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ABSTRACT 

 There is a growing interest in the creation of three-dimensional (3D) images 

and videos due to the growing demand for 3D visual media in commercial 

markets. A possible solution to produce 3D media files is to convert existing 2D 

images and videos to 3D. The 2D to 3D conversion methods that estimate the 

depth map from 2D scenes for 3D reconstruction present an efficient approach to 

save on the cost of the coding, transmission and storage of 3D visual media in 

practical applications. Various 2D to 3D conversion methods based on depth 

maps have been developed using existing image and video processing techniques. 

The depth maps can be estimated either from a single 2D view or from multiple 

2D views.  

This thesis presents a MATLAB-based 2D to 3D conversion system from 

multiple views based on the computation of a sparse depth map. The 2D to 3D 

conversion system is able to deal with the multiple views obtained from 

uncalibrated hand-held cameras without knowledge of the prior camera 

parameters or scene geometry. The implemented system consists of techniques for 

image feature detection and registration, two-view geometry estimation, 

projective 3D scene reconstruction and metric upgrade to reconstruct the 3D 

structures by means of a metric transformation. The implemented 2D to 3D 

conversion system is tested using different multi-view image sets. The obtained 

experimental results of reconstructed sparse depth maps of feature points in 3D 

scenes provide relative depth information of the objects. Sample ground-truth 

depth data points are used to calculate a scale factor in order to estimate the true 
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depth by scaling the obtained relative depth information using the estimated scale 

factor. It was found out that the obtained reconstructed depth map is consistent 

with the ground-truth depth data.  
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1. INTRODUCTION 

This chapter presents the motivations behind the work in this thesis and briefly 

summarizes the contributions and organization of the thesis.  

1.1 Motivation 

In recent years, with the giant leap in image and video processing technologies, 

the introduction of three-dimensional televisions (3D TVs) [ 1 ] into the 

commercial market is becoming a reality. Nowadays, there are many commercial 

companies, such as Samsung, Sony, Panasonic and LG, producing 3D TVs. The 

3D TVs can be more attractive to viewers because they produce stereo scenes, 

which create a sense of physical real space. 3D vision for humans is caused by the 

fact that the projected points of the same point in space on the two human eyes are 

located at different distances from the center of focus (center of fovea). The 

difference between the distances of the two projected points, one on each eye, is 

called disparity. Disparity information is processed by high levels of the human 

brain to produce a feeling of the distance of objects in 3D space. A 3D television 

employs some techniques of 3D presentation, such as stereoscopic capture, 3D 

display and 2D plus depth map technologies.  

Due to the success of introducing 3D visual technologies, including 3D games 

and 3D TVs, to the commercial market, the demand for a wide variety of 3D 

content such as 3D images, 3D videos and 3D games is increasing significantly. 

To satisfy this demand, there is an increasing need to create new 3D video content 

as well as converting existing 2D videos to 3D format. Converting 2D content 
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into 3D depends on different 2D to 3D conversion tools.  

Among various kinds of 2D to 3D conversion systems, the method that 

converts the 2D content to 3D by generating a depth map is a popular one as this 

method is efficient in the coding, transmission and storage of the 3D content. 

Using multi-view 2D images to estimate the 3D depth information is a typical 

method in this category. Multiple views of the same scene provide enough 

information of the 2D scene, and the mathematical computer vision methods can 

be used to estimate the 3D structure. The multi-view based 2D to 3D conversion 

borrows concepts from various applications including image registration, feature 

tracking, object localization and structure reconstruction. From the multi-view 

image sequences, the 2D to 3D conversion system performs the object matching 

between different views in order to estimate the depth map of the 2D scene. 

Another advantage of the multi-view 2D to 3D conversion method is that the 

parameters of the camera can be estimated. In addition, the multi-view 2D to 3D 

conversion method is applicable to various acquisition methods of images, 

especially for image sources captured using hand-held and uncalibrated cameras. 

It requires less prior information about the camera and the scene for the 3D 

reconstruction as compared to other 3D reconstruction models.  

1.2 Contributions 

In this thesis, a 2D to 3D image conversion system is presented. The implemented 

3D modeling system is able to process image sets that are obtained using an 

uncalibrated camera, without knowing the information about the ground-truth of 
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the scene and the camera settings. The techniques involved in the implemented 

2D to 3D conversion system consist of feature extracting and tracking, image 

registration, three dimensional geometry estimation and refinement, camera 

calibration and scene structure reconstruction. The 2D to 3D conversion system in 

this thesis uses the scale invariant feature transform (SIFT) to extract the features 

of objects and register the feature points in different views. The Random Sample 

Consensus (RANSAC) is implemented to remove the outliers in the 

correspondences, so that the inliers for the corresponding feature points and two-

view geometries can be estimated. Triangulation and bundle adjustment are 

employed later to estimate and refine the projective reconstruction of the 3D 

scene. Finally, an auto-calibration technique is used to upgrade the projective 

reconstruction of structures to the metric coordinates. Through these combined 

techniques, the relative depth information is estimated for feature points among 

multiple views of the scene. Different multi-view image sets are used to test the 

2D to 3D conversion system, and experimental results are presented and analyzed. 

The 3D sparse depth map produced by the 3D modeling system is compared with 

ground-truth data, and it is shown how a scale factor can be estimated to recover 

the ground-truth depth. 

1.3 Thesis Organization 

This thesis is organized as follows. Chapter 2 introduces the existing methods for 

2D to 3D conversion. Chapter 3 presents the background material that is related to 

the work in this thesis. Chapter 4 describes the main components of the 



4 
 

 

implemented 2D to 3D conversion system, and implementation details are also 

discussed. Chapter 5 presents the experimental results of the 2D to 3D conversion 

system based on different multi-view image sets. Chapter 6 summarizes the 

contributions of this thesis and proposes future directions of research. 
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2. RELATED WORK 

This chapter summarizes the existing work that is related to 2D to 3D conversion 

techniques. Section 2.1 describes several major methods that make use of a single 

image for depth estimation. Section 2.2 summarizes methods that use multiple 

views to reconstruct the 3D scene. 

Many methods were proposed for 2D to 3D conversion in recent years. One 

such method is to estimate the depth image from monocular videos or images, and 

then the original 2D images or videos and the computed depth images are used to 

obtain the 3D content, through a process known as depth image based rendering 

(DIBR) [2]. Methods that produce stereo image pairs are presented in [3] [4]. 

Advantages of these methods, which generate directly stereo image pairs rather 

than 2D images and their corresponding depth maps (2D+depth), are that they are 

suitable for many display equipments as they produce an output that can be 

readily displayed for 3D viewing humans. The shortcoming of the methods of [3] 

[4] is that they have a lot of constraints on the camera motion and image sets, 

limiting their uses in practical implementations. Compared to the methods in [3] 

and [4], by estimating the depth map for 2D to 3D conversion, since the depth 

map can be highly compressed, the 2D+depth method can save a large portion of 

the transmission bandwidth. The advantages of using depth maps for 2D to 3D 

conversion are discussed in [5]. These advantages are among the reasons why the 

2D+depth method became a popular direction in current 2D to 3D conversion 

researches. 
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2.1 Depth Map from a Single Image 

Some proposed 2D to 3D conversion methods are based on a single image to 

estimate the depth map. Several typical methods are summarized as below.  

Studies of depth values obtained from focus cues are done in [6] and [7]. In 

[6], using the relationship between the image blur and the focus degree of edge 

pixels, a relative pixel-resolution depth map can be estimated. In the first step, a 

macroblock depth map is calculated by dividing the image into macroblocks 

)1616(   and computing the wavelet transform of each macroblock. Then, a 256-

level depth map is created by thresholding the local spatial frequencies in a 

macroblock. This depth map reflects the spatial frequency content in each 

macroblock. The second step is to create a pixel-based depth map by estimating 

the defocus degree of the edge pixels, based on the macroblock depth map. The 

edge pixels are detected using a multi-scale wavelet transform by finding the local 

maxima of the scaled wavelet spectrum. To differentiate the type of edge pixels, 

the Lipschitz regularity [8] of an edge is computed using the decay of wavelet 

transform coefficients from a coarser to a finer scale in the neighborhood of edge 

pixels. The edge pixels with a Lipschitz regularity between 0 and 1 are defocused 

edges while the edge pixels with Lipschitz regularity between -1 and 0 are 

focused ones. Through combining the edge pixels and blur degree represented by 

the Lipschitz regularity in the rows of an image, the sections between the nearby 

two edges can be categorized to different image structures, thus assigned with the 

depth values according to the depth values in the macroblocks to which the edge 
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pixels belong.  

Due to blocking and stripe artifacts being introduced by the method of [6], the 

work done in [7] provides several new techniques to enhance the depth map. To 

get the initial depth map, the method of [7] is implemented using overlapping 

windows of size 1616  to analyze the frequency energy at each point. The 

resulting depth map has less block artifacts and is more smoothed. In detecting the 

edge pixels, a 2D Gaussian function is used as the smoothing function and among 

the maxima points, those less than a given threshold are discarded to reduce the 

noise effect. For the detected edge pixels, the discontinuities in edges are 

corrected by searching possible edge points in the neighborhoods of every edge 

pixels. Additionally, to correct the depth values for the focused foreground 

objects with uniform color and texture, color-based segmentation are used to 

modify the depth values. 

The image structure is used for the depth estimation in [9]. In [9], the image 

structure is described using two amplitude spectrum descriptions, the global 

spectral signature and the local spectral signature. The global spectral signature of 

an image is the mean magnitude of the global Fourier transform over a set of 

known images. The local spectral signature is the mean amplitude of the local 

macroblock wavelet transform over a set of known images. The spectral 

signatures reflect the general structures shared by the image set. The global 

spectral signature reveals the dominant orientations and textural patterns and is 

strongly related to the spatial structure of the scene for real-world images. A local 
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spectral signature which is computed using Gabor filters, gives information about 

the dominant orientations and scales in a local region in the image and their mean 

spatial distribution. Torralba and Oliva in [9] have illustrated that changes in 

mean depth of a scene not only affects the slope of the global magnitude spectrum 

but also changes the local orientation and scales. In [9], the first step of depth 

estimation is to separate the man-made structure and natural structure in the 

considered image by observing the difference in energy distribution across the 

spatial frequencies of an image. To estimate the mean depth of the image scene, 

the mean depth is represented as a conditional expectation of the image feature 

vector, which is composed of the set of statistical measurements that are derived 

from the spectral signatures. For a training data set, the joint probability density 

distribution between the mean depth and the image feature vector can be 

described using a cluster of Gaussian functions, and the parameters for the 

Gaussian functions are estimated using the EM algorithm [10]. After this, the 

mean depth for any new image is estimated based on the image feature statistics. 

Some studies use scene classification [11] and stage classification [12] to get 

the depth value according to the relative depth information in these categories. 

Contrary to the method used in [9] which uses the mean depth information for 

structure classification, in [12], the image is classified into one of a limited 

number of typical 3D scene geometries called stages and then the depth 

information is obtained from the stages. Each stage has a unique depth pattern and 

provides the characteristics of the scene objects such as location and scales. The 
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initial stages are obtained from a training stage using a large database of images, 

and 19 categories of stages are derived. A further stage categorization is 

performed to each stage by analyzing the distribution of gradients in the images. 

The Gaussian scale-space model is applied to extract the feature information, and 

the Weibull distribution is used to represent the histograms of the Gaussian 

derivative filter responses. The parameters for the integral Weibull distribution 

are estimated using the Maximum Likelihood Estimator (MLE), which fits well 

the histograms of various types of images. The parameters for 15 stages are 

trained using the Support Vector Machine (SVM). For a given image, the image is 

analyzed using the Gaussian derivative filter and Weibull distribution to get the 

feature vectors and is then fitted into a collection of best matching stages which 

have unique depth profiles. 

2.2 Depth Map from Multiple Image Views 

Besides the depth estimation from a single view, the depth information can be 

obtained from multiple views of the scene. The projection reconstruction of a 3D 

model using the factorization method to get the camera motion and object 

structure is discussed in [13] [14] [15] [16] and [17].  

The work done in [13] builds a measurement matrix from the 2D feature 

points in multiple views using the 2D points’ coordinates, and uses the SVD 

algorithm to decompose the measurement matrix into a product of two matrices, 

one representing the camera rotation and the other one giving information about 

the depth of feature points under the projective transformation. The translation 
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vectors of the cameras in multiple views are computed from the average of the 

rows of the measurement matrix. The metric transformation is computed by 

enforcing some constraints on the parameters of the camera matrices.  

To estimate the projection matrix and the 3D points from 2D feature points in 

multiple views, the work done in [14] and [15] represents the projection 

relationship among the 2D points, the projection matrix and the 3D points using 

an arbitrary scale factor, such as  

nmmnmn XPx                          (1) 

where m  is the view number, n is the index of 3D point, mn  is the scale 

factor, nX  is the thn  3D point, mnx  is the thn  projected 2D point in the thm  

view, and mP  is the projection matrix of the thm  view. In [14], the scale factor 

mn  is calculated using the fundamental matrices and the epipoles that are 

estimated from the 2D feature points. Then the 2D feature points in multiple 

views are weighted by the scale factor mn  to form the measurement matrix, 

which is decomposed further using SVD to produce the projection matrices and 

the 3D points. In [15], the scale factor mn , the projection matrix and the 3D 

points are estimated recursively by minimizing the 2D reprojection error using the 

SVD factorization and the weighted least squares (WLS) algorithm [18]. Some 

iterative factorization methods to minimize the reprojection error, which do not 

require the knowledge of the scene geometry, are illustrated in [16] and [17].  

Other than using the factorization method for 3D modeling, the depth 
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information can be generated by searching correspondences among multi-view 

images and by applying triangulation on the feature points [19]. A complete 

system to build visual models from multi-view camera images is presented in [20]. 

