified dissolution method, based on 

Wade (2003) and described in detail in Chapter 4 of this dissertation. Briefly, 

a solution of 200mM sodium-ethylenediamine-tetraacetic acid (EDTA), pH=5 

was used to dissolve the carbonate. The solution was drawn using a 

peristaltic pump, and allowed to drip on top of infested chips (1mL/min) 

placed on a small screen basket atop of the column of a filtration apparatus. 

Filaments where gradually exposed, gently brushed from the chip, washed 

with sterile distilled water and collected on a 2 µm pore polycarbonate filter, 

on a vacuum filtration apparatus. Each progressive dissolved fraction 

corresponded to a 50 µm deep layer (measured by volume and weight loss). 

Fractions where classified as superficial (top 50 µm), middle (up to 100µm) 

and deep (up to 150 µm). Filaments where rinsed in 10mL of sterile PES, 

centrifuged for 10 minutes at 4,000 RPM and the pellet re-suspended in PES 

medium. Cells where allowed to rest overnight, in the light. A Hansatech 

liquid-phase oxygen electrode chamber (Hansatech Instruments, Norfolk, 

England) was used to measure oxygen evolution from the fractions. The 

electrode was calibrated in PES medium, achieving 100% O2 saturation by 

stirring in the open chamber, and by adding sodium dithionite to establish 

0% O2 saturation.  Oxygen evolution rates where measured under white 

fluorescent light at 500 µmoles of photons.  After measuring, biomass was 

quantified by pelleting cells (4,000RPM, 10 min.) and re-suspending in 5ml of 

90% acetone. Cells where incubated at 4° C for 48h in the dark, and total 

chlorophyll content measured in a TD-700 fluorometer.  
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Determination of boring substrates. Pure crystalline samples of 

andradite (Ca3Fe2(SiO4)3), ankerite (CaFe(CO3)2), aragonite (CaCO3), barite 

(BaSO4), brazilianite (NaAl3(PO4)2(OH)4), colemanite (CaB3O4(OH)3·H2O), 

dolomite (CaMgCO3), fluoroapatite (Ca5(PO4)3F), gypsum (Ca2SO4), hematite 

(Ca2SO4), magnesite (MgCO3), malachite (CuCO3.Cu(OH)2), rhodochrosite 

(MnCO3), strontianite (SrCO3) and vivianite (Fe3(PO4)2·8(H2O)) where 

obtained from mineral collections (eBAY) and prepared as described 

previously for calcite. Commercially available marble chips (CaCO3) where as 

well evaluated for potential infestation. To ensure the pure nature of the 

substrates, purity was verified by X-ray powder diffraction and checked 

against the ICDD Database (The International Centre for Diffraction Data). 

Chips where harvested, placed in 95% ethanol, flame-sterilized and 

inoculated with a BC008 infested calcite chip. A calcite control was kept with 

the cultures under the same experimental conditions to establish the baseline 

for typical (in calcite) boring success. To quantify the biomass of boring 

filaments infested chips where cleaned of any superficial growth with a small 

watercolor brush and rinsed in sterile PES medium. The chips where 

measured with a ruler (in mm) to calculate their total surface area. 

Chlorophyll a was extracted by placing the chips in 5 mL of 90 % acetone for 

48 hours at 4 °C and measured in a TD-700 fluorometer (Turner Designs, 

Sunnyvale, CA, USA). Relative boring activity in all substrates was reported 

as percent of boring rate against calcite controls with levels of boring in 

calcite assumed at a 100% success rate. 
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Laser scanning confocal microscopy. Infested chips were cleaned of any 

superficial biomass with a small watercolor paintbrush, rinsed in PES sterile 

medium twice and incubated for one hour in PES medium with 1 µM of 

Calcium Green-5N (Molecular Probes, Eugene, OR, USA) at room 

temperature under white incandescent light at 30 µmols of photons. CG5N is 

a low affinity calcium-sensitive fluorophore, excitable with visible light and 

having a maximum emission peak close to 540 nm (green). Incubation under 

incandescent light bulbs for 1 hour had no significant effect on CG5N 

fluorescence (no bleaching of the fluorophore was observed). After incubation, 

the chips were fixed to custom-made slides with “superglue” (cyanoacrylate). 

Custom-made slides consisted of a regular microscope glass slide containing a 

modeling clay ring of approximately two centimeters in diameter. The ring 

was then filled with PES containing CG5N at a final concentration of 1 µM. A 

22mm x 22mm glass coverslip of regular thickness was placed on top of the 

ring creating a chamber. The ring held the medium and allowed some 

cushion between the microscope and chip, preventing crushing. Volume 

inside the chamber was approximately 500 µL. The slides were then placed 

on the stage of a Leica TCS-SP2 Laser Scanning Confocal Microscope and 

observed under an oil immersion 40X objective. An epifluorescence mercury 

arc lamp with visible light lines in the 488 nm and 546 nm was used to 

evaluate the sample for viability (presence of photosynthetic pigments in 

cells), prior to laser scanning. Visible laser lines of Ar/Kr (488 nm) and Kr 

(546 nm) were used to excite the samples and emission bandwidths were 

selected using the microscope’s acousto-optical tunable filter (AOTF). CG5N 
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fluorescence was recorded at a bandwidth of 500 to 540 nm and chlorophyll at 

a bandwidth of 670 to 690 nm. Images were recorded using pinhole values of 

one airy unit (82 µm), 400 Hz scanning speed, XYZ format and 1024 by 1024 

pixel resolution. Vertical profiles were created by recording single-scan 

optical sections every 1.3 µm, starting from the overhead medium and moving 

vertically with depth into the calcite chips. For time course experiments, 

individual filament fluorescence was measured on a single optical section 

focused on the surface of the chips at the entrance of the boreholes. Images 

were analysed with the Leica Confocal Software (Leica Microsystems Inc., 

Bannockburn, IL, USA).  

 

General cal ibration of Calcium Green-5N. Initial calibration of CG5N 

was performed using a TD-700 fluorometer (Turner Designs, Sunnyvale, CA, 

USA) using a 530/30 FITC green filter to measure fluorescence in calcium 

standards, ranging from 0.1 mM-50 mM CaCl2 in Ca2+-free Artificial 

Seawater medium (Ca2+-free ASW) at a final concentration of 1 µM CG5N. 

Performing this calibration outside the experimental setup allowed us to 

establish the useful range for CG5N and evaluate its efficiency in our 

medium. When working with calcium fluorophores in seawater, calibration 

offers some challenges as natural seawater contains approximately 10mM of 

free calcium ions and early saturation can be a problem even when using low 

affinity dyes. The dissociation constant (Kd) of CG5N in buffered medium at 

pH of 7.2 is reported to be 14 µM (Rajdev and Reynolds, 1993, Tucker and 

Fettiplace, 1995, Zhao, et al., 1996). However when CG5N was added to PES 
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medium at a pH of 8.3, we calculated Kd’s anywhere from 2 mM-5 mM using 

the following equation for a one site binding hyperbola: 

Y=Bmax*X/ (Kd +X) 

in which Y equals fluorescence as relative fluorescent units (RFU), Bmax 

equals the maximum fluorescence (as relative fluorescent units) at 

saturation, X equals free calcium concentration (in mM) and Kd is the 

dissociation constant. It has been reported that the Kd of calcium 

fluorophores and the affinity of EGTA for calcium (EGTA being the core 

molecular scaffold of Ca2+ sensitive fluorophores) is dependent on 

temperature, pH and ionic strength (Eberhard and Erne, 1991, Harrison and 

Bers, 1989, Lattanzio and Bartschat, 1991) providing evidence that under 

different conditions the Kd of dyes can change. In our case, the reduced 

affinity of CG5N for calcium in PES medium at pH of 8.3, allowed the dye to 

report at seawater calcium levels without saturating. This demonstrates that 

the useful range of CG5N could be pushed beyond its standardized use in our 

experiments and even when a high-resolution calibration was not achieved, 

the dye proved useful in measuring changes in calcium concentration with a 

moderate amount of precision. 

  

In situ calibration of CG5N. To establish the calibration curve of CG5N 

in situ, a custom slide was used and calcium standards ranging from 0.1 mM-

50 mM calcium chloride in calcium-free Artificial Seawater medium (Ca2+-

free ASW) and 1 µM CG5N were added into the chamber at increasing levels 

of concentration. Fluorescence in all standards was measured using the Leica 
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Confocal Software. While measuring fluorescence, our effective resolution of 

free calcium concentrations was impaired after 30 mM. A linear model was 

assumed and calibration curve was established using the one site binding 

hyperbola equation explained previously. 

 

Oxidative phosphorilation inhibitors  and calcium-transport 

inhibitors . The inhibitors carbonyl cyanide m-chlorophenyl hydrazone 

(CCCP), olygomycin, verapamil, lanthanum chloride and sodium 

orthovanadate were obtained from Sigma-Aldrich (Sigma-Aldrich Corp., St. 

Louis, MO, USA. Thapsigargin was obtained from Alexis Biochemicals 

(Lausen, Switzerland). Tert-butyl hydroquinone (TBHQ) was obtained from 

Spectrum (Spectrum Chemicals, Gardena, CA, USA). Stocks were prepared 

by dissolving polar compounds in sterile deionized water and non-polar 

compounds in dimethyl sulfoxide (DMSO) (for thapsigargin) or ethanol (for 

verapamil). Working solutions were prepared with fresh sterile PES and 

adjusted to pH=8.3, having final concentrations containing less than 1% of 

the solvents. 

 

Effect of calcium-transport inhibitors on photosynthesis . Oxygen 

optodes (PreSens-Precision Sensing GmbH, Regensburg, Germany) were used 

to assess the effects of calcium transport inhibitors on photosynthesis, if any, 

by monitoring oxygen evolution in infested chips. Oxygen optodes were 

calibrated by bubbling PES with nitrogen for 10 minutes to achieve oxygen 

starvation (0% O2) and by bubbling with air for 10 minutes to achieve oxygen 
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saturation (100% O2). A micromanipulator was used to lower the optodes in 

the medium for initial calibration, to establish oxygen profiles and time 

courses in live chips. All the oxygen profiles were recorded using an ABB SE 

120 chart recorder (ABB industries, Zurich, Switzerland). Concentration of 

the compounds was equivalent to the ones used in the confocal microscope. 

RESULTS 

Boring in minerals other than calcite. To test the boring ability of 

BC008 in other substrates, pure crystalline samples of andradite 

(Ca3Fe2(SiO4)3), ankerite (CaFe(CO3)2), aragonite (CaCO3), barite (BaSO4), 

brazilianite (NaAl3(PO4)2(OH)4), colemanite (CaB3O4(OH)3·H2O), dolomite 

(CaMgCO3), fluoroapatite (Ca5(PO4)3F), gypsum (Ca2SO4), hematite (Ca2SO4), 

magnesite (MgCO3), malachite (CuCO3.Cu(OH)2), rhodochrosite (MnCO3), 

strontianite (SrCO3), vivianite (Fe3(PO4)2·8(H2O)) as well as marble chips 

(CaCO3),  were evaluated as possible candidates for infestation . Substrates 

were allowed infestation for a period of 3 months under identical light 

conditions. Table 1 illustrates positive or negative boring (with calcite,  the 

highest rates, set as 100%  rate) on all the minerals tested. Apart from pure 

calcite, only aragonite, strontianite (modestly) and marble chips 

(microcristalline calcite rock) had significant evidence of boring as indicated 

by visual inspection and boring success quantification. 

Temporal separation. Temporal separation. To address the temporal 

separation of boring and photosynthesis, growth rates (doubling time) and 

levels of infestation on calcite chips (Chl a /cm2) were measured as a function 
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of light exposure, illustrated in Fig.2A. Cells were able to bore under 24h of 

constant light, albeit doubling times and infestation were marginally affected 

by the lack of day-night cycle. Optimal doubling times and infestation rates 

were obtained at 4 hours and 16 hours of light exposure respectively. 

To test the temporal separation of the boring process and photosynthesis, 

liquid cultures of BC008 were incubated under constant light (no period of 

darkness) for 5 weeks. Growth rates (doubling time) and levels of infestation 

on calcite chips (Chl a /cm2) were measured as a function of light exposure, 

illustrated in Fig.2A. Cells were able to bore under 24h of constant light, 

albeit doubling times and infestation were marginally affected by the lack of 

day-night cycle. Optimal doubling times and infestation rates were obtained 

at 4 hours and 16 hours of light exposure respectively. 

 

Spatial separation. To test the spatial separation of the boring process, in 

situ emission spectra of individual cells were measured with LSCM 

spectrometry on filaments that were actively boring to assess photosynthetic 

pigment expression (Fig. 2B). Both surface filaments (50 µm in depth) and 

deeply-boring filaments (150 µm in depth) express chlorophyll and 

phycobilins peaks as seen in the emission spectrum, and no significant 

difference was found in pigment expression on cells at the surface versus cells 

deep inside chips. Fig. 3 illustrates photosynthesis rates of boring filaments 

disinterred by EDTA dissolution.  Actively boring filaments where isolated by 

decalcification in consecutive fractions (surface, middle and deep) of 50 µm in 
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depth. Typical photosynthetic rates of 2 other cyanobacteria (Gloeobacter 

violaceus PCC 7421, Synechocystis sp. PCC 6803 (Koyama, et al., 2008)) are 

presented for comparison.  

 

Calcium mobil ization by boring cel ls. The calcium sensitive 

fluorophore CG5N was used to measure putative release of free calcium by 

distal cells. Following the proposed calcium model, our hypothesis suggests 

that euendolithic cyanobacteria gradually dissolve the carbonate by removing 

calcium from the interstitial space between the apical cell(s) at the boring 

front and the calcium carbonate, with a Ca 2+ transporting enzyme(s). Once a 

small amount of the mineral is dissolved, caused by the carbonate giving Ca2+ 

to compensate for those lost, the apical cell will expand to fill the space, and 

the process of dissolution is resumed. The calcium is mobilized from cell to 

cell through the filament and eventually released from the distal cell (the one 

closest to the mineral’s surface), maintaining internal calcium homeostasis. 

This release of Ca2+ can be used as a proxy for the boring process, providing 

evidence of its activity. If this is true, we should be able to measure the 

release of free Ca2+, understanding that this measuring does not completely 

disprove a process that involves dissolution with acids. Even if we are able to 

measure the release of Ca2+ above saturation, we cannot disprove the 

possibility of boring being driven by acid attack, as dissolving calcium 

carbonate with acid will still release Ca2+. The problem lies in that observing 

any changes in acidity within the tunnels is impossible, as protons released 

would react with the surrounding carbonate, and no free H+ would be 
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available to measured with a reporter (i.e. pH-sensitive fluorophores). The 

process may still happen, but we are yet to quantify it with efficiency. 

However, if we were to predict how the process would look when dissolution 

is indeed acid-driven, we would expect the concentration of calcium to 

decrease linearly towards the surface of the chip due to diffusion of free Ca2+ 

from the boring front. The concentration of free Ca2+ (interstitially) in the 

deepest part of the tunnels would rise above saturation, these being the 

closest to the boring front and the ionic products of dissolution forced to 

slowly diffuse outwards. As predicted, calcium release and eventual 

supersaturation can be measured at the surface of infested chips, which is 

consistent with our hypothetical model. Calcium microprofiles of infested 

chips were recorded (Fig. 4A) and calcium concentration inside the boreholes 

decreased to levels below saturation (less than 10 mM Ca2+) with depth. 

Imaging of a chip placed under 48h of darkness (Fig. 4B) as well as sterile 

chips and bleach killed infested chips revealed no accumulation of calcium. 

Figure 3C shows a vertical cross section of a BC008 infested calcite chip with 

observed accumulation of Ca2+ (bright green) at the surface of boreholes, the 

latter being excreted by the filaments (in red).  

 

Boring is light dependent. To evaluate the effects of light in the boring 

process, experiments with light and dark shifting were performed. 

Cyanobacteria are phototrophs and a constant input of light is expected to 

maintain boring. Upon darkening, boring should stop or at least be reduced 

significantly, although respiration may still provide some energy. What is 
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expected is for the release of calcium to decrease or stop completely in the 

dark, when chemical energy is not available and when calcium-transporting 

proteins are inactivated. The concentration of calcium in the medium should 

remain at basal levels (close to 10 mM for seawater) and not change if the 

cell’s transporting machinery is inactivated. Cells were incubated in the 

stage illumination (white light, 50 µmoles of photons) for 1 hour before initial 

imaging. To demonstrate light dependency, a characteristic of boring by 

phototrophs, illumination was turned off for at least one hour, and imaged 

again. To assess recovery, light was turned on once more and chips incubated 

for ~1 hour before repeating measurements. Time course experiments provide 

evidence that the release of Ca2+ by the filaments and the following Ca2+ 

supersaturation at the surface of the boreholes is light dependent. When light 

is turned off, the supersaturation of the cation decreases to saturation levels 

(same levels as the medium, ~10 mM) and when light is again turned on, the 

level becomes once more supersaturated (Fig. 5A). This process was 

dependent on light irradiance as well, as cells incubated under more intense 

light (100 µmoles of photons) had higher recovery super-saturation levels 

than those at lower light intensity (30 µmoles of photons) (Fig. 5B). 

 

Boring is energy dependent.  To evaluate the chemical energy 

contribution to the boring process, a cocktail of carbonyl cyanide m-

chlorophenyl hydrazone (CCCP) 2 µM and the antibiotic olygomycin 63 µM at 

a 1:1 ratio was used to block oxidative phosphorylation in strain BC008. 

CCCP works by disrupting the integrity of cell membranes, effectively 
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decoupling the electron transport chain (Hirose, et al., 1974, Kasianowicz, et 

al., 1984). Oligomycin inhibits ATP synthase by blocking its proton channel, 

which is necessary for oxidative phosphorylation of ADP to ATP (Nakata, et 

al., 1995). If the energy generating processes such as the electron transport 

chain and ATP synthesis are hindered, boring is also expected to stop. Cells 

were imaged in the light, and when the CCCP/oligomycin cocktail was added.  

free calcium supersaturation levels at the surface of the chip decreased back 

to saturation levels equivalent to those in the media (Fig. 5C). Sodium 

orthovanadate 10 mM was also used to evaluate the effects of chemical 

energy starvation. Vanadate ions act as inhibitors a number of ATPases, 

most likely acting as a phosphate analogue (Gordon, 1991). A similar result 

was achieved (Fig. 5D) decreasing Ca2+ supersaturation levels at the surface 

of infested chips back to saturation levels. The experiments prove the 

relationship between chemical energy starvation and the inability of the 

boring filaments to release calcium at the surface of chips. 

