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ABSTRACT  

This study investigates the vulnerability of subsistence agriculturalists to 

food shortfalls associated with dry periods.  I approach this effort by evaluating 

prominent and often implicit conceptual models of vulnerability to dry periods 

used by archaeologists and other scholars investigating past human adaptations in 

dry climates.  The conceptual models I evaluate rely on an assumption of 

regional-scale resource marginality and emphasize the contribution of 

demographic conditions (settlement population levels and watershed population 

density) and environmental conditions (settlement proximity to perennial rivers 

and annual precipitation levels) to vulnerability to dry periods.  I evaluate the 

models and the spatial scales they might apply by identifying the extent to which 

these conditions influenced the relationship between dry-period severity and 

residential abandonment in central Arizona from A.D. 1200 to 1450.  I use this 

long-term relationship as an indicator of potential vulnerability to dry periods.  I 

use tree-ring precipitation and streamflow reconstructions to identify dry periods.  

Critically examining the relationship between precipitation conditions and 

residential abandonment potentially sparked by the risk of food shortfalls due to 

demographic and environmental conditions is a necessary step toward advancing 

understanding of the influences of changing climate conditions on human 

behavior.   

Results of this study support conceptual models that emphasize the 

contribution of high watershed population density and watershed-scale 

population-resource imbalances to relatively high vulnerability to dry periods.  
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Models that emphasize the contribution of: (1) settlement population levels, (2) 

settlement locations distant from perennial rivers, (3) settlement locations in areas 

of low average annual precipitation; and (4) settlement-scale population-resource 

imbalances to relatively high vulnerability to dry periods are, however, not 

supported.  Results also suggest that people living in watersheds with the greatest 

access to and availability of water were the most vulnerable to dry periods, or at 

least most likely to move when confronted with dry conditions.  Thus, commonly 

held assumptions of differences in vulnerability due to settlement population 

levels and inherently water poor conditions are not supported.  The assumption of 

regional-scale resource marginality and widespread vulnerability to dry periods in 

this region of the U.S. Southwest is also not consistently supported throughout the 

study area. 
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CHAPTER 1: 

HUMAN VULNERABILITY TO CLIMTATIC DRY PERIODS  

IN THE PREHISTORIC U.S. SOUTHWEST 

A fundamental challenge in studies that investigate the relationship 

between climate and human behavior is explaining climate’s differential influence 

on human behavior over time and space.  That is, why do particular climatic 

hazards, such as a dry periods, at some times and places appear to stimulate a 

particular behavioral response and at other times and places do not?  In the arid 

and semi-arid prehistoric U.S. Southwest, this problem is especially evident in 

regional-scale studies when long-term paleoclimatic records of specific climatic 

hazards are compared to a record of expected behavioral responses.  For example, 

dry periods that reduce resource productivity are expected to increase the risk of 

food shortfalls and stimulate a variety of responses to manage these risks.  The 

movement of people out of areas of low productivity to areas of relatively higher 

productivity that often results in settlement abandonment is one potential response 

to these increases in the risk of shortfall.  An investigation of population 

movement and settlement abandonment, however, reveals that some settlements 

are abandoned during dry periods, some are not, and many settlement 

abandonments show no relationship with climatic conditions.  This uneven long-

term relationship between climatic hazards and expected responses can be 

incorrectly interpreted as evidence of little to no influence of climate hazard on 

human behavior.  This uneven relationship may be, instead, evidence of spatial 

and temporal variation in human vulnerability to the hazard.  The specific 
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conditions that contribute to or ameliorate this vulnerability are not, however, 

well understood.  Deficiencies in understanding are caused by a lack of empirical 

scrutiny of existing conceptual models of vulnerability to climatic hazards and the 

reliance of these models on an unverified assumption of widespread resource 

marginality in dry climates.       

 The purpose of this study is to address this fundamental challenge of 

understanding climate’s differential impact on human behavior by advancing 

understanding of conditions that affect human vulnerability to dry periods in arid 

and semi-arid regions.  I focus on dry periods because they are a common climatic 

hazard in these regions and are frequently argued to influence human behavior 

through increasing the risk of food shortfalls.  My approach to this study is to 

evaluate prominent and often implicit conceptual models of vulnerability to dry 

periods used by archaeologists and other scholars investigating past human 

adaptations in dry climates.  These models are used to explain and predict spatial 

and temporal variation in human vulnerability to dry periods.  Each model 

emphasizes different demographic and environmental conditions assumed to 

influence this vulnerability.  A contribution of this study is the identification of 

these largely implicit models of vulnerability to dry periods used in 

archaeological studies of the U.S. Southwest and elsewhere.  In this study, I make 

these models explicit, subject them to empirical scrutiny to evaluate their veracity, 

and identify the spatial scales they might apply.  This is the most spatially and 

temporally comprehensive examination of vulnerability to dry periods, and factors 

that contributed to this vulnerability, yet conducted in the U.S. Southwest.   
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I evaluate four conceptual models of vulnerability to dry periods.  These 

models, discussed in detail in Chapter Three, are as follows.    

1. Aridity Model.  The aridity model emphasizes resource marginality and 

widespread vulnerability to dry periods across all demographic and 

environmental conditions because of low precipitation conditions inherent in 

dry regions.  In this model, differences in vulnerability over time are expected 

to be directly related to differences in dry-period severity.  Vulnerability to 

dry periods is expected to be highest when dry-period severity is greatest.  

Evaluating this model also identifies the spatial distribution of vulnerability to 

dry periods allowing the regional-scale resource marginality assumption to be 

evaluated throughout the study area.   

2. Demand model.  The demand model emphasizes the influence of settlement 

population levels and catchment population density on differences in 

vulnerability to dry periods.  These demographic conditions affect resource 

demands, the rate of consumption of resources, and the extent of labor 

available to invest in strategies to manage the risk of shortfalls.  People living 

in large settlements and/or densely populated watersheds are expected to be 

the most (and sometimes the least) vulnerable to dry periods.  

3. Supply model.  The supply model emphasizes the influence of settlement 

proximity to perennial rivers and long-term average precipitation levels of 

settlement locations to explain differences in vulnerability to dry periods.  

These environmental conditions affect the local-scale potential supply of 

resources and thus the extent of resources people may have access to during 
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dry periods.  Greater access to and availability of water is expected to 

decrease vulnerability to dry periods.   

4. Demand and supply model.  The demand and supply model emphasizes the 

combination of demographic (settlement population levels, catchment 

population density) and environmental conditions (proximity to perennial 

rivers, precipitation levels) to differences in vulnerability to dry periods.  

These conditions affect the balance between resource demands and supplies 

and the extent of resources people have access to during dry periods.  

Vulnerability to dry periods is expected to be greatest where and when 

demands were high and supplies low.   

 I evaluate these models using data on demography, residential 

abandonment, environment, and dry periods for central Arizona during the A.D. 

1200 to 1450 period.  Central Arizona during this period is an excellent context to 

investigate the vulnerability of subsistence agriculturalists to dry periods because 

of the diverse cultural, environmental, climatic, and social conditions.  I use the 

Coalescent Communities Database (Wilcox et al. 2003), the most comprehensive 

source of settlement data for central Arizona, to identify demographic conditions 

and residential abandonments.  I use modern environmental data to identify local-

scale differences in potential resource productivity among settlements and 

watersheds.  I use tree-ring precipitation and streamflow reconstructions to 

identify dry periods during the period of study.  As vulnerability is not a directly 

observable phenomenon, I use residential abandonment and associated population 

movement as an indicator of potential vulnerability to dry periods.  To evaluate 
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the models, I assess the long-term relationship between dry-period severity and 

residential abandonment among settlements by differences in their demographic 

and environmental conditions as emphasized by the vulnerability models.  If 

differences in the relationships are detected when conditions are varied (e.g., high 

vs. low settlement population levels), I attribute these differences to the influence 

of these conditions on vulnerability to dry periods.  This long-term approach is in 

contrast to studies that rely on single space-time coincidences to suggest a 

relationship between climatic conditions and potential behavioral responses (M. 

Ingram 1981:19).  A long-term approach is valid because the effectiveness and 

use of residential abandonment and movement as a response and strategy for 

managing dry-period risks of shortfall is assumed to be consistent over the 250-

year study period.   

 Evaluating models of vulnerability to dry periods is important because the 

specific conditions that contribute to or ameliorate this vulnerability, now or in 

the past, are not well understood or are in dispute (e.g., Cutter et al. 2003; Knight 

and Jager 2009;  Meyer et al. 1998:238-243; Ribot 1995).  Furthermore, no 

standard framework exists for identifying the fundamental sources of differential 

vulnerability (Meyer et al. 1998:240).  In the absence of such a framework, 

archaeologists in the U.S. Southwest rely on common sense notions and 

unverified models that are logical and intuitively appealing but lack systematic 

empirical scrutiny.  For example, it is reasonable to expect that people living 

distant from perennial rivers or in areas of relatively low precipitation should be 

the most vulnerable to dry periods in arid climates because they have the least 
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access to water.  Likewise those living near perennial rivers or in areas receiving 

the highest precipitation levels should be least vulnerable to dry-period declines in 

resource productivity.  Does a long-term settlement history demonstrate this 

relationship between access to water and vulnerability to dry periods?  In the U.S. 

Southwest, after 100 years of archaeological study of climate-human behavior 

relationships, this question has not been systematically addressed.  Similarly, 

increasing population levels can be argued to increase stress on local 

environments thereby increasing vulnerability to dry periods and the number of 

people at risk.  More people, however, can reduce vulnerability because larger 

populations may have more resources (human and environmental) to cope with 

climatic challenges.  Both climatic and archaeological datasets in the U.S. 

Southwest are now sufficiently detailed that we can empirically address these 

questions and evaluate models and assumptions that rely on unverified notions.    

Singular among these unverified notions is the assumption of resource 

marginality that equates low annual precipitation conditions inherent in arid and 

semi-arid regions with widespread resource marginality and vulnerability to dry 

periods.  This assumption treats vulnerability to dry periods as a "pre-existing 

condition" (Cutter 1996: 530-531) of living in an arid region.  Resource 

marginality, by definition, occurs where and when resource productivity (wild and 

cultivated) is inherently low relative to human food needs and oscillates around a 

threshold above which there was enough food to eat and below which there was 

not.  Where resources are marginal, changes in any condition that increases the 

demand or decreases the supply of resources can increase the risk of food 
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shortfalls and motivate a behavioral response.  Models of vulnerability to dry 

periods rely on a marginality assumption to make variation in demographic 

(demand), environmental (supply), and dry periods meaningful for human 

behavior.  Where resources are not marginal, changes in these conditions cannot 

be linked to changes in the risk of food shortfalls, thus, human behaviors argued 

to be linked to changes in demographic or environmental conditions cannot be 

interpreted as responses to shortfall risks.  As I discuss further in Chapter Two, 

there are a number of reasons to question the assumption of marginality in the 

U.S. Southwest.  It is based primarily on perceptions of the challenges of living in 

a dry climate and supported by limited indirect evidence.  Weaknesses in the 

marginality assumption imply weaknesses in models of vulnerability that rely on 

this assumption.  In this study, by evaluating the long-term relationship between 

dry-period severity and residential abandonment at different spatial scales, I 

identify the spatial distribution of vulnerability to dry periods and by implication 

the extent of resource marginality across the study area.      

Evaluating models of vulnerability to dry periods is also important 

because it allows us to appraise arguments that rely on these models.  For 

example, the depopulation of the northern Southwest during the late 1200s is 

coincident with a well-known dry-period and the impact of this dry-period on the 

depopulation has been debated for almost a century (e.g., Ahlstrom et al. 1995; 

Benson et al. 2007; Douglass 1929; Jett 1964; Judge 1989, Kohler et al. 2008; 

Lipe 1995; Varian et al. 1996; Van West and Dean 2000).  Among the many 

factors now considered influential in the depopulation are decreased mobility 
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options due to increased settlement population levels and increases in catchment 

population density caused by settlement aggregation (Van West and Dean 2000; 

Varien et al. 1996).  Decreased mobility could have increased vulnerability to dry 

periods by increasing reliance on limited local productive capacities and 

decreasing access to arable land.  This explanation suggests that the effects of the 

late 1200s dry-period could have been greater than similar or more severe dry 

periods because of, at least in part, these changes in demographic conditions.  I 

consider this a ‘demand model’ of vulnerability to dry periods because it uses 

changes in demographic conditions that affect the demand for resources to explain 

changes in vulnerability to dry periods over time or differences in vulnerability 

among settlements.  While the model is plausible and well reasoned, it is also 

partially amenable to testing using a long-term paleoclimatic record of dry periods 

and a demographic history of mobility.  That is, do we have any evidence that 

settlement population levels or catchment population density influenced mobility 

or vulnerability to dry periods?   If so, the argument is strengthened; if not, we 

cannot lessen the possibility that the changing demographic conditions, the dry-

period, and the depopulation were simply space-time coincidences.   

This identification and empirical evaluation of prevailing conceptual 

models of vulnerability to dry periods will affect the use of and confidence we 

have in these models.  It will affect the use of the models by identifying the 

spatial scales at which they might apply.  For example, I examine differences in 

potential resource productivity and the effects of these differences on 

vulnerability at the scale of individual settlements (e.g., near or far from a 
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perennial river) and at the scale of entire watersheds (e.g., averaged watershed 

precipitation levels).  I also examine the influence of differences in the demand 

for resources at the settlement scale with settlement population levels and at the 

watershed scale with population densities (rooms per square kilometer).  Our 

confidence in the models should be affected by the results of this study.  Whether 

our confidence increases or decreases, results should stimulate other methods and 

places for evaluating these and other models.  Finally, this study demonstrates the 

opportunity and necessity of empirically examining models and notions regarding 

vulnerability to dry periods and the assumptions upon which they rely.   

Organization of this Study and Summary of Results 

 This study of the influence of demographic and environmental conditions 

on vulnerability to dry periods and the models of vulnerability that rely on these 

conditions is presented in ten chapters.  I first define and describe the relationship 

between the key concepts of vulnerability, risk, dry periods, and resource 

marginality.  I argue that there are reasons to question the resource marginality 

assumption and discuss the consequences the assumption has had on 

interpretations and analyses of the challenges and opportunities of living in a dry 

climate (Chapter Two).  I also argue that residential abandonment is an 

appropriate indicator of potential vulnerability to dry periods.  Next, I describe the 

four vulnerability models I evaluate and provide examples of their use in 

archaeological studies in the U.S. Southwest and elsewhere and in modern studies 

of vulnerability to natural hazards (Chapter Three).  I then describe the cultural, 

demographic, and environmental context of the central Arizona study area during 
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the 1200 to 1450 period.  I argue that the diversity within each of these domains 

benefits this study by providing a range of social and environmental conditions to 

investigate vulnerability to dry periods (Chapter Four).   

 My approach to evaluating the vulnerability models is to identify the 

extent to which demographic and environmental conditions influenced the 

relationship between dry-period severity and residential abandonment in central 

Arizona from A.D. 1200 to 1450.  This evaluation involves data on demography, 

environment, dry periods, and residential abandonment (Chapter Five).  I identify 

demographic conditions with this database by using the number of identified 

rooms in each settlement to represent settlement population levels and the number 

of identified rooms in each watershed divided by each watershed's area to 

represent watershed population density.  I identify the environmental conditions 

of each settlement and watershed with modern GIS datasets of the location of 

perennial rivers and average annual precipitation and streamflow levels.  I identify 

dry periods during the period of study with tree-ring precipitation and streamflow 

reconstructions.  I identify residential abandonment from reductions in the 

number of settlements and rooms using settlement data from the Coalescent 

Communities Database (Wilcox et al. 2003).  If differences in the sensitivity and 

strength of the relationship (as identified by the slopes of regression lines and 

correlation coefficients) between dry-period severity and residential abandonment 

among settlements with different demographic and environmental conditions are 

detected, I attribute these differences to the influence of these conditions on 

vulnerability to dry periods.  Results support or challenge the veracity of the 
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models to the extent that the long-term relationship between dry-period severity 

and residential abandonment is an effective indicator of potential vulnerability to 

dry periods.   

  I find that, for most of central Arizona during the 1200 to 1450 period, 

results (Chapters Six through Nine) support conceptual models that emphasize the 

contribution of high watershed population density and watershed-scale 

population-resource imbalances to relatively high vulnerability to dry periods.  

Models that emphasize the contribution of: (1) settlement population levels, (2) 

settlement locations distant from perennial rivers, (3) settlement locations in areas 

of low average annual precipitation; and (4) settlement-scale population-resource 

imbalances to relatively high vulnerability to dry periods are, however, not 

supported by this study.  Results also suggest that people living in watersheds 

with the greatest access to and availability of water were the most vulnerable to  

dry periods, or at least most likely to move when confronted with dry conditions.  

Thus, commonly held assumptions of differences in vulnerability due to 

settlement population levels and inherently water poor environmental conditions 

are not supported.  The assumption of regional-scale resource marginality and 

widespread vulnerability to dry periods due to low average precipitation in the 

region is also not consistently supported throughout the study area.  Critically 

examining the relationship between precipitation conditions and migration 

sparked by the potential risk of resource shortfall due to demographic and 

environmental conditions is an essential step toward advancing understanding of 

the variable influences of changing climate conditions on human behavior in dry 
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climates.  I discuss the contribution of this effort to archaeological research in the 

U.S. Southwest, climate and human behavior studies, and analytical methods in 

the final chapter (Chapter Ten).   
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CHAPTER 2: 
 

VULNERABILITY TO DRY PERIODS:  
 

KEY CONCEPTS AND METHODS OF ASSESSMENT 
 

In this chapter, I define and describe the relationship between 

vulnerability, risk, dry periods, and resource marginality.  I use the concept of 

vulnerability to refer to the potential for subsistence agriculturalists to be 

negatively impacted by dry-period declines in resource productivity.  Where 

resources are marginal, dry-period declines in productivity are expected to 

increase the risk of food shortfalls and prompt a behavioral response to manage 

these risks.  Resource marginality, by definition, occurs where and when resource 

productivity is inherently low relative to human food needs.  As I discuss in this 

chapter, resource marginality is a foundational assumption in the U.S. Southwest 

but there are reasons to question this assumption.  Importantly for this study, our 

models of vulnerability to dry periods (discussed in the next chapter) rely on a 

marginality assumption to make variation in demographic (demand), 

environmental (supply), and dry periods meaningful for human behavior.  

Reliance on a questionable assumption of resource marginality is a primary 

reason our models of vulnerability need to be evaluated.  I conclude the chapter 

by describing my method of assessing vulnerability to dry periods.   

Key Concepts: Vulnerability, Risk, and Dry Periods 

 Vulnerability is a composite concept “incorporating environmental, social, 

economic, political, cultural, and psychological factors" (Meyer et al. 1998:239-

240).  The study of “vulnerability of populations and activities is the most widely 
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used umbrella concept for those factors that mediate between geophysical events 

and human losses” (Meyer et al. 1998:239).  There are many specific definitions 

of vulnerability (see Cutter 1996:531-532 for a summary), but it is commonly 

understood as the "potential for loss" (Cutter 1996:529), the “capacity to be 

wounded” (Kates 1985:17), or the “potential for negative outcomes or 

consequences” (Meyer et al. 1998:239).  More specifically, it is “the degree to 

which a system [such as a human-environment system], subsystem, or system 

component is likely to experience harm due to exposure to a hazard, either a 

perturbation or stress/stressor” (Turner et al. 2003:8074).  Hazards are defined as 

threats to a system and the consequences they produce (Turner et al. 2003:8074).  

Differences in definitions reflect different disciplinary knowledge domains and 

emphases (Adger 1996; Fussel 2007; Jannsen and Ostrom 2006).   

 I follow most closely the definition of vulnerability and the associated 

"vulnerability as hazard of place" approach developed by Cutter (1996:533).  

Cutter (1993 as cited in Cutter 1996:532) defines vulnerability as "the likelihood 

that an individual or group will be exposed to and adversely affected by a hazard.  

It is the interaction of the hazards of place (risk and mitigation) with the social 

profile of communities."  Vulnerability, in this model, is "conceived as both a 

biophysical risk as well as a social response, but within a specific areal or 

geographic domain.  This can be geographic space, where vulnerable people and 

places are located, or social space, who in those places are most vulnerable" 

(Cutter 1996:533).  In other words, "It is the intersection and interaction of both 

the social vulnerability and biophysical/technological vulnerability that create the 
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vulnerability of places" (Cutter 1996:537).  The hazard of place approach to 

vulnerability is appropriate for my study because it combines characteristics of 

social units (such as the demographic conditions I consider) with exposures to 

biophysical hazards or stressors (the dry periods and their severity I consider) and 

the geographic space (such as the settlement locations and watersheds) where 

vulnerable people and places may be located.   

 Other conceptualizations of vulnerability within the hazard of place model 

appropriate for my study include those developed by the National Research 

Council and the World Food Programme.  The National Research Council 

(2001:114) defines vulnerability as the "Extent to which a population is liable to 

be harmed by a hazard event.  Depends on [sic] the population's exposure to the 

hazard and its capacity to adapt or otherwise mitigate adverse impacts."  In the 

context of food insecurity, or what I refer to as the risk of food shortfalls, the 

World Food Programme (2009) considers vulnerability a “forward-looking 

concept aimed at assessing community and household exposure and sensitivity to 

future shocks.”  Vulnerability to food insecurity is expected to be “determined by 

their [households or communities] ability to cope with their exposure to the risk 

posed by shocks such as droughts, floods, crop blight or infestation, economic 

fluctuations, and conflict.  This ability is determined largely by household and 

community characteristics, most notably a household’s asset base and the 

livelihood and food security strategies it pursues” (World Food Programme 

2009:27-28).  These conceptualizations of vulnerability are also appropriate for 

my study because they combine 'internal' factors of a vulnerable system with its 
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exposure to 'external' hazards (Fussel 2007:160).   

 Vulnerability and risk are closely related concepts.  Risk has been defined 

and used in a number of ways (e.g., Cashdan 1990; Tainter and Tainter 1996; 

Winterhalder et al. 1999) but is generally understood as the probability of a loss 

(Cashdan 1985; Wiessner 1982; Winterhalder 1986) or negative consequence 

(such as a food shortfall) multiplied by the magnitude of the consequences.  These 

risks can be real or perceived as human perceptions of changing conditions and 

associated risks may differ from actual changes in conditions (Burton et al. 1993; 

Ortiz 1979; Powell 1988:82-86; Whyte 1985).  In this study, I do not address 

perceptions of risk, relying instead on relative changes in key climate, 

demographic, and environmental variables to indicate relative changes and 

differences in risk of shortfall.  Brooks (2003:6-7) argues that studies of risk and 

vulnerability are essentially examining the same processes because both are 

“ultimately interested in the physical hazards that threaten human systems, and in 

the outcomes of such hazards as mediated by the properties of those systems, 

described variously in terms of vulnerability, sensitivity, resilience, coping ability 

and so on" (Brooks 2003:7).   In this study, I use a vulnerability framework, while 

recognizing my analysis is also about risk.   

 Vulnerability to dry periods is the focus of this study.  [Note that a 

different type of vulnerability is not implied if “to dry periods” is omitted in the 

text of this study].  Dry periods are multi-year periods of relatively low 

precipitation and streamflow (see Chapter Five for methods of identifying these 

dry periods).  Dry periods decrease resource productivity (wild and cultivated) in 
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arid and semi-arid regions because water is a primary limiting factor on plant 

growth (Fischer and Turner 1978) and precipitation levels are typically below the 

moisture requirements of most cultivated crops such as maize (Muenchrath and 

Salvador 1995; Shaw 1977).  Animals that rely on plant foods are also affected by 

changes in climate that influence plant growth (Bright and Hervert 2005; Osborn 

1993).  Hence, animals that rely on these herbivores are also affected.  Since my 

concern is with vulnerability to dry periods and an associated risk of food 

shortfalls for humans, I define shortfalls as those conditions insufficient to meet 

human food needs.  The focus is multi-year shortfalls associated with multi-year 

dry periods that likely stress or exhaust typical buffering strategies and necessitate 

a response to prevent the negative effects of long-term food deprivation.  The risk 

of food shortfalls is the same as the concept of “food insecurity”--terminology 

often used outside of archaeology (e.g., Bohle et al. 1994; World Food 

Programme 2009).  Decreases in resource productivity created by decreased 

precipitation or streamflow can increase the risk of food shortfalls (create a 

“hazard”) among subsistence agriculturalists in dry climates.  Although I focus on 

dry-period-related risks of food shortfalls, it is important to note that many factors 

affect the risk of shortfall.  For example, Sen (1999) has shown that famines (food 

shortfalls) are also a consequence of social, political, and economic inequalities 

that affect access to food.  In my study area, environmental factors, such as soil 

type and quality (Sandor et al. 2007), temperatures (Salzer 2000b), insects and 

plant diseases, and the extent of arable land all affect resource productivity and 

can also affect shortfall risks.  I do not analyze these.  Instead, for this study, I 
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consider select demographic and environmental conditions that influence the 

potential risk of shortfall as identified by the models of vulnerability I evaluate.   

Identifying the reasons why people may be vulnerable to dry-period risks 

of food shortfall is difficult because of the complexity of factors, and changes in 

these factors, that may contribute to or ameliorate this vulnerability.  In general, 

vulnerability is a function of the exposure and sensitivity of a system to a hazard 

and the adaptive capacity or resilience of the system to cope, adapt, or recover 

from the effects of the hazard (Adger 2006:269; Smit et al. 2001:893-895; Smit 

and Wandel 2006:286; Turner et al. 2003).  Specific contributors to vulnerability 

to dry periods include such factors as population levels and density, subsistence 

strategies, social stratification, technologies, poverty, health, landlessness, poor 

soils, social relations including political weakness, gender, occupation, 

race/ethnicity, immigration status, extent of social networks, and especially 

combinations of these factors (Blaikie et al. 1994; Liverman 1990a:49; Meyer et 

al. 1998:238-243; Ribot 1995; Wisner et al. 2004:11-12).  Because the states of 

these potential contributors to vulnerability to dry periods change over time, 

vulnerability will also vary.  Changes in strategies to manage the risk of shortfalls 

and changes in the extent of implementation and effectiveness of these strategies 

are also responsible for changes in vulnerability over time.  Furthermore, "no 

standard framework exists for identifying the fundamental sources of differential 

vulnerability, but clearly they are numerous and complex" (Meyer et al 

1998:240).  In brief, "To be vulnerable to drought is to lack environmental, 

technological, economic, or political defenses against its impacts (Liverman 
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1990a:50).   