The system can deal with uncalibrated image sequences acquired with a hand-

held camera. Additionally, no prior information about the camera calibration and 

motion is required for this system. 

The implemented multi-view 2D to 3D conversion system in this thesis is 

based on the system of [20]. While the authors of [20] provide a general 

framework without providing details about how to implement the individual 

components of the 2D to 3D system, this thesis presents detailed description and 

analysis of all the implemented components of the system. The feature detection 

and matching procedure in this thesis is different from that in [20].  
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3. BACKGROUND 

This chapter gives some background knowledge on 3D modeling in computer 

vision. In Section 3.1, the camera geometry and the pinhole camera model, which 

are basic for the analysis of 3D systems, are illustrated. In Section 3.2, the 

epipolar geometry between multiple views and the fundamental matrix are 

introduced for further use. The dual absolute quadric and its basic properties are 

described in Section 3.3.  

3.1 Camera Geometry 

In computer vision, homogeneous representations of lines and points are 

described as follows.  

A line passing through the point  Tyx,  can be described as: 

                       0 cbyax                        (2) 

So, the vector  Tcbal ,,  is the homogeneous representation of the line in the 

projective space. Alternatively, the line can be described using the vector 

 Tcba ,, . Therefore, equation (2) can be written in the form of two inner products:  

             01,,,,  TT yxcbaxl                   (3) 

According to (3), a 2D point can be expressed using a three-dimensional 

vector  Tyx 1,, , whose third element serves as a scale factor. For a more general 

case, the homogeneous representation  Tzyx ,,  of a point denotes the point 

 Tzyzx /,/  in 2D vector form. Similarly, the three-dimensional point 

 TzyxX ,,  can be represented using the homogeneous notation as 
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  ,1,,, TzyxX   and the plane   on which X  lies is represented in 

homogeneous form as  

 T4321 ,,,                        (4) 

A 3D point X  lying on the plane   satisfies:  

                  01,,,,,, 4321  TT zyxX               (5) 

A basic camera model is the projective pinhole camera geometry as shown in 

Fig. 1. It is assumed that the camera center is the origin of a Euclidean coordinate 

system. The camera center CO  is also called the optical center. The image 

captured by the camera is typically projected on the camera plane (also called the 

focal plane) behind the camera center, with a negative focal length f  on the z -

axis. In addition, according to the imaging mechanism of cameras, the image on 

the camera image plane is upside-down with respect to the real scene. In the 

model in Fig. 1, the image plane is placed to be in front of the camera center, and 

the distance from the image plane to the center point is the focal length .f  In this 

latter case, the image does not have to be inverted. The plane, which passes 

through the camera center and is parallel to the image plane, is denoted as the 

principal plane. The line, passing through the camera center and perpendicular to 

the image plane, is called the principal axis. The intersection of the principal axis 

with the image plane is a point called the principal point. 

In this camera model (Fig. 1), a 3D point in space at a position 

  ,,, TzyxX   can be mapped to the image plane by forming a line starting at the  
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Fig. 1. Pinhole camera geometry. The image plane is in front of the camera center 

CO . 

 

camera center to the point X , and the intersection of this line with the image 

plane is a 2D point x  lying on the image plane. Using the similar triangles, the 

position of x  with respect to the camera center can be represented in 

homogeneous coordinates as 
T

f
z

yf
z

xf






  1,,,  in the 3D space. The 

homogeneous representation of the 2D point x  on the image plane is 

 Tzyfxf ,,  , while the origin of the image plane is the same as the principal 

point PP . 

A projective camera [21] is modeled though the projection equation as 

PXx                            (6) 

where x represents the 2D point in homogeneous representation, that is, it is a 
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13  dimensional vector. P  is a 43  projection matrix. X  stands for the 3D 

point in homogeneous representation, and it is a 14  dimensional vector.  

The Projection matrix P  can be represented as 

                           tRKP |                          (7) 

where R  is a 33  rotation matrix representing the orientation of the camera 

coordinates with respect to the world coordinates, t  is a 13  translation vector 

which shifts the camera center CO  with respect to the world coordinate system, 

and t  is given by 

                           CORt                           (8) 

The transformation (including rotation and translation) between different 

coordinates is shown in Fig. 2. In (7), K  is the intrinsic camera matrix, called 

the camera calibration matrix and is given by 

                    

















100
0 vf

usf
K 

  

                     (9) 

where f  is the focal length of the camera,   is the aspect ratio of the pixel 

size on the image plane in the x  and y  directions,  vu,  represents the 

coordinates of the principal point with respect to the left bottom corner of the 

image plane, and s  is the skew factor which is non-zero if the x  and y  axes 

of the image coordinates are not perpendicular. 

3.2 Epipolar Geometry and Fundamental Matrix 

The geometry between two views of the same scene can be represented using the  
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Fig. 2 . An example of a rotation and translation between different projective 

coordinates. 
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Fig. 3. Point correspondence geometry between two views. 

 

epipolar geometry. The epipolar geometry is illustrated in Fig. 3. Suppose a 3D 

point  in space is projected into two views to generate 2D points 1x  and 2x , 

respectively. As three points form a plane, 1x , 2x  and X  would lie on a 

X
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common plane E . The plane E  is denoted as the epipolar plane. The line 

connecting the two camera center is the baseline between two views, and it also 

lies on the epipolar plane. The intersection points of the baseline with the two 

views are the epipoles denoted by 1e  and 2e , one in each view. The line, which 

connects the 2D point and the corresponding epipole on the same plane, is called 

the epipolar line. The epipolar line 2l  in the second view is parallel to the ray 

through 1x  and the camera center 
1CO , and it is the projected image in the 

second view of that ray. Since the 3D point  lies on the ray through 1x  and 

camera center 
1CO , the projected 2D point 2x  of the 3D point X  in the second 

view must be lying on the epipolar line 2l .  

From the above discussion, any point 2x  in the second image that matches 

the point 1x , must lie on the epipolar line 2l , and the epipolar line 2l  in the 

second view is the mapped image of the ray through 1x  and camera center 
1CO . 

So, there is a mapping between the 2D point in one view and the epipolar line in 

the other view. The fundamental matrix 12F  is defined to represent this mapping 

relationship 21
12 lx F . Similarly, the fundamental matrix 21F  represents the 

mapping between 2x  and 1l . The fundamental matrix is the algebraic 

representation of the epipolar geometry, and it is a 33  matrix with a rank of 2. 

The epipolar line 2l  corresponding to the 2D point 1x  is represented by 

             1122 xFl                           (10) 

X



18 
 

 

The fundamental matrix relates to the corresponding epipoles 1e  and 2e  as 

follows: 

               0122 FeT                          (11) 

               0112 eF                          (12) 

From (11) and (12), the epipole 1e  in the first view is the right null-space of 12F , 

and the epipole in the second view 2e  is the left null space of 12F . Epipoles for 

two views can be computed from the fundamental matrix using the singular value 

decomposition (SVD). Suppose M  is a nm   matrix; the singular value 

decomposition of M  is in the form of  

             TVUM                         (13) 

where U  is a mm  unitary matrix,   is a nm  diagonal matrix and V is 

a nn  unitary matrix. The diagonal entries of   are the singular values of 

.M  The column vectors of U are the left-singular vectors of ,M  and the 

column vectors of V are the right-singular vectors of .M  That is, the 

relationship of the corresponding left singular vector u , right singular vector v , 

and the singular value   can be represented as 

            TT vMu                         (14) 

            uMv                           (15) 

Since the rank of the fundamental matrix is 2, in the SVD of ,F  the third 

singular value in the diagonal matrix is zero. According to (14) and (15), if U  

and V  are, respectively, the left singular and right singular matrices in the SVD 
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of the fundamental matrix ,F  the third column of the left-singular matrix U  

and the third column of the right-singular matrix V  would correspond to the left 

null vector and the right null vector of the fundamental matrix ,F  respectively, 

and would satisfy (11) and (12). Thus, the epipole in the second view is computed 

from the third column of the left-singular matrix U  in the SVD of the 

fundamental matrix ,F  and the epipole in the first view is given by the third 

column of the right-singular matrix V in the SVD of the fundamental matrix .F   

As stated in [22], the two 2D points 1x  and 2x , corresponding each to the 

projection of the 3D point X  into two different views, are related as follows:  

            01122 xFxT                        (16) 

and 

                 02211 xFxT                        (17) 

From (16) and (17), the fundamental matrices, 12F  and 21F , can be related as 

                 TFF 1221                          (18) 

In this thesis, the fundamental matrix 12F  is denoted as F  for simplicity. 

The fundamental matrix F  can be computed from the projection matrices 

1P  and 2P  for two views as follows:  

             
 122 PPeF                       (19) 

where 
1P  is the pseudo-inverse of 1P , described as 

                1
1111

  TT PPPP                     (20) 
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and  2e  is the skew-symmetric matrix of 2e . That is, suppose   ,,,2
Tcbae   

               






















0
0

0

2

ab
ac

bc
e                    (21) 

According to (19), in the special case when  0|1 IKP   and  mMKP |2  , 

the fundamental matrix is derived as [21] 

             MmF                          (22) 

It is also possible to compute ,F  without information about the camera 

projection matrices, only from the corresponding image points. F  can be 

derived up to a scale factor from a minimum of 7 point correspondences [21] or 

using the 8-point algorithm [21].  

The 8-point algorithm that is used to calculate the fundamental matrix F  is 

implemented using the Direct Linear Transformation (DLT) algorithm [21]. 

Given a set of corresponding image points, which contains more than 8 

correspondences, 21
ii xx  , the first step is to normalize the corresponding points 

to a new set of points such that the centroid of the new points is the coordinate 

origin   ,0,0 T  and the average distance of the points from the origin is 2 . This 

can be represented using two homogeneous transformations 1T  and 2T  as 

follows: 

           1
1

1ˆ ii xTx                           (23) 

2
2

2ˆ ii xTx                           (24) 

The second step is to use the new set of corresponding points to calculate the 
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fundamental matrix F . By substituting  Tiii bax 1,,ˆ 111   and  Tiii bax 1,,ˆ 222   in 

(16), an expansion of (16) can be expressed as [21], 

03332
1

31
1

23
2

22
12

21
12

13
2

12
12

11
12  ffbfafbfbbfabfafbafaa iiiiiiiiiiii   (25) 

and F̂  is a 33  matrix with 9 unknown entries as follows 

 

















333231

232221

131211

ˆ

fff
fff
fff

F                      (26) 

   Using n  sets of correspondences, a set of linear equations are formed giving 

an overdetermined system of equations as follows: 

0ˆ

1
...........................
1

ˆ
112121221212

1
1

1
1

2
1

1
1

2
1

1
1

2
1

2
1

1
1

2
1

1
1

2
1


















 f
babbbababaaa

babbbababaaa
fA

nnnnnnnnnnnn

    (27) 

where f̂  is a column vector and is formed by unwrapping the fundamental 

matrix F̂  row-wise as follows: 

         Tffffffffff 333231232221131211 ,,,,,,,,ˆ              (28) 

The least square solution for f̂  can be computed using the SVD. In the SVD of 

A , A  can be factorized as  

  
TVUA                          (29) 

The right-singular column vector in V that corresponds to a singular value of 

zero is equal to .f̂  And by wrapping f̂  back to a 33  matrix, the 

fundamental matrix F̂  can be computed. Note that, in practice, the smallest 

singular value of A  can be non-zero but is very small. 
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Since the fundamental matrix should have a rank of 2, this constraint should 

be enforced to ensure this property. Once the fundamental matrix F̂  is 

computed, the SVD of F̂  is computed again, and the smallest singular value in 

the diagonal matrix is set to zero, so that the rank of the fundamental matrix 

becomes 2. 

Finally, by multiplying the normalization matrices 1T  and 2T  with ,F̂  the 

fundamental matrix F  is obtained as 

    12
ˆTFTF T                        (30) 

3.3 Properties of Conics and Quadrics 

3.3.1 General conics and quadrics 

The conic C , also called point conic, is a curve in the 2D plane and can be 

described using a second-degree equation. The hyperbola, ellipse and parabola are 

the main types of conics. In the homogenous representation, the conic is 

represented as a 33  symmetric matrix with 5 degrees of freedom. The point 

conic C  can be represented in matrix form as  

             0CxxT                         (31) 

where x  is a 2D point on the conic. 

The dual conic ,*C  also called line conic, is a conic defined by the lines that 

are tangent to the point conic C  as 

              0* lCl T                         (32) 

The lines l  that satisfy (32) are tangent to the point conic .C  Thus, the dual 
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conic *C  is the adjoint matrix of the conic .C  Here, the adjoint matrix of an 

invertible matrix M  is given by  

                1det   MMM                     (33) 

*C  is called the dual conic because it is defined from lines, while C  is 

defined from 2D points, and there is a duality between the 2D points and the lines. 

For example, in (3), the role of the 2D point x  and the line l  can be 

interchanged since 0xl T  implies 0lxT . In addition, the cross product of 

two lines is a 2D point, while the cross product of two 2D points produces a line, 

represented as 

                               xll  21                        (34) 

                       lxx  21                        (35) 

In the same sense, there is also a duality between a 3D point and a plane.  

Similarly, in 3D space, the quadric Q  is a surface defined from the 3D point 

on the quadric. Q  can be represented as 

              0QXX T                        (36) 

where the quadric Q  is a symmetric 44  matrix and the 3D point X  is a 

14  vector. The dual quadric *Q  is a quadric defined from the planes   that 

are tangent to the quadric Q  as 

              0*  QT                         (37) 

So, a plane that is tangent to the quadric Q  satisfies (37). The dual quadric is the 

adjoint matrix of the quadric. The intersection of a plane   with a quadric Q  
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is a conic .C   

3.3.2 The absolute conic and the dual absolute quadric 

The absolute conic   is a point conic on the plane at infinity. As a special case 

in the homogeneous representation of 3D points, if the fourth entry of the point 

vector is zero, the 3D point  TXXX 0,,, 321  is not a real point in space and it is 

called an ideal point. The ideal points all lie on an imaginary plane called the 

plane at infinity. The homogeneous representation of the plane at infinity is  

               T1,0,0,0                       (38) 

So that  

              0 ideal
T X                        (39) 

where idealX  is an ideal 3D point on the plane at infinity.  