 

Boring is partially impaired by the addition of a calcium channel  

blocker. To evaluate the contribution of calcium channels in the boring 

process, the compound verapamil at a final concentration of 1 mM was used 

(Fig. 5E). Verapamil is a calcium antagonist and acts as a Ca2+ channel 

blocker (Andersen, et al., 2006, Bourget, 1982, Shainkin-Kestenbaum, et al., 

1989). If calcium channels are involved in the process, then by blocking these 

with the respective compounds should have a measurable effect on the 

release of Ca2+ due to boring. Fig. 4E shows calcium supersaturation levels at 
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the surface of the chip decreased approximately to half of the initial levels 

recorded at time zero when verapamil was added to cultures incubated in the 

light. Note that the concentrations used to obtain this effect are much larger 

than those needed to affect channels elsewhere (Kirischuk, et al., 1996, 

Knight, et al., 1997, Teixeira, et al., 2004). Long-term experiments to observe 

verapamil effects on boring proved inconclusive (data not shown). 

 

Boring is impaired with the addition of lanthanide ions. To 

evaluate the contribution of cation-transporting ATPases in the boring 

process, lanthanum chloride (LaCl3) was used Lanthanum chloride has been 

used in several models to evaluate its effect on calcium-related processes, 

working as a competitive inhibitor of divalent cation channels and ATPases 

(Entman, et al., 1969, Fernandez-Belda, 1988, Fujimori and Jencks, 1990, 

Hanel and Jencks, 1990). In time course experiments, (Fig. 5F) when 

lanthanum chloride was added to infested chips in the light, superstauration 

levels of Ca2+ measured at the surface of chips decreased back to saturation 

levels with time. The process was concentration dependent (i.e competitive), 

with the fastest effect occurring with a final concentration of 10 mM 

lanthanum chloride. 

 

Boring is impaired with the addition of Ca2+ ATPase blockers .  

Specific blockers of Ca2+ ATPases, the compounds thapsigargin and tert-butyl 

hydroquinone (TBHQ) were used in time course experiments to evaluate their 

effects on boring activity (Fig. 4H & 4D) Thapsigargin, a tight-binding 
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inhibitor of sarco / endoplasmic reticulum (SERCA) Ca2+ ATPase (Rogers, et 

al., 1995) has been used in several models to evaluate its effect on P-type 

ATPases (Geisler, et al., 1998, Lanini, et al., 1992, Moreno, et al., 2008). Tert-

butyl hydroquinone (TBHQ) it is also a blocker of SERCA P-type Ca2+ 

ATPases (Gukovskaya, et al., 2000, Phillippe, et al., 1995, Robinson, et al., 

1992). If calcium-transporting enzymes drive the process, then by blocking or 

decoupling these with inhibitors, the observed Ca2+ supersaturation around 

boreholes should cease. In time course experiments, when thapsigargin or 

TBHQ were added to infested chips in the light, calcium supersaturation 

levels measured at the surface of infested chips decreased to saturation levels 

with time. The effect on Ca2+ supersaturation was fastest with TBHQ, 

decreasing to saturation levels in 20 minutes. Both compounds had a 

concentration dependent effect, thapsigargin 1 mM and TBHQ 100 µM 

having the fastest response. 

 

Effect of calcium transport inhibitors on photosynthesis . To 

evaluate the effect of calcium transport inhibitors in photosynthesis, time 

course experiments for sodium orthovanadate, verapamil and lanthanum 

chloride (Fig. 6) as well as for thapsigargin and TBHQ were recorded in the 

light using optodes to measure oxygen evolution. Cells were evaluated for 

viability by recording supersaturation levels of oxygen in the light and 

undersaturation of oxygen by turning the light off. Neither compounds 

affected photosynthesis significantly over a period of several hours, and cells 
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remained viable as demonstrated by light and dark cycles performed after the 

treatments.  

DISCUSSION 

 BC008 cells were able to bore under constant light, and even when 

cells were at sub-optimal growth conditions (with best infestation rates at 16 

hours of light), the results show that boring can occur alongside 

photosynthesis. The evidence disproves a temporal separation hypothesis of 

the boring mechanism, where the boring process is achieved exclusively 

under darkness by using acidic by-products of respiration as the driving force. 

Spatial separation of the process is disproved, as photosynthesis occurs even 

in the deepest layers of the chips, as demonstrated both by the presence of 

photosynthetic pigments in deep cells and oxygen evolution measurements.  

 In regards to the support by heterotrophic bacteria during boring, 

axenic filaments were still able to bore, so heterotrophs do not play a direct 

role in boring. It is interesting to mention, on the other hand, that non-axenic 

cultures colonized chips faster that axenic ones, probably due to increased 

efficiency in nutrient cycling with the presence of heterotrophs. With regards 

to the strain’s boring potential, non-carbonate minerals or carbonates 

containing barium, copper, iron, magnesium, manganese, or sodium could not 

be bored, likely do to the inability of the ATPases to transport those cations. 

Our strain could not bore on carbonates including magnesite, dolomite, 

siderite, malachite, ankerite, and witherite.  Among the sulfates, gypsum and 

barite were not attacked; neither were some calcium silicates like andesite. 

Contrary to reports in the literature (Konigshof and Glaub, 2004) none of the 
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phosphates in our trials (apatite, vivianite, brazilianite) could be bored by our 

strain, suggesting that its habitat is limited to calcium (or strontium) 

carbonates in Nature. This specific mineral requirement stands out against 

the utilization of acids as the exclusive boring force, at least in this model 

organism, as any carbonate could have been subject to acid attack. In the 

case of strontianite, the ability of BC008 to bore into this substrate, although 

modest, provides some evidence that the mechanism could employ specific 

enzymes for calcium transport, as strontium is atomically analogous to 

calcium and frequently interchanged in biological systems (e.g. Avery and 

Tobin, 1992, Uhrik and Zacharova, 1988, Vasington, 1966) 

 If acid-driven dissolution were the main driver, we would expect 

calcium concentrations in the interstitial space of the borehole to decrease 

linearly towards the surface of the chip due to diffusion from the boring front, 

and the concentration of Ca2+ inside the boreholes to rise above saturation. 

Instead, what is observed is an accumulation of Ca2+ at the surface of the 

chips, and undersaturation inside the boreholes, which can only mean 

energy-dependent transport as it happens against thermodynamic 

equilibrium. As predicted by our model, if boring happens with calcium 

“pumping”, the concentrations in the tunnels would be expected to be the 

lower than the basal concentration of the medium, as direct uptake would 

lower the ion activity product below saturation. Active transport trough the 

filament and the necessity of intracellular calcium to remain stable, predicts 

the release of this excess Ca2+ afar from the boring front. Such a distinct 

gradient of saturation in conditions where spontaneous chemical dissolution 
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of calcium carbonate is unlikely to occur (pH = 8.3 and 10 mM Ca2+) can only 

be explained by biological action. The LSCM–acquired profiles and time 

course experiments demonstrate that the accumulation of calcium observed 

at the surface of infested chips its correlated to the action of boring, and that 

the process depends on light and energy input, which is consistent with the 

activity of photosynthetic organisms.  

 Energy-dependent transport seems to play an intrinsic role in the 

boring mechanism. The results demonstrate that when energy starvation is 

forced by turning off the light, or by the addition of the oxidative 

phosphorilation and ATP production inhibitors CCCP and olygomycin, the 

observed calcium accumulation is effectively stopped, returning to saturation.  

Sodium orthovanadate acting as an ATPase inhibitor was able to stop the 

process completely. These results validate our hypothesis and are consistent 

with our proposed energy-dependent model for boring in cyanobacteria.  

 When using calcium transport inhibitors, the calcium channel blocker 

verapamil had a partial effect in the boring mechanism by decreasing the 

accumulation of free calcium to about half of the control levels. Because the 

process is not inhibited completely, this suggests that calcium channels might 

be part of the molecular boring machinery or that the chemical might be 

exerting a partial effect on transporting enzymes. Lanthanum chloride 

working as a competitive inhibitor of divalent cation channels and ATPases 

was responsible for the loss of the calcium accumulation, probably acting as 

broad-spectrum inhibitor of the mechanism. Specific calcium transporting 

inhibitors of P-type ATPases like thapsigargin and TBHQ effectively stopped 
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this release and accumulation of calcium. This suggests a mechanism of 

transport in which calcium is mobilized by the action of P-type Ca2+ (or 

similar) transporting proteins.  The inhibitors action also suggests that the 

type of enzymes that are present in the boring cyanobacterium might have 

similar structures to described sarco / endoplasmic reticulum (SERCA) P-type 

Ca2+ ATPases in other models. No significant effect on photosynthesis was 

demonstrated by any of the treatments involving calcium-metabolism 

inhibitors, confirming that the results of the treatments are indeed due to 

their effect on calcium transport and not a mere effect on photosynthesis 

hindrance, which would inevitably stop the dissolution process.  

 The results of this study are the first quantitative proof that 

demonstrate how boring its performed in at least one cyanobacterium model. 

The evolutionary implications of the use of calcium-transporting proteins at 

the organism’s advantage are many. Cell orchestration, achieving complex 

transport and a smart display of thermodynamic management is yet another 

proof of the true multicellularity of some of these phototrophic prokaryotes. 

The reasons for boring by calcium removal are not absolutely evident, but it 

seems that this process of dissolution uses an available asset (a transporting 

protein or proteins) that does not place the cells at a physiological 

disadvantage, like a constant production of acid would.  

CONCLUSIONS 

    An axenic culture of a euendolithic cyanobacterium, Mastigocoleus 

strain BC008, can bore into calcium or strontium containing carbonates 

under controlled laboratory conditions. It is capable of boring into the 
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mineral using a calcium-transporting mechanism that allows dissolution of 

the carbonate by decreasing ion activity products in the interstitial space 

between cell and mineral. An accumulation of calcium at the distal end of the 

boring filaments can be observed due to excretion of Ca2+ after mobilization 

from the boring front, and this process is dependent on light, energy and the 

activity of P-type Ca2+ ATPases. This is the first and only evidence, to this 

date, that demonstrates that dissolution of carbonates other than acid attack 

is used by some cyanobacterial euendoliths. Work in progress is focused on 

probing the expression of P-type Ca2+ATPases in the strain and assessing the 

universality of the boring mechanism among other euendolithic 

cyanobacteria from geographically distinct locations. 

ACKNOWLEDGMENTS 

 We would like to thank Page Baluch and Bret Judson of the KeckLab 

Bioimaging Facility at Arizona State University for their immense help with 

confocal microscopy. We would also like to thank the members of the Garcia-

Pichel lab for their helpful suggestions.  

 This work was supported by a National Science Foundation grant 

0311945. 

 



  82 

 

FIG. 1 Typical morphology of free-living filaments of Mastigocoleus strain 
BC008, as seen with phase-contrast optics (A) and epifluorescence 
microscopy (Ex=488 nm) (C); Bar, 10 µM. (B) Examples of calcite chips 
infested by an axenic culture of BC008. (D) Vertical cross-section of a calcite 
chip showing an extensive network of boring filaments. Deepest filaments 
are seen penetrating to depth’s of approximately 400 µm. Surface 
micritization can be observed due to extensive reworking of the mineral 
matrix, consequence of borehole excavation and carbonate re-precipitation. 
Bar, 100 µM. 
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FIG. 2 (A) Growth rate (doubling time, right axis) in liquid culture, and level 
of infestation attained on blocky calcite chips by BC008 at 5 weeks of 
incubation (left axis) as a function of the length of the light period when 
grown on a day-night cycle. (B) Cell-specific photosynthetic pigment content 
measured in situ during boring using fluorescence emission spectroscopy of 
confocal microscope optical sections with excitation at 488 nm.  Lines show 
average emission spectra of single cells, for cells close to the boring front 
(deep) compared to cells close to the surface of the solid (surface). Insert 
shows data for Chl a-specific emission at 685 nm (error bars are 1 standard 
deviation), and the difference is not significant (t-test; p = 0.234).  
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FIG. 3 Photosynthetic rates of actively boring filaments exhumated from an 
infested calcite chip. Consecutive fractions (surface, middle and deep) 
correspond to 50 µm in depth. Photosynthetic rates are not significantly 
different in any of the fractions (t-test, P=0.333). Photosynthetic rates of 2 
other cyanobacteria are presented for comparison. Light intensity = 500 
µmoles of photons 
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FIG. 4 (A) Typical in situ calcium microprofile of a BC008 infested chip 
measured in the LSCM. (I) Calcium concentration (in mM) and (II) 
Chlorophyll a values (as relative fluorescent units) are shown as a function of 
diffusional distance. Calcium supersaturation is observed at the surface of 
the infested chip where distal ends of the filaments and entrance of boring 
tunnels are located.  Dotted line represents one standard deviation. (B) In 
situ imaging of calcium excretion by boring activity measured with LSCM. 
Image shows emission fluorescence of a vertical cross-section of an infested 
calcite chip. Release and accumulation of calcium at the surface of infested 
chip (green fluorescence, λ = 541 nm) is observed at the distal end of boring 
filaments (red autofluorescence, λ = 685 nm). 
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FIG. 5 (A)  Time courses showing calcium concentrations measured (as 
reported by CG5N) in the LSCM on one optical plane, at the surface of an 
infested chip. Dotted lines represent one standard deviation (of the 
population average) and points represent typical response in one individual 
filament.  (A) Light/dark cycle with initial light intensity of 100 µmoles of 
photons (lamp of the microscope) followed by a recovery phase with light 
intensity of 100 µmoles of photons. (B) Light/dark cycle with initial light 
intensity of 30 µmoles of photons, followed by a recovery phase with light 
intensity of 100 µmoles of photons. (C) Effect of cellular energy decouplers 
CCCP/ oligomycin (1:1 cocktail at 2 µM and 60 µM respectively) and (D) 
sodium orthovanadate (10 mM) on boring activity. (E) Effect of calcium 
channel inhibitor verapamil (1 mM), (F) ATPase and calcium channel 
inhibitor lanthanum chloride (10 mM) and P-type Ca2+ ATPases inhibitors 
(G) thapsigargin (1 mM) and (H) TBHQ (100 µM) on boring activity. 
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FIG. 6 Controls showing the effect of calcium-transport inhibitors (A) 
sodium orthovanadate, (B) verapamil and (C) lanthanum chloride on 
photosynthesis of infested chips. Concentrations of the compounds are equal 
to the ones used in LCSM experiments. Oxygen values are shown as percent 
oxygen saturation (O2 %) recorded with an oxygen optode in PES medium, 
and show initial and after treatment light/dark cycles to test for cell viability.  
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Table 1. Boring capability of strain BC008 in various substrates. 
Positive (+) or negative (-) infestation was measured both 
qualitatively and quantitatively by confirming boring success after 3 
months of incubation. After removal of superficial growth, substrates 
were examined under the microscope for infestation and boring 
success quantified as Chl a / cm2. All mineral samples were confirmed 
pure by X-ray diffraction. 
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CHAPTER 3 

UNIVERSALITY OF THE Ca2+ ATPASE-MEDIATED CARBONATE 

BORING MECHANISM IN CYANOBACTERIAL EUENDOLITHS 
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ABSTRACT 

 Recent work has shown that the filamentous cyanobacterial 

euendolith Mastigocoleus testarum (strain BC008) bores into carbonates 

using Ca2+-ATPases to power Ca2+ uptake from the medium at the boring 

front, promoting dissolution of CaCO3 there. It is not know, however, if this is 

a common mechanism among euendolithic cyanobacteria, or a rather unique 

capability of this model strain. To test this we undertook a survey of, 

multispecies euendolithic microbial assemblages from carbonates collected in 

the Caribbean, Mediterranean, North and South Pacific marine coastal 

waters. Microscopic examination revealed the presence of a variety of 

euendolithic morphogenera, encompassing 3 out of the 5 major cyanobacterial 

taxonomic groups. 16S rRNA gene clone libraries confirmed the diversity of 

euendoliths and allowed us to categorize them into 8 distinct phylogenetic 

clades. Using real-time Ca2+ imaging under the laser-scanning confocal 

microscope, all samples showed the light-dependent formation of Ca2+ 

supersaturated zones in and around boreholes, confirming that they 

sustained active carbonate boring by phototrophs.  In three out of four 

samples boring activity was sensitive to at least one of two inhibitors of Ca2+-

ATPase transporters (thapsigargin or tert-butylhydroquinone) indicating that 

the Ca2+-ATPase mechanism of Mastigocoleus is widespread among 

cyanobacterial euendoliths, but perhaps not universal. Function/community 

structure correlations point to one particular clade of baeocyte-forming 

euendoliths as the potential exception. 
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INTRODUCTION 

 Euendolithic cyanobacteria, also known as boring, microboring, 

excavating, perforating or tunneling cyanobacteria, can penetrate into a 

variety of calcareous substrates, such as shells, dead coral and limestone, by 

means of chemical dissolution. They can be found in diverse geographical 

locations worldwide (Al-Thukair and Golubic, 1991, Chacón, et al., 2006, 

Fremy, 1936, Golubic, 1975, Le Campion-Alsumard, et al., 1995, 

Raghukumar, et al., 1991, Vogel, et al., 2000) and are involved in the 

diagenesis or in some cases the lithification of the calcareous substrates that 

they colonize. In most instances, they weaken the structure of a solid 

substrate with their tunneling (Che, et al., 1996, Kaehler, 1999, Webb and 

Korrubel, 1994). In other cases, the re-precipitation of micrite, by-product of 

dissolution, forms the cement that binds carbonate sand grains in 

stromatolitic laminae (Reid, et al., 2000). A variety of euendoliths has been 

described (Golubic, 1969, Le Campion-Alsumard, et al., 1995, Zhang, 1987), 

during almost 2 centuries of naturalistic studies (Bornet, 1888, Lagerheim, 

1886, Thuret, 1875).  

 The mechanism that allows cyanobacterial endoliths to bore, a subject 

of long-standing controversy, has been recently elucidated in the model 

filamentous strain, Mastigocoleus testarum BC008 (Chapter 2, this 

dissertation). It is base the uptake and transcellular transport of Ca2+ 

mediated by P-type Ca2+-ATPases. As it is understood, these enzymes help 

import free Ca2+ from the medium at the interstitial space between boring 

cell and mineral (“boring front”) reducing the concentration of the ion in the 
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interstitial space below that of saturation, and promotes the localized 

dissolution of the substrate at the boring front. Intracellular calcium is 

transported cell-to-cell along the filament, likely with the aid of other Ca2+ 

specific pumps or channels, and excreted at the farthest end from the boring 

front, maintaining internal calcium homeostasis (Chapter 2, this 

dissertation).  This results in a strong supersaturation of Ca2+ around the 

boreholes, This mechanism shown in M. testarum BC008 differs from the 

previously tacitly accepted hypothesis of boring powered by acid deposition. 