Resource Marginality 

The U.S. Southwest, like many arid and semi-arid regions, is often 

considered a “fragile and marginal environment for agriculture” (Diamond 

2005:137) and a "harsh and variable region" (Dean et al. 1994:86).  This 

widespread perception was, at least in part, promoted by early 20th century 

scholars in the Southwest whose perspectives were shaped by the agriculture of 

the temperate eastern states, the technology of the industrial era, and ultimately 

European traditions (Fish and Fish 2004:187; Fish 2004:116-117).  “By 

comparison, the hard-won harvests of Indian peoples served mainly to illustrate 

the vicissitudes that these cultivators had to overcome” (Fish 2004:117).  Most 

Southwestern archaeologists have adopted this perception and seem to accept the 

view that populations in the region were always undergoing a moderate amount of 

stress because of the region’s aridity and variability in the timing of rainfall 

(Cordell 1996:253).  Lekson et al. (1994:16) asserts that 2,000 years of human 

occupation in the Southwest including associated technological, social, and 

ideological changes were "constrained by a harsh and unpredictable natural 

environment."  Fish and Fish (1994:88) refer to this focus on resource marginality 

and its consequences as "a unifying theme throughout southwestern archaeology."  

Similar notions of native Southwestern peoples struggling to survive in a marginal 

and harsh environment prevail in the popular imagination as well (e.g., Childs 

2007).     

 This perception of climate-related resource marginality, widespread 
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vulnerability to dry periods, and risks of food shortfalls has been informed by:  

1. ethnohistoric accounts of harvest failures and crop damage due to both 

flooding and drought (Abruzzi 1989; Bradfield 1971; Castetter and Bell 

1942; Russell 1975 [1908]; Slatter 1979; Zarbin 1980);  

2. archaeological evidence of extensive water control strategies to 

manipulate and maximize available precipitation (Fish and Fish 1984; 

Vivian 1974);  

3. skeletal evidence of nutritional deficiencies (El-Najjar et al. 1976; Martin 

1994; Sheridan 2003);  

4. crop and climate studies indicating that annual precipitation levels are 

mostly below the moisture requirements of major crops such as maize 

(Muenchrath and Salvador 1995; Shaw 1977); and, 

5. climate studies that demonstrate low mean and highly variable 

precipitation conditions (e.g., Sheppard et al. 2002).   

An abundance of space-time coincidences between dry periods and potential 

human responses such as settlement abandonment have also supported this 

perception (e.g., Ahlstrom et al. 1995; Adams 1998; Cordell 1975; Cordell et al. 

2007; Dean et al. 1985; Euler et al. 1979; Gumerman 1988; Judge 1989; Lipe 

1995; Minnis 1985; Orcutt 1991; Schlanger 1988; Van West and Dean 2000). 

 There are reasons to question the extent of resource marginality and the 

prevalence of climate-related food shortfalls.  First, inferences of shortfall risk 

that rely on ethnohistoric examples of dry-period challenges to agriculture may 

not be valid because the scale, complexity, social organization, and technology of 
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prehistoric groups changed over time and differ from those observed historically.  

For example, historically-observed indigenous irrigated agriculture in the Phoenix 

basin was substantially smaller-scale than irrigated agriculture practiced 

prehistorically (see Howard 1993 for a description of Hohokam irrigation 

systems).  Larger-scale systems increase the potential for agricultural surplus, 

depending on the size of populations relying on these systems.  Second, much of 

the ethnographic evidence supporting climate-related shortfalls (e.g., Slatter 1979) 

is from upland portions of the Southwest without extensive perennial rivers and 

where climatic conditions, especially cool temperatures and shorter growing 

seasons, are more agriculturally limiting.  Third, wild foods in central Arizona 

were “predictable, storable, and abundant…and harvest times for staples are 

spread over much of the year” (Fish 1989:22).  Thus, wild foods could have 

substantially offset declines in cultivated crop productivity and reduced the risk of 

shortfall if these foods were less sensitive to dry-period declines in productivity or 

located in less affected areas.  Fourth, cultural trajectories in the region spanning 

at least a millennium suggest effective adaptations to prevailing climatic and 

environmental conditions including a repertoire of strategies to manage shortfall 

risks (e.g., Fish 1989).  Finally, empirical validation of resource marginality and 

endemic shortfalls is lacking, except for the few skeletal studies of nutritional 

deficiencies (El-Najjar et al. 1976; Martin 1994; Sheridan 2003).  Such validation 

might come from agricultural production models that demonstrate recurring 

patterns of caloric insufficiency.  Production models, however, are difficult to 

construct and defend due to the plethora of assumptions required and inadequate 
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information about the essential variables (e.g., number of people, water 

requirements and yields of prehistoric maize varieties, field sizes, etc.).  That 

resource marginality led to endemic risks of shortfall, then, is a plausible 

hypothesis rather than a well supported assumption.   

Consequences of the Marginality Assumption 

 The perception of resource marginality has transformed over time into a 

foundational assumption of many Southwestern archaeological studies (e.g., 

Doyel and Dean 2006; Gumerman 1988; Larson et al. 1996; Minnis 1985; 

Rautman 1993; Tainter and Tainter 1996).  For example, the assumption allows 

climate-related decreases in resource productivity to be strongly linked to the 

increasing risk of food shortfalls and responses to these risks.  Marginality implies 

a strong linkage because resource levels are assumed to always be minimal and 

fluctuate around a threshold above which there was enough food and below which 

there was not.  Thus, dry-period declines in productivity are expected to have 

increased the risk of shortfalls and stimulated behavioral responses to manage 

these shortfall risks.  Marginality, then, provides a critical linking argument 

between climate and human behavior by making climate-related variation in 

resource productivity meaningful to people because of the risk of shortfalls.    

 Importantly for this study, models of vulnerability to dry periods in the 

U.S. Southwest rely on the marginality assumption to link changes and 

differences in demographic and environmental conditions to differences in 

vulnerability to dry periods.  The marginality assumption implies that any 

condition that affects the demand or supply of resources will also meaningfully 
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influence shortfall risks and prompt human responses.  For example, people living 

in settlement areas of relatively low inherent productivity (e.g, in an area of low 

precipitation) should be more vulnerable to dry periods than people living in areas 

of relatively high inherent productivity.  This is because people living in areas of 

low productivity are assumed to be closest to the threshold above which there is 

enough food to eat and below which there is not.  Thus, when dry periods 

decrease productivity, the risk of shortfalls is assumed to increase in all areas but 

be most meaningful in areas of low productivity where resource supplies may 

have declined below a threshold so that there was not enough food to eat.  

However, if resources were abundant (not marginal) and dry-period declines in 

productivity in areas of both relatively low and high productivity did not approach 

the threshold below which food needs were unable to be met, then differences in 

inherent productivity among settlements would not have meaningfully influenced 

shortfall risks.  Any change in human behavior associated with dry-period 

declines in productivity, then, could not be interpreted as responses to the risk of 

shortfalls.   

 The marginality assumption inappropriately obviates considerations of the 

role of human action in ameliorating or contributing to vulnerability.  People have 

a variety of strategies for living in dry climates, managing vulnerability, and 

responding to shortfall risks.  Such strategies include mobility, resource 

diversification, physical storage, exchange, and population distribution on the 

landscape (e.g., Braun and Plog 1982; Burns 1983; Dean 2006; Halstead and 

O’Shea 1989b:3-4; Minnis 1985; Rautman 1993; Slatter 1979:80-84).  These 
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strategies can address shortfall risks and ameliorate vulnerability by increasing 

resources or access to resources.  These strategies and responses are choices 

among available opportunities (Burton et al. 1993) and their ameliorating or 

contributing influence on vulnerability can be evaluated.  Variation in the 

effectiveness or implementation of these strategies over time may also explain 

variation in vulnerability to dry periods.  That is, why at some places and times 

climate appears to have influenced human behavior and at other times it does not.  

When marginality, shortfalls, and vulnerability are assumed, however, the 

influence of these choices and changes in their implementation or effectiveness 

are not adequately considered.   

 Uncritical acceptance of the marginality assumption can slow the pace of 

theoretical and methodological advancement in climate-human behavior studies in 

the U.S. Southwest.  The pace can be slowed by failing to identify if serious 

vulnerabilities existed and/or by failing to stimulate rigorous efforts to identify 

non-demographic and non-environmental causes of this vulnerability if it existed 

(e.g., disease, conflict, social stratification).  Without a consideration of multiple 

factors that influence vulnerability to dry periods, we cannot effectively explain 

the diversity of responses including no response to dry periods evident when the 

paleoclimatic record of dry periods is compared to the archaeological record of 

behavioral change (Nelson et al. 2010).  Weaknesses in our ability to account for 

a diversity of responses to dry periods including no response can result in 

frustration with current approaches that discourage analytical and interpretive 

advancements.  The marginality assumption is at least partly responsible for 
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current limitations in archaeological understanding of climatic influences on 

human behavior because it has focused attention on developing more refined 

identification and characterization of climatic events and on mostly demographic 

and environmental explanations of differences in vulnerability.  This study’s 

challenge to the marginality assumption is inspired by and builds on previous 

work that has questioned the role of drought as the primary cause of 

abandonments at various times and places in the U.S. Southwest (e.g., Dean 1996; 

Hill et al. 2004; Lipe 1995; Kintigh 1985; Van West 1990; Van West and Dean 

2000; Kohler and Van West 1996; Varien et al 1996).   

 The impact of the marginality assumption is not limited to climate-human 

behavior studies.  Yoffee (1994:350) observed that at a conference on prehistoric 

social complexity in the Southwest, the major theme was "bad weather".  In 

support of his claim he listed multiple references to resource marginality among 

the papers that comprised the edited volume that resulted from the conference 

(Yoffee 1994:350; in Tainter and Tainter 1994).  It was clear that the shared 

assumption of marginality had a strong influence on approaches to the problem of 

complexity.  Elsewhere, Harry (2005) examined the influence of agricultural 

marginality on ceramic specialization at six areas in the prehistoric U.S. 

Southwest.  She found little evidence supporting the influence of agricultural 

marginality on the adoption of part-time ceramic specializations.  Rather than 

question her method of differentiation of settlements into more or less marginal, 

she argues that attention must be focused on the differing social and economic 

contexts between prehistoric and historic/modern-day peasants to understand why 



 

 26

agricultural marginality did not influence ceramic specialization.  I suggest that 

her reliance on environmental criteria alone (e.g., potential for floodplain 

agriculture, precipitation levels and variability) to identify differences in 

marginality among settlements did not allow an effective consideration of the 

research problem she considered.    

Assessing Vulnerability with Residential Abandonment 

 Understanding the influence of dry periods on vulnerability requires a 

method of assessing vulnerability, and changes in vulnerability, during the period 

of interest throughout the study area.  Vulnerability, however, is not a directly 

observable phenomenon (Moss et al. 2001:8) making measurement and 

quantification difficult (Leurs et al. 2003:256).  A number of studies have 

developed a set or composite of proxy indicators to quantify vulnerability (e.g., 

Moss et al. 2001; see Leurs et al. 2003:256-267 for other examples) and the 

development of vulnerability assessment tools is now a significant research 

emphasis.  For example, the Pacific Northwest Laboratory Vulnerability 

Assessment Program developed a composite of sixteen variables such as life 

expectancy, percent of the population with access to safe water, and the percent of 

non-managed land to assess vulnerability to climate change for 38 countries 

(Moss et al. 2001).   

 In some case studies, however, the “relative impacts of stressors in a 

region” (e.g., dry-period risks of shortfall) and responses can be used as an 

objective ex-post facto measure of vulnerability (Leurs et al. 2003:256-257).  I 

follow this approach and use one potential response to dry periods to assess 
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vulnerability: residential abandonment.  In the nomenclature of modern 

vulnerability studies, residential abandonment is referred to as "persons 

displaced" and it has been used as a quantitative index of hazard impacts (Meyer 

1998:242).  I do not use single abandonment events at any spatial scale as a 

measure of vulnerability to dry periods; such events may be simply time-space 

coincidences with a dry-period.  Rather, I use the long-term (250-year) 

relationship between changes in dry-period severity and changes in residential 

abandonment at the scale of settlements, watersheds, and the total study area as an 

indicator of potential vulnerability to dry periods (as discussed further in Chapter 

Five).  That is, if over the 1200 to 1450 period of study, changes in dry-period 

severity were strongly associated with proportionate changes in residential 

abandonment, then dry-period influences on this abandonment may be reasonably 

concluded.   

 Residential abandonment is an archaeological signature of population 

movement.  This movement is a reasonable indicator of potential vulnerability to 

dry periods for several reasons.  First, people can take advantage of the spatial and 

temporal structure of resource failure across a landscape by moving away from 

areas of food scarcity and low productivity to areas of higher productivity 

(Halstead and O’Shea 1989a), reducing their vulnerability to the dry climate 

conditions.  Second, ample ethnohistoric evidence in the U.S. Southwest has 

documented residential abandonment in response to climate-related resource 

shortfalls (Abruzzi 1989; Slatter 1979).  Third, dry-period influences on 

residential abandonment (often in combination with other factors) have been 
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identified in a number of archaeological studies in the U.S. Southwest (e.g., 

Ahlstrom et al. 1995; Adams 1998; Cordell 1975; Cordell et al. 2007; Dean 1988; 

Dean et al. 1985; Euler et al. 1979; Gumerman 1988; Jett 1964; Judge 1989; Lipe 

1995; Minnis 1985; Orcutt 1991; Schlanger 1988; Slatter 1979; Van West and 

Dean 2000).  Fourth, dry periods are among the climatic conditions understood to 

have led to population movements in many parts of the world (McLeman and 

Smit 2006; Meze-Hausken 2000).  Note that archeologically identified residential 

abandonment in the prehistoric Southwest is a record of population movements, 

not a record of the relinquishment of places, ownership, or the disappearance of a 

people (Nelson and Schachner 2002:169).   

Movements in response to dry-period shortfall risks can be either short 

(intra-watershed) or long-distances (inter-watershed) when reductions in shortfall 

risk (real or perceived) can be achieved by either (as discussed below).  In recent 

migration studies of living peoples in Ecuador (Gray 2008), Burkina Faso (Henry 

et al. 2004), and Nepal (Massey et al. 2007), data show that movement out of 

communities with adverse environmental conditions (e.g., low rainfall, rainfall 

variability, environmental degradation) resulted more often in short rather than 

long-distance moves.  Short-distance movements can reduce dry-period shortfall 

risks when there is substantial local-scale spatial heterogeneity of topographic and 

environmental conditions that affect potential resource productivity (Massey 

2007:7).  Short-distance movements to new settlement areas and uncultivated 

lands can also be sufficient to increase productivity and decrease dry-period 

shortfall risks if these risks were created or exacerbated by declining productivity 
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of continuously cultivated lands.   

Substantial spatial heterogeneity in conditions influencing potential 

productivity exists within central Arizona and the individual watersheds that 

comprise the study area (see Chapter Four for the study area description).  For 

example, settlements in the study area were located in areas receiving an average 

of 7 to 35 inches of precipitation annually, both near and far from perennial rivers, 

and in areas with average annual temperatures ranging from 49 F to 71 F (based 

on modern climate data from the Western Regional Climate Center 2010).  Areas 

settled range in elevation from 994 to 6,966 feet.  The study area also includes 

seven of the thirty-four biotic communities identified in the Southwest (Brown et 

al. 1979; The Nature Conservancy in Arizona 2004) and forty-one soil 

classifications (Natural Resources Conservation Services 2008).  In a single 

watershed covering 5,612 square kilometers (the Upper Salt), settlements were 

located in areas receiving an average of 15” to 35” of precipitation annually, both 

near and far from perennial rivers, and in areas with average annual temperatures 

ranging from 51 F to 69 F.  Areas settled range in elevation from 2,097 to 6,966 

feet.  The watershed includes five biotic communities and fourteen soil 

classifications.  Thus, movements to destinations outside of the study area were 

not necessary to substantially change environmental conditions and influence 

potential productivity.  This heterogeneity also implies that dry periods impacted 

neighboring communities differently, creating a mosaic landscape of 

vulnerability.  

Residential abandonment and movement from settlement areas is, 
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however, an imperfect indicator of vulnerability to dry periods because 

movement, like vulnerability, is a complex phenomenon that lacks a single cause.  

Thus, any assessment of the extent of movement over time conflates a variety of 

factors and potential causes (Meze-Hausken 2000).  I do not attempt to identify 

these factors or causes by, for example, distinguishing between moves to places 

that are far or environmentally different from ones that are close and 

environmentally similar.  Factors that affect decisions to move include “push” 

factors at the population origin, “pull” factors at the population destination, and 

the transportation costs between the two (Anthony 1990; Herberle 1938; Lee 

1966).  If people are vulnerable to dry periods and dry-period risks of shortfall 

provide a “push” to move, people may decide not to move if more productive 

locations are limited, or perceived to be limited, or the real or perceived costs of 

moving are greater than the benefits of remaining in place.   

Population movement is also understood as “a strategy of resituating, both 

socially and ecologically, and perhaps even ideologically” (Nelson 1999:22; see 

also Nelson and Hegmon 2001 and Nelson and Schachner 2002).  People can 

move for "religious, kinship, trade, artistic, and personal obligations" (Kelley 

1992:48) and movement itself can be culturally valued (Naranjo 1995).  

Vulnerability to dry periods may also be addressed by a variety of strategies that 

do not include residential abandonment.  People may diversify their resources and 

diets, increase physical food storage, acquire food through exchange, decrease 

food consumption, and socially reorganize (e.g., Bawden and Reycraft 2000; 

Braun and Plog 1982; Burns 1983; Dean 2006; Halstead and O’Shea 1989b:3-4; 
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Minnis 1985; Rautman 1993; Slatter 1979:80-84).  Decisions to move, then, are 

not simply a function of vulnerability and risk but of real or perceived 

opportunities, costs and benefits, and the effectiveness of other strategies to 

manage declines in resource productivity and the risk of shortfall.   

In sum, the intersection of different economic, social, and environmental 

conditions creates different potentials for vulnerability.  Some of these conditions 

are those considered in this study: dry periods, population levels and density, and 

local-scale resource productivity.  If residential abandonments were a response to 

dry periods, these movements should correlate over the 250-year period of study 

with the worst combinations of conditions.   

Conclusion 

 In this chapter, I define and describe the relationships among vulnerability, 

risk, dry periods, and resource marginality.  In both practice and thinking in the 

U.S. Southwest and other dry climates, these concepts are often closely linked and 

sometimes difficult to distinguish.  One of the contributions of this study is to 

demonstrate the value of considering each of these concepts separately and 

questioning the relationship among them.  For example, people are vulnerable to 

dry-period risks of shortfall in dry climates only to the extent that resources were 

marginal and existing strategies to manage these risks ineffective.  Thus, there is 

not a necessary and direct linkage between dry periods, risk, vulnerability, and 

human response.  I have argued that a questionable assumption of resource 

marginality has informed this linkage and our models of vulnerability.  Questions 

regarding the validity of the marginality assumption are a strong reason why our 
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models of vulnerability need to be evaluated.  In the next chapter, I describe these 

models that inform our thinking about the challenges of living in dry climates.  
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CHAPTER 3: 
 

CONCEPTUAL MODELS OF VULNERABILITY TO DRY PERIODS 
 
 My approach to advancing understanding of conditions that affect human 

vulnerability to dry periods is to evaluate four prominent and often implicit 

conceptual models used by archaeologists and others investigating past human 

adaptations in dry climates.  These models are used to explain and predict spatial 

and temporal differences in vulnerability to dry periods and they each emphasize 

different demographic and environmental conditions assumed to influence this 

vulnerability.   

 Neither I nor the researchers that have employed the models I evaluate 

assume that demographic and environmental conditions are the only conditions 

that contribute to vulnerability to dry periods.  These conditions and changes in 

these conditions, however, are often emphasized (individually or in combination) 

and form an important link in the chain of causal argument regarding climatic 

influences on human behavior.  The individual contribution of a specific condition 

to dry-period vulnerability has been argued because in the context of assumed 

resource marginality, changes in either resource demands (represented by 

demographic conditions) and/or changes in resource supplies (represented by 

environmental conditions) may have created population-resource imbalances that 

increased vulnerability to dry periods.  The indicators I use to represent 

differences in these conditions (settlement population levels, watershed 

population density, settlement locations relative to perennial rivers, and average 

annual precipitation levels) are also only a subset of characteristics that may 
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influence resource demand and supply.   

 I identified these models by considering arguments, expectations, and 

assumptions regarding climatic influences on human behavior prevalent in U.S. 

Southwestern archaeological studies and in modern studies of vulnerability to 

natural hazards conducted by researchers in other disciplines.  This is the first 

archaeological effort in the U.S. Southwest or elsewhere, to my knowledge, to 

explicitly identify these models and systematically examine over an extended 

period the influence of demographic and environmental conditions on 

vulnerability to dry periods in order to test the validity of these models.  It is 

important to evaluate these models because they lack empirical scrutiny, are 

seldom identified explicitly but are rather embedded in other arguments, and rely 

on an unverified assumption of widespread resource marginality due to low 

precipitation in the region.   

 In this chapter, I describe these models and provide examples of their use 

and discuss how they have affected interpretations of vulnerability to dry periods 

as well as important events in the prehistory of the U.S. Southwest.  The models 

are summarized in Table 3.  I also provide an initial description of how I evaluate 

each model with greater detail provided in Chapter Five.   

 
 



 

Table 3.1.  Summary of Conceptual Models, Expectations, and Relationships to 
be Evaluated. 

 

Conceptual 
Models 

Conditions 
Expected To 
Influence 
Vulnerability 
To Dry Periods 

Expected 
Influence Of 
Conditions On 
Vulnerability To 
Dry Periods 

Actual Relationships To Be 
Evaluated In This Study 
And Results That Will 
Support Model Expectations 

 
Aridity 

 
regional scale 
aridity 

 
increase as dry-
period severity 
increases 

 
strong and sensitive 
relationship1 between dry-
period severity and 
residential abandonment in 
all watersheds in study area  

    
Demand 
models 

settlement 
population 
levels 

increase as 
settlement 
population levels 
increase 

relationship between dry-
period severity and 
residential abandonment 
increases in sensitivity and 
strength as settlement 
population levels increase 

    
 watershed 

population 
density 

increase as 
watershed 
population 
density increases 

stronger, more sensitive 
relationship between dry-
period severity and 
residential abandonment in 
watersheds with higher 
density than in watersheds 
with lower density 

    
Supply 
models 

settlement 
proximity to 
perennial rivers  

greater among 
settlements far 
from perennial 
rivers than among 
those near 
perennial rivers 

stronger, more sensitive 
relationship between dry-
period severity and 
residential abandonment in 
settlements far from 
perennial rivers than among 
settlements near perennial 
rivers 

 settlement area 
precipitation 
and streamflow 
levels 

increase as 
precipitation 
and/or streamflow 
levels decrease 

relationship between dry-
period severity and 
residential abandonment 
increases in sensitivity and 
strength as settlement area 
precipitation and/or 
streamflow levels decrease 
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Conceptual 
Models 

Conditions 
Expected To 
Influence 
Vulnerability 
To Dry Periods 

Expected 
Influence Of 
Conditions On 
Vulnerability To 
Dry Periods 

Actual Relationships To Be 
Evaluated In This Study 
And Results That Will 
Support Model Expectations 

 
Demand 
and supply 
models 

 
population-
resource 
imbalances 
(watershed-
scale) 

 
increase as 
resource demands 
exceed supplies 

 
stronger, more sensitive 
relationship between dry-
period severity and 
residential abandonment 
where demand was high and 
supply low than where 
demand was low and supply 
high 

  
population- 
resource 
imbalances 
(settlement-
scale) 

 
increase as 
resource demands 
exceed supplies 

 
same as above 

1Strength of the relationship is assessed with correlation coefficients and the 
sensitivity with the slope of regression lines, as discussed at the end of Chapter 
Five. 
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Aridity Model of Vulnerability to Dry Periods 

 Aridity models emphasize the contribution of low precipitation and 

resource marginality to vulnerability to dry periods.  Vulnerability in this model is 

understood in terms of the biophysical conditions of the environment (resource 

marginality and aridity), ignoring characteristics of human populations (Liverman 

1990b).  Biophysical vulnerability "is a function of the frequency and severity (or 

probability of occurrence) of a given type of hazard" (Brooks 2003:4) such as a 

dry period.  Social, demographic, and other conditions of human populations 

exposed to dry periods and the contribution of these conditions to their 

vulnerability to dry periods are either ignored, not emphasized, or assumed to be 

small in biophysical models of vulnerability to natural hazards.     

 An emphasis on the contribution of biophysical conditions to vulnerability 

to climatic hazards is widely applied by engineers and economists in the technical 

literature on disasters (Fussel 2007) and within global environmental change 

studies (Liverman 1990b:30).  An emphasis on biophysical conditions has its 

theoretical origins in the risk-hazard vulnerability approach originating in 

geography.  Two examples of this approach are vulnerability to sea level rises and 

vulnerability to floods.  Topographic contours are used almost exclusively to 

identify the extent of vulnerability to these hazards (e.g., Titus and Richman 

2001).  Regarding vulnerability to global environmental change, a biophysical 

approach "implies that in order to understand and delimit vulnerability, we just 

need to know how and where the physical environment will change.  Physical 

indicators will then provide adequate insight into the populations at risk" 
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(Liverman 1990b:30).   

 Archaeological acceptance of a biophysical model of vulnerability to dry 

periods (and other climatic conditions) is pervasive in the U.S. Southwest because 

of the assumption of resource marginality and widespread vulnerability to 

relatively low precipitation in the region (as I discuss in the "Resource 

Marginality” section in Chapter Two).  The assumption of resource marginality 

when employed to explain social and cultural changes in the U.S. Southwest 

essentially draws the contours of vulnerability to dry periods around the entire 

region due to relatively low and variable precipitation.  As a result, studies of 

human-environment interactions and climatic influences on human behavior in 

the U.S. Southwest are usually studies of risk and the contribution of marginality 

and climatic event severity to this risk (e.g., Doyel and Dean 2006; Graybill et al. 

2006; Gumerman 1988; Larson et al. 1996; Minnis 1985; Nials et al. 1989; 

Rautman 1993; Tainter and Tainter 1996).   

