
 

 

Role of the Coronavirus Membrane Protein in Virus Assembly  

by 

Ariel L. Arndt 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment  
of the Requirements for the Degree  

Doctor of Philosophy  
 
 
 
 
 
 
 
 
 
 

Approved November 2010 by the 
Graduate Supervisory Committee:  

 
Brenda Hogue, Chair 

Bertram Jacobs 
Wilson Francisco 
Tatiana Ugarova 

 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 

December 2010  



 

  i 

ABSTRACT  
   

Coronaviruses are medically important viruses that cause respiratory and 

enteric infections in humans and animals. The recent emergence through 

interspecies transmission of severe acute respiratory syndrome coronavirus 

(SARS-CoV) strongly supports the need for development of vaccines and 

antiviral reagents. Understanding the molecular details of virus assembly is an 

attractive target for development of such therapeutics. Coronavirus membrane 

(M) proteins constitute the bulk of the viral envelope and play key roles in 

assembly, through M-M, M-spike (S) and M-nucleocapsid (N) interactions. M 

proteins have three transmembrane domains, flanked by a short amino-terminal 

domain and a long carboxy-terminal tail located outside and inside the virions, 

respectively. Two domains are apparent in the long tail - a conserved region (CD) 

at the amino end and a hydrophilic, charged carboxy-terminus (HD). We 

hypothesized that both domains play functionally important roles during 

assembly. A series of changes were introduced in the domains and the functional 

impacts were studied in the context of the virus and during virus-like particle 

(VLP) assembly. Positive charges in the CD gave rise to viruses with neutral 

residue replacements that exhibited a wild-type phenotype. Expression of the 

mutant proteins showed that neutral, but not positive, charges formed VLPs and 

coexpression with N increased output. Alanine substitutions resulted in viruses 

with crippled phenotypes and proteins that failed to assemble VLPs or to be 

rescued into the envelope. These viruses had partially compensating changes in 
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M. Changes in the HD identified a cluster of three key positive charges. Viruses 

could not be recovered with negatively charged amino acid substitutions at two of 

the positions. While viruses were recovered with a negative charge substitution at 

one of the positions, these exhibited a severely crippled phenotype. Crippled 

mutants displayed a reduction in infectivity. Results overall provide new insight 

into the importance of the M tail in virus assembly. The CD is involved in 

fundamental M-M interactions required for envelope formation. These 

interactions appear to be stabilized through interactions with the N protein. 

Positive charges in the HD also play an important role in assembly of infectious 

particles. 
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INTRODUCTION 
 

Coronaviruses cause respiratory, enteric, and neurological disease in 

humans and a variety of animals. Many infections in animals can be severe and 

cause significant economic losses in the poultry, cattle and swine industries. Two 

human coronaviruses, 229E and OC43, are responsible for roughly 30% of 

common colds. However, human coronaviruses can cause severe disease as 

demonstrated by the severe acute respiratory syndrome (SARS-CoV) outbreak. 

Bat populations worldwide carry SARS-like CoVs and phylogenetic analysis 

indicates that interspecies transmission occurred, leading to infections in humans. 

Since the emergence of SARS-CoV, two new human coronaviruses have been 

identified, NL63 and HKU1. Thus, there is significant interest in understanding 

coronaviruses since they routinely circulate in animals as well as human 

populations, and cross species transfer can clearly happen. This provides a strong 

justification for antiviral therapeutics and vaccine development against the 

viruses. 

Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses 

with a genome of approximately 30kb. This is the largest genome known for RNA 

viruses. The viruses assemble and bud at intracellular membranes in the 

endoplasmic reticulum Golgi intermediate compartment (ERGIC). The virion 

envelope contains at least three structural proteins, the membrane (M), spike (S), 

and envelope (E) proteins. The genomic RNA is encapsidated by the nucleocapsid 

(N) phosphoprotein to form a helical nucleocapsid. Co-expression of the M and 
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the E proteins is sufficient for virus-like particle (VLP) assembly for most 

coronaviruses.  

Coronavirus M proteins are type III proteins that all contain a short amino 

terminal domain located outside the virion, followed by three transmembrane 

domains, and a long carboxy tail located inside the virion. The tail is composed of 

a long amphipathic region and a hydrophilic, charged extreme carboxy tail. The 

M protein plays key roles in virus assembly, through M-M, M-S and M-N protein 

interactions.  

A conserved domain (CD) is located at the amino end of the amphipathic 

region. To determine the functional significance of the CD, changes were 

introduced into the CD and the charged tail and the impact was studied in the 

context of the virus as well as during VLP assembly. Introduction of positive 

charges in the CD (SWWSFNPETNNL) in place of the negatively charged E 

residue gave rise to viruses with neutral residue substitutions that exhibited a 

wild-type phenotype. Expression of the mutant proteins showed that neutral, but 

not positive charge substitutions are competent for VLP assembly and 

coexpression with N increased output. Alanine substitutions for the first four 

(5’A) or last four residues resulted in viruses with crippled phenotypes and 

proteins that failed to assemble VLPs or to be rescued into the envelope. 5’A 

viruses had compensating changes in M that resulted in rescue into VLPs and 

increased VLP output when coexpressed with N. Overall the data show that the 

CD is important for virus assembly and suggests that it is involved in fundamental 
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M-M interactions required for envelope formation. Additionally, results indicate 

that N may help stabilize M-M interactions.   

Previous studies have shown that the extreme carboxy end of the M tail 

(VYVK205SK207VGNYR212LPSNK217PSGADTALLR227T) is important for virus 

assembly. With the exception of R227, the significance of other charges in the 

domain have not been determined. To determine the possible role of these 

residues, amino acid substitutions were introduced by site directed mutagenesis 

for the positive charges. The results indicated that replacement of K205 or R212 and 

K205K207 or R212K217 with a negatively charged aspartic acid (D) resulted in non-

viable viruses and no production of VLPs. Viruses harboring K207D or R212A 

changes had severely crippled phenotypes and could not form VLPs even in the 

presence of N. Additionally these mutants displayed a decrease in viral 

infectivity. The data suggests the charges in the tail of M are important for M-S 

interactions. Overall these studies show that positive charges in the tail of M are 

functionally important for virus assembly as well as infectivity. 

Together the results of this work provide significant new insight into 

regions of the M protein that are vital for assembly of infectious particles. The 

study increases our understanding of a key player and its role in coronavirus 

assembly and provides insight that can form the basis for antiviral and/or vaccine 

development.  
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CHAPTER 1 
 

LITERATURE REVIEW 

History, taxonomy and medical importance of Coronaviruses 

 Coronaviruses were first described in the 1930’s, the first of which was a 

virus called avian infectious bronchitis virus (IBV) followed by murine hepatitis 

virus (MHV) and transmissible gastroenteritis virus (TGEV) (10, 27, 27, 50, 162). 

It was not realized these viruses were related until the 1960’s when a human 

coronavirus was described (191).  The coronavirus genus was then defined. All 

members were defined as having a distinct morphology of a crown-like 

appearance due to surface projections and were given the name corona (Latin for 

crown) (190). 

 Coronaviruses are in the Coronaviridae family along with the Torovirus 

genus (Fig.1). Corona- and toro-viruses share similar replication strategies and 

genome organization. However, they differ in their genome size and nucleocapsid 

structure (22). The Coronaviridae family is in the Nidovirales order along with 

the Arteriviridae and Roniviridae families (Fig.1). Viruses in this order are 

morphologically different but all carry out RNA synthesis using discontinuous 

transcription. Additionally, all Nidoviruses produce a 3’-coterminal nested set of 

subgenomic mRNAs. All the viral structural proteins are translated from these 

subgenomic mRNAs (24, 176, 177, 177). 

Coronaviruses are separated into three groups based on various serological 

assays including neutralization, immunofluorescence, and enzyme- 
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FIG.1. Taxonomy of the Nidovirales order. The order contains the 

Coronaviridae, Roniviridae, and Arteriviridae families. Below each 

family, the genus is listed. The Coronaviridae family consists of the 

coronavirus and torovirus genuses. Viruses associated with each genus 

are listed below the genus name. 
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linked immunosorbent assay (ELISA) (48, 176) (Fig.2). Each group is further  

characterized according to their host and diseases which they cause (Fig.2). It can 

be seen that coronaviruses infect a wide range of domesticated animals and 

humans and cause a variety of diseases. Evolutionary relationships between 

coronaviruses have also been studied using sequence analysis of different viral 

genes (169). The results from these analyses were similar to the serological 

studies. 

Since the identification of the first coronavirus in the 1930’s, several new 

coronaviruses have been identified in both animals and humans. The first human 

coronaviruses, 229E-CoV and OC43-CoV, were identified in the 1960’s (74, 130, 

191). Roughly 30% of common colds are caused by these human coronaviruses 

(57). In 2003, a novel human coronavirus emerged in China and was named 

severe acute respiratory syndrome coronavirus (SARS-CoV) (52). SARS-CoV 

caused more severe disease then other human coronaviruses and results in 

atypical pneumonia, fever, and shortness of breath (154). A total of about 8000 

cases were reported to the World Health Organization (WHO) with a mortality 

rate of roughly 10%  (154), (http://www.cdc.gov/ncidod/sars/reporting.htm). It is 

thought SARS-CoV originated from a wild animal reservoir, presumably from 

bats (104, 114).  The emergence of SARS-CoV and the apparent transfer from 

animals to humans resulted in new interest in coronaviruses and the need to gain 

understanding of how these viruses cause disease. Since the identification of 

SARS-CoV, two other human coronaviruses have emerged, NL63 and HKU1 in  
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FIG.2. Antigenic groups, hosts and diseases of coronaviruses. Adapted 

from (98). The three groups are listed with representative viruses from each. 

The host of each virus is indicated. The disease(s) caused each virus are 

marked. Other diseases caused by coronaviruses are infectious peritonitis, 

immunological disorders, runting, nephritis, pancreatic, parotitis, 

myocarditis, and sialodacryoadenitis.  
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2004 and 2005, respectively (193, 207). Both NL63 and HKU1 cause mostly mild 

upper and lower respiratory tract infections similar to 229E-CoV and OC43-CoV 

(1, 105, 173). Although, both NL63 and HKU1 were reported to cause more 

severe symptoms as well, neither of these new human coronaviruses causes as 

severe disease as SARS-CoV (1, 105, 173). 

Coronaviruses that infect domesticated animals have a significant 

economic impact globally. Many infections in animals can be severe and impose 

significant economic losses in the poultry, cattle and swine industries. For 

example, TGEV can cause vomiting, dehydration and severe and sometimes fatal 

diarrhea in piglets (148, 158). IBV in chickens can cause kidney nephritis as well 

as a decrease in egg production (34).  

 

Virion morphology and structure 

 Coronaviruses are enveloped single stranded positive sense RNA viruses 

that are 100-120nm in size (101). The genomic RNA is 27-31 kb which is the 

largest RNA virus known. The envelopes of all coronaviruses contain three main 

structural proteins, the spike (S), membrane (M) and envelope (E) proteins 

(Fig.3). Inside the envelope the nucleocapsid (N) protein binds to the genomic 

RNA to form a flexible helical nucleocapsid. Some coronaviruses envelopes also 

contain the hemagglutinin esterase (HE) protein. The minimal requirements for 

envelope formation are the M and E proteins as they form virus-like particles 

(VLPs) (Fig.3).  
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Structural Proteins 

Spike (S) Protein 

The virion envelope is decorated with the spike (S) protein which gives 

coronaviruses their characteristic crown like appearance. The S protein is a type I 

large glycoprotein that is roughly 150-180kD in size and is thought to form 

trimers (49, 110). S contains a large N-terminal exodomain that extends outside 

the virion, followed by a transmembrane domain and a short C-terminal 

endodomain. The exodomain contains S1 and S2 subdomains. The globular S1 

region is responsible for binding to host cell receptors (15, 15, 40). The sequences 

of S1 are variable between different coronaviruses. The S2 region forms the stalk 

region of S. S2 regions contain two heptad repeats that form a coiled-coil 

structure (40). After S1 binds to the receptor, the S2 region is responsible for 

mediating fusion of viral and host membranes. Additionally, S2 can mediate cell 

to cell fusion (15, 121). During maturation, S1 and S2 regions remain 

noncovalently associated after cleavage by cellular proteases (180). 

However for SARS, cleavage of S1 and S2 occurs during entry (170). 

Interestingly, the S proteins of group I coronaviruses are not cleaved (41).  

The S protein has many functions during coronavirus infection. S is the 

major target of monoclonal neutralizing antibodies (66). Additionally, the S 

protein mediates fusion of viral and host membranes as well as cell to cell fusion, 

as mentioned above. Although the S2 region is thought to be responsible for 

fusion, changes in multiple regions of S1 and S2 affect the fusion process  
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FIG.3. Schematic of the coronavirus virion. Top: The envelope contains the 

membrane (M), spike (S) and envelope (E) proteins. Inside the virion, the 

nucleocapsid (N) protein binds to the genomic RNA. Adapted from (210). 

Bottom: Virions and virus-like particles (VLPs) visualized by electron 

microscopy. The virions contain the characteristic “crown-like” morphology. 

The VLPs are composed of only the E and M proteins. 
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(67, 70, 157). Furthermore, the S protein, when present at the cell surface, can 

bind to the Fc fragment of IgG (141). Since S makes cells susceptible to B-cell 

mediated cytotoxicity (78), binding to Fc fragments may protect S from being 

recognized by antiviral antibodies.  

Hemagglutinin-esterase (HE) protein 

The HE glycoprotein is found on the virion of some group II and group III 

coronaviruses (17, 97). It is thought the HE protein arose during a recombination 

event of a coronavirus ancestor and the influenza C virus (122). It is a type I 

membrane protein that forms short spikes on the virus envelope. HE associates 

with S and M proteins in infected cells (139). The HE protein is about 65kD in 

size; forms disulfide linked dimers and has hemagglutinating and esterase activity 

(17, 76). Due to the functions of HE, it is thought the protein may play a role in 

entry and/or release (97). Therefore it may be involved in host cell binding but S 

clearly is still required for attachment to the receptor and downstream entry events 

(62, 65, 97). Furthermore, it does not appear the HE is essential for replication as 

it becomes mutated or deleted after multiple passaging in cell culture (212). 

However, strains of MHV that express HE have an increase in neurovirulence in 

vivo (90).  

Envelope (E) Protein 

 The E protein is present in low abundance in the virion envelope and is 9-

12kD in size (68, 219). Coronavirus E proteins all share similar conserved 

characteristics. These include an amino terminal hydrophobic transmembrane 
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region, followed by a cysteine-rich region, conserved prolines, and a highly 

charged carboxy terminal domain (168). Two topologies have been reported for E 

proteins where it spans the membrane once or twice (35, 36, 126, 220). 

Additionally, E is palmitoylated on cysteine residues in the cysteine-rich region 

for several coronaviruses (36, 118, 220). When charged residues within the 

carboxy domain of E were mutated to neutrally charged alanines, virions 

displayed an aberrant morphology (61).  The M and E proteins are required for 

budding of VLPs (194). However, when expressed alone the E protein is released 

from transfected and infected cells in the form of vesicles (125). Therefore, it is 

thought that the E protein triggers virus assembly. Although, the exact role of E 

has not been elucidated but it has been shown to play an important role in virus 

production (37, 61, 96, 116, 144, 219). MHV E can be deleted from the genome 

and viruses are viable, however these mutants grow to titers several logs lower 

compared to WT (96). Additionally, coronavirus E proteins have been shown to 

have ion channel activity (124, 205, 206) which presumably plays a role in viral 

entry and/or budding. 

Nucleocapsid (N) protein    

 The N protein is a highly basic phosphoprotein that is 50-60kD in size 

(106). A three-domain structure for the N protein has been proposed based on 

early sequence comparisons of MHV strains (146). The first two domains, the 

amino terminal and central domains, of all coronavirus N proteins have an overall 

positive charge. Domain III, the carboxy terminus domain, is highly acidic. Each 
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domain is separated by sequences that are highly variable. The N protein is 

phosphorylated and specific sites have been identified for TGEV, IBV, MHV and 

SARS-CoV (20, 29, 202). The function of phosphorylation is not completely 

known however it is speculated to play a role in RNA binding (discussed below) 

or in localization (29, 137, 179, 182).   

 The N protein is a multifunctional protein. One primary role of N during 

infection is encapsidation of the genomic RNA to form the helical nucleocapsid 

structure (8, 39, 123). The RNA binding domain of different coronavirus N 

proteins have been mapped. The RNA binding region for MHV N is Domain II. 

Based on a recent model of N based on the structure of the protein ends, the IBV 

and SARS-CoV N RNA binding domains have been mapped to the amino-

terminal region (81, 222). The N protein has been found to bind nonspecifically to 

RNA as well as to the 5’ leader, the 3’ untranslated region (UTR) and the 

packaging signal (33, 128, 132, 136, 137). The intrinsic property of N to bind 

RNA allows for the formation of the nucleocapsid structure. Secondly, in addition 

to N’s ability to bind to RNA, it also plays a structural role during virus assembly. 

The N protein interacts with the M protein (discussed below) which results in the 

incorporation of the nucleocapsid into the viral particle (83, 95, 134, 196). Two 

groups independently identified negative charges in Domain III of MHV N as 

being functionally important in virus assembly (83, 195), suggesting N-M 

interactions may be of electrostatic nature. Third, coronavirus N proteins play a 

role in viral RNA synthesis and increased efficiency of replication (2, 26, 163, 
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214, 216). N colocalizes with some of the proteins involved in RNA synthesis 

(16). Finally, N proteins of MHV and SARS-CoV contain RNA chaperone 

activity (227). This activity may aid in transcription during template switching 

events. 

Membrane (M) Protein 

 M protein, the focus of this dissertation, is the most abundant protein in 

the viral envelope and is about 25kD in size. M is a type III protein containing a 

short amino terminal domain, followed by three transmembrane (TM) domains, 

and a long carboxy terminal tail located inside the virion (Fig.4A) (77). For 

TGEV both amino and carboxy ends of the M protein are located on the outside 

of the virion (153). The carboxy tail is further divided into a roughly 100 residue 

amphipathic region that appears to be closely associated with the membrane (155) 

and a hydrophilic highly charged tail. M localizes in the Golgi region when 

expressed alone (91, 93). The amino terminus is O- or N-linked glycosylated 

depending on the coronavirus group (101, 142). Glycosylation does not appear to 

be important for correct localization of the protein or virus production (43). 

However, it has been implicated to play a role in interferon induction (42).  

The M protein is a key player in organizing the assembly process. M molecules 

interact with each other and also with the S protein and nucleocapsid during virus 

assembly (46, 47, 58, 95, 139, 143). M-M interactions constitute the overall 

scaffold for the viral envelope. The S protein and a small number of E molecules 

are interspersed in the M protein lattice in mature virions (Fig.4B). Previous  
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FIG.4. Schematic of the M protein and viral assembly complexes. A) 

The M protein is a Type III protein with a roughly 25 residue 

glycoylated amino terminal domain extending outside the virion, 

followed by three transmembrane domains, and a long carboxy tail 

located inside the virion. The carboxy tail contains a ~100 residue 

amphipathic domain that is closely associated with the membrane and a 

~25 residue hydrophilic highly charged tail. Amino acid numbers are 

indicated at the N- and C-termini. B) The sequence of the WT M protein 

carboxy tail starting from after TM3. The amino acid numbers and 

charged residues are indicated. The CD and hydrophilic tail are 

underlined. Secondary structure predictions generated from (87) are 

shown underneath the protein sequence. E=strand C=coil C) Viral 

assembly complexes organized by the M protein. The M protein forms a 

lattice structure. The S and E proteins are interspersed in the M protein 

lattice. The M protein interacts with the nucleocapsid (N+RNA).      
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studies have implicated multiple M domains and residues to be important for 

coronavirus assembly. Regions of the amphipathic domain appear to play a role in 

M-M and M-S interactions (5, 46). Residues within the carboxy tail are important 

for interactions with the N protein (83, 95, 120, 134, 195) as well as the S protein 

(46, 129). This M-N interaction occurs in the absence of the S and E proteins 

(134). Interestingly, the M-N interaction forms the basis of an internal core  

structure for TGEV (152). The M protein also interacts directly with the RNA 

packaging signal (135) highlighting its role in efficient packaging of 

nucleocapsids. Coronavirus M proteins appear to also interact with host proteins. 

For example, IBV M has been shown to interact with β-actin and results suggest 

this interaction is important for assembly and budding of virions but not release 

(199). Additional host proteins M interacts with remain to be determined. 

 

Coronavirus Genome and Nonstructural Proteins 

Viral Genome 

Coronavirus genomes are single stranded, positive sense RNA (Fig.5). The 

genomic RNA contains a 5’ 7-methyl guanosine cap and a 3’ poly(A) tail, is 

recognized as a large mRNA molecule by host cells and is infectious when 

purified (101). At the 5’ end of the genome there is a so-called leader sequence 

65-98 nucleotides in length. The leader is also located at the 5’ ends of all the 

subgenomic mRNAs (discussed below) (Fig.5) (98). Both the 5’ and 3’ ends also 

contain untranslated regions (UTRs) that are 200-500 nucleotides long (Fig.5). 
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The UTRs play important roles in RNA replication and transcription (98). 