 The Phylum Cyanobacteria are a diverse group of organisms, but only 

a small proportion of species are capable of boring (see Introduction, this 

dissertation). However, this selected group has representatives in several of 

the major taxonomic “orders” composing the Phylum.  Because of this 

phylogenetic diversity, in it is only natural to question if the strategy of 

BC008 is universal among all. A mechanism that is common to all 

cyanobacterial microborers does not seem implausible. Still, for those species 

that bore, the information available has been mostly descriptive, with no 

physiological or molecular knowledge on the boring mechanism.  

 In fact explicit phylogenetic work on euendoliths is extremely 

restricted and practically non-existent (Chacón et al, 2006; Foster, et al., 

2009, Ramírez-Reinat et al., unpublished), and thus the evolutionary history 

of this capacity remains largely unexplored.  

 The overarching goal of this work is to address the potential 

universality of the boring mechanism among cyanobacterial euendoliths. The 

boring mechanism was investigated empirically in complex microbial 
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assemblages, collected from distinct geographical locations worldwide, so as 

to encompass as diverse as possible a range of subjects,  and compared to the 

one described in M. testarum BC008. 

MATERIALS AND METHODS 

Field samples. Euendolith-infested carbonates (clam shells and dead coral 

skeleton pieces) were collected from four coastal regions: the Caribbean (San 

Juan, Puerto Rico, 18°45' N, 65°96' W), North Pacific (Baja California, 30° 92' 

N, 114°70' W), Mediterranean (L’Alguer, Italy, 40°33' N, 8°19' E) and South 

Pacific (Whakatane, New Zealand, 37°31' S, 177°11' E). Infested samples 

were selected guided by their for typical green to gray coloration.  They were 

air-dried and transported to the laboratory where they were rehydrated in a 

mixture of Provasoli’s Enriched Seawater (PES) medium (Provasoli, 1968) 

(pH=8.3) and filtered seawater in a 1:1 (v/v) ratio. Samples were kept at 25° 

C under constant light, provided by white fluorescent lamps, at a light 

intensity of 30 µmoles of photons, before analysis. 

 

Laser scanning confocal microscopy. Small fragments, ranging from 2 

to 6 mm2 in size, broken off from large pieces of infested carbonate using 

sterile pliers and/or a sterilized hammer. Fragments were scrubbed briskly 

with a small paintbrush to remove any superficial biomass or biofilms, rinsed 

twice in sterile PES medium and prepared for confocal microscopy analysis as 

described in Chapter 2 of this dissertation. Briefly, fragments were incubated 

for 1 hour in PES medium with 1 µM of Calcium Green-5N ([CG5N] 

Molecular Probes, Eugene, OR, USA) at room temperature under white 
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incandescent light at 30 µmoles of photons. After incubation, the fragments 

were fixed to custom-made slides with “superglue” (cyanoacrylate). Slides 

were then filled with PES containing CG5N at a final concentration of 1 µM. 

A glass coverslip was placed on top of the ring, creating a chamber. The slides 

were then placed on the stage of a Leica TCS-SP2 Laser Scanning Confocal 

Microscope and observed under an oil immersion 40x objective. An 

epifluorescent mercury lamp, with visible light the 488nm and 546 nm 

regions, was used to evaluate the fragments for infestation and viability 

(presence of photosynthetic pigments in cells) prior to laser scanning. Visible 

laser lines of Ar/Kr (488nm) and Kr (546nm) were used to excite the 

fragments. CG5N and chlorophyll fluorescence were recorded on a single 

optical section focused on the surface of the carbonate, at the entrance of the 

boreholes (Fig. 1). Images were analyzed with the Leica Confocal Software 

(Leica Microsystems Inc., Bannockburn, IL, USA). Fragments were analyzed 

within a week of collection, to minimize potential changes in community 

composition. 

 

Testing for boring activity and its light-dependency. To test for 

active boring we imaged [Ca2+] in situ at the surface of infested fragments on 

a single optical section. This area at the entrance of boreholes has strongest 

[Ca2+] supersaturation(>>10 mM) in pure culture experiments suing BC008. 

Fragments were illuminated with the stage illumination (white light, 50 

µmoles of photons) for 1 hour before initial imaging. To demonstrate light 

dependency, a characteristic of boring by phototrophs, illumination was 



  95 

turned off for at least one hour, and imaged again. To assess recovery, light 

was turned on once more and fragments incubated for ~1 hour before 

repeating measurements. 

 

Effects of calcium-transport inhibitors on boring. To address the 

involvement of P-type Ca2+ ATPase enzymes in the boring mechanism of field 

euendoliths, the inhibitors thapsigargin (TG [Alexis Biochemicals, Lausen, 

Switzerland]) and tert-butyl hydroquinone (TBHQ [Spectrum Chemicals, 

Gardena, CA, USA]) were used at a final concentration of 1 mM. Carbonate 

fragments were incubated under constant light for 1 hour and single optical 

plane measurements at the surface of the carbonate were recorded, before 

addition of the inhibitors. [Ca2+] dynamics were monitored thereafter for at 

least 1 hour.  

 

Exhumation of euendoliths and microscopic observations. 

Euendoliths were exhumated from the carbonate samples used in the boring 

experiments using am EDTA dissolution method described in detail in 

Chapter 4 of this dissertation. Briefly, carbonate fragments were washed in 

sterile PES. and placed on a mesh basket on top of the column of a filtration 

apparatus. There, an iced-cooled, sterile solution of 100 mM ethylene-

diamine-tetraacetic acid (EDTA) adjusted to pH 5 was allowed to drip over 

the sample, slowly dissolving the carbonate matrix, driven by a peristaltic 

pump at a rate of 0.5 mL min-1. Cell then exposed were removed by gently 

brushing the surface, allowed to flow with the dripping EDTA solution and 
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collected on a (2 µM pore size) polycarbonate filter at the bottom of the 

column. Filters were washed with sterile distilled water (~5 mL) while still in 

the column, collected and placed in 5 mL of sterile PES medium. After gentle 

centrifugation (4,000 RPM, 10 min.) filters were removed and cells re-

suspended in sterile PES medium. Wet mounts were prepared in glass slides 

for the observation of exhumated euendoliths, which was done under 

brightfield optics in a compound microscope. Cell diameter measurements 

were performed with a calibrated ocular micrometer.  

 

DNA extraction. Nucleic acids were extracted from the exhumated 

biomass of the same samples used in physiological experiments and 

microscopy, using the UltraClean Soil DNA kit (MoBio Laboratories, Inc., 

Solana Beach, Calif.) according to the manufacturer’s recommendations. 

After extraction, genomic DNA quantity and size was determined by 

electrophoresis on 1% agarose gels, and stained with ethidium bromide. 

Approximately 10 ng of DNA extract was used as template to generate small 

subunit ribosomal RNA gene (16S rRNA) amplicons by Polymerase Chain 

Reaction (PCR) amplification. 16S rRNA fragments (ca. 700 bp-long) were 

amplified, using the primer set CYA106F /CYA781R, specific for 

Cyanobacteria (Nübel, et al., 1997). The thermal cycle consisted of an initial 

denaturation at 94°C for 5 min, 35 cycles of 94°C for 1 min, 60°C for 1 min, 

and 72°C for 1 min, and a final extension at 72°C for 5 min. Quantification of 

PCR products was performed as explained previously for genomic DNA. 
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Clone l ibraries. To gage the diversity of euendoliths, nine clone libraries of 

the 16S rRNA gene PCR products were constructed separately for each 

fragment (stemming from individual geographical regions) used in the 

inhibitor experiments. These were generated by ligating 16S amplicons into 

TOPO 2.1 cloning vector and transforming chemically competent E. coli cells, 

following manufacturer’s instructions (Invitrogen, CA, USA). 10 individual 

colonies were selected from each sample amplificate and grown in 3 ml of 

Luria Broth medium with kanamycin (50 µg/ml) overnight at 37°C in a 

shaking waterbath. A Qiagen Plasmid Prep kit was used to isolate the 

plasmids according to the manufacturers instructions (Qiagen Inc, CA, USA). 

EcoRI was used to check for the correct insert size. Double-stranded plasmid 

DNA was sequenced in an Applied Biosystems 3730 sequencer (Arizona State 

University).  

 

Phylogenetic  reconstructions.  A total of 11 clones were obtained from 

Italy, 16 from Mexico, 10 from New Zealand and 8 from Puerto Rico. 

Sequences were aligned with MEGA 4.0 (Tamura, et al., 2007) and checked 

for non-coding bases, which accounted for 1% or less of the total sequence 

length and all non-coding ends were discarded. These new sequences were 

aligned alongside other cyanobacterial 16S rRNA partial sequences retrieved 

from NCBI (National Center for Biotechnology Information) database using 

the Basic Local Alignment Search Tool (BLAST). The phylogenetically closest 

cyanobacterial sequences according to BLAST were used to establish the 

initial alignment, and sequences representative of cyanobacteria (and plant 
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plastids) of all taxonomic groups were used thereafter to populate the 

alignment; a beta-proteobacterium sequence was used to root the 

phylogenetic tree. In all 93 taxa were used to construct a phylogenetic tree, 

which contains all clones from all sites. All positions containing gaps and 

missing data were eliminated. For this, 2 algorithms were used, the 

Neighbor-Joining (NJ) and the Maximum Parsimony (MP), both with 1,000 

bootstrap replicates. Bootstrap values, or the percentage of replicate trees 

where a group of sequences clustered together, are shown next to the 

respective nodes. Letters were assigned to well-resolved clusters of clone 

sequences in the phylogenetic tree (Fig. 4) to aid in their identification, which 

were as well color-coded according to geographical region. 

RESULTS 

Morphology of exhumated euendoliths . Morphogenera were identified 

diacritically and compared to traditional morphotaxa (Castenholz, 2001, 

Geitler, 1932). Fig. 1 illustrates non-exhaustively the diversity of 

morphogenera found in our samples.  In the Italy samples (IT) (Fig. 1, upper 

left panel) we found pseudofilamentous, non-heterocystous forms, resembling 

Hyella or Solentia types, that range from 10 to 15 µm in diameter and display 

a range of bluish to greenish colors. We also found abundant thin, 

filamentous, non-heterocystous, Plectonema-like forms of about 2-3 µm in 

diameter.  In the New Zealand fragments (NZ) (Fig. 1, upper right panel) we 

find an unidentified, thin, true branching, non-heterocystous form of about 2-

3 µm in diameter. In this fragment we also find commonly non-heterocystous, 

baeocyte forming Pleurocapsa or Mysoxarcina-like forms with variable 
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diameter (5-15 µm).  In the Mexico (MX) samples (Fig. 1, lower left panel) 

non-heterocystous Hyella-like pseudofilaments, ranging from 10-15 µm in 

diameter, and green-gray in color, were common accompanied by, 2-3 µm 

thick, filamentous, non heterocystous Plectonema-like types, with somewhat 

elongated cells. Other thin, filamentous, non-heterocystous forms, with 

shorter cells, 2-3  µm in diameter and blue green in color were seen there as 

well. Lastly, in the Puerto Rico fragments (PR) (Fig. 1, lower right panel), 

filamentous, true branching, heterocystous forms are observed, that range 5-

10 µm in diameter, with the typical morphology of Mastigocoleus. Other 

unidentified, filamentous, non-heterocystous forms, with apparent baeocyte 

formation, ranging from 4-10 µm in diameter, were observed there as well.  

 

Boring activity and its light-dependence. Incubations in the light were 

performed on all fragments to assess if calcium supersaturation, a proxy of 

boring activity by phototrophic euendoliths, was present at the surface of the 

substrate. Fig. 2 (left column) depicts the level of Ca2+ supersaturation and 

its dynamic response to sequential darkening and illumination. All samples 

exhibited significant supersaturation, with average [Ca2+] ranging from 20 to 

60 mM in the light. In all cases, [Ca2+] decreased to calcite-saturation levels 

equal to those of the medium (for PES this is around 10 mM). After 

illumination, again in all cases, there was clear recovery of supersaturation. 

Thus all samples tested contained significant boring activity, most of which 

can be attributed to phototrophic organisms that require light to power 

calcium transport.  
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Effect of Ca_ATPase inhibitors on boring activity.  Fig. 2 (center 

column) illustrates the effect to the Ca2+_ATPase inhibitor thapsigargin (TG) 

in calcium release due to boring activity. Average Ca2+ supersaturation levels 

in all fragments before inhibition ranged from 40 to 70 mM. TG was effective 

in inhibiting boring activity only in the NZ and PR fragments, with final 

levels of free Ca2+ reaching saturation levels (~10 mM) after the treatment. 

The IT and MX fragments were apparently not significantly affected. Fig. 2 

(right column) illustrates the effects of the specific Ca2+_ATPase inhibitor, 

tert-butyl hydroquinone (TBHQ). Average Ca2+ supersaturation levels in all 

fragments ranged from 32 to 75 mM initially. Treatment with TBHQ resulted 

in effective inhibiting of calcium release in the IT, NZ and PR samples. This 

effect was dose dependent, with IT responding to 5 mM TBHQ, but not to a 

previous 1 mM treatment (data not shown). The MX fragment did not 

respond to TBHQ (up to 10 mM).  Thus all but he MX sample were sensitive 

to at least one of the two P-type ATPase inhibitors tested. 

 

Clone l ibraries and phylogenetic reconstruction. The evolutionary 

history of clone sequences was inferred using the Neighbor-Joining (NJ) and 

Maximum Parsimony (MP) algorithms with 1,000 bootstrap replicates. Both 

algorithms generated trees with similar topologies; only the NJ tree is shown 

for the sake of simplicity. Fig. 4 illustrates the phylogenetic analysis of 93 

16S rRNA partial sequences including 45 clones, 42 cyanobacteria, 3 plasmid 

sequences, and 1 member of the beta-proteobacteria (Chromobacterium 



  101 

violaceum JCM 1249). Clone libraries stemming from individual fragments 

were numbered according to inhibitor treatment (No. 2, 3, 5 & 10 = TG; 1, 4, 

6 = TBHQ; No. 9 (NZ) = TG & TBHQ). Regardless of treatment, no significant 

difference in diversity was observed between fragments from the same 

geographic locations. A total of 11 sequences stem from Italy (“Italy”), 16 

sequences from Mexico (“Baja”), 10 sequences from New Zealand (“NZ”) and 8 

sequences from Puerto Rico (“PR”).  Eight clades (A, B, B1, C, D, E, F, and G) 

were assigned to clone sequences that cluster together. Clade A includes 

heterocystous cyanobacteria in the taxonomic groups IV (Order Nostocales) 

and V (Order Stigonematales); Mastigocoleus BC008 sequence is found 

within this clade. Clade B includes baeocyte-forming genera (Mysoxarcina / 

Pleurocapsa / Staniera) in Group II (Order Pleurocapsales). Clade B1 contains 

sequences that fall within clade B, but are not well resolved and do not have 

any close neighboring sequence to compare to. Clade C contains Group II 

sequences and includes Chroocococcidiopsis and Solentia HBC10, a boring 

cyanobacterium. Clade D includes a cluster that falls within Group II but 

does not have a close neighboring sequence to compare to. Clades E and F 

contain sequences exclusive to New Zealand, which fall within Group III 

(Order Oscillatoriales). Clade E contains Leptolyngbya-types, with its closest 

neighbor being Leptolyngbya ITAC101; clade F does not have a close 

neighboring sequence to compare to. Clade G includes Leptolyngbya-type 

sequences (Group III), with the closest neighbor being Leptolyngbya HBC1. 

Apart from the assigned clades, there are three clone sequences, all within 

the Leptolyngbya that stand alone: PR 10e, Baja 5h and Baja 6a. From these, 
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only Baja 5h has a close neighboring sequence pair (Leptolyngya PCC 7373 / 

Phormidium SAG 80.79). 

DISCUSSION 

 Microborer diversity.  Microscopic observations of exhumated 

euendoliths revealed a broad diversity of morphogenera in our sample 

collection, encompassing 3 out of the 5 major cyanobacterial taxonomic 

groups (Group II, Order Pleurocapsales; Group III, Order Oscillatoriales; 

Group V, Stigonematales). Most common were pseudofilamentous, non-

heterocystous, baeocyte-forming cyanobacteria (Group II), which could be 

seen found in all four of the geographical regions surveyed. This result is not 

surprising as it is from this Group II of the cyanonacteria that many 

morphogenera with microboring species, such as Cyanosaccus (Lukas and 

Golubic, 1981), Hyella (Al-Thukair and Golubic, 1991, Le Campion-Alsumard, 

1991), Hormathonema (Ercegović, 1927, Golubic, 1969) and Solentia (Foster, 

et al., 2009, Stolz, et al., 2001) have been described (Castenholz et al., 1989).. 

The importance of this group is particularly evident in the Sard fragments, 

were all the forms we find can be assigned, at least morphologically, to this 

group. In the fragments from New Zealand and Mexico, forms assignable to 

Groups II and III were found. In Mexico, we find Hyella / Solentia-like 

cyanobacteria among others that closely resemble members of the genus 

Plectonema. In New Zealand we find Pleurocapsa / Mysoxarcina-like forms 

among Plectonema-like types.  

 Plectonema is another genus that contains boring species (e.g. 

Plectonema terebrans) (Le Campion-Alsumard, et al., 1995, Raghukumar, et 
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al., 1991). In the fragments from Puerto Rico, exhumated filaments displayed 

a variety of morphologies, with many filamentous, non-heterocystous types 

with apparent baeocyte formation seen (likely Group II), but we were unable 

to assign them accurately to a particular genus. Among the latter, we found 

filamentous, true branching forms that displayed lateral heterocysts (Group 

V, Stigonematales) resembling closely the morphological characters of 

Mastigocoleus, another genus with a single, microboring species (Montoya-

Terreros, 2006, Webb and Korrubel, 1994). 