The absolute conic   can be represented in matrix form as 

                       0 XX T                        (40) 

where X  is a 3D point lying on the absolute conic  . 

The dual absolute quadric *
Q  is the dual of the absolute conic  . The 

dual absolute quadric is a surface formed of all planes tangent to the absolute 

conic  , and is represented in the homogeneous form as a 44  matrix of 

rank 3.  

Here are some properties of *
Q  [23]:  

 *
Q  is a degenerate quadric. It is singular and its rank is 3. It has 8 degrees 

of freedom. 
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 *
Q  is symmetric and positive semi-definite (PSD). 

 The plane at infinity   is a null vector of *
Q . That is,  

                     0* Q                         (41) 

 The dual absolute quadric *
Q  has a canonical form under the metric 

transformation as 

                        












 00

0ˆ
31

33
44

* I
IQ                   (42) 

so that the projective transformation between the *
Q  in projective space and that 

in metric transformation is represented as 

                       THHQdiagI *
44 0,1,1,1ˆ

                 (43) 

where H  is a homography matrix which transforms *
Q  from the projective 

frame to the metric one. 

3.3.3 The dual image of the absolute conic (DIAC) 

As stated in [21], the image of the absolute conic (IAC), denoted as  , is used to 

represent the mapping between the points of the absolute conic on the plane at 

infinity and the points on the camera image plane. The IAC is the projected image 

of the absolute conic   on a 2D image plane. The IAC is a point conic 

represented as:  

           1 KK T                        (44) 

where K  is the intrinsic camera matrix.  

The dual image of the absolute conic (DIAC), denoted as * , is the dual of 
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the IAC  . The DIAC is the projected image of the dual absolute quadric *
Q  

on the image plane by a projection matrix P . This is described as:  

         TPPQ**
                        (45)                     

As the DIAC is the adjoint matrix of the IAC, the DIAC *  can be 

represented using only the intrinsic camera matrix K  as [21] 

           TKK*                         (46) 

From (46), if the DIAC is calculated, the intrinsic camera parameters can be 

estimated. 

3.4 The Hierarchy of Transformations 

In 3D space, the points, lines and planes can be transformed using a homography 

matrix H . Due to different geometric properties of the transformations, there is a 

hierarchy of transformations starting from the projective transformations to the 

affine transformations, the metric transformations, and finally generating the most 

specialized Euclidean transformations.  

The projective transformation is the least strict transformation among these 

four types of transformations as it produces the most distortion to the original 

shapes of the objects in space. The projective transformation can be represented in 

homogeneous form as  











vV
tA

H TP                        (47) 

where A  is a 33  matrix, t  is a 13  translation vector, V  is a 13  

vector and v  is a scalar. PH  has 15 degrees of freedom (dof). The projective 
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transformation does not preserve the orientations or similarities with respect to the 

original shapes.  

The homogeneous representation of an affine transformation is given by 

                           









10TA

tA
H                        (48) 

where A  is a 33  matrix and t  is a 13  translation vector. AH  has 12 

degrees of freedom. The affine matrix A  consists of two fundamental 

transformations, rotations and non-isotropic scaling in X , Y  and Z  

directions. Thus, the similarity of area ratios and angles between planes are not 

preserved in an affine transformation. But the parallelism of planes, the ratio of 

areas on parallel planes and the ratio of volumes are preserved.  

   The metric transformation is a transformation that consists of rotation, 

isotropic scaling and translation. It can be represented in homogeneous form as 

             









10M T

tsR
H                         (49) 

where t  is a 13  translation vector, s  is a scalar, and R  is a 33  rotation 

matrix and is an orthogonal matrix such that  

                         IRRRR TT                         (50) 

The metric transformation matrix MH  has 7 degrees of freedom. The metric 

transformation is stricter than the affine transformation because it also preserves 

the angle between different planes. The scalar s  has the effect of scaling the 

object so that the volume is changed.  
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       Table 1. Geometry properties of different types of transformations. 

Name 
Matrix 

Definition 
Distortion Invariant Properties 

Projective 

(15 dof) 










vV
tA

H TP  

 

Intersection and 

tangency of surfaces 

in contact. 

Affine 

(12 dof) 










10TA

tA
H  

 

Parallelism of planes, 

volume ratios, 

centroids. The plane 

at infinity. 

Metric 

(7 dof) 










10M T

tsR
H  

 

Volume ratios, angle 

ratios. The absolute 

conic. 

Euclidean 

(6 dof) 










10E T

tR
H  

 

Volume, angle. 

 

The Euclidean transformation is the strictest transformation because it only 

rotates and translates the objects in the 3D space, without changing the ratio and 

shape of the objects. The homogeneous representation of the Euclidean 

transformation is 

                           









10E T

tR
H                       (51) 
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where t  is a 13  translation vector and R  is a 33  rotation matrix and is 

an orthogonal matrix. EH  has 6 degrees of freedom.  

The definitions and properties of these transformations are summarized in 

Table 1. 



 

 

4. IMPLEMENTED MULTI-VIEW 2D TO 3D CONVERSION SYSTEM 

This chapter describes the implemented procedures for the multi-view 2D to 3D 

conversion system. There are five major steps in the 3D modeling process: image 

feature detection and registration using the scale invariant feature transform 

(SIFT), removing the outliers by exploiting the two-view geometry using the 

random sample consensus (RANSAC), estimating the projective 3D structures 

through triangulation, projective transformation refinement using bundle 

adjustment, and upgrading to metric reconstruction through auto-calibration. The 

implementation details are discussed after the description of each stage. Section 

4.1 presents an overview of the implemented 2D to 3D conversion system. The 

five main components of the 3D modeling system are described in Sections 4.2 to 

4.6. Section 4.7 describes how to estimate the sparse depth map relative to the 

middle camera center. Additional implementation notes are given in Section 4.8. 

4.1 Overview of the Implemented System 

The performance of the 3D depth estimation improves with the number of 

available multiple 2D views. In this work, 8 views from different viewpoints are 

processed and they are found to be sufficient for proper depth reconstruction as 

shown in Chapter 5. 

The components of the implemented 2D to 3D conversion system are shown 

in a flowchart in Fig. 4. After reading in the multiple view images, the first step 

for relating multiple views to each other is to extract features in each view and 

match the extracted features between different views. For this purpose, an 
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algorithm called the scale invariant feature transform (SIFT) is used for the 

extraction and matching of feature points in multiple views. Feature detection and 

matching is implemented between the middle view and one of the other views at 

each time, and the two-view geometry is estimated for each pair of views using 

the corresponding feature points in the two considered views. To remove the 

outliers in the feature matching, a robust algorithm called the random sample 

consensus (RANSAC) is applied to the matching feature points. In this step, the 

projection matrices between the middle view and the other views are estimated 

from the inliers of feature points. Besides, the common feature points between all 

8 views are determined from the set of inliers. The next step is to retrieve the 

structure of the 3D scene and the positions of the multiple cameras using the 

common feature points and geometries of all views. For this purpose, 

triangulation is implemented to produce the projective reconstruction of the 3D 

scene, and the projection matrices of multiple views are refined through bundle 

adjustment. After bundle adjustment, the refined common 3D feature points are 

back-projected to multiple 2D views and the average reprojection errors of the 2D 

points in all views are calculated. If the average reprojection error is smaller than 

a threshold, the projective reconstruction of the 3D scene is upgraded to a metric 

one. If the reprojection error is large, the procedure is repeated starting from the 

RANSAC step to re-estimate the geometry and structure from new sample sets of 

feature points. After the metric upgrade, sparse depth maps, consisting of relative 

depth values at the locations of the extracted feature points that are common 
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P
F

commonx _

inliersx _

BAP

BAX
metricX

HP

X

Fig. 4. Flowchart of the implemented 2D to 3D conversion system. F  represents 

the fundamental matrix between the middle view and the other views, P  

represents the projection matrices for all views, BAX _  and BAP _  are the 

refined 3D points and projection matrices, respectively.  

 

among all views, can be estimated. Details about the SIFT, RANSAC, 

triangulation, bundle adjustment and metric upgrade are discussed in Sections 4.2 

to 4.6, respectively. 

4.2 Scale Invariant Feature Transform (SIFT) 

For a given multi-view image or video set, the first step is to relate different views 

to each other by finding, in the multiple views, the relevant feature points that 

correspond to the same 3D point in space. A restricted number of corresponding 

points, which spread over most regions of a scene, is sufficient to determine the 

geometric model. Thus, the first step is to detect the suitable features points in the 

2D multiple views and to match the selected feature points among different views. 

In the implemented system, a feature detection and tracking method called the 
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scale invariant feature transform (SIFT) [24] is applied to detect the feature points 

and generate the invariant feature descriptors for each feature point. The 

generated feature descriptors are further used to match the feature points in 

different views. The SIFT consists of five major steps: scale-space extrema 

detection, keypoint localization, orientation assignment, keypoint descriptor and 

keypoint matching. This algorithm is able to generate a large number of feature 

points that are densely distributed over a wide range of scales and most locations 

in the image, while being robust to scaling and rotation in 3D viewpoints, and to 

changes in illumination. 

4.2.1 Scale-space extrema detection 

The first stage of the feature detection and tracking is to find the candidate 

locations that are invariant to scale changes in multiple views. This is done by 

searching for the extrema in the Gaussian scale-space.  

The Gaussian scale-space  ,, yxL  for the input image  yxI ,  is defined 

as [25] 

                        yxIyxGyxL ,*,,,,                   (52) 

where  ,, yxG  is the Gaussian function given by  

                      222 2
22

1,, 


 yxeyxG                 (53) 

The difference between two different scales is calculated to generate the 

difference-of-Gaussian (DOG) function, which is represented as 

               1,,,,,*1,,,,,,  syxLsyxLyxIsyxGsyxGyxD   (54) 
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The detailed procedures for the extrema detections are illustrated in Fig. 5. There 

are several octaves which help to reduce the computations of the scale-space 

representation. In each octave of scale-space, the scale  increases from the 

initial scale 0  (at the begging of each octave) to twice of it, and each octave of 

scale is divided into an integer number of intervals S . So the constant factor k  

separating nearby scales is .2
1

Sk   At the ths  stage in an octave, the scale 

factor is 0sk . The input image is convolved with Gaussian functions to produce 

different scale-space images. The adjacent image scale functions are subtracted to 

produce the Difference of Gaussian (DOG) images. In the next octave, the 

Gaussian images with twice the initial value 0  are down-sampled by 2, and the 

same operations as in the previous octave, are performed without losing accuracy 

with respect to .  

As illustrated in Fig. 6, in all scale levels, the maxima and minima points in 

the DOG images are detected by comparing a pixel (marked with X in Fig. 6) to 

its 26 neighbors in 33  regions at the current and adjacent scales in the DOG. 

These extrema points are also called keypoints and they are invariant to scale 

differences in different images. [24] 
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Fig. 5. Computing the Difference of Gaussian functions at different octaves and 

scales. 

 

Fig. 6. Detecting maxima and minima in the DOG functions. The point marked 

with ‘X’ is the evaluation point. The points marked with circles are the 

surrounding points used to determine whether the evaluation point is an extrema 

or not. 
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4.2.2 Keypoint localization 

Keypoint localization performs a more accurate localization of the keypoint 

according to the nearby data, and eliminates points with low contrast or that are 

poorly localized along an edge. By setting the derivative of the Taylor series 

expansion of  ,, yxD  [26] to be zero, the offset from the original detected 

point is calculated and accurate locations of the keypoints are determined. 

Through thresholding the second-order Taylor expansion of the DOG function at 

the offset, the keypoints with low contrast are removed. On the edges, there are 

some unstable keypoints which have large curvatures across the edge but small 

curvatures in the perpendicular direction. The parameters of a 22  Hessian 

matrix are used to calculate the ratio of the curvature across the edge and the 

curvature in the perpendicular direction. If the ratio is larger than a threshold, the 

keypoint is discarded. 

4.2.3 Orientation assignment 

By adding the orientation information of keypoints to the content of the descriptor, 

the matching process will be invariant to the rotation of objects in different views. 

Orientation assignment is performed at the detected keypoints by creating a 

gradient histogram multiplied by the gradient magnitude and a circular Gaussian 

window. The gradient magnitude and orientation are computed for a detected 

feature point at location  yx,  in the scale image  ,, yxL  as 

              22 1,1,,1,1,  yxLyxLyxLyxLyxm      (55) 
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The orientation histogram includes the gradient orientations of the sample 

points surrounding the keypoint (in a 44  region around the keypoint), weighted 

by the gradient magnitude and a Gaussian circular window with a standard 

deviation equal to 1.5 times the scale of the considered keypoint. The histogram 

has 36 bins representing the 360 degrees orientation range. Fig. 7 illustrates an 

example of the orientation histogram with only 8 bins. The dominant direction of 

the keypoint corresponds to the peak in the orientation histogram. 