Roughly the first two thirds of the genome contain open reading frame (ORF) 1, 

which encodes ORF1a and ORF1b. The translation of ORF1b occurs after 

ribosomal frameshifting at a region between the two ORFs (98). ORF1a and 1b 

encode all the proteins necessary for transcription and replication. In the 3’ end of 

the genome, all the structural ORFs are present in the order 5’- S, E, M, N- 3’. 

There are several nonstructural group specific genes that are located in between 

these main structural ORFs (Fig.5). For MHV, these nonstructural genes are not 

necessary for replication but deletion of some of these genes results in attenuation 

in vivo (44). SARS-CoV contains the most of these nonstructural genes although 

none of them have been found to be necessary for growth in tissue culture (217). 

Nonstructural Proteins (nsps) 

ORF1a and 1b are translated as a large polyprotein which is then 

processed into all the proteins necessary for transcription and replication. ORF1 

encodes for up to sixteen nonstructural proteins (223, 225). All coronaviruses 

encode for one to three proteases, papain-like and chymotrypsin-like, in ORF1a 

(98). The proteases then completely process the ORF1 polyprotein through 

various processing intermediates. These processing events are just starting to be 

studied (208, 224). Because of the proteases important role in viral replication, 

many drugs being developed for SARS-CoV target this protein (98). Many gene 

products produced from ORF1a have unknown functions. The nonstructural 

proteins produced from ORF1a that are known are a protein containing ADP-  
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FIG.5. Organization of Coronavirus Genomes. Adapted from (98). The 

position of the leader, 5’ cap, 3’ poly(A) tail, and 5’/3’ UTRs are indicated. 

Group 1, 2, and 3 representative virus genomes as well as SARS-CoV are 

depicted. The first two thirds of the genome contain ORF1a and ORF1b, 

which are translated into a large polyprotein. The structural and group 

specific nonstructural genes are located at the 3’ end of the genome. 



 

  20 

ribose 1’-phosphatase activity (nsp3), proteins with a cylinderlike structure which 

has been predicted to be important for replication (nsp7 and 8), and a single-

strand RNA binding protein (nsp9) (55, 159). ORF1b encodes the viral RNA 

dependent RNA polymerase (RdRp) (nsp12) and a helicase (nsp13). The helicase 

protein also has other enzymatic properties including NTPase, dNTPase, and 5’-

triphosphatase activities (166). Additional nonstructural proteins encoded by 

ORF1b include a 3’-to-5’ exonuclease (ExoN), a uridylate-specific 

endoribonuclease (NendoU) and an S-adenosylmethionine-dependent 2’-O-ribose 

methyltransferase (2’-O-MT)  

(174). The ORF1 proteins localize to regions of intracellular membranes. 

Transcription and replication for MHV and SARS-CoV are thought to occur on 

double membrane vesicles (DMVs) that occur around perinuclear regions (71, 

175).  

Viral Life Cycle  

The steps of the coronavirus life cycle are depicted in Fig.6. 

Attachment and Entry 

    The virus life cycle begins with attachment of the virion to receptors on 

susceptible host cells. The S protein is responsible for binding to specific 

receptors on the cell surface. The receptors for several coronaviruses have been 

identified. The receptor for MHV is a biliary glycoprotein in the 

carcinoembryonic antigen family, Ig superfamily (CEACAM1) (54, 204). The 

MHV S protein binds to the extracellular Ig-like loops of the CEACAM1  



 

  21 

 

            

 

  

 

 

 

  

FIG.6. The Coronavirus Life Cycle. Virions attach to the cell via S protein 

interactions with specific cellular receptors. The viral envelope fuses with the 

plasma or endosomal membranes to release the genomic RNA into the cytoplasm. 

ORF1a and ORF1b immediately get translated to produce all the proteins 

necessary for transcription and replication including the RNA dependent RNA 

polymerase. A 3’ nested set of subgenomic mRNAs are produced for subsequent 

translation of the structural proteins. Virus assembly and budding occurs in the 

ERGIC. Virions are transported in smooth-walled vesicles through the exocytic 

pathway for release from infected cells. From (210).   
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receptor. CEACAM1 molecules are expressed in the liver and gastrointestinal 

tract, on macrophages, dendritic cells, B cells, and activated T cells (101, 133, 

189). Group I coronaviruses, such as HCoV-229E and TGEV, utilize a host 

specific cell membrane-bound metalloprotease called aminopeptidase N (APN) 

for their receptor (11, 101). APN is expressed in respiratory and intestinal 

epithelium and on myelocytic cells as well as at synaptic junctions (167). Group II 

coronaviruses, HCoV-OC43 and BCoV, use the N-acetyl-9-O-acetylated sialic 

acid as their receptor on host cells (94, 165). The host cell receptor for SARS-

CoV and HCoV-NL63 is the angiotensin-converting enzyme 2 (ACE2) (75, 113). 

ACE2 is expressed in several tissues including the heart, lung, kidney and small  

intestine (73).  

After the virus binds to host cells, the process of penetration and uncoating 

occurs. Once the S protein binds to cell surface receptors it undergoes a 

conformational change that induces fusion of viral and host membranes (221). 

Coronaviruses enter cells by fusion with the plasma membrane or endosomes. 

MHV, BCoV, and IBV induce fusion optimally at a neutral or slightly alkaline 

pH, which suggests these viruses fuse directly with the plasma membrane (111, 

147, 181). In contrast, some MHV strains appear to enter cells by utilizing the 

pH-dependent endosomal pathway (67). For these viruses, infectivity is reduced 

in the presence of lysosomotropic drugs (67). After fusion, the nucleocapsid is 

released into the cytoplasm of host cells. The RNA is then uncoated before 

transcription and translation occur. The process of release and uncoating of the 
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genomic RNA is poorly understood. There is evidence of a phosphoprotein 

phosphatase that possesses activity against N and it is hypothesized that the 

dephosphorylation of N may lead to dissociation of N from the RNA (131). Other 

studies have suggested that cellular factors are involved in MHV entry (6).    

Transcription and replication 

After the genomic RNA is released into the cytoplasm, ORF1a and 1b are 

translated to produce all the proteins necessary for transcription and replication. 

First the so-called replicase-transcriptase complex generates negative-strand RNA 

molecules. These RNAs are then used for transcription of subgenomic mRNAs. A 

3’ coterminal nested set of subgenomic mRNAs are produced during viral 

infection. Therefore, they all contain the same 3’ ends but have 5’ ends of various 

lengths (Fig.7) (101). Although, each subgenomic mRNA contains more than one 

ORF, only the most 5’ ORF gets translated. Each subgenomic mRNA contains the 

leader sequence at the 5’ end, the same leader as is present on the 5’ end of the 

genome.  

Intergenic or transcription-regulatory sequences (TRSs) are present on the 

genomic RNA before each structural ORF. These TRSs play a role in regulation 

of subgenomic mRNA transcription. Importantly, the 3’ end of the leader has 

similar sequences as the TRSs. Since each subgenomic mRNA contains the leader 

sequence as well as TRSs, a model of discontinuous transcription was proposed 

(9, 100, 178). It is still debated whether this discontinuous transcription 

mechanism occurs during positive- or negative-strand synthesis. The model for  
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FIG.7. Coronavirus Genome and subgenomic mRNAs. A schematic of 

the full length RNA genome is shown on top. The 5’ cap, poly(A) tail, 

and UTRs are depicted. The leader is represented as a red box. ORF1a 

and 1b are translated into the replicase polyprotein. A 3’ coterminal 

nested set of subgenomic mRNAs are produced during infection. They all 

contain the leader at the 5’ end. The subgenomic mRNAs are translated 

to produce the viral structural proteins.  
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transcription during positive-strand synthesis has been named leader-primed (99). 

During leader-primed transcription the leader RNA sequence is synthesized first 

from full-length negative-strand RNA and then the polymerase switches to the 

complementary TRS on the negative-stranded RNA (99). This results in a 

positive-stand mRNA molecule. The other model proposes that subgenomic 

mRNA transcription occurs during negative-strand RNA synthesis. The 

polymerase would stall at the TRS sequences and then jump to the 3’ end of the 

leader, that contains homologous sequence to the TRS, to continue transcription 

(161). This results in negative-strand subgenomic mRNAs that would 

subsequently be used to generate positive-strand mRNAs. Currently the negative-

strand discontinuous transcription mechanism is favored.  

Full-length positive- and negative-strand genomic RNAs are also made 

during infection. A discontinuous synthesis mechanism may occur during full-

length RNA synthesis as it does for subgenomic mRNA synthesis (127). The 5’ 

and 3’ UTRs as well as RNA secondary structures within these regions are 

necessary for RNA replication (80, 150). 

Translation 

  ORF1 is translated immediately after infection as one large polyprotein 

700-800kD in size. ORF1 contains ORF1a and 1b that are in different reading 

frames (18). Ribosomal frameshifting results in translation of the two separate 

ORFs. All the proteins in the transcriptase-replicase complex are encoded in 

ORF1. Each of the structural proteins is translated off of the subgenomic mRNAs. 
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Translation is initiated by a traditional cap-dependent mechanism. Even though 

the subgenomics contain more than one ORF, typically only the most 5’ ORF is 

translated (98). However the MHV E protein, which is encoded on subgenomic 

mRNA 5, is translated from the second ORF (185). Translation of the E protein 

occurs through a cap-independent internal ribosomal entry site (IRES).  

Assembly and Release 

 Virus assembly takes place at the ER/Golgi intermediate compartment 

(ERGIC) (69, 91, 187). The viral structural proteins are localized to the site of 

assembly. The S protein is cotranslationally inserted into the rough ER (RER). 

Although some S localizes to the plasma membrane, it primarily localizes at the 

site of assembly and interacts with the M protein (139, 143). The M protein is also 

cotranslationally inserted into the ER membrane and localizes primarily in the 

ERGIC in infected cells (91). When expressed alone, M localizes to the Golgi, 

beyond the site of virus assembly (91). The E protein localizes to the ERGIC 

region in cells (143). The HE protein is transported to the Golgi and a fraction is 

also localized to the plasma membrane (98). Finally, the N protein is located at 

intracellular membranes where it is associated with components of the RNA 

replication complex (171). However, N is found at the ERGIC region late in 

infection when assembly is taking place (19). Since E is the only viral protein that 

localizes at the site of assembly on its own, it is thought E determines the site of 

assembly.                        
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The viral structural proteins interact with each other to form assembly 

complexes that help facilitate the assembly and budding process. The M protein is 

a key player in organizing the assembly process. M molecules interact with each 

other and also with the spike and nucleocapsid during virus assembly (Fig.4B) 

(46, 47, 58, 95, 139, 143). M-M interactions constitute the overall scaffold for the 

viral envelope. M associates with other M molecules in pre-Golgi regions, 

consistent with assembly occurring in the ERGIC (47). M-M interactions are 

thought to be mediated through multiple regions but the transmembrane domains 

appear to be especially important (47). In particular a conserved region at the 

amino end of the amphipathic region was found to be important for efficient M-M 

associations (5). Furthermore, cryo-tomography analysis of VLPs and virus 

particles revealed that the envelope is striated, presumably due to M-M 

associations (7). It has been suggested that the lattice structure actually precludes 

foreign proteins from being incorporated into the viral envelope (47).  

During assembly, the M protein also interacts with the N protein (83, 95, 

134, 195, 196). These interactions presumably facilitate the incorporation of the 

nucleocapsid into viral particles. Charged residues within the extreme carboxy tail 

of MHV (particularly the penultimate charge R227), SARS-CoV and TGEV M, 

have been implicated to be important mediators for the M-N interaction (58, 83, 

95, 120, 195, 196). Charged residues within the C-terminus of N have also been 

identified to be key residues for N’s interaction with the M protein (83, 195). 

However, the data clearly suggests other regions of M are essential for the M-N 
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association. Due to the complexity of this interaction, further studies mapping 

regions in the M protein carboxy tail necessary for M-N association are of 

significant interest and could be integrated with those of previous studies to 

generate a more complete picture of M-N electrostatic charge interactions.   

In addition to M-M and M-N interactions, the M protein interacts with the 

S protein as well during assembly. Interactions with S are important to ensure 

incorporation of the viral attachment protein. The amphipathic region of the M 

protein tail has been shown to be important in mediating M-S interactions (46). 

Regions within the hydrophilic tail of M have also been identified as being crucial 

for SARS-CoV and MHV M protein interactions with S (46, 129). Clearly there 

appears to be multiple contact points between the two proteins and there is a need 

for the specific residues on M that are involved in the interactions to be 

elucidated. 

Although all these protein interactions must take place for efficient 

assembly of infectious particles, the M and E proteins are the minimal 

requirements for envelope formation for MHV, IBV, and BCoV, as they form 

VLPs (14, 35, 194). Therefore, it is thought these two viral proteins are crucial for 

assembly of virions. Most enveloped viruses require the nucleocapsid for 

assembly so coronaviruses are unique as they utilize nucleocapsid independent 

assembly. Mutations and deletions made in all regions of M, including the amino 

end, TM domains and carboxy tail, cause decreases in VLP assembly (43), 

highlighting the importance of the M protein in the assembly process. However, 
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since the M protein alone cannot efficiently drive the assembly process, it is 

thought the E protein plays an important role in assembly and release. Studies 

have suggested that E may induce membrane curvature or could be involved in 

the pinching off of budding virions (149, 194). Additionally, when E is expressed 

alone, vesicles are produced and released from cells (125). The ion channel 

activity of E may also play a role in budding events (124, 205, 206). After virions 

assemble and bud in the ERGIC region, they move through the Golgi to reach 

secretory vesicles. Virions accumulate in smoothed-walled vesicles which are 

trafficked to the plasma membrane via the cellular secretory pathway (98). 

Virions are then released extracellularly. 

Reverse Genetics/Infectious Clones 

 Due to the large size of the coronavirus genome, it was initially difficult to 

generate full length cDNA infectious clones. However, full length cDNAs have 

now been developed for MHV (32, 216), IBV (21, 213), TGEV (3, 214), HCoV-

229E (184) and SARS-CoV (215). The cDNAs are maintained using bacterial 

artificial chromosomes, vaccinia virus vectors, and multiple plasmids. One of the 

MHV infectious clones was used extensively in this dissertation (216). The viral 

genome is maintained in seven different plasmids. The seventh plasmid, called the 

G clone, contains all the structural genes. Mutagenesis can be done to any region 

of the genome. Each plasmid is isolated and ligated together to generate the full 

length cDNA clone. In vitro transcription is carried out and the infectious RNA is 

electroporated into susceptible cells.   
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CHAPTER 2 

A CONSERVED DOMAIN IN THE CORONAVIRUS MEMBRANE PROTEIN 

TAIL IS IMPORTANT FOR VIRUS ASSEMBLY 

(Journal of Virology. 2010. Vol. 84: 11418-11428) 
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ABSTRACT 

Coronavirus membrane (M) proteins play key roles in virus assembly, through M-

M, M-spike (S) and M-nucleocapsid (N) protein interactions.  The M carboxy-

terminal endodomain contains a conserved domain (CD) following the third 

transmembrane (TM) domain.  Importance of the CD (SWWSFNPETNNL) in 

mouse hepatitis virus was investigated with a panel of mutant proteins, using 

genetic analysis and transient expression assays.  A charge reversal for negatively 

charged E121 was not tolerated.  Lysine (K) and arginine (R) substitutions were 

replaced in recovered viruses by neutrally charged glutamine (Q) and leucine (L), 

respectively, after only one passage.  E121Q and E121L M proteins were capable of 

forming virus-like particles (VLPs) when coexpressed with E, whereas E121R and 

E121K proteins were not. Alanine substitutions for the first four or the last four 

residues resulted in viruses with significantly crippled phenotypes and proteins 

that failed to assemble VLPs or to be rescued into the envelope.  All recovered 

viruses with alanine substitutions in place of SWWS residues had second site, 

partially compensating, changes in the first TM of M.  Alanine substitution for 

proline had little impact on the virus.  N protein coexpression with some M 

mutants increased VLP production.  The results overall suggest that the CD is 

important for formation of the viral envelope by helping mediate fundamental M-

M interactions and that the presence of the N protein may help stabilize M 

complexes during virus assembly.   
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INTRODUCTION 
 

Coronaviruses are widespread medically important respiratory and enteric 

pathogens of humans and a wide range of animals. New human coronaviruses 

(HCoV), including severe acute respiratory syndrome (SARS-CoV), HCoV-

NL63, and HCoV-HKU1, were recently identified (193, 207).  The potential for 

emergence of other new viruses and the zoonotic nature of some coronaviruses 

strongly warrants understanding old and new viruses. Understanding vital 

interactions that take place during virus assembly and conserved domains that 

mediate these interactions can provide insight toward identification of targets for 

development of antiviral therapeutics and vaccines.  

Coronaviruses are enveloped positive-stranded RNA viruses that belong to 

the Coronaviridae family in the Nidovirales order. The virion envelope contains 

at least three structural proteins, the membrane (M), spike (S), and envelope (E) 

proteins. The genomic RNA is encapsidated by the N phosphoprotein to form a 

helical nucleocapsid. The S glycoprotein is the viral attachment protein that 

facilitates infection through fusion of viral and cellular membranes and is the 

major target of neutralizing antibodies (66). The M glycoprotein is the most 

abundant component of the viral envelope that plays required, key roles in virus 

assembly (47, 91, 139, 143, 194). The E protein is a minor component of the viral 

envelope that plays an important, not clearly defined, role(s) during virus 

assembly and release (14, 35, 194).  
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Coronavirus M proteins are divergent in their amino acid content, but all 

share the same overall basic structural characteristics. The proteins have three TM 

domains, flanked by a short amino terminal glycosylated domain and a long 

carboxy terminal tail located outside and inside the virion, respectively (77) 

(Fig.8A). M localizes in the Golgi region when expressed alone (91, 93). M 

molecules interact with each other and also with the spike and nucleocapsid 

during virus assembly (46, 47, 58, 95, 139, 143). M-M interactions constitute the 

overall scaffold for the viral envelope.  The S protein and a small number of E 

molecules are interspersed in the M protein lattice in mature virions. Previous 

studies from a number of labs implicated multiple M domains and residues to be 

important for coronavirus assembly (43, 46, 47, 83, 196). Coronaviruses assemble 

and bud at intracellular membranes in the region of the endoplasmic reticulum 

Golgi intermediate compartment (ERGIC) (93, 188). Co-expression of only the M 

and the E proteins is sufficient for VLP assembly for most coronaviruses (14, 

194).  

The long intravirion (cytoplasmic) tail of M consists of an amphipathic 

domain following the third TM and a short hydrophilic region at the carboxyl end 

of the tail. The amphipathic domain appears to be closely associated with the 

membrane (155). At the amino terminus of the amphipathic domain, there is a 

highly conserved 12 amino acid domain (SWWSFNPETNNL), consisting of 

residues 114-125 in the MHV A59 M protein (Fig.8B) (89). These residues are 

almost identically conserved across the entire Coronaviridae family. Because of  
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FIG.8. M protein conserved domain and mutants.  (A) A linear schematic of the 

M protein is shown illustrating the relative positions of the three TM (black 

boxes) and position of the CD in the tail.  (B) Alignment of CDs from 

representative coronaviruses is shown below.  Full length amino acid sequences 

from transmissible gastroenteritis virus (TGEV), feline coronavirus (FeCoV), 

human coronavirus 229E, human coronavirus NL63, mouse hepatitis virus 

(MHV), bovine coronavirus (BCoV), human coronavirus OC43, porcine 

hemagglutinating encephalomyelitis virus (HEV), human coronavirus HKU1, 

SARS-CoV, infectious bronchitis virus (IBV), and turkey coronavirus (TCoV) 

were aligned by CLUSTAL W (103).  (C) Mutations introduced into the MHV 

CD are shown at the bottom, with + and – symbols used to indicate VLP 

production and virus recovery for each mutant. 
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the crucial role that M plays in virus assembly and the high conservation of this 

domain, we hypothesized that the conserved domain (CD) is functionally 

important for virus assembly.  To test this, a series of changes were introduced in 

the CD.  The functional impact of the changes was studied in the context of the 

virus by genetic analysis and ability of the mutant M proteins to participate in 

VLP assembly.  The results show that the CD is functionally important for M 

protein to participate in virus assembly. The domain may help mediate important 

lateral interactions between M molecules.  The results suggest that the N protein 

helps stabilize M complexes during virus assembly. 
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MATERIALS AND METHODS 

 
Cells and viruses. Mouse L2 and 17 clone1 (17Cl1) cells were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) containing 10% and 5% heat-

inactivated fetal calf serum (FCS), respectively, plus penicillin, streptomycin, and 

glutamine. Baby hamster kidney cells expressing the MHV Bgp1a receptor 

(BHK-MHVR) (216) and BHK-21 cells (ATCC) were grown in Glasgow minimal 

essential medium (GMEM) containing 5% FCS, supplemented with antibiotics, 

glutamine and 10% tryptose phosphate broth. BHK-MHVR cells were maintained 

in the presence of Geneticin (G418) for continuous selection of cells expressing 

the receptor (216). Human 293T cells (ATCC) were grown on 0.25% gelatin 

coated flasks in DMEM containing 10% FCS, antibiotics and glutamine. Stocks 

of wild-type MHV A59 and cloned viruses were grown in mouse 17Cl1 or L2 

cells. Virus titers were determined in L2 cells.  