 Studies that emphasize quantitative estimates of precipitation levels 

relative to "normal" or average conditions and compare severe conditions to 

coincident behavioral changes signal the use of an aridity model.  For example, 

Stahle et al. (2007) and Cook et al. (2007) use tree-ring reconstructed summer 

Palmer Drought Severity Indices (PDSI) to identify decadal droughts more severe 

and prolonged than any witnessed during the modern instrumental period.  Cook 

et al. (2007; and references contained therein) identify temporal correlations 

between severe dry periods and a number of important socio-cultural events 

including the 14th century decline of complex Mississippian chiefdoms and 
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famine, disease, and village abandonment in the Puebloan region of New Mexico 

in the 16th century.  Stahle et al. (2007:136-140) also use the temporal 

coincidence between identified droughts and historical information on the 

environmental conditions and activities of Euroamerican and Native American 

societies throughout the U.S. to validate the PDSI reconstructions.  Although 

Stahle et al. (2007:136) find a number of temporal correlations between severe 

dry periods and social and environmental events, they also find a number of 

"disagreements" between these dry periods and known historical events.  Stahle et 

al. (2007:136) attribute these disagreements to climate proxy reconstruction errors 

or the fact that “tree-ring data integrate moisture conditions during and sometimes 

preceding the growing season, and may not well represent fall or winter 

conditions.”  I suggest that these disagreements between dry periods and known 

historical events also strongly suggest variation in human vulnerability to dry 

periods driven by other factors in addition to weaknesses in the climate 

reconstruction's ability to accurately identify relevant precipitation conditions and 

their severity.     

 Explanations of regional-scale abandonments that attribute them to 

catastrophic climate events, such as dry periods, treat vulnerability as a regional-

scale biophysical condition and assume endemic shortfalls and widespread 

vulnerability due to low precipitation.  This assumption of widespread 

vulnerability ignores or over-rides any intra-regional social and environmental 

diversity that influences vulnerabilities.  For example, abandonment of the San 

Juan Basin in the mid-1100s and the Mesa Verde region in the late 1200s has 



 

 40

been (Douglass 1929; Judge 1989, and others) and continues to be (Benson et al. 

2007) attributed to severe dry periods.  Differences in vulnerability across these 

regions due to varying demographic and environmental conditions and how these 

differences might have affected dry-period impacts and responses are often not 

systematically considered.  Van West’s (1994) spatially detailed study of soil 

types and modern crop yields and potential variation in impacts of the late 1200s 

drought on agricultural productivity is an early and notable exception (see also 

recent work by Axtell et al. 2002, Kohler et al. 2007, and Schollmeyer 2009).  In 

central Arizona, dry periods combined with catastrophic flooding and associated 

stream channel changes along the Lower Salt River in the late 1300s have been 

hypothesized as the cause of the depopulation of settlements irrigating from the 

Lower Salt River (Graybill et al. 2006, Nials et al. 1989; Gregory 1991).  Again, 

differences in vulnerability based on settlement locations (e.g., near or distant 

from the floodplain) and settlement-scale demographic conditions that affected 

the demand for resources are typically not considered.   

 Dry-period influences on regional abandonments have been argued for 

many places and times (e.g., Weiss and Bradley 2001).  Examples include the 

Maya of Mesoamerica ca. A.D. 1200 (Gill 2000; Hodell et al. 1995), Cahokia and 

associated settlements of the American Bottom and Mississippi River Valley ca. 

A.D. 1100 to 1245 (Benson et al. 2009), the Tiwanaku of Bolivia-Peru ca. A.D. 

1100 (Binford et al. 1997), and the Akkadians of Mesopotamia ca. 4200 B.P. 

(Weiss et al. 1993), to name only a few.  Dry periods are seldom considered the 

only factor responsible for these regional depopulations; however, variability in 
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vulnerability across a region is not addressed in aridity models that emphasize 

widespread vulnerability to dry periods due to low average precipitation 

conditions.    

 To assess the utility of an aridity model for explaining vulnerability to dry 

periods, I examine the relationship between dry-period severity and residential 

abandonment throughout central Arizona from 1200 to 1450.  I use the 

relationship between dry-period severity and residential abandonment as an 

indicator of the extent of vulnerability to dry periods within six watersheds with a 

long-term history of occupation.  By geographically disaggregating the study area 

into watersheds, I test the assumption of vulnerability to dry periods as a regional-

scale, biophysical condition.  The aridity model and the assumption of regional-

scale resource marginality would be supported by strong and sensitive 

relationships between dry-period severity and residential abandonment in all 

watersheds.   

Demand Models of Vulnerability to Dry Periods 

 Demand models emphasize the contribution of demographic conditions to 

vulnerability to dry periods.  The demographic conditions I consider are 

settlement population levels and watershed population density.  These conditions 

define, in part, resource demands, the rate of consumption of resources, and the 

extent of labor available to invest in strategies to manage shortfalls.  Settlement 

population levels reflect the cumulative decisions of people to stay or leave a 

locale--a settlement or watershed area--and to allow others to move into that 

locale.  Exploration of the role of population levels and density is a window into 
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the role of human decisions in creating or ameliorating vulnerabilities to dry 

periods.  

 The effect of settlement population levels and areal population density on 

vulnerability to dry periods is complex and has been argued to both increase and 

decrease vulnerability (Meyer et al. 1998:241).  For example, as population levels 

increase more resources are consumed and increases in production may not be 

able to keep pace (Malthus 2001 [1798]) especially during dry-period declines in 

productivity.  Relatively high population density in an area can also increase 

vulnerability by limiting mobility as a strategy to manage shortfall risks (Binford 

1983; Cordell 2000:183; Dean et al. 1994:85; Minnis 1996; Powell 1988).  

Population density can limit mobility if productive locations are already claimed, 

occupied, or hostilities restricted movement.  Larger populations might also 

increase the tilling of relatively less productive plots of land to increase 

production (B. Nelson et al. 1994:61-62) and these plots could quickly become 

unproductive during dry periods.  Thus, "as population density increases, more 

individuals are forced into areas of greater risk" (Reycraft and Bawden 2000:2).  

Larger populations can, however, intensify production and invest in infrastructure 

to increase resource supplies (Boserup 1965) and develop social strategies not as 

readily available to smaller populations, such as centralized leadership and 

alliances (McGuire and Saitta 1996; Wilcox et al. 2001a; 2001b), to manage 

shortfall risks.    

 Demand models are essentially 'population pressure' models wherein 

increasing population levels are considered responsible for some stress on humans 
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or the environment (e.g., Smith 1972).  Population pressure arguments assert that 

rising population levels at some point breach a threshold and behavioral responses 

become necessary.  Where resources are assumed to be marginal, this threshold is 

expected to be easily and frequently breached.  For example, Larson et al. 

(1996:219) assert "With the shift to primary reliance on domesticated crops, 

population levels and densities increased dramatically between A.D. 900 and 

1100 and the Anasazi [northern Southwest] became increasingly vulnerable to 

climatic variability and extremes."  Larson et al. (1996:218) describe this increase 

in vulnerability in the context of an "extremely marginal environment for 

prehistoric hunting and gathering and agricultural pursuits."  Similarly, Plog et al. 

(1988:261) state "It is difficult to imagine environmental deterioration of 

sufficient severity to stimulate a long-distance move in the absence of high 

populations."  High population levels, then, in these examples are a critical factor 

in understanding vulnerability to dry-period risks of shortfall.    

 It is important to empirically evaluate this model because expectations of 

the contribution of demographic conditions to vulnerability to dry periods (and 

other hazards) are often conflicting (as discussed above) or too ambiguous to be 

useful or convincing.  For example, in a list of possible determinants of 

vulnerability to global environmental change (which includes increases in dry-

period severity associated with global-scale climate change), Liverman 

(1990b:33) asserts "High population densities, population growth rates, and 

pressure on limited food, land, and water resources can make regions very 

vulnerable to global change."  Similarly, Reycraft and Bawden (2000:2 citing 
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work by White 1974 and Burton et al. 1978) state that "the greater the population 

density of a given area, the greater the damage potential of a given extreme event.  

Also, as population density increases, more individuals are forced into areas of 

greater risk."  And, Cordell (2000:182), referring to upland areas of the northern 

Southwest, states "Population 'packing' [makes it] impossible to implement an 

agricultural strategy that depends on relocating fields and dwellings" thereby 

linking increases in population densities with agricultural vulnerability.  These 

expectations and assertions though sometimes vague are logically appealing and 

amenable to empirical testing.  Minimally, we need to understand at what spatial 

scales the suggested relationships might apply.   

 Investigations of the potential influence of increasing population levels on 

vulnerability to dry periods without considering the potential resource 

productivity of an area are unrealistic.  Coupled with the assumption of region-

wide resource marginality, however, these studies place population levels close to 

a threshold where changes in either population or resources may increase the risk 

of shortfall.  Under this model, people living in settlements or watersheds with 

relatively high population levels would be more vulnerable to dry periods than 

those living in places with lower population levels.  Thus, for the central Arizona 

study area, if vulnerability to dry periods was influenced by settlement population 

levels and watershed population density, the relationship between dry-period 

severity and residential abandonment will be stronger and more sensitive where 

population levels and density are highest and weaker where population levels and 

density are lowest.  Results will clarify the influence of these demographic 
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conditions on vulnerability to dry periods in the study area.   

Supply Models of Vulnerability to Dry Periods 

 Supply models emphasize the contribution of the potential productivity of 

settlement locations to vulnerability to dry periods.  The environmental conditions 

I consider are settlement locations relative to perennial rivers and areas of low to 

high average annual precipitation levels.  Access to resources, as reflected by 

settlement locations, is one factor that affects the ability of human systems to 

adapt to and cope with dry periods and climatic conditions.  Settlement locations 

reflect the decisions of people regarding where to live; thus, exploration of the 

role of settlement locations is a window into the role of human decisions in 

creating or ameliorating vulnerabilities to the risk of shortfall.    

 Settlement locations adjacent to perennial riverine resources, which 

include the associated riparian and aquatic resources, are assumed in this study 

and model to offer greater potential productivity than settlements located away 

from perennial riverine resources.  The majority of wild plants used as resources 

by the Hohokam "are most densely and continuously distributed along riparian 

corridors" (Fish and Nabhan 1991:42).  Agricultural potential is also greater in 

riverine areas where irrigated and floodplain agriculture are possible.   

Likewise, settlements in areas receiving relatively more precipitation on 

average are assumed to have been relatively more productive than those areas that 

receive less.  Differences in precipitation conditions are often used to explain 

settlement location shifting motivated by changing climatic conditions (e.g. Dean 

1988; 1996).  Similar assumptions regarding proximity to rivers and precipitation 
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levels have been used to identify "agricultural primeness" in the arid regions of 

Africa (Miller et al. 2002).  Other factors such as the extent of arable land or the 

quality of soils (Sandor et al. 2007) influence productivity but are beyond the 

scope of this study.   

 The influence of potential resource supplies on vulnerability to dry periods 

wherein vulnerability is considered a function of riverine proximity or 

precipitation levels is a common sense notion supported by the strong relationship 

between the distribution of water and settlement locations in dry climates.  People 

living distant from perennial rivers rely on "dry-farming" or "rain-fed" farming 

and are widely assumed to be among the most vulnerable and sensitive to low 

precipitation in dry climates (e.g., Liverman and Merideth 2002:207).  For 

example, Harry (2005:299) compares two settlement areas in the Tucson Basin 

(southern Arizona): one bordering a primary river with wide expanses of arable 

floodplain, the other along lesser watercourses and in an upland area.  Harry 

(2005:299) "intuitively" expects that the settlements near the primary river were 

not agriculturally impoverished relative to the settlements along the lesser 

watercourses and in the upland area.  In colonial Mexico, Florescano (1980, as 

translated by Liverman 1990a:50) argues that "the disastrous effects of drought, 

as in earlier times, are concentrated in the rainfed agriculture practiced by the 

poorest ejidatarios and campesinos, lacking credit, irrigation, fertilizers, and 

improved seeds."   

 The notion that riverine areas were less marginal than non-riverine areas 

and people living near perennial rivers were less vulnerable to dry periods than 
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those living distant from perennial rivers lacks empirical verification and there are 

reasons to question its validity.  For example, investments in irrigation 

infrastructure in riverine areas will increase productivity and resource supplies 

thereby potentially reducing vulnerability to dry periods.  However, these 

investments in irrigation infrastructure may increase population, reduce mobility, 

and thereby increase vulnerability to dry periods as well as other social and 

environmental conditions (Anderies 2006; Ingram 2008; Janssen and Anderies 

2007; Nelson et al. 2010).  In a study of the impact of irrigation on drought losses 

in Mexico, Yates (1981) finds little support for the expectation that irrigation has 

the advantage of reducing climatic hazards compared with crops dependent on 

erratic rainfall.  Rather, he finds "only a slightly smaller deviation from 

[agricultural] output trend in irrigated than in rainfed areas” (Yates 1981:77 as 

quoted in Liverman 1990a:58).   

   To assess the utility of a resource supply model for explaining spatial 

differences in vulnerability to dry periods in central Arizona from 1200 to 1450, I 

examine the relationship between dry-period severity and residential 

abandonment among rooms near and far from perennial rivers and in areas of low, 

moderate, and high precipitation.  If vulnerability to dry periods was strongly 

related to the productivity characteristics of settlement locations as identified by 

differences in the availability and access to water, then the relationship between 

dry-period severity and rooms abandoned near perennial rivers or in areas with 

high average annual precipitation will be less sensitive and weaker than the 

relationship between dry-period severity and rooms abandoned distant from 
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perennial rivers or in areas with low average annual precipitation. 

Demand and Supply Models of Vulnerability to Dry periods 

 Demand and supply models emphasize the contribution of population-

resource imbalances (at various spatial scales) to vulnerability to dry periods 

(Cordell and Plog 1979; Dean 1988; Dean 1996; Larson 1996; Larson and 

Michaelsen 1990).  Population-resource imbalances were "probably a fact of life 

for most prehistoric groups, both because they sometimes grew too fast and 

because of unforeseeable decreases in the resources available to them" (Cordell 

and Plog 1979:411).  Emphasis on population-resource imbalances are not limited 

to climate-human behavior studies.  Rather, "Interpretations of Southwestern 

cultural patterns are frequently based on the assumption of high population 

density, low plant and animal biomass [resource marginality], and resultant 

population/resource imbalances" (Powell 1988:182).   

 Attempts to consider both potential resource supplies and demand to infer 

shortfall risks pose a substantial challenge in archaeological research.  It is a 

challenge because we have inadequate information about the plethora of variables 

involved in inferring both supply (wild and cultivated food resources) and 

demand (population levels).  For example, identifying the extent of a food supply 

involves an understanding of the water requirements of prehistoric maize 

varieties, the proportions of cultivated and wild foods that comprised diets, yields 

of cultivated and wild foods, and many other factors (Minnis 1985:99-155 

provides an extended discussion of these problems).   

 Despite these challenges, reasonable attempts have been made that provide 



 

 49

approximations of periods when population-resource imbalances likely resulted in 

increased vulnerability to food shortfalls.  One such effort is a study developed by 

Minnis (1985) for the Mimbres region of southwestern New Mexico focused on 

the A.D. 600 to 1250 period.  Minnis documented potential resource supplies over 

time with estimates of crop success, wild food productivity, and food stress using 

precipitation and streamflow reconstructions.  He compared these estimates to 

potential resource demands identified by variation in population levels.  The 

resulting effort identified periods when population-resource imbalances and 

associated vulnerability to dry periods were most likely.   

 Examining the influence of population-resource imbalances is important 

because it allows us to see if these imbalances emerge as a consistent influence on 

vulnerability to dry periods over time.  As I discussed in Chapter Two, people 

have a variety of strategies for managing shortfalls risks and their vulnerability to 

dry periods.  The effectiveness or changes in the effectiveness of these strategies 

might be a more important factor in vulnerability to dry periods than simple 

formulations of the potential balance between resource supply and demand.  As 

stated by Dean et al. (1994:86), "Many congruences [between past environmental 

variability and regional demographic trends] establish the importance of 

demographic and environmental variables as integral factors in sociocultural 

stability, variability, and change in this harsh and variable region.  On the other 

hand, many failures of the archaeological record to fulfill the expectations of the 

models indicate that the effects of population and environmental fluctuations were 

mediated and transformed by sociocultural factors."  Evaluating models of 
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vulnerability to dry periods that emphasize population-resource imbalances, then, 

help us understand the extent to which these imbalances consistently influenced 

vulnerability to dry periods.     

To assess the utility of this model for explaining differences in 

vulnerability to dry periods, I combine elements of the demand and supply models 

(above).  I test the expectation that the extent of population-resource imbalances 

influenced vulnerability to dry periods by comparing the strength of relationships 

between dry-period severity and residential abandonment where demands were 

relatively high (settlements located in watersheds with high population density 

and settlements with high population levels) and supply low (settlements located 

distant from perennial rivers and in areas of low precipitation) to the relationship 

where demands were relatively low (settlements located in watersheds with low 

population density and settlements with low population levels) and supply high 

(near perennial rivers and in areas of high precipitation).  If vulnerability to dry 

periods was influenced by population-resource imbalances, then the relationship 

between dry-period severity and residential abandonment will be stronger and 

more sensitive where demands were high and supplies low (population-resource 

imbalances most likely) than where demands were low and supplies high 

(population-resource imbalances least likely).   

Conclusion 

 In this chapter, I describe four conceptual models that emphasize the 

influence of aridity and demographic and environmental conditions on 

vulnerability to dry periods.  These models reflect logical relationships between 
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the demand and supply of resources and vulnerability to dry periods in areas 

where resources are considered marginal and the risk of food shortfalls endemic 

and widespread.  The models, however, need to be evaluated because they lack 

empirical scrutiny and rely on an unverified assumption of widespread resource 

marginality in dry climates.  This evaluation is important because the models and 

associated expectations have had a profound influence on how we think about the 

challenges and opportunities of living in dry climates.      
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CHAPTER 4: 

CENTRAL ARIZONA FROM 1200 TO 1450 

 In this chapter, I describe the climatic, environmental, and cultural 

diversity of central Arizona during the 1200 to 1450 period.  Climatic and 

environmental diversity--from the dry and hot desert to the wet and cool 

mountains--provides a range of conditions to evaluate the influence of 

environmental characteristics on vulnerability to dry periods.  Cultural diversity--

from sedentary irrigation agriculturalists to newly arriving immigrants--suggests 

that the findings of this study may be broadly applicable to other culturally 

diverse regions and not limited by the subsistence strategies or vulnerabilities of a 

particular society.  It is important to consider vulnerability to dry periods during 

the 13th through 15th centuries so that we can advance our understanding of the 

complex social issues occurring during this time.   

 This chapter is organized into four sections.  First, I delineate the spatial 

boundaries of the study area and the watersheds therein that are an important 

analytical unit of this study.  Second, I describe the climatic diversity within 

central Arizona and focus on aspects of this climate that are shared across the 

study area.  Third, I describe the cultural and environmental diversity within the 

study area.  Fourth, I discuss why the 1200 to 1450 period is an important period 

to consider vulnerability to dry periods.     

Study Area and Scales of Analysis 

 The central Arizona study area (Figure 1, all shaded polygons) includes 

the low and hot Sonoran desert in the south, a transition zone north to the 
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Colorado Plateau, and the cooler and wetter high mountains of eastern Arizona 

(Fish and Nabhan 1991; Turner and Brown 1982; Whittlesey and Ciolek-Torrello 

1997).  Populations throughout the study area were widely distributed throughout 

this landscape along perennial rivers, intermittent streams, ephemeral washes, and 

among mountains and mesas distant from perennial rivers.   

 The shaded polygons in Figure 1 are the watersheds that comprise the 

study area.  A watershed is an area of land that drains water, sediment, and 

dissolved materials to a common outlet at some point along a stream channel 

(Dunne and Leopold 1978).  Watersheds are also referred to as drainage basins or 

catchment areas and they occur at multiple scales.  I identify the smallest 

watershed units ("cataloging units" or "sub-basins") identified by the U.S. 

Geological Survey (Seaber et al. 1987).  Watersheds are a common spatial unit of 

analysis for archaeologists focused on central Arizona prehistory because these 

watersheds roughly correspond to differences in the material indicators used to 

infer cultural identity (as illustrated later in this chapter).  Watersheds also 

delineate a reasonable spatial boundary that may approximate actual resource 

acquisition zones.   



 

 
 

 

Figure 4.1. Study area watersheds within central Arizona identified with shaded 

polygons. 
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The primary unit of analysis of this study is settlement-scale residential 

abandonment examined at the watershed scale and at the scale of the entire central 

Arizona study area.  The "central Arizona” scale includes the nine identified 

watersheds in Figure 4.1:  Agua Fria, Big Chino-Williamson Valley, Carrizo, 

Lower Verde, Lower Salt, Tonto, Upper Salt, and Upper Verde, and White 

watersheds.  I selected these watersheds for study because there have been 

thorough and targeted efforts to compile records of all identified settlements in 

these areas (Wilcox et al. 2001a, 2001b, 2003) and dry periods in these 

watersheds can be effectively identified by available tree-ring precipitation 

reconstructions (as discussed in Chapter Five).  I evaluate the models, when 

possible, at the watershed scale as this allows each model to be tested in multiple 

locations.  If the relationship between dry-period severity and residential 

abandonment differs among watersheds, then differences in watershed 

characteristics are examined to understand factors that may have contributed to 

differences in relationships (discussed further in Chapter Five).   

 I use the central Arizona scale to evaluate a few aspects of the models.   

For example, settlements in the Agua Fria watershed were located only in areas of 

low and moderate precipitation while settlements in the Upper Salt were located 

only in areas of moderate and high precipitation.  Thus, neither watershed offers a 

comprehensive opportunity to evaluate the influence of precipitation levels on 

vulnerability to dry periods.  When watersheds are aggregated at the central 

Arizona scale, however, problems of low numbers of settlements in particular 

classifications are avoided.    
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 I focus this analysis on the Agua Fria, Lower Verde, Lower Salt, Tonto, 

Upper Salt, and Upper Verde because each of these watersheds has a long-term 

settlement history and sufficient numbers of settlements to represent a range of 

demographic and environmental conditions necessary to evaluate the vulnerability 

models.  I exclude the Big Chino-Williamson Valley, Carrizo, and White 

watersheds from the watershed-scale analysis due to low settlement and/or room 

numbers and the limited duration of occupation in these watersheds.  Settlements 

within these watersheds are, however, included in the all-central-Arizona scale 

analyses.   

Climatic Diversity 

 The climatic diversity of central Arizona provides a range of 

environmental conditions to evaluate models of vulnerability to dry periods.  I use 

this diversity to identify differences in potential productivity among settlements 

and watersheds and to evaluate models of vulnerability to dry periods that 

emphasize these differences to explain spatial variation in vulnerability to dry 

periods (as discussed in Chapter Five and in the Supply models).  I focus 

exclusively on precipitation and streamflow conditions because water is the 

primary limiting factor on resource productivity in the region (Muenchrath and 

Salvador 1995).  The precipitation and streamflow levels and ranges noted in this 

section are all modern average annual values calculated from historical climate 

records (United States Geological Survey 2010; Western Regional Climate Center 

(2010).  Modern long-term precipitation averages are appropriate for 

characterizing average precipitation levels during the 1200 to 1450 period because 
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the atmospheric and physiographic controls on Southwest climate have not 

changed since the period of study (Sheppard et al. 2002).  Studies of pollen, plant 

and animal distributions, geology (Schoenwetter 1962), and the tree-growth 

response to climate over time also demonstrate that there has been no change in 

the type of climate prevalent for at least the past 2,000 years (Dean and Robinson 

1982).  [It is important to understand that I use modern climate data with 

relatively fine spatial resolution to characterize settlement-scale potential resource 

productivity and tree-ring precipitation reconstructions to identify central Arizona 

scale dry periods during the 1200 to 1450 period.  These data are thoroughly 

discussed in Chapter Five.]   

 Precipitation levels varied among settlements and watersheds based 

largely on differences in elevation, topography, and location.  Settlements during 

the period of study were located in areas that historically (ca. 1900 to 2000) 

receive an annual average of 8" to 35"of precipitation (Western Regional Climate 

Center 2010).  Figure 4.2 displays the average annual precipitation levels of 

settlement locations within each watershed.  In general, higher elevations receive 

more precipitation than lower elevations.  While these spatial differences in 

precipitation levels are relatively constant, year-to-year changes in regional-scale 

precipitation levels will occur that change the absolute levels received at each 

location.  That is, if a dry-period decreases precipitation across the region, the 

relative rank-ordering of settlements by precipitation levels will remain constant 

(I demonstrate this spatial consistency in Chapter Five).  This is because the 

absolute precipitation levels are controlled by hemispheric atmospheric 



 

circulation patterns and will not vary substantially within the study area (McPhee 

2004).  The implication of the synchronicity is, if people used population 

movement from areas of lesser to greater productivity to manage dry-period 

shortfall risks, then these movements were likely between areas of inherently 

different productivity rather than to areas with a short-lived anomalous 

precipitation advantage.  I use locations near and far from perennial rivers and 

areas receiving on-average low, moderate, and high precipitation as indicators of 

inherently greater or lesser inherent productivity.   

 

Figure 4.2.  Average annual precipitation levels of central Arizona settlements 

occupied from 1200 to 1450, by watershed.  Precipitation values of settlement 

locations calculated by combining a spatial layer of historical climate information 

(PRISM Climate Group 2007) with a spatial layer of settlement locations 

(Coalescent Communities Database, Wilcox et al. 2003). 
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Streamflow discharge levels also varied substantially throughout the study 

area (Table 4.1).  Precipitation levels are a reasonable indicator of relative 

changes in these discharges because the source flows are entirely within the study 

area watersheds.  The watershed of the Lower Salt River, however, extends 

outside of the study area and into northern and eastern Arizona.  As a result, its 

flows will sometimes be out-of-sync with local precipitation patterns within the 

rest of the study area.  Perennial rivers in the region trend north to south 

beginning in the high elevation mountain and plateau country then join the east to 

west flowing Lower Salt River in the Sonoran Desert.  All rivers are subject to 

short and intense flooding possibly with changes in channel morphology (Graf 

1988; Graybill et al. 2006; Nials et al. 1989).  In addition to the irrigation 

potential of some perennial rivers, riparian vegetation adjacent to each river was 

probably an important source of food (Fish and Nabhan 1991).   
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Table 4.1.  Annual Streamflow Discharge Levels Calculated from Historic 
Climate Records (Arizona Department of Water Resources 2010). 