4.2.4 Keypoint descriptor 

From the previous steps, the keypoints are properly localized and refined, and 

their scale and dominant orientations are determined. The keypoint descriptors are 

formed to describe the features of the keypoints so that the corresponding 

keypoints can be tracked with respect to similar features in their descriptors. For a 

feature point, the 16×16 surrounding area of the keypoint is divided into 4×4 sub-

regions and is used to calculate the descriptor. After Gaussian smoothing, the 

gradient magnitudes and orientations of the samples in the 4×4 sub-regions are 

calculated and an 8 bin histogram for each 4×4 sub-region is generated. The 

values of the orientation histogram entries are stored as a column vector to 

represent the descriptor of a keypoint. As the descriptor for a keypoint contains a 

4×4 array of histograms, which each contains 8 direction bins, the dimension of 

the keypoint descriptor is 4×4×8=128, as illustrated in Fig. 8. In order to ensure 

the invariance of the descriptors to rotation, the descriptors, which consist of the 
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Fig. 7. Orientation histogram of pixels in a 4×4 sub-region. The histogram has 8 

bins. 

16×16 Image Gradient Orientations  4×4 Key Point Descriptor 

 

Fig. 8. Creating a keypoint descriptor using a 16×16 surrounding area of a 

keypoint. The 16×16 region is firstly smoothed by a Gaussian filter, illustrated 

using the circle. The 8 bin orientation histograms of the 4×4 sub-regions are 

calculated; thus, the descriptor consists of 128 entries. 
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orientations of gradients, are rotated by an angle ,  where   is the angle of 

the dominant direction of the keypoints.  

4.2.5 Keypoint matching 

Using the above steps, the keypoints and their descriptors in each view can be 

determined. The next step is to relate the keypoints in different views and to find 

the matching feature points between two different views. A modified K-D tree 

algorithm called Best-Bin-First method [27] is used to find the descriptor of the 

keypoint in one view with minimum Euclidean distance from the descriptor in the 

other view. 

4.2.6 Implementation notes for the SIFT 

In the implemented system, the corresponding features are tracked between the 

middle view (View 4) and other views. The camera coordinates of the middle 

view are assigned to be the same as the world coordinates, so that the projection 

matrix for the middle view 4P  is assumed to be  1333 0| I .  

The SIFT algorithm is implemented between the middle view and one of the 

other views at each time; so, there are 7 loops totally among 8 views. In the 

function of ‘runsift’, it calls two functions to do the SIFT, ‘sift’ and ‘siftmatch’. 

First, the ‘sift’ function is used to return the Gaussian scale-spaces and 

Difference-of-Gaussian scale-spaces. In addition, the scale, the dominant 

orientation and the descriptor of the keypoints are stored in the output of 'sift'. 

Using the descriptors of the feature points, coordinates of the matching points 

between the middle view and one of the other views are calculated using the 
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function 'siftmatch'.  

In a single iteration, the outputs of ‘runsift’ are two N2  matrices, where 

N  is the number of matching points. Each matrix corresponds to a view, and 

each column of a matrix contains the coordinates of a 2D keypoint in a view. The 

columns with the same index in the two matrices correspond to matching 2D 

keypoints. As the number of matching points between different pairs of views 

may not be the same, a cell array consisting of matrix elements is used to store the 

coordinates of the matching 2D points in all iterations. After the matching is 

performed between the middle view and the other 7 views, the resulting cell array 

consists of 14 cells. 

The MATLAB SIFT toolbox that is used here, can be downloaded from [28], 

and is provided by Andrea Vedaldi.  

4.3 Random Sample Consensus (RANSAC) 

4.3.1 Description of the RANSAC algorithm 

In the feature detection and matching step, since the descriptors of feature points, 

which are used for feature matching in multiple views, are determined with 

respect to the local sub-region around the feature points, there may be some 

inaccurate matching between feature points in multiple views. These mis-

matching pairs of feature points are also called the outliers. An outlier removal 

and model estimation method called the random sample consensus (RANSAC) 

[29] is used to remove the outliers and to estimate the two-view geometry using 

the inlier feature points. RANSAC is a robust estimation algorithm which 
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operates in an opposite manner as compared to the conventional smoothing 

techniques, such as Least Square Optimization [30]. Instead of using a large data 

set to obtain an initial solution, followed by removing the invalid data, RANSAC 

uses only a small initial data set to calculate the solution model and, then, it 

determines the solution accuracy according to the applicability of the solution to 

other data points with respect to certain prerequisites.  

The brief procedure of the RANSAC algorithm is described as follows. To 

robustly fit a data set S  into a model and remove the outliers in the data set, first, 

a relatively small set consisting of s  samples is randomly selected from the 

input data set S , and the initial solution model is calculated using this small 

sample set. Second, the whole data set of S  is fitted into this solution to 

calculate the distance from the original data value. Those data samples whose 

distance is within a threshold t , form the inlier data set iS . iS  is the consensus 

data set and only includes the inliers. Third, if the proportion of data in iS  to the 

data in S  is larger than previous trials, the sample trial number N  is re-

estimated using this probability of inliers. Furthermore, if the current trial count is 

larger than the estimated N , the solution model is re-estimated using all the 

inliers in iS  and the procedure terminates. On the other hand, if the current trial 

count is less than the estimated sample trial number ,N  a new set of s  samples 

is selected and the calculation is repeated from the first step. Finally, the largest 

consensus set iS  is selected after a number of N  trials, and the model is re-
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estimated using all the sample points in .iS  

In the above RANSAC algorithm, it is not necessary to compute every 

possible sample set s  from all points. The number of iterations N  can be 

determined using the following estimation method. With a probability p  (it is 

usually chosen to be 0.99), at least one of the selections is a sample set of s  data 

points that are free from outliers. The probability that a selected sample point is 

an inlier is denoted as ,  and thus the probability for a sample to be an outlier 

is  

          1                          (57) 

On one hand, p1  denotes the probability that all the selected sample sets are 

not free from outliers, and each set contains at least one outlier. On the other hand, 

this probability can also be represented as 

           pNs  11                       (58) 

where s1  is the probability that, in one sample set, there is at least one 

outlier. The number of sample sets N  can be determined as follows: 

          
 s

pN 
 1log

1log                  (59) 

The interest here is in applying RANSAC to estimate the two-view geometry 

by finding the fundamental matrix F  and removing the outliers in the 

corresponding image feature points.  

The sum of Sampson distances [21] [31] of the eight pairs of corresponding 

feature points is used to represent the error of the fundamental matrix estimation. 
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The sum of Sampson distances of the eight pairs of feature points errorF _  is 

computed as 

                



8

1
21 ,_

i

ii
sampson xxderrorF                  (60) 

where i
jx  is the feature point of the thi  pair of correspondences in the thj  

view  2,1j , and  21 , xxd sampson  is the the Sampson Distance between 1x  

and 2x  and is given by  

     
       222

2
12

2
21

2
11

2

12
21 ,

xFxFFxFx

Fxxxxd
TT

T

sampson


          (61) 

where  
njFx  is the thn  element in the product of F  and jx . The 

fundamental matrix estimation error errorF _  in (60) needs to be small to 

ensure the properness of the estimated fundamental matrix. 

In addition, in the calculation of the fundamental matrix F  using the 8-point 

algorithm, the eight 3D points corresponding to the randomly selected set of 2D 

feature points should not be lying on the same plane in the 3D space. If they all lie 

on the same plane in 3D space, the estimated geometry model is not general to 

estimate the depth information for all the 3D points. In order to ensure that the 

selected 8 correspondences do not correspond to 3D points lying on the same 

plane, the homography matrix H  between the eight pairs of corresponding 2D 

feature points in two views, ii Hxx 12   )8,...,2,1( i , is computed using the SVD 

method as follows. Since ii Hxx 12  , the cross product of ix2  and iHx1  is zero. 
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Suppose  Tiiii cbax 1111 ,,  and   ,,, 2222
Tiiii cbax   the cross product of ix2  and 

iHx1  can be expressed as [21] 

0
0

0
0

3

2

1

1212

1212

1212











































h
h
h

xaxb
xaxc

xbxc
hA

TTiiTii

TiiTTii

TiiTiiT

           (62) 

where jh ( 3,2,1j ) is the thj  column of H . In (62), the matrix A  has a rank 

of 2 and only two of the three equations are linearly independent. For the eight 

pair of correspondences, by taking the first two equations in (62), a 916  matrix 

can be formed as 
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After computing the SVD of ,B  the right-singular column vector that 

corresponds to the smallest singular value is the solution for h . By wrapping h  

back to a 33  matrix, the homography matrix H  can be generated. Then, in 

order to compute the error in the estimation of the homography matrix ，H  the 

sum of the reprojection errors between the corresponding 2D feature points is 

calculated as follows 

                      



8

1

2
12_

i

ii HxxerrorH                   (64) 

If the 3D points corresponding to the eight pairs of 2D feature points do not lie on 
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the same plane, the reprojection error errorH _  is large.  

In this context, the RANSAC procedure [21] can be summarized as follows. 

Step 1: Initial values are set as 8s , 1.00 , 99.0p , 4000HFt  and 

002.0t . Where s  is the size of the random sample set,   is the probability 

that a sample is an inlier, p  is the probability that all selected sample sets are 

inliers, HFt  is the threshold for the ratio of errorF _  and errorH _  and t  is 

the threshold to select the inliers. 

Step 2: The value of N  for repetition is calculated according to (59). 

Step 3: A random sample set of 8 correspondences ( 8s ) is selected and the 

fundamental matrix F  is calculated using the 8-point algorithm as described in 

Section 3.2. 

Step 4: The ratio 
errorF
errorHR

_
_

  is used to evaluate the accuracy of the 

obtained solution of the fundamental matrix. If R  is greater than a specified 

threshold HFt , the solution is deemed to be satisfactory and the procedure 

proceeds to the next step (Step 5); otherwise, the procedure is repeated from Step 

3 by randomly selecting another eight pairs of corresponding feature points.  

Step 5: For all pairs of corresponding feature points 1x  and 2x , the 

Sampson distance  21 , xxd sampson  in (61) is calculated. The inliers that are 

consistent with F  are determined to be the feature points whose Sampson 

distance is smaller than the selected threshold t . 

Step 6: The ratio of the number of inliers to the number of the whole set of 
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feature points is calculated and is denoted as the probability   that a data point 

is an inlier. If   is larger than the previous computed   value, the sample trial 

number N  is re-estimated using (59). Furthermore, if the current trial count 

exceeds the estimated ,N  the procedure goes to Step 7. Otherwise, if the current 

trial count is less than ,N  the procedure repeats from Step 3. 

Step 7: After N  trials, F  is re-estimated using the largest set of inliers. 

Based on the computed fundamental matrix ,F  the projection matrices 1P  

and 2P  for two views can be calculated. Suppose F  is the fundamental matrix 

between Views 1 and 2 and, thus, it satisfies (16). The projection matrices 1P  

and 2P  are determined as described below. 

According to [21], given the fundamental matrix ,F  the pair of camera 

projection matrices can be defined as 

           0|1 IKP                         (65) 

           22 | eSFKP                        (66) 

where S  is any skew-symmetric matrix, and 2e  is the epipole in the second 

view and satisfies (11). The skew-symmetric matrix is a square matrix whose 

transpose is equal to its negative, represented as 

          TSS                          (67) 

The projection matrices  0|1 IKP   and  avaAKP T |2  , where   

is a scalar, a  is a 13  vector, and v  is a 13  vector, have the same 

fundamental matrix as the canonical pair  0|1 IKP   and  aAKP |2  . By 
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assigning S in (67) to be  xe2  as defined in (21), the general form of the 

camera projection matrices can be expressed as follows [21]: 

       13331 0|  IKP                       (68) 

      
  2222 | eveFeKP T

x                   (69) 

where v  is any 13  vector,   can be any scalar value, and the epipole 2e  is 

the left singular vector corresponding to the smallest singular value of the SVD of 

the fundamental matrix .F  

4.3.2 Implementation notes for RANSAC 

The RANSAC algorithm is implemented to remove the outliers from the 

matching feature points that are calculated using SIFT, and to estimate the 

fundamental matrix F  between the middle view and other views. Since the 

projection matrix for the middle view 4P  is assigned to be  1333 0| IK , the 

other one is assigned as  iixii eFeKP |][ 4 , where iF4  denotes the 

fundamental matrix between the th4  view (middle view) and the thi  view 

)0( 44 xFx i
T
i . The epipole in the thi  view, ie , is the third column of the left 

basis matrix of the SVD of iF4 , corresponding to the zero singular value.  

The ‘ransacfitfundmatrix’ function is used for RANSAC. In each loop, two 

cells of the 2D corresponding feature points, with the first cell corresponding to 

the middle view, are taken out of the SIFT cell array to be used as the input to this 

function. As the projection matrix for the first input is assigned to be  1333 0| IK  

in this function, the first input element to this function is the set of 2D feature 
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points in the middle view after SIFT, and the second input element is the set of 

2D feature points in the thi  view after SIFT. The output of this function is the 

fundamental matrix iF4  and the 2D feature point indices of the inliers between 

the middle view and the thi  view. 

In each run of RANSAC, the inliers between two views are calculated. This 

procedure is implemented between the middle view and each of the other views 

for seven times. Usually, the number of the common inliers among multiple views 

will become smaller as the number of views increases. 

After RANSAC, the inliers of the common 2D feature points that are common 

in all the considered eight views are output, and the projection matrices for all 

views are calculated.  

The RANSAC toolbox is provided by Peter Kovesi from The University of 

Western Australia. It can be obtained from [32]. This software is modified in our 

implementation by adding Step 4 in the RANSAC procedure as discussed in 

Section 4.3.1. 

4.4 Triangulation 

4.4.1 Introduction of the triangulation method 

From the RANSAC algorithm, the inliers among the corresponding 2D feature 

points, and the projection matrices are calculated for multiple views. The 

triangulation algorithm is implemented to estimate the 3D geometry with respect 

to the common 2D feature points in all views. Ideally, the intersection of the two 

lines that are formed by connecting each of the matching 2D points and their 
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corresponding camera centers, can be easily computed to get the corresponding 

3D point in space. But due to the presence of noise and digitization errors, it is 

possible that the intersection of these two rays does not exist in the 3D space. That 

is why triangulation is needed for the 3D point estimation.  