Construction of amino acid substitution and deletion mutants.  pGEM-

5Zf(+)M-N, a pGEM5Zf(+) vector (Promega) containing the M and N genes 

(EcoRV-SacI fragment), was used for mutagenesis (195). Site-directed amino 

acid substitutions were introduced by whole-plasmid PCR using appropriate 

primers and platinum Pfx DNA polymerase (Invitrogen).  Mutations were 

confirmed by sequence analysis of the entire M-N insert before subcloning into 

the MHV G clone at the EcoV and BssH II sites (216).  

Reverse genetics.  All mutant viruses were made by reverse genetics using a 

MHV A59 infectious clone (216).  Full-length cDNA clones were assembled, 
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transcribed, and electroporated into BHK-MHVR cells as described previously 

(195).  Following electroporation BHK-MHVR cells were seeded alone or in 

some cases were seeded concurrently with L2 cells.  At 24-46 h after 

electroporation media were harvested and an aliquot was used to infect 17Cl1 or 

L2 cells. The medium was removed from infected cells at 24 to 72 h p.i.  Total 

cytoplasmic RNA from cells remaining on the flasks was extracted using 

RNAqueous-4PCR extraction buffers (Ambion) and treated with DNase before 

being reverse transcribed using the Superscript RT-PCR system from Invitrogen 

and an oligo (dT) primer.  The RT product was subjected to 30 cycles of PCR 

amplification using SuperTaq Plus (Ambion) and appropriate primers to amplify 

the E, M, N and S genes.  PCR products were cleaned with MiniElute PCR 

(Qiagen) before being sequenced directly.   

Viruses were subsequently plaque purified from media taken directly off 

cells that had been electroporated.  Multiple plaque isolates were passaged on 

17Cl1 cells five times for all viable viruses, except for the 3’A mutant that was 

passaged on L2 cells.  In some cases where viruses grew poorly and yielded small 

plaques from which it was difficult to recover isolates, the stock off 

electroporated cells was passaged five times to allow for selection of the most fit 

viruses.  RNA was extracted from infected cells following passage of plaque 

purified viruses for RT-PCR and sequence confirmation of the E, M, N, 

endodomain of S genes and the packaging signal to determine the stability of 

introduced mutations and identify potential compensating changes.  
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Virus growth properties.  Growth kinetic experiments were carried out in mouse 

17Cl1 cells infected at a multiplicity of infection (MOI) of 0.01 or 0.001 PFU/cell 

with passage 5 virus stocks.  Cell culture supernatants were collected at indicated 

times after infection and virus titers were determined by plaque assay on mouse 

L2 cells.  Low melting agarose/medium overlays were removed at 72-96 h p.i.  

Cells were fixed and stained with crystal violet in ethanol to visualize plaques. 

Two independent growth kinetic experiments were performed for each set of 

mutant viruses in parallel with the wild-type virus. Growth kinetic curves 

represent exponential growth with saturation. For each experiment starting titer 

and saturation parameter were the same. Curves were distinguished by variation 

in doubling times. Relative error was assumed to be the same for all time points 

for each data set. Error estimate was computed by taking the standard deviation 

divided by mean for each of the time points and averaging over all points.  

VLP analysis.  Wild-type and mutant M genes were expressed in the pCAGGS 

vector under the control of the chicken β-actin promoter for transient expression 

(140).  A Kozak sequence was included in the forward primer for all genes.  All 

mutant M genes were shuttled into the pCAGGS vector from the MHV G 

fragment used to generate full-length MHV genomic cDNAs for virus 

construction.  The 5’A M mutants with TM1 second site changes were subcloned 

by RT-PCR of RNA from mutant virus infected cells.  Wild-type E and N genes 

were also expressed in the pCAGGS vector.   
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293T cells were transfected with the pCAGGS plasmids containing the 

wild-type or mutant M genes, E gene, and in some cases the N gene, using the 

TransIT-293 transfection reagent (Mirus).  At ~24 h after transfection, the culture 

medium and intracellular cytoplasmic fraction were harvested.  Cells were lysed 

on ice with 0.5% Triton X-100, 50 mM NaCl and 50 mM Tris-HCl (pH 7.5) in the 

presence of 1mM phenylmethylsulfonyl fluoride (PMSF). The medium was 

clarified at 14,000 x g for 10 min at 4°C.  VLPs from clarified media were 

pelleted through a 30% sucrose cushion by ultracentrifugation for 3 h at 4°C in a 

Beckman SW55Ti rotor at 30,000 rpm.  Pellets were resuspended in Laemmli 

sample loading buffer and analyzed by SDS-PAGE. Proteins were transferred to 

polyvinylidene difluoride (PVDF) membranes and analyzed with anti-MHV M 

A03 (kindly provided by Kathryn Holmes, University of Colorado Health 

Sciences) and anti-MHV E 9410 and anti-MHV N antibodies generated in our lab 

(33, 118).  Following incubation with appropriate secondary antibodies, blots 

were visualized by chemiluminescence (Pierce).  VLP release was quantified by 

densitometric scanning of fluorograms and analyzed using Image-Quant software 

(Molecular Dynamics).  

Rescue of mutant M proteins.  The A2A3 M was generated by site-directed 

mutagenesis of the second and third serines in the gene and rescue analysis was 

carried out basically as previously described (45).  293T cells were transfected 

with pCAGGS plasmids as described above with MirusTrans-293 reagent 

(Mirus).  At 4 h after transfection cells were starved for 30 min at 37oC in 
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methionine- and cysteine-free DMEM, containing 5% FCS, prior to labeling with 

150 µCi/ml of  Expre35S35S labeling mixture (Perkin Elmer).  At 24 h after 

transfection cells were washed with PBS and lysed on ice with 

radioimmunoprecipitation assay buffer (RIPA) containing 1% Triton X-100, 1% 

deoxycholate, 0.3% SDS, 150 mM NaCl, 50 mM Tris-HCl [pH 7.6], 20 mM 

EDTA and 1 mM PMSF.  After clarification of the extracellular medium, VLPs 

were lysed by incubation with 2X RIPA buffer on ice and sonication for 1.5 min 

at 30 sec intervals.  Lysates were precleared with protein A-sepharose CL-4B (GE 

Healthcare Life Sciences) by rocking for 1 h at 4° C.  Each sample was divided in 

half and immunoprecipiated with anti-MHV M monoclonal J1.3 that recognizes 

the amino terminus of the protein (62) or an anti MHV-serum 488 (kindly 

provided by Kathryn Holmes, University of Colorado Health Sciences) antibody 

overnight at 4° C.  Protein complexes were isolated by incubation with protein A-

Sepharose for 2 h at 4° C while rocking.  Pelleted complexes were washed 5 times 

with RIPA buffer followed by 1 wash with RIPA buffer minus detergents.  

Proteins were eluted in Laemmli SDS-PAGE sample loading buffer by heating at 

95° C for 5 min and analyzed by SDS-PAGE.  Gels were incubated in Amplify 

Fluorographic Reagent (GE Healthcare Life Sciences) for 30 min at room 

temperature prior to drying and subsequent fluorography.  

Indirect immunofluorescence.  Co-localization of mutant M genes with WT S 

was determined by expression of pCAGGS plasmids containing WT or mutant M 

and WT S genes in BHK-21 cells. Cells were plated on Lab-teck chamber slides 
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(Nunc) 1 day prior to transfection with MirusTrans-293T reagent (Mirus). At 12 h 

after transfection cells were washed two times with PBS and fixed in methanol for 

15 min at -20°C.  Following one additional wash with PBS, cells were blocked 

with 2% gelatin in PBS overnight at 4° C.  Monoclonal antibodies J1.3 and 2.7 

(62) and a polyclonal antibody, A04 (kindly provided by Kathryn Holmes, 

University of Colorado Health Sciences) were used to detect the M and S 

proteins, respectively. Slides were incubated for 2 h with primary antibodies at 

room temperature, washed with 2% gelatin in PBS before incubation with Alexa-

labeled secondary antibodies. Cells were washed with 2% gelatin in PBS and then 

a final wash with PBS alone. Slides were mounted in ProLong Gold antifade 

reagent (Molecular Probes) containing 4,6-diamino-2phenylindole (DAPI) to stain 

nuclei. Images were collected by using an epifluorescence Nikon inverted 

microscope (Nikon, Inc., Melville, NY) with MetaMorph imaging soft-ware 

(Universal Imaging Corp., Downingtown, PA). Images were processed using 

Adobe Photoshop. 
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RESULTS 

Construction of conserved domain mutants. To study the importance of the 12 

amino acid CD in the tail of coronavirus M proteins, MHV-A59 virus was used as 

the model. Site directed mutagenesis was used to change or delete residues in the 

domain (Fig.8C). Two nucleotides were introduced for all codon changes to assist 

in identification of compensatory changes. A MHV-A59 infectious clone was 

used to study the impact of residue changes in the context of full virus assembly. 

Recovered viruses were plaque purified and passaged multiple times. Sequence 

analysis at various passage points was used to monitor genetic stability of the 

introduced mutation(s) and identify secondary compensatory changes. The M, N, 

and E genes, as well as the carboxy end of the S gene and packaging signal in 

gene 1b, were sequenced. All viruses were analyzed for their growth properties to 

determine the impact of genetic changes directly on assembly.  Selected mutant M 

proteins were also analyzed for their ability to support VLP production by co-

expression of the E and M genes, and in some cases the N gene was included, to 

provide insight into the possible role of the CD in envelope formation. 

A positive charge within the conserved domain is not tolerated.  To address 

the significance of the only charged residue, glutamic acid (E121) was changed to 

neutrally charged alanine (A), as well as to positively charged arginine (R) or 

lysine (K) (Fig.8C). The negative charge was of interest for its potential to 

mediate protein-protein interactions through electrostatic means.  Sequence 

analysis of the E121A virus from cells infected with medium taken directly from 
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electroporated cells showed that the introduced mutations were retained and that 

no other changes were present the structural genes. In contrast, the positive 

charges in both the E121K and E121R clones were replaced after the first passage 

with neutrally charged glutamine (Q) or leucine (L), respectively.  Sequence 

analysis of the total virus population also revealed one additional change in the N 

gene, theonine (T) to A at position 428 in the E121Q mutant and glycine (G) to A 

at position 94, in the E121L mutant.   

The recovered E121A, E121Q, and E121L charged residue viruses were 

plaque purified from media off cells that had been electroporated with full-length 

genomic RNAs and multiple isolates of each were passaged on 17Cl1 cells. After 

five passages the plaque purified viruses were reanalyzed by sequencing. Four of 

five P5 E121A viruses had no additional changes in any of the structural genes. 

The other P5 isolate contained an additional change, valine at position 410 to 

isolucine, in the N gene.  Parallel growth analysis of the E121A virus with and 

without the change in N indicated that both grew comparably (data not shown).  

Therefore, the E121A mutant virus with no other changes was used for further 

analysis.   

Four out of six E121Q plaque purified virus isolates maintained the T428A 

change that was seen in the population analysis following electroporation in the N 

gene, and two had only the E121Q change.  To determine if the change in the N 

gene was providing a growth advantage, one of the plaque purified E121Q viruses 

without the T428A change and one with the change were analyzed for their growth 
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properties in parallel with WT virus.  Both viruses exhibited comparable growth 

properties (data not shown).  The E121Q virus with the T428A change in N was 

used for subsequent finer detailed growth analysis.   

Sequence analysis of the E121L plaque purified viruses showed that all 

contained the G94A change seen immediately following electroporation in the N 

gene through P5.  To determine the impact of the G94A second site change, an 

independent clone was constructed that contained only the E121L change. 

Recovered virus was plaque purified. Seven individual plaque isolates had only 

the E121L change. Interestingly however, an equal number had additional changes 

scattered across the N gene (G23E, E236K + K395E, N153D + E173K, E374K, S417N, 

R13G, D346N) (Table 1). The virus isolate that contained the N153D + E173K 

changes in the N gene also had a silent change in the E1321 codon in the S gene. 

One plaque isolate had an E to G change at amino acid position 71 in the E gene.  

One isolate had a change in the S gene (E1321K). Since growth kinetic analysis 

indicated that the G94A change in the N gene was not providing additional 

compensation over the E121L change (data not shown), none of the other virus 

isolates with the additional changes were analyzed further.  

Selected P5 viruses, as described above, were analyzed in parallel, along 

with the WT virus, for their growth properties (Fig.9).  Viruses E121A, E121Q with 

T428A and E121L with G94A change all produced plaques and exhibited growth 

properties similar to the WT virus. These results indicate that a negative charge at 

position 121 within the MHV M protein conserved domain is not absolutely  
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Mutant Viruses # Plaques 
Analyzed 

 

# Passages Mutation Retained Change(s) in M  Change(s) in N

Membrane Protein 
E121A 4 5 Yes - - 
 1 5 Yes - V410I 
E121Q (K) 4 5 No K121Q T428A 
 2 5 No K121Q - 
E121L (R) #1a 4 5 No R121L G94A 
E121L #2a,b 7 2-5 Yes - G23E 

E236K, K395E 
N153D, E173Kc 

E374K  
S417N  
R13G 
D346N 

 
 
P120A 

7 
 
5 

2-5 
 
5 

Yes 
 

Yes 

- 
 
- 

- 
 
- 

 
SWWS → AAAA #1a 

 
2 

 
5 

 
Yes 

 
G31R 

 
- 

 Blind Passage  5 Yes Q42R - 
 
SWWS → AAAA #2a 
 
 
 
 
TNNL → AAAA   

 
Electroporation 

6 
 
 
 

Blind Passage 

 
1 

2-5 
 
 
 
5 

 
Yes 
Yes 

 
 
 

Yes 

 
T38N 

Q42R (3)d 
Q42R (2)d 
L35P (1)d 

 
- 

 
 
 

N409S 
 
 
- 

Table 1. Summary of recovered CD mutant viruses 

a  #1 and #2 refer to independent constructions described in the text. 
b Two additional plaque purified viruses were isolated.  One had a change in E      
  (E71G) and another had a change in S (E1321K).   
c  N153D, E173K also contained a silent change in S in the E1321K codon. 
d  Numbers in parentheses refer to number of plaque isolates with indicated    
   changes. 
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FIG.9. Growth properties of single substitution mutant viruses.  (A) Mouse 

17Cl1 cells were infected with mutant viruses at a MOI of 0.01 PFU/cell. Titers 

were determined by plaque assay on L2 cells at the indicated times. Data points 

are shown for all viruses, but the growth curve is included for only the WT virus. 

Error bars and exponential growth curves are as described in the material and 

methods. Estimated doubling time was ~0.62 h. (B) Plaque characteristics were 

determined for the indicated viruses in L2 cells.  Respective changes in the 

recovered viruses with positive charge (R and K) substitutions and 

corresponding noncompensating changes in the N gene are indicated. 
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required.  However, placement of a positive charge at this position is not 

tolerated.  While additional changes within the N protein were identified, these  

appear to not provide any additional growth advantage.   

The proline residue is not absolutely required. The proline (P) at position 120 

was changed to alanine to determine if removal of the helix breaking residue, 

affects the function of M.  Virus was recovered with the P120A change and no 

additional changes.  Five plaque purified viruses were isolated and analyzed after 

five passages.  All stably retained the introduced mutation and had no additional 

changes in any of the structural genes.  The mutant viruses displayed a plaque 

phenotype and grew at a rate similar to the WT virus (Fig.9).  This data 

interestingly strongly suggests that the proline does not play a crucial role in the 

structure or function of this region of M.  

Replacement of multiple residues affects virus growth.  The conserved four 

residues at the amino end of the CD consist of two that are large and nonpolar, 

flanked by two smaller polar amino acids (SWWS) (Fig.8C).  The high 

conservation of the WW residues was of particular interest since these residues 

might participate in protein-protein interactions. To determine the significance of 

the SWWS residues, all four were replaced with alanines.  After electroporation 

of full-length transcripts containing the alanine substitutions fusion was clearly 

visible, indicating that the full-length genomic transcripts were replication 

competent.  However, recovery of viruses upon subsequent passage was difficult.  

Growth of the virus on L2 cells gave rise to very small plaques (Fig.10A).  Only  
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FIG.10. Growth properties of 5’A and 3’A mutant viruses.  (A) Plaque 

characteristics of WT, 5’A + G31R and 3’A viruses were analyzed in 

mouse L2 cells.  (B) Summary of second site changes in the TM1 of 

recovered viruses from two independent virus constructions designated 

as 1 and 2 are shown under the sequence of WT TM1 (underlined).  

Assigned numbers for recovered plaque purified isolates and the passage 

numbers when analyzed are indicated. (C) Growth kinetics experiments 

were performed in mouse 17Cl1 cells infected at the indicated MOIs. 

Titers were determined by plaque assay on L2 cells at the indicated 

times. Data represent averages from two independent growth kinetic 

experiments as described for Fig. 2 and in the materials and methods. 

Estimated doubling times were ~0.62 h for WT virus, ~ 0.79 h for all 

5’A viruses, except L35P which was ~1.2 h, and 1 h for the 3’A virus. 
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two plaques from a total of 8 could be recovered and subsequently passaged five 

times. Both of the plaque purified viruses contained the SWWS to AAAA change 

and each had an additional G to R change at position 31 in the M gene that was  

maintained through P5 (Fig.10B).  Since viruses were recovered initially from 

only two isolated plaques, we blind passaged the medium from the cells that had 

been electroporated to determine if other second site compensatory changes might 

arise.  Interestingly, after five passages, the virus population had stably 

maintained all of the alanine substitutions, but also contained a Q to R change in 

the M protein at position 42 (Fig.10B).  

We then constructed a second independent clone with the SWWS to 

AAAA change.  When the media from electroporated cells was used to infect new 

cells, the recovered virus population again contained, in addition to the introduced 

alanine substitutions, a second site change, T38N, in the M gene.  A mix of large 

and small plaques was subsequently observed when the virus population was 

analyzed.  Sixteen representative plaques were isolated, but viruses could be 

recovered from only six of these, even after multiple passage attempts.  All six of 

the recovered viruses retained the 5’A mutations and had one additional change 

located in TM1 as was seen with the first clone (Fig.10B).  Five of the viruses had 

the Q42R change observed earlier.  One of the viruses surprisingly had a L35P 

second site change.  Two of the isolates (#5 and 6) with the additional Q42R 

changes also had a change in the N gene, N409S.   
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All of the recovered 5’A viruses with the TM1 changes, except T38N that 

was only recovered during blind passage, were compared for their growth 

characteristics in parallel with the WT virus at a MOI of 0.01 pfu/cell (Fig.10C, 

left). All of the recovered viruses exhibited significant growth impairment with 

~30% longer doubling time and production of ~100 fold less virus than the WT 

by 30 h p.i. The virus with the recovered change at L35P change actually grew 

even less well, producing at least 1,000 fold less virus at 20-30 h p.i. While we 

expected that the N409S second site change in the N gene might be a 

compensatory, this was not the case.  The virus with the additional change in N 

grew comparably to the others.   

The carboxy end of the CD exhibits overall conservation similar to that the 

amino end (Fig.8B).  Alanine substitutions were introduced in place of the TNNL 

residues to also assess the importance of the region.  Like the amino end 

mutations, the full length infectious clone RNA bearing the TNNL to AAAA 

changes was replication competent, as indicated by tiny centers of fusion 

following electroporation.  However, recovery of the 3’A virus was even more 

difficult than for the 5’A virus.  Multiple attempts to recover viruses from the tiny 

plaques were not successful.  A virus stock with a very low titer was subsequently 

recovered after blind passage of the media from the electroporated cells, but no 

second site changes were present in the recovered virus population.  The virus 

stock still produced very tiny plaques and growth kinetic analysis of at a MOI of 

0.001 pfu/cell in parallel with WT and 5’A + G31R, showed that the virus was 
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very crippled, reaching peak titers about 1000 times lower than the WT virus 

(Fig.10A and C).   

Altogether, the results demonstrate that the conserved residues at the ends 

of the CD are important.  Second site changes arose in the 5’A mutant virus, but 

none were recovered for the 3’A mutant virus.  It is interesting that the majority of 

the second site changes clustered in the TM1 of M.  Nonetheless, the results 

indicate that the changes are only partially compensating since all of the viruses 

were still significantly impaired in their growth. 

Extensive changes to the conserved domain are lethal.  Two additional more 

extensive mutations were also introduced during the study (Fig.8C).  The four 

residues at each end of the CD were replaced with alanines in the 5’A + 3’A 

mutant.  The entire CD was also deleted.  Pinpoint size fusion foci were observed 

following electroporation, indicating that the infectious cloned RNA was 

replication competent.  However, neither of the viruses with the more extensive 

changes could be recovered.  As described above for the 5’A and 3’A mutants, 

blind passage directly from the media off electroporated cells was also attempted, 

but virus could not be recovered.  These results strongly indicate that the 5’A+3’A 

and ΔCD mutations were lethal to the virus. 

Since significant changes were introduced with the 5’A + 3’A and ΔCD 

mutations, the localization of the proteins were analyzed by immunofluorescence.  