 This broad morphological diversity is partly consistent with the 

variety of clades detected according to total genomic DNA-based 16S rRNA 

clone libraries. Four out of eight clades (B, B1, C & D) were assigned to 

clusters of sequences that fall within baeocyte-forming (Group II) types, 

stemming from all four geographic regions. The relative abundance of 

sequences within this group, compared to other all phylotypes, indicates that 

the majority of euendoliths found are pseudofilamentous, non-heterocystous, 

baeocyte-forming types, which correlates with previous microscopic 

observations of Hyella and Solentia-like forms. Clade A includes one 

sequence found only in Puerto Rico and the sequence of the model boring 

organism Mastigocoleus testarum BC008, which was originally isolated from 

carbonates in this geographic region (Chacón et al., 2006). This finding its not 

surprising as it correlates with microscopic observations in which 

Mastigocoleus-types were seen. The only disagreement is in the relative 

diversity and abundance of Leptolyngbya-like, thin-filamentous 

cyanobacteria. Traditional studies only report a single species of microborer 
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among this group: Plectonema terebrans.  Yet we found at least 3 dictinct 

clades in our survey (E, F and G), and a few other singletons, which likely 

represent several different generic entities.  Obvioulsy traditional surveys 

have severely underestimated the diversity of thin-filamentous microborers. 

The phylogenetic diversity of boring Leptolyngbya-like members, as depicted 

by the phylogenetic reconstructions was unprecedented, and reinforces the 

need for more phylogenetic work done in euendolithic cyanobacteria. In many 

cases, finding a thin, filamentous, boring cyanobacterium automatically tags 

it as a member of the genus Plectonema. Our phylogenetic data suggest that 

many other species within Group III are capable of boring, with this diversity 

remaining largely unexplored. 

 Clone sequences from Mexico and Puerto Rico that stand by 

themselves in the tree, might correlate with the unidentified morphotypes 

that were seen under the microscope in both regions. A renewed and 

sustained effort to find cultivated isolates for some of these clades and 

unidentified forms will be necessary to fully describe the diversity of 

euendoliths in a comprehensive and useful manner.  

 

Universality of the boring mechanism.  Having established that all 

samples were active with respect to boring activity and that phototrophs 

accounted for most of the boring activity in these substrates, the molecular  

surveys discussed above insured that the diversity of  microborers was large 

in all samples, and covered many if not all of the groups of cyanobacterial 

microborers known from the literature.  Thus, the fact that in most instances 



  105 

at least one of the P-type Ca2+ ATPase inhibitors could abolish boring activity 

in our samples, indicated that these enzymes are central to the process of 

boring in most cyanobacterial euendoliths, as they are in strain BC008.  In 

this sense the mechanism seems to be quite widespread.  Not unexpectedly, 

however, the degree of sensitivity differed among samples. We know from 

laboratory experiments, that inhibitors such as thapsigargin work in some 

organisms, and not in others (Pickles and Cuthbert, 1992, Scamps, et al., 

2004). This is actually why our experimental design called for using 2 

independent inhibitors.  In our interpretation, sensitivity to at least one of 

the two denote the involvement of the target enzyme. Only in one case MX, 

none of the fragments responded to either TG or TBHQ, even in large 

concentrations. This lack of response prevents us from calling the mechanism 

universal. It may speak for the presence of a different boring mechanism in 

the euendoliths of this sample.  If so, then we would need to postulate that a 

group of cyanobacteria that is highly represented in the MX clone libraries, 

but not in others, is probably responsible. Clade B1 seems to be the only 

group fitting this criterion. Unfortunately no cultivated representatives are 

available to test this hypothesis.   

 Even cyanobacteria would rely on a single mechanisms, it is unknown 

if the ability to bore came from a common ancestor, or is a case of convergent 

evolution due to lateral transfer of “boring” genes. The evolution of boring as 

a survival strategy and its persistence in modern times, can be attributed to 

selective pressure, including the need for acquisition of nutrients, finding a 

niche with limited competition, escaping from adverse conditions on the 
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surface of rocks or the prevention of mineralization (Cockell and Herrera, 

2008). More work that looks at presence, expression and regulation of genes 

involved in boring would shed light into the molecular basis of the 

phenomenon. The boring mechanism, elucidated conclusively in a variety of 

cultivated euendoliths, would provide the final answer. 

CONCLUSIONS 

 An empirical analysis of the boring mechanism in geographically-

distinct, complex euendolithic microbial assemblages demonstrate a similar 

physiological response to core experiments performed in M. testarum BC008, 

suggesting that the boring mechanism, as its understood in the latter, might 

be widespread, but perhaps not universal. Molecular work involving genes 

that regulate boring are in the horizon of future research. 
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FIG.1 Diversity of euendoliths in a shell fragment from New Zealand as 
imaged by in situ laser scanning confocal microscopy. Green fluorescence 
indicates free Ca2+ as reported by the extracellular, calcium-sensitive 
fluorophore calcium green-5N (CG5N). Yellow and orange fluorescence 
indicates co-localization of CG5N and autofluorescent pigments; chlorophyll a 
and phycobilins fluoresce in red. 
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FIG. 2 Morphological diversity of exhumated euendoliths. Upper, left panel, 
(IT); Hyella-like and Plectonema-like filamentous forms. Upper right panel, 
NZ; Plectonema-like and Pleurocapsa /Mysoxarcina filamentous forms. Lower 
left panel, MX; Hyella-like  and Plectonema-like forms. Lower right panel, 
PR; Unknown morphotypes, apparent baeocyte-forming filamentous forms 
and Mastigocoleus-like filamentous forms. IT=Italy, MX=Mexico, NZ=New 
Zealand, PR=Puerto Rico. Bar, 10 µm. 
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FIG. 3 Time courses showing calcium concentration as reported by CG5N in 
one optical section, at the surface of infested carbonate fragments. Dotted 
lines represent one standard deviation of the population average. Leftmost 
column: light/dark cycle, with recovery. Center column: effect of P-type Ca2+ 
ATPases inhibitor thapsigargin (1 mM). Rightmost column: effect of P-type 
Ca2+ ATPases inhibitor TBHQ (1-10 mM). IT=Italy, MX=Mexico, NZ=New 
Zealand, PR=Puerto Rico. 
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FIG. 4 Neighbor-Joining phylogenetic tree based on 88 16S rRNA sequences 
(final alignment = 661 bp). The sequence of Chromobacterium violaceum  
(ATCC12472) was used as the outgroup. Brackets illustrate phylotypes 
assigned to clustering sequences; roman numerals illustrate cyanobacterial 
groups. Denomination of particular strains corresponds to those in the 
database, and are not necessarily taxonomically correct. Bootstrap values of 
1,000 trees are included and indicated at the nodes. Scale bar represent 1% 
estimated sequence divergence. IT=Italy, MX=Mexico, NZ=New Zealand, 
PR=Puerto Rico. 
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CHAPTER 4 

A METHOD FOR THE EXHUMATION OF LIVE ENDOLITHS FROM 

CALCAREOUS SUBSTRATES  
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ABSTRACT 

 Endoliths are microbes that live within a solid substrate, either in 

cavities, cracks or pores (e.g. chasmoliths, cryptoendoliths), by excavating 

tunnels  (e.g. euendoliths) or after becoming entrapped in minerals that 

precipitate around them, as may happen in modern microbialites. These 

organisms cannot be sampled without destructive techniques. In calcareous 

or calcophosphatic substrates endoliths are commonly exhumated by acid-

driven dissolution of the surrounding matrix, a process that can render 

morphologically sound but non-viable specimens, and their nucleic acids are 

hydrolyzed in the process. An alternative method based on substrate 

dissolution by the chelating agent ethylene-diamine-tetracetic acid (EDTA), 

preserves the morphological and genetic integrity of euendoliths, so that 

downstream genetic fingerprinting is possible (Wade and Garcia-Pichel, 

2003). Here we optimized this approach to preserve not only the structural 

and genetic integrity, but also viability of exhumated specimens. This method 

allowed the exhumation of live microboring cyanobacteria (Mastigocoleus 

testarum BC008), which could demonstrably be analyzed downstream for 

gene expression and physiological activity, and the establishment of cultures. 

INTRODUCTION 

 Endolithic microorganisms, which may include fungi, lichens, algae, 

and cyanobacteria, live within a solid substrate, either by colonizing already 

available cracks and fissures (chasmoliths), pores (cryptoendoliths) or by 

making new cavities or tunnels (euendoliths) (Golubic, et al., 1981). 

Calcareous and calcophosphatic substrates, such as shells (Nielsen, 1987), 
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coral skeleton (Le Campion-Alsumard, et al., 1995), bone (Ascenzi and 

Silvestrini, 1984) and limestones and dolostones (Danin, et al., 1983), are 

frequently inhabited by endoliths. In some cases microorganisms become 

endolithic as a result of entrapment by precipitating carbonate in alkaline 

environments. Examples of this occurrence include the case of modern 

microbialites (Defarge and Trichet, 1990, Dupraz and Strasser, 1999) or tufas 

(Merz-Preiss and Riding, 1999, Pentecost, 1985) where lithification happens 

as a consequence of sediment trapping and carbonate precipitation, a product 

of alkalinization of the water by phototrophic consumption of CO2 

(Baumgartner, et al., 2009, Dupraz and Visscher, 2005, Garcia-Pichel et al., 

2004, Laurenti and Montaggioni, 1995, Stolz, et al., 2001, Wierzchos, et al., 

2006). Due to their intrinsic physical isolation, endoliths do not lend 

themselves readily to collection. Therefore, they must be exhumated from the 

substrate; a harsh process that involves either mechanical or chemical 

removal of the solid, and in many cases proves detrimental to the cells 

within. Generally, geomicrobiological studies of endolithic microbes, such as 

those inhabiting modern microbialites, are thus limited to microscopic, 

mineralogical, and biogeochemical analyses (Laval, et al., 2000). In cases 

where the matrix that surrounds the endoliths is a carbonate (aragonite, 

calcite or dolomite…), dilute acetic acid or hydrochloric acid is used for 

dissolution (Golubic, 1969, Lagerheim, 1886). Liberating these organisms by 

acidification is useful as it generally renders specimens that retain their 

morphological characteristics, if their pigmentation may be altered, but 

hinders further molecular or physiological work due to hydrolysis of nucleic 
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acids. 

 A method published by Wade and Garcia-Pichel (2003) explored the 

exhumation of endoliths from modern microbialites by ethylene-diamine-

tetra-acetic acid (EDTA) dissolution of the surrounding matrix. It proved 

useful in the isolation of cyanobacterial filaments of oncolites and 

microbialites, while preserving morphology and the integrity of their genetic 

material, at least for DNA (Wade and Garcia-Pichel, 2003). Even though it 

preserves the structural integrity of the cells and genetic material, the 

viability of the organisms was not implicitly studied.  EDTA however has 

been known to damage the outer membrane of gram-negative bacteria (e.g. 

Alakomi, et al., 2003). 

 We optimized the EDTA dissolution method with respect to EDTA 

concetration and delivery, T and pressure, and tested it using Mastigocoleus 

testarum (strain BC008) boring on crystalline calcite for integrity of the 

transcriptional machinery, physiological activity, and viability. The detailed 

process is presented below, and demonstrated practically on video format (see 

attached movie). 

MATERIALS AND METHODS 

Exhumation setup:  

1. A vacuum filtration apparatus (“VWR 25 mm Filter Holder”, VWR 

International, IL, USA) consisting of a 25 mm borosilicate glass filter 

holder with fritted glass support base, a 15mL graduated funnel, anodized 

aluminum clamp, and a No. 5 silicone stopper (or equivalent) 
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2. A small, 2.5 x 2.5 cm piece of stainless steel screen or equivalent as 

sample-holding basket 

3. 25 mm  diam. (2 µm pore-size) polycarbonate filters 

4. 25 mm  diam. GF/F glass-fiber filters 

5. A small, watercolor brush with plastic bristles (or equivalent) 

6. Tweezers or forceps 

7. Steel clamps, holders, jacks, or other supporting equipment 

8. A bucket with ice  

9. Sterile centrifuge tubes (15 mL or equivalent)  

10.  Sterile media of appropriate composition  

11.  A variable flow peristaltic pump 

12.  A centrifuge with a rotor capable of holding the sterile tubes 

13.  A 100mM solution of disodium ethylene-diamine -tetracetic acid (Na2-

EDTA), prepared with deionized water and adjusted to pH 5 with HCl. 

This solution is autoclaved and maintained at room temperature until 

use, to prevent precipitation. 

PROTOCOL 

 All components, including tubing, glassware, filters or any other 

material in contact with the samples are to be sterilized either by autoclaving 

(i.e. glass components, metal components and filters) or by dipping in 70% 

ethanol overnight (i.e. silicon tubing) as appropriate. Ethanol-sterilized 

components are to be rinsed in sterile, deionized water prior to use. The 

EDTA vessel is to be placed in the ice bath. The protocol will consist of four 

steps: (1) cleaning of the substrate in preparation for dissolution, (2) 
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dissolution of the matrix, (3) collection of exhumated specimens and (4) 

viability assessment. The accompanying illustrated guide (Figs. 1 and 2) 

shows stills of individual steps of the exhumation. Our substrate consists of 

chips of commercially available blocky calcite (WARD’S Natural Science, NY, 

USA) (Fig. 1-1), which we allowed to be infested by a strain of euendolithic 

cyanobacteria, Mastigocoleus testarum BC008 (Fig. 1-2). 

 

Step 1: Cleaning. Infested chips are the substrate shown in this protocol, 

but the cleaning applies equally to other samples. Samples are thoroughly 

brushed while submerged in liquid medium to remove any surface growth 

(Fig. 1-3), and rinsed in fresh medium. 

 

Step 2: Dissolution of the substrate. The sample is placed on the 

screen basket holder (Fig.1-5) on the upper part in the filtration tower. Ice-

cold EDTA solution, drawn by a peristaltic pump with variable flow (VWR 

Mini-Pump, VWR International, West Chester, PA, USA), is allowed to drip 

over the sample (Fig. 1-6) at constant flow rate.  Dripping at 0.5 mL / min 

allowed us to methodically remove layers of defined thickness from the 

sample.  With chips of our size the dissolution proceeded at a rate of about 

100 µm per hour. This will of course depend on the size and porosity of the 

sample, and must be calibrated for each case. As filaments are exposed, these 

are gently brushed down into the filter tower, allowed to flow with the 

dripping EDTA solution, and are collected on the filter at the bottom.  In our 

case, we carried out three, 30-min dissolution steps, collecting the biomass 
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after each. This yielded 3 fractions, each containing cells from the upper (0-50 

µm), mid (50-100 µm) and deep (100-150 µm) layer of the chip.  

 

Step 3:  Collection of  specimens. After exhumation, the polycarbonate 

filter is washed in place with 5 mL of distilled water (Fig. 2-7), which helps 

remove any EDTA or precipitates of Ca-EDTA before retrieval (Fig. 2-8). 

Filters are then placed in sterile media (Fig. 1-9) and vortexed/shaken to 

liberate the cells into suspension. After discarding the filters, specimens are 

collected by centrifugation at 4,000 RPM for 10 minutes, and the supernatant 

decanted. Lastly, cell pellets are re-suspended in fresh medium (Fig. 2-10). 

 

Step 4:  Viability assessment.  We allowed our filaments to rest in the 

light for several hours (3-4). A Hansatech liquid-phase oxygen electrode 

chamber (Hansatech Instruments, Norfolk, England) was used to measure 

oxygen evolution from the suspended fractions (Fig. 2-11). The electrode 2-

point was calibrated in medium, achieving 100% O2 saturation by stirring in 

the open chamber, and by adding sodium dithionite to establish 0% O2 

saturation.  Oxygen evolution rates where measured under white fluorescent 

illumination at 500 µmoles of photons (Fig. 2-12).  Other forms of viability 

assessment can be devised as needed.  Results of this experiments show that 

photosynthetic rates per unit biomass do not vary with depth and are similar 

to those of non-boring BC008 cultures (Chapter 2 of this dissertation).  We 

have been successful in using this method to obtain viable cultures from 

exhumated BC008 by standard plating (not shown), as well as from other 
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endoliths exhumated from natural samples (McLennan and Ramírez-Reinat, 

unpublished).  We have also been able to obtain good quality mRNA 

preparations for gene expression studies of BC008 cells exhumated in this 

manner (Garcia-Pichel et al, in the press). 

DISCUSSON 

 This method proves useful in the exhumation of live cyanobacterial 

euendoliths from calcareous substrates, by gently removing the surrounding 

matrix. A less concentrated solution than those previously published by Wade 

(500-675 mM) allowed effective, yet gentle dissolution of the samples. Doing 

away with the original method while slowing rates of dissolution probably 

helps with organismal viability as well. The continuous drip approach used 

here, partly makes up for that, in that it ensures a constant supply of fresh 

EDTA, prevents the formation of microlayers of high calcium and carbonate 

ion concentration. This enhances dissolution rate and prevents the deposition 

of Ca-EDTA precipitates on the sample, a by-product of the dissolution 

process. Cooling the solution likely reduced the damaging effects of EDTA, 

since, in our experience, extractions conducted at room temperature had 

reduced viability of cells. This protocol offers some improvements over other 

methods as it preserves both the morphology and viability of the cells. Most 

constrains in studying euendolithic organisms in vivo come from their 

difficult accessibility; this method removes those constrains.  

 This method should prove a useful tool in future studies of boring 

cyanobacteria or other endolithic organisms. It may also find application in 

other fields of biology where mineral/biological systems co-occur, such as the 
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biology of corals or other calcified animals or tissues.  It may be of use in 

biomedical investigations of bone tissue or mineral calculi. 

AKNOWLEDGEMENTS 

 We would like to thank Ipsita Dutta for assistance with the oxygen 

sensor, and Natalie Myers for for graciously providing me with filming 

equipment. 

 This work was supported by a National Science Foundation grant 

0311945. 



  120 

 

 

 

 

 

 

Fi
g.

 1
 I

llu
st

ra
te

d 
ex

hu
m

at
io

n 
se

qu
en

ce
. 

(1
) 

Bl
oc

ky
 c

al
ci

te
 u

se
d 

as
 t

he
 s

ub
st

ra
te

 M
. 

te
st

ar
um

 
st

ra
in

 B
C0

08
. (

2)
 C

al
ci

te
 c

hi
ps

 i
nf

es
te

d 
w

it
h 

st
ra

in
 B

C0
08

, r
ea

dy
 f

or
 c

ol
le

ct
io

n.
 (3

) 
C

le
an

in
g 

of
 

th
e 

ca
lc

ite
 c

hi
ps

 t
o 

re
m

ov
e 

su
pe

rf
ic

ia
l 

fil
am

en
ts

. 
(4

) 
E

xh
um

at
io

n 
se

tu
p:

 f
ilt

ra
tio

n 
ap

pa
ra

tu
s,

 
pe

ri
st

al
ti

c 
pu

m
p 

an
d 

ED
TA

 s
ol

ut
io

n.
 (

5)
 M

es
h 

ho
ld

er
 w

it
h 

ca
lc

ite
 c

hi
p 

(6
) 

E
D

TA
 s

ol
ut

io
n 

dr
ip

pi
ng

 o
n 

to
p 

of
 th

e 
ch

ip
. 