In the implemented system, the 3D points are reconstructed using a simple 

SVD-based algorithm similar to the one described in Section 3.2.  

For each 2D feature point, (6) is used to relate the 2D point x  and the 

corresponding 3D point .X  The cross product of the 2D point x  and PX  is 

calculated for the corresponding 2D points in 8 views, ix ( 8,..,2,1i ), as 

0 XPx ii                         (70) 

Suppose  Tiiii cbax ,, ( 8,...,2,1i ). By selecting the first two equations 

from (70) for the 8 corresponding points, 16 equations are represented as 
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where i
jp  represents the thi  column of jP  ( 8,..,2,1i ). This equation set can 

be expressed in the form of  

0AX                          (72) 

where A  is a 416  matrix represented as 
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To solve for the 3D coordinates of ,X  the SVD of A  is computed as  

             
TVUA                           (74) 

If the singular values in   are arranged in descending order, the solution for 

X  is the last column of .V  

The above triangulation procedure assumes no noise in the estimated 2D 

points. Suppose there is a noisy matching pair of 2D feature points, 21 xx  , 

which do not actually match each other and do not satisfy the epipolar constraint 

in (16). According to the work done by Hartley and Sturm [33], a constrained 

MSE-based triangulation method is used to find the corresponding coordinates of 

the 2D feature points. The relevant points 1x   and 2x  should be lying close to 

the noisy points, and should also satisfy the epipolar constraint in (16). These 

correct matching feature points are localized by minimizing the Euclidean 

distance function  

                222
2

11 ,, xxdxxd                     (75)                           

subject to the epipolar constraint  

              012  xFx T                          (76) 

With the knowledge of the epipolar geometry as discussed in Section 3.2, any 
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pair of corresponding points must lie on a pair of corresponding epipolar lines 1l  

and 2l  in two views, and any pair of matching points lying on these two lines 

will satisfy the epipolar constraint. The optimal 2D points 1x  and 2x , which are 

closest to the original matching points, would lie on a pair of epipolar lines 1l  

and 2l , respectively. The distance equation (75) can be represented using the 

distance of the noisy points to the epipolar lines:  

                  222
2

11 ,, lxdlxd                     (77) 

where  ii lxd ,  represents the perpendicular distance from point ix  to line l   

)2,1( i . As indicated before, the correct matching 2D points 1x   and 2x  lie on 

these two epipolar lines and can be found by representing the epipolar line 1l  in 

the first image by a parameter t  as  tl1 . Using the fundamental matrix ,F  the 

other epipolar line 2l   is related to 1l. Thus, the distance function in (77) can be 

represented as a polynomial function of t . The parameter mint  that minimizes 

the polynomial distance function is computed by finding the real roots of the 

nominator in the polynomial function and by evaluating the distance function at 

each of the real roots. Then, the two epipolar lines at mint  and the corrected 2D 

points 1x  and 2x  on these lines can be calculated.  

The corrected 2D points 1x  and 2x  are used to compute the corresponding 

3D point X  using the SVD as discussed before.  

At the end of triangulation, the projective 3D structure is reconstructed, 

providing the 3D point ,X  in addition to the already computed set of projection 
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matrices P  and the 2D feature points x  for all views.  

4.4.2 Implementation notes for triangulation 

Using the common matching 2D feature points x  and projection matrices P  

for all views, the 3D feature points can be calculated through triangulation. The 

function ‘vgg_X_from_xP_lin’ implements the triangulation assuming no noise. 

The input of this function consists of 2 matrices. One input matrix stores the 

coordinates of 8 matching points, one in each view, corresponding to the same 3D 

point. The second matrix is a three-dimensional matrix storing the projection 

matrices P  of all views. This function uses the SVD method to calculate the 3D 

points as described in Section 4.4.1, and assumes there is no error in the feature 

matching. 

The triangulation toolbox is provided by Tomas Werner from the University 

of Oxford. It can be downloaded from [34]. 

4.5 Bundle Adjustment 

4.5.1 Description of the bundle adjustment algorithm 

Once the 3D points and projection matrices have been obtained for all views, 

there is a need to refine the 3D structure through a global minimization step, due 

to the fact that both the 3D points and the projection matrices which are derived 

from the fundamental matrices are susceptible to noise. This can be solved using a 

maximum likelihood estimation produced by the bundle adjustment algorithm 

[35]. The goal is to find the projective structures P  of multiple views and the 

3D points X  so that the mean square distances between the observed 2D image 
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feature points x  and the reprojected 2D points  XP  are minimized. Bundle 

adjustment is illustrated in Fig. 9. 

The rays emanating from a 3D point and reprojected to the image planes of 

multiple views form a bundle. Through bundle adjustment, given m  views, a 

new set of projection matrix BA
iP   mi ,...,1  and 3D space points BA

jX  

 nj ,...,1  will be calculated so that the reprojected 2D points BA
j

BA
i

BA
ij XPx   

become stable. The reprojected 2D points BA
ijx  need to minimize the following 

Euclidean distances from the initial 2D feature points ijx : 

              
 

m

i

n

j

BA
ijijXP

xxd
ji 1 1

,,
min                      (78) 

A typical method of sparse bundle adjustment uses the Levenberg-Marquardt 

(LM) algorithm [36] [37] to do the non-linear minimization of the reprojection 

error. The LM algorithm is an iterative procedure that calculates the minimum of 

a non-linear least square problem. Given an initial measured vector ,w  an initial 

parameter vector v  and a functional relation f  which maps the parameter 

vector v  to an estimated  measurement vector as  vfw ˆ , the objective is to 

find iteratively the parameter vector v  that minimizes the squared 1w -norm, 

 1w
T , where ww ˆ  and w  is the covariance matrix of the uncertainty 

of the measure vector .w  This is done by solving the following equation 

iteratively to get the difference v : 

       11   w
T

vw
T JIJJ                 (79) 
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Fig. 9. Illustration of bundle adjustment. The rays back-projected from the 

corresponding 2D feature points in different views to a single 3D point, constitute 

a bundle. 

 

where J  is the Jacobian matrix of ,f    is the damping term that assures a 

reduction in the error in iterations, I  is the identity matrix, and v  is the 

difference of the estimated parameter vector from the previous parameter vector 

v . After solving for v , the optimal parameter vector is vv   .  

According to [35], in order to use the LM algorithm for bundle adjustment, 

the initial measurement vector w  consists of the observed common 2D feature 

points in all views, the initial parameter vector v  is defined by all the parameters 

of the projection matrices in all views and by the 3D points, and the functional 

relation f  can be calculated using the projection relationship between the 

corresponding 2D and 3D points. The measurement vector w  can be represented 
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as 

 TT
nm

T
n

T
m

TT
m

T xxxxxxw ,...,,...,,...,,,..., 1221111              (80) 

where m  is the number of views, n  is the number of common feature points in 

each view, ijx  is the thi  2D point in the thj  view. The measurement vector v  

can be represented as 

   TT
n

TT
m

T XXppv ,...,,,..., 11                   (81) 

where kp  is the unwrapped vector representation of the projection matrix 

corresponding to the thk  view, and sX  is the ths  3D point. 

The difference parameter vector v  is solved iteratively according to (79). 

The modified parameters of the projection matrices in all views and the 3D points 

in space can be calculated by adding v  to the original v . 

4.5.2 Implementation notes for bundle adjustment 

The function ‘bundleadjustment’ is used to implement the bundle adjustment for 

the refinement of the projective reconstruction so that the reprojection distance 

function (78) is minimized using the Levenberg-Marquardt algorithm. The 2D 

feature points in all views, the projection matrices of all views, and the 3D points 

estimated from triangulation are used as the input for this function. The output 

provided by ‘bundleadjustment’ consisting of the refined projection matrices of 

all views and the coordinates of the 3D points.  

The projection matrix for the middle camera 4P  is set to  1333 0| I  in the 

RANSAC procedure. In the bundle adjustment procedure, the projection matrix of 
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the middle view needs also to be fixed so that the coordinates of the middle 

camera will remain the same as the world coordinates. In our MATLAB 

implementation, the function ‘bundleadjustment’ provides an option to fix a 

certain number of the projection matrices starting from the first input projection 

matrices. Thus, instead of using the projection matrix and 3D point sets ordered 

from the first view to the eighth view, it is better to reorder 4P , 4X  and 4x  of 

the middle view to the first place and use the reordered projection matrices, 2D 

points and 3D points as the input of the bundle adjustment function. After 

implementing the bundle adjustment, the output projection matrices BAP  and 3D 

points BAX  are reordered back to the original order. 

With BAP  and BAX , in order to check the difference between BAx  and the 

original 2D point x , the 3D points BAX  are reprojected to the 2D multiple views 

as follows: 

             BABABA XPx                        (82) 

After bundle adjustment, the average deviation of the resulting BAx  from the 

original x in all views can be calculated. If the average deviation is larger than a 

threshold, the reconstructed 3D scene is not accurate enough and contains a lot of 

noise. The program needs to go back to RANSAC and implement the 

triangulation and bundle adjustment again. This is because in RANSAC, the 8 

points are randomly chosen to compute the fundamental matrix F . If the average 

deviation of all views is less than a threshold, the next step called metric upgrade 

is implemented. The threshold was adjusted for different image sets based on the 
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Table 2. Average reprojection error threshold for different image sets. 

Image set Microsoft Building Temple 

t_avg 0.3 0.24 0.1 

 

number of iterations needed to run the algorithm and to enforce convergence 

within a relative range. The values of the threshold for the average deviation are 

different for various image sets. They are listed in Table 2 for three sample image 

sets (refer to Chapter 5, Section 5.1, for a description of these image sets). 

The bundle adjustment toolbox is called Vincent toolbox, provided by Vincent 

Rabaud from UCSD. It can be downloaded from [38]. 

4.6 Metric Upgrade 

4.6.1 Description of metric upgrade 

After the bundle adjustment, the 3D model can be reconstructed but, at this point, 

the reconstruction is done using a projective transformation, which is not 

sufficient to represent the proper structure of the scene. Therefore, a method to 

upgrade the projective reconstruction to a metric one is implemented. Auto-

calibration is a process of determining internal camera parameters and metric 

reconstruction directly from multiple uncalibrated scenes. Unlike other calibration 

methods which either depend on knowing the image of a calibration grid or on the 

known properties of the scene such as vanishing points, auto-calibration can be 

implemented directly by imposing constraints on the internal camera parameters 

and the external projection parameters. 

In the implementation of metric upgrade, the goal is to find a rectifying 
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homography H  that transforms the projective reconstruction  projproj XP ,  to the 

metric reconstruction as  projmetricprojmetric HXXHPP   ,1 . From [21], the 

homography H  for the metric transformation is described as, 

          
1

1
0 












Kp

K
H T                     (83) 

where K  is the intrinsic camera matrix, and the coordinates of the plane at 

infinity in the projective reconstruction are represented as  TTp 1, . 

From Section 3.3, in order to find H , there is a need to find the homography 

matrix H  that would transform *
Q  to its canonical form as discussed in 

Section 3.3.2. The dual image of the absolute conic (DIAC) is the projected image 

of the dual absolute quadric *
Q  under a certain projection ,P  as presented in 

(45). The dual absolute quadric *
Q  in projective space can be transformed to its 

metric canonical form 44
ˆ
I  by the homography ,H  as in (43). 

Furthermore, the DIAC *  is an entity in the image plane of the camera that 

depends only on the intrinsic camera parameters as in (46). By substituting the 

camera matrix K  into (46), the DIAC *  can be represented as 

            




















1

22

222

*

vu
vvfuvfs
uuvfsusf




               (84) 

The idea of auto-calibration is to use (84) to transfer the constraint on the 

intrinsic camera matrix to a constraint on the dual absolute quadric *
Q  under the 
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projection matrix ,P  and solve the homography matrix H  after the estimation 

of .*
Q The dual absolute quadric *

Q  is calculated through a polynomial 

minimization using the Linear Matrix Inequality (LMI) relaxations [39]. The 

constrained optimization problem can be stated as follows, 

min   xf                          (85) 

subject to   0xgi , Mi ,...,2,1                (86) 

The LMI relaxations are computed by adding lifting variables and constraints to 

linearize the monomials in (85) and (86) up to a degree. In the LMI relaxation, if 

the degree of the monomials are up to 2 , the order of the LMI relaxation is 

referred to be .  

The constraints on the camera matrix can be expressed using the coefficients 

of *
Q  and serve as the objective function  xf . The constraints  xgi  are 

composed of several constraints on the .*
Q  [23] 

The objective function for minimization is represented as  

                  
i

iiiiiQf 2*
23

2*
13

2*
12

2*
22

*
11

*            (87) 

where 
Ti

k
i
j

i
jk pQp **

  and i
kp  is the thk  row of the thi  camera projection 

matrix. For determining the objective function, it is assumed that the skew factor 

is zero ( 0s ), the focal lengths in the x  and y  direction are equal ( 1 ), 

and the principal point lies at the left-bottom origin of the image plane ( 0 vu ), 

so that the DIAC *  can be represented by  1,, 22 ffdiag . The objective 
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function in (87) enforces these conditions on the DIAC * . 

The polynomial minimization is subject to the following constraints: 

(i) *
Q  has to be positive semi-definite (PSD) so that *  is PSD and, hence, 

it can be decomposed into .TKK  Positive semi-definite means that all the 

elements in the matrix *
Q  are greater than or equal to zero. This constraint 

is fulfilled if all of the principal minors of *
Q  are positive.  

(ii) To ensure that *
Q  is rank deficient, the determinant of *

Q  is set to zero. 

(iii) To fix the scale of *
Q , the Frobenius norm of *

Q  is set to 1. 