Wild-type M colocalized with the Golgi marker giantin, as expected (91, 93).  The 

mutant proteins colocalized instead with the endoplasmic reticulum marker, 
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calnexin (data not shown).  Failure of the mutant M proteins to target to the Golgi 

provided an explanation for their lethal phenotype. 

The majority of the CD mutants do not support VLP assembly. To gain 

further insight into how the CD mutations might be affecting virus assembly, the 

proteins were analyzed for their ability to form VLPs.  Coexpression of the M and 

E proteins is sufficient for assembly of MHV VLPs (14, 35, 194).  Thus, the 

mutant proteins were coexpressed with the wild-type E protein in 293T cells.  In 

addition, the M genes with the E121Q and E121L changes were also analyzed.  

Intracellular and extracellular fractions were harvested at 24 h after transfection.  

Both fractions were analyzed by SDS-PAGE and Western blotting (Fig.11).  The 

only M mutant to support VLP production was P120A.  Interestingly, even though 

the E121A change supported virion assembly in the context of the virus, the protein 

was not competent for VLP assembly.  The E121 to R or K mutant M proteins did 

not support VLP assembly however, the two recovered changes, E121Q and E121L, 

were competent for VLP production.  As expected, the 5’A + 3’A and ΔCD 

mutant M proteins did not support VLP assembly. 

During infection there are other viral and likely host proteins that 

participate in assembly of viral particles.  The N protein encapsidates the genomic 

RNA and interacts with M (83, 95, 134, 196).  Recent studies indicate that N 

contributes to efficient assembly of SARS VLPs (172, 200).  Thus, we asked if 

the presence of N during VLP formation would impact VLP output of our mutant 

M proteins.  We tested the three mutants that were capable of forming VLPs,  
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FIG.11. Effect of CD mutations on VLP production.  293T cells were 

transfected with pCAGGS vectors containing WT or mutant M genes 

singly or in combination with the pCAGGS containing the WT E 

gene.  Control empty vector (vector) were analyzed in parallel.  

Intracellular cell lysates and pelleted extracellular VLPs were 

analyzed by SDS-PAGE and Western blotting using antibodies 

against M, E or actin as an internal loading control.  The entire VLP 

pellet and 6% of the total intracellular fractions were analyzed.  
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P120A, E121Q and E121L.  The 3’A mutant was used as a negative control.  WT or 

mutant M proteins were coexpressed with WT E in the presence and absence of 

WT N clone (Fig.12).  All of the mutant M proteins yielded less VLPs than the 

wild-type M, as expected from our initial experiments.  Coexpression of the N 

protein with the mutant proteins and E resulted in ~25-45% increase in VLP 

output, compared with ~10% increase for WT M.  This correlated well with the 

growth phenotypes of the E121Q, E121L and P120A viruses.  The 3’A M mutant was 

unable to form VLPs even in the presence of N.  These results suggest that N may 

play a stabilizing role during envelope formation.  

After determining that the N protein contributed to more efficient 

assembly of VLPs with the mutant M proteins described above, we also analyzed 

VLP output for the 5’A mutants that contained the alanine cluster replacement of 

SWWS at the amino end of the CD which gave rise to viruses with second site 

changes in the TM1 of M (G31R, Q42R, T38N, and L35P) (Fig.10B). At this point 

we assumed that these changes were providing some advantage, even if not fully 

compensatory, to the mutant virus with the 5’A mutations, since two independent 

virus constructions contained changes that were clustered in the domain.  Wild-

type M, 5’A and all of the mutant M proteins with the 5’A+TM1 changes were 

coexpressed with E, both in the absence and presence of the N protein (Fig.13).  

The 5’A and 5’A+TM1 proteins produced none or at most a very low amount of 

VLPs in the absence of N co-expression. Interestingly however, the 5’A+TM1  
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FIG.12. N protein enhancement of VLP production.  293T cells were 

transfected as indicated with pCAGGS vectors containing WT or mutant 

M genes in combination with pCAGGS-E and pCAGGS-N gene where 

indicated.  Intracellular and extracellular VLP fractions were analyzed by 

SDS-PAGE and Western blotting as indicated in Fig.11.  The entire 

extracellular pellet and 6% of the total intracellular fraction were analyzed.  

Protein bands were quantified by densitometric scanning and analyzed 

using ImageQuant software.  VLP release was calculated as the percentage 

of the extracellular M of total M (intracellular plus extracellular) protein.  

The data represent deviations from the average of two experiments. 
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FIG.13. VLP analysis of 5’A M mutants with second-site changes in 

TM1 coexpressed with the N protein.  293T cells were transfected with 

WT and mutant genes in pCAGGS vectors.  M genes were expressed 

with E, in the absence and presence of the N gene.  Intracellular and 

extracellular fractions were analyzed by SDS-PAGE and Western 

blotting.  Protein bands from the entire VLP pellet and 6% of total 

cytoplasmic lysates were quantified and release was calculated as 

described for Fig.12.  Error bars represent the deviation of two 

independent experiments.   
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mutant M proteins produced ~20-30% more VLPs when coexpressed with N, 

even though the 5’A M was not capable of forming VLPs with or without N.  

Except for the 5’A + G31R M, the other increases represented changes from 

undetectable levels in the absence of N.  This data suggests that the TM1 changes 

are allowing for more efficient envelope assembly when the 5’A mutations are 

present.  The results support our initial observation that the N protein is likely 

helping to somehow stabilize the VLP particle during assembly with the mutant 

M proteins (Fig.12).           

Analysis of M-M interactions.  The M protein constitutes the bulk of the viral 

envelope.  Since VLPs assemble for most coronaviruses when only M and E are 

coexpressed, the particles are presumably representative of the viral envelope at 

the most fundamental level.  Thus, we reasoned that failure to form MHV VLPs 

might be due to a lack of or a decrease in M-M interactions.  To test this idea, we 

asked if the mutant M proteins could be rescued into VLPs by WT M.  We 

constructed a M protein called A2A3 that was previously described (43).  The 

serine residues at positions 2 and 3 were replaced by alanines in A2A3 M.  This 

destroys the epitope that is recognized by the monoclonal antibody J1.3, yet the 

protein localizes correctly and supports VLP assembly like wild-type M (43, 45). 

Our mutant M proteins were coexpressed with A2A3 M and wild-type E.  A 

lower concentration of mutant plasmid DNA was transfected to assure efficient 

VLP formation as previously determined (43).  Cells were metabolically labeled 

with Expre35S35S labeling mixture at 4-20 h after transfection.  Intracellular and 
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extracellular fractions were divided into two equal aliquots and 

immunoprecipitated with monoclonal antibody J1.3 or an anti-MHV polyclonal 

antibody, F88.  The ability of the A2A3 M protein to support VLP production and 

antibody recognition by F88, but not J1.3, was confirmed when the protein was 

coexpressed alone with WT E (Fig.14, lanes 5-6).  When the 5’A or 3’A mutant 

M proteins were expressed in combination with A2A3 and E, both M proteins 

were detected in the intracellular fractions.  However, neither the 5’A nor 3’A 

mutant M proteins could be rescued into VLPs along with the A2A3 protein 

(Fig.14, lanes 7-10).  As a positive control and to ensure that the lack of detection 

of the 5’A and 3’A proteins was not the result of transfection of less plasmid, WT 

M was coexpressed with A2A3 M and E.  The WT protein was clearly 

incorporated into VLPs (Fig.14, lanes 11-12).  The M mutants P120A, E121Q, and 

E121L that supported VLP production when expressed alone with E were all also 

rescued into VLPs (data not shown).  These data demonstrate that the 5’A and 

3’A proteins are likely impaired in their ability to interact properly with other M 

molecules since they cannot be rescued into VLPs.  

Additionally, the rescue experiment described above was carried out with 

the 5’A and one of the 5’A + TM1 mutants M proteins with the recovered G31R 

change.  When expressed with A2A3 and E both mutant proteins were detected in 

the intracellular fractions with J1.3 and F88 antibodies (Fig.14, lanes 13-16). 

However, only the 5’A + G31R mutant could be rescued into VLP particles. This 

data further supports the conclusion that the second site TM1 changes are  
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FIG.14. Rescue of CD mutants into VLPs.  293T cells were transfected with 

the pCAGGS vector containing WT or mutant M proteins as indicated. Cells 

were labeled for 20 h at 4 h after transfection with Expre35S35S labeling 

mixture. Intracellular lysates (Intra) and extracellular media (Extra) were 

divided in half and immunoprecipitated with monoclonal J1.3 or polyclonal 

F88 antibodies that recognize only WT and both WT and A2A3, 

respectively.  Samples were analyzed by SDS-PAGE and autoradiography. 
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providing some advantage for the 5’A mutant proteins by allowing for more 

efficient M-M interactions. 

Analysis of M-S colocalization.  In addition to M-M interactions, M also 

interacts with the S protein and helps retain it in the Golgi/ERGIC where viruses 

assemble (139, 143).  WT M protein localizes to the Golgi when expressed alone.  

S localizes along the exocytic pathway and at the plasma membrane when singly  

 expressed.  To further analyze how the CD mutations might be affecting the 

functions of M, the WT and CD mutant proteins were coexpressed with S 

(Fig.15).  When WT M and S proteins were expressed together, the latter 

colocalized with M.  The S protein also colocalized with the 5’ A and 3’A mutant 

M proteins (Fig.15).  S localized to a large extent with the 5’A + 3’A and ΔCD 

protein that were retained in the ER (data not shown).  These results suggest that 

the crippling effect of the 5’A and 3’A changes on the virus is not due to their 

failure to retain the S protein at the site of assembly. 
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FIG.15. S protein colocalization with WT and mutant M proteins.  293T 

cells were transfected with pCAGGS vectors containing WT or mutant M 

proteins and the S gene.  Cells were fixed at 12 h after transfection and 

analyzed by immunoflourescence using mouse and goat antibodies 

against the M and S proteins, respectively.  Alexa Fluor 488-conjugated 

mouse and Alexa Fluor 594-conjugated goat secondary antibodies were 

used to visualize the localization of the M and S proteins, respectively.  

Nuclei were stained with DAPI.  Singly expressed M and S proteins are 

shown in the top two panels.  Colocalizations of the M and S proteins are 

shown in the merged images on the right. 
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DISCUSSION 
 

 The significance of the evolutionally conserved domain (CD) located at 

the amino end of the long amphipathic region in the coronavirus M carboxy tail 

was examined directly for the first time in this study. Using MHV A59 as the 

model virus we show that the CD (SWWSFNPETNNL) is important for M to 

function during both VLP and virus assembly.  A positive charge substitution for 

the conserved negative charge was not tolerated. Residues in either the amino or 

carboxyl ends were very sensitive to changes, since recovered viruses exhibited 

crippled phenotypes, with 100 to 1000 fold reduction in virus yields.  Removal of 

the conserved proline must not alter the domain since assembly of VLP and virus 

was not affected.  The majority of the introduced mutations were tolerated, 

accompanied by second site changes in some cases, in the context of the virus, but 

most did not support VLP production.  We conclude that the CD likely 

contributes to lateral M-M interactions during envelope formation.  Our results 

strongly indicate that the N protein helps stabilize envelope complex formation, 

even in the absence of the viral genome.  The study overall provides new insight 

into requirements of the key virion structural component and demonstrates the 

functional significance of the CD that appears to be involved in crucial protein-

protein interactions that must take place for the fundamental process of envelope 

formation during virus assembly.   

 Viruses with the positive charge substitutions were selected against after 

only one virus passage, indicating strong intolerance for charge reversal at this 
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position.  Since the E121R and E121K mutant proteins were not able to form VLPs, 

whereas the recovered E121Q and E121L changes in M were competent, this 

provides strong support for the significance of the CD in the fundamental process 

of envelope formation.  Some recovered viruses with the Q and L changes at 

position 121 also had second site changes in the N protein (Table 1). We expected 

these to be important, but interestingly, viruses with only the recovered Q and R 

changes exhibited growth characteristics similar to the WT virus, suggesting that 

the changes in N are not providing additional advantage for the virus. The 

changes were located primarily toward the amino and carboxyl ends of the N 

protein. No structure has been determined yet for MHV N proteins, but recent 

nuclear magnetic resonance and crystal structure have been determined for parts 

of IBV and SARS-CoV N proteins (28, 59, 81, 86, 160, 183, 218). We did 

examine where our second site changes align and likely map based on the 

available structures.  The majority would not fall within structured regions such as 

beta sheets or helices, which may reflect the fact that loss of the introduced 

positive charges appears to be the major contributor to the WT-like phenotype of 

the recovered viruses. 

The 5’A viruses with changes in the amino end of the CD were 

particularly interesting. All of the recovered viruses had second site changes in 

the first transmembrane (TM1) of M.  The TM1 changes were not fully 

compensating since the amount of virus output was significantly reduced 

compared with WT.  Nonetheless, in both the context of envelope (VLP) and 
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virus assembly the TM1 changes are apparently providing some advantage for the 

mutant M proteins containing the 5’A mutation. The results suggest a possible 

interaction between the CD and first TM domain, which is consistent with the 

apparent intricate association of the amphipathic domain with the inner leaflet of 

the virion membrane.  Tryptophan residues positioned at the cytoplasmic 

boundary have been suggested to possibly help stabilize TM helices or to provide 

vertical mobility relative to the lipid bilayer (102).  Alternatively, it is possible 

that the tryptophan residues help mediate M-M or other important M interactions 

and that the second site changes in TM1 promote new interactions that 

compensate for loss of the SWWS residues.  Tryptophan residues can promote 

protein-protein interactions.  For example, hepatitis B virus small surface antigen 

(S-HBsAg) is able to assemble hepatitis delta virus (HDV) particles through 

interactions with HDV ribonucleoprotein (RNP) (198).  Three W residues located 

in a small loop between two predicted S-HBsAg transmembrane domains mediate 

its interaction with the large HDV antigen, a component of the HDV RNP (92).  

Alanine substitutions prevent packaging of the RNP by the S-HBsAg.   

Lateral interactions between M molecules are fundamental for 

organization of the coronavirus envelope.  M-M interactions are thought to be 

mediated through multiple contact points, but the TMs appear to be especially 

important (47).  Recent cryo-EM and cryo-EM tomography analysis of single 

virus particles provided new insight about the 3D structure of coronaviruses (7, 

138).  The tomography analysis revealed that the envelope is striated, presumably 
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due to M-M interactions (7).  Based on the predicted size of the M carboxy tail 

and assumption that it is globular, it was suggested that at most, tetramers 

constitute the observed striations (7).  Recent cryo-EM analysis of MHV particles 

suggests that the envelope lattice consists of M homodimers mediated by the 

globular amphipathic region of the M protein carboxy tail since the only contact 

points observed were between M densities in the endodomain (B. W. Neuman et 

al., submitted for publication).  The structure of the amphipathic domain is not 

known at this time, but this part of the protein is largely protease resistant in 

virions, which suggests that it is very closely associated with the inner membrane, 

possibly entirely or partially embedded in the membrane (155, 156). Virions 

examined by cryo-electron tomography exhibited trilaminar-like or unusually 

thick membranes in the envelope, which was attributed to close association of the 

carboxy tail with the inner leaflet of the membrane bilayer (7).  Since the CD is 

located at the amino end of the amphipathic domain, it may influence the 

interactions of the tail with the inner lipid bilayer, either locally or more distantly 

influencing positioning of the remainder of the tail relative to the inner leaflet of 

the membrane.  This could affect M oligomerization and/or the assumed matrix-

like function of the tail, which may account for the impact on virus assembly and 

the second site changes identified in our recovered viruses.   

Our results strongly suggest that the N protein helps stabilize envelope 

assembly complexes during VLP assembly, most likely through interactions with 

M.  We have some understanding about the role that N plays in the context of full 
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virus assembly, as part of the nucleocapsid, but what role might it play during 

VLP assembly?  Stabilization during envelope assembly, which in the case of 

VLPs consists almost entirely of M, may be particularly important for our mutant 

M proteins if indeed positioning of M molecules in the lattice framework and/or 

the tail is altered.  If so, then M-N interactions may help stabilize M in a 

conformation that allows for more efficient assembly of the envelope.  The N--M 

interactions are also likely significant during complete virus assembly.  This is 

consistent with the thread-like densities previously observed in cryo-EM and 

cryo-electron tomography images which appear to provide linkage points between 

M and nucleocapsids in MHV particles (7, 138).  Recent genetic analysis 

demonstrated that important interactions occur between the carboxy ends of the N 

and M proteins (83, 95, 195, 196). Tight interaction between the carboxy-terminal 

regions of MHV N (amino acids 380-454) was also recently shown to play a role 

in helping mediate N-N interactions (82).  It was suggested that the domain of 

each N molecule associates with either another N molecule or the carboxy 

terminus of an M molecule in virions.  This suggests that M-N/nucleocapsid 

interactions may be important for optimal envelope formation. The stabilizing 

effect of N may be of greater importance and more apparent with the mutant M 

proteins we describe here, than during its normal role when expressed with WT 

M.   

The 5’A+3’A and ΔCD M proteins were not able to support virus 

assembly.  Both proteins localized in the ER, whereas replacement of only the 
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amino or carboxy residues localized like WT M in the Golgi.  This suggests that 

the structure of the 5’A + 3’A and ΔCD proteins is altered or that a localization 

signal was disrupted.  A MHV M deletion mutant lacking residues L108 through 

T112 (ΔLT) that are adjacent to the CD was also retained in the ER, but when 

residues E121 to D195 (ΔC) were removed the protein was retained in the Golgi 

(47).  A specific localization signal has not been identified for MHV M.  

However, the cytoplasmic tail has been shown to be essential, but not sufficient 

for Golgi localization (117).  Altogether, the results suggest that the region just 

beyond the third TM is important for Golgi retention.  Interestingly, truncated 

SARS-CoV M consisting of the amino-terminal 134 residues, which includes the 

CD (S107-L118), is retained in the Golgi (197).  

A panel of MHV M mutants was studied previously that provided 

important insight into which regions of M are involved in envelope assembly (43, 

46, 47).  Three deletion mutants from the earlier studies should be noted here.  

Amino acids 121-195 (ΔC) that constitutes a large portion of the amphipathic 

domain were deleted from MHV M.  This deletion includes the last five residues 

(ETNNL) of the CD (Fig.8).  Like our 3’A mutant M with alanine substitutions 

for TNNL residues, the ΔC M was not competent for VLP formation, but unlike 

our 3’A M, the protein was rescued into particles when coexpressed with wild-

type M (47).  Residues 108 to 112 just upstream from the CD were also deleted, 

but the protein could still be incorporated into VLPs when coexpressed with 

A2A3 M (47).  Finally, M proteins with deletion of only I110 failed to participate 
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in VLP assembly (46).  It is possible that the M proteins with these deletions 

might be able to support virus assembly, but they were not analyzed in this 

context.  The amino acid substitutions in the present study are less likely to have 

as significant of an impact on the overall structure of the M tail as are residue 

deletions.   

Through interaction with M, S is retained at assembly sites in the ERGIC 

region of the cell (139, 143).  The 5’A and 3’A M proteins retained S in the Golgi, 

indicating that the alanine substitutions for SWWS or TNNL residues are not 

affecting M-S interactions.  The amphipathic domain of MHV M was previously 

implicated to be involved in mediating interaction with S  since the ΔC mutant 

described above did not retain S in the Golgi (46).  A single Y211G change that is 

significantly distant from the CD has also been implicated to play a role in M-S 

interactions (46).  It is interesting that the amino-terminal 134 amino acids of 

SARS-CoV are sufficient for retention of S in the Golgi (197).  A single tyrosine 

(Y195) in SARS-CoV M was recently shown to be necessary to retain S in the 

Golgi (129).  Further mapping will be required to more precisely identify 

requirements for MHV M-S interactions. It is clear from the present study that 

changes in the M CD that do not affect localization of the proteins are still 

competent to mediate co-localization.   

Overall, our results suggest that the CD functions in formation of the viral 

envelope by helping mediate lateral interactions between M molecules during 

virus assembly.  The N protein clearly enhances or enables envelope formation, 
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which is likely reflected in the ability to recover virus when VLP assembly was 

compromised.  It is likely that N helps stabilizes M complexes, possibly helping 

mediate a conformation in the tail that is important for efficient virus assembly.  

We know that interactions between the hydrophilic carboxy end of the M tail and 

nucleocapsids are important for encapsidation, a critical step in production of 

infectious virus (58, 95, 134, 143, 195, 196).  Results from the present study 

indicate that the opposite end of the carboxy tail plays a complementary role 

during assembly, likely during organization of the envelope that subsequently 

encapsidates the nucleocapsid.  Additional studies will be directed at 

understanding mechanistically how the second site changes in TM1 help partially 

compensate for the 5’A changes and how N provides the presumed stabilizing 

effect through interactions with M.   
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CHAPTER 3 

ROLE OF CHARGED RESIDUES IN THE CORONAVIRUS MEMBRANE 

PROTEIN CARBOXY TAIL IN VIRUS ASSEMBLY AND INFECTIVITY 

  



 

  76 

ABSTRACT 

The coronavirus (CoV) membrane (M) protein plays a key role in virus assembly. 