 



  121 

 

 

 

 

Fi
g.

 2
 I

llu
st

ra
te

d 
ex

hu
m

at
io

n 
se

qu
en

ce
, c

on
t. 

(7
) R

in
si

ng
 a

nd
 c

ol
le

ct
io

n 
of

 p
ol

yc
ar

bo
na

te
 fi

lte
r.

 (8
) 

E
xh

um
at

ed
 fi

la
m

en
ts

 o
f s

tr
ai

n 
B

C
00

8.
 (9

) R
in

si
ng

 o
f f

ila
m

en
ts

 in
 s

te
ri

le
 m

ed
iu

m
. (

10
) F

ila
m

en
ts

 
of

 s
tr

ai
n 

B
C

00
8,

 p
la

ce
d 

in
 s

te
ri

le
 m

ed
iu

m
 a

ft
er

 c
ol

le
ct

io
n.

 (
11

) 
O

xy
ge

n 
ch

am
be

r 
(1

2)
 T

yp
ic

al
 

ph
ot

os
yn

th
et

ic
 r

at
es

 o
f e

xh
um

at
ed

 B
C0

08
 fi

la
m

en
ts

. 
  



  122 

REFERENCES 

INTRODUCTION 

Alexandersson, E.T. 1975. Marks of Unknown Carbonate-Decomposing 
Organelles in Cyanophyte Borings. Nature 254:212-238. 

Al-Thukair , A.A. 2002. Effect of oil pollution on euendolithic cyanobacteria 
of the Arabian Gulf. Environmental Microbiology 4:125-129. 

Al-Thukair , A.A., and Golubic , S. 1991. 5 New Hyella Species from the 
Arabian Gulf. Archiv für Hydrobiologie:167-197. 

Al-Thukair , A.A., and Golubic , S. 1991. New Endolithic Cyanobacteria 
from the Arabian Gulf, Hyella immanis Sp. Nov. Journal of Phycology 
27:766-780. 

Ascaso, C.,  and Wierzchos, J . 2002. New approaches to the study of 
Antarctic lithobiontic microorganisms and their inorganic traces, and 
their application in the detection of life in Martian rocks. 
International Microbiology 5:215-22. 

Barbosa, S.S., Byrne, M., and Kelaher, B.P. 2008. Bioerosion caused 
by foraging of the tropical chiton Acanthopleura gemmata at One Tree 
Reef, southern Great Barrier Reef. Coral Reefs 27:635-639. 

Bathurst, R.G.C. 1980. Lithification of Carbonate Sediments. Science 
Progress 66:451-471. 

Bentis , C.J. , Kaufman, L.,  and Golubic,  S.  2000. Endolithic fungi in 
reef-building corals (Order : Scleractinia) are common, cosmopolitan, 
and potentially pathogenic. Biological Bulletin 198:254-260. 

Berkelman, T., Garret-Engele, P. , and Hoffman, N.E. 1994. The 
pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca2+-
transporting ATPase. Journal of Bacteriology 176:4430-4436. 

Blake, J .A. 1969. Systematics and Ecology of Shell-Boring Polychaetes from 
New England. American Zoologist 9:813-820. 

Bornet, E. and Flahault, C. 1888. Note sur deux nouveaux genres d' 
algues perforantes. Journal de Botanique 2:162-163.  

 
Bornet, E. and Flahault, C. 1889. Sur quelques plantes vivant dans le 

test calcaire des mollusques. Bulletin Société Botanique de France 
36:147-176. 

 



  123 

Borzì , A. 1907. Conspectus generum Stigonetacearum. Nuova Notarisia 
18:38. 

 
Brock, T.D. 1973. Lower pH limit for the existence of blue-green algae: 

evolutionary and ecological implications. Science 179:480-483. 

Budd, D.A., and Perkins, R.D. 1980. Bathymetric zonation and 
paleoecological significance of microborings in Puerto Rican shelf and 
slope sediments. Journal of Sedimentary Research 50:881-903. 

 
Buschbaum, C., Buschbaum, G., Schrey, I. , and Thieltges , D.W. 

2006. Shell-boring polychaetes affect gastropod shell strength and 
crab predation. Marine Ecology-Progress Series 329:123-130. 

Campbell,  S. 1982. Precambrian endoliths discovered. Nature 299:429-431. 
 
Campbell, S. 1983. The modem distribution and geological history of 

calcium carbonate boring microorganisms, p. 99-104. In: Wesbroek, P., 
De Jong, E.W. (Eds.), Biomineralization and Biological Metal 
Accumulation. Reidel Publishing, Boston. 

Carreiro-Silva, M., and Mcclanahan, T.R. 2001. Echinoid bioerosion 
and herbivory on Kenyan coral reefs: the role of protection from 
fishing. J Exp Mar Bio Ecol 262:133-153. 

Carriker, M.R., and Gruber, G.L. 1999. Uniqueness of the gastropod 
accessory boring organ (ABO): Comparative biology, an update. 
Journal of Shellfish Research 18:579-595. 

Chazottes, V., Cabioch, G., Golubic , S. , and Radtke, G. 2009. 
Bathymetric zonation of modern microborers in dead coral substrates 
from New Caledonia--Implications for paleodepth reconstructions in 
Holocene corals. Palaeogeography, Palaeoclimatology, Palaeoecology 
280:456-468. 

 
Chazottes,  V., Le Campion-Alsumard, T.  And  Peyrot-Clausade,  

M. 1995. Bioerosion rates on coral reefs: interactions between 
macroborers, microborers and grazers (Moorea, French Polynesia). 
Palaeogeography, Palaeoclimatology, Palaeoecology113:189-198. 

 
Che, L.M., Le Campion-Alsumard, T.,  Bouryesnault, N.,  Payri , C.,  

Golubic , S.,  and Bezac, C. 1996. Biodegradation of shells of the 
black pearl oyster, Pinctada margaritifera var cumingii, by 
microborers and sponges of French Polynesia. Marine Biology 
126:509-519. 

Ciferri, O. 1983. Spirulina, the Edible Microorganism. Microbiological 
Reviews 47:551-578. 



  124 

Criddle, D.N., Gerasimenko, J .V., Baumgartner, H.K., Jaffar, M.,  
Voronina, S.,  Sutton, R., Petersen, O.H., and Gerasimenko, 
O.V. 2007. Calcium signalling and pancreatic cell death: apoptosis or 
necrosis? Cell Death and Differentiation 14:1285-1294. 

Danin, A., and Caneva, G. 1990. Deterioration of Limestone Walls in 
Jerusalem and Marble Monuments in Rome Caused by Cyanobacteria 
and Cyanophilous Lichens. International Biodeterioration 26:397-417. 

Desikachary, T.V. 1953. Iyengariella tirupatiensis gen. et sp. nov. from 
South India. . Phytomorphology 3:249–253. 

Diaz Del Castil lo, B. 1928. Historia verdadera de la conquista de la 
Nueva España, vol. 1. Madrid. 

Dirksen, R.T., and Beam, K.G. 1995. Single calcium  channel behavior in 
native skeletal muscle. Journal of General Physiology 105:227-247. 

Dismukes, G.C., Klimov, V.V., Baranov, S.V., Kozlov, Y.N.,  
Dasgupta, J ., and Tyryshkin, A. 2001. The origin of atmospheric 
oxygen on Earth: The innovation of oxygenic photosynthesis. 
Proceedings of the National Academy of Sciences of the United States 
of America 98:2170-2175. 

Domínguez, D.C. 2004. Calcium signalling in bacteria. Molecular 
Microbiology 54:291-297. 

Drouet, F.  1963. Ecophenes of Schizothrix calcicola (Oscillatoriaceae). 
Proceedings of the Academy of Natural Sciences of Philadelphia 
115:261-281. 

Dupraz, C., and Visscher, P.T. 2005. Microbial lithification in marine 
stromatolites and hypersaline mats. Trends in Microbiology 13:429-
38. 

Ercegović , A. 1927. Tri roda litofitskih cijanoficeja sa jadranske obale. Acta 
Botanica Instituti Botanici Universitatis Zagrebensis 2:78-84. 

 
Flores , E., Herrero, A., Wolk, C.P., and Maldener, I. 2006. Is the 

periplasm continuous in filamentous multicellular cyanobacteria? 
Trends in Microbiology 14:439-443. 

Flourakis , M., and Prevarskaya, N. 2009. Insights into Ca2+ 
homeostasis of advanced prostate cancer cells. Biochimica Et 
Biophysica Acta-Molecular Cell Research 1793:1105-1109. 

Flugel, E. 2004. Bioerosion, boring and grazing organisms. In: Microfacies 
of carbonate rocks: analysis, interpretation and application, pp. 387-
397. Springer-Verlag. 



  125 

 
Frémy, P. 1936. Les algues perforantes. Mémoire de la Société Nationale 

des Sciences Naturelles et Mathématiques de Cherbourg 42:275-300. 
 
Friedmann, E.I .,  Hua, M. And Ocampo-Friedmann, R. 1993. 

Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. 
Journal of the British Interplanetary Society 46:291-292. 

 
Furuya, K., Enomoto, K., and Yamagishi , S. 1993. Spontaneous 

calcium oscillations and mechanically and chemically induced calcium 
responses in mammary epithelial cells. Pflugers Arch 422:295-304. 

Garbary, D. 2007. The Margin of the Sea: Survival at the Top of the Tides, 
p. 173-191. In: Seckback, J. (Ed.), Algae and Cyanobacteria in 
Extreme Environments. Springer. 

Garcia-Pichel , F. 2006. Plausible mechanisms for the boring on carbonates 
by microbial phototrophs. Sedimentary Geology 185:205-213. 

Garcia-Pichel , F., Nubel , U., and Muyzer, G. 1998. The phylogeny of 
unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 
169:469-82. 

 
Garcia-Pichel , F. , Sherry, N.D., and Castenholz, R.W. 1992. 

Evidence for an ultraviolet sunscreen role of the extracellular pigment 
scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. 
Photochem Photobiol 56:17-23. 

 
Garcia-Pichel , F., Wingard, C.E., and Castenholz, R.W. 1993. 

Evidence Regarding the UV Sunscreen Role of a Mycosporine-Like 
Compound in the Cyanobacterium Gloeocapsa sp. Appl Environ 
Microbiol 59:170-176. 

 
Geisler, M., Richter, J ., and Schumann, J. 1993. Molecular cloning of 

a P-type ATPase gene from the cyanobacterium Synechocystis sp. PCC 
6803. Homology to eukaryotic Ca(2+)-ATPases. Journal of Molecular 
Biology 234:1284-1289. 

Golubić , S. , and Le Campion-Alsumard, T. 1973. Boring behavior of 
marine blue-green algae Mastigocoleus testarum Lagerheim and 
Kyrtuthrix dalmatica Ercegovic, as a taxonomic character. Aquatic 
Sciences - Research Across Boundaries 35:157-161. 

Golubic , S. , Campbell,  S.E.,  Drobne, K.,  Cameron, B., Balsam,  
W.L., Cimerman, F.,  and Dubois , L. 1984. Microbial Endoliths - 
a Benthic Overprint in the Sedimentary Record, and a 
Paleobathymetric Cross-Reference with Foraminifera. Journal of 
Paleontology 58:351-361. 



  126 

Golubic , S. , Perkins, R.D. And  Lukas, K.J.1975. Boring 
Microorganisms and Borings in Carbonate Substrates. In: Frey, R.W. 
(Ed), The Study of Trace Fossils. Springer, Berlin, pp.229-259 

Golubic , S. , Radtke, G.,  and Le Campion-Alsumard, T. 2005. 
Endolithic fungi in marine ecosystems. Trends Microbiol 13:229-235. 

Gomont, M. 1892. Monographie des Oscillariees (Nostocacees homocystees). 
Annales des Sciences Naturelles Botanique 7:265-368. 

Hammond, L.S. 1981. An Analysis of Grain-Size Modification in Biogenic 
Carbonate Sediments by Deposit-Feeding Holothurians and Echinoids 
(Echinodermata). Limnology and Oceanography 26:898-906. 

Herbert, G.S., Diet, G.P., Fortunato, H., Simone, L.R.L., and 
Sliko,  J.  2009. Extremely slow feeding in a tropical drilling 
ectoparasite, Vitularia salebrosa (King and Broderip, 1832) 
(Gastropoda: Muricidae), on molluscan hosts from Pacific Panama. 
Nautilus 123:121-136. 

Herrera-Escalante, T., Lopez-Perez, R.A., and Leyte-Morales ,  
G.E. 2005. Bioerosion caused by the sea urchin Diadema Mexicanum 
(Echinodermata: Echinoidea) at Bahias de Huatulco, Western Mexico. 
Rev Biol Trop 53 Suppl 3:263-273. 

Hoiczyk, E. 2000. Gliding motility in cyanobacteria: observations and 
possible explanations.  174:11-17. 

Hoiczyk, E., and Baumeister , W. 1997. Oscillin, an extracellular, Ca2+-
binding glycoprotein essential for the gliding motility of cyanobacteria. 
Molecular Microbiology 26:699-708. 

Hoiczyk, E., and Baumeister , W. 1998. The junctional pore complex, a 
prokaryotic secretion organelle, is the molecular motor underlying 
gliding motility in cyanobacteria. Current Biology 8:1161-1168. 

Holmes, G., Ortiz, J .-C., and Schönberg, C. 2009. Bioerosion rates of 
the sponge Cliona orientalis Thiele, 1900: spatial variation over short 
distances Facies 55:203-211. 

 
Hong, C.Y., Chiang, B.N., Wu, P., Wei, Y.H., and Fong, J.C. 1985. 

Involvement of calciumCa2+    in the caffeine stimulation of human 
sperm motility. British Journal of Clinical Pharmacology 19:739-43. 

Jansen, H., and Ahrens, M.J. 2004. Carbonate dissolution in the guts of 
benthic deposit feeders: A numerical model. Geochimica Et 
Cosmochimica Acta 68:4077-4092. 



  127 

Johnson, H.E., King, S.R.,  Banack, S.A.,  Webster,  C., Callanaupa, 
W.J., and Cox, P.A. 2008. Cyanobacteria (Nostoc commune) used 
as a dietary item in the Peruvian highlands produce the neurotoxic 
amino acid BMAA. Journal of Ethnopharmacology 118:159-165. 

Kabakov, A.Y., and Hilgemann, D.W. 1995. Modulation of Na+/ Ca2+ 
exchange current by EGTA calcium buffering in giant cardiac 
membrane patches. Biochimica Biophysica Acta 1240:142-148. 

Kaehler, S.  1999. Incidence and distribution of phototrophic shell-
degrading endoliths of the brown mussel Perna perna. Marine Biology 
135:505-514. 

Knoll, A.H., Golubic,  S., Green, J ., and Swett, K. 1986. Organically 
preserved microbial endoliths from the late Proterozoic of East 
Greenland. Nature 321:856-7. 

 
Knoll, A.H., Swett, K., and Burkhardt, E. 1989. Paleoenvironmental 

distribution of microfossils and stromatolites in the Upper Proterozoic 
Backlundtoppen Formation, Spitsbergen. Journal of Paleontology 
63:129-45. 

 
Kretsinger, R.H., and Nelson, D.J. 1976. Calcium in biological systems. 

Coordination Chemistry Reviews 18:29-124. 

Kumar, H.D. 2004. Management of nutritional and health needs of 
malnourished and vegetarian people in India. Complementary and 
Alternative Approaches to Biomedicine 546:311-321. 

Kupriyanova, E.V., Lebedeva, N.V., Dudoladova, M.V.,  
Gerasimenko, L.M., Alekseeva, S.G., Pronina, N.A., and 
Zavarzin, G.A. 2003. Carbonic Anhydrase Activity of Alkalophilic 
Cyanobacteria from Soda Lakes. Russian Journal of Plant Physiology 
50:532-539. 

 
Lagerheim, G. 1886. Note sur le Mastigocoleus, noveau genre des algues 

marines de l'ordre des Phycochromacees. Notarisia 1:65-69. 

Lamenti, G., Tiano, P., and Tomaselli,  L. 2000. Biodeterioration of 
ornamental marble statues in the Boboli Gardens (Florence, Italy). 
Journal of Applied Phycology 12:427-433. 

Laurenti , A.,  and Montaggioni , L. 1995. The Role of Microbial Activity 
in Marine Reef Lithification (Tahiti, French-Polynesia). Comptes 
Rendus De L’Academie Des Sciences  320:845-852. 

Le Campion-Alsumard, T. 1970. Cyanophycées marines endoliths 
colonisant les surfaces rochenses denudées (Etages Supralittoral et 



  128 

Mediolittoral de la region de Marseilles). Schweizerische Zeitschrift 
fur Allgemeine Mikrobiologie 2:45-47. 

 
Le Campion-Alsumard, T. 1991. 3 Hyella Taxa (Endolithic Cyanophytes) 

from Tropical Environments (Lizard-Island, Great-Barrier-Reef). 
Archiv für Hydrobiologie 64:159-166. 

Le Campion-Alsumard, T., Golubic , S. ,  and Hutchings, P. 1995. 
Microbial Endoliths in Skeletons of Live and Dead Corals - Porites 
Lobata (Moorea, French-Polynesia). Marine Ecology-Progress Series 
117:149-157. 

Lee, S.J.,  Golubic,  S. , and Verrecchia, E. 1999. Epibiotic relationships 
in Mesoproterozoic fossil record: Gaoyuzhuang Formation, China. 
Geology 27:1059-1062. 

Lynch, G.S., Fary, C.J., and Williams, D.A. 1997. Quantitative 
measurement of resting skeletal muscle [Ca2+](i) following acute and 
long-term downhill running exercise in mice. Cell Calcium 22:373-
383. 

May, J .A., and Perkins, R.D. 1979. Endolithic Infestation of Carbonate 
Substrates Below the Sediment-Water Interface. Journal of 
Sedimentary Petrology 49:357-378. 

Mikhodyuk, O., Zavarzin, G., and Ivanovsky, R. 2008. Transport 
systems for carbonate in the extremely natronophilic cyanobacterium 
Euhalothece sp. Microbiology 77:412-418. 

 
Miller, S.R., and Castenholz, R.W. 2000. Evolution of thermotolerance 

in hot spring cyanobacteria of the genus Synechococcus. Applied and 
Environmental Microbiology 66:4222-4229. 