An equivalent mathematical representation of the constrained polynomial 

minimization is as follows: 

Objective function: min           
i

iiiiiQf 2*
23

2*
13

2*
12

2*
22

*
11

*    (88) 

Subjected to:        0det * Q                                     (89) 

                  0*  jkQ , 3,2,1j  and 









j
k

4
,...,2,1

 
            (90) 

              1
2*  F

Q                                       (91) 

where i
k

iT
j

i
jk pQp **

 , i
kp  is the thk  column of the thi  camera projection 

matrix,  *det Q  is the determinant of *
Q ,  jkQ*

  is a principal minor of ，*
Q  

and 
2*

F
Q  is the Frobenius norm of .*

Q  The principal minor   jkQ*
  is the 

determinant of the thk  )
4

,...,2,1( 









j
k  sub-matrix of *

Q . This sub-matrix is 
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obtained by removing a number of j  rows and j  columns with the same index 

numbers from *
Q . For the 44  matrix *

Q , there are 







j
4

 possible sub-

matrices that can be formed in this way. The Frobenius norm of a matrix is the 

square root of the square sum of all entries in the matrix. 

After solving for *
Q  through the LMI relaxation, the SVD of *

Q  is 

computed to derive the homography H  as explained in details later in Section 

4.6.2. The 3D feature points metricX _  and projection matrices metricP _  

under metric transformation are represented as: 

          projmetric HXX                      (92) 

          1 HPP projmetric                      (93) 

The relevant sparse depth information of the scene can be obtained from the 

3D points metricX  in (92). 

4.6.2 Implementation notes for metric upgrade 

The first step in metric upgrade is to calculate the dual absolute quadric .*
Q  *

Q  

is represented using the symbolic parameters in the MATLAB symbolic toolbox. 

As *
Q  is a 44  symmetric matrix, 10 symbolic parameters are used to 

represent *
Q . In the LMI relaxation, the objective function  *

Qf  and the 

constraint equations can be expressed in terms of the symbolic parameters of *
Q . 

The GloptiPoly toolbox and SeDuMi toolbox are used here to calculate the 

optimal solution of *
Q  that minimizes the objective function  *

Qf . 
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The GloptiPoly is a MATLAB toolbox that helps in solving the linear matrix 

inequality (LMI) relaxations of global optimization problems. It also makes use of 

the SeDuMi toolbox for LMI relaxations of non-convex optimization problems. 

Using the function ‘defipoly’, a cell array is obtained and used to store the 

minimization function and the constraint equations, as described in Section 4.6.1. 

The first element of the cell array is the objective function to minimize. The 

function ‘gloptipoly’ is used for the global optimization. The cell array containing 

the objective function and constraint equations serves as the input to this function, 

and the order of the LMI relaxation is set to 2 [23]. If an optimum solution exists 

for minimizing the objective function  ,*
Qf  the obtained values of the 

symbolic parameters of *
Q  are stored in the output.  

After solving for the dual absolute quadric *
Q  through global optimization, 

the homography H  is calculated using the SVD according to (43). The detailed 

procedure for solving H  is described below.  

Using the SVD, *
Q  can be decomposed as  

               
TUDVQ 

*                        (94) 

where U  and V are unitary matrices and D  is a diagonal matrix with 

nonnegative real numbers (singular values) on the diagonal. Since *
Q  is a 

symmetric matrix, in the SVD of *
Q  given by (94),  

VU                           (95) 

The diagonal entries iid  of D  are arranged in a descending order ( 44d  is 
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nearly 0). D  can be represented as follows: 
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where 044 d . As D  is a diagonal matrix, it can be further decomposed as 

 











































44

33

22

11

44

33

22

11

000
000
000
000

000
000
000
000

d
d

d
d

d
d

d
d

DDD sqrtsqrt

  

(97) 

and (94) can be expressed as  

                 VDIUDVDUDQ sqrtsqrtsqrtsqrt 44
*

               (98) 

where 44I  is a 44  identity matrix. Since 044 d , sqrtsqrt DID 44  can be 

approximated as  
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and (99) can be rewritten as 
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Let  
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and 

                        )0,1,1,1(ˆ
44 diagI                    (102) 

it follows that 

             sqrtsqrtsqrtsqrt DIDDID ˆˆˆ
4444               (103) 

Using (103), *
Q  in (98) can be written as  

            VDIDUQ sqrtsqrt
ˆˆˆ

44
*

                   (104) 

By multiplying   1ˆ 

sqrtDU to the left of  *
Q  in (104) and   1ˆ 

VDsqrt to the right, 

it follows that 

                   1*1

44
ˆˆˆ 





  VDQDUI sqrtsqrt                (105) 

From (43), (95) and (105), the homography matrix H  is expressed as  

                 1ˆ 
 sqrtDUH                       (106) 

Finally, knowing the homography H , the coordinates of the 3D points and 

projection matrices in metric reconstruction metricX  and metricP  are transformed 

according to (92) and (93), respectively. 

 The GloptiPoly toolbox is provided by D. Henrion. It can be downloaded 

from [40]. The SeDuMi toolbox is provided by Lehigh University at the link [41]. 
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4.7 Transformation of 3D Points in Metric Reconstruction 

After transforming the projective reconstruction by the homography ,H  the 

projection matrix of the middle camera is no longer  1333 0| I , as it has been 

transformed by a translation vector Ht  and rotated by a rotation matrix HR . The 

coordinates of the 3D points are represented with respect to the world coordinates, 

but they are not consistent with the transformed coordinates of the middle camera 

under the metric reconstruction.  

An example of the transformation geometry between the world coordinates 

and the middle camera coordinates is illustrated in Fig. 10. Due to this, the 

coordinates of the 3D points may not be lying on the same side with respect to the 

middle camera center in the metric transformation. It results in depth values, for 

the 3D feature points, that are either positive or negative with respect to the 

coordinates of the middle camera. 

To solve this problem, the coordinates of the 3D points in the metric frame 

need to be transformed by the rotation matrix HR  and translation vector Ht  in 

order to be consistent with respect to the middle camera. HR  and Ht  can be 

computed from the decomposition of the projection matrix metricP _4  for the 

middle view in metric transformation as follows. From (7) and (8), the 

homogenous representation of the projection matrix P  can be expressed as 

                    KtMtRKP metric ||_4                   (107) 

where KRM   is a 33  matrix, and K  is the intrinsic camera matrix and is  
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3D pointsworldX

worldY
worldZ

middleX
middleY

middleZ

worldcO _

middlecO _

 

Fig. 10. Illustration of 3D points with respect to the world coordinates and the 

middle camera coordinates under metric transformation frame. 

 

an upper-triangular matrix, R  is the rotation matrix and t is the translation 

vector. As KRM   and K  is an upper-triangular matrix, the RQ 

decomposition is used to calculate K  and R . The RQ decomposition uses the 

Givens rotation matrices to calculate the upper-triangular matrix K . The Givens 

rotations have three types as 
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Through multiplying M  by xG  on the right of ,M  the first column of M  

will remain the same. Similarly, the second and third column of M  will remain 

the same when M  is multiplied with yG  and zG  on the right of .M   

The first step of the RQ decomposition is to multiply M  on the right by xG  

to generate xM  and to set xm32  to zero, where xm32  is the element of xM  

located on the third row and the second column of .xM  The rotation angle x  

in xG  is calculated using the following equations as  
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               (111) 

where ijm  is the element of M  at the thi  row and thj  column of .M  

so that  
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and then xG  is computed using (108), (112) and (113). 

After setting xm32  to zero, xM  is multiplied with yG  on the right to 

generate yxM ,  and yxm ,
31  is set to zero. yG  is computed in a similar way to 

xG . Finally, yxM ,  is multiplied with zG  on the right to generate zyxM ,,  and 

zyxm ,,
21  is set to zero. zG  is the computed similar to xG  and yG . After these 
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operations, an upper-triangular matrix K  is formed as 

                       zyx
zyx GGMGMK  ,,                  (114) 

Since xG , yG  and zG  are unitary matrices, the rotation matrix R  can be 

represented as 

                            T
x

T
y

T
z GGGR                      (115) 

The translation vector t is calculated as 

                              4
1 pKt                         (116) 

where 4p  is the fourth column of the projection matrix metricP _4 . 

In this work, the rotation matrix and translation vector were obtained from the 

homography matrix H  using the function ‘vgg_KR_from_P’ that is included in 

the triangulation package introduced in Section 4.4.2. The resulting 

transformation matrix T  is expressed as 

                        









 10 31

HH tR
T                      (117) 

Multiplying the 3D point after metric upgrade by T  will transform the 

coordinates of the 3D points to make them consistent with the middle camera 

coordinates in the metric frame, that is  

                       metrictransmetric TXX _                  (118) 

The sparse depth values for common feature points among all the views are given 

by the third elements of the 3D point vectors transmetricX _ . 
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4.8 Important Notes 

In the implementation of metric upgrade, due to the limit of the GloptiPoly 

toolbox, using the original projection matrices P  for the optimization 

computation are not proper because the entries of P  are too large for 

computations in the GloptiPoly toolbox. A pre-processing is implemented to 

normalize the P  matrices by an estimated camera matrix estmK  at the beginning 

of the 3D modeling as  

             PKP
estmnorm

1                      (119) 

In our implementation, 1
estm

K  is set as: 
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where w  refers to the width of input images and h  is the height of the input 

images. Due to the fact that PXx   normalization of the projection matrix is 

equivalent to normalizing the 2D points x  at the beginning of the 

implementation by multiplying them with the inverse of estmK  on the left after 

the SIFT, as follows: 

             xKx estmnorm
1                     (121) 

In the following steps normalization, the projection matrices that are calculated 

from RANSAC will be in the normalized form normP . 



 

 

5. EXPERIMENTAL RESULTS 

In this chapter, the experimental results of the proposed 3D reconstruction model 

using different images sets are presented and analyzed. Section 5.1 introduces the 

image sets used to evaluate the performance of the 2D to 3D conversion system. 

Section 5.2 illustrates the sparse depth maps for different image sets. Section 5.3 

presents a performance analysis of the scale factor in the implemented system. 

5.1 Data Set Description 

In the implementation of the multi-view 3D reconstruction, four different image 

sets for 3D reconstruction are used here: Egypt_Temple, Tempe_Building, 

Microsoft_Ballet and Table. The Egypt_Temple image set is taken by a hand-held 

Canon digital camera in Egypt. The Tempe_Building image set is taken from a 

Remote Control Airplane (RCA), and it is the birds-eye view of the buildings in 

downtown Tempe, Arizona. The Microsoft_Ballet image set is downloaded from 

Microsoft’s website [42]. The Table image set was taken using a hand-held Canon 

digital camera for objects set up on a table. In addition, the ground-truth depth 

data for the Table image set was collected by measuring the distance of each 

object from the camera. This ground-truth data is used to further test the 

performance of the system. The 8 views of the four image sets are shown in Fig. 

11, Fig. 12, Fig. 13 and Fig. 14, respectively. The top four views are View 1 to 

View 4 from left to right. The bottom four views are View 5 to View 8 from left 

to right. Although multiple views can be obtained using multiple cameras fixed at 

different viewpoints, the 8 views of the above image sets are taken with the same  
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Fig. 11. Eight views of Egypt_Temple (size of each view is 512×384). The top 

four views are View 1 to View 4 from left to right, and the bottom four views are 

View 5 to View 8 from left to right. 

 

 

Fig. 12. Eight views of Tempe_Building (size of each view is 912×684). The top 

four views are View 1 to View 4 from left to right, and the bottom four views are 

View 5 to View 8 from left to right. 
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Fig. 13. Eight views of Microsoft_Ballet (size of each view is 256×192). The top 

four views are View 1 to View 4 from left to right, and the bottom four views are 

View 5 to View 8 from left to right.  

 

 

Fig. 14. Eight views of Table (size of each view is 648×486). The top four views 

are View 1 to View 4 from left to right, and the bottom four views are View 5 to 

View 8 from left to right. 

 

 

 

 



73 
 

 

camera from different angles with respect to the same scene. The MATLAB 

environment is used to produce the program for the implementation. 

The multi-view image set is read in and the intensities for the image pixels are 

converted to the double data type for further computation. For the 

Tempe_Building, Egypt_Temple and Table image sets, as the image sizes are too 

large for MATLAB to process the image data, bilinear down-sampling is used to 

resize the image to 25% of their original widths and heights. The multi-view 

frames are stored in a three-dimensional matrix, whose third dimension indicates 

the view number.  

5.2 Sparse Depth Map Results 

5.2.1 Results for the Egypt_Temple image set 

For the Egypt_Temple image set, the matching feature points between the middle 

view (View 4) and View 1 after SIFT is shown in Fig. 15. There are 1807 

matching points. Due to the large number of matching points, only 1/40 of all the 

matching points are shown in Fig. 15 for illustration, and are marked and 

connected with each other to show the matching clearly. The stars in the images 

indicate the locations of the 2D feature points in each view, and the lines 

connecting two corresponding 2D points illustrate the matching between two 

views. As the matching points that are calculated by SIFT only depend on the 

descriptors of the keypoints in the local image region, and are not related by the 

epipolar geometry between the considered views, there may be some mis-matched 

feature points between the two views. This is illustrated in Fig. 15. There are two 
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mis-matched connections that can be seen in Fig. 15. 

The matching inliers between the middle view (View 4) and View 1 after 

RANSAC are shown in Fig. 16. Here, only 1/40 of all the inlier matching points 

are marked and connected in Fig. 16 to illustrate the matching clearly. Comparing 

Fig. 15 and Fig. 16, the two mis-matched crossing lines are removed. RANSAC 

helps to remove the outliers, and the corresponding feature points are related by 

both the feature descriptors and the geometry. The number of inliers is 1771. It is 

98% of the corresponding feature points after SIFT. 