 
River, Stream Annual Flow/Year (in acre-feet) 
 

Minimum Median Mean Maximum

Years of 
Annual Flow 

Record 
Agua Fria  
(near Mayer) 

976 9,197 16,327 103,555 63 

 
Tonto Creek  
(above Gun Creek 
near Roosevelt) 

2,853 66,297 113,232 469,256 62 

 
Upper Verde  
(near Clarkdale) 

54,529 104,279 128,062 458,393 40 

 
Lower Verde  
(below Tangle 
Creek, above 
Horseshoe Dam) 

131,073 294,733 409,875 1,583,014 57 

 
Upper Salt 
(near Chrysotile) 

128,176 393,581 474,817 1,456,907 78 

 
Lower Salt  
(near Roosevelt) 

152,798 518,499 644,942 2,422,315 89 

Note:  Salt River discharge levels in the settled portion of the Lower Salt River 
watershed are higher than identified here because the Verde River and Tonto 
Creek flow into the Salt above the settled area.  The Salt River gage used for this 
figure is located above the confluence of the Salt, Verde, Tonto, and Agua Fria.   

 

Although people lived in locations with widely different precipitation and 

streamflow levels, all watersheds shared a common biseasonal precipitation 

pattern.  This biseasonal pattern allows for a greater structural diversity of the 

flora than in other North American deserts (Brown 1994:182).  The wettest 

periods are winter (November through April) and summer (July through 

September) (Sellers and Hill 1974; Sheppard et al. 2002).  Winter precipitation is 

strongly affected by westerly storm tracks originating over the Pacific Ocean.  
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Summer precipitation is the product of moisture from several oceanic sources 

moving into the region in July.  Summer convective storms occur when local 

conditions cause these moist air masses to ascend (Sheppard et al. 2002).  The 

proximity of Arizona to the Pacific Ocean, the Gulf of California, and the Gulf of 

Mexico also subject the region to atmospheric processes affected by changes in 

sea surface temperatures (i.e., El Nino, La Nina, Pacific Decadal Oscillation).  

The result of these complex processes interacting with the diverse topography of 

the region is high intra-annual and inter-annual precipitation variability.  It seems 

likely that this variability challenged the successful scheduling of crop planting 

and made harvest success continually uncertain throughout the region (e.g., Dean 

1988, 1996; Van West and Dean 2000).   

 Temperatures across the study area are, like precipitation, mostly a 

function of differences in elevation, topography, and location.  In general, 

temperatures decrease with increasing elevation.  Maximums are mid-summer and 

minimums are mid-winter.  Temperature variations affect resource productivity 

by influencing water requirements of plants, growing season durations, and the 

timing and magnitude of snow-fed stream discharges relied on for irrigated 

agriculture.  Throughout the study area the frost-free period exceeds 120 days, the 

approximate length of time necessary for a successful maize harvest (Muenchrath 

and Salvador 1995).  I do not consider temperature variation in this study.   

 Archaeologically focused studies of climatic influences on human 

behavior in central Arizona have been dominated by a focus on changes in annual 

streamflow discharge volumes along the Lower Salt River (Graybill 1989; 
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Graybill et al. 2006; Nials 1989), the Verde River (Van West and Altshcul 1997), 

and Tonto Creeks (Waters 1998; 2006).  Only two studies have considered 

precipitation changes.  Rose (1994) reconstructed Palmer Drought Severity 

Indices for Climate Divisions 3, 4, and 6, which cover the central Arizona study 

area.  His retrodictions stop in A.D. 1370 as the data were not available at the 

time for further retrodiction.  Weaver (1972) used precipitation and environmental 

reconstructions developed for the Black Mesa area of northern Arizona to 

articulate a model of Hohokam collapse that relied on decreases in effective 

moisture beginning in the 1200s.  Neither of these studies examined long-term 

patterns of population movement in relation to changes in dry-period severity.  

Regional-scale patterns have not emerged from these studies and there is no 

empirically driven consensus on the impact of climate extremes on population 

movement in central Arizona.  

Cultural and Environmental Diversity 

 Archaeologically defined cultural traditions referred to as Hohokam, 

Salado, Mogollon, Sinagua, and ancestral Puebloan have been identified within 

the study area and throughout prehistoric Arizona (Cordell 1997; Reid and 

Whittlesey 1997).  Distinct boundaries separating these traditions, however, did 

not exist and most material assemblages from particular locations share a number 

of common traits.  As a result, archaeologists typically conceptualize the region 

by watersheds and associated river valleys.  These watersheds contain roughly 

similar constellations of material indicators used to identify the cultural traditions 

of the region.  This suggests that these watersheds, and particularly the perennial 
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rivers that define them, may have been socially meaningful.  I follow this 

watershed-scale approach in this selective summary of these traditions, some of 

their material indicators, and culture-historical events.  I also note some specific 

environmental and climatic characteristics that distinguish each watershed.   

Lower Salt Watershed 

 The Lower Salt River watershed was home to the "Hohokam" tradition for 

more than a thousand years (Bayman 2001; Crown and Judge 1991; Doyel 1987; 

Doyel et al. 2000; Gumerman 1991).  People of this tradition transformed their 

hot and dry Sonoran Desert homeland into the "most populous and agriculturally 

productive valley in the [U.S.] West before 1500 CE" (Fish and Fish 2007:1).  

This transformation was the result of the development of large-scale irrigation 

systems and effective social strategies for managing these systems (Howard 1993; 

Howard 2006).  Eight canal networks with separate intakes off of the Lower Salt 

River have been identified (Howard 1993).  During the period of this study, these 

networks irrigated about 100,000 acres (Howard 1993:296) of maize, beans, 

squash, and cotton (Gasser and Kwiatkowski 1991).  Residential stability, likely 

due to these extensive canal systems, was greater in the Hohokam area than in 

other parts of the U.S. Southwest (Dean et al. 1994:70).   

 In addition to irrigation agriculture, characteristic Hohokam cultural 

features include monumental architecture (ball courts, platform mounds, and big 

houses), marine shell ornament production and circulation, cremation and 

inhumation mortuary practices, sedentary village-based communities, and red-on-

buff ceramics (Gumerman 1991).  Many of these features are thought to signal 
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Mesoamerican origins or influences (McGuire et al. 1994; McGuire and 

Villalpando 2007).  The extent of influence of the Hohokam tradition throughout 

the study area during the period of interest varied over time and is a matter of 

continuing inquiry (Van West and Altschul 1997:391-392; Whittlesey 1997b). 

 The 13th through 15th centuries, identified by archaeologists as the 

Classic Period, is characterized by significant sociocultural changes in the Lower 

Salt watershed.  Following a retraction of the Hohokam interaction sphere in the 

1100s, the people of the Lower Salt River valley developed new forms of 

residential and public architecture, modified existing mortuary practices, and 

developed new pottery styles and ceremonial objects, and severely restricted the 

extent of exchange relationships throughout the watershed (Abbott et al. 2003:8; 

Bayman 2001:280-283 and references contained therein).  The transformation of a 

previously diffuse distribution of settlements across the watershed to walled, 

multi-family compounds after about 1100 suggests a more exclusionary pattern 

had developed (Fish 1989:50-51).  The development of walled platform mounds 

placed at regular spatial intervals within the watershed also suggests increasing 

hierarchical social organization (Fish 1989:50-51).  Sometime during the 15th 

century, the archaeological visibility of Hohokam (Dean 1991) and the other 

cultural traditions of central Arizona cease.  

 Based on retrodicted annual streamflow discharge volumes from tree-rings 

and analogies with historic irrigators in the watershed, Graybill et al. (2006) and 

Nials et al. (1989) have argued that catastrophic floods and associated geomorphic 

channel changes during the late 1300s contributed to settlement and population 
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changes and ultimately the depopulation of the lower Salt River valley after A.D. 

1400.  Abbott and colleagues (Abbott 2003 ed.), however, develop a strong case 

for a change in Hohokam society around 1100 that initiated a gradual decline in 

sociopolitical conditions that ultimately led to the depopulation.  Studies of dry-

period impacts in the watershed have been limited to my (Ingram 2008) analysis 

of the relationship between droughts and changes in population growth rates in 

the most well documented canal system in the valley.  I found that as dry periods 

increased in severity, population growth rates increased during a 700 year period.  

This relationship suggests that the Lower Salt may have been a refuge for people 

moving away from other areas.    

The Lower Salt watershed is in the northern portion of the Sonoran Desert, 

a vast arid region that extends south and west into Mexico and California.  The 

Sonoran Desert is classified as a "tropical-subtropical desertland" climatic zone 

(Brown 1994) similar to the Kalahari Desert of southern Africa, the Namib Desert 

of Saudi Arabia, and the Patagonian Desert of South America.  Fish (1989:22) 

characterizes the Sonoran desert as "one of the major food-rich areas for a 

gathering economy in North America."  The desert is within the Basin and Range 

physiographic province and consists of north-south trending faulted mountains 

and flat valley floors (Fenneman 1931).   Precipitation, temperature, and 

streamflow conditions in the Lower Salt are more extreme than throughout the 

rest of the study area.  Precipitation along the Lower Salt where settlement was 

concentrated is the lowest among all the watersheds--8.37" annually.  

Temperatures are high with daytime-high averages over 100 F during the summer 
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(Western Regional Climate Center 2010).   

Agua Fria Watershed 

 Peoples living in the northern portion of the Agua Fria watershed have 

been difficult to assign to traditional Southwestern cultural traditions.  Instead, 

they are sometimes referred to as the "Central Arizona tradition" (see Wilcox and 

Holmlund 2007:122, note 23, for a discussion of the possible origins of this 

concept) or "Perry Mesa tradition" (Stone 2000).  Puebloan-style architecture and 

decorated ceramics in the northern portion of the watershed suggests residents 

were not closely affiliated with the Hohokam tradition.  Perry Mesa is the locus of 

settlement in the watershed during the period of study and settlement patterns on 

and around the mesa are an integral part of the Verde Confederacy model, a 

prominent case study of endemic warfare and alliance formation in the late 

prehistoric Southwest (Wilcox 2005; Wilcox et al. 2001b). Further south along 

the intermittent Agua Fria River, the watershed is sparsely populated after 1300 

and the people there were probably most strongly affiliated with the Hohokam of 

the Lower Salt River watershed.   

 The Agua Fria watershed is a transition zone that begins with the Sonoran 

Desert in the south and ends with high mesas covered with grasslands cut by 

canyons in the north.  Settlements in the northern portion of the watershed were 

located in areas receiving an average of 15" to 17" of precipitation annually, twice 

as much as those living in the Lower Salt.  Settlement patterns in the watershed 

include hill-top sites, dispersed small sites near field systems, and settlements on 

mesas (Wilcox et al. 2001a, 2001b).  The Agua Fria watershed is distinct among 
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the watersheds considered in this study because is has the least extensive 

perennial riverine resources.  The Agua Fria River and its tributaries are perennial 

in only a few places.   

Upper and Lower Verde Watersheds 

 The peoples of the Upper Verde watershed are archaeological known as 

the "Sinagua" (Colton 1939; Plog 1989).  Material correlates include Alameda 

Brown Ware, paddle-and-anvil ceramic techniques, extended inhumation, alcove 

houses, deep pit houses, and masonry pueblos and cliff dwellings.  Colton (1946) 

argued that the Sinagua were influenced by Mogollon, Hohokam, and Pueblo 

people who were drawn to the Flagstaff area after the eruption of the Sunset 

Volcano.  Although the current status of Colton's concept of a distinct culture is 

unclear (Plog 1989:264), research supports the diversity and variety of influences 

in the area.  Schroeder (1957, 1979) interprets the diverse material patterns of the 

upper Agua Fria, Verde, and Tonto watersheds as part of a single "Hakataya" 

culture.  The Upper Verde includes the well-known archaeological sites (cliff 

dwellings) of Montezuma's Castle and Tuzigoot, both national monuments.   

 In the Lower Verde watershed, ceramics, architecture, and other material 

traits are diverse but share similar patterns with the Sinagua of the Upper Verde 

(Pilles 1976; Whittlesey 1997a).  The Lower Verde watershed also has strong 

evidence of Hohokam influence and is often considered a part of the Hohokam 

periphery (Whittlesey and Ciolek-Torrello 1997).  The Lower Verde is culturally 

similar to the Tonto Basin (Pilles 1976).  Settlements in the watershed are mostly 

located along river terraces, alluvial fans, and along tributaries of the Verde.  
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There is evidence of prehistoric irrigation along the Verde although much of the 

valley is too steep and narrow for extensive irrigation (Van West and Altschul 

1997; Whittlesey and Ciolek-Torrello 1997).  Roughly separating the Upper from 

the Lower Verde watersheds is the Verde Valley, the greatest extent of arable land 

and biotic diversity in the watershed (Whittlesey 1997a).   

 Settlement patterns in the Verde watersheds, like those in the northern 

portion of the Agua Fria, are thought to be strongly influenced by the intentional 

creation of defensive clusters of settlements and buffer zones.   A "Verde 

Confederacy" is argued to have existed that united Perry Mesa residents with 

residents of the Upper and middle Verde against populations located in the Tonto 

Basin (Wilcox et al. 2001b).  In this model, the depopulation of the Lower Verde 

in the 12th century is thought to be the result of the intentional creation of a buffer 

zone against enemies in the Lower Salt or Tonto watersheds (Wilcox et al. 

2001b).   

 The Lower and Upper Verde River watersheds are a mountainous 

transition zone between the Sonoran Desert in the south and the Colorado Plateau 

in the north.  Unlike the wide and flat expanse of land along the Lower Salt River, 

the Verde River is constricted by a narrow valley throughout much of its length.  

The Verde River is one of the largest perennial rivers in Arizona (USGS 2010) 

and would have provided a reliable water supply for prehistoric irrigators.  

Settlements in the Lower Verde were located in areas receiving 9" to 23" inches 

of precipitation annually (Western Regional Climate Center 2010).  Settlements in 

the Upper Verde received between 13" and 23" annually.  Vegetation is dense 
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along the floodplains and the river is bordered by a rich riparian zone.  Plant 

communities in the watershed include semi-desert Grassland, Great Basin Conifer 

Woodland, and Sonoran Desertscrub (U.S. Fish and Wildlife Service 2010).   

Tonto 

 The Tonto watershed and portions of the Upper Salt watersheds are 

considered "Salado" (Dean 2000).  The material correlates of this pattern, 

particularly polychrome pottery, extend into western New Mexico and elsewhere 

in the Southwest (Crown 1994, 1995).  Debate continues on the distinctiveness of 

a Salado culture or whether the traits are more of a "horizon" of styles shared by 

an amalgamation of peoples of varying backgrounds (e.g., Dean 2000; Doyel 

1981; Rice 1998).  In addition to polychrome pottery, some of these traits include 

walled residential compounds, monumental architecture, and in some cases 

irrigated agriculture.  In the Tonto watershed, existing populations were strongly 

influenced by an influx of migrants during the late 13th century (Stark et al. 

1995).  These migrants, probably pushed by social and environmental changes in 

the north (Van West et al. 2000), formed multi-ethnic communities that ultimately 

proved relatively short lived.  The watershed experienced substantial population 

loss in the mid to late 14th century, perhaps due to regional-scale changes in 

precipitation variability and more attractive social conditions elsewhere (Van 

West et al. 2000).  The Tonto watershed was the first to be depopulated among 

the watersheds I focus on in this study.        

 The Tonto watershed is a transition zone from the Sonoran desert in the 

south to the mid-elevation mountains and uplands of the northern portion of the 
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watershed.  Vegetation ranges from Saguaro cactus to pine-forested mountains.  

Whittlesey et al. (2000:242) argue that a diversity of resources in the watershed 

created an island of resource advantage that attracted people of different ethnic 

and cultural traditions to the basin.  The Tonto Creek is mostly perennial through 

the watershed and settlements were located in areas receiving from 15" to 25" of 

precipitation annually (Western Regional Climate Data Center 2010).   

Upper Salt 

 The Upper Salt River watershed included people archaeologically referred 

to as Mogollon and Salado.  Both traditions in the watershed were influenced by 

ancestral Puebloan (Anasazi) and Hohokam cultural traditions (Cordell 1997).  

Mogollon traits are widely distributed throughout the watershed and Salado 

characteristics are mostly along the Salt River in the southwestern portion of the 

watershed.  The Mogollon, while sharing many similar characteristics with 

ancestral Puebloan (Anasazi) populations, maintained distinctive methods of 

pottery manufacture, architectural construction, residence location, and mortuary 

treatment (Cordell 1997; Haury 1936; Reid and Whittlesey 1997).  Subsistence 

systems were initially focused on the use of wild plants and animals and the 

cultivation of small garden plots of corn, beans, and squash although an 

increasingly sedentary and agriculturally focused lifestyle developed during the 

period of study.  

 During the late 1200s and early 1300s, people living in the Upper Salt 

became increasing influenced by ancestral Puebloan immigrants fleeing the 

effects of deteriorating conditions in the northern Southwest (Reid and Whittlesey 
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1997).  These immigrants substantially increased population levels and density in 

the watershed.  Rapid population growth in the watershed has also been attributed 

to increases in opportunities for inter-community exchange (Graves et al. 1982).  

Rising social and economic tensions in the 1300s, as in other areas of the 

Southwest, are suggested by the selection of defensible locations for major and 

minor settlements and the use of cliff shelters for secure food storage (Reid and 

Whittlesey 1997:164).  Following a period of population aggregation, population 

decline began sometime in the mid to late 1300s.  Based on detailed study at a 

large pueblo in the watershed (Grasshopper), these declines may have been 

caused by dry-period decreases in resource productivity, increased population, 

reduced soil fertility, and depleted resources (Reid et al. 2006; Reid and 

Whittlesey 1997:164).   Factors that may have influenced the decline of Salado 

populations include rising population levels in the context of climatic conditions 

unfavorable for irrigated agriculture (Waters 2006).  Archaeological visibility of 

human occupation of the watershed ceases sometime during the early 1400s.      

 The Upper Salt River watershed is a mountainous environment 

characterized by extreme changes in elevation.  Settlements occupied during the 

period of study are located between 2,000 and 7,000 feet in elevation.  Average 

annual precipitation received at settlement locations ranges from 15" to 35" and 

the watershed average is about 18.7", greater than any other populated watershed 

in Arizona (Western Regional Climate Center 2010).  Perennial rivers include the 

Salt with three tributaries (Cherry Creek, Canyon Creek, and Cibecue).  Based on 

my GIS analysis of the slopes of land throughout the watershed, opportunities for 
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floodplain and/or irrigated farming were probably restricted and minimal in most 

places except along the Salt River near the western edge of the watershed (slopes 

of between 0 and 5% are considered optimal for irrigation; Walker 1989).  

Assessing opportunities for floodplain and irrigated farming along perennial 

rivers of the watershed, however, requires further on-site evaluation.   

Contributions to the Prehistory of Central Arizona 

It is important to consider vulnerability to dry periods during the 13th 

through 15th centuries so that we can advance our understanding of the complex 

social issues occurring during this time.  These issues include rising warfare and 

the 15th century regional depopulation.  Each involves population movement on a 

large scale and over long-time periods.  Models of increasing conflict and warfare 

explain movements out of particular places on the landscape as defensive 

responses to the real or perceived threat of violence (LeBlanc and Rice 2001).  

When settled areas are abandoned and unoccupied zones around clusters of 

settlements are observed, these patterns are interpreted as an effort to create 

defensive open spaces between socially distant peoples (DeBoer 1981; LeBlanc 

1999; Wilcox et al. 2001b; Wilcox and Haas 1994).  Models of regional 

depopulation need to explain large-scale population movements out of a region 

(unless in situ demographic decline is argued, e.g., Hill et al. 2004).  Our current 

understanding of the process in central Arizona is limited to rising warfare 

(Wilcox et al. 2001b), demographic decline associated with community 

coalescence (Hill et al. 2004), and general notions of breaches in regional carrying 

capacity (e.g., LeBlanc 1999, 2006).  Along the Lower Salt River, a prevailing 
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depopulation hypothesis is technological and social challenges to irrigated 

agriculture related to streamflow variability, flooding, and channel change in the 

late 1300s (Graybill et al. 2006; Nials et al. 1989).  In contrast to environmentally 

focused hypotheses, Abbott and colleagues (Abbott 2003 ed.) have made a strong 

case for a gradual, centuries-long decline of populations along the Lower Salt.  

Causes for this decline are complex and include demographic instability, 

truncated trade networks, political strife, environmental impacts and ultimately 

ineffective responses to these challenges (Abbott 2003). 

 Advancing our understanding of both warfare and depopulation in central 

Arizona requires a better understanding of the factors influencing population 

movements.  This study focuses on a frequently considered explanation for 

population movement--dry periods--and asks whether or not and under what 

conditions there is long-term evidence that dry periods were related to population 

movements out of settlements and watersheds in central Arizona.  If dry-period 

influences on movements are detected over long time periods, then explanations 

of warfare and depopulation must accommodate climatic contributions to these 

phenomena.  It should not be sufficient that we gloss climatic influences as simply 

context in explanations of the major events during this period in prehistory.  For 

example, Wilcox et al. (2001b:165) argue the role of conflict in the depopulation 

of central Arizona and suggest that "Environmental perturbations could have 

further exacerbated such a process."  No further suggestions of what these 

perturbations might be were provided.  I am not suggesting dry periods as the sole 

cause of any social phenomenon.  Rather, I am suggesting that if population 
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movements constitute an integral part of a social phenomenon being explained 

and if these movements are strongly related dry periods, then explanations that do 

not consider potential dry-period impacts on movement are incomplete.  

 In sum, the cultural, environmental, and climatic diversity of central 

Arizona during the 13th through 15th centuries provide an important context for 

evaluating models of vulnerability to dry periods and furthering our understanding 

of dry-period influences on population movement.  Population movements were 

an integral part of some of the critical social issues of this period.  At the 

conclusion of this study (Chapter Ten), I discuss the implications of the findings 

of this research for understanding both the depopulation and models of increasing 

warfare in the region.   
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CHAPTER 5: 

DATA AND METHODS 

 Evaluation of the vulnerability models requires data on demography, 

environment, dry periods, and residential abandonment.  I use these data to 

evaluate the vulnerability models by examining the extent to which each model's 

expectations are supported by patterns of residential abandonment in the study 

area.  The data sets and variables include:  

1. Demography: Demographic variables emphasized in vulnerability models 

include settlement population levels and watershed population density 

(Demand model and Demand/Supply model).  I use both variables to identify 

differences in the demand for resources throughout the study area.  I identify 

demographic conditions using settlement data in the Coalescent Communities 

Database (Wilcox et al. 2003).   

2. Environment: Environmental variables emphasized in the vulnerability 

models include settlement locations near and far from perennial rivers and 

differences in precipitation levels among settlements (Supply model and 

Demand/Supply model).  I use these variables to identify differences in 

potential resource supplies among settlements.  I identify these conditions 

using a geographic information system to overlay a dataset of perennial river 

locations and modern precipitation contours on a map of all settlements in the 

study area.  I also use average precipitation and streamflow discharge levels in 

each watershed to identify watershed-scale differences in potential resource 

supplies.  I use modern streamflow records to quantify differences in 
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streamflow discharge levels.  

3. Dry periods: I use paleoclimatic reconstructions of annual precipitation and 

streamflow levels from tree-rings to identify dry periods.   

4. Residential abandonment:  I identify residential abandonment from reductions 

in the number of settlements and rooms using settlement data from the 

Coalescent Communities Database (Wilcox et al. 2003).  I use the long-term 

relationship between dry-period severity and residential abandonment and 

associated movement from settlements and watersheds as an indicator of 

potential vulnerability to dry periods.  

In this chapter, I describe each of these data sets and my methods of 

calculating or identifying the variables.  I summarize the data, variables, their 

spatial and temporal resolution, and sources in Table 5.1.  I conclude the chapter 

by explaining how I assess the relationship between dry-period severity and 

residential abandonment.  I also provide an example of the analytical methods. 

 
 
 
 
 
 
 
 
 
 
 
 



 

Table 5.1.  Summary of Data, Variables, Spatial and Temporal Resolution, and Sources. 
 

Data Type Variables Spatial Resolution Temporal Resolution Sources 

     
Demography settlement population 

levels 
settlement five 50-year intervals,  

1200 to 1450 
    
 watershed population 

density 
six watersheds in central 
Arizona study area 

five 50-year intervals,  
1200 to 1450 (averaged) 

calculated from 
Coalescent 
Communities Database, 
Wilcox et al. (2003) 

     
Environment settlement proximity to 

perennial rivers 
settlements near (less 
than two kilometers) or 
far (more than two 
kilometers) from a 
perennial river 

250 years (assumed to be 
constant from 1200 to 
1450) 

spatial dataset from The 
Nature Conservancy of 
Arizona (2006) 

     
 settlement area 

precipitation levels 
settlement and 
watershed, 2” 
precipitation intervals   

250 years (assumed to be 
constant from 1200 to 
1450) 

PRISM, Oregon State 
University (2007) 

     
 streamflow discharge 

levels 
by watershed, ranked 
lowest to highest 

250 years (assumed to be 
constant from 1200 to 
1450) 

United States 
Geological Survey 
(2010) 
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Data Type Variables Spatial Resolution Temporal Resolution Sources 

 
 
Dry periods identified from a 

regional-scale tree-ring 
precipitation 
reconstruction  

central and northern 
Arizona including all 
study area watersheds 
except the Lower Salt 
River watershed 

annual data summarized 
by 50-year intervals to 
match resolution of data 
identifying residential 
abandonment  

San Francisco Peaks 
precipitation 
reconstruction, Salzer 
and Kipfmueller (2005) 

     
 
 

 
identified from a tree-
ring streamflow 
reconstruction  

 
only the Lower Salt 
River watershed 

 
annual data summarized 
by 50-year intervals to 
match resolution of data 
identifying residential 
abandonment 

 
Lower Salt River 
streamflow 
reconstruction, Graybill 
et al. (2006) 

     
 
Residential 
abandonment 

 
room and settlement 
abandonment 

 
settlement (aggregated by  
watersheds and total 
study area)  

 
five 50-year intervals,  
1200 to 1450 

 
identified using 
Coalescent 
Communities Database,  
Wilcox et al. (2003) 
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Demography: Indicators of the Scale of Resource Demands 
 

I use the Coalescent Community Database to identify demographic 

conditions in the study area (Wilcox et al. 2003; see Wilcox et al. 2007 for a 

description of the development of the database).  The demographic conditions I 

identify are settlement population levels and watershed population density 

(discussed further below).  Sources of central Arizona settlement data in the 

Coalescent Communities Database include site file searches of major data 

repositories (Arizona State Museum [AZSITE], Arizona State University, 

Museum of Northern Arizona), literature reviews, national forests, and personal 

communications (Wilcox et al. 2001b:158, 162; Wilcox et al. 2007).  The result is 

the most comprehensive source of settlement data available for the study area.  