 
Montoya-Terreros , H., Gomez-Carrion, J .  and Benavente-Palacios ,  

M. 2006. Natural populations and culture of the marine microalga 
Mastigocoleus testarum Lagerheim ex Bornet et Flahault 
(Cyanophyta, Nostochopsaceae), the first record for the Peruvian flora. 
Arnaldoa 13:258-269. 

Moon, Y.J., Park, Y.M., Chung, Y.H.,  and Choi,  J .S. 2004. Calcium 
is involved in photomovement of cyanobacterium Synechocystis sp. 
PCC 6803. Photochemistry and Photobiology 79:114-119. 

Nava, H., and Carballo, J .L. 2008. Chemical and mechanical bioerosion 
of boring sponges from Mexican Pacific coral reefs. Journal of 
Experimental Biology 211:2827-2831. 



  129 

Neumann, A.C. 1966. Observations on Coastal Erosion in Bermuda and 
Measurements of Boring Rate of Sponge Cliona Lampa. Limnology 
and Oceanography 11:92-108. 

Norris, V., Grant, S., Freestone, P., Canvin, J ., Sheikh, F.N.,  
Toth, I. , Trinei,  M., Modha, K., and Norman, R.I.  1996. 
CalciumCa2+    signalling in bacteria. Journal of Bacteriology 
178:3677-3682. 

Norris, V., Seror , S.J. , Casaregola, S., and Holland, I .B. 1988. A 
single calcium flux triggers chromosome replication, segregation and 
septation in bacteria: a model. Journal of Theoretical Biology 
134:341-350. 

Omelon, C.R., Pollard, W.H., and Ferris ,  F.G. 2007. Inorganic species 
distribution and microbial diversity within high arctic cryptoendolithic 
habitats. Microbial Ecology 54:740-752. 

Ong, L., and Holland, K.N. 2010. Bioerosion of coral reefs by two 
Hawaiian parrotfishes: species, size differences and fishery 
implications. Marine Biology 157:1313-1323. 

Ordal , G.W. 1977. CalciumCa2+    ion regulates chemotactic behaviour in 
bacteria. Nature 270:66-67. 

Ortegacalvo, J.J. , Arino, X., Hernandezmarine, M., and 
Saizjimenez, C. 1995. Factors Affecting the Weathering and 
Colonization of Monuments by Phototrophic Microorganisms. Science 
of the Total Environment 167:329-341. 

Ourribane, M., Chellai , E.H., and Zaghbib-Turki , D. 2000. 
Microbialites and micro-encrusters role in the reefs lithification: 
examples of the Maghrebian Atlas reefs during the Upper Jurassic. 
Comptes Rendus De L’ Academie Des Sciences 330:407-414. 

Paerl,  H.W., Steppe, T.F., and Reid, R.P. 2001. Bacterially mediated 
precipitation in marine stromatolites. Environmental Microbiology 
3:123-130. 

Pandey, P.K.,  Gour, R.K.,  and Bisen, P.S. 1999. Energy-dependent 
Ca2+ efflux from the cells of Nostoc calcicola Breb: Role of modifying 
factors. Current Microbiology 39:254-258. 

Pandey, K.D.,  Shukla, S.P., Shukla, P.N., Giri, D.D., Singh, J .S.,  
Singh, P., and Kashyap, A.K. 2004. Cyanobacteria in Antarctica: 
ecology, physiology and cold adaptation. Cellular and Molecular 
Biology 50:575-84. 

 



  130 

 
Pari , N., Peyrot-Clausade, M., Le Campion-Alsumard, T.,  

Hutchings, P., Chazottes, V., Golubic , S. , Le Campion, J. ,  
and Fontaine, M.F. 1998. Bioerosion of experimental substrates on 
high islands and on atoll lagoons (French Polynesia) after two years of 
exposure. Marine Ecology-Progress Series 166:119-130. 

Pentecost, A. 1992. Growth and distribution of endolithic algae in some 
North Yorkshire streams (UK). British Phycological Journal 27:145 - 
151. 

Peyrot-Clausade, M., Chabanet, P., Conand, C., Fontaine, M.F.,  
Letourneur, Y., and Harmelin-Vivien, M. 2000. Sea urchin and 
fish bioerosion on La Reunion and Moorea reefs. Bulletin of Marine 
Science 66:477-485. 

Porn-Ares , M.I. , Ares , M.P.S., and Orrenius, S. 1998. Ca2+ signalling 
and the regulation of apoptosis. Toxicology in Vitro 12:539-543. 

Proteau, P.J., Gerwick, W.H.,  Garciapichel , F.,  and Castenholz,  
R. 1993. The Structure of Scytonemin, an Ultraviolet Sunscreen 
Pigment from the Sheaths of Cyanobacteria. Experientia 49:825-829. 

 
Rasmussen, K.A., and Frankenberg, E.W. 1990. Intertidal Bioerosion 

by the Chiton Acanthopleura-Granulata - San-Salvador, Bahamas. 
Bulletin of Marine Science 47:680-695. 

Reid, R.P., and Macintyre, I .G. 2000. Microboring Versus 
Recrystallization: Further Insight into the Micritization Process. 
Journal of Sedimentary Research 70:24-28. 

 
Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J .F.,  Bebout,  B.M.,  

Dupraz, C., Macintyre,  I .G., Paerl,  H.W., Pinckney, J .L.,  
Prufert-Bebout, L., Steppe, T.F.,  and Desmarais , D.J.  2000. 
The role of microbes in accretion, lamination and early lithification of 
modern marine stromatolites. Nature 406:989-92. 

Riascos , J.M., Guzman, N.,  Laudien, J .,  Oliva, M.E., Heilmayer,  
O., and Ortl ieb, L. 2009. Long-term parasitic association between 
the boring polychaete Polydora bioccipitalis and Mesodesma 
donacium. Diseases of Aquatic Organisms 85:209-215. 

Rodríguez, H., Rivas, J. , Guerrero, M.G., and Losada, M. 1989. 
Nitrogen-Fixing Cyanobacterium with a High Phycoerythrin Content. 
Applied and Environmental Microbiology 55:758-760. 

 



  131 

Roney, B.R., Li , R.H., Banack, S.A., Murch, S., Honegger, R., and 
Cox, P.A. 2009. Consumption of fa cai Nostoc soup: A Potential for 
BMAA exposure from Nostoc cyanobacteria in China? Amyotrophic 
Lateral Sclerosis 10:44-49. 

Rotjan, R.D., and Lewis,  S.M. 2005. Selective predation by parrotfishes 
on the reef coral Porites astreoides. Marine Ecology-Progress Series 
305:193-201. 

Schneider, J. , and Le Campion-Alsumard, T. 1999. Construction and 
destruction of carbonates by marine and freshwater cyanobacteria. 
European Journal of Phycology 34:417-426. 

Schreiber, R. 2005. Ca2+ signaling, intracellular pH and cell volume in cell 
proliferation. Journal of Membrane Biology 205:129-137. 

Seeler , J .S., and Golubic , S. 1991. Iyengariella-Endolithica Sp Nova, a 
Carbonate Boring Stigonematalean Cyanobacterium from a Warm 
Spring-Fed Lake - Nature to Culture. Archiv für Hydrobiologie:399-
410. 

Sharp, J.H. 1969. Blue-Green Algae and Carbonates-Schizothrix calcicola 
and Algal Stromatolites from Bermuda. Limnology and Oceanography 
14:568-578. 

Sheppard, C.R., Spalding, M., Bradshaw, C., and Wilson, S. 2002. 
Erosion vs. recovery of coral reefs after 1998 El Nino: Chagos reefs, 
Indian Ocean. Ambio 31:40-48. 

Snyder, M.A., Stock, J .B., and Koshland, D.E., Jr . 1981. Role of 
membrane potential and Ca2+ in chemotactic sensing by bacteria. J 
Mol Biol 149:241-57. 

Soule, T. , Stout, V., Swingley, W.D., Meeks, J .C., and Garcia-
Pichel,  F. 2007. Molecular genetics and genomic analysis of 
scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. Journal 
of Bacteriology 189:4465-72. 

 
Sperti, G., and Colucci , W.S. 1991. Ca2+    influx modulates DNA 

synthesis and proliferation in A7r5 vascular smooth muscle cells. Eur 
J Pharmacol 206:279-84. 

Tan, F.C., Goll , D.E., and Otsuka, Y. 1988. Some properties of the 
millimolar Ca2+ - dependent proteinase from bovine cardiac muscle. 
Journal of Molecular and Cellular Cardiology 20:983-97. 

 

 



  132 

Takabe, T., Incharoensakdi, A., Arakawa, K., and Yokota, S. 1988. 
CO(2) Fixation Rate and RuBisCO Content Increase in the 
Halotolerant Cyanobacterium, Aphanothece halophytica, Grown in 
High Salinities. Plant Physiology 88:1120-4. 

 
Thuret, G. 1875. Essai de classification des Nostochinees. Annales des 

Sciencies Natureles 6:375-379. 

Toh, P.S.Y., Yew, S.P., Yong, K.H., Sudesh, K., and Abed, R.M.M. 
2009. Phototactic Motility of Synechocystis  Sp. Uniwig 
(Cyanobacteria) from Brackish Environment Journal of Phycology 
46:102-111. 

Toro-Farmer, G., Cantera, J .R., Londono-Cruz, E., Orozco, C., and  
Neira, R. 2004. [Distribution patterns and bioerosion of the sea 
urchin Centrostephanus coronatus (Diadematoida: Diadematidae), at 
the reef of Playa Blanca, Colombian Pacific. Revista de Biologia 
Tropical 52:67-76. 

Torrecilla , I ., Leganes, F., Bonil la , I. , and Fernandez-Pinas, E. 
2001. Ca2+    transients in response to salinity and osmotic stress in 
the nitrogen-fixing cyanobacterium Anabaena sp PCC7120, expressing 
cytosolic apoaequorin. Plant Cell and Environment 24:641-648. 

Tribollet,  A., Godinot, C.,  Atkinson, M., and Langdon, C. 2009. 
Effects of elevated pCO2 on dissolution of coral carbonates by 
microbial euendoliths. Global Biogeochemical Cycles 23:1-7 

Tribollet,  A. 2008. Dissolution of dead corals by euendolithic 
microorganisms across the northern Great Barrier Reef (Australia). 
Microbial Ecology 55:569-80. 

Tribollet,  A., and Golubic, S. 2005. Cross-shelf differences in the pattern 
and pace of bioerosion of experimental carbonate substrates exposed 
for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 
24:422-434. 

Tribollet, A., Langdon, C., Golubic, S. , and Atkinson, M. 2006. 
Endolithic microflora are major primary producers in dead carbonate 
substrates of Hawaiian coral reefs. Journal of Phycology 42:292-303. 

Vil lar , S.E., Edwards, H.G.,  and Cockell , C.S. 2005. Raman 
spectroscopy of endoliths from Antarctic cold desert environments. 
Analyst 130:156-62. 

 

 



  133 

Vogel , K., and Brett, C.E. 2009. Record of microendoliths in different 
facies of the Upper Ordovician in the Cincinnati Arch region USA: The 
early history of light-related microendolithic zonation. 
Palaeogeography Palaeoclimatology Palaeoecology 281:1-24. 

 
Vogel , K., Gektidis , M., Golubic , S. , Kiene, W.E., and Radtke, G. 

2000. Experimental studies on microbial bioerosion at Lee Stocking 
Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: 
implications for paleoecological reconstructions. Lethaia 33:190-204. 

Wade, B.D., and Garcia-Pichel, F. 2003. Evaluation of DNA extraction 
methods for molecular analyses of microbial communities in modern 
calcareous microbialites. Geomicrobiology Journal 20:549-561. 

Waditee, R., Hibino, T., Tanaka, Y., Nakamura, T.,  
Incharoensakdi,  A., and Takabe, T. 2001. Halotolerant 
cyanobacterium Aphanothece halophytica contains an Na(+)/H(+) 
antiporter, homologous to eukaryotic ones, with novel ion specificity 
affected by C-terminal tail. J Biol Chem 276:36931-8. 

 
Ward, D. and Castenholz. , R. 2002. Cyanobacteria in Geothermal 

Habitats. In: B. A. Whitton & M. Potts (Eds.) The Ecology of 
Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic 
Publishers. 

Waterbury, J.B., Watson, S.W., Guillard, R.R.L., and Brand, L.E. 
1979. Widespread Occurrence of a Unicellular, Marine, Planktonic, 
Cyanobacterium. Nature 277:293-294. 

Wayne, T.A. 1987. Responses of a Mussel to Shell-Boring Snails - Defensive 
Behavior in Mytilus-Edulis. Veliger 30:138-147. 

Webb, S.C., and Korrubel, J.L. 1994. Shell Weakening in Marine 
Mytilids Attributable to Blue-Green-Alga Mastigocoleus Sp. 
(Nostochopsidaceae). Journal of Shellfish Research 13:11-17. 

Wilde, D.W., Knight, P.R., Sheth, N., and Williams, B.A. 1991. 
Halothane Alters Control of Intracellular Ca2+ Mobilization in Single-
Rat Ventricular Myocytes. Anesthesiology 75:1075-1086. 

Wisshak, M.,  Gektidis , M.,  Freiwald, A., and Lundälv, T. 2005. 
Bioerosion along a bathymetric gradient in a cold-temperate setting 
(Kosterfjord, SW Sweden): an experimental study. Facies 51:93-117. 

 
Wynn-Williams, D.D., and Edwards, H.G.M. 2000. Antarctic 

ecosystems as models for extraterrestrial surface habitats. Planetary 
and Space Science 48:1065-1075. 



  134 

Young, H.R.,  and Nelson, C.S. 1988. Endolithic Biodegradation of Cool-
Water Skeletal Carbonates on Scott Shelf, Northwestern Vancouver-
Island, Canada. Sedimentary Geology 60:251-267. 

Young, L.G.,  and Nelson, L. 1974. Ca2+ ions and control of the motility 
of sea urchin spermatozoa. Journal of Reproduction and Fertility 
41:371-378. 

Zhang, Y.A.G., S.  1987. Endolithic microfossils (cyanophyta) from early 
Proterozoic stromatolites, Hebei, China. Acta Micropalaentologica 
Sinica 4:1-12. 

Zhao, M., Holl ingworth, S. , and Baylor ,  S.M. 1996. Properties of tri- 
and tetracarboxylate Ca2+ indicators in frog skeletal muscle fibers. 
Biophysical Journal 70:896-916. 

Zubia, M., and Peyrot-Clausade, M. 2001. Internal bioerosion of 
Acropora formosa in Reunion (Indian Ocean): microborer and 
macroborer activities. Oceanologica Acta 24:251-262. 

Zundelevich, A.,  Lazar,  B., and Ilan, M. 2007. Chemical versus 
mechanical bioerosion of coral reefs by boring sponges-lessons from 
Pione cf. vastifica. Journal of Experimental Biology 210:91-96 

 
CHAPTER 1 

Alfaro,  A.C.,  Webb, S.C.,  and Barnaby, C. 2008. Variability of growth, 
health, and population turnover within mussel beds of Perna 
canaliculus in northern New Zealand. Marine Biology Research 4:376 
- 383. 

 
Aline, T. 2008. Dissolution of dead corals by euendolithic microorganisms 

across the northern Great Barrier Reef (Australia). Microb Ecol 
55:569-80. 

 
Al-Thukair , A.A., and Golubic , S. 1991. 5 New Hyella Species from the 

Arabian Gulf. Archiv Fur Hydrobiologie:167-197. 
 
Bathurst,  R.G. 1974. Marine Diagenesis of Shallow-Water Calcium-

Carbonate Sediments. Annual Review of Earth and Planetary 
Sciences 2:257-274. 

 
Berman-Frank, I. ,  Lundgren, P., and Falkowski,  P. 2003. Nitrogen 

fixation and photosynthetic oxygen evolution in cyanobacteria. 
Research in Microbiology 154:157-164. 

 
Castenholz , R. W. 2001. Phylum BX. Cyanobacteria. In Bergey's Manual of 

Systematic Bacteriology, 2nd edn, vol. 1, pp. 473–487. 



  135 

 
Chacón, E., Berrendero,  E.,  and Pichel , F.G. 2006. Biogeological 

signatures of microboring cyanobacterial communities in marine 
carbonates from Cabo Rojo, Puerto Rico. Sedimentary Geology 
185:215-228. 

 
Chazottes,  V., Cabioch, G., Golubic , S.,  and Radtke, G. 2009. 

Bathymetric zonation of modern microborers in dead coral substrates 
from New Caledonia-Implications for paleodepth reconstructions in 
Holocene corals. Palaeogeography Palaeoclimatology Palaeoecology 
280:456-468. 

 
Che, L.M., Le Campion-Alsumard, T., Bouryesnault, N.,  Payri,  C., 

Golubic , S. ,  and Bezac, C. 1996. Biodegradation of shells of the 
black pearl oyster, Pinctada margaritifera var cumingii, by 
microborers and sponges of French Polynesia. Marine Biology 
126:509-519. 

 
Cockell , C.S.,  and Herrera, A. 2008. Why are some microorganisms 

boring? Trends in Microbiology 16:101-106. 
 
Countway, P.D., Gast,  R.J. , Savai ,  P.,  and Caron, D.A. 2005. 

Protistan diversity estimates based on 18S rDNA from seawater 
incubations in the western North Atlantic. Journal of Eukaryotic 
Microbiology 52:95-106. 

 
Danin, A., Gerson, R., Marton, K., and Garty,  J . 1982. Patterns of 

Limestone and Dolomite Weathering by Lichens and Blue-Green-
Algae and Their Paleoclimatic Significance. Palaeogeography 
Palaeoclimatology Palaeoecology 37:221-233. 

 
Desikachary, T.V. 1959. Cyanophytae. Indian Counsil of Agricultural 

Research, New Delhi. 686p. 
 
Duguid, S.M.A.,  Kyser,  T.K.,  James, N.P.,  and Rankey, E.C. 2010. 

Microbes and Ooids. Journal of Sedimentary Research 80:236-251. 
 
Dunphy, B.J. , and Wells , R.M.G. 2001. Endobiont infestation, shell 

strength and condition index in wild populations of New Zealand 
abalone, Haliotis iris. Marine and Freshwater Research 52:781-786. 

 
Dvornyk, V.,  Vinogradova, O., and Nevo, E. 2003. Origin and 

evolution of circadian clock genes in prokaryotes. Proceedings of the 
National Academy of Sciences of the United States of America 
100:2495-2500. 

 



  136 

Friedmann, E.I .,  Hua, M. And Ocampo-Friedmann, R. 1993. 
Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. 
Journal of the British Interplanetary Society 46:291-292. 