After feature matching between the middle view and all the other views, the 

common feature points among all 8 views are searched and are shown in Fig. 17. 

The five views in the upper row are View 1 to View 5 from left to right, and the 

four views in bottom row are View 5 to View 8 from left to right. Here, only 1/40 

of all the matching points are marked and connected to illustrate the matching 

clearly. We can see that the feature points in different views match with each 

other correctly. There are totally 400 common feature points among the 8 views in 

the Egypt_Temple image set. 

Finally, the depth values of sample common feature points are plotted on the 

middle view as shown in Fig. 18. Note that the calculated depth values in the 

image are actually fractional values and are rounded down to the nearest integer 

for illustration purpose. A larger depth value means that the point is farther from 

the camera and a smaller depth value indicates that the point is closer to the 

camera. As the picture is captured from the right side of the scene, the depth value  
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Fig. 15. Plot of 1/40 of the total number of matching feature points after the SIFT 

between View 4 (left) and View 1 (right) in Egypt_Temple.  

 

 

Fig. 16. Plot of 1/40 of the total number of matching inliers after RANSAC 

between View 4 (left) and View 1 (right) in Egypt_Temple. 
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Fig. 17. Plot of 1/40 of the total number of common feature points in all views of 

Egypt_Temple. Five views on the top are View 1 to View 5 from left to right. 

Four views on the bottom are View 5 to View 8 from left to right. 

 

   

Fig. 18. Plot of 1/40 of the total number of depth values of feature points on the 

middle view (View 4) of Egypt_Temple. The depth values are rounded down to 

the nearest integers. 
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gets larger by observing the feature points from right to the left in the horizontal 

direction. 

5.2.2 Results for the Microsoft_Ballet image set 

After implementing the system on the Microsoft_Ballet image set, the matching 

points between the middle view (View 4) and View 1 after SIFT are shown in Fig. 

19. There are 414 matching points, but only 1/10 of all the matching points are 

marked and connected in the figure to illustrate the matching clearly. As the 

results show, there are some mismatching points. 

The matching inliers between the middle view and View 1 after RANSAC are 

shown in Fig. 20. Compared to the matching using SIFT in Fig. 19, it is clear that 

RANSAC helps in removing the outliers. The number of inliers is 216, which is 

52% of the corresponding points after SIFT. 

The common feature points among all eight views are shown in Fig. 21. There 

are only 11 common feature points among 8 views in Microsoft_Ballet. This is 

because there are not many different structures in the multiple views of this image 

set. The plot of depth values for feature points on the middle view is shown in Fig. 

22. As before, larger depth values indicate being farther from the camera and vice 

versa. As the number of common feature points is not large enough, the estimated 

depth value can be inaccurate in different trials. One example of inaccurate depth 

calculation that is obtained from one run is shown in Fig. 23. 
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Fig. 19. Plot of 1/10 of the total number of matching feature points after the SIFT 

between View 4 (left) and View 1 (right) in Microsoft_Ballet. 

 

 

Fig. 20. Plot of 1/10 of the total number of matching feature points after 

RANSAC between View 4 (left) and View 1 (right) in Microsoft_Ballet. 
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Fig. 21. Plot of common feature points in all views of Microsoft_Ballet. Four 

views on the top are View 1 to View 4 from left to right. Four views on the 

bottom are View 5 to View 8 from left to right.  

 

      

Fig. 22. Plot of 1/40 of the total number of depth values of feature points in the 

middle view (View 4) of Microsoft_Ballet. 
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Fig. 23. An example of wrong calculated depth values plotted in the middle view 

(View 4) of Microsoft_Ballet. 

 

5.2.3 Results for the Tempe_Building image set 

Using the Tempe_Building image set as the input to the 3D reconstruction system, 

the matching points between the middle view (View 4) and View 1 after SIFT are 

shown in Fig. 24. There are 3219 matching points, but only 1/40 of all the 

matching points are shown for clarity in Fig. 24 to show the matching clearly. 

Also, some mis-matched feature points can be seen in Fig. 24. 

The matching inliers between the middle view (View 4) and View 1 after 

RANSAC are shown in Fig. 25. Only 1/40 of all the inlier feature points are 

shown in this figure for clarity. The number of inliers is 3122, 97% of which 

correspond to the matching feature points after SIFT. 
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The common feature points among all 8 views are shown in Fig. 26. Only 

1/40 of all the matching points are shown in this figure. There are totally 362 

corresponding feature points among the eight views in Tempe_Building. 

Finally, the depth values on the middle view are plotted as shown in Fig. 27. 

As before, a larger depth value indicates being farther from the camera and a 

smaller depth value means that the feature point is closer to the camera center. 

5.2.4 Reprojection error results 

Table 3 shows the number of common feature points and the average mean square 

reprojection error in all eight views after bundle adjustment for the three image 

sets. The number of common feature points in Egypt_Temple and 

Tempe_Building is large enough to reconstruct the 3D scene correctly, while that 

in Microsoft_Ballet is not sufficient to estimate the correct depth values all the 

time. 
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Fig. 24. Plot of 1/40 of the total number of matching feature points after the SIFT 

between View 4 (left) and View 1 (right) in Tempe_Building. 

 

 

Fig. 25. Plot of 1/40 of the total number of matching inliers after RANSAC 

between View 4 (left) and View 1 (right) in Tempe_Building. 
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Fig. 26. Plot of 1/40 of the total number of common feature points in all views of 

Tempe_Building. The five views on the top are View 1 to View 5 from left to 

right. The four views on the bottom are View 5 to View 8 from left to right. 

   

Fig. 27. Plot of 1/40 of the total number of depth values of feature points on the 

middle view (View 4) of Tempe_Building. 
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Table 3. Number of common feature points and reprojection errors for three 

image sets. 

Image Set No. of feature points Average Reprojection 
Egypt_Temple 400 0.0985 

Microsoft_Ballet 11 0.2951 

Tempe_Building 362 0.2377 

 

5.3 Analysis of the System Performance 

5.3.1 Analysis of the scale factor stability 

The 3D scene modeled in this system is a metric reconstruction of the scene. 

Compared to the 3D scene under the Euclidean frame, the metric transformation 

differs from the Euclidean one by a scale factor s . Under the metric 

reconstruction, the distance of the objects to the camera center is scaled by s  

from the ground-truth data. The scale factor and the depth values of the feature 

points, thus, can vary with different runs of the system. The depth values 

generated by two different runs are shown in Fig. 28 for the Egypt_Temple image 

set, as an example. 

Although the depth values can be different due to the randomness of the scale 

factor ,s  for all 3D points in the same run, the scale factor would be the same. 

That is, suppose the ground-truth depth values for two feature points are 1D  and 

2D , the depth values calculated by the 2D to 3D conversion system should be 

1sD  and 2sD . For any given pair of feature points, the ratio of their calculated 

depth values should remain constant in different runs.  
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Fig. 28. Plot of the depth values for feature points on the middle view (View 4) at 

two different iterations for the Egypt_Temple image set. 
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Table 4. 2D points with minimum depth and maximum depth, and ratio of the 

maximum and minimum depth values in 5 iterations based on Egypt_Temple 

image set. 

Iteration Max depth Max depth 
position 

Min 
depth 

Min depth 
position 

Max depth  
Min depth 

1 41.1188 (310.47, 66.01) 31.7423 (229.636, 336.160) 1.2954 

2 125.2106 (310.47, 66.01) 94.7702 (229.637, 336.159) 1.3212 

3 131.8619 (310.47, 66.01) 101.5992 (229.636, 336.160) 1.2979 

4 27.4511 (310.47, 66.01) 21.1687 (229.636, 336.160) 1.2968 

5 61.6124 (310.47, 66.01) 46.4913 (229.644, 336.161) 1.3252 

 

The feature points corresponding to the maximum and the minimum depth 

values are chosen to perform the analysis of the scale factor. Using the 

Egypt_Temple image set, the coordinates of the maximum-depth feature point 

and minimum-depth feature point in the middle view (View 4) and the ratio of 

their depth values for five different iterations are shown in Table 4. From the 

results in Table 4, it can be seen that the ratio of the maximum depth value and 

the minimum depth value remains stable in different runs. The standard deviation 

of the max depth and min depth ratio is 0.014. It can be concluded that the 

randomness of the scale factor in the metric transformation is the major cause of 

different depth values in different runs.  

5.3.2 Effect of RANSAC on the scale factor stability 

In the implementation of RANSAC, as the eight feature points that are used to 

calculate the fundamental matrix are randomly chosen from all the feature points, 

the two-view geometry will not remain the same at different runs. The threshold 
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t  that is used to select the inliers of the feature points, as discussed in Section 

4.3.1, may affect the calculated depth values of feature points. Using the 3D 

modeling system implemented in this thesis, a total of 15 runs (five for each value 

of t ) are implemented for three different values of threshold t  ( t =0.01, 0.015 

and 0.02). The results for the Egypt_Temple image set are similar to those in 

Table 4. The results based on the Tempe_Building image set are shown in Table 5. 

From the results in Table 5, the ratio of the maximum and the minimum depth 

values become less stable if the value of the threshold t  increases. This is 

because the constraint to choose the inliers in RANSAC will become less strict 

when the threshold increases, and this produces more noise in the estimated depth 

values.  

5.3.3 Effect of the reprojection error on the scale factor stability 

Comparing the standard deviation of the max depth and min depth ratio in the 

Egypt_Temple and Tempe_Building image sets, it can be seen that the standard 

deviation for the Egypt_Temple image set is 0.014, and that for the 

Tempe_Building image set is much larger than 0.014. The threshold of the 

average reprojection error avgt _  after bundle adjustment, as discussed in 

Section 4.5.2, also has an effect on the stability of the scale factor s . The 

threshold of the average reprojection error avgt _  in Tempe_Building is much 

larger than that in Egypt_Temple. This is because the minimum reprojection error 

of the Tempe_Building image set converges to a larger value than the minimum 

reprojection error of the Egypt_Temple image set, due to the fact that the structure 
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Table 5. Statistical analysis of the depth values of the feature points in the 

Tempe_Building image set for 15 runs based on the average mean square 

reprojection error across all views. 

t=0.01 

Run Min 
depth 

Max 
depth 

Mean 
depth 

STD of 
depth 

Max depth 
Min depth Max depth position Min depth position 

1 58.88 294.47 121.64 47.58 5.00 (354.37,62.55) (114.00,590.69) 
2 57.42 343.58 125.64 55.18 5.98 (354.37,62.54) (113.98,590.72) 
3 22.89 128.44 49.00 20.68 5.61 (354.37,62.55) (113.98,590.72) 
4 33.82 154.84 67.50 25.00 4.58 (354.40,62.58) (113.95,590.73) 
5 40.39 168.96 78.17 27.21 4.18 (354.37,62.55) (113.98,590.72) 

ST 15.45 94.91 33.86 15.26 0.73   
t=0.015 

Run Min 
depth 

Max 
depth 

Mean 
depth 

STD of 
depth 

Max depth  
Min depth Max depth position Min depth position 

6 16.85 88.34 35.37 14.19 5.24 (496.70,74.06) (113.98,590.72) 

7 35.13 148.55 68.25 23.92 4.23 (354.37,62.55) (113.98,590.71) 

8 25.01 150.41 54.88 24.10 6.01 (354.35,62.55) (113.97,590.71) 

9 38.72 230.77 84.76 36.66 5.96 (496.70,74.06) (113.98,590.72) 

10 37.60 215.40 81.22 34.63 5.73 (354.37,62.55) (113.98,590.72) 

STD 9.43 57.47 20.28 9.12 0.74   

t=0.02 

Run Min 
depth 

Max 
depth 

Mean 
depth 

STD of 
depth 

Max depth 
Min depth Max depth position Min depth position 

11 97.79 629.68 219.27 100.08 6.44 (354.37,62.55) (113.98,590.72) 

12 44.35 151.44 79.65 23.21 3.41 (496.70,74.06) (113.98,590.72) 

13 180.90 668.16 332.69 106.40 3.69 (354.37,62.55) (113.98,590.72) 

14 80.78 240.58 137.06 36.22 2.98 (496.70,74.06) (113.98,590.72) 

15 50.83 209.84 98.39 33.61 4.13 (496.70,74.06) (113.98,590.72) 

STD 54.82 247.99 103.94 39.92 1.36   

 

 

 



89 
 

 

of the Tempe_Building image set is more complicated. As the threshold of the 

reprojection error gets larger, the average reprojection errors in all the 2D views 

are larger and, thus, the accuracy of the detected 2D feature points is worse. This 

will produce more noise in the estimated structure of the 3D scene.  

Different methods to compute the reprojection error in the 2D to 3D 

conversion system also affect the stability of the scale factor in the metric 

reconstruction. For example, if another norm other than the average MSE 

reprojection error among the 2D feature points in all views is used, the estimated 

depth values can be affected as shown in Table 6. For the results in Table 6, the 

reprojection error is calculated as follows. First, the average mean square 

reprojection error of 2D feature points is calculated for each view. Then, the final 

reprojection error is taken to be the maximum average mean square reprojection 

error among all views. It can be seen that using the latter method for computing 

the reprojection error, results in a maximum to minimum depth ratio that is less 

stable than that in Table 5.  