The database has recently been employed in several studies with implications for 

the extent of warfare, alliances, and population decline in the U.S. Southwest (Hill 

et al. 2004; Wilcox et al. 2001a, 2001b; Wilcox et al. 2007).  I follow Hill et al. 

(2004:693) and the Coalescent Communities Database authors (Wilcox et al. 

2003) and consider only settlements with at least 13 rooms.  Data on settlements 

with fewer than 13 rooms are less complete and reliable due to reduced surface 

visibility and detection.  The A.D. 1200 start date for my study and the 50-year 

intervals (e.g., 1200 to 1249, etc.) used to identify residential abandonment are 

based on the strengths of the data and the realities of chronological resolution in 

the region (Hill et al. 2004).  Documenting demographic changes at 50-year 

intervals is currently the best chronological resolution possible in most of the 

central Arizona study area (see also Dean 1991). 
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Limitations of the database, as with much archaeological settlement data, 

include unidentified rooms, poor chronological resolution, and differences in the 

quality and extent of archaeological survey and excavation in the study area.  

Interpretive challenges and inaccuracies are probably greatest with the settlement 

data from the Lower Salt River watershed (Phoenix basin).  Urban developments 

on top of these settlements have prevented systematic survey and excavation.  

This especially challenges our ability to delineate settlement and community 

boundaries, population levels, and chronology in the Lower Salt (Howard 2006).  

Settlement data from Native American Indian community properties are also less 

complete.  I rely on this database because, like Wilcox et al. (2007:169), "In the 

aggregate we [I] believe that a 'law of large numbers' applies from which we can 

make warranted inferences about general trends in the data revealed by the maps 

and their comparisons."  These data are also the only regional-scale settlement 

data available for central Arizona.  A regional-scale and long-term approach was 

required to identify trends in the data and eliminate the reliance on time-space 

coincidence that challenge other climate-human behavior studies.  This spatially 

and temporally comprehensive approach should also diminish the impact of 

specific problems in the settlement data in particular places on the results of this 

analysis.   

 I infer settlement population levels from the total number of rooms 

identified in each settlement during each 50-year interval from 1200 to 1450.  

From these room counts, I classify all settlements by differences in settlement 

population levels (low, moderate, or high).  I use these classifications and “bin” 
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the room data because it accommodates uncertainties in the actual room numbers.  

Actual room numbers are always in dispute because of chronological issues and 

many settlement room counts are estimates based on reliable but incomplete 

information (as just discussed above).  Settlement room counts in central Arizona 

are identified in the database as constant throughout a settlement’s period of 

occupation, in most cases.   

To classify settlements by population levels, I examine a histogram of the 

number of rooms in all settlements occupied in central Arizona from 1200 to 1450 

(Figure 5.1).  I separate the number of rooms per settlement into low, moderate, 

and high settlement population levels based on inspection of the histogram.  I 

classify settlements with 30 or few rooms "low population" settlements, 31 to 100 

rooms "moderate population" settlements, and more than 100 rooms as "high 

population" settlements.   I developed a separate histogram of settlement 

population levels for the Lower Salt River watershed as settlement sizes there 

were substantially larger than in the rest of central Arizona (Figure 5.2).  I use 

these classifications as an indicator of differences in resource demands, the rate of 

consumption of resources, and the extent of labor available to invest in strategies 

to manage the risk of shortfalls.  With these classifications, I evaluate models of 

vulnerability that emphasize the contribution of settlement-scale resource 

demands to vulnerability to dry periods (the Demand model and the Demand and 

Supply model).   

 
 



 

 
 
 
Figure 5.1 Histogram of settlement room counts in central Arizona (Lower Salt 

watershed excluded), 1200 to 1450. 
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Figure 5.2.  Histogram of settlement room counts in Lower Salt River watershed, 

1200 to 1450.  

 
To identify differences in watershed population density, I sum the number 

of rooms in each watershed during each of the 50-year intervals, and divide it by 

the number of square kilometers in the watershed (rooms per square kilometer) 

(Table 5.1).  I then calculate the average population density of each watershed by 

summing the five density statistics from each watershed and dividing by five.  

Average watershed population density is a reasonable comparative measure of 

density because, although absolute density varies over time, relative density (i.e., 

each watershed’s relative ranking) is mostly consistent over time.  That is, density 

in the Upper Verde and Agua Fria watersheds was consistently lower than in the 

Lower Verde, Tonto, Upper Salt, and Lower Salt during the 250 year study 
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period.  For convenience in discussing differences in density, I classify each 

watershed as having low, high, or very high density.  The cutoff between the 

designation of low and high density watersheds is based on the gap in density 

between the Agua Fria and Lower Verde watersheds (.19 and .37 rooms per 

square kilometer). This doubling of density is the largest gap in the distribution of 

density values among the watersheds (Figure 5.3), except the Lower Salt which is 

treated as a very high density outlier.  With these classifications, I evaluate 

models of vulnerability that emphasize the contribution of watershed-scale 

resource demands to vulnerability to dry periods (the Demand model and the 

Demand and Supply model). 

 
 

 
 
 



 

Table 5.2. Number of Rooms and Density (rooms/km2) in All Central Arizona Watersheds. 
 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449 

Watershed 

Size, 
Square 
Kilo-

Meters 

rooms density rooms density rooms density rooms density rooms density

1200 to 
1450 

Average 
Density 

Aqua Fria 6,355 787 .12 427 .07 1937 .30 1917 .30 860 .14 .19 
Big Chino 5,640 102 .02  .02 
Carrizo 1,786 165 .09 505 .28 555 .31 185 .10 .20 
Lower Salt  3,442 6,317 1.84 7,121 2.07 8,126 2.36 6,888 2.00 486 .14 1.68 
L. Verde 5,019 1,162 .23 1,764 .35 3,318 .66 2,750 .55 244 .05 .37 
Tonto 2,694 1,601 .59 2,221 .82 1,444 .54 1,294 .48 .61 
Upper Salt 5,612 2,081 .37 3,701 .66 4,922 .88 4,207 .75 361 .06 .54 
Up. Verde 6,372 869 .14 1,115 .17 1,667 .26 1,507 .24 155 .02 .17 
White 1,703 245 .14 430 .25 800 .47 800 .47 .33 
TOTAL 38,623 13,329 17,284 22,769  19,548 2,106
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Figure 5.3.  Average population density of focal watersheds.   

 
 

Environment:  Indicators of Differences in Potential Resource Supplies 
 
 I use both settlement and watershed-scale indicators of potential resources 

supplies in this study.  At the settlement-scale, I identify each settlement’s 

proximity to a perennial river and the average annual precipitation level the 

settlement location receives.  At the watershed scale, I identify the weighted 

average annual precipitation level of all settlements in each watershed and 

identify the streamflow discharge level of each watershed’s primary river.  These 

indicators identify differences among settlements and watersheds in general or 

average water conditions supporting resource productivity.  These differences are 

considered constant throughout the 1200 to 1450 period of study because the 

locations of perennial rivers and long-term, average annual precipitation levels 

have not substantially changed since the period of study.  By identifying inherent 

differences in potential resource productivity (supply) among settlements and 

watersheds, I can examine the relationship between dry-period severity and 
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residential abandonment under different resource conditions at two spatial scales.  

This effort allows conceptual models that emphasize the influence of differences 

in resource supplies on vulnerability to dry periods to be evaluated.   

Proximity to Perennial Rivers 

 Data on the location of perennial rivers, and portions of perennial rivers, 

were developed by The Nature Conservancy (2006).  The Conservancy's project 

synthesized and updated previous work and similar maps of perennial rivers 

developed by Brown et al. (1977, 1981) produced for the Arizona Game and Fish 

Department and the U.S. Forest Service, and Miller (1954).  Although the 

Conservancy's study considered extensive historical resources, it is possible that 

diversions and ground water extractions decreased the extent of perennial 

resources with fewer perennial rivers identified now than there were in the past.  

However, perennial rivers identified in this study were certainly perennial in the 

past.   

I consider settlements located within two kilometers of a perennial river 

(or a portion of a perennial river) to be "near" a perennial river.  Those located 

more than two kilometers are considered "far" from perennial rivers.  Two 

kilometers is an arbitrary cutoff but selected to accommodate changes in river 

channel positions over time and relatively easy walking distances.  I also assumed 

that a strong reliance on irrigated agriculture, which I expect increased potential 

productivity, to be unlikely among settlements located more than two kilometers 

from a perennial river (except along the Lower Salt).  Further efforts to 

identifying the potential for irrigated agriculture at each settlement would bring 
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additional confidence but these efforts are beyond the scope of this study given 

the breadth of the spatial area considered in this analysis.  I use two classifications 

(near and far) because the models I evaluate do not distinguish differences in 

vulnerability based on actual distances from perennial rivers.  That is, the models 

do not expect vulnerability to dry periods to increase as distance from a perennial 

river increases.  Differences are typically conceptualized as either/or: greater 

potential productivity near a perennial river and lesser potential productive far 

from a perennial river.    

Using GIS analysis (ArcGIS 9.3), I identify each settlement's distance 

from the nearest perennial river with settlement location data from the Coalescent 

Communities Database (Wilcox et al. 2003).   High proportions of rooms located 

both near and far from perennial rivers in the central Arizona study area (Figure 

5.4) and in most watersheds (Figure 5.5) allow an effective examination of the 

influence of proximity to perennial rivers on vulnerability to dry periods.  



 

Proportional Distribution of Rooms Near and Far from 
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Figure 5.4.  Proportional distribution of rooms near and far from perennial rivers. 

 

Percent of Identified Rooms Located Near and Far from Perennial 
Rivers in Central Arizona by Watersheds, 1200 to 1450
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Figure 5.5.  Proportional distribution of rooms near and far from perennial rivers 

by focal watersheds. 
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Streamflow Discharge Levels 

To compare streamflow-related resource productivity among watersheds, I 

use the mean annual streamflow discharge level of each watershed’s primary river 

calculated from modern discharge records (Arizona Department of Water 

Resources 2010; USGS 2010).  The duration of each record varies by river but 

always exceeds 40 years.  I rank discharge levels among the watersheds rather 

than use absolute values (acre feet/year) because differences in the absolute 

values are not necessarily a meaningful indicator of differences in the productive 

potential of perennial riverine areas.  Unlike precipitation where moisture is 

stored in the soil and may be utilized by wild and cultivated plant foods over time, 

high annual discharge levels were likely not fully utilized by either irrigated 

agriculture or riparian plant communities.  Ranking discharge levels from lowest 

to highest more effectively captures the intent of this analysis by identifying 

relative differences in water availability among the watersheds.  In the evaluation 

of the supply models of vulnerability to dry periods (Chapter Eight) I use this 

ranking in combination with precipitation levels to approximate differences in 

potential water-related resource productivity among watersheds.   
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Table 5.3.  Watersheds by Mean Annual Streamflow Discharge of the 

Watershed’s Primary River. 
 

Mean Annual Flow/Year (in acre-feet) 
Watershed 

discharge1 rank 

Agua Fria 16,327 
 
1 

Tonto 113,232 
 
2 

Upper Verde 128,062 
 
3 

Lower Verde 409,875 
 
4 

Upper Salt 474,817 
 
5 

Lower Salt2 644,942 
 
6 

1Arizona Department of Water Resources (2010), United States Geological 
Survey (2010) 
2Lower Salt River discharge levels in the settled portion of the Lower Salt River 
watershed are higher than identified here because the Verde River and Tonto 
Creek flow into the Salt above the settled area.  The Salt River gage used for this 
figure is located above the confluence of the Salt, Verde, Tonto, and Agua Fria.   
See gage and other statistics: Chapter Four, Table 4.1.  
 
 
Settlement Area Precipitation Levels 

I use modern precipitation data to identify the average annual amount of 

precipitation received at each settlement's location.  Tree-ring precipitation data 

cannot capture spatial differences in precipitation at the level of resolution of the 

site locale, which is needed for this analysis and which is possible with modern 

climate data.  I use modern precipitation data from the PRISM Group, Oregon 

State University (2007), to identify average annual precipitation at each 

settlement location based on a 30-year climatic normal (Guttman 1989) from 

1961 to 1990 (Figure 5.6).  The PRISM (Parameter-elevation Regression on 
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Independent Slopes Model) climate mapping system incorporates instrumental 

point data, a digital elevation model, and expert knowledge of complex climatic 

extremes, including rain shadows and temperature inversions (Daly et al. 1994).  

PRISM data are recognized as the highest-quality climate data sets currently 

available and are the U. S. Department of Agriculture’s official climatological 

data (PRISM 2010).   

As also noted in the climatic description of the study area (Chapter Four), 

modern long-term precipitation averages are appropriate for characterizing 

average precipitation levels during the 1200 to 1450 period because the 

atmospheric and physiographic controls on Southwest climate have not changed 

since the period of study (Sheppard et al. 2002).  Studies of pollen, plant and 

animal distributions, geology (Schoenwetter 1962), and the tree-growth response 

to climate over time also demonstrate that there has been no change in the type of 

climate prevalent in the Southwest for at least the past 2,000 years (Dean and 

Robinson 1982).     

 
 
 
 
 
 



 

 

 
 
 
Figure 5.6.  PRISM precipitation contours by 2” intervals.  Lesser to greater 

precipitation represented with lighter to darker shading.  Map produced using data 

from PRISM Climate Group, Oregon State University 2007, 

http://www.prismclimate.org. 

 
 
  Using GIS analysis and settlement location data from the Coalescent 

Communities Database (Wilcox et al. 2003), I identify the precipitation level of 

each settlement.  I classify each settlement as receiving  low (8" to 14"), moderate 

(14" to 22"), or high (22" to 36") average annual precipitation based on 

identifying breaks in a histogram of precipitation values of all settlements 
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identified in central Arizona (Figure 5.7).  I repeated this analysis using a 

histogram of rooms by precipitation levels and the same classification is 

supported.   

 

 
Figure 5.7.  Histogram of settlements occupied in central Arizona from 1200 to 

1450 by mean annual precipitation of settlement location.  The Lower Salt River 

watershed is excluded from this histogram. 

 
Watershed-Scale Precipitation Levels 

To compare precipitation-related resource productivity among watersheds, 

I calculated the weighted average annual precipitation level of all settlements by 

watershed (Table 5.2).  For each settlement, I multiplied the number of rooms by 

the average annual precipitation level of the settlement.  I summed the products of 

these calculations and the number of rooms in all settlements.  I divided the sum 

of the products by the sum of the rooms for a weighted annual average 
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precipitation level of settlements in each watershed.  

 

Table 5.4.  Weighted Average Annual Precipitation by Watershed. 

 

Watershed 
Weighted Average Annual Precipitation 

of all Settlements Occupied 1200 to 1450 
 
Lower Salt 

 
  9.3 

 
Upper Verde 

 
14.7 

 
Agua Fria 

 
16.4 

 
Lower Verde 

 
17.2 

 
Tonto 

 
18.5 

 
Upper Salt 

 
20.3 

 
 

Dry Periods from 1200 to 1450 
 
 The climatic condition examined in this study is very dry conditions, thus, 

the key climate variables are low precipitation and streamflow.  I do not refer to 

these dry conditions as "droughts".  Drought is "a deficiency in precipitation over 

an extended period, usually a season or more, resulting in a water shortage 

causing adverse impacts on vegetation, animals, and/or people” (National 

Weather Service 2006:1).  Although more than 150 definitions of drought have 

been identified (Wilhite and Glantz 1985), it is generally thought of as a condition 

of “insufficient water to meet needs” (Redmond 2002:1144).  These definitions 

acknowledge the dynamic relationship between water supply and demand with 

decreases in supply and/or increases in demand contributing to adverse impacts 
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and the occurrence of drought.  In contrast, I use the term "dry-period" defined as 

a multi-year period of relatively low precipitation and streamflow.  Dry periods 

cannot be assumed to be periods of "insufficient water to meet needs" because the 

climatic event alone does not demonstrate imbalances in water supply and 

demand.  (See Smakhtin and Schipper 2008 for a discussion of problems and 

issues related to definitions and conceptual understanding of drought).   

Climate Proxy Selection 

 I identify dry periods in the precipitation record of central Arizona using 

the San Francisco Peaks (SFP) tree-ring reconstruction of annual precipitation 

(previous October to current July) from A.D. 570 to 1988 (Salzer 2000a; Salzer 

and Kipfmueller 2005).  The reconstruction was developed using both living tree 

and archaeological chronologies with standard procedures developed at the 

Laboratory of Tree-Ring Research at the University of Arizona (e.g., Fritts 1976, 

Rose et al. 1981).  Three tree-ring chronologies were used in the San Francisco 

Peaks precipitation reconstruction:  Flagstaff, Navajo Mountain, and Canyon de 

Chelly (Salzer 2000a:28).  These chronologies were originally developed as a part 

of the Southwest Paleoclimate Project (Dean and Robinson 1978) and are 

comprised of archaeological and living tree specimens from elevations of 

approximately 1890 to 2290 meters in northern Arizona and southern Utah 

(Salzer 2000a:28).  Combining chronologies typically strengthens the climate 

signal by increasing sample sizes and buffering the influence of non-climatic 

factors at individual sites (Salzer 2000a:28).  Furthermore, "spatial networks of 

tree-ring chronologies usually explain more of the variance in a climate variable 
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than a single chronology can" (Salzer 2000a:28 citing Cook et al. 1994; Meko et 

al. 1993).   

 I evaluate the suitability of the SFP reconstruction to represent 

precipitation conditions in the study area watersheds (except the Lower Salt, 

discussed below) by examining the strength of the statistical relationship between 

the reconstruction and modern meteorological stations in the study area.  I use 

modern precipitation levels from previous October to current July (comparable to 

the SFP reconstruction) for Climate Divisions 3 and 4 to represent conditions in 

the study area (National Climatic Data Center 2008).  Climate division averages 

are arithmetic means of monthly data from all climate stations within a given 

division that are thought to reflect the general characteristics of the division 

(Guttman and Quayle 1996).  Precipitation averages are not available at the scale 

of individual watersheds.  Climate Division 3 includes the western portion of the 

central Arizona study area (Agua Fria, Upper Verde, Big Chino-Williamson 

watersheds) and Climate Division 4 includes the eastern portion of the central 

Arizona study area (Lower Verde, Tonto Upper Salt, Carrizo, White watersheds).  

The correlation between the SFP reconstruction and modern precipitation in 

Climate Division 3 is r = .75 (Figure 5.8) and r = .72 for Climate Division 4 

(Figure 5.9).  High precipitation years are less accurately retrodicted by tree-ring 

proxy data because water is no longer the limiting factor.  Low precipitation years 

(the focus of this study) are well represented by the reconstruction.  The strength 

of these correlations reflects a high degree of spatial homogeneity in climate in 

the region even though the absolute precipitation values vary largely by elevation.  



 

Differences between the SFP reconstruction and the modern Climate Division 4 

data (Figure 5.9) reflect these elevational differences.  In sum, the SFP 

reconstruction effectively represents precipitation conditions in the study area 

watersheds.  These precipitation conditions are also a reasonable indicator of 

changes in streamflow discharge levels because the streams and rivers of these 

watersheds are all contained within Climate Divisions 3 and 4 and the study area 

watersheds.   

 
 

Figure 5.8.  Comparison of SFP tree-ring precipitation reconstruction to modern 

Climate Division 3 precipitation. 

 

 
 
Figure 5.9.  Comparison of SFP tree-ring precipitation reconstruction to modern 

Climate Division 4 precipitation. 
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A single precipitation reconstruction, especially with combined tree-ring 

chronologies, can reliably identify climatic conditions throughout the study area 

because of the highly synchronous spatial and temporal climate patterns in the 

study area (McPhee et al. 2004:5; Sheppard et al. 2002).  That is, “Even though 

Arizona precipitation is characterized by different annual precipitation totals 

across the state, year-to-year precipitation variations are quite similar across the 

state” (McPhee et al. 2004:12).  Climate patterns are synchronous because climate 

is controlled by large-scale atmospheric circulation patterns.  The similarly of 

precipitation in the study area is demonstrated by a 100-year record of average 

annual precipitation in Climate Divisions 3 and 4 (which include the study area 

watersheds, excluding the Lower Salt) (Figure 5.10).  The annual precipitation 

levels are strongly correlated (r =.93) (see McPhee et al. 2004 for similar results).   
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Figure 5.10.  Climate Division 3 and 4 average annual precipitation levels 

(produced using data from the National Climate Data Center 2008). 

 

I use the Lower Salt River (LSR) streamflow reconstruction (Graybill 

1989; Graybill et al. 2006) to identify dry periods in the Lower Salt watershed.  I 
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use streamflow levels rather than precipitation levels in the Lower Salt watershed 

to identify dry periods because resource productivity was primarily linked to 

extensive irrigated agriculture from the Lower Salt River (see Chapter Four).  

Lower Salt River discharge is comprised of annual discharges from the Salt, 

Tonto, and Verde Rivers.  The watersheds of these rivers extend into eastern and 

northern Arizona and western New Mexico.  Thus, precipitation in the Lower Salt 

watershed is not a strong indicator of changes in discharge levels or productivity.  

Streamflow is retrodicted in million acre-feet per year and is reported for water 

years, October to September.  Verification statistics indicate a strong relationship 

(r2 = .72) between modern streamflow gauge data and the final reconstructed 

streamflow discharge (Graybill et al. 2006:77).  This relationship is shown below 

during the modern period of overlap (Figure 5.11).     

 
 

Figure 5.11. Retrodicted and modern discharge levels of the Lower Salt River 

(after Graybill et al. 2006:78).  Lighter line is the actual flow; darker line is the 

reconstructed flow. 

Identifying Dry Periods and Characterizing Severity 

  Dry periods are identified by smoothing year-to-year precipitation and 

streamflow variation and selecting threshold values.  A centered nine-interval 
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moving average is used to smooth this variation.  These interval averages 

accommodate but do not ignore anomalous years within a dry period that likely 

do not end the dry period.  For example, a single wet year during a dry period 

would not end the dry period or necessarily replenish stored food reserves or soil 

moisture.  A nine-year interval duration was selected as a compromise between 

shorter durations, which would not as faithfully represent trends in the proxy 

climate data, and longer durations, which would obscure climate variation that 

would have been potentially meaningful for human behavior.  The concept of 

moving averages has been used in a number of paleoclimate studies to identify 

multi-year dry and wet periods (e.g., Benson et al. 2007; Cordell et al. 2007; Ni et 

al. 2002; Parks et al. 2006; Van West and Grissino-Mayer 2006; Woodhouse 

2001).  A nine-year interval duration is supported by numerous climate studies 

that have documented persistence (year to year similarity) in climate patterns on 

decadal scales in both the modern instrumental and proxy records (Cayan et al. 

1998; Dettinger et al. 1998; Fritts 1991; Gray et al. 2004; Grissino-Mayer 1995).  

Eight to 20-year overlapping and non-overlapping intervals have been employed 

to examine relationships between climate and human behavior (Dean 1988; 

Larson et al. 1996; Parks et al. 2006; Reid et al. 2006; Rose et al. 1981).  During 

data exploration, I compared dry periods identified with different interval lengths 

(i.e., 5 years, 15 years) and found that interval durations identified dry periods 

similarly well but resulted in some differences in the start and end dates of 

individual dry periods.   

 Threshold values identify dry periods within the distribution of nine-year 
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interval moving averages across the precipitation and streamflow reconstructions 

(A.D. 572 to 1988).  Dry periods are defined as those 9-year intervals in the first 

quartile of the distribution of interval averages of each reconstruction.  A similar 

approach has been used with standard deviation units by Dean (1988) and 

percentile approaches to identify thresholds are currently used by the U.S. 

Drought Monitor (www.cpc.noaa.gov) and others to track drought severity across 

the U.S. (e.g., Hirschboeck and Meko 2005, Steinemann et al. 2005, Smakhtin 

2001).   A first quartile threshold value is arbitrary but assumed to represent 

values and periods with sufficient rarity to have substantially influenced resource 

productivity or perceptions of productivity relative to typical conditions.  During 

data exploration, I also identified dry periods using a decile threshold.  Only 

nineteen years within the 250-year study period were identified as a dry years 

using this threshold--too rare for an evaluation of dry-period influences on human 

behavior and for the temporal resolution of the archaeological data.  The 

percentile value is assigned to the center (middle) of each moving nine-year 

interval (year 5).  When four or fewer years of separation exist between the 

middle years of two identified dry periods, the intervals are merged into a single 

extreme event because the nine-year intervals substantially overlap.  I use the 

entire length of the precipitation reconstruction (570 to 1988) to calculate the 

percentiles.  The length of the precipitation reconstruction has little impact on the 

identification of extreme periods based on my evaluation of dry periods identified 

using portions (500, 1000, and 1500 years) of the total reconstruction.   

 To allow comparison of the dry periods to residential abandonment, I 
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identify differences in the severity of dry periods in each 50-year interval from 

1200 to 1450.  As I stated earlier, documenting demographic changes and 

residential abandonment at 50-year intervals is currently the best chronological 

resolution possible in the study area.  Thus, the temporal resolution of the climate 

data must be matched to the resolution of data representing residential 

abandonment.  I identify differences in dry-period severity by summing the 

number of years identified as a dry period within each 50-year interval and 

dividing this sum by the 50-year interval duration.  The results of these 

calculations are the percent of each 50-year interval identified as a dry period.  I 

use this percent to represent differences in dry-period severity among the five 50-

year intervals.  Intervals can then be compared on the basis of this severity value.  

I emphasize the duration of dry periods as an indicator of severity because as dry 

periods persist, the effectiveness of strategies to manage shortfalls risks 

diminishes.  For example, food storage is an effective strategy to manage intra or 

inter-annual variation in productivity and to prevent shortfalls.  If productivity 

remains low for an extended period, stored reserves including seed stores can be 

depleted and the risk of shortfall increases.   