 
Forsterra, F.,  and Haussermann, V. 2008. Unusual symbiotic 

relationships between microendolithic phototrophic organisms and 
azooxanthellate cold-water corals from Chilean fjords. Marine Ecology 
Progress Series 370:121-125. 

 
Garcia-Pichel ,  F. 2006. Plausible mechanisms for the boring on carbonates 

by microbial phototrophs. Sedimentary Geology 185:205-213. 
 
Geitler , L. 1932. Cyanophyceae, p. 916-931. In Rabenhorst’s 

Kryptogamenflora von Deutschland. Österreich und der Schweiz, vol. 
14. Akad Verlag, Leipzig. 

 
Ghirardelli,  L.A. 2002. Endolithic microorganisms in live and dead thalli 

of coralline red algae (Corallinales, Rhodophyta) in the northern 
Adriatic Sea. Acta Geologica Hispanica 37:53–60  

 
Golubic , S. ,  Brent,  G., and Le Campion-Alsumard, T. 1970. 

Scanning Electron Microscopy of Endolithic Algae and Fungi Using a 
Multipurpose Casting-Embedding Technique. Lethaia 3:203-209. 

 
Golubic , S. ,  Perkins,  R.D. And  Lukas, K.J. ,  Editors . 1975. Boring 

Microorganisms and Borings in Carbonate Substrates, vol. Springer-
Verlag, Berlin. 

 
Golubic , S. ,  and Seong-Joo, L. 1999. Early cyanobacterial fossil record: 

preservation, palaeoenvironments and identification. European 
Journal of Phycology 34:339-348. 

 
Hoffmann, L. 1990. Presence of Mastigocladopsis-Jogensis (Cyanophyceae, 

Mastigocladopsidaceae) in Corsica (France). Cryptogamie Algologie 
11:219-224. 

 
Horath, T.,  Neu, T.R., and Bachofen, R. 2006. An endolithic microbial 

community in dolomite rock in central Switzerland: characterization 
by reflection spectroscopy, pigment analyses, scanning electron 
microscopy, and laser scanning microscopy. Microb Ecol 51:353-64. 

 
Kaehler,  S. 1999. Incidence and distribution of phototrophic shell-

degrading endoliths of the brown mussel Perna perna. Marine Biology 
135:505-514. 

 
Knoll,  A.H.,  Golubic,  S. , Green, J. , and Swett,  K. 1986. Organically 

preserved microbial endoliths from the late Proterozoic of East 
Greenland. Nature 321:856-7. 



  137 

 
Komárek, J . , and Anagnostidis,  K. 1999. Cyanoprokaryota. In Ettl, H., 

Gärtner, G., Heynig, H. & Mollenhauer, D.  (ed.), Süßwasserflora von 
Mitteleuropa, vol. 19. Spektrum, Akad. Verlag, Heidelberg; Berlin. 

 
Lagerheim, G. 1886. Note sur le Mastigocoleus, noveau genre des algues 

marines de l'ordre des Phycochromacees. Notarisia 1:65-69. 
 
Le Campion-Alsumard, T. 1991. 3 Hyella Taxa (Endolithic Cyanophytes) 

from Tropical Environments (Lizard-Island, Great-Barrier-Reef). 
Archiv für Hydrobiologie:159-166. 

 
Le Campion-Alsumard, T.,  Golubic , S. , and Hutchings,  P. 1995. 

Microbial Endoliths in Skeletons of Live and Dead Corals - Porites 
Lobata (Moorea, French-Polynesia). Marine Ecology-Progress Series 
117:149-157. 

 
Lorne, J .,  Scheffer ,  J. ,  Lee,  A., Painter ,  M.,  and Miao, V.P. 2000. 

Genes controlling circadian rhythm are widely distributed in 
cyanobacteria. FEMS Microbiol Lett 189:129-33. 

 
Macintyre,  I .G.,  Prufert-Bebout, L., and Reid, R.P. 2000. The role of 

endolithic cyanobacteria in the formation of lithified laminae in 
Bahamian stromatolites. Sedimentology 47:915-921. 

 
Montoya-Terreros , H.,  Gomez-Carrion, J .  and Benavente-Palacios , 

M. 2006. Natural populations and culture of the marine microalga 
Mastigocoleus testarum Lagerheim ex Bornet et Flahault 
(Cyanophyta, Nostochopsaceae), the first record for the Peruvian flora. 
Arnaldoa 13:258-269. 

 
Nagy, M.L., Perez, A.,  and Garcia-Pichel , F. 2005. The prokaryotic 

diversity of biological soil crusts in the Sonoran Desert (Organ Pipe 
Cactus National Monument, AZ). FEMS Microbiology Ecology 54:233-
45. 

 
Nielsen, C.S. 1956. Notes on Stigonemataceae from Southeastern United 

States. Transactions of the American Microscopical Society 75:427-
436. 

 
Perkins,  R.D., and Tsentas, C.I . 1976. Microbial Infestation of 

Carbonate Substrates Planted on St-Croix Shelf, West-Indies. 
Geological Society of America Bulletin 87:1615-1628. 

 
Poly,  F.,  Ranjard, L., Nazaret,  S.,  Gourbiere,  F., and Monrozier ,  

L.J. 2001. Comparison of nifH gene pools in soils and soil 
microenvironments with contrasting properties. Applied 
Environmental Microbiology 67:2255-62. 



  138 

 
Provasoli , L. 1968. Media and prospects for the cultivation of marine algae 

In: Watanabe, A. and Hattori, A., Eds. Cultures and Collection of 
Algae. Japanese Society of Plant Physiology, Hakone. 

 
Radtke, G.,  and Golubic,  S. 2005. Microborings in mollusk shells, Bay of 

Safaga, Egypt: Morphometry and ichnology. Facies 51:125-141. 
 
Raghukumar, C.,  Sharma, S., and Lande, V. 1991. Distribution and 

Biomass Estimation of Shell-Boring Algae in the Intertidal at Goa, 
India. Phycologia 30:303-309. 

 
Rajaniemi,  P.,  Hrouzek, P., Kastovska, K., Wil lame, R.,  Rantala,  

A.,  Hoffmann, L., Komarek, J. , and Sivonen, K. 2005. 
Phylogenetic and morphological evaluation of the genera Anabaena, 
Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). 
International Journal of Systematic and Evolutionary Microbiology 
55:11-26. 

 
Reid, R.P.,  Visscher,  P.T.,  Decho, A.W.,  Stolz, J.F., Bebout,  B.M.,  

Dupraz, C., Macintyre, L.G., Paerl , H.W., Pinckney, J .L.,  
Prufert-Bebout, L., Steppe, T.F.,  and Desmarais,  D.J. 2000. 
The role of microbes in accretion, lamination and early lithification of 
modern marine stromatolites. Nature 406:989-992. 

 
Seong-Joo, L., and Golubic , S. 1998. Multi-trichomous cyanobacterial 

microfossils from the Mesoproterozoic Gaoyuzhuang Formation, 
China: Paleoecological and taxonomic implications. Lethaia 31:169-
184. 

 
Sigler,  W.V.,  Bachofen, R.,  and Zeyer,  J . 2003. Molecular 

characterization of endolithic cyanobacteria inhabiting exposed 
dolomite in central Switzerland. Environ Microbiol 5 :618-27. 

 
Silva, P.C.,  Basson, P.W. And Moe, R.L. 1996. Catalogue of the benthic 

marine algae of the Indian Ocean, p. 78. UC Publications in Botany, 
vol. 79. University of California Press. 

 
Sinha, R.P.,  Richter , P. , Faddoul, J. , Braun, M.,  and Hader,  D.P. 

2002. Effects of UV and visible light on cyanobacteria at the cellular 
level. Photochemical & Photobiological Sciences 1:553-559. 

 
Stackebrandt ,E. and Goebel  B. M. 1994. Taxonomic note: a place for 

DNA-DNA reassociation and 16S rRNA sequence analysis in the 
present species definition in bacteriology. International Journal of  
Systematic  Bacteriology 44:846–849. 

 



  139 

Stockfors , M., and Peel , J.S. 2005. Euendoliths and cryptoendoliths 
within late Middle Cambrian brachiopod shells from North Greenland. 
GFF 127:187-194. 

 
Stolz, J.F., Feinstein, T.N.,  Salsi ,  J. ,  Visscher,  P.T., and Reid, 

R.P. 2001. TEM analysis of microbial mediated sedimentation and 
lithification in modern marine stromatolites. American Mineralogist 
86:826-833. 

 
Tamura, K.,  Dudley, J .,  Nei , M.,  and Kumar, S. 2007. MEGA4: 

Molecular evolutionary genetics analysis (MEGA) software version 
4.0. Molecular Biology and Evolution 24:1596-1599. 

 
Tiwari,  D.N. 1978. Heterocysts of the Blue-Green-Alga Nostochopsis-

Lobatus- Effects of Cultural Conditions. New Phytologist 81:653-656. 
 
Tomitani , A.,  Knoll , A.H.,  Cavanaugh, C.M.,  and Ohno, T. 2006. 

The evolutionary diversification of cyanobacteria: Molecular-
phylogenetic and paleontological perspectives. Proceedings of the 
National Academy of Sciences of the United States of America 
103:5442-5447. 

 
Tribollet,  A. 2008. The boring microflora in modern coral reef ecosystems: a 

Review of its roles. In Wisshak, M.A.T., L. (ed.), Current 
Developments in Bioerosion. Springer-Verlag, Berlin. 

 
Tribollet,  A., and Golubic , S. 2005. Cross-shelf differences in the pattern 

and pace of bioerosion of experimental carbonate substrates exposed 
for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 
24:422-434. 

 
Tribollet,  A., Langdon, C.,  Golubic,  S. , and Atkinson, M. 2006. 

Endolithic microflora are major primary producers in dead carbonate 
substrates of Hawaiian coral reefs. Journal of Phycology 42:292-303. 

 
Tribollet,  A., and Payri,  C. 2001. Bioerosion of the coralline alga 

Hydrolithon onkodes by microborers in the coral reefs of Moorea, 
French Polynesia. Oceanologica Acta 24:329-342. 

 
Van De Meene, A.M.L.,  Hohmann-Marriott, M.F., Vermaas, 

W.F.J. , and Roberson, R.W. 2006. The three-dimensional 
structure of the cyanobacterium Synechocystis sp PCC 6803. Archives 
of Microbiology 184:259-270. 

Vischer, W. 1937. Die Kultur der Heterokonten, p. 190-201. In Rabenhorst, 
L. (ed.), Kryptogamenflora von Deutschland, Osterreich und der 
Schweiz, vol. 11. Akademische Verlagsgesellschaft, Leipzig. 

 



  140 

Vogel , K., and Brett, C.E. 2009. Record of microendoliths in different 
facies of the Upper Ordovician in the Cincinnati Arch region USA: The 
early history of light-related microendolithic zonation. 
Palaeogeography Palaeoclimatology Palaeoecology 281:1-24. 

 
Vogel , K., Gektidis,  M.,  Golubic,  S. , Kiene, W.E.,  and Radtke, G. 

2000. Experimental studies on microbial bioerosion at Lee Stocking 
Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: 
implications for paleoecological reconstructions. Lethaia 33:190-204. 

 
Wade, B.D.,  and Garcia-Pichel , F. 2003. Evaluation of DNA Extraction 

Methods for Molecular Analyses of Microbial Communities in Modern 
Calcareous Microbialites. Geomicrobiology Journal 20:549 - 561. 

Webb, S.C., and Korrubel,  J .L. 1994. Shell Weakening in Marine 
Mytilids Attributable to Blue-Green-Alga Mastigocoleus Sp. 
(Nostochopsidaceae). Journal of Shellfish Research 13:11-17. 

 
Weckesser,  J. ,  Hofmann, K., Jürgens, U.J.,  Whitton, B.A.,  and 

Raffelsberger, B. 1988. Isolation and Chemical-Analysis of the 
Sheaths of the Filamentous Cyanobacteria Calothrix-Parietina and C-
Scopulorum. Journal of General Microbiology 134:629-634. 

 
Yeates,  T.O.,  Kerfeld ,  C.A.,  Heinhorst,  S.,  Cannon, G.C.,  and 

Shively,  J .M. 2008. Protein-based organelles in bacteria: 
carboxysomes and related microcompartments. Nature Reviews 
Microbiology 6:681-91. 

 
Young, H.R., and Nelson, C.S. 1988. Endolithic Biodegradation of Cool-

Water Skeletal Carbonates on Scott Shelf, Northwestern Vancouver-
Island, Canada. Sedimentary Geology 60:251-267. 

 
Zehr,  J .P.,  Mellon, M.T., and Hiorns, W.D. 1997. Phylogeny of 

cyanobacterial nifH genes: Evolutionary implications and potential 
applications to natural assemblages. Microbiology-Uk 143:1443-1450. 

 
CHAPTER 2 
 
Al-Thukair , A.A., and Golubic , S. 1991. 5 New Hyella Species from the 

Arabian Gulf. Archiv für Hydrobiologie:167-197. 
 
Andersen, C.L., Holland, I.B., and Jacq, A. 2006. Verapamil, a Ca2+ 

channel inhibitor acts as a local anesthetic and induces the sigma E 
dependent extra-cytoplasmic stress response in E. coli. Biochimica 
Biophysica Acta 1758:1587-1595. 

 
Avery, S.V., and Tobin, J .M. 1992. Mechanisms of Strontium Uptake by 

Laboratory and Brewing Strains of Saccharomyces-Cerevisiae. 
Applied and Environmental Microbiology 58:3883-3889. 



  141 

 
Berman-Frank, I . , Lundgren, P., Chen, Y.B., Kupper, H., Kolber,  

Z. , Bergman, B., and Falkowski, P. 2001. Segregation of 
nitrogen fixation and oxygenic photosynthesis in the marine 
cyanobacterium Trichodesmium. Science 294:1534-1537. 

 
Bourget, C. 1982. Verapamil: a calcium-channel blocker. Dimensions of 

Critical Care Nursing 1:134-138. 
 
Campbell, S. 1983. The modem distribution and geological history of 

calcium carbonate boring microorganisms, p. 99-104. In Wesbroek, P., 
De Jong, E.W. (ed.), Biomineralization and Biological Metal 
Accumulation. Reidel Publishing, Boston. 

 
Eberhard, M., and Erne, P. 1991. Calcium-Binding to Fluorescent 

Calcium Indicators - Calcium Green, Calcium Orange and Calcium 
Crimson. Biochemical and Biophysical Research Communications 
180:209-215. 

Entman, M.L., Hansen, J .L., and Cook, J.W., Jr. 1969. Calcium 
metabolism in cardiac microsomes incubated with lanthanum ion. 
Biochem Biophys Res Commun 35:258-264. 

 
Fernandez-Belda, F. 1988. Lanthanum as a calcium-substituting ion for 

binding to sarcoplasmic reticulum ATPase. Archives of Biochemistry 
and Biophysics 267:770-775. 

 
Fremy, P. 1936. Les algues perforantes. Memoires de la Societe Nationale 

des Sciences Naturelles et Mathematiques de Cherbourg 
         42:275-300. 
 
Friedmann, E.I ., Hua, M., and Ocampo-Friedmann, R. 1993. 

Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. 
Journal of the British Interplanetary Society 46:291-292. 

 
Fujimori, T. , and Jencks, W.P. 1990. Lanthanum inhibits steady-state 

turnover of the sarcoplasmic reticulum calcium ATPase by replacing 
magnesium as the catalytic ion. Journal Biological Chemistry 
265:16262-16270. 

 
Garcia-Pichel , F. 2006. Plausible mechanisms for the boring on carbonates 

by microbial phototrophs. Sedimentary Geology 185:205-213. 
 
Geisler, M., Koenen, W., Richter , J. ,  and Schumann, J. 1998. 

Expression and characterization of a Synechocystis PCC 6803 P-type 
ATPase in E. coli plasma membranes. Biochimica Biophys ica Acta 
1368:267-275. 

 



  142 

Golubic , S. , Brent, G., and Lecampio.T. 1970. Scanning Electron 
Microscopy of Endolithic Algae and Fungi Using a Multipurpose 
Casting-Embedding Technique. Lethaia 3:203-209. 

 
Golubic , S. , Campbell,  S.E.,  Drobne, K.,  Cameron, B., Balsam,  

W.L., Cimerman, F.,  and Dubois , L. 1984. Microbial Endoliths - 
a Benthic Overprint in the Sedimentary Record, and a 
Paleobathymetric Cross-Reference with Foraminifera. Journal of 
Paleontology 58:351-361. 

 
Gordon, J.A. 1991. Use of vanadate as protein-phosphotyrosine 

phosphatase inhibitor. Methods in Enzymology 201:477-482. 
 
Gukovskaya, A.S., Gukovsky, S., and Pandol , S.J. 2000. Endoplasmic 

reticulum Ca(2+)-ATPase inhibitors stimulate membrane guanylate 
cyclase in pancreatic acinar cells. American Journal of Physiology 
278:363-371. 

 
Haigler , S.A. 1969. Boring Mechanism of Polydora Websteri Inhabiting 

Crassostrea Virginica. American Zoologist 9:821-828. 
 
Hanel , A.M., and Jencks, W.P. 1990. Phosphorylation of the calcium-

transporting adenosinetriphosphatase by lanthanum ATP: rapid 
phosphoryl transfer following a rate-limiting conformational change. 
Biochemistry 29:5210-5220. 

 
Harrison, S.M., and Bers , D.M. 1989. Correction of Proton and Ca 

Association Constants of EGTA for Temperature and Ionic-Strength. 
American Journal of Physiology 256:1250-1256. 

 
Hirose, S. , Yaginuma, N.,  and Inada, Y. 1974. Disruption of charge 

separation followed by that of the proton gradient in the mitochondrial 
membrane by CCCP. Journal of Biochemistry 76:213-216. 

 
Kasianowicz, J. , Benz, R., and Mclaughlin, S. 1984. The kinetic 

mechanism by which CCCP (carbonyl cyanide m-
chlorophenylhydrazone) transports protons across membranes. 
Journal of Membrane Biology 82:179-190. 

 
Kirischuk, S. , Voitenko, N., Kostyuk, P.,  and Verkhratsky, A. 

1996. Calcium signalling in granule neurones studied in cerebellar 
slices. Cell Calcium 19:59-71. 

 
Knight,  H., Trewavas, A.J.,  and Knight, M.R. 1997. Calcium 

signalling in Arabidopsis thaliana responding to drought and salinity. 
Plant Journal 12:1067-78. 

 
 



  143 

Konigshof , P., and Glaub, I. 2004. Traces of microboring organisms in 
Palaeozoic conodont elements. Geobios 37:416-424. 