The terminal 25 amino acids of the long carboxy tail of M are hydrophilic and 

highly charged. This region plays an important role in mediating interaction with 

the nucleocapsid (N) protein. A panel of mutant viruses was generated with 

various single and double residue charge changes in the domain 

(VYVK205SK207VGNYR212LPSNK217PSGADTALLR227T) of mouse hepatitis 

coronavirus A59 (MHV-A59). R227 was shown in previous studies to be critically 

important for assembly, but other charges were not analyzed. All of the mutant M 

proteins were analyzed in the context of a MHV infectious clone and also in 

transient expression studies. Replacement of K205 and R212 individually or K205 

and K207 or R212 and K217 in combination with a negatively charged aspartic acid 

(D) resulted in non-viable viruses and no production of virus-like particles 

(VLPs). Mutant viruses were recovered with K205A, K207A, K217A, and K217D 

charges that exhibited wild-type (WT) phenotypes. Viruses harboring K207D or 

R212A changes had severely crippled phenotypes and could not form VLPs in the 

presence of the envelope (E) and N proteins. Additionally, these mutants 

displayed a decreased infectivity. These results identify a cluster of three positive 

charges in the 25-amino acid hydrophilic domain of the M tail that are 

functionally important for virus assembly, as well as infectivity.  
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INTRODUCTION 
 

Coronaviruses cause respiratory, enteric, and neurological disease in 

humans as well as several animals. The viruses are responsible for many 

infections in domesticated animals, including swine and chickens, and infection 

outbreaks can have a significant economic impact globally. In humans most 

coronaviruses cause mild upper respiratory tract infections. The emergence of the 

severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 

demonstrated that coronaviruses can cause severe disease. Since 2003, two new 

human coronaviruses, NL63 and HKU1, have been identified (193, 207). Due to 

the high pathogenesis of SARS-CoV and the threat of re-emergence, research on 

coronaviruses and studies directed toward the generation of antivirals is strongly 

justified. 

Coronaviruses are enveloped RNA viruses with a genome of 

approximately 30kb. This is the largest RNA genome known for RNA viruses. 

The viruses assemble and bud at intracellular membranes in the endoplasmic 

reticulum Golgi intermediate compartment (ERGIC) (93, 188). All coronavirus 

envelopes contain at least three structural proteins, the spike (S), envelope (E), 

and membrane (M) proteins. Some coronavirus envelopes also contain the 

hemagglutinin esterase (HA) protein. The genomic RNA is bound by the 

nucleocapsid (N) phosphoprotein and forms a helical structure. The S protein is 

the receptor binding protein and forms large spikes on the surface of the viral 

envelope (66). S induces neutralizing antibodies and induces cell mediated 
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immunity (66). The E protein, although present in low abundance in the viral 

envelope, plays an important role during assembly and release of coronaviruses 

(14, 35, 194). The M protein is the most abundant protein in the viral envelope. It 

plays absolutely key roles in virus assembly (47, 91, 139, 143, 194). 

All coronavirus M proteins have a short amino terminus domain located 

outside the virion, followed by three transmembrane (TM) domains, and then a 

long carboxy tail extending into the virion (reviewed in (77) (Fig.16). The M 

protein organizes the assembly process by participating in M-M as well as M-S 

and M-Nucleocapsid interactions (46, 47, 58, 95, 139, 143). These fundamental 

interactions drive the efficient assembly of viral particles. For most coronaviruses, 

co-expression of the M and E proteins alone drives virus-like particle (VLP) 

assembly (14, 194). 

The long carboxy tail of coronavirus M proteins contains an amphipathic 

domain of about 100 residues, followed by a hydrophilic highly charged tail of 

approximately 25 residues (Fig.16). M proteins of all coronaviruses contain 

several charges within their extreme carboxy tail (Fig.16). The charged region of 

the tail has been shown by genetic studies to be important for mediating 

interaction with the N protein (83, 95, 195, 196). Furthermore, analysis of M and 

N protein mutants has suggested the most C-terminal positive charge (R227) on 

MHV M is particularly important for assembly but other residues appear to be 

involved as well (43, 95, 196). The studies points to the importance of charge-
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charge interactions between these proteins that may contribute to the correct 

overall structure of M necessary during assembly.  

The M protein also interacts with the S protein (139, 143). M and S 

protein heterotypic interactions allow specific S incorporation into virions (139, 

143). S is absolutely necessary for infection since it is the viral receptor 

attachment protein and is responsible for cell-to-cell fusion (23). S incorporation 

into the viral envelope has also been shown to be mediated by charged residues in 

the endodomain of S (211).  

Due to the key role M plays in the assembly process and the conservation 

of charged residues within the carboxy tail, we set out to determine the role of 

positively charged residues within the hydrophilic domain of the MHV M 

carboxy tail. A series of single and double changes were introduced into the 

carboxy tail of M. The functional impact of these changes was analyzed in the 

context of the virus and by several transient expression assays. The results show 

that a cluster of three positive charges (K205, K207 and R212) in the domain are 

important for the function of the M protein. Some mutants were not competent for 

VLP assembly and inclusion of the N protein did not increase VLP output. 

Importantly, loss of the positive charge at K207 and R212 results in a decrease in 

infectivity of viral particles. The results suggest charges within the hydrophilic 

tail of M are involved in assembly of infectious particles.  
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MATERIALS AND METHODS 
 

Cells and viruses. Mouse L2 and 17 clone1 (17Cl1) cells were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) containing 10% and 5% heat-

inactivated fetal calf serum (FCS), respectively, plus penicillin, streptomycin, and 

glutamine. Baby hamster kidney cells expressing the MHV Bgp1a receptor 

(BHK-MHVR) (216) and BHK-21 cells (ATCC) were grown in Glasgow minimal 

essential medium (GMEM) containing 5% FCS, supplemented with antibiotics, 

glutamine and 10% tryptose phosphate broth. BHK-MHVR cells were maintained 

in the presence of Geneticin (G418) for continuous selection of cells expressing 

the receptor (216). Human 293T cells (ATCC) were grown on 0.25% gelatin 

coated flasks in DMEM containing 10% FCS, antibiotics and glutamine. Stocks 

of wild-type MHV A59 and cloned viruses were grown in mouse 17Cl1 or L2 

cells. Virus titers were determined in L2 cells.  

Construction of amino acid substitution and deletion mutants.  pGEM-

5Zf(+)M-N, a pGEM5Zf(+) vector (Promega) containing the M and N genes 

(EcoRV-SacI fragment), was used for mutagenesis (195). Site-directed amino 

acid substitutions were introduced by whole-plasmid PCR using appropriate 

primers and platinum Pfx DNA polymerase (Invitrogen).  Mutations were 

confirmed by sequence analysis of the entire M-N insert before subcloning into 

the MHV G clone at the BssHII and NheI sites (216). 

Reverse genetics.  All mutant viruses were made by reverse genetics using a 

MHV A59 infectious clone (216).  Full-length cDNA clones were assembled, 
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transcribed, and electroporated into BHK-MHVR cells as described previously 

(195).  Following electroporation BHK-MHVR cells were seeded concurrently 

with L2 cells.  At 24-46 h after electroporation media were harvested and an 

aliquot was used to infect 17Cl1 or L2 cells. The medium was removed from 

infected cells at 24 to 72 h p.i.  Total cytoplasmic RNA from cells remaining on 

the flasks was extracted using RNAqueous-4PCR extraction buffers (Ambion) 

and treated with DNase before being reverse transcribed using the Superscript 

RT-PCR system from Invitrogen and an oligo (dT) primer.  The RT product was 

subjected to 30 cycles of PCR amplification using SuperTaq Plus (Ambion) and 

appropriate primers to amplify the E, M, N and S genes.  PCR products were 

cleaned with MiniElute PCR (Qiagen) before being sequenced directly.   

Viruses were subsequently plaque purified from media taken directly off cells that 

had been electroporated.  Multiple plaque isolates were passaged on 17Cl1 or L2 

cells five times for all viable viruses.  In some cases where viruses grew poorly 

and yielded small plaques from which it was difficult to recover isolates, the stock 

off electroporated cells was passaged five times to allow for selection of the most 

fit viruses.  RNA was extracted from infected cells following passage of plaque 

purified viruses for RT-PCR and sequence confirmation of the E, M, N, 

endodomain of S genes and the packaging signal to determine the stability of 

introduced mutations and identify potential compensating changes.  

Virus growth properties.  Growth kinetic experiments were carried out in mouse 

17Cl1 cells infected at a multiplicity of infection (MOI) of 0.01 or 0.001 PFU/cell 
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with passage 5 virus stocks.  Cell culture supernatants were collected at indicated 

times after infection and virus titers were determined by plaque assay on mouse 

L2 cells.  Low melting agarose/medium overlays were removed at 72-96 h p.i.  

Cells were fixed and stained with crystal violet in ethanol to visualize plaques. 

Two independent growth kinetic experiments were performed for each set of 

mutant viruses in parallel with the wild-type virus. Growth kinetic curves 

represent two-part exponential growth analysis. The initial rapid growth, followed 

by slower growth (or declined) after 8-12 hpi, was analyzed. Doubling times were 

estimated for the initial rapid growth slopes. Relative error was assumed to be the 

same for all time points for each data set. Error estimate was computed by taking 

the standard deviation divided by mean for each of the time points and averaging 

over all points. 

Mfold analysis. A region of 622 nucleotides, encompassing the 190-nt PS region 

and the sites of the recovered mutations for the K217D and R212A (20025-20648) 

was analyzed using Mfold (226). 14, 18 or 17 structures were predicted for WT, 

K217D, and R212A, respectively, will varying ΔG values. Only structures with the 

top five lowest ΔG values were chosen for further analysis. Any structures within 

these top five that did not contain a similar structure to the previously described 

190-nt region were eliminated. For WT, K217D and R212A, three, four or four 

structures, respectively, remained. Analysis was carried out using these structures 

that remained.     
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VLP analysis.  Wild-type and mutant M genes were expressed in the pCAGGS 

vector under the control of the chicken β-actin promoter for transient expression 

(140).  A Kozak sequence was included in the forward primer for all genes.  All 

mutant M genes were shuttled into the pCAGGS vector from the MHV G 

fragment used to generate full-length MHV genomic cDNAs for virus 

construction. Wild-type E and N genes were also expressed in the pCAGGS 

vector.   

293T cells were transfected with the pCAGGS plasmids containing the 

wild-type or mutant M genes, E gene, and in some cases the N gene, using the 

TransIT-293 transfection reagent (Mirus).  At ~24 h after transfection, the culture 

medium and intracellular cytoplasmic fraction were harvested.  Cells were lysed 

on ice with 0.5% Triton X-100, 50 mM NaCl and 50 mM Tris-HCl (pH 7.5) in the 

presence of 1mM phenylmethylsulfonyl fluoride (PMSF). The medium was 

clarified at 14,000 x g for 10 min at 4°C.  VLPs from clarified media were 

pelleted through a 30% sucrose cushion by ultracentrifugation for 3 h at 4°C in a 

Beckman SW55Ti rotor at 30,000 rpm.  Pellets were resuspended in Laemmli 

sample loading buffer and analyzed by SDS-PAGE. Proteins were transferred to 

polyvinylidene difluoride (PVDF) membranes and analyzed with anti-MHV M 

9246 (generated in our lab), anti-MHV E 9410 and anti-MHV N antibodies 

generated in our lab (33, 118).  Following incubation with appropriate secondary 

antibodies, blots were visualized by chemiluminescence (Pierce).  VLP release 
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was quantified by densitometric scanning of fluorograms and analyzed using 

Image-Quant software (Molecular Dynamics). 

Infectivity Analysis. Each virus was pelleted through a 30% sucrose cushion and 

resuspended in HEPES Buffer (50mM HEPES, 100mM NaCl, 0.01% BSA pH 

7.4). A fraction was used for a plaque assay to determine the total PFU obtained 

for each virus preparation. An equal number of PFUs based on the titer for each 

virus was run on a 5-20% SDS-PAGE gradient gel to visualize the particle protein 

profile. A WT standard of known amounts of PFUs was run in parallel (105 to 107
 

PFU). Proteins were transferred to polyvinylidene difluoride (PVDF) membranes 

and analyzed with anti-MHV M 9246 (generated in our lab), anti-MHV N (33) 

and anti-MHV S A04 (kindly provided by Kathryn Holmes, University of 

Colorado Health Sciences) antibodies.  Following incubation with appropriate 

secondary antibodies, blots were visualized by chemiluminescence (Pierce). The 

N protein from images was quantified by densitometric scanning of the films and 

analyzed using ImageQuant software (Molecular Dynamics). The intensity of the 

mutant N proteins was compared to the WT standards to determine the relative 

amount of N protein for each.  

RNA extraction and quantitation. To determine the amount of RNA present in 

the virus particles, slot blot hybridization was carried out. RNA was extracted 

from virus particles from a fraction of the same sample that was spun through the 

sucrose cushion (above) using Trizol LS reagent (Invitrogen) according to the 

manufacturer’s instructions. RNA was also extracted from known amount of WT 
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particles (from 105 to 107
 PFUs). 20µg Yeast RNA (Ambion) was added to each 

sample during the extraction to aid in RNA precipitation. The RNA pellets were 

resuspended in RNAase-free water and subsequently denatured with a formamide, 

formaldehyde and 3-(N-morpholino)-propanesulfonic acid pH 7.0 (MOPS) 

denaturing buffer at 65°C for 15 minutes. RNA was then blotted onto 

nitrocellulose charged membrane using a Vacu-slot-VS blotting apparatus 

(American Bionetics Inc.). The RNA was crosslinked to the membrane using a 

Stratalinker UV crosslinker (Strategene) and probed with a digoxigenin-labeled 

357-nucleotide MHV-A59 N gene probe. The probe was transcribed using 

reagents for digoxigenin labeling (Roche Applied Science) according to the 

manufacturer’s directions. To detect the DIG-labeled RNA, a DIG luminescent 

detection kit was used (Roche). Images were quantified by densitometric scanning 

of the films and analyzed using ImageQuant software (Molecular Dynamics). The 

intensity of the mutant samples was compared to the WT standards to determine 

the relative amount of RNA for each. 

Indirect immunofluorescence.  Co-localization of mutant M genes with WT S 

was determined by expression of pCAGGS plasmids containing WT or mutant M 

and WT S genes in BHK-21 cells. Cells were plated on Lab-teck chamber slides 

(Nunc) 1 day prior to transfection with MirusTrans-293T reagent (Mirus). At 12 h 

after transfection cells were washed two times with PBS and fixed in methanol for 

15 min at -20°C.  Following one additional wash with PBS, cells were blocked 

with 2% gelatin in PBS overnight at 4° C.  Monoclonal antibodies J1.3 and 2.7 
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(62) and a polyclonal antibody, A04 (kindly provided by Kathryn Holmes, 

University of Colorado Health Sciences) were used to detect the M and S 

proteins, respectively. Slides were incubated for 2 h with primary antibodies at 

room temperature, washed with 2% gelatin in PBS before incubation with Alexa-

labeled secondary antibodies. Cells were washed with 2% gelatin in PBS and then 

a final wash with PBS alone. Slides were mounted in ProLong Gold antifade 

reagent (Molecular Probes) containing 4,6-diamino-2phenylindole (DAPI) to stain 

nuclei. Images were collected by using an epifluorescence Nikon inverted 

microscope (Nikon, Inc., Melville, NY) with MetaMorph imaging soft-ware 

(Universal Imaging Corp., Downingtown, PA). Images were processed using 

Adobe Photoshop. 
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RESULTS 

Construction of charged residue mutants. To study the functional significance 

and role of conserved charged residues within the extreme end of the M protein 

carboxy tail a panel of mutants were generated. Site directed mutagenesis was 

used to change charged residues in the context of the full length MHV-A59 

infectious clone. Four positive charges, K205, K207, R212, and K217, that are 

separated from the functionally important, R227 by one negative charge, were 

mutated in the MHV genome (Fig.16). 

Recovered viruses were plaque purified and passaged multiple times. 

Sequence analysis was used to monitor genetic stability of the introduced 

mutation and identify any potential secondary compensatory changes. Because the 

M protein interacts with the other viral proteins, the M, N, and E genes, as well as 

the carboxy end of the S gene were sequenced (46, 47, 58, 95, 139, 143). 

Additionally, the packaging signal in gene 1b was sequenced because the M 

protein has been shown to associate with this region (135). Mutants were 

analyzed for their growth properties to determine the impact of genetic changes 

directly on assembly.  Selected mutant M proteins were also analyzed for their 

ability to support VLP production by co-expression with the E gene, to determine 

the possible role of the charged residues in the fundamental process of envelope 

formation. In some cases the N gene was included in VLP analyses, as the N 

protein appears to enhance VLP assembly of SARS-CoV and MHV VLPs (5, 172, 

200). Additionally, the infectivity of viral particles was analyzed for selected  
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FIG.16. Summary of charged tail mutant viruses. A linear schematic of 

the M protein is shown illustrating the relative positions of the three 

TM (black boxes) and the long carboxy tail. An alignment of the 

hydrophilic cytoplasmic tail is shown for below for MHV, bovine 

coronavirus (BCoV), human coronavirus OC43, SARS-CoV, 

transmissible gastroenteritis virus (TGEV), human coronavirus 229E, 

and infectious bronchitis virus (IBV) that was generated using 

CLUSTAL W (103). Below, the amino acid substitutions that were 

introduced into a full-length MHV-A59 infectious clone are indicated 

below the WT sequence and the corresponding names are indicated to 

the left.  + and – symbols indicate virus recovery, growth and VLP 

production (+E and +E,N) for each mutant. For growth, two or one + 

signs indicate growth comparable to WT or crippled growth, 

respectively. For VLPs:+E,N, the designation of + and +/- indicates 

VLP release of above 20% and less than about 15%, respectively. n/d 

indicates no data.  
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mutants.  

Double mutations are lethal or crippling. First, double mutations were 

introduced in the four targeted residues in pairs. Positively charged residues were 

replaced with a neutrally charge alanine (A) or negatively charged, aspartic acid 

(D) to determine if the charge might be playing a role in electrostatic interactions 

that mediate protein-protein or protein-nucleic acid interactions. The double 

mutants were designated K205AK207A, K205DK207D, R212AK217A, and R212DK217D 

(Fig.16). 

The double mutations were introduced into the MHV-A59 infectious clone 

in parallel with a WT virus control. The double neutral mutants, K205AK207A and 

R212AK217A, were difficult to recover. Fusion, an indicator of viable virus, was 

only observed for the R212AK217A mutant following electroporation, indicating 

genomic transcripts were replication competent. However, small plaques were 

observed for both double alanine mutants when grown on L2 cells (Fig.17C). Ten 

individual plaques for both mutants were passaged multiple times in an attempt to 

recover virus but only one R212AK217A plaque was recovered. Therefore, medium 

from the electroporation was blind passaged directly onto L2 cells for both double 

alanine mutants. Sequence analysis of the blindly passaged mutants, as well as the 

one R212AK217A isolate showed that the introduced double neutral mutation was 

retained with no additional changes in any of the other structural genes 

sequenced. The K205AK207A and R212AK217A mutants were analyzed for their 

growth properties along with the WT virus at a MOI of 0.001 (Fig.17A). Both  
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FIG.17. Growth properties of double and crippled single mutant viruses. 

Mouse 17Cl1 cells were infected with mutant viruses at a MOI of 0.001 

PFU/cell (A) or 0.01 PFU/cell (B). Titers were determined by plaque assay 

on L2 cells at the indicated times. Error bars and exponential growth curves 

are as described in the material and methods. Estimated doubling times were 

~.27h for WT virus, ~.33h for K205AK207A, R212AK217A, and R212A viruses 

and ~.44h for K207D virus. C) Plaque characteristics were determined for the 

indicated viruses in L2 cells. 
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mutant viruses displayed a crippled phenotype, growing to titers 3 logs lower than 

WT virus. The negatively charged double mutants, K205DK207D and R212DK217D,   

could not be recovered even after media taken directly off of electroporated cells 

was blindly passaged several times. This data strongly suggests that these 

mutations are lethal for the virus.  

Neutral mutations that do not affect virus growth. Since viruses were sensitive 

to the introduction of paired charge changes, a panel of single charged residue 

mutants was generated to tease apart the significance of individual charges within 

the carboxy tail of M (Fig.16). When the K205A and K207A mutations were 

introduced, all four or six recovered viruses, respectively, contained the 

introduced mutation and no other changes. When these mutants were analyzed for 

their growth phenotype at an MOI of 0.01, they both grew similar to WT as they 

had peak titers of only 0.5-1 log lower than WT virus (Fig.18A and B). This data 

suggests that neutral charges at K205 and K207 are not detrimental for the virus and 

a positive charge is not required at these positions. 