 Assessing dry-period severity and making relative comparisons between 

intervals is a reasonable approach because it is consistent with the strengths of 

tree-ring reconstructed precipitation data.  These data are the strongest and most 

reliable when they are used to represent relative changes in climate conditions 

rather than absolute (year-to-year) changes (Fritts 1976; Meko et al. 1995). The 

statistical correlation between tree growth and climate is always less than perfect; 
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therefore, an emphasis on individual retrodicted years gives a false sense of 

precision to an analysis.  In sum, analyses and explanations based on year-to-year 

change in retrodicted precipitation values are not as reliable and well grounded in 

the data as investigations of multi-year dry periods which can be reasonably 

compared over time using differences in dry-period severity among 50-year 

intervals.    

Dry Periods, 1200 to 1450  

 Based on the methods discussed above, dry periods identified in the 

precipitation and streamflow reconstructions are presented in Tables 5.5 and 5.6 

and displayed in Figures 5.12 and 5.13.  These dry periods are then used to 

identify differences in dry-period severity among the intervals (last column) for 

comparison to variation in the extent of room and settlement abandonment during 

the period of study.   A dry-period that overlaps interval boundaries is counted in 

the interval containing the majority of the dry-period’s years, when human 

responses are most expected.  

 



 

Table 5.5.  Precipitation Dry Periods in Central Arizona from 1200 to 1450 (San 

Francisco Peaks [SFP] Precipitation Reconstruction). 

Intervals Dry Periods Dry-Period 
Duration 

Total Number 
Of Dry-Period 
Years in 
Interval 

Percent of 
Interval 
Identified as 
a Dry Period 

1200 - 1249 1214 - 1220 7 7 14 
1250 - 1299 1248 - 1254 7   
 1282 - 1282 1   
 1294 - 1299 6 14 28 
1300 - 1349 1339 - 1351 13 13 26 
1350 - 1399 1359 - 1365 7   
 1391 - 1402 12 19 38 
1400 - 1449 1412 - 1414 3   
 1438 - 14621  25 28 44 
 

1To accommodate this dry period, the number of dry period years in the 1400 to 
1449 interval is divided by a 63-year interval duration (i.e., 1400 to 1462).  I use 
the end date of 1462 because it is a reasonable guess at the termination date of this 
interval in central Arizona prehistory, which is not well known (see for example, 
Dean 1991).   
 
 
 
 
 

 
 
Figure 5.12.  Dry periods in central Arizona from 1200 to 1450. 
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Table 5.6.  Streamflow Dry Periods in Central Arizona from 1200 to 1450 (Salt, 

Tonto, Verde River [LSR] Reconstruction). 

Intervals Dry Periods Dry-Period 
Duration 

Total Number 
of Dry-Period 
Years in 
Interval 

Percent of 
Interval 
Identified as 
a Dry-Period 

1200 - 1249 1214 - 1224  11 11 22 
1250 - 1299  1250 - 1255   6   
 1280 - 1292  13 19 38 
1300 - 1349 1338 - 1352 15 15 30 
1350 - 1399 1389 - 1393  5 5 10 
1400 - 1449 1408 - 1414 7   
 1436 - 1452 17 24 46 
 

 
 

 
Figure 5.13.  Lower Salt River streamflow dry periods. 

 
 

Residential Abandonment 
 

I identify residential abandonment through reductions in the numbers of 

occupied rooms at settlements and by reduction in the number of settlements in a 

watershed.  For this study, 535 settlements including 32,082 rooms located in nine 

watersheds in central Arizona are considered.  The number of identified rooms 

occupied, abandoned, and the percent of rooms abandoned during each 50-year 

interval from 1200 to 1450 are presented in Table 5.3.  I calculated these numbers 

using the settlement founding and abandonment dates and the number of rooms 
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identified at each settlement, as recorded in the Coalescent Communities 

Database (previously discussed).  For example, a settlement occupied from 1250 

to 1349 with 100 identified rooms would be included in the watershed rooms 

occupied count during the 1250 to 1299 and 1300 to 1349 intervals and be 

included in the watershed rooms abandoned count during the 1300 to 1349 

interval.  The total number of rooms abandoned during an interval includes all 

rooms in settlements with abandonment dates during that interval.  I used 

geographic information systems software (ArcMap 9.2) to assign each settlement 

and the associated rooms to a watershed.     

The general index of residential abandonment I use for each 50-year 

interval from 1200 to 1450 is:  total number of rooms abandoned divided by the 

total number of rooms occupied; thus, the percent of rooms abandoned during 

each interval.  For example, in the central Arizona study area as a whole during 

the 1250 to 1299 interval, 10,163 rooms were occupied and 4,699 were 

abandoned (Table 5.7). The index of residential abandonment, then, is:  4,699 

divided by 10,163 = 46% (the percent of rooms abandoned).  I do not consider 

absolute changes in the total number of rooms abandoned during each interval as 

absolute changes will vary as total population varies.  Using the percent of rooms 

abandoned controls for changes in population size.   

 



 

Table 5.7.  Total Number of Rooms Occupied and the Percent of These Rooms  

Abandoned During Each Interval by Watershed. 

Watershed Rooms 1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449
 n % % % % %n n n n
Central Arizona1  
     occupied 7,012 10,163 14,643 12,660 1,620
     abandoned 1,487 21 4,699 46 2,927 20 11,040 87 1,620 100
Agua Fria  
     occupied 787 427 1,937 1,917 860
     abandoned 598 76 176 41 20 1 1,057 55 860 100
Big Chino-Williamson  
     occupied 102  
     abandoned 102 100  
Carrizo  
     occupied 165 505 555 185
     abandoned 45 27 120 24 370 67 185 100
Lower Verde   
     occupied 1,162 1,764 3,318 2,750 244
     abandoned 153 13 603 34 568 17 2,506 91 244 100
Lower Salt   
     occupied 6,317 7,121 8,126 6,888 486
     abandoned 196 3 796 11 2,351 29 6,480 94 486 100
Tonto  
     occupied 1,601 2,221 1,444 1,294
     abandoned 114 7 1277 57 206 14 1,294 100
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Watershed Rooms 1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449
 n % n % n % n % n %
Upper Salt 
     occupied 2,081 3,701 4,922 4,207 361
     abandoned 197 9 2078 56 1,603 33 3,846 91 361 100
Upper Verde  
     occupied 869 1,115 1,667 1,507 155
     abandoned 213 25 15 1 160 10 1,352 90 155 100
White  
     occupied 245 430 800 800
     abandoned 65 27 430 100 0 0 800 100
 

1Central Arizona includes all rooms/settlements in the Agua Fria, Big Chino-Williamson Valley, Carrizo, Lower Verde, 
Tonto, Upper Verde, and Upper Salt, and White watersheds.  Big Chino-Williamson Valley, Carrizo, and White watersheds 
are excluded from the watershed-scale analysis due to low settlement and or room numbers and the limited duration of 
occupation in these watersheds.  
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 I identify the extent of residential abandonment among settlements and 

watersheds by each demographic and environmental classification.  The specific 

indices of residential abandonment by demographic conditions (settlement 

population levels and watershed population density) are in Table 5.8 and the 

indices of residential abandonment by environmental conditions (proximity to 

perennial rivers and settlement area precipitation levels) are in Table 5.9.  I 

compare variation in residential abandonment for each of these classifications to 

variation in dry-period severity to identify the influence of specific demographic 

and environmental conditions on residential abandonment and vulnerability to dry 

periods.  Data tables for each of these classifications are presented with the results 

in Chapters Six through Nine.    
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Table 5.8.  Indices of Residential Abandonment by Demographic Conditions. 

 
Demographic Conditions  Residential Abandonment Indices 

Low settlement population levels  
(<=30 rooms)  

number of settlements abandoned with low 
population levels during a 50-year interval 
divided by the total number of low 
population settlements occupied during that 
interval 

 
Moderate settlement population 
levels 
(31 to 100 rooms) 

 
number of settlements abandoned with 
moderate population levels during a 50-year 
interval divided by the total number of 
settlements with moderate population levels 
occupied during that interval 

 
High settlement population levels 
(>100 rooms) 

 
number of settlements abandoned with high 
population levels during a 50-year interval 
divided by the total number of settlements 
with high population levels occupied during 
that interval 

 
Low density watershed 
(<.20 rooms per square kilometer)  

 
number of rooms located in a low density 
watersheds during a 50-year interval divided 
by the total number of rooms occupied in a 
low density watershed during that interval 

 
High density watershed 
(>.36 rooms per square kilometer) 

 
number of rooms located in a high density 
watershed during a 50-year interval divided 
by the total number of rooms occupied in a 
high density watershed during that interval 

 
Note:  Demographic conditions calculated at the watershed and “Central Arizona” 
scale.   
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Table 5.9. Indices of Residential Abandonment by Environmental Conditions. 
 

Environmental Conditions  
of Settlements/Rooms 

Residential Abandonment Indices 

Near a perennial river   
(located less than 2 km from 
a perennial river)   

number of rooms abandoned near perennial rivers 
during a 50-year interval divided by the total 
number of rooms occupied near perennial rivers 
during that interval 

 
Far from a perennial river  
(located more than 2 km 
from a perennial river)  

 
number of rooms abandoned far from perennial 
rivers during a 50-year interval divided by the 
total number of rooms occupied far from 
perennial river during that interval 

 
Low precipitation  
(9” to 14” annually) 

 
number of rooms abandoned in areas of low 
precipitation  during a 50-year interval divided by 
the total number of rooms occupied in areas with 
low precipitation during that interval 

 
Moderate precipitation 
(15” to 22” annually)  

 
number of rooms abandoned in areas of moderate 
precipitation during a 50-year interval divided by 
the total number of rooms occupied in areas with 
moderate precipitation during that interval 

 
High precipitation 
(23” to 35” annually) 

 
number of rooms abandoned in areas of high 
precipitation during a 50-year interval divided by 
the total number of rooms occupied in areas with 
high precipitation  

 
Note:  Environmental conditions identified using modern environmental/climatic 
data assumed to represent conditions during the period of study.  Proximity to 
perennial rivers calculated at the watershed and Central Arizona scale.  
Precipitation levels calculated only at the Central Arizona scale.   
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Evaluating Models of Vulnerability by Evaluating Relationships 

The previous sections of this chapter have identified how I identified dry 

periods and classified each room, settlement, and watershed by their demographic 

and environmental conditions.  These conditions are identified in the conceptual 

models as influencing human vulnerability to dry periods.  By examining the 

relationship between dry-period severity and residential abandonment under each 

of these conditions, I evaluate the extent to which the models are supported over a 

250-year period in central Arizona.   If differences in the relationships are 

detected when conditions are varied (e.g., high vs. low watershed population 

density, settlements near vs. far from perennial rivers), I attribute these 

differences to the influence of these conditions on vulnerability to dry periods.  

Little or no difference in the relationships among classifications will indicate a 

particular condition did not affect residential abandonment and by implication 

vulnerability to dry periods.  As the number of observations allows, I examine 

these relationships at the settlement-scale, watershed-scale, and at the scale of the 

entire study area to provide multiple tests of each model and identify any 

differences in the spatial distribution of the relationship.  The remainder of this 

chapter identifies the statistics and methods I employ to identify and compare 

relationships.  I also provide a sample analysis.   

I assess the relationship between dry-period severity and residential 

abandonment (in all places and under each condition) by examining the slope and 

intercept of a best-fit straight line through a scatterplot of data values representing 

dry-period severity (x) and residential abandonment (y) during each 50-year 
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interval from 1200 to 1450.  I also calculate a Pearson’s r correlation coefficient 

and associated p-levels and visually inspect the scatterplot of each relationship.  

I use linear regression to identify a best-fit straight line through each 

scatterplot of data values.  A best-fit straight line calculated with linear regression 

minimizes the sum of the squares of the vertical distances of each data value from 

the line.  I use the regression equation and line to identify the best-fit values of the 

slope and intercept.  The slope identifies the direction of the relationship (positive 

or negative) and quantifies the steepness of the line.  The slope in this analysis 

equals the percent change in residential abandonment (y) for each one percent 

change in dry-period severity (x).  I use the slope to evaluate the extent of 

sensitivity to dry-period severity in different places and under different 

demographic and environmental conditions.  For example, if people living in 

settlements near perennial rivers were less sensitive (or responsive with 

residential abandonment) to dry-period severity than people living far from 

perennial rivers, then I expect the slope of the line representing the relationship 

between dry-period severity and residential abandonment among settlements near 

perennial rivers will be shallower (less steep) than the slope of the line 

representing the relationship between dry-period severity and residential 

abandonment among settlements far from perennial rivers.  I also statistically 

compare slopes to determine if and how sensitivity to dry-period severity was 

different in one watershed or among settlements with particular characteristics 

(discussed further below).  The y-intercept identifies the elevation of the line and 

is the expected mean value of y when x = 0; or, the extent of residential 
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abandonment when the index of dry-period severity is 0.  It suggests a starting 

value or constant rate of residential abandonment unaffected by dry periods.   

A Pearson's r correlation coefficient is a measure of the degree of linear 

(or proportional) relationship between the variables: dry-period severity and 

residential abandonment.  The correlation coefficient tells us how good the fit the 

regression line is to the data values; thus, it is understood as a measure of the 

strength of the linear relationship between two variables (Drennan 1996:216; 

Shennan 1997:139).  The strength of the relationship is identified on a scale from 

zero for no linear relationship to one for a strong or "perfect" linear relationship.  

The sign of the coefficient (+ or -) identifies the direction of the relationship (as 

does the slope).  A positive correlation coefficient indicates that as dry-period 

severity increased, residential abandonment increased.  A negative correlation 

indicates that as dry-period severity increased, residential abandonment 

decreased.  High r values indicate a good fit with much of the variance in the 

relationship between dry-period severity and residential abandonment “explained” 

by changes in dry-period severity.  [Quotes are appropriate for “explained” (and 

“explains” and “unexplained”) because the correlation (or regression) does not 

“explain” the relationship in an ordinary sense.  Quotation marks are hereafter 

omitted, as is common practice].  Low r values indicate a poor fit and substantial 

unexplained variance in the relationship between dry-period severity and 

residential abandonment.  The squared value of r (r2), known as the coefficient of 

determination, also provides an assessment of the strength of the relationship.  It 

is interpreted as a measure of the proportion of the total variance in y (residential 
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abandonment) explained by the regression.  For example, an r value of .90 and the 

associated r2 value of .81 means that 81% of the variance in y (residential 

abandonment) is explained by x (dry-period severity).   

A p-level identifies the statistical significance, or reliability, of the 

correlation coefficient and is interpreted as the probability a correlation we 

observe in our sample between dry-period severity and the extent of residential 

abandonment reflects nothing more than the vagaries of sampling.  That is, the 

probability that r = 0.  It answers the question, “How likely is it that a sample this 

size with a correlation this strong could be selected from a population where there 

is no correlation?”  The higher the p-level, the less we can believe that the 

observed relation between variables in the sample is a reliable indicator of the 

relation between the variables in the population.   

I also visually inspect each scatterplot of data values to identify outliers.  

Outliers have a profound influence on the slope of a regression line and the value 

of correlation coefficients when there are few data points (as in this study).  I 

evaluate the influence of outliers and the effectiveness of the correlation 

coefficient and regression lines to represent the relationship between the 

variables.  In some analyses I exclude a relationship or a data value from 

calculations because it obscures the primary relationship between the variables.   

I do not set specific numerical thresholds for the slopes, correlation 

coefficients, or p-levels to accept or reject the existence of a relationship between 

the variables, mainly because there is no basis to establish such a level.  Rather, I 

consider all measures of the relationship to characterize and interpret the 
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influence of dry-period severity on residential abandonment under different 

conditions.   

I examine linear relationships between dry-period severity and residential 

abandonment under different demographic and environmental conditions for both 

practical and theoretical reasons, noted below.     

First, a consistent method of identifying and comparing relationships 

between the variables is necessary.  Linear relationships are easily identified and 

when found, are reasonably convincing evidence of a relationship between 

variables.  Data exploration also identified linear relationships at multiple spatial 

scales in most (81%) of the scatterplots of dry-period severity and residential 

abandonment [Most of the scatterplots that do not suggest a linear relationship  

are isolated to the Verde watersheds].  In reality, non-linear relationships and 

thresholds in the relationship between dry-period severity and residential 

abandonment might also be found and expected.  Given the scope of this study 

and the difficulty of comparing different types of relationships (e.g., linear to 

quadratic), I choose to investigate a single type of relationship.  Investigating only 

one type of relationship lessens the threat of having expected the type of 

relationship found and the challenge of predicting and explaining why different 

types of relationships might be found within the study area.  There is also no a 

priori method of expecting one type of relationship in one place or circumstance 

and another type of relationship elsewhere.  A weakness of focusing exclusively 

on linear relationships is that I will miss other types of relationships in the data.  

The weakness is not that I will identify relationships that did not exist.  
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Furthermore, the purpose of this study is not to identify the specific conditions 

contributing to vulnerability in each watershed or differences in the contribution 

of each condition among watersheds.  The purpose of this study is to evaluate 

existing vulnerability models using a spatially extensive study area so that the 

results identified might have broad applicability.   

Second, this dissertation’s focus on linear relationships also reflects the 

relationships expected in the models evaluated.  These models do not specify how 

vulnerability might change over time, or reach a threshold beyond which 

responses are inevitable, or be influenced by particular social, political, or 

geographic circumstances.  Thresholds in the relationship between dry periods, 

the risk of shortfalls, and residential abandonment should be expected if people 

were able to accommodate a range of dry-period related declines in productivity 

with existing buffering strategies.  If beyond this range a threshold is reached and 

buffering strategies are no longer effective, responses should increase 

substantially.  Such expectations are reasonable and are likely better evaluated 

with non-linear relationships or an emphasis on detecting thresholds of human 

response.  Identifying and comparing linear and non-linear relationships, 

including potential thresholds in these relationships, is beyond the scope of this 

study, given the number of analytical units and variables considered.  

Furthermore, I do not use a multivariate statistical approach in this study because 

the conceptual models I evaluate do not assert differences in the contribution of 

each variable or combine variables to explain vulnerability. 
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Third, expectations of the relationship between dry-period severity, the 

risk of food shortfalls, and the extent of human response are often conceptualized 

as linear.  These expectations have their origin in studies of environmental risk 

wherein the magnitude of a risk is expected to be related to the magnitude of the 

human response (Halstead and O'Shea 1989 ed.).  The risk of food shortfalls is 

understood to increase as dry-period severity increases.  This is because as dry 

periods persist over time, water-related resource productivity declines, stored food 

reserves are used, and other buffering strategies begin to fail.  An emphasis on dry 

periods and associated risk severity is pervasive in Southwestern archaeological 

studies of dry-period influences on regional-scale abandonments.  The 

characteristics of the coincident dry-period are investigated in terms of its severity 

(duration and/or magnitude) and contrasted with previous dry periods with or 

without human responses (e.g., Benson et al. 2007; 2009; Van West and Grissino-

Mayer 2006; Van West and Dean 2000).  These comparisons are sometimes used 

to question the influence of the late 1200s dry period in the northern U.S. 

Southwest on the depopulation of that region because the late 1200s dry period 

was less severe than a previous dry period (mid-1100s) that did not result in 

depopulation.  This study’s evaluation of linear relationships investigates the 

potential for linear responses although in reality non-linear relationships should 

also be expected.   

Example Analysis 

Figures 5.14 a. and b. represent the relationship between dry-period 

severity and residential abandonment under two different (hypothetical) 
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environmental conditions.  I separate the data by differences in the conditions 

identified in the conceptual models.  These conditions are identified as 

influencing human vulnerability to dry periods.  Separating the data into groups 

clearly identifies the influence of dry-period severity on residential abandonment 

in each group so that the relationships can be evaluated, contrasted, and compared 

with model expectations. The data points in each scatterplot are the percent of 

each 50-year interval identified as a dry-period (the index of dry-period severity) 

and the percent of rooms abandoned during that interval (the indicator of 

residential abandonment).  Thus, in Figure 5.8a, the data point labeled “1250-

1299” identifies that 56% of the rooms occupied during this interval were 

abandoned during this interval and 28% of the years during this interval are 

classified as a dry-period.   

In Figure 5.14 a., the best-fit value of the slope (m) of the regression line 

is 1.4 (Table 5.10), indicating that for every one percent increase in the number of 

years identified as a dry-period, there was a 1.4 percent increase in the percent of 

rooms abandoned.  The intercept (b) is -5% rooms abandoned (Table 5.10).  A 

negative percent of rooms abandoned suggests that when a 50-year interval did 

not contain years identified as a dry-period (x = 0), residential abandonment under 

these conditions was very low or non-existent.  A negative intercept may also 

suggest an attraction to an area such that people stayed in these locations even as 

dry-period severity increased.  And, it might indicate a threshold below which 

abandonment was not strongly influenced by dry periods and above which 

abandonment was more strongly influenced.   
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There is a positive but relatively weak linear relationship between the 

variables, indicated by the correlation coefficient r = .42 and the poor fit (or 

distance) of the data points to the regression line.  The relatively low coefficient 

and poor fit (r2 = 18%) indicates that much of the variance in residential 

abandonment among people living in settlements located in Environmental 

Condition 1 is not explained by changes in dry-period severity--other factors 

besides changes in dry-period severity are influencing changes in residential 

abandonment.  Finally, there is a 49% probability (p = .49) that this correlation 

represents nothing more than the vagaries of sampling; thus, we cannot be 

confident that the observed relationship between the variables in the sample is a 

reliable indicator of the relationship between the variables in the population.  
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Figure 5.14.  Sample scatterplots of relationship between dry-period severity and 

residential abandonment under different environmental conditions. 

 
 

Table 5.10.  Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

 
Slopes Intercepts Correlation 

Coefficients 
Central 
Arizona 

Settlements slope probability 
of equality 

intercept probability 
of equality 

r probability  
of equality 

Environmental 
Condition 1  

1.4 -5 .42 

 
Environmental 
Condition 2 

3.5 
30% 

-49 
40% 

.99 
3% 

 
 

Figure 5.14 b. represents the relationship between dry-period severity and 

residential abandonment under Environmental Condition 2.  The slope of the line 

is 3.5 indicating that for every one percent increase in the number of years 
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identified as a dry-period, there was a 3.5% increase in the percent of rooms 

abandoned (Table 5.10).  Thus, residential abandonment under Environmental 

Condition 2 is much more sensitive to changes in dry-period severity than under 

Environmental Condition 1.  The intercept is -49% of rooms abandoned--not a 

meaningful measure of residential abandonment.  It suggests, though, that when 

there were no dry-period years, there was no residential abandonment.  There is a 

strong positive linear relationship between the variables, indicated by the 

correlation coefficient r = .99 and the good fit (or closeness) of the data points to 

the regression line.  The r2 value indicates that 98% of the variance in residential 

abandonment in Environmental Condition 2 is explained by variation in dry-

period severity.  There is only a 1% probability (p = .01) that the correlation 

represents nothing more than the vagaries of sampling; thus, we can be reasonably 

confident that the observed relationship in this sample is a reliable indicator of the 

relationship between the variables in the population.   

 To evaluate whether differences between relationships are substantial 

enough to conclude a particular demographic or environmental condition 

(identified in the conceptual models) affected the extent of residential 

abandonment and thus vulnerability to dry periods, I statistically compare the 

best-fit slopes, intercepts, and correlation coefficients to identify their “probability 

of equality.”  For the slopes, I report a p-value (two-tailed) that answers the 

question, “If the slopes really were identical, what is the chance that randomly 

selected data points would have slopes as different (or more different) than those 

observed?” (Zar 1984; www.graphpad.com).  The p-value is the probability that 
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the null hypothesis is correct--that the slopes are identical (the lines are parallel) 

and sensitivity to dry periods under both conditions was similar.  For the 

intercepts (also called “elevations”), I also report a p-value for each comparison 

that answers the question, “If the overall elevations were identical, what is the 

chance of randomly choosing data points with elevations this different (or more 

different) than those observed?” [From GraphPad Prism 5 software; 

www.graphpad.com].  For the correlation coefficients, I use an interactive on-line 

calculator (http://people.ku.edu/~preacher/corrtest/corrtest.htm; Preacher 2002) 

where I input the r values of each correlation to be compared and the n values for 

each correlation.  The n values represent the number of 50-year intervals in which 

there is evidence of settlement occupation under the specific conditions 

considered.  Each correlation coefficient is converted into a z-score using Fisher's 

r-to-z transformation.  Then, making use of the sample size employed to obtain 

each coefficient, these z-scores are compared using formula 2.8.5 from Cohen and 

Cohen (1983:54).  The calculator yields the result of a test of the hypothesis that 

two correlation coefficients obtained from independent samples are equal.  I use 

and report the p-values associated with a 2-tailed test because there is no reason to 

expect that one correlation coefficient should be greater than the other.   

The lower the probability of equality of the slopes, intercepts, and 

correlation coefficients, the greater the probability that differences between them 

are statistically significant.  I do not establish a specific probability level for 

concluding equality or difference between slopes, intercepts, and coefficients.  

Rather, I use a general interpretation such as if the probability of equality of two 

http://people.ku.edu/%7Epreacher/corrtest/corrtest.htm
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slopes is below 50%, then correlations are more likely to be different than not 

different.  

The probability of equality of the slopes, intercepts, and correlation 

coefficients in the previous example are presented in Table 5.10.  If the slopes 

were identical, there is a 30% chance of randomly choosing data points with 

slopes this different.  Thus, the probability of equality of the slopes is relatively 

low indicating that the slopes are more likely to be different than the same.  If the 

overall elevations (intercepts) were identical, there is a 40% chance of randomly 

choosing data points with elevations this different.  Thus, the probability of 

equality of the intercepts is somewhat low indicating that the intercepts are more 

likely to be different than the same.  The probability of equality of the correlation 

coefficients is 3%, thus, it is very likely the coefficients are different.  In sum, a 

comparison of the relationship between dry-period severity and residential 

abandonment under Environmental Condition 1 and 2 consistently supports an 

interpretation that the relationships were different.  People living in 

Environmental Condition 2 were more sensitive to dry-period severity, or more 

responsive through residential abandonment, than people living in Environmental 

Condition 1.  Thus, a conceptual model asserting the influence of Environmental 

Condition 2 on vulnerability to dry periods is supported by the evidence 

considered in this example.  A conceptual model asserting the influence of 

Environmental Condition 1 on vulnerability to dry periods is less strongly 

supported.   
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Summary 

 This chapter describes the data and methods for classifying all settlements 

and rooms within the study area by the demographic and environmental 

conditions emphasized in the models of vulnerability to dry periods.  Methods of 

identifying dry periods in central Arizona are also presented.  Classifying all 

settlements by differences in demographic and environmental conditions allows 

an examination of differences in the sensitivity and strength of the relationships 

between dry-period severity and residential abandonment among settlements with 

different characteristics.  I use these differences to infer differences in 

vulnerability to dry periods.  Evaluating the vulnerability models involves 

examining the extent to which each model's expectations are supported by the 

residential abandonments that occurred from 1200 to 1450 in central Arizona.   