 
Koyama, K., Suzuki,  H., Noguchi, T.,  Akimoto, S. , Tsuchiya, T.,  

and Mimuro, M. 2008. Oxygen evolution in the thylakoid-lacking 
cyanobacterium Gloeobacter violaceus PCC 7421. Biochim Biophys 
Acta 1777:369-78. 

 
Lagerheim, G. 1886. Note sur le Mastigocoleus, noveau genre des algues 

marines de l'ordre des Phycochromacees. Notarisia 1:65-69. 
 
Lanini, L. , Bachs, O., and Carafoli , E. 1992. The calcium pump of the 

liver nuclear membrane is identical to that of endoplasmic reticulum. 
Journal of Biological Chemistry 267:11548-11552. 

 
Lattanzio, F.A., and Bartschat, D.K. 1991. The Effect of Ph on Rate 

Constants, Ion Selectivity and Thermodynamic Properties of 
Fluorescent Calcium and Magnesium Indicators. Biochemical and 
Biophysical Research Communications 177:184-191. 

 
Le Campion-Alsumard, T. 1991. 3 Hyella Taxa (Endolithic Cyanophytes) 

from Tropical Environments (Lizard-Island, Great-Barrier-Reef). 
Archiv für Hydrobiologie:159-166. 

 
Le Campion-Alsumard, T., Golubic , S. ,  and Hutchings, P. 1995. 

Microbial Endoliths in Skeletons of Live and Dead Corals - Porites 
Lobata (Moorea, French-Polynesia). Marine Ecology-Progress Series 
117:149-157. 

 
Moreno, I. , Norambuena, L., Maturana, D., Toro, M., Vergara, C.,  

Orellana, A.,  Zurita-Silva, A.,  and Ordenes, V.R. 2008. 
AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. Journal 
of Biological Chemistry 283:9633-9641. 

 
Nakata, M., Ishiyama, T.,  Akamatsu, S.,  Hirose, Y., Maruoka, H.,  

Suzuki, R., and Tatsuta, K. 1995. Synthetic Studies on 
Oligomycins - Synthesis of the Oligomycin-B Spiroketal and 
Polypropionate Portions. Bulletin of the Chemical Society of Japan 
68:967-989. 

 
Petersen, O.H.,  Michalak, M.,  and Verkhratsky, A. 2005. Calcium 

signalling: Past, present and future. Cell Calcium 38:161-169. 
 
Phillippe, M., Kim, J., Freij , M., and Saunders , T. 1995. Effects of 

2,5-di(tert-butyl)-1,4-hydroquinone, an endoplasmic reticulum Ca(2+)-
ATPase inhibitor, on agonist-stimulated phasic myometrial 
contractions. Biochemical and Biophysical Research Communications 
207:891-896. 



  144 

 
Rajdev, S., and Reynolds, I.J . 1993. Calcium Green-5n, a Novel 

Fluorescent-Probe for Monitoring High Intracellular Free Ca2+ 
Concentrations Associated with Glutamate Excitotoxicity in Cultured 
Rat-Brain Neurons. Neuroscience Letters 162:149-152. 

 
Robinson, I .M., Cheek, T.R., and Burgoyne, R.D. 1992. Ca2+ influx 

induced by the Ca(2+)-ATPase inhibitors 2,5-di-(t-butyl)-1,4-
benzohydroquinone and thapsigargin in bovine adrenal chromaffin 
cells. Biochemical Journal 288 :457-63. 

 
Rogers , T.B., Inesi, G., Wade, R., and Lederer, W.J. 1995. Use of 

thapsigargin to study Ca2+ homeostasis in cardiac cells. Bioscience 
Reports 15:341-9. 

 
Shainkin-Kestenbaum, R., Winikoff , Y.,  Kol , R., Chaimovitz, C.,  

and Sarov, I.  1989. Inhibition of growth of Chlamydia trachomatis 
by the calcium antagonist verapamil. Journal of General Microbiology 
135:1619-23. 

 
Stal,  L.J. , and Krumbein, W.E. 1987. Temporal Separation of Nitrogen-

Fixation and Photosynthesis in the Filamentous, Nonheterocystous 
Cyanobacterium Oscillatoria Sp. Archives of Microbiology 149:76-80. 

 
Teixeira, C.E., Corrado, A.P., De Nucci,  G., and Antunes, E. 2004. 

Role of Ca2+ in vascular smooth muscle contractions induced by 
Phoneutria nigriventer spider venom. Toxicon 43:61-8. 

 
Tribollet, A., Langdon, C., Golubic, S. , and Atkinson, M. 2006. 

Endolithic microflora are major primary producers in dead carbonate 
substrates of Hawaiian coral reefs. Journal of Phycology 42:292-303. 

 
Tucker, T., and Fettiplace, R. 1995. Confocal imaging of calcium 

microdomains and calcium extrusion in turtle hair cells. Neuron 
15:1323-1335. 

 
Uhrik, B.,  and Zacharova, D. 1988. Intracellular Site of Sr2+ and Ba2+ 

Accumulation in Frog Twitch Muscle-Fibers as Determined by 
Electron-Probe X-Ray-Microanalysis. General Physiology and 
Biophysics 7:569-581. 

 
Vasington, F.D.1966. Accumulation of Ca2+ and Sr2+ by Rat-Liver 

Mitochondria - Preferential Loss of Adenosine Triphosphate-
Dependent Mechanism for Sr2+ Accumulation. Biochimica Et 
Biophysica Acta 113:414-416. 

 
Vogel , K., Gektidis , M., Golubic , S. , Kiene, W.E., and Radtke, G. 

2000. Experimental studies on microbial bioerosion at Lee Stocking 



  145 

Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: 
implications for paleoecological reconstructions. Lethaia 33:190-204. 

 
Zhao, M.D., Hollingworth, S., and Baylor, S.M. 1996. Properties of 

tri- and tetracarboxylate Ca2+ indicators in frog skeletal muscle 
fibers. Biophysical Journal 70:896-916. 

 
CHAPTER 3 
 
Al-Thukair , A.A., and Golubic , S. 1991. 5 New Hyella Species from the 

Arabian Gulf. Archiv für Hydrobiologie:167-197. 
 
Al-Thukair , A.A., and Golubic , S. 1991. New Endolithic Cyanobacteria 

from the Arabian Gulf. 1. Hyella immanis Sp. Nov. Journal of 
Phycology 27:766-780. 

Bornet, E. and Flahault, C. 1888. Note sur deux nouveaux genres d' 
algues perforantes. Journal de Botanique 2:162-163.  

 
Castenholz , R. W. 2001. Phylum BX. Cyanobacteria. In Bergey's Manual of 

Systematic Bacteriology, 2nd edn, vol. 1, pp. 473–487. 
 
Castenholz, R. W. & Waterbury, J.  B. (1989) . Cyanobacteria. Preface.  
            In Buchanan, R. E.  & Gibbons, N. E.  (Eds) Bergey's Manual of    
            Systematic Bacteriology, vol. 3, pp. 1710±1806. Baltimore: Williams &   
            Wilkins. 
 
Chacón, E., Berrendero,  E.,  and Garcia-Pichel,  F. 2006. Biogeological 

signatures of microboring cyanobacterial communities in marine 
carbonates from Cabo Rojo, Puerto Rico. Sedimentary Geology 
185:215-228. 

 
Che, L.M., Le Campion-Alsumard, T., Bouryesnault, N.,  Payri,  C., 

Golubic , S. ,  and Bezac, C. 1996. Biodegradation of shells of the 
black pearl oyster, Pinctada margaritifera var cumingii, by 
microborers and sponges of French Polynesia. Marine Biology 
126:509-519. 

 
Cockell , C.S.,  and Herrera, A. 2008. Why are some microorganisms 

boring? Trends in Microbiology 16:101-106. 
 
Desikachary, T.V. 1959. Cyanophytae. Indian Counsil of Agricultural 

Research, New Delhi. 686p. 
 
Ercegović , A. 1927. Tri roda litofitskih cijanoficeja sa jadranske obale. Acta 

Botanica Instituti Botanici Universitatis Zagrebensis 2:78-84. 
 



  146 

Foster, J.S., Green, S.J. , Ahrendt, S.R., Golubic, S., Reid, R.P.,  
Hetherington, K.L., and Bebout, L. 2009. Molecular and 
morphological characterization of cyanobacterial diversity in the 
stromatolites of Highborne Cay, Bahamas. ISME Journal 3:573-87. 

 
Fremy, P. 1936. Les algues perforantes. Memoires de la Societe Nationale 

des Sciences Naturelles et Mathematiques de Cherbourg 42:275-300. 
 
Garcia-Pichel ,  F. 2006. Plausible mechanisms for the boring on carbonates 

by microbial phototrophs. Sedimentary Geology 185:205-213. 
 
Geitler , L. 1932. Cyanophyceae, p. 916-931. In Rabenhorst’s 

Kryptogamenflora von Deutschland. Österreich und der Schweiz, vol. 
14. Akad Verlag, Leipzig. 

 
Golubic , S. 1969. Distribution, Taxonomy, and Boring Patterns of Marine 

Endolithic Algae. American Zoologist 9:747-751. 
 
Golubic , S. , Perkins, R.D. And  Lukas, K.J. 1975. Boring 

Microorganisms and Borings in Carbonate Substrates. In Frey, R.W. 
(Ed), The Study of Trace Fossils. Springer, Berlin, pp.229-259 

Kaehler, S.  1999. Incidence and distribution of phototrophic shell-
degrading endoliths of the brown mussel Perna perna. Marine Biology 
135:505-514. 

Lagerheim, G. 1886. Note sur le Mastigocoleus, noveau genre des algues 
marines de l'ordre des Phycochromacees. Notarisia 1:65-69. 

 
Le Campion-Alsumard, T. 1991. 3 Hyella Taxa (Endolithic Cyanophytes) 

from Tropical Environments (Lizard-Island, Great-Barrier-Reef). 
Archiv für Hydrobiologie:159-166. 

 
Le Campion-Alsumard, T., Golubic , S. ,  and Hutchings, P. 1995. 

Microbial Endoliths in Skeletons of Live and Dead Corals - Porites 
Lobata (Moorea, French-Polynesia). Marine Ecology Progress Series 
117:149-157. 

 
Lukas, K.J., and Golubic , S. 1981. New Endolithic Cyanophytes from the 

North-Atlantic Ocean. 1.Cyanosaccus piriformis Gen. Et. Sp. Nov. 
Journal of Phycology 17:224-229. 

 
Montoya-Terreros , H., Gomez-Carrión, J .  and Benavente-Palacios ,  

M. 2006. Natural populations and culture of the marine microalga 
Mastigocoleus testarum Lagerheim ex Bornet et Flahault 
(Cyanophyta, Nostochopsaceae), the first record for the Peruvian flora. 
Arnaldoa 13:258-269. 



  147 

Nübel , U., Garcia-Pichel , F., and Muyzer, G. 1997. PCR primers to 
amplify 16S rRNA genes from cyanobacteria. Applied and 
Environmental Microbiology 63:3327-32. 

 
Pickles, R.J., and Cuthbert, A.W. 1992. Failure of thapsigargin to alter 

ion transport in human sweat gland epithelia while intracellular Ca2+ 
concentration is raised. Journal of Biological Chemistry 267:14818-
14825. 

 
Provasoli , L. 1968. Media and prospects for the cultivation of marine algae 

In: Watanabe, A. and Hattori, A., Eds. Cultures and Collection of 
Algae. Japanese Society of Plant Physiology, Hakone. 

 
Raghukumar, C., Sharma, S., and Lande, V. 1991. Distribution and 

Biomass Estimation of Shell-Boring Algae in the Intertidal at Goa, 
India. Phycologia 30:303-309. 

 
Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J .F.,  Bebout,  B.M.,  

Dupraz, C., Macintyre,  I .G., Paerl,  H.W., Pinckney, J .L.,  
Prufert-Bebout, L., Steppe, T.F.,  and Desmarais , D.J.  2000. 
The role of microbes in accretion, lamination and early lithification of 
modern marine stromatolites. Nature 406:989-92. 

 
Scamps, F., Roig,  A., Boukhaddaoui,  H., Andre, S.,  Puech, S., and 

Valmier, J . 2004. Activation of P-type calcium channel regulates a 
unique thapsigargin-sensitive calcium pool in embryonic motoneurons. 
European Journal of Neuroscience 19:977-982. 

 
Schneider, J. , and Le Campion-Alsumard, T. 1999. Construction and 

destruction of carbonates by marine and freshwater cyanobacteria. 
European Journal of Phycology 34:417-426. 

 
Stolz, J.F., Feinstein, T.N., Sals i, J ., Visscher, P.T., and Reid, 

R.P. 2001. TEM analysis of microbial mediated sedimentation and 
lithification in modern marine stromatolites. American Mineralogist 
86:826-833. 

 
Thuret, G. 1875. Essai de classification des Nostochinees. Annales des 

Sciencies Natureles 6:375-379. 
 
Vogel , K., Gektidis , M., Golubic , S. , Kiene, W.E., and Radtke, G. 

2000. Experimental studies on microbial bioerosion at Lee Stocking 
Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: 
implications for paleoecological reconstructions. Lethaia 33:190-204. 

 
Webb, S.C., and Korrubel, J.L. 1994. Shell Weakening in Marine 

Mytilids Attributable to Blue-Green-Alga Mastigocoleus Sp. 
(Nostochopsidaceae). Journal of Shellfish Research 13:11-17. 



  148 

 
Zhang, Y.A.G., S.  1987. Endolithic microfossils (cyanophyta) from early 

Proterozoic stromatolites, Hebei, China. Acta Micropalaentol. Sin. 4 :1-
12. 

 
CHAPTER 4 
 
Alakomi, H.-L., Paananen, A., Suihko, M.-L., Helander, I.M., and 

Saarela, M. 2006. Weakening Effect of Cell Permeabilizers on Gram-
Negative Bacteria Causing Biodeterioration. Applied and 
Environmental Microbiology 72:4695-4703. 

 
Alakomi, H.-L., Saarela, M., and Helander,  I .M. 2003. Effect of 

EDTA on Salmonella enterica serovar Typhimurium involves a 
component not assignable to lipopolysaccharide release. Microbiology 
149:2015-2021. 

 
Ascenzi,  A.,  and Silvestrini,  G. 1984. Bone-Boring Marine 

Microorganisms - an Experimental Investigation. Journal of Human 
Evolution 13:531-536. 

 
Baumgartner,  L.K., Dupraz, C., Buckley, D.H., Spear, J .R., Pace,  

N.R., and Visscher, P.T. 2009. Microbial Species Richness and 
Metabolic Activities in Hypersaline Microbial Mats: Insight into 
Biosignature Formation Through Lithification. Astrobiology 9:861-
874. 

 
Danin, A., Gerson, R., and Garty, J . 1983. Weathering Patterns on 

Hard Limestone and Dolomite by Endolithic Lichens and 
Cyanobacteria - Supporting Evidence for Eolian Contribution to Terra 
Rossa Soil. Soil Science 136:213-217. 

 
Defarge, C., and Trichet, J . 1990. Role of Organic Substrates Inherited 

from Living Organisms in the Mineralization of Modern Calcareous 
Microbialites (Kopara from French-Polynesia) - Implications 
Concerning the Intervention of Sedimentary Organic-Matter in 
Geological Processes. Comptes Rendus De L Academie Des Sciences 
310:1461-1467. 

 
Dupraz, C., and Strasser, A. 1999. Microbialites and micro-encrusters in 

shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura 
Mountains). Facies 40:101-129. 

 
Dupraz, C., and Visscher, P.T. 2005. Microbial lithification in marine 

stromatolites and hypersaline mats. Trends in Microbiology 13:429-
438. 

 



  149 

Garcia-Pichel , F., Al-Horani, F. , Ludwig, R., Farmer, J ., Wade, B. 
2004 Balance between calcification and bioerosion in modern 
stromatolites. Geobiology 2:49-57 

 
Golubic , S. 1969. Distribution, Taxonomy, and Boring Patterns of Marine 

Endolithic Algae. American Zoologist 9:747-751. 
 
Golubic , S. , Friedmann, I ., and Schneider, J . 1981. The Lithobiontic 

Ecological Niche, with Special Reference to Microorganisms. Journal 
of Sedimentary Petrology 51:475-478. 

 
Lagerheim, G. 1886. Note sur le Mastigocoleus, noveau genre des algues 

marines de l'ordre des Phycochromacees. Notarisia 1:65-69. 
 
Laurenti , A.,  and Montaggioni , L. 1995. The Role of Microbial Activity 

in Marine Reef Lithification (Tahiti, French-Polynesia). Comptes 
Rendus De L’ Academie Des Sciences  320:845-852. 

 
Laval, B., Cady, S.L., Pollack, J.C., Mckay, C.P., Bird, J .S.,  

Grotzinger, J.P., Ford, D.C., and Bohm, H.R. 2000. Modern 
freshwater microbialite analogues for ancient dendritic reef 
structures. Nature 407:626-629. 

 
Le Campion-Alsumard, T.,  Golubic , S. , and Hutchings,  P. 1995. 

Microbial Endoliths in Skeletons of Live and Dead Corals - Porites 
Lobata (Moorea, French-Polynesia). Marine Ecology Progress Series 
117:149-157. 

 
Merz-Preiss, M., and Riding, R. 1999. Cyanobacterial tufa calcification 

in two freshwater streams: ambient environment, chemical thresholds 
and biological processes. Sedimentary Geology 126:103-124. 

 
Nielsen, R. 1987. Marine-Algae within Calcareous Shells from New-

Zealand. New Zealand Journal of Botany 25:425-438. 
 
Pentecost, A. 1985. Association of Cyanobacteria with Tufa Deposits - 

Identity, Enumeration, and Nature of the Sheath Material Revealed 
by Histochemistry. Geomicrobiology Journal 4 :285-298. 

 
Stolz, J.F., Feinstein, T.N., Sals i, J ., Visscher, P.T., and Reid, 

R.P. 2001. TEM analysis of microbial mediated sedimentation and 
lithification in modern marine stromatolites. American Mineralogist 
86:826-833. 

 
Wade, B.D., and Garcia-Pichel, F. 2003. Evaluation of DNA extraction 

methods for molecular analyses of microbial communities in modern 
calcareous microbialites. Geomicrobiology Journal 20:549-561. 

 



  150 

Wierzchos,  J .,  Berlanga, M., Ascaso,  C.,  and Guerrero, R. 2006. 
Micromorphological characterization and lithification of microbial 
mats from the Ebro Delta (Spain). International Microbiology 9:289-
295.



 

 