The K217 residue is most tolerant to changes. The K217 residue was changed 

singly to alanine (A) as well as aspartic acid (D). Virus was recovered readily 

with both mutations. Six isolated K217A plaque purified viruses maintained the 

introduced mutation with no additional changes and grew at a rate comparable to 

WT (Fig.18). Ten plaques were analyzed for the K217D mutation, all of which 

contained the introduced mutation. One of the plaques contained an additional 

change in the last residue of the M gene, a threonine (T) residue at position 228,  
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FIG.18. Growth properties of single substitution mutants. (A) Mouse 

17Cl1 cells were infected with mutant viruses at a MOI of 0.01 

PFU/cell (A). Titers were determined by plaque assay on L2 cells at 

the indicated times. Error bars and exponential growth curves are as 

described in the material and methods. Estimated doubling time was 

~.28h for WT, K207R, K217A, and K205A viruses and ~.3h for K207A, 

K217D#2 and #7 viruses. B) Plaque characteristics were determined 

for the indicated viruses in L2 cells. 
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to isoleucine (I). However, when growth analysis was carried out with one K217D 

mutant containing the T228I change and one without, both grew similarly to each 

other and to WT virus (Fig.18A), suggesting this change is not offering an  

advantage to the viruses. The data indicates that the positively charged K217 

residue within the hydrophilic domain of M is not absolutely required.    

Additionally, both isolated K217D mutants contained a change in the 

region near the packaging signal (PS) region. The MHV M protein has been 

implicated to bind to the PS in the absence of the N protein (135). For MHV 

originally a 190-nt RNA region, located in the nonstructural open reading frame 

(ORF)1ab, was identified to be important for packaging of the genomic RNA 

(64). Conserved 69-nt and 95-nt RNA stem loop structures were identified to be 

the crucial region, in the 190-nt area, involved in packaging the RNA (30, 64). 

The 190-nt, 95-nt and 69-nt regions are located at positions 20025-20158, 20064-

20158 and 20099-201560 in ORF1ab, respectively. The change in the K217D 

mutants is at position 20546, an A to T change, which is beyond the conserved 

stem loop structures. Mfold analysis was done to compare the secondary RNA 

structure of WT compared to the K217D mutant (see materials and methods for 

criteria set for analysis) (226). The mutation in K217D viruses did not alter the PS 

loop structure in any prediction. There were some slight differences in structure in 

regions more distant from the PS in some predicted structures (Fig.19). However, 

whether these modest differences would actually influence the function of the PS 

will require further investigation.  
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FIG.19. Predicted packaging signal region structures for WT and K217D. The 

Mfold version 4.4 (226) was used to predict RNA structures for a 622 base region 

encompassing the PS and a downstream region. For each prediction the ΔG value 

is listed and the known stem loop PS region is boxed. Arrows indicate the region 

where the mutation is located. Top: WT predicted structures Bottom: K217D 

predicted structures       



 

  96 

The region of ORF1ab encompassing the packaging signal encodes the 

nsp15 protein. Nsp15 is a RNA processing enzyme with endoribonuclease activity 

(84, 151, 209). The change in the K217D mutants results in a lysine (K) to arginine 

(R) change at amino acid position 344 within nsp15. The nsp15 protein has been 

crystallized and key residues that are part of the catalytic domain have been 

identified and characterized (88, 209). The identified residues are H262, H277, L317 

and G275. Additional residues involved in stabilizing and substrate binding have 

also been described. The K344R change is clearly out of the catalytic region and 

was not specifically identified as a residue involved in other functions of substrate 

binding. The K344R change is a conservative change in terms of charge. An 

alignment of all group 2 coronavirus nsp15 proteins show that the K residue is 

conserved, suggesting a charge at this position may be important (data not 

shown). At this point there is no reason to think the change recovered in the nsp15 

protein is compensating for the change in M, especially because these viruses 

have a WT-like phenotype. Thus, this analysis suggests that the change near the 

PS does not affect the packaging signal RNA structure or known key residues 

within the nsp15 protein. 

Single residue mutations affect virus growth. Two of the introduced single 

changes did result in altered phenotypes. The first was the R212A mutation.  

Although fusion was clearly seen after electroporation, only one of ten passaged 

plaques could be recovered. The isolated virus did contain the introduced change 
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with no additional changes present in the other structural genes. The second 

change that resulted in an altered phenotype was the K207D mutation. Five 

individual K207D plaque isolates were passaged and analyzed by sequencing. All 

the recovered mutants contained the introduced mutation with no other changes. 

In growth kinetic studies, both the R212A and K207D mutants were severely 

crippled, growing to titers 2 or 3 logs, respectively, below WT virus at an MOI of 

0.01 PFU/mL (Fig.17). These results initially suggest the R212 residue is more 

sensitive to neutral charge changes compared to the K205 and K207 residues. 

Additionally, virus is crippled in the presence of an opposite charge at position 

K207. These residues may play a role in electrostatic interactions M participates in.   

The R212A mutant did contain a change, an A to T at position 20372, just 

beyond the PS region. This is beyond the conserved stem loop structures 

described above. Mfold analysis was carried out for both the WT and R212A 

sequences (226). Three or four secondary RNA structures for WT and R212A, 

respectively, remained after the criteria were met (see Materials and Methods). 

The change in the R212A virus did not cause alteration of the PS stem loop 

structure in any prediction. There were some slight variations in the structure in 

regions distant from the PS in some predictions (Fig.20). Since the PS region 

itself in unaltered, it is presumed that these minor changes would not affect the PS 

structure or function.  

 The change within R212A was then analyzed in the context of nsp15. The 

mutation results in a Q to L change at position 286. This is just beyond the  
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FIG.20. Predicted packaging signal region structures for WT and R212A. The 

Mfold version 4.4 (226) was used to predict RNA structures for a 622 base 

region encompassing the PS and a downstream region. For each prediction the 

ΔG value is listed and the known stem loop PS region is boxed. Arrows indicate 

the region where the mutation is located. Top: WT predicted structures Bottom: 

R212A predicted structures      
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identified key residues in the catalytic domain of nsp15, as described above (88, 

209). The Q residue is conserved in some group 2 coronaviruses, however others 

have charged or polar residues in this position. The possible significance of the 

Q286L change in the nsp15 protein would require further analysis.  

Charge changes result in lethal phenotypes. Residues at position K205 and R212 

were replaced with the oppositely charged D residue. For both mutants, the 

infectious cloned RNA was replication competent, as subgenomics could be 

detected following electroporation, however, no virus could be recovered after 

multiple passage attempts of media directly off of electroporation. These results 

strongly indicate that a negative charge at these two positions is not tolerated by 

the virus.   

The majority of the HD mutants do not support VLP assembly. To gain 

further insight into how the CD mutations might be affecting virus assembly, the 

proteins were analyzed for their ability to form VLPs. Coexpression of the M and 

E proteins is sufficient for assembly of MHV VLPs (14, 35, 194).  All double and 

single mutant proteins were coexpressed with the wild-type E protein in 293T 

cells. Intracellular and extracellular fractions were harvested at 24 h after 

transfection.  Both fractions were analyzed by SDS-PAGE and Western blotting 

and extracellular samples are shown in Fig.21. The only mutants able to support 

VLP production were K207A, K217A and K217D. Interestingly even though several 

other mutations were supported in the context of the virus, they were not able to  
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FIG.21. Effect of charged residue mutations on VLP production.  293T 

cells were transfected with pCAGGS vectors containing WT or mutant M 

genes singly or in combination with the pCAGGS containing the WT E 

gene.  Control empty vector (mock) were analyzed in parallel.  Pelleted 

extracellular VLPs were analyzed by SDS-PAGE and Western blotting 

using antibodies against M. The entire VLP pellet was analyzed.  
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generate VLP particles suggesting other viral and possibly host proteins stabilize 

the assembly of particles when charged residue mutations are present. 

During infection there are other viral and likely host proteins that 

participate in assembly of viral particles.  The N protein encapsidates the genomic 

RNA and interacts with M (83, 95, 134, 196).  Recent studies indicate that N 

contributes to efficient assembly of SARS-CoV and MHV VLPs (5, 172, 200).  

We wanted to determine if the presence of N during VLP formation would impact 

VLP output of our mutant M proteins.  We tested the all the viable mutants, which 

included K205A, K207A, R212A, K217A, K207D, K217D and the double mutants, 

 K205AK207A and R212AK217A. WT or mutant M proteins were coexpressed with 

WT E in the presence and absence of a WT N clone (Fig.22).  The results show 

that the addition of N in WT M coexpressions results in a modest increase in VLP 

production (Fig.22). The mutants that were capable of forming VLPs in the 

presence of just E (K207A, K217A, and K217D) displayed a roughly similar increase 

in VLP output with N compared to WT. Mutant M proteins that result in crippled 

growth (R212A, K207D, K205AK207A and R212AK217A) yielded no VLPs when 

coexpressed with just E protein. The addition of the N protein resulted in little or 

no increase in VLP production for these mutants (Fig.22). Interestingly for the 

K205A mutant, no VLPs were produced in the presence or absence of although 

virus was produced that grew similar to WT. These results suggest that the N 

protein cannot dramatically enhance VLP production in the presence of crippling 

mutations in M proteins.  
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FIG.22. VLP analysis of viable charged residue mutants in the presence of the 

N protein.  293T cells were transfected as indicated with pCAGGS vectors 

containing WT or mutant M genes in combination with pCAGGS-E and 

pCAGGS-N gene where indicated.  Intracellular and extracellular VLP 

fractions were analyzed by SDS-PAGE and Western blotting (top). The entire 

extracellular pellet and 6% of the total intracellular fraction were analyzed.  

Protein bands were quantified by densitometric scanning and analyzed using 

ImageQuant software.  VLP release was calculated as the percentage of the 

extracellular M of total M (intracellular plus extracellular) protein (bottom).  

The data represent deviations from the average of two experiments. 
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Infectivity of Crippled Mutants. It is well established that the M and N proteins 

interact and this interaction presumably facilitates the incorporation of the 

nucleocapsid (N+RNA) into the viral particle. If our charged residue mutations 

are effecting the M-nucleocapsid interaction, non-infectious (empty) particles 

would be produced during virus infection. To begin to determine if mutant 

infections were resulting in non-infectious particles production, we first analyzed 

the protein profiles of virions for the two crippled single mutants, K207D and 

R212A. We hypothesized that if we visualized the protein profiles of a known 

amount of PFU and empty particles are produced then we would see more relative 

amount of protein than expected for the PFUs present. The PFU was determined 

by standard plaque assay on L2 cells. An equal number of PFUs (105) for each 

mutant was run on a SDS-PAGE gel and Western blot analysis done (Fig.23A). In 

parallel, a WT dilution series from 105-107 PFUs was run. The approximate 

number of particles for each mutant was determined by comparing the intensity of 

the N protein to the WT standards. The K217A mutant, which has a growth 

phenotype similar to WT, was analyzed in parallel. The results show that both the 

K207D and R212A mutants have the equivalent of about 106 particles for 105 PFUs, 

which is equivalent to a relative protein-to-PFU ratio of about 10 (Fig.23A). 

However, 105 PFUs of the K217A mutant correspond to roughly 105 particles. This 

data suggests that the crippled phenotype of the K207D and R212A mutants may be 

due to the production of non-infectious particles. 
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FIG.23. Infectivity of K207D and R212A mutants. A) Protein profiles of K207D, 

R212A and K217A mutants in parallel with a WT standard dilution of known 

PFUs. Virions were purified through a sucrose cushion, tittered to obtain the 

PFU and then analyzed by SDS-PAGE and Western blotting using antibodies 

against S, M and N. A lighter exposure of the N protein is shown to the right. 

The relative amount of N protein was obtained by comparing the intensity of 

N to the WT standards. The data represent deviations from the average of two 

experiments. B) Visualization of RNA from K207D, R212A and K217A mutant 

particles in parallel with a WT standard dilution of known PFUs. RNA was 

subjected to slot blot hybridization after extraction from purified particles and 

was detected using a digoxigenin-labeled N gene probe. The relative amount 

of RNA was obtained by comparing the intensity of the mutants to the WT 

standards. The data represent deviations from the average of two experiments.    
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To determine if the production of non-infectious particles is due to empty 

particles being produced, we analyzed the levels of RNA in virus particles. Again, 

105 PFU each for the K207D, R212A, and K217A mutants and a WT dilution series 

were analyzed. A fraction of the same samples analyzed by Western blotting 

above was taken for each. Slot blot hybridization was carried out with each 

sample and RNA was detected using a digoxigenin-labeled N gene probe. The 

amount of RNA for each mutant was determined by comparing to the WT 

standards. The results show that the K207D and R212A have a level of RNA 

equivalent to 106 PFU (Fig.23B). In contrast, the K217A mutant has an RNA level 

of 105 PFU which is roughly equivalent to the number of PFUs analyzed. This 

data suggests that the non-infectious particles produced during K207D and R212A 

mutant infection is not due to formation of particles that lack the RNA.  

Since, the decrease in infectivity of the K207D and R212A mutants is not 

due to the production of particles lacking the RNA we began to analyze the M-S 

interaction. The S protein is the viral attachment protein and is necessary for 

infectivity (66). It is well established M-S interactions aid in retaining S in the 

Golgi/ERGIC, which is the site of coronavirus assembly. Charged residues within 

the endodomain of S have been implicated to be important for assembly into viral 

particles (211). Thus we reasoned that the decrease in infectivity may be due to a 

reduction in M’s ability to retain S intracellularly. The M protein localizes in the  

Golgi when expressed alone. S localizes along the exocytic pathway and at the 

plasma membrane when singly expressed. When coexpressed, the M protein will 
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colocalize with S. WT, K207D, and R212A M proteins were coexpressed with S. 

Both mutants were able to retain S intracellularly (Fig.24). However, the level of 

S incorporation into the envelope is not directly addressed in these experiments. 
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FIG.24. S protein colocalization with WT and mutant M proteins.  293T 

cells were transfected with pCAGGS vectors containing WT or mutant 

M genes and the S gene.  Cells were fixed at 12 h after transfection and 

analyzed by immunoflourescence using mouse and goat antibodies 

against the M and S proteins, respectively. Alexa Fluor 488-conjugated 

mouse and Alexa Fluor 594-conjugated goat secondary antibodies were 

used to visualize the localization of the M and S proteins, respectively.  

Nuclei were stained with DAPI.  Singly expressed M and S proteins are 

shown in the top two panels.  Colocalizations of the M and S proteins 

are shown in the merged images on the right.   
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DISCUSSION 

In this study, we examined the importance of four positively charged 

residues in the MHV M hydrophilic tail. A cluster of three residues (K205, K207 

and R212) were identified to play a role in the function of the M protein, as 

introduction of oppositely or neutrally charged residues were not tolerated or 

resulted in viruses displaying poor growth. In contrast, the K217 residue does not 

appear to play a crucial role in the function of M because replacement with 

neutral or negative residues results in viruses that have a growth phenotype 

similar to WT. Most mutations did not support VLP assembly with WT E protein. 

The addition of the N protein did not greatly enhance VLP production for crippled 

M mutants. The data suggests that some of the charge changes result in a loss of 

infectivity of viral particles. The study overall provides new insight into residues 

within the M protein that are important for virus envelope assembly, as well as 

infectious particle production. 

Most of the mutations in M resulted in a lack of VLP assembly with WT E 

protein. This is consistent with previous work on the M protein where several 

deletions were made from the extreme carboxy tail of MHV M, ranging from 1 up 

to 18 residues (Δ1, Δ2, Δ3, Δ5, Δ11 and Δ18)  (43). The mutant with 18 residues 

deleted (Δ18) lacks the R212 and K217 residues but still contains the K205 and K207 

residues. All of these mutants were not competent for VLP formation. This data 

suggests that the residues located in the extreme tail of M play a role in formation 

of the envelope. However, it is possible that the deletions affected the structure of 
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the end of the tail. Additionally, previous work has shown that the N protein 

offers a stabilizing role for assembly complexes when mutations are present in a 

conserved domain in the amino end of the amphipathic region of MHV M (5). 

Similarly, an increase in VLP release has been observed for several RNA viruses 

when the nucleocapsid proteins are coexpressed with the matrix proteins (72, 112, 

115, 164, 192). However, this is not the case with our charged residue mutants. 

The affect the C-terminus mutations are having on the formation of the envelope 

cannot be aided by the presence of the N protein. It is possible N protein binds to 

the M mutants less efficiently. The data does suggest that M-N interactions are 

not completely abolished, as all (except K205A) mutants incorporated N into the 

VLP envelope to some extent. However, a direct assessment of M-N interactions 

was not done.  

The M protein interacts extensively with itself to form the lattice of the 

envelope (77). Could our mutations be affecting M-M interactions during VLP 

envelope formation? Based on past studies we do not expect that our mutations 

are affecting M-M interactions. A mutant lacking the last 22 residues can still 

form M-M oligomers, although it localizes to the plasma membrane (117).  This 

mutant lacks K207, R212 and K217. M-M interactions were studied for the Δ18 

mutant mentioned above using co-immunoprecipitation (coIP) and VLP rescue 

assays (47). The Δ18 mutant was able to form M-M complexes and be rescued 

into VLP particles by an assembly competent M protein. However, this mutant 

could not form VLPs with just WT E, similar to our mutants. This data suggests 
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that the extreme carboxy tail of the M protein is not involved in mediating M-M 

interactions. Although M-M interactions are required for envelope assembly 

clearly other requirements must be met. For example, for Semliki Forest virus, 

although lateral interactions between envelope proteins are a requirement for 

budding of particles, without nucleocapsid binding efficient assembly is reduced 

(56). The effect of the introduced charged residue mutations on VLP assembly 

seem to be due to other fundamental problems with M forming the envelope and 

generating particles. These residues could be involved in intra- or inter-molecular 

protein interactions M participates in or possibly M-host protein interactions. 

Although, direct M-E interactions have not been shown for MHV, it is possible 

the mutations are affecting the complex interplay between these two proteins 

necessary for efficient envelope assembly. Alternatively, the mutations could be 

affecting the conformation of M (discussed below), which could result in less 

efficient envelope formation. 

The K205D, R212D, K205DK207D and R212DK217D mutations were not able 

to support virus assembly. All of these mutants did localize correctly to the Golgi 

region (data not shown) suggesting the lethality of the introduced mutations was 

not due to protein not being in the correct location for virus assembly to occur. 

These opposite charge changes presumably abolished one of the protein-protein 

interactions M participates in or resulted in an aberrant M protein structure that 

did not allow for one of the multi-functions of M during virus assembly. Since the 
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single mutations K205D and R212D resulted in a lethal phenotype it is not 

surprising that the double mutants harboring these changes were also lethal.  

The K207D and R212A charge changes resulted in viruses with crippled 

phenotypes, growing to peak virus titers 100 fold less than WT virus. We 

speculated that these mutants might produce empty particles. However, these 

viruses were found to produce non-infectious particles that contained the RNA. 

The K217A mutant did not appear to produce a significant amount of non-

infectious particles. Although, initial analysis of M-S interactions suggest the 

K207D and R212A mutants are able to retain S at the site of assembly, the extent of 

S incorporation in the envelope was not determined.  

Our initial hypothesis based on previous genetic studies was that the 

targeted charged residues of the M tail are interacting with the N protein 

electrostatically (83, 95, 195, 196). Residues 201-224 of Mouse hepatitis virus 

(MHV) M (particularly R227), residues 237-252 of transmissible gastroenteritis 

virus (TGEV) and residues 197-221 of SARS-CoV M are regions identified to be 

involved in the interaction with N, all of which are highly charged regions 

(Fig.16) (43, 58, 83, 95, 195, 196). Genetic studies on the N protein identified 

charged residues as well (D440 and D441) as being functionally important key 

residues involved in virus assembly (83, 195). Additionally, recent cryo-EM 

studies have shown that the extreme carboxy tail of M is the contact point of the 

viral envelope with the internal helical nucleocapsid structure (7, 138). It was 

reasonable to speculate the charges on M may contribute to direct charge-charge 
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interactions between the two proteins. However, the data shows the non-infectious 

particles produced during mutant virus infection contain the nucleocapsid 

suggesting there is no major defect M-N interactions.  

How might the introduced mutations result in a decrease in infectivity? 

The charged residues in the tail of the M protein appear to be involved in more 

than just interactions with the nucleocapsid. The particles could be non-infectious 

due to a reduction of S, the viral attachment protein, on the surface. It is known M 

interacts with the S protein and helps retain it in the Golgi/ERGIC where viruses 

assemble (139, 143). Cyro-EM work has suggested that the placement of S in the 

envelope is restricted by interactions with the organized M lattice (138). Genetic 

studies have analyzed the regions of MHV S and M necessary for assembly into 

virions. The S endodomain consists of an 18 aa membrane proximal cysteine-rich 

region and a 27 aa charge-rich region. Even though there is little primary 

sequence conservation within the S endodomain, the cysteine-rich and charge-rich 

regions are conserved among all coronaviruses S proteins (14, 25). Three 

negatively charged residues within the charge-rich region were found to be 

important for the inclusion of S into virions (211). It is possible the targeted 

positive charges in this study interact electrostatically with these negative charges 

in S.  