 In the next four chapters I evaluate models of vulnerability to dry periods 

used by archaeologists and other scholars to understand temporal and spatial 

variation in vulnerability to dry periods.  In Chapter Six, I evaluate an aridity 

model that emphasizes resource marginality and widespread vulnerability across 

all demographic and environmental conditions.  Evaluating this model also 

identifies the spatial distribution of vulnerability to dry periods allowing the 

assumption of resource marginality to be evaluated in the study area.  In Chapter 

Seven, I evaluate models that emphasize the influence of demographic conditions 

on vulnerability to dry periods.  In Chapter Eight, I evaluate models that 

emphasize the influence of environmental conditions.  In Chapter Nine, I evaluate 

models that combine both demographic and environmental conditions to 
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understand the influence of population-resource imbalances on vulnerability.  

Following the presentation of the empirical results in each chapter, I interpret and 

discuss the implications of the findings.    
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CHAPTER 6: 
 

THE INFLUENCE OF ARIDITY ON  

VULNERABILITY TO DRY PERIODS 

  The analyses in this chapter evaluate an 'aridity' model of vulnerability to 

dry periods by testing the expectation that dry-period declines in resource 

productivity, regardless of other environmental, social, and demographic 

variables, created widespread vulnerability to the risk of shortfall.  This 

expectation is implied by the assumption of resource marginality, which treats 

vulnerability to dry periods as a biophysical or landscape condition rather than a 

product of demographic and environmental conditions that affect the extent of 

resource supplies and demand.  In biophysical models of vulnerability to natural 

hazards, vulnerability is understood as a function of the frequency and severity of 

the hazard (Brooks 2003:4).  It is important to evaluate this model because it has 

been widely applied throughout the U.S. Southwest and other dry climates, 

especially to explain regional-scale depopulations coincident with severe dry 

periods.  Evaluating this model also identifies the extent and spatial distribution of 

vulnerability to dry periods allowing the assumption of resource marginality to be 

evaluated in the study area. 

   To assess the utility of an aridity model for explaining vulnerability to dry 

periods, I examine the relationship between dry-period severity and residential 

abandonment within six watersheds in central Arizona from 1200 to 1450.  I use 

the relationship between dry-period severity and residential abandonment as an 

indicator of the extent of vulnerability within each watershed.  By geographically 
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disaggregating the study area into watersheds, I test the assumption of 

vulnerability as a regional-scale, biophysical condition.  The aridity model and the 

assumption of regional-scale resource marginality will be supported if I find 

strong and sensitive relationships between dry-period severity and residential 

abandonment in all watersheds.   

 Results identify substantial variation in the slopes, intercepts, and strength 

of the correlation coefficients representing the relationship between dry-period 

severity and residential abandonment among the study area watersheds (Table 6.1 

and 6.2, Figures 6.1, 6.2, 6.3).  Variation in the slopes, from m = -.03 to m = 3.9, 

demonstrates a range of sensitivity to dry-period severity.  Variation in the 

intercepts, b = -59 to b = 48, suggests that during intervals with no dry-period 

years, residential abandonment was minimal in some watersheds (those with 

negative intercepts) and extensive in others (those with positive intercepts).  

Correlation coefficients range from r = -.01 to r = .98 (r2 = 0 to .96) demonstrating 

substantial differences in fit of the data values to the regression line and in the 

extent of unexplained variance in the relationship between dry-period severity and 

residential abandonment among watersheds.   

 A comparison of specific differences in the relationship between dry-

period severity and residential abandonment among all watersheds suggests the 

six watersheds can be sorted into two groups: those watersheds where changes in 

residential abandonment were strongly related to changes in dry-period severity 

and those watersheds where changes in residential abandonment were not strongly 

related to changes in dry-period severity.   
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Changes in residential abandonment were strongly related to changes in 

dry-period severity in the Upper Salt, Lower Verde, and Tonto watersheds (Figure 

6.1).  Slopes are relatively steep (Upper Salt m = 3.2; Lower Verde m = 3.3; 

Tonto m = 3.9) indicating that residential abandonment was very sensitive to 

changes in dry-period severity.  For every one percent change in dry-period 

severity, residential abandonment increased between 3.2 and 3.9%.  Correlation 

coefficients identify good fits with the regression line indicating that much of the 

changes over time in residential abandonment in these watersheds can be 

explained by changes in dry-period severity (Upper Salt r = .98; Lower Verde r = 

.93; Tonto r = .90).  The negative intercepts identified in the regression equations 

suggest residential abandonment may have been very low in the absence of dry-

period years (Upper Salt b = -40; Lower Verde b = -49; Tonto b = -59).  The 

Upper Salt, Lower Verde, and Tonto watersheds include 46 percent of the 

identified rooms occupied sometime during the 1200 and 1450 study period and 

comprise 41 percent of the central Arizona study area (Table 6.3).   

Changes in residential abandonment were not strongly related to changes 

in dry-period severity in the Lower Salt, Agua Fria, and Upper Verde watersheds 

(Figure 6.2).  Slopes of the regression lines are shallower in the Lower Salt (m =  

-.03), Agua Fria (m = 1.0), and the Upper Verde (m = 3.1) indicating that 

residential abandonment was less sensitive to changes in dry-period severity than 

elsewhere in the study area.  For every one percent change in dry-period severity, 

residential abandonment decreased slightly in the Lower Salt, increased one 

percent in the Agua Fria, and increased 3.1% in the Upper Verde.  Correlation 
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coefficients and inspection of the scatterplots also identify relatively poor fits in 

the Lower Salt (r = -.01), Agua Fria (r = .31), and Upper Verde (r = .78).  Poor fits 

indicate that much of the change in residential abandonment in these watersheds 

cannot be explained by changes in dry-period severity.  Other factors besides dry-

period severity are influencing changes in residential abandonment.  The 

intercepts of the regression lines in the Lower Salt (b = 48) and Agua Fria (b = 

24) scatterplots also suggests a base level of residential abandonment unrelated to 

dry periods.  In the Upper Verde (b = -49) the intercepts suggest low levels of 

abandonment in the absence of dry period years.  The Lower Salt, Agua Fria, and 

Upper Verde watersheds include 47 percent of the identified rooms occupied 

sometime during the 1200 to 1450 study period and 35 percent of the study area 

(Table 6.3).  (The remaining 7% of rooms occupied were located in Carrizo, Big 

Chino, and White watersheds which are not included in the watershed-scale 

analysis due to limited room numbers and short settlement histories.  These 

watersheds comprise 24% of the central Arizona study area.)  

The test for statistical similarity and difference between the slopes and 

correlation coefficients generally supports the identification of differences 

between the two groups of watersheds (Table 6.2).  The slopes of the regression 

lines that describe the linear relationship between dry-period severity and 

residential abandonment in the Lower Salt and Agua Fria watersheds compared to 

the slopes of the regression lines that describe the relationship in the Upper Salt, 

Lower Verde, and Tonto watersheds are all more likely to be different than the 

same.  That is, the probabilities of equality of the slopes of the Lower Salt and 



 

 132

Agua Fria regression lines compared with the slopes of the regression lines from 

other watersheds are all less than 40%.  Similarly, the test for the probability of 

equality of the correlation coefficients finds the correlations between dry-period 

severity and residential abandonment in the Lower Salt and Agua Fria compared 

to the other watersheds more likely to be different than the same (p < 47%).   

The Upper Verde watershed represents a borderline case.  The slope of the 

regression line identified in the Upper Verde scatterplot is more likely to be 

similar to than different from the slopes of the lines in the Lower Verde, Tonto, 

and Upper Salt scatterplots (p >73%).  As noted above, however, inspection of the 

Upper Verde scatterplot suggests a relatively poor linear fit and weaker 

relationship between dry-period severity and residential abandonment in this 

watershed.  Watershed-scale analyses considered later in this study (see Chapter 

Eight, Figures 8.10 b. and 8.11) demonstrate that results from the Upper Verde 

are most strongly related to (or “group” with) the Agua Fria and Lower Salt rather 

than with the Lower Verde, Tonto, and Upper Salt.  These results combined with 

the poor linear fit suggest conditions in the Upper Verde were most similar to the 

watersheds where changes in dry-period severity were not strongly related to 

changes in residential abandonment.   

Inter-watershed differences in the relationships between dry-period 

severity and residential abandonment suggest that conditions other than regional-

scale aridity must be considered to more fully understand variation in 

vulnerability to dry periods.  That is, why were people living in some watersheds 

more vulnerable to dry periods, or at least more responsive to dry periods through 
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abandonment, than people living in other watersheds?  The extent to which the 

demographic and environmental conditions within each watershed contributed to 

differences in inter-watershed vulnerability is examined with the remaining three 

vulnerability models.  The ability of the models to explain these differences is 

used as a crucial part of the evaluation of each model.  If additional paleoclimatic 

reconstructions in central Arizona are developed in the future, watershed-scale 

differences in precipitation and streamflow conditions during the period of study 

should also be considered as a possible explanation of watershed-scale variation 

in vulnerability to dry periods.  Differences in residential abandonment and 

vulnerability caused by differences in the watershed-scale representativeness of 

the climate reconstruction seems unlikely, however, because current evidence 

from modern and paleoclimate studies demonstrates substantial homogeneity in 

climate conditions at multiple spatial and temporal scales (as discussed in Chapter 

Five).   

 
 



 

Table 6.1.  Rooms Occupied and Abandoned by 50-year Interval and Correlation with Percent of Rooms Abandoned. 

Watershed 
Rooms 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449

 n % n % n % n % n %

Correl.: Dry-Period  
Severity and Percent 

Rooms Abandoned

Agua Fria    
     occupied 787 427 1,937 1,917 860  
     abandoned 598 76 176 41 20 1 1,057 55 860 100 .31 (p = .61)
Lower Salt1               
     occupied 6,317 7,121 8,126 6,888 486  
     abandoned 196 3 796 11 2,351 29 6,480 94 486 100 -.01 (p = .99)
Lower Verde    
     occupied 1,162 1,764 3,318 2,750 244
     abandoned 153 13 603 34 568 17 2,506 91 244 100 .93 (p = .02)
Tonto   
     occupied 1,601 2,221 1,444 1,294 
     abandoned 114 7 1277 57 206 14 1,294 100 .90 (p = .10)
Upper Salt   
     occupied 2,081 3,701 4,922 4,207 361
     abandoned 197 9 2,078 56 1,603 33 3,846 91 361 100 .98 (p = .01)
Upper Verde   
     occupied 869 1,115 1,667 1,507 155
     abandoned 213 25 15 1 160 10 1,352 90 155 100 .78 (p = .12)
Dry-period severity, all  
watersheds except Lower Salt1   14    28

 
26

 
38 44

Dry-period severity for 
Lower Salt2 

      22 38 30  10 46
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1 Dry-period severity identified with San Francisco Peaks (SFP) precipitation reconstruction; see Chapter 5, Table 5.5. 
2 Dry-period severity identified using Lower Salt River (LSR) streamflow reconstruction; see Chapter 5, Table 5.6.



 

 

a. Upper Salt watershed 
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b. Lower Verde watershed 
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c. Tonto watershed 
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Figure 6.1.  Watersheds where changes in abandonment were strongly related to changes in dry-period severity. 
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a. Lower Salt watershed 
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b. Agua Fria watershed 
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      c.  Upper Verde watershed 
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Figure 6.2.  Watersheds where changes in abandonment were not strongly related to changes in dry-period severity. 



 

Table 6.2.  Slopes, Intercepts, Correlations and the Pairwise Probability  

of Their Equality, by Watershed.   

 

Pairwise Probability of Equality of Slopes, 
Intercepts,  

and Correlations (Percent) 
Watershed 

Slopes, Intercepts, and 
Correlations Upper 

Salt 
Lower 
Verde 

Tonto Lower 
Salt 

Agua 
Fria 

Upper 
Verde 

Upper 
Salt 

slope: 
intercept: 

correlation 

3.2 
 -40   
.98 

n/a 
93 
44 
52 

60 
92 
50 

18 
73 
2 

26 
87 
5 

94 
41 
21 

         
Lower 
Verde 

slope:  
intercept: 

correlation: 

3.3 
-49 
.93 

93 
44 
52 

n/a 
70 
66 
88 

18 
92 
10 

27 
87 
18 

90 
73 
54 

         
Tonto slope: 

intercept: 
correlation: 

3.9 
-59 
.90 

60 
92 
50 

70 
66 
88 

n/a 
25 
100 
23 

30 
91 
34 

73 
57 
73 

         
Lower 
Salt 

slope: 
intercept: 

correlation 

-.03 
48 

-.01 

18 
73 
2 

18 
92 
10 

25 
100 
23 

n/a 
71 
81 
74 

25 
92 
29 

         
Agua 
Fria 

slope:  
intercept: 

correlation: 

1.0 
24 
.31 

26 
87 
5 

27 
87 
18 

30 
91 
34 

71 
81 
74 

n/a 
39 
70 
47 

         
Upper 
Verde 

slope: 
intercept: 

correlation: 

3.1 
-49 
.78 

94 
41 
21 

90 
73 
54 

73 
57 
73 

25 
92 
29 

39 
70 
47 

n/a 

Note: Watersheds where changes in residential abandonment were strongly 
related to changes in dry-period severity are identified with shading. 
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Figure 6.3.  Watersheds by correlation between dry-period severity and residential 

abandonment, A.D. 1200 to 1450. 
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Table 6.3.  Number of Rooms Occupied in Central Arizona from 1200 to 1450 

and Proportions of Rooms by Watershed, Area, and Percent of the Total  

Study Area. 

Watersheds Number of 
Identified 

Rooms 

Percent of 
Total Rooms 

Identified 

Area, Square 
Kilometers 

Percent of 
Total Study 

Area 
Lower Salt 10,397 32 3,442 9 
Upper Salt 8,085 25 5,612 15 
Lower Verde 4,074 13 5,019 13 
Tonto 2,891 9 2,694 7 
Agua Fria 2,711 8 6,355 16 
Othera  2,117 7 9,129 24 
Upper Verde 1,895 6 6,372 16 
Total 32,170 100 38,623 100 
 

aRooms located in Carrizo (n = 720), Big Chino (n = 102), and White (n = 1,295) 
watersheds which are not included in the watershed scale analysis due to limited 
rooms numbers and short settlement histories.      
 

Summary and Implications 

 The aridity model of vulnerability to dry periods is supported in three of 

the six watersheds examined in central Arizona.  The evidence supporting this 

conclusion is the strong and sensitive relationships between dry-period severity 

and residential abandonment in three watersheds.  However, weaknesses in this 

relationship in three other watersheds demonstrate vulnerability to dry periods 

varied across the study area and can be conceptualized as having an identifiable 

spatial distribution.  Thus, vulnerability to dry periods was not an inherent 

regional-scale biophysical or landscape condition nor a necessary consequence of 

living in a dry climate.  These conclusions rely, in part, on the strong ability of the 

precipitation reconstruction to detect dry periods and accurately reflect 

precipitation conditions in each watershed (as discussed and demonstrated in 
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Chapter Five).  Conclusions also rely on the assumption that dry period risks of 

food shortfalls throughout the study area were manageable with residential 

abandonment and population movement during the period of study.    

 Identifying this spatial distribution of vulnerability to dry periods 

challenges the assumption that resource marginality due to inherently low and 

variable precipitation conditions created widespread vulnerability to dry periods.  

Challenges to the marginality assumption challenge approaches to climate-human 

behavior studies in U.S. Southwest and in other arid and semi-arid regions.  

Marginality provides the critical linking argument between climate and human 

behavior by making variation in climate-related resource productivity meaningful 

to people because of its affect on the risk of shortfalls.  If resources cannot be 

demonstrated to be marginal or vulnerability to dry periods widespread, then this 

link between climate and human behavior is weakened.  More refined linking 

arguments will need to be investigated and tested.   

 Challenges to the marginality assumption also bring into question other 

models of vulnerability to dry periods that share a reliance on a marginality 

assumption.  For example, increases in interannual variability in precipitation and 

streamflow levels have been argued to increase the risk of shortfalls especially in 

dry climates (Cashdan 1990; Dean 1988; Graybill et al. 2006; Halstead and 

O'Shea 1989b; Nials et al. 1989).  Where resources are considered marginal, this 

variability can challenge successful food provisioning and increase the real or 

perceived risk of shortfall by increasing the frequency of low productivity, 

shortfalls, and uncertainty in agricultural planning.  Where resources are not 
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considered marginal, however, these oscillations in productivity due to 

interannual precipitation variability might have challenged food provisioning by 

creating uncertainty in agricultural planning, but they would likely not have 

increased the risk of shortfalls.   

 Aridity models and the assumption of resource marginality have been used 

to link dry periods to regional-scale abandonments in the U.S. Southwest (as 

discussed in Chapter Four).  Widespread vulnerability and associated increases in 

shortfall risk are necessary to explain why a demographically, environmentally, 

and social diverse region would be depopulated during a dry period.  In the 

absence of widespread vulnerability, we should expect variation in responses, 

including no response, to a dry period because the conditions that affect people's 

vulnerability to dry periods are not regionally homogeneous.   

 This study's challenge to an aridity model of vulnerability to dry periods is 

consistent with a growing body of evidence in the U.S. Southwest that 

demonstrates that precipitation conditions alone cannot explain regional 

abandonments or substantial settlement reorganizations.  Van West (1994, 1996) 

has shown through detailed reconstructions of summer droughts and agricultural 

potential that a significant number of people could have remained in the Mesa 

Verde region of the northern Southwest during a severe dry period coincident 

with the late 13th century regional depopulation.  According to Van West (1994, 

1996), people could have remained because there were places on the landscape 

with sufficient potential productivity to support populations through the dry 

period.  Similarly, Schollmeyer (2009) has recently examined the role of resource 
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stress in the 12th century settlement reorganization in the Mimbres area of 

southwest New Mexico.  Using a combination of archaeological evidence, 

mathematical modeling, and GIS to assess the magnitude and timing of periods of 

resource stress from a combination of reduced precipitation and prolonged 

hunting and farming activities she found that environmental explanations focused 

on long-term population resource imbalances have been over emphasized.  

Specifically, precipitation-related changes in the extent of productive arable land 

do not explain the extent of the 12th century settlement reorganization.   

 The results of this chapter also have implications for studies of settlement 

abandonment and population movement in central Arizona, the U.S. Southwest, 

and likely other dry climates.  Results have revealed both very strong and very 

weak long-term relationships between dry-period severity and settlement 

abandonment and associated population movement.  This variation suggests that 

the validity of a linkage between dry periods and abandonments and population 

movements is locationally dependent.  That is, the linkage is valid in some places 

and invalid in others.  Consequently, we must consider both possibilities and, if 

feasible, identify the prevailing pattern in an area and compare specific results, 

such as a particular settlement's abandonment, to the broader and longer-term 

pattern.   

 The strong long-term relationships between dry-period severity and 

residential abandonment and associated population movement identified in some 

watersheds in this study contradict previous results identified in the Black Mesa 

area of northeastern Arizona (Gumerman 1988).  The models and findings of the 
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Black Mesa project are one of if not the most widely cited study of prehistoric 

human-environmental interactions in the U.S. Southwest.  In this study, Plog et al. 

(1988:259) argue that precipitation variation was "likely to be too episodic to 

stimulate any but the most localized of abandonments."  They (Plog et al. 

1988:259) further argued that "Falling alluvial water tables, widespread 

floodplain erosion, and low effective moisture are the only environmental factors 

general enough and severe enough to cause habitat deterioration on a scale 

sufficient to precipitate abandonment."  Their results generally supported these 

expectations.  In contrast, I have identified in about one-half of the central 

Arizona study area strong long-term relationships between precipitation variation 

and settlement abandonment.  Differences in results between studies may suggest 

cultural differences in strategies of response to precipitation variation between the 

Black Mesa residents and the peoples of central Arizona.   

In sum, the results of this chapter identify a spatial distribution of 

vulnerability to dry periods that provides location-specific support for an aridity 

model.  This spatial distribution of vulnerability to dry periods provides no 

support for regional-scale resource marginality and widespread vulnerability to 

dry periods throughout the study area.  In the next chapter, I consider the 

influence of demographic conditions on vulnerability to dry periods.   
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CHAPTER 7: 
 

THE INFLUENCE OF DEMOGRAPHIC CONDITIONS  
 

ON VULNERABILITY TO DRY PERIODS 
 
  The analyses in this chapter evaluate 'demand' models of vulnerability to 

dry periods by testing the expectation that demographic conditions associated 

with greater resource demands resulted in greater vulnerability to dry periods.  

The demographic conditions I consider are settlement population levels and 

watershed population density.  I use these conditions as indicators of differences 

in resource demands, the rate of consumption of resources, and the extent of labor 

available to invest in strategies to manage shortfalls.   

 In each analysis in this chapter, I compare the relationships between dry-

period severity and residential abandonment in areas of greater resource demands 

(watersheds with high population density, settlements with moderate or high 

population levels) to the relationships between dry-period severity and residential 

abandonment in areas of lesser resource demands (watersheds with low 

population density, settlements with low population levels).  If these demographic 

conditions influenced vulnerability to dry periods, then the sensitivity and 

strength of the relationships between dry-period severity and residential 

abandonment will increase as watershed population density and settlement 

population levels increased.   

 It is important to assess demand models and the scale at which they might 

apply so that we have a basis to evaluate arguments that rely on differences and 

changes in demographic conditions to explain intra-regional differences in 
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impacts and responses to dry periods.  As previously discussed (Chapter Three), 

plausible arguments have been made that relatively high areal population density 

and settlement population levels could increase or decrease vulnerability to dry 

periods.  Increases in shortfall risks and associated vulnerability are expected to 

occur during dry periods because resource supplies are assumed to be inherently 

limited by low precipitation in dry climates and resource demands are assumed to 

always be close to a threshold above which there is insufficient food to meet 

needs.  Decreases in shortfall risks and vulnerability to dry periods are expected to 

occur when higher settlement population levels are assumed to provide the labor 

necessary for increasing productive capacity or higher areal population density 

offers a diversity of opportunities for acquiring food from others when needed.  

This analysis clarifies the influence of these demographic conditions on 

vulnerability to dry periods within central Arizona.   

 Based on the results presented below, the primary argument of this chapter 

is that models of vulnerability that emphasize the influence of watershed-scale 

population density on vulnerability to dry periods are supported while models that 

emphasize the influence of settlement population levels are not supported.  People 

living in watersheds with high population density were more vulnerable to dry 

periods, or more responsive to dry periods through residential abandonment and 

movement, than people living in areas of low population density.  And, people 

living in settlements with low to high population levels were all similarly 

vulnerable to dry periods, or similarly responsive to dry periods through 

movement.  Thus, the scale at which resource demands are assessed is a critical 
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aspect of demand models of vulnerability to dry periods.  I present the results first 

by the influence of watershed population density then by the influence of 

settlement population levels on vulnerability to dry periods.   

Resource Demands Assessed with Watershed Population Density 

 To assess the influence of watershed population density on vulnerability to 

dry periods, I examine the relationship between dry-period severity and 

residential abandonment in two ways: (1) by comparing the relationship between 

dry-period severity and residential abandonment among all rooms located in low 

density watersheds to the relationship in high density watersheds; and (2) by 

examining the extent to which differences in population density explain inter-

watershed differences in the relationship between dry-period severity and 

residential abandonment identified in Chapter 6.  Watershed population-density 

calculations are presented in Chapter Five, Table 5.2 and average density is listed 

again below in Table 7.2. 

Dry Periods and Residential Abandonment in Low and High Density Watersheds 

I compare the relationship between dry-period severity and residential 

abandonment among rooms located in low density watersheds to the relationship 

in high density watersheds.  Rooms located in the Agua Fria and Upper Verde 

watersheds comprise the low density room group because density in these 

watersheds was consistently the lowest in the study area during the 1200 to 1450 

period (Table 5.3).  Rooms located in the Lower Verde, Upper Salt, and Tonto 

watersheds comprise the high density room group because density in these 

watersheds was consistently the highest in the study area throughout the period of 
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study.  I exclude the Lower Salt from this first analysis (but include it in all others 

below) because inclusion of the high number of rooms located in the Lower Salt 

would dominate the results of the high density room group.  I calculate the 

percent of rooms abandoned by 50-year interval for both low and high density 

groups then identify the slopes, intercepts, and correlation coefficients that 

describe the relationship between dry-period severity and residential abandonment 

in each group (Table 7.1, 7.2; scatterplots in Figure 7.1).      

 Results suggest a stronger, more sensitive relationship between dry-period 

severity and residential abandonment in high density watersheds than in low 

density watersheds.  The slope of the regression line in the high density watershed 

scatterplot (m = 3.3) is steeper than the slope in the low density watershed 

scatterplot (m = 2).  For every one percent change in dry-period severity, 

residential abandonment increased 3.3% in high density watersheds and 2% in 

low density watersheds.  Thus, residential abandonment in high density 

watersheds was more sensitive to changes in dry-period severity than in low 

density watersheds.  The slopes cannot, however, be demonstrated statistically 

different (50% probability of equality), suggesting some necessary caution in our 

interpretations of difference.  The intercept values from the regression equations 

(low density -16%; high density -44%) are also more likely to be the same than 

different (p = 65%).  The intercept values are not meaningful as negative percents 

of residential abandonment, but they suggest that in the absence of dry-period 

years, residential abandonment was minimal.  Correlation coefficients and 

inspection of the scatterplots indicate that the data values from high density 
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watersheds better fit the regression line (r = .96) than the data values from the low 

density watersheds (r = .62).  The r2 values indicate that 92% of the variance in 

the relationship between dry-period severity and residential abandonment in high 

density watersheds is explained by changes in dry-period severity.  Only 38% of 

the variance in the relationship between dry-period severity and residential 

abandonment is explained in low density watersheds.  Factors other than dry-

period severity influenced much of the changes in residential abandonment in low 

density watersheds.   