5.3.4 Evaluation of the system performance with respect to the ground-truth depth  

Another important method to analyze the performance of the implemented 3D 

reconstruction system is to evaluate the calculated depth values with respect to 

ground-truth data. As discussed in Section 5.3.1, the calculated depth values differ 

from the ground-truth depth values by a random scale factor .s  In order to 

compare the results with the ground-truth depth, the computed depth values must 

be scaled to be within the same range as the ground-truth data. The scale factor is  
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Table 6. Statistical analysis of the depth values of the feature points in the 

Tempe_Building image set for 15 runs based on the maximum reprojection error 

across all views. 

t=0.01 

Run Min 
depth 

Max 
depth 

Mean 
depth 

STD of 
depth 

Max depth 
Min depth 

Max depth 
position 

Min depth 
position 

1 50.80 2302.73 175.69 210.53 45.33 (354.41,62.53) (113.95,590.69) 
2 48.21 1137.24 149.47 132.02 23.59 (354.45,62.52) (113.95,590.70) 
3 104.28 406.13 195.75 65.09 3.899 (354.37,62.55) (113.98,590.72) 
4 56.32 370.38 127.25 58.71 6.58 (496.70,74.06) (113.98,590.72) 
5 40.10 387.04 101.11 57.57 9.650 (496.08,74.06) (113.95,590.70) 

ST 25.46 838.05 37.62 66.81 17.15   
t=0.015 

Run Min 
depth 

Max 
depth 

Mean 
depth 

STD of 
depth 

Max depth 
Min depth 

Max depth 
position 

Min depth 
position 

6 17.37 88.44 36.10 14.29 5.09 (354.37,62.55) (113.98,590.72) 
7 31.45 271.98 76.67 41.33 8.65 (354.41,62.53) (113.95,590.69) 
8 96.49 1044.05 250.03 150.42 10.82 (354.37,62.55) (113.98,590.72) 
9 55.34 291.46 116.30 46.95 5.27 (496.70,74.06) (113.98,590.72) 
10 33.65 159.77 68.20 25.95 4.75 (496.75,74.05) (113.95,590.69) 
ST 30.89 385.22 83.61 54.44 2.69   

t=0.02 

Run Min 
depth 

Max 
depth 

Mean 
depth 

STD of 
depth 

Max depth 
Min depth 

Max depth 
position 

Min depth 
position 

11 37.39 166.46 73.95 26.90 4.45 (354.37,62.55) (113.98,590.72) 
12 48.23 239.10 98.88 38.81 4.96 (354.45,62.52) (113.95,590.70) 
13 132.11 492.89 244.61 78.44 3.73 (354.37,62.55) (113.98,590.72) 
14 41.41 233.46 89.01 37.57 5.64 (354.37,62.55) (113.98,590.72) 
15 52.00 487.72 130.01 72.75 9.38 (354.37,62.55) (113.98,590.72) 
ST 39.48 154.56 68.72 23.11 2.21   
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calculated using the following method. Given the calculated depth values for the 

common feature points and the corresponding ground-truth depth values, the first 

step is to convert both depth data sets to zero-mean data sets by subtracting the 

average depth value from each data set. Second, for both the zero-mean ground-

truth depth data set and the zero-mean calculated depth data set, the average of the 

positive depth values and the average of the negative depth values are computed 

separately, and these are denoted by ,__ postruthavg ,__ negtruthavg

poscalcavg __  and ,__ negcalcavg  respectively. The estimated scale factor 

s  is computed as 

       
negcalcavgposcalcavg
negtruthavgpostruthavg

s
____
____




             (122) 

Finally, by multiplying the zero-mean calculated depth values with the scale 

factor s , and adding the average of the ground-truth depth values to the scaled 

zero-mean calculated depth values, the scaled calculated depth values will be in 

the same scale range as the ground-truth depth values.  

To study the implemented system performance as discussed above, the Table 

image set, whose multiple views are taken indoor with the manual measurement 

of the distances from objects to the camera center, is used for analysis. Fig. 29 

shows 1/5 of the estimated depth values for the middle view (View 4). The 

corresponding ground-truth depth values are plotted on the middle view in Fig. 30.  

The average of the ground-truth depth values of all feature points is 58.10, and 

it is 41.03 for the calculated depth values. Note that the unit of the depth value is 
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inch. After subtracting the average from each depth value data set, the zero-mean 

ground-truth depth values and zero-mean calculated depth values are shown in 

Fig. 31. The combination of these two plots is shown in Fig. 32. In the zero-mean 

ground-truth depth data set and zero-mean calculated depth data set, 

,85.12__ postruthavg ,51.11__ negtruthavg 22.10__ poscalcavg  and 

16.9__ negcalcavg . The scale factor is calculated according to (122) using 

these parameter, 2569.1s . After scaling the zero-mean calculated depth values, 

the zero-mean ground-truth depth values and scaled calculated depth values are 

plotted in ascending order in Fig. 33. By adding the average of ground-truth depth 

values to the zero-mean scaled calculated depth values, the combined plot of the 

ground-truth depth values and scaled calculated depth values is shown in Fig. 34. 

The mean square error (MSE) between the ground-truth and the scaled calculated 

depth values of feature points in the middle view is 0.0869. 
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Fig. 29. Plot of 1/5 of the total number of the calculated depth values for feature 

points in the middle view (View 4) of the Table image set. 
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Fig. 30. Plot of 1/5 of the total number of ground-truth depth values for feature 

points in the middle view (View 4) of the Table image set. 

 

  
 (a)                               (b) 

Fig. 31. (a) Zero-mean ground-truth depth values, and (b) zero-mean calculated 

depth values of the feature points detected in the Table image set. 
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Fig. 32. Combined plot of the zero-mean ground-truth depth values and the zero-

mean calculated depth values of feature points in the Table image set.   

 

 

            (a)                               (b) 
Fig. 33. (a) Zero-mean ground-truth depth values, and (b) scaled zero-mean 

calculated depth values of the feature points detected in the Table image set.  
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Fig. 34. Combined plot of the zero-mean ground-truth depth values and the scaled 

zero-mean calculated depth values of feature points in the Table image set. 

 

5.3.5 Depth reconstruction with a limited number of known ground-truth depth 

From the discussion in Section 5.3.4, by using the ground-truth depth information 

for all the feature points, it was found that the reconstructed calculated depth is 

similar to the ground-truth with a small MSE of 0.0869. In practical applications, 

usually it is not possible to know the depth values for all feature points; so, the 

question is: at least how many points with ground-truth depth value are required 

to reconstruct a reliable 3D model? And, given the ground-truth depth values of 

several feature points, how to scale the calculated depth and reconstruct the 

ground-truth depth values for all the feature points?  

In the special case where only one ground-truth depth value of a feature point 
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is known, the scale factor is calculated by dividing the ground-truth depth value 

by the calculated depth value corresponding to the same feature point. Then, the 

calculated depth values of all feature points are multiplied by the obtained scale 

factor. Using one point may produce incorrect depth values with a high MSE, 

because the chosen point may contain noise and, thus, it is not general enough to 

compute the scale factor of all feature points. Using the Table image set, if the 

ground-truth depth value at (377.36, 254.37) in the middle view is given, the 

scalar is computed to be 1.3802. The ground-truth and scaled calculated depth 

values of feature points are plotted in Fig. 35 in ascending order of depth values. 

The MSE between the ground-truth depth values and the calculated depth values 

is 3.9721, which is much larger than the MSE calculated knowing the ground-

truth information of all feature points (0.0869). 

With more than one known ground-truth depth values of feature points, a 

similar method to that presented in Section 5.3.4 can be used to reconstruct the 

depth values of all feature points. With the prior information of ground-truth 

depth values of N  feature points, the scaled calculated depth values for all 

feature points are computed as follows. The first step is to shift each N -point 

depth data set (the ground-truth depth data set and the corresponding calculated 

depth data set) by its average value to form a zero-mean data set. The average of 

the positive values and the negative values for both zero-mean N -point data sets 

are calculated, and the scale factor is computed similar as in (122). Then, the 

zero-mean calculated depth values of all feature points are multiplied by the  
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Fig. 35. Combined plot of the ground-truth depth values and the scaled calculated 

depth values for feature points in the Table image set using only 1 known ground-

truth depth value. 

 

obtained scale factor.  

The next step is to shift the zero-mean scaled calculated depth values of all 

feature points by adding a shift factor. The shift factor is calculated as follows. 

Using the mean values of both the ground-truth and calculated depth values of 

N  feature points, denoted as Ncalcavg __  and ,__ Ntruthavg  the scalar of 

the mean values is calculated as 

         
Ncalcavg
Ntruthavgmeancalar

__
___s                 (123) 

Then the average for the calculated depth values of all feature points, denoted as 

,__ allcalcavg  is calculated. The shift factor is generated by scaling 

allcalcavg __  by meanscalar _  as  
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           meanscalarallcalcavgshift ___            (124) 

The shift factor calculated in (124) is added to the zero-mean scaled calculated 

depth values of all feature points, giving the final result for the scaled calculated 

depth values of all feature points. 

Experiments are performed by choosing, randomly, N  depth values out of 

the total set of ground-truth depth values for different values of N , in order to 

see the effect of different numbers of known ground-truth depth feature points on 

the reconstructed depth values using the Table image set. N  is chosen to be 1, 3, 

5, 10, 20, 40, 80, 150, 200, 250, 300 and 345, respectively, where 345 is the total 

number of common feature points in the considered image set. The MSE is 

calculated for different values of ,N  as shown in Table 7 and Fig. 36. 

From Table 7 and Fig. 36, it can be seen that, as the number N  of known 

ground-truth depth values increases, the MSE becomes smaller. When N  

increases from 1 to 40, there is a steep drop of the mean square error. If N  

exceeds 40, the mean square error has only a slight difference with that calculated 

using all the ground-truth depth values. The combined plot of the ground-truth 

and reconstructed depth values of all feature points with 1N , 10N , 

40N  and 345N  is shown in Fig. 37. According to the results in Fig. 37, 

the reconstructed calculated depth values using 40 ground-truth depth values are 

similar to those using all ground-truth depth values. Thus, for the considered 

image set, it is sufficient to reconstruct the depth values for all feature points 

using at least 40 points. 
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Table 7. MSE between ground-truth and scaled calculated depth values of feature 

points in the Table image set using different numbers of known ground-truth 

depth values. 

No. of known 
ground-truth 
depth values 

MSE 
No. of known 
ground-truth 
depth values 

MSE 
No. of known 
ground-truth 
depth values 

MSE 

1 3.9721 20 0.2359 200 0.0913 

3 0.7865 40 0.0971 250 0.0894 

5 0.5841 80 0.1028 300 0.0872 

10 0.2611 150 0.0978 345 0.0869 

 

 

 

Fig. 36. MSE between the ground-truth and scaled calculated depth values of 

feature points in the Table image set using a different number of known ground-

truth depth values. 
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                (a)                              (b) 

  
                (c)                              (d) 

Fig. 37. Combined plot of the ground-truth and reconstructed depth values of 

feature points in the Table image set using different numbers of known ground-

truth depth values. (a) Comparison using 1 known ground-truth depth value; (b) 

Comparison using 10 known ground-truth depth values; (c) Comparison using 40 

known ground-truth depth values; (d) Comparison when all ground-truth depth 

values are known. 

 

  



 

 

6. CONCLUSION 

This thesis implements a 3D modeling system that utilizes multiple views of a 

scene to reconstruct the 3D depth information. This work contributes to the field 

of 3D imaging and 2D to 3D video conversion. This chapter summarizes the 

contributions of this thesis and proposes several directions for future research. 

Section 6.1 summarizes the contributions of the thesis, and Section 6.2 discusses 

directions of future work.  

6.1 Contributions 

In this thesis, a complete system for 3D modeling and depth reconstruction is 

implemented. The contributions of the thesis can be summarized as follows: 

 The 3D modeling system in this thesis implements feature detection and 

image registration techniques to relate multiple views. The algorithm of the 

scale invariant feature transform (SIFT) is used to detect the features and to 

match the features among different views.  

 Outlier removal and two-view geometry computation are implemented in this 

thesis. A robust estimation algorithm called the random sample consensus 

(RANSAC) is used to refine the feature matching between two views by 

removing the outliers of the feature points. The geometry between two views 

is estimated using the inliers of feature points. 

 The projective reconstruction of the 3D scene is implemented in this thesis. 

The two-view geometry and correspondences of the feature points are used in 

conjunction with triangulation to reconstruct the projective structure of the 
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3D scene. Bundle adjustment is used to refine the projective reconstruction of 

the 3D scene.  

 The projective reconstruction of the 3D scene is upgraded to a metric 

transformation through auto-calibration. Besides, the intrinsic camera 

parameters can be estimated using auto-calibration. 

 Different image sets with eight multiple views are used to test the 2D to 3D 

conversion system. The results show correct relative calculated depth 

information of the feature points in multiple views. The scale factor in the 

metric transformation frame is estimated with the prior information of 

ground-truth depth values of feature points. The scaled metric reconstruction 

of the 3D scene only has a slight difference with the ground-truth data. The 

accuracy of the scale factor computation was analyzed in terms of the number 

of known ground-truth depth values. 

6.2 Future Work 

There are a few issues left to be further studied and implemented in this thesis in 

order to make the 3D modeling system more robust and stable for various 

applications. 

 In the step of image feature localization and feature matching, the scale 

invariant feature transform (SIFT) used in the 3D modeling system is 

sensitive to the noise in the image sequences and can produce some mis-

matched 2D feature points between multiple views. More robust algorithms 

for feature detection and matching need to be studied. 
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 Triangulation can be improved by implementing the method that corrects the 

positions of 2D points under the existence of noise.  

 The implementation time for the system can be further reduced in order to 

make this system suitable for processing the image and video sequences in 

real time. 

 It is possible to implement the 3D modeling based on a pre-designed model 

with enough prior information about the 3D scene. This will help to reduce 

the complexity and computation. 

 The 2D to 3D conversion system in this thesis can be further extended for 

video sequences instead of images. This will involve a further study of object 

and camera motion estimation. 

 The sparse depth map for feature points can be used to generate a dense depth 

map for all the pixels in the image. The techniques of image rectification and 

image segmentation need to be integrated in the system to generate dense 

depth map. 
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