Previous research on M protein mutants led to initial mapping of the 

domains within M that are responsible for the M-S interactions (46).  In these 

studies, it was found when the last 18 residues were deleted there was a 
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significant reduction in M-S interactions. Importantly, when the last 15 residues 

were deleted (Δ15), M-S interactions were not grossly reduced. The difference 

between these two mutants are the Y211, the targeted R212, and L213 residues. This 

is also consistent with our changes to the K217 residue that did not affect virus 

production, as the Δ15 mutant does not contain K217. A single Y211G change also 

resulted in a reduction of M-S interactions (46). Furthermore, a single tyrosine 

(Y195) in SARS-CoV M was recently shown to be necessary to retain S in the 

Golgi (129).  Therefore it is reasonable to think the charged residues in M’s tail, 

especially R212, may influence proper M-S interactions. Because S was detected in 

the protein profiles of purified K207D and R212A virions, the charge changes 

introduced may decrease, but not abolish, crucial M-S interactions leading to a 

subsequent decrease in infectivity.  

Cryo-tomography and EM analyses of have shown that M forms local 

ordered networks of M molecules in the envelope and this protein lattice 

formation is crucial for organization of the envelope (7, 138). Furthermore, 

another recent cryo-tomography and EM study has shown M may exist in two 

forms in the viral envelope: Mshort and Mlong (Fig.25A) (B.W. Neuman, 

submitted). Regions of Mlong appear to help mediate S protein incorporation in the 

envelope, as well as contact with the nucleocapsid, and appear to be associated 

with membrane curvature (Fig.25B). The binding of S and/or the nucleocapsid 

may help to stabilize Mlong as well. It is speculated that the change in the  
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FIG.25. M protein conformation in the envelope. A) M may exist in two 

forms in the envelope, Mlong and Mcompact, which differ in a lengthening or 

shortening of the endodomain of M. B) In virus assembly, regions of Mlong 

are where S clusters and the membrane appears to bend around the 

nucleocapsid (NC). C) In VLPs consisting of only M and E proteins, M 

exists in an intermediate form between Mlong and Mcompact. However, in 

VLPs consisting of M, E and N proteins, M exists primarily in the Mlong 

conformation, suggesting N may mediate conversion to Mlong. Images 

modified from B.W. Neuman.  
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conformation of M is due to the lengthening or shortening of the endodomain. It 

is possible the charge mutations in the extreme carboxy tail of M somehow affect 

the conversion to Mlong. This could be due to loss of or new electrostatic 

interactions as there are numerous charged residues located in the endodomain of 

M. This change in the ratio of Mlong to Mshort could result in less incorporation of 

S, which would clearly affect the infectivity of mutant particles. This thinking 

would also be consistent with our mutated M proteins resulting in little or no VLP 

output as the M protein in E+M VLPs is in an intermediate form between Mlong 

and Mshort (Fig.25C) (B.W. Neuman, submitted). In the context of infection when 

various other interactions stabilize Mlong, viral particles are produced more 

efficiently. 

The S protein must undergo refolding events during entry to allow for 

fusion of the viral and host cell membranes. Cysteine residues within the cysteine-

rich region mentioned above, are palmitoylated (13). One study analyzed the role 

of these S protein acylations and suggested they force M to be an optimal distance 

away from itself to allow for refolding events to occur to allow for cell-to-virus 

fusion (186). It is possible the introduced mutations are modifying the interactions 

between M and S in such a way that the fusion process is being affected. This 

could be due to Mlong:Mshort ratio changes or someother structural alteration in M. 

The Sindbis virus envelope glycoprotein, E2, C-terminus tail interacts with the 

capsid (C) protein during assembly for incorporation of the nucleocapsid into the 

particle (31, 107, 109, 119, 145, 203). Mutations were made to residues within the 
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endodomain of E2 (201). It was found that the targeted residues were not 

necessary for assembly but were important viral infectivity and more specifically 

for fusion (201). How the mutations resulted in a loss of fusion activity is not 

described.     

  Alternatively, the affect of our mutations on the infectivity of viral 

particles could be even more complex than M-S interactions or entry and fusion 

events. The decrease in infectivity could be due to any downstream process from 

entry. How the charge changes introduced into the M protein are reducing viral 

infectivity by influencing protein-protein interactions, entry or other life cycle 

processes remains to be determined.              

Our results show that charged residues in the tail of the M protein are 

important for virus assembly and infectivity. The effects on assembly may be 

distinct or intertwined with the effect on viral infectivity. It is likely that assembly 

complexes must be organized to allow for incorporation, as well as the correct 

spacing and placement, of all the necessary components to ensure infectious virus 

production. Additional studies will aim to determine the mechanism by which the 

charge changes are affecting viral infectivity.  
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CHAPTER 4 
 

SUMMARIZING DISCUSSION 

This dissertation focuses on two regions of the coronavirus M protein 

carboxy tail. Chapter one describes a study of a highly conserved domain (CD) at 

the amino end of the long amphipathic region of the tail. The CD was examined 

directly for the first time in this study. The results suggest that this region is 

involved in fundamental M-M interactions. These interactions appear to be 

stabilized through interactions with the N protein. Chapter two focuses on the 

hydrophilic, highly charged extreme carboxy tail of the M protein. The data 

identifies a cluster of three key positive charges that play a role in assembly of 

infectious particles. Both studies provide new insight into requirements of the key 

virion envelope structural component and demonstrate the functional significance 

of the CD and charged residues. The new information is important for our basic 

understanding of the molecular biology of coronaviruses. It may also provide the 

basis for exploring the domains as potential targets for the development of 

antiviral therapeutics or vaccines that prevent virus assembly. 

 

The Membrane Protein and its Role in Virus Assembly 

The M glycoprotein is the most abundant component of the viral envelope 

that plays required, key roles in virus assembly (47, 91, 139, 143, 194). 

Coronaviruses assemble and bud at intracellular membranes in the region of the 

endoplasmic reticulum Golgi intermediate compartment (ERGIC) (93, 188).  
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Coronavirus M proteins are divergent in their amino acid content, but all share the 

same overall basic structural characteristics. The proteins have three 

transmembrane ™ domains, flanked by a short amino terminal glycosylated 

domain and a long carboxy terminal tail located outside and inside the virion, 

respectively (77) (Fig.4). The long intravirion (cytoplasmic) tail of M consists of 

an amphipathic domain following the third TM and a short hydrophilic region at 

the carboxyl end of the tail (Fig.4). The amphipathic domain appears to be closely 

associated with the membrane (155). M molecules interact with each other and 

also with the spike and nucleocapsid during virus assembly (Fig.4) (46, 47, 58, 

95, 139, 143). These fundamental interactions drive the efficient assembly of viral 

particles. M-M interactions constitute the lattice structure that is apparent in the 

viral envelope. The S protein and a small number of E molecules are incorporated 

in the M protein lattice. Co-expression of only the M and the E proteins is 

sufficient for VLP assembly for most coronaviruses (14, 194).  

Previous studies from a number of labs implicated multiple M domains 

and residues to be important for coronavirus assembly (43, 46, 47, 83, 196). 

Mutations and deletions made in all regions of M, including the amino end, 

transmembrane domains (TMs) and carboxy tail, effect VLP envelope assembly 

(43), again highlighting the importance of the M protein in the assembly process. 

M-M interactions are thought to be mediated through multiple contact points, but 

the TMs appear to be especially important (47). Cryo-tomography analysis 

revealed that the envelope is striated, presumably due to M-M interactions (7). 
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The amphipathic region of the M protein tail has been shown to be important in 

mediating M-S interactions (46). Additionally, particular residues within the 

hydrophilic domain have been identified as being crucial for SARS-CoV and 

MHV M protein interactions with S (46, 129). Finally, genetic studies have shown 

that charged residues in the extreme carboxy tail of M are mediating interactions 

with the N protein (83, 95, 195, 196). These interactions presumably facilitate the 

incorporation of the nucleocapsid into viral particles. 

 

The M Protein Conserved Domain              

At the amino terminus of the amphipathic domain, there is a highly 

conserved 12 amino acid domain (SWWSFNPETNNL), consisting of residues 

114-125 in the MHV A59 M protein (Fig.8) (89). The results from work 

described in this dissertation suggest a possible interaction between the CD and 

first TM domain (TM1), since all of the recovered viruses with changes in the 

amino end of the CD had second site changes in the TM1 (Fig.10). No viruses 

could be recovered without second site changes. In both the context of VLP and 

virus assembly the TM1 changes are apparently providing some advantage for the 

mutant M proteins containing the changes in the amino end of the domain. 

Additionally, the second site changes in TM1 were required for rescue into VLP 

particles (Fig.14). Although the structure of the amphipathic domain of M is not 

known, it appears to be associated with the inner leaflet of the virion membrane. 

An interaction between the CD and the TM1 suggests the amphipathic region may 
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be more intimately associated with the membrane than previously recognized. 

Indeed, virions examined by cryo-electron tomography exhibit trilaminar-like 

membranes in the envelope, which was attributed to close association of M’s tail 

with the inner leaflet of the membrane bilayer (7). Most of the TM1 changes were 

polar to charged residue changes. It is possible the changes, particularly the 

charges, result in a shortening or shifting of the TM region to allow for more 

efficient M-M interactions when alanine substitutions were present in the amino 

end of the CD. This may be particularly relevant since tryptophan (W) residues 

positioned at the membrane:cytoplasm boundaries have been suggested to 

possibly help stabilize TM helices or to provide vertical mobility relative to the 

lipid bilayer (102). The replacement of the W residues may destabilize the TM3. 

The changes in TM1 may then compensate for alternations in TM3 to allow for 

efficient M-M interactions (Fig.28A).  

To further analyze where the TM1 changes occur in the context of the 

transmembrane helices itself, helical wheel analysis was used to determine the 

position of the recovered compensating changes. Residues consisting of the TM1, 

W26 to F43, were used for the analysis. For the WT sequence there is a region 

where hydrophilic residues (N27, T38, and Q42) lie next to each other on the same 

face of the α-helix (Fig.26). All the remaining residues, but one serine (S29), are 

hydrophobic (Fig.26). Three of the four changes that arose in TM1 were in this 

region of hydrophilic residues (G31R, T38N, and Q42R). The L35 residue, which  
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FIG.26. Helical Wheel Analysis of the M protein TM1. Top view from 

the amino end of WT TM1. Hydrophilic polar residues, N27, S29, T38 and 

Q42 are in red. Most of the hydrophilic residues lie along one face of the 

α-helix. The compensating changes that arose in 5’A mutant viruses 

(G31R, L35P, T38N and Q42R) are indicated in green. Helical wheel plot 

was prepared using Gene Runner version 3.05.     
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changed to a P, is just adjacent to the hydrophilic region (Fig.26). This suggests 

that the changes that arose in the TM1 of M are not randomly positioned 

throughout the transmembrane α-helix. The hydrophilic region of the TM may be 

positioned at the interface between the membrane and cytoplasm. This would be 

consistent with the TM1 interacting with the CD of an adjacent M protein or with  

the TM1 compensating for potential positioning changes in the TM3. These 

conclusions provide a more detailed picture of the requirements of M-M 

interactions and help us better understand the assembly process as a whole.  It will 

be of interest in future studies to determine mechanistically how the second site 

changes in TM1 are compensating for the 5’A changes. Possibly cryo-

tomography studies to visualize VLP particles containing 5’A or 5’A+TM1 M 

proteins would allow for determination of differences in the M lattice formation.  

  Our results strongly suggest that the N protein helps stabilize assembly 

complexes during VLP assembly, most likely through interactions with M.  We 

know that the N protein plays important roles in encapsidation of the genomic 

RNA (through N-RNA and N-M interactions) as well as in RNA synthesis in the 

context of virus infection (2, 26, 39, 123). However, N’s role in VLP, as well as 

virus assembly, has not been completely elucidated. Our results suggest that N 

stabilizes the VLP envelope, which consists almost entirely of M. This previously 

undefined role of N may be particularly important for our mutant M proteins if 

positioning of M molecules in the lattice framework and/or the tail is altered. 

Stabilization by N might allow for a confirmation of M that promotes more 
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efficient assembly. Indeed, recent cryo-tomography and EM work has shown that 

M may exist in two forms in the viral envelope: Mshort and Mlong (Fig.25A and 

discussed in Chapter 3 Discussion) (B.W. Neuman et al, submitted). Regions of 

Mlong are shown to be where contact is made with the nucleocapsid, where 

membrane curvature is seen, and where the S protein is incorporated into the 

envelope (Fig.25B). Therefore, Mlong is thought to be important for efficient virus 

assembly. The change in M’s conformation is thought to be due to the lengthening 

or shortening of the endodomain. Furthermore, M protein in E+M VLPs is in an 

intermediate form between Mlong and Mshort whereas E+M+N VLPs contain 

mostly Mlong (Fig.25C). This suggests that the N protein, when present during 

VLP assembly, may convert M to a form that is more efficient in assembly and 

budding. The N-M interactions are also likely significant during complete virus 

assembly.  This is consistent with the thread-like densities observed in cryo-EM 

and cryo-electron tomography images which provide the contact points between 

M and nucleocapsids in MHV particles (7, 138) and also genetic analysis pointing 

to the importance of the M-N interaction for encapsidation of the genomic RNA 

(83, 95, 195, 196). The stabilizing effect of N may be of greater importance and 

more apparent with the mutant M proteins, than during its normal role when 

expressed with WT M.   

 

The M Protein Hydrophilic Tail 



 

  126 

The terminal 25 amino acids of the long carboxy tail of M are hydrophilic 

and highly charged. This region has been shown to be important for interactions 

with the N and S proteins (83, 95, 129, 134, 196, 211). The results presented here 

suggest that viruses containing the K207D and R212A changes produce non-

infectious particles. These particles do contain the RNA, suggesting M-

N/nucleocapsid interactions are taking place. Several previous studies are 

consistent with the thinking that regions of the M tail are interacting with the S 

protein. It is known that M interacts with S and helps retain it in the Golgi/ERGIC 

where viruses assemble (139, 143). Cyro-EM work has suggested that the 

placement of S in the envelope is restricted by interactions with the M lattice 

structure (138). Additionally, genetic studies have analyzed the regions of MHV S 

and M necessary for assembly into virions. Three negatively charged residues 

within the S protein charge-rich region (discussed in Chapter 3 Discussion) were 

found to be important for the inclusion of S into virions (211). It is possible the 

key positive charges identified in our studies interact electrostatically with these 

negative charges in S.  

Previous research on M protein mutants led to initial mapping of the 

domains within M that are responsible for the M-S interactions (46).  It was found 

that residues within the hydrophilic carboxy tail of M appear to help mediate M-S 

associations. These include Y211, the targeted R212, and L213 (46). For SARS-CoV 

M, a single tyrosine, Y195 was recently shown to be necessary to retain S in the 
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Golgi (129).  Therefore it is reasonable to think the charged residues in M’s tail 

that were studied may influence proper M-S interactions.  

We initially began to look at M-S associations by determining the ability 

of WT and mutant M proteins to retain S at the site of assembly (Fig.24). Both 

K207D and R212A mutants were able to retain S intracellularly. However, the 

extent of S incorporation into the envelope was not determined. Therefore, we 

analyzed purified WT and K207D virions by negative staining to visualize S in the 

viral envelope. WT particles contain the characteristic S proteins decorating the 

envelope (Fig.27A and B). However, the K207D particles appear to be primarily 

spikeless (Fig.27A and B). Additionally, there appeared to be a lot of broken 

particles and membranous debris present for the K207D mutant (Fig.27B and C). 

First of all, this data suggests that the introduced mutation within the C-terminus 

of M may result in less S protein being incorporated into the envelope. These 

results are consistent with previous work indicating that M-S interactions may be 

mediated by electrostatic means. Further studies must be directed at quantifying 

the amount of S in the mutant virus envelopes to determine the ratio of M to S 

proteins. Cryo-EM studies have estimated that there is 1 S trimer for every 16 M 

molecules (138). It would be interesting if our mutant virions had a different ratio 

of S to M. Furthermore, the EM results also point to K207D particles possibly 

being less stable. This could be due to the lattice of M being altered or maybe the 

ratio of Mlong:Mshort is effected in such a way to influence the stability of the viral 

envelope. Possibly the particles are more sensitive to preparation methods for EM  
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FIG.27. Negative Staining of WT and K207D virus particles. 17Cl1 mouse 

cells were infected with WT and K207D. Supernatant was clarified and 

virus was purified through two- 20- 60 % sucrose gradients and then 

concentrated through a 30% sucrose cushion. Pellets were resuspended in 

TMEN pH 6.0. Particles were airfuged onto Formvar coated 50 mesh Ni 

grids and stained with 1%  phosphotungstic acid pH 6.5. Images were 

collected at 53,000X on a Philips STEM electron microscope. 

A) Digitally magnified images of WT and K207D particles. WT particles 

retained S peplomers in the viral envelope. Most K207D particles appeared 

spikeless. B)  WT samples contained intact particles with S. Identically 

prepared K207D samples contained damaged particles (thin arrow) and 

other membranous structures (thick arrow) that co-purified with the virus. 

C) WT sample preparations were relatively clean with respect to cellular 

debris. K207D samples contained large membranous structures as well as 

debris. Scale bar for panel A is 50 nm and panel B is 100 nm and and 

panel C is 200 nm. Electron microscopy and image analysis by Pavithra 

Venkatagopalan  
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analysis. Further experiments could determine the level of sensitivity of the K207D 

particles to such conditions as pH, temperature and buffer composition.  

 

The M protein in Coronavirus Assembly 

  The M glycoprotein is the most abundant component of the viral envelope 

that plays key roles in virus assembly through interactions with itself as well as 

the other viral structural proteins (47, 91, 139, 143, 194). The results on the M 

protein CD and charged residues within the hydrophilic tail provide valuable  

insight into regions of M that play important roles in virus assembly as well as 

infectivity.  

 Although it has been known for quite some time that M interacts with 

itself to form multimers in the envelope, the regions involved in these interactions 

have only been very roughly mapped (47). Recent cyro-tomography and EM data 

has confirmed such hypotheses, as striations observed in the envelope were 

attributed to M-M interactions (7). The results on the CD of M provide valuable 

information on a particular region of M that helps mediate M lattice formation. 

Additionally, the results suggest that amphipathic region of M is intimately 

associated with the inside of the viral envelope as changes in the TM1 partially 

compensate for changes in the CD (Fig.28A). Such detailed mapping of the 

association between M molecules has not been described previously. Moreover, 

the results suggesting the N protein stabilizes assembly complexes, highlights a 

previously unrecognized role of N in virus assembly. 
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Fig.28. Model of coronavirus assembly protein complexes. The M protein is 

depicted with the three TM domains (1-3). A) The position and sequence of 

the CD and the N protein associated with the genomic RNA are shown. The 

CD of one M protein may interact with the TM1 of an adjacent M molecule 

(circled) and the N protein may stabilize M-M complexes. B) The position 

and sequence of the hydrophilic tail is shown. The endodomain of the S 

protein may interact with charges in the hydrophilic tail of M (circled)      
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The M protein amphipathic region, containing the CD at the amino end 

has an unknown structure. Past studies suggest this region of M to be tightly 

associated with the membrane (155) and it is assumed to be globular. The  

amphipathic region of M may adopt an α-helix structure. Amphipathic α-helices 

are found in many proteins and play roles in anchoring proteins to the membrane, 

destabilizing membranes and promoting membrane curvature (4, 38, 53, 60, 63, 

85, 108). Due to the way the hydrophobic and polar residues are on the two 

opposite sides of the helix, it actually lies parallel to the membrane with 

hydrophobic residues against the membrane and polar residues towards the lipid 

heads (79). A previous study found that several unrelated proteins, a Golgi-

associated protein (ArfGAP1), a human coiled-coil protein (GMAP-210), a yeast 

sterol-binding protein (Kes1p) and a human nuclear pore complex protein 

(Nup133) have amphipathic helices that all contain serine/threonine rich regions 

on the polar face of the helix (51). It was found all these amphipathic helices were  

sensors of membrane curvature, suggesting the polar residues are important for 

their activity. It was suggested that asparagines (N) and glutamine (Q) residues 

may also maintain the proper composition of the helix for sensing curvature. It is 

possible the S, T and N residues, at positions S114, S117, T122, N123 and N124, in the 

CD are playing a role in membrane curvature sensing (Fig.8). Indeed when these 

residues were changed to alanine in the 5’A and 3’A mutants, it resulted in less 

virus production (Fig.10). Interestingly, when positive charges were introduced 

into the ArfGAP1 amphipathic helix, it lost its sensitivity to detect curved 
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membranes (51). Perhaps when positive charges were attempted to be introduced 

into the CD, it resulted in a similar decrease in sensing curved membranes.  

What role may sensing membrane curvature have for the virus? Membrane 

curvature is required during the assembly process. What induces membrane 

curvature is not known, although it is thought the E protein might be involved 

(194). It is possible that as the E protein induces membrane curvature during early 

assembly steps, the M protein is able to sense this via its amphipathic region, 

which would lead to a clustering of M proteins at the site of assembly where 

budding is most efficient. Further studies could look at the CD mutant’s ability to 

sense membrane curvature by analyzing binding to liposomes of different sizes. 

Such studies would potentially broaden our understanding of role of the M protein 

in assembly beyond protein-protein interactions.  

Our work on the hydrophilic charged tail of M identifies three positive 

charges that are important for assembly of infectious particles. Our results suggest 

that the S protein is incorporated into the viral envelope less efficiently when 

mutations are present in the extreme carboxy tail of M. This data, along with the 

previous genetic work on the regions of M involved in M-S interactions, maps the 

interaction to a small highly charged region in the MHV M tail, from aa205-212. 

This includes Y211 that was identified previously to be important (46). Presumably 

the endodomains of M and S interact, which is mediated by charged regions in M 

and S (Fig.28B) (211). However we know that there does appear to be multiple 

contact points between the proteins as the amphipathic region of M plays a role in 
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M-S interactions as well (46). Most attention is given to the role of the M 

protein’s tail in interactions with the nucleocapsid. However, these results 

emphasize the importance of the extreme carboxy tail of the M protein for 

incorporation of S.  
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APPENDIX A  

CONSTRUCTION OF SARS EXPRESSION PLASMIDS 

DATA COLLECTED 2004-2005 
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The pcDNA3.1Zeo(-):SARS S plasmid contains the entire SARS S gene. 

The S gene fragment was obtained by PCR from a PCR-XL-TOPO:SARS S clone 

generated by Louisa Ruetz using primers SARS S NheI For (5’ GCC GGC TAG 

CAT GTT TAT TTT CTT A 3’) and SARS S XhoI Rev (5’ GCG CCT CGA GTT 

ATG TGT AAT GTA A 3’). The PCR product was digested with NheI and XhoI 

enzymes and cloned into the pcDNA3.1Zeo(-) vector.  

The pCAGGS:SARS S plasmid contains the entire SARS S gene. The S 

gene fragment was obtained by PCR from a pcDNA3.1Zeo(-):SARS S clone 

using primers SARS S SmaI For (5’ GCC CCG GGA TGT TTA TTT TCT TA 

3’) and SARS S XmaI Rev (5’ TCC CCC CGG GTT ATG TGT AAT GTA A 3’). 

The PCR product was subjected to digestion was SmaI and XmaI enzymes and 

cloned into the pCAGGS vector.  

The pCAGGS:SARS 3a plasmid contains the entire SARS 3a gene. The 3a 

gene fragment was obtained from an incorrect pCAGGS:SARS 3a clone by 

digesting with KpnI and XhoI. The SARS 3a gene was then cloned into the 

pCAGGS vector. The pCAGGS:SARS HA-3a plasmid contains the entire SARS 

3a gene with a 16 amino acid HA tag on the N-terminus. The 3a gene with the HA 

tag was obtained by PCR from a pCRUZ:SARS HA-3a clone using primers 

SARS 3a KpnI For (5’ GCG GGT ACC ATG GAT TTG TTT ATG AG 3’) and 

SARS 3A XhoI Rev (5’ GTA TCT CGA GTT ACA AAG GCA CGC TAG 3’). 

The PCR product was subsequently digested with KpnI and XhoI and cloned into 

the pCAGGS vector.  
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All expression constructs were transiently expressed. The pcDNA3.1Zeo(-

): SARS S clone was expressed in BHK-21 cells using vaccinia T7 polymerase, 

vTF7-3. The pCAGGS:SARS S clone was expressed in BHK-21 cells. The 

pCAGGS:SARS 3a and pCAGGS:SARS HA-3a clones were expressed in 293T 

cells. Protein expression was confirmed for all constructs using SDS-PAGE and 

Western blotting analysis (Fig.29). 

To determine the cellular localization of the SARS 3a protein, indirect 

immunofluorescence was carried out. Previous attempts to determine the 

localization of 3a resulted in inconclusive results so the MHV M protein was used 

as a marker for Golgi localization. BHK-21 cells were transfected with the 

pCAGGS:MHV M and pCAGGS:SARS 3a clones and were fixed at 12 hpt. The 

MHV M protein colocalizes with the Golgi marker, Giantin (Fig.30A). The SARS 

3a protein colocalizes with the MHV M protein (Fig.30B). Therefore, the SARS 

3a was determined to localize in the Golgi region.  
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Fig.29. Transient expression of SARS-CoV S and 3a proteins. pcDNA3.1:S 

(A), pCAGGS:S (B), pCAGGS:3a (C) and pCAGGS:HA:3a (D) proteins 

were expressed. Both pcDNA3.1:S and pCAGGS:S were expressed  in BHK-

21 cells. pcDNA3.1:S was expressed using vaccina T7 polymerase vTF7.3. 

Both pCAGGS:3a clones were expressed in 293T cells. Proteins were 

analyzed by SDS-PAGE and Western blotting. Transfection of empty 

pCAGGS vector was used as the vector control. The positions of full length 

and cleaved S are indicated in panel A and B.   
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FIG.30. Localization of SARS 3a. BHK-21 cells were transfected with 

pCAGGS vectors containing WT MHV M or SARS 3a genes. Cells were 

fixed at 12 h after transfection and analyzed by immunofluorescence using 

mouse and rabbit antibodies against the M and 3a proteins, respectively. 

The Golgi was visualized using a rabbit anti-Giantin antibody. Alexa Fluor 

488-conjugated mouse and Alexa Fluor 594-conjugated rabbit secondary 

antibodies were used to visualize the M and 3a or Golgi, respectively. 

Nuclei were stained with DAPI.  A) Colocalization of M and Giantin 

shown in the merged image on the right B) Colocalization of M and 3a 

proteins in the merged image on the right   
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APPENDIX B  

CONSTRUCTION OF MVA VIRUSES 

DATA COLLECTED 2004-2006 
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Five Modified vaccinia virus Ankara (MVA) recombinant viruses were 

constructed that express SARS-CoV proteins. MVA is a highly attenuated 

recombinant vaccinia virus that was created after being serially passaged more 

than 500 times in chicken embryo fibroblast (CEF) cells (12). SARS-CoV S 

protein expressed by attenuated vaccinia virus protectively immunizes mice (12). 

MVA has been used to express large quantities of foreign proteins off of the 

early-late promoters. The SARS-CoV genes that were introduced into the MVA 

genome were S, E, M, 3a and HA-3a.  

The full length genes for the SARS-CoV structural proteins are cloned 

into the pLW44 transfer vector. The pLW44 vector contains two MVA flanking 

regions that contain a DNA sequence that is similar to wild-type MVA. These 

flanking regions will allow for homologous recombination to occur between the 

transfer vector and the Del III region of the MVA genome. Located between the 

two flanking regions are two vaccinia virus early-late promoters. One of these 

promoters, the p11 promoter, drives the transcription of green fluorescent protein 

(GFP). GFP expression is used for selection of the recombinant viruses that 

underwent homologous recombination. The other promoter is a H5 promoter that 

drives the transcription of the gene of interest. First, any poxvirus transcription 

termination motifs (TTTTTNT) that were present in the SARS genes had to be 

mutated to ensure full length mRNA transcripts are produced. The S gene 

contained two such motifs at positions 22569 and 24718 in the SARS Urbani 
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genome. The E gene contained one motif at position 26172. The M gene 

contained one motif at 26527. The 3a gene contained one motif at position 25580. 

The poxvirus transcription termination motifs were changed using whole plasmid 

PCR with primers listed in Table 2. Once mutation of the motifs were confirmed 

by sequence analysis, PCR was carried out using primers listed in Table 3 that 

contained appropriate restriction sites to clone into the pLW44 transfer vector. 

The PCR products were digested with the appropriate enzymes and the SARS-

CoV genes were cloned into the pLW44 vector. For the MVA HA tagged 3a 

recombinant, the 3a gene was first cloned into the pLW44 vector and then whole 

plasmid PCR was done. 

Once the genes were successfully cloned into the pLW44 transfer vector, 

the generation of SARS MVA recombinants was carried out. First, BHK-21 cells 

were infected with WT MVA virus at an MOI of 0.01-0.1. Next, the infected cells 

were transfected with the appropriate pLW44 SARS clone. After two days the 

cells were harvested, freeze/thawed, and sonicated. The virus is then plated onto 

BHK-21 cells and overlaid with low melting point agar. After two days, GFP 

positive plaques are picked. After freeze/thaw and sonication cycles, the plaques 

are plated onto BHK-21 cells and allowed to incubate for two days. A total of six 

rounds of plaque purification were done to ensure the stability of the gene 

insertion. Each purified plaque was checked by SDS-PAGE and Western blotting 

to determine if the SARS protein expressed in Vero cells (Fig.31). The best 

expressing plaque was used to grow stocks of the SARS MVA recombinant. 
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Note: The MVA SARS HA:3a virus could never be detected by Western blot 

using the anti-HA antibody only with the anti-3a antibody (Hogue Lab). 

 

Table 2. Primers used for Whole Plasmid PCR 

Primer Name Primer sequence (5’-3’) 
SARS S 22571 T to C For GCT CTA CAA CTC AAC ATT CTT TTC 

AAC C  
SARS S 22571 A to G Rev GCA CTT AAA GGT TGA AAA GAA 

TGT TGA G 
SARS S 24722 For T to C CCC TCG TGA AGG TGT TTT CGT 

GTT TAA TGG 
SARS S 24722 Rev A to G CCA AGA AGT GCC ATT AAA CAC 

GAA AAC ACC 
  

SARS E DoubFor  CGT TAA TAG TTA ATA GCG TAC 
TTC TCT TCC TTG CTT TCG TGG 

SARS E DoubRev CCA CGA AAG CAA GGA AGA GAA 
GTA CGC TAT TAA CTA TTA ACG 

  
SARS M DoubFor CTA ATC GGA ACA GGT TCC TGT 

ACA TAA TAA AGC TTG TTT TCC 
TCT GG 

SARS M Rev AA  CTT TAT TAT GTA CAG GAA CCT 
GTT CCG ATT AGA ATA GGC AAA 

TTG 
  

SARS 3a For T25 CGC TGC AGG TAT GGA GGC GCA 
ATT CTT GTA CCT CTA TG 

SARS 3a Rev A25 GCA TTG TAG AAA ATA TAT CAA 
GGC ATA GAG GTA CAA GAA TTG 

CGC CTC C 
  

SARS 3a For T25 CGC TGC AGG TAT GGA GGC GCA 
ATT CTT GTA CCT CTA TG 

SARS 3a Rev A25 GCA TTG TAG AAA ATA TAT CAA 
GGC ATA GAG GTA CAA GAA TTG 

CGC CTC C 
 

 

 



 

 

Table 3. Primers used for PCR to introduce restriction sites 

     

   

  

Primer Name Primer sequence (5’-3’) 
SARS S SmaI For GCC CCG GGA TGT TTA TTT TCT TA 
SARS S XmaI Rev TCC CCC CGG GTT ATG TGT AAT GTA A 

  
E SmaI For GCC CGG GAT GTA CTC ATT CGT TTC GG 

SARS E Rev SalI GAG CGT CGA CTT AGA CCA GAA GAT CAG G 
  

M SmaI For GCC CGG GAT GGC AGA CAA CGG TAC TAT TAC 
CG 

SARS M Rev SalI GCG CGT CGA CTT ACT GTA CTA GCA AAG C 
  

SARS 3a untag SmaI For CGG CCC GGG ATG GAT TTG TTT ATG AGA 
SARS 3a SalI Rev GAG CGT CGA CTT ACA AAG GCA CGC TAG 

  
SARS LHA SmaI For GCC CGG GAT GGG ATC CTA CCC TTA C 

SARS 3a SalI Rev GAG CGT CGA CTT ACA AAG GCA CGC TAG 
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Fig.31. Expression of SARS-CoV structural proteins by MVA recombinant 

viruses. MVA:S, MVA:M, MVA:E, MVA:HA:3a, and MVA:3a, A-E 

respectively. Proteins were analyzed by SDS-PAGE and Western blotting and 

detected by chemiluminescence using antibodies specific for each protein. 

Transfection of WT MVA virus was used as the mock. The positions of full 

length and cleaved S are indicated in panel A.   
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PRIMER TABLES 
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Table 4. Primers used in CD Studies 

Name                                         5’ →3’ Sequencea Polarity Purpose 

M:E121A GCT GGT GGA GCT TCA ACC CCG CCA CAA ACA ACC TTA TG For Mutagenesis  

M:E121A CTA TAC ACA TAA GGT TGT TTG TGG CGG GGT TGA AGC  Rev Mutagenesis  

M:E121R GGG AGC TGG TGG AGC TTC AAC CCC CGA ACA AAC AAC CTT 
ATG TGC ATA G 

For Mutagenesis  

M:E121R CAT ATC TAT GCA CAT AAG GTT GTT TGT TCG GGG GTT GAA 
GCT CCA CCA GCT CCC  

Rev Mutagenesis  

M:E121K GCT GGT GGA GCT TCA ACC CCA AGA CAA ACA ACC TTA TG For Mutagenesis  

M:E121K CTA TAC ACA TAA GGT TGT TTG TCT TGG GGT TGA AGC TCC Rev Mutagenesis  

M:P120A GCT GGT GGA GCT TCA ACG CGG AAA CAA ACA ACC TTA TG For Mutagenesis  

M:P120A CTA TAC ACA TAA GGT TGT TTG TTT CCG CGT TGA AGC Rev Mutagenesis  

M:5’A CAG GAC TGG TGC CGC CGC CGC CTT CAA CCC CGA AAC For       Mutagenesis  

M:5’A CGG GGT TGA AGG CGG CGG CGG CAC CAG TCC TGA TAA AC Rev Mutagenesis  

M:3’A GGA GCT TCA ACC CCG AAG CCG CCG CCG CCA TGT GTA TAG For Mutagenesis  

M:3’A CTA TAC ACA TGG CGG CGG CGG CTT CGG GGT TGA AGC TCC Rev Mutagenesis  

M:5’A+3’A CAG GAC TGG TGC CGC CGC CGC CTT CAA CCC CG 
 

For Mutagenesis  

M:5’A+3’A CGG GGT TGA AGG CGG CGG CGG CAC CAG TCC TGA TAA AC Rev Mutagenesis  

M:ΔCD GTT TAT CAG GAC TGG TAT GTG TAT AGA TAT GAA AGG For Mutagenesis  

M:ΔCD 
 
MHV M(+) 
 
MHV M(-) 
 
MHV 
M(A2A3) 

CTT TCA TAT CTA TAC ACA TAC CAG TCC TGA TAA ACA ACC 
 
GGA TGA TAT CGA ATT CAA ACA TTA TG 
 
GCA TCG ATT TAG GTT CTC AAC AAT GCG GTG 
 
CCG AAT TCA AAC ATT ATG GCT GCT ACT ACT CAG G 

Rev 
 
For 
 
Rev 
 
For 

Mutagenesis  
 
Cloning into pCAGGS 
 
Cloning into pCAGGS 
 
Mutagenesis SS(2-3)AA  

 
MHV M-N(+) 

 
CCACCTCTACATGCAAGGTGTTAAGC  

 
For 

 
RT-PCR 

 
MHV M-N(-) 

 
GGTCTGCCACAACCTTCTCTATCTG  

 
Rev 

 
RT-PCR 

 
MHV E-M(+) 

 
CAGAACTGTCCAACAGGCCGTTAGCAAG 

 
For 

 
RT-PCR and sequencing 

 
MHV E-M(-) 

 
GCAACCCAGAAGACACCTTCAATGC  

 
Rev 

 
RT-PCR 

 
MHV S (+) 

 
CAGACGTCTATTGCGCCTG 

 
For 

 
RT-PCR 

 
MHV 3’ E (-) 

 
GATACACAGGATCCAGCGCATACAC 

 
Rev 

 
RT-PCR 

 
MHV G3 
Forward 

  
TGGTTGCCTTCCTTGCGTC 

 
For 

 
Sequencing 

 
MHV G4 
Reverse 

 
AGTCTGCTTTGGCTGATTCCTTC 

 
Rev 

 
Sequencing  

 
MHV G6 
Reverse 

 
TTCCTGAGCCTGTCTACG  

 
Rev 

 
Sequencing  

 
MHV G7 
Forward 

 
GAACCCACCAAAGATGTGTATGAGC  

 
For 

 
Sequencing  

 
MHV G8 
Forward 

 
GGCAGAAGCTCCTCTGTAAACC 

 
For 

 
Sequencing  

 
S Reverse 

 
GCCAATGCCTAGCATACATGC 

 
Rev 

 
Sequencing 

    

 a Mutagenized codons are boldface and underlined. 
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Table 5. Primers used in Charged Residue Studies 

Name 5’ →3’ Sequencea Polarity Purpose 

M:K205AK207A GCT GTT TAT GTG GCG TCC GCG GTC GGA AAC TAC 
CG 

For Mutagenesis 

M:K205AK207A GGG CAG TCG GTA GTT TCC GAC CGC GGA CGC CAC 
ATA AAC 

Rev Mutagenesis 

M:K205DK207D GCG GTT TTG CTG TTT ATG TGG ACT CCG ACG TCG 
GAA ACT ACC G 

For Mutagenesis  

M:K205DK207D CGG TAG TTT CCG ACG TCG GAG TCC ACA TAA ACA 
GC 

Rev Mutagenesis  

M:R212AK217A CGG AAA TTA CGC ACT GCC CTC AAA CGC ACC GAG 
TGG GGC GG 

For Mutagenesis  

M:R212AK217A CCG CCC CAC TCG GTG CGT TTG AGG GCA GTG CGT 
AAT TTC CGA CC 

Rev Mutagenesis  

M:R212DK217D CGG AAA TTA CGA CCT GCC CTC AAA CGA CCC GAG 
TGG GGC GG 

For Mutagenesis  

M:R212DK217D CCG CCC CAC TCG GGT CGT TTG AGG GCA GGT CGT 
AAT TTC CGA CC 

Rev Mutagenesis 

M:K205A GCT GTT TAT GTG GCG TCC AAG GTC GGA AAC TAC 
CG 

For       Mutagenesis 

M:K205A GCA GTC GGT AGT TTC CGA CCT TGG ACG CCA CAT 
AAA C 

Rev Mutagenesis  

M:K205D GCG GTT TTG CTG TTT ATG TGG ACT CCA AGG TCG 
GAA ACT ACC T 

For Mutagenesis  

M:K205D GGG CAG TCG GTA GTT TCC GAC CTT GGA GTC CAC 
ATA AAC AGC 

Rev Mutagenesis  

M:K207A GCT GTT TAT GTG AAG TCC GCG GTC GGA AAC TAC 
CG 

For Mutagenesis  

M:K207A GCA GTC GGT AGT TTC CGA CCG CGG ACT TCA CAT 
AAA C 

Rev Mutagenesis  

M:K207D GCG GTT TTG CTG TTT ATG TGA AGT CCG ACG TCG 
GAA ACT ACC G 

For Mutagenesis   

M:K207D 
 
M:R212A 
 
M:R212A 
 
 
M:R212D 
 
M:R212D 
 
 
M:K217A 
 
M:K217A 
 
 
M:K217D 
 
M:K217D 
 
 

GGG CAG TCG GTA GTT TCC GAC GTC GGA CTT CAC 
ATA AAC AGC  
CGG AAA TTA CGC ACT GCC CTC CAA CAA ACC G 
 
GCC ACT CGG TTT GTT GGA GGG CAG TGC GTA ATT 
TCC G 
 
CGG AAA TTA CGA CCT GCC CTC CAA CAA ACC G 
 
GCC ACT CGG TTT GTT GGA GGG CAG GTC GTA ATT 
TCC G 
 
GCC CTC AAA CGC ACC GAG TGG GGC GGA CAC CGC  
 
GCG GTG TCC GCC CCA CTC GGT GCG TTT GAG GGC 
AGT CGG  
 
GCC CTC AAA CGA CCC GAG TGG GGC GGA CAC CGC  
 
GCG GTG TCC GCC CCA CTC GGG TCG TTT GAG GGC 
AGT CGG  
 
 

Rev 
 
For 
 
Rev 
 
 
For 
 
Rev 
 
 
For 
 
Rev 
 
 
For 
 
Rev 
 
 

Mutagenesis  
 
Mutagenesis 
 
Mutagenesis 
 
 
Mutagenesis 
 
Mutagenesis 
 
 
Mutagenesis 
 
Mutagenesis 
 
 
Mutagenesis 
 
Mutagenesis 
 
 

 a Mutagenized codons are boldface and underlined. 
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                             Table 5. continued   

    

    

    

    

MHV M-N(+) CCACCTCTACATGCAAGGTGTTAAGC  For RT-PCR 

MHV M-N(-) GGTCTGCCACAACCTTCTCTATCTG  Rev RT-PCR 

MHV E-M(+) CAGAACTGTCCAACAGGCCGTTAGCAAG For RT-PCR and sequencing 

MHV E-M(-) GCAACCCAGAAGACACCTTCAATGC  Rev RT-PCR 

MHV S (+) CAGACGTCTATTGCGCCTG For RT-PCR 

MHV 3’ E (-) 
 

GATACACAGGATCCAGCGCATACAC Rev 
 

RT-PCR 
 
 

MHV G3 
Forward 

 TGGTTGCCTTCCTTGCGTC For Sequencing 

MHV G4 
Reverse 

AGTCTGCTTTGGCTGATTCCTTC Rev Sequencing  

MHV G6 
Reverse 

TTCCTGAGCCTGTCTACG  Rev Sequencing  

MHV G7 
Forward 

GAACCCACCAAAGATGTGTATGAGC  For Sequencing  

MHV G8 
Forward 

GGCAGAAGCTCCTCTGTAAACC For Sequencing  

S Reverse 
 
 

GCCAATGCCTAGCATACATGC Rev 
 
 

Sequencing 
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