 

Table 7.1 Number of Rooms Occupied, Abandoned, and Percent Abandoned in Central Arizona. 
 

Number Rooms Occupied and Abandoned and Percent of Rooms Abandoned 

Watershed Density 
1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449

 n % n % n % n % n %  

Correlation 
Between Dry-

Period Severity 
and the Percent 

of Rooms 
Abandoned

Low density     
     occupied 1,656 1,542 3,604 3,424 1,015  
     abandoned 811 49 191 12 180 5 2,409 70 1,015 100 .62 (p = .27)
 
High density  

  

     occupied 4,844 7,686 9,684 8,251 605
     abandoned 464 10 3,933 51 2,377 25 7,586 92 605 100 .96 (p = .01)
Dry-period severity indices 

(SFP precipitation) 
14 28 26  38 44
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Figure 7.1.  Scatterplots of dry-period severity and residential abandonment by 

rooms in low and high density watersheds. 

 
 

Table 7.2.  Central Arizona: Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

 
Slopes Intercepts Correlation 

Coefficients Central 
Arizona 
Rooms 

slope probability 
of equality

intercept probability 
of equality

r probability 
of 

equality 
 
low density 

2 -16 .62 

 
high density 

3.3 
50% 

-44 
63% 

.96 
22% 

 

Population Density and Watershed-Scale Vulnerability  

These results are consistent with a watershed-scale comparison of 

differences in the slopes of the regression lines that describe the relationship 

between dry-period severity and residential abandonment in each watershed 

(Chapter Six, Table 6.2).  I use the slopes as an indicator of differences in 
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vulnerability to dry periods.  I also compare the correlations to identify the fit of 

the data values to the lines and the extent of explained and unexplained variance 

in the relationship between dry-period severity and abandonment in each 

watershed.  Where watershed population density was lowest, the slope of the 

regression lines are shallower and the correlations lower (Upper Verde m = 3.1, r 

= .78; Agua Fria m = 1.0, r = .31) than where population density was highest 

(Lower Verde m = 3.3, r = .93; Upper Salt m = 3.2, r = .98; Tonto m = 3.9, r = 

.90) (Table 7.3; Figure 7.2).  The Lower Salt is an obvious outlier, as discussed 

below.  I demonstrated in Chapter 6, Table 6.2 that the slope of the regression line 

and the correlations for the Agua Fria watershed were statistically more likely to 

be different than similar to the slopes and correlations in the other watersheds.  

Similar statistical differences cannot be demonstrated for the Upper Verde.   
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Table 7.3. Watershed Population Density, Slopes, and Correlations Between  

Dry-period Severity and Residential Abandonment. 

 
Watershed Average Population 

Density 1200 to 1450 
(Rooms per Square 

Kilometera) 

Slopesb 
 

Correlationb Between 
Dry-Period Severity and 

Room Abandonment 

  m r r2  
Upper Verde .17   (low) 3.1 .78   .61 
Agua Fria .19   (low) 1.0 .31   .10 
Lower Verde .37   (high) 3.3 .93   .86 
Upper Salt .54   (high) 3.2 .98   .96 
Tonto .61   (high) 3.9 .90   .80 
Lower Salt 1.68 (very high)   -.03        -.02       .0004 
 

adensity calculations in Chapter Five, Table 5.2 
bslopes and correlations presented in Chapter Six, Table 6.2.   
 

Inter-watershed differences in population density explain about half of the 

variance (r2 = .45) in the steepness of the slopes (and inferred vulnerability to dry 

periods) identified in Chapter Six, Table 6.2.   Specifically, there is a moderately 

strong linear relationship (r = .67, p = .21) between population density and the 

slope of the line describing the relationship between dry-period severity and 

abandonment in each watershed (Figure 7.2 a.).  If the steepness of the slopes are 

used to rank vulnerability to dry periods in each watershed and watershed 

population density is also ranked, the relationship between density and 

vulnerability is also clearly demonstrated (Figure 7.2 b.).   
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Figure 7.2. Relationship between watershed population density and the slopes of 

the lines describing the relationship between dry-period severity and 

abandonment. 

 
Differences in density also explain about half of the variance (r2 = .46) in 

the fit of the data values to these lines and the associated percent of explained 

variance in the relationship between dry-period severity and abandonment in each 

watershed (Figures 7.3. a., b.).  As watershed population density increased, the 

amount of explained variance in the relationship between dry-period severity and 

abandonment increased.  That is, most of the differences in residential 

abandonment among people living in settlements located in high density 

watersheds are explained by variation in dry-period severity.  In contrast, other 

factors besides changes in dry period severity are influencing changes in 

residential abandonment in low density watersheds.    
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Figure 7.3.  Relationship between watershed population density and correlation 

between dry-period severity and abandonment in each watershed. 

 

Lower Salt 

Unlike other watersheds in the study area, high population density in the 

Lower Salt watershed was not associated with a strong or sensitive relationship 

between dry-period severity and residential abandonment (r = -.01, m = -.03, b = 

48; Figure 7.4 [same as Figure 6.1 b.]).  For people living along the perennial 

Lower Salt River, extensive riverine agriculture and riparian resources created 

substantially different conditions from elsewhere in central Arizona.  In addition 

to these resources, vulnerability to dry periods may have been attenuated by some 

combination of substantial available labor for water management, perennial 

streamflow for crops, and/or intra-watershed population shifting to obtain more 

access to water when needed (upstream/downstream, up-canal/down-canal).  
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Residential abandonment might have been discouraged by the lack of better 

watered locations (or refuges during dry periods) outside of the Lower Salt 

watershed.  And, the relatively large numbers of people along the Lower Salt also 

could not have been easily accommodated elsewhere.  It is also possible that dry-

period reductions in potential productivity rarely resulted in meaningful increases 

in the risk of shortfalls.  Perhaps most importantly, settlement abandonment along 

the Lower Salt may not have been considered a viable strategy in response to dry 

periods or other circumstances.  Settlement along the Lower Salt has been 

documented for at least a thousand years prior to the study period.  Such 

occupational durations and associated cultural history undoubtedly contributed to 

strong attachments to this area.   
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Figure 7.4. Relationship between dry-period severity and residential abandonment 

in the Lower Salt watershed (from Chapter Six). 

 

In sum, the results suggest the relationship between dry-period severity 

and abandonment was different in low and high density watersheds.  People living 
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in low density watersheds were somewhat less vulnerable to dry periods, or less 

responsive through movement, than those living in high density watersheds.  The 

Lower Salt River watershed is a notable exception to this finding.  

Resource Demands Assessed with Settlement Population Levels 

 To assess the influence of settlement population levels on vulnerability to 

dry periods, I compare the relationship between dry-period severity and 

residential abandonment among settlements with low, moderate, and high 

population levels.  I examine these relationships at the scale of the total study area 

("Central Arizona") and within individual watersheds.  Table 7.4 presents the 

number of rooms occupied, the number of rooms abandoned, and the percent of 

rooms abandoned by settlement population levels in each watershed and in the 

total study area.  Methods of classifying settlements by low, moderate, and high 

population levels are presented in Chapter Five.   

 
 
 
 
 
 
 
 
 



 

Table 7.4.  Settlements Occupied and Abandoned by 50-year Interval, by Watershed, and the Correlation Between Dry-Period 

Severity and the Percent of These Settlements Abandoned During Each Interval. 

Watershed – Settlement 
Population Levelsa 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449

 n % n % n % n % n %

Correlation 
Between Dry- 

Period Severity 
and Percent of 

Settlements 
Abandoned

 
Central Arizonab 
     occupied – low   148 155 122 89 20
     abandoned – low 34 23 112 72 34 28 69 78 20 100 .90   (p = .04)
     occupied – moderate 57 71 108 92 12
     abandoned – moderate 15 26 31 44 20 19 80 87 12 100 90   (p = .04)
     occupied – high 6 16 28 27 5
     abandoned – high 0 0 5 31 4 14 22 81 5 100 .96   (p = .01)
 
Agua Fria 
     occupied – low 18 5 13 12 9
     abandoned – low 14 78 3 60 1 8 3 25 9 100 .12   (p = .85)
     occupied – moderate 8 4 15 15 8
     abandoned – moderate 5 63 3 75 0 0 7 47 8 100 .36   (p = .55)
     occupied – high 0 1 6 6 2
     abandoned – high 0 0 0 0 0 4 67 2 100 .99   (p = .01)
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Watershed – Settlement 
Population Levelsa 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449

 n % n % n % n % n %

Correlation 
Between Dry- 

Period Severity 
and Percent of 

Settlements 
Abandoned

 
 
 
Lower Saltc 
     occupied – low 22 21 19 20 22
     abandoned – low 1 5 3 14 0 0 4 20 22 100 .60  (p = .28)
     occupied – moderate 10 9 11 12 1
     abandoned – moderate 1 10 1 11 0 0 11 92 1 100 -.02  (p = .97)
     occupied – high 10 11 12 11
     abandoned – high 0 0 1 9 3 25 11 100 -.77  (p = .23)
 
Lower Verde 
     occupied – low 34 33 39 34 9
     abandoned – low 6 18 19 58 5 13 25 74 9 100 .90   (p = .04)
     occupied – moderate 10 13 31 28 2
     abandoned – moderate 1 10 4 31 3 10 26 93 2 100 .91   (p = .03)
     occupied – high 1 3 4 3
     abandoned – high 0 0 1 33 1 25 3 100 .94   (p = .06)
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Watershed – Settlement 
Population Levelsa 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449

 n % n % n % n % n %

Correlation 
Between Dry- 

Period Severity 
and Percent of 

Settlements 
Abandoned

 
Tonto 
     occupied – low 35  43 15 9
     abandoned – low 3 9 34 79 7 47 9 100 .97   (p = .04)
     occupied – moderate 16 20 14 14
     abandoned – moderate 1 6 11 55 1 7 14 100 .87   (p = .13)
     occupied – high 0 1 1 1
     abandoned – high 0 0 0 0 0 1 100 .99    p = .10)
 
Upper Salt 
     occupied – low 47 63 38 19 1
     abandoned – low 3 6 53 84 19 50 18 95 1 100 .93   (p = .02)
     occupied – moderate 10 12 32 22 2
     abandoned – moderate 2 20 9 39 13 41 20 91 2 100 .96   (p = .01)
     occupied – high 3 6 12 13 2
     abandoned – high 0 0 3 50 2 17 11 85 2 100 .97   (p = .01)
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Watershed – Settlement 
Population Levelsa 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449

 n % n % n % n % n %

Correlation 
Between Dry- 

Period Severity 
and Percent of 

Settlements 
Abandoned

 
Upper Verde 
     occupied – low 7 7 15 14 1
     abandoned – low 3 43 1 14 1 7 13 93 1 100 .70   (p = .19)
     occupied – moderate 6 6 12 10
     abandoned – moderate 3 50 0 0 2 17 10 100 .40   (p = .60)
     occupied – high 2 3 3 3 1
     abandoned – high 0 0 0 0 0 0 2 67 1 100 .89   (p = .05)
 
Dry-period severity 
indices (SFP) for all 
watersheds except Lower 
Salt 

14 28 26 38 44

Dry-period severity 
indices (LSR) for Lower 
Salt 

22 38 30 10 46

 

aLow population levels = 13 to 30 rooms, moderate population levels = 31 to 100 rooms, high population levels = 100+ rooms 
(size classes created by inspection of a histogram, Figure 5.1, of all settlements occupied in the study area, as discussed in 
Chapter Five).   
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bCentral Arizona” includes all rooms/settlements in the Agua Fria, Big Chino-Williamson Valley, Carrizo, Lower Verde, 
Tonto, Upper Verde, and Upper Salt, and White watersheds.  Big Chino-Williamson Valley, Carrizo, and White watersheds 
are excluded from the watershed-scale analysis due to low settlement and/or room numbers and the limited duration of 
occupation in these watersheds.   
 

cDifferent settlement size classes are used for the Lower Salt; see Chapter Five, Figure 5.2. 
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Results indicate that the sensitivity and strength of the relationship 

between dry-period severity and residential abandonment at the Central Arizona 

scale (total study area) did not substantially vary with settlement population levels 

(Table 7.4; scatterplots in Figure 7.5. a., b., c.).  The slopes of the regression lines 

in the low (m = 2.6), moderate (m = 2.8), and high population (m = 3.6) level 

scatterplots indicate sensitivity to dry-period severity at all settlement population 

levels (Table 7.5).  For every one percent change in dry-period severity, 

residential abandonment increased 2.6 to 3.6%.  The probability of equality of all 

slopes is 60%--more likely to be the same than different.  The pairwise 

comparison indicates that the probability of equality of slopes for settlements with 

low and moderate population levels is also high--85%.  The comparison of slopes 

for moderate and high (p = 46%) and low and high (p = 32%) population levels 

indicates, however, that these slopes are more likely different than the same.  

Visual inspection of the slopes plotted on a single scatterplot, however, is not 

sufficiently persuasive to conclude differences in vulnerability, despite the 

statistical differences (Figure 7.6).  The intercept values for low (b = -18), 

moderate (b = -30) and high (b = -63) settlement population levels are more likely 

different than the same (p = 34%).  The pairwise comparison indicates that the 

probability of equality of intercepts for settlements with low and high (p = 16%) 

and moderate and high population levels (p = 35%) is also low.  The comparison 

of settlements with low and moderate population levels is more likely the same 

than different (p = 64%).  The negative values suggest residential abandonment in 

the absence of dry-period years may have been less among settlements with high 
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population levels than low population levels.  And, that the level of dry period 

severity that finally induced residential abandonment was higher in high-

population settlements than in low-population settlements.  Correlation 

coefficients (low population levels, r = .90; moderate population levels, r = .90; 

high population levels, r = .96) and the scatterplots indicate strong fits of the data 

to each line.  Changes in dry-period severity explain changes in residential 

abandonment among each population level about equally well.   

  Note that during data exploration, I examined relationships between dry-

period severity and residential abandonment using different settlement size class 

thresholds (e.g., low population settlements with less than 31, 21, and 14 rooms 

and high population settlements with more than 30 and 50 rooms) at the Central 

Arizona scale.  Differences in relationships were minimal and could not be 

attributed to more than chance.  Thus, the interpretations presented in this section 

do not strongly depend on my classification of settlement population levels. 
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Figure 7.5.  Central Arizona: relationship between dry-period severity and residential abandonment by settlement population 
levels. 
 

Table 7.5.  Central Arizona: Slopes, Intercepts, Correlation Coefficients, and Their Probability of Equality. 
Slopes Intercepts Correlation Coefficients 

Central Arizona Settlements slope probability of 
equality 

intercept probability of 
equality 

r probability of 
equality 

low population levels 2.6 -18 .90 
moderate population levels 2.8 -30 .90 
high population levels 

3.6 

low and high: 32% 
mod. and high: 46% 
low and mod.: 85% 

all:  60% 
-63 

low and high: 16% 
mod. and high: 35% 
low and mod.: 64% 

all:  34% 
.96 

low and high:  64%
mod. and high: 64%
low and mod.: 100%
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Figure 7.6.  Comparison of slopes of regression lines for settlements with low, 

moderate, and high population levels. 

 

Results within individual watersheds also support the conclusion that 

settlement population levels did not influence vulnerability or the extent of 

movement in response to dry periods.  I present these results by watershed in the 

paragraphs below.   

In the Agua Fria watershed, the relationship between dry-period severity 

and residential abandonment did not substantially vary with settlement population 

levels (Figure 7.7; Table 7.6).  I exclude settlements with high population levels 

from this analysis because of low numbers of high population settlements (Table 

7.4).  The slopes of the regressions lines for settlements with low (m = .4) and 

moderate (m = 1.2) population levels indicate slightly greater sensitivity to 

changes in dry-period severity among settlements with moderate population 

levels.  That is, for every one percent change in dry-period severity, residential 
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abandonment increased .4% in settlements with low population levels and to 1.2% 

in settlements with moderate population levels.  The slopes, however, are 

statistically more likely the same than different (77% probability of equality), 

suggesting no statistical basis to argue differences in sensitivity.  The intercept 

values for settlements with low (b = 43) and moderate (b = 22) population levels 

are also more likely the same than different (probability = 91%).  The high 

intercept values suggest residential abandonment may have been high in both 

groups even in the absence of dry-period years.  Correlation coefficients (low r = 

.12; moderate r = .36) and the scatterplots indicate very weak fits of the data to the 

lines.  Changes in dry-period severity poorly explain the changes in residential 

abandonment at both settlement population levels and the correlations are 

statistically more likely the same than different (p = 79%).    
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Figure 7.7.  Agua Fria: relationship between dry-period severity and residential 

abandonment by settlement population levels. 

 
 
 

Table 7.6.  Agua Fria: Slopes, Intercepts, Correlation Coefficients, and Their 

Probability of Equality. 

Slopes Intercepts Correlation 
Coefficients 

Agua Fria 
Watershed 
Settlements slope probability 

of equality 
intercept probability 

of equality 
r probability 

of equality 
low 
population 
levels 

.4 43 .12

 
moderate 
population 
levels 

 
1.2 

77% 
 

22 

91% 
 

.36

low and 
moderate: 

79%

 
high 
population 
levels 

Relationship excluded due to few settlements with high 
population levels.  See Table 7.4.  
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In the Lower Salt watershed, interpretation of the influence of settlement 

population levels on residential abandonment is compromised for several reasons 

(Figure 7.8; Table 7.7).  First, inspection of the scatterplots reveals the strong 

influence of outliers on the slopes of the regression lines describing the linear 

relationship between dry-period severity and residential abandonment among 

settlements with low and high population levels.  Omitting the outliers would 

change the slope and direction of both relationships.  Second, data on differences 

in settlement population levels in the Lower Salt are likely the least reliable 

because of challenges to systematic survey and excavation in the urban area 

(Phoenix) containing most watershed settlements (see Chapter Five).  Note also 

that there are no identified settlements occupied with high population levels 

during the 1400 to 1449 interval (Table 7.4).  Third, inspection of the low and 

moderate population level scatterplots suggests a quadratic (rather than a linear) 

relationship between dry-period severity and residential abandonment.  Dry-

period severity in the middle and minimum range are associated with the least 

residential abandonment.  Explaining this relationship is beyond the scope of the 

models considered and this study.  For these reasons, I do not rely on the results 

identified for this watershed to evaluate the vulnerability models.   

I present the results for the Lower Salt, however, because they 

demonstrate the unique circumstances and suggest the need for further efforts to 

understand the influence of settlement population levels on residential 

abandonment in this watershed.  The slopes of the regression lines for settlements 

with low (m = 1.8), moderate (m = -.08), and high (m = -2.9) population levels 
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indicate relatively low and decreasing sensitivity to changes in dry-period 

severity.  For every one percent change in dry-period severity, residential 

abandonment increased 1.8% among settlements with low population levels or 

decreased to -.08% to -2.9% in settlements with moderate and high population 

levels.  The probability of equality of the slopes is 28% (and 9%, 38%, and 48% 

for the pairwise comparisons)--all more likely to be different than the same.  The 

intercept values for settlements with low (b = -24), moderate (b = 45), and high 

population levels (b = 107) are, however, more likely the same than different (p > 

63% for all pairwise comparisons).  Correlation coefficients (low r = .60, 

moderate r = -.02, high r = -.77) and the scatterplots indicate very poor linear fits 

of the data to each regression line.  Changes in dry-period severity do not 

effectively explain changes in residential abandonment at any settlement 

population level.  The correlations are statistically more likely to be different than 

the same (p < 48%).    
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Figure 7.8.  Lower Salt: relationship between dry-period severity and abandonment by settlement population levels. 

a. Low population levels 
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Table 7.7.  Lower Salt: Slopes, Intercepts, Correlation Coefficients, and Their Probability of Equality. 

Slopes Intercepts Correlation Coefficients 
Lower Salt Watershed 

Settlements slope probability of 
equality 

intercept probability of 
equality 

r probability of 
equality 

low population levels 1.8 -24 .60 
moderate population levels -.08 45 -.02 
high population levels -2.9 

low and high: 9% 
mod. and high: 38% 
low and mod.: 48% 

all: 28% 
107 

low and high: 85% 
mod. and high: 70% 
low and mod.: 63% 

all: 89% 
-.77 

low and high:  16% 
mod. and high: 41% 
low and mod.: 48% 
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In the Lower Verde watershed, the relationship between dry-period 

severity and residential abandonment did not vary with settlement population 

levels (Figure 7.9; Table 7.8).  Note that relatively few high population 

settlements suggest caution in interpreting the relationship between dry-period 

severity and residential abandonment among settlements with high population 

levels (Table 7.4).  The slopes of the regressions lines for settlements with low (m 

= 2.9), moderate (m = 3.5), and high (m = 4.1) population levels indicate 

relatively strong and increasing sensitivity to changes in dry-period severity.  For 

every one percent change in dry-period severity, residential abandonment 

increased 3 to 4 percent.  The slopes, however, are statistically more likely the 

same than different, suggesting no statistical basis to argue differences in 

sensitivity (69% probability of equality of all slopes; at least 41% probability of 

equality for the pairwise comparisons).  The intercept values for settlements with 

low (b = -33), moderate (b = -57), and high population levels (b = -.69) are also 

more likely the same than different (all pairwise comparisons, p > 76%).  The 

negative intercepts suggest residential abandonment may have been very low in 

the absence of dry-period years.  Correlation coefficients (low r = .90; moderate r 

= .91, high r = 94) and the scatterplots indicate good fits of the data to the lines.  

Changes in dry-period severity effectively explain much of the variance in 

residential abandonment at all settlement population levels.  The correlations are 

statistically more likely the same than different (p >83%).  
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a. Low population levels 
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c. High population levels 
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Figure 7.9.  Lower Verde: relationship between dry-period severity and abandonment by settlement population levels. 

 

Table 7.8.  Lower Verde: Slopes, Intercepts, Correlation Coefficients, and Their Probability of Equality. 

Slopes Intercepts Correlation Coefficients 
Lower Verde Watershed 

Settlements slope probability of 
equality 

intercept probability of 
equality 

r probability of 
equality 

low population levels 2.9 -33 .90 
moderate population levels 3.5 -57 .91 
high population levels 4.1 

low and high: 41% 
mod. and high: 70% 
low and mod.: 61% 

all: 69% -69 

low and high: 90% 
mod. and high: 78% 
low and mod.:76% 

all: 95% .94 

low and high:  83% 
mod. and high: 86% 
low and mod.: 95% 
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In the Tonto watershed, the relationships between dry-period severity and 

residential abandonment did not substantially vary with settlement population 

levels (Figure 7.10; Table 7.9).  I exclude settlements with high population levels 

because of low numbers of high population settlements (see Table 7.4).  The 

slopes of the regressions lines for settlements with low (m = 3.9) and moderate (m 

= 4) population levels indicate relatively high sensitivity to changes in dry-period 

severity.  For every one percent change in dry-period severity, residential 

abandonment increased about 4 percent.  The probability of the equality of the 

slopes is 97%--more likely to be the same than different.  The intercept values for 

settlements with low (b = -44) and moderate (b = -63) population levels are more 

likely different than the same (p = 27%).  The negative intercepts suggest 

residential abandonment may have been very low in the absence of dry-period 

years and possibly lowest in the moderate precipitation group.  Correlation 

coefficients (low r = .97; moderate r = .87) and the scatterplots indicate good fits 

of the data to the lines.  The r2 values indicate that 94% of the variance in the 

relationship between dry period severity and residential abandonment in 

settlements with low population levels and 76% of the variance in abandonment 

of settlements with moderate population levels is explained by changes in dry-

period severity.  The correlations are, however, statistically more likely to be the 

same than different (p = 59%).    
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Figure 7.10.  Tonto: relationship between dry-period severity and residential 

abandonment by settlement population levels. 

 

 

Table 7.9.  Tonto: Slopes, Intercepts, Correlation Coefficients, and  

Their Probability of Equality. 

Slopes Intercepts Correlation 
Coefficients 

Tonto 
Watershed  
Settlements slope probability 

of equality 
intercept probability 

of equality 
r probability of 

equality 
low 
population 
levels 

3.9 -44 .97 

 
moderate   
population 
levels 

 
4 

97% 
 

-63 

27% 
 

.87 

59% 

 
high 
population 
levels 

Relationship excluded due to few settlements with high population 
levels.  See Table 7.4.  
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In the Upper Salt watershed, the relationship between dry-period severity 

and residential abandonment did not substantially vary with settlement population 

levels (Figure 7.11; Table 7.10).  The slopes of the regressions lines for 

settlements with low (m = 3.2), moderate (m = 2.9), and high (m = 3.6) 

population levels indicate relatively strong sensitivity to changes in dry-period 

severity at each population level.  For every one percent change in dry-period 

severity, residential abandonment increased 2.9 to 3.6 percent.  The probability of  

equality of the slopes is 74% (and at least 41% for all pairwise comparisons)--

mostly more likely to be the same than different.  The intercept values for 

settlements with low (b = -28), moderate (b = -29), and high population levels (b 

= -.57) are more likely different than the same (p < 33%).  The negative intercepts 

suggest residential abandonment may have been very low in the absence of dry-

period years and lowest among settlements with the highest population levels.  

Correlation coefficients (low r = .93; moderate r = .96, high r = .97) and the 

scatterplots indicate very good fits of the data to the lines.  Thus, changes in dry-

period severity effectively explain most of the changes in residential abandonment 

at all settlement population levels.     
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Figure 7.11.  Upper Salt: relationship between dry-period severity and abandonment by settlement population levels. 
 

 
Table 7.10.  Upper Salt: Slopes, Intercepts, Correlation Coefficients, and Their Probability of Equality. 

 
Slopes Intercepts Correlation Coefficients 

Upper Salt Watershed 
Settlements slope probability of 

equality 
intercept probability of 

equality 
r probability of 

equality 
low population levels 3.2 -28 .93 
moderate population levels 2.9 -29 .96 
high population levels 3.6 

low and high: 67% 
mod. and high: 41% 
low and mod.: 79% 

all: 74% 
-57 

low and high: 10% 
mod. and high: 33% 
low and mod.: 32% 

all: 17% 
.97 

low and high: 67% 
mod. and high:88% 
low and mod.: 77% 
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In the Upper Verde watershed, the relationship between dry-period 

severity and residential abandonment did not substantially vary with settlement 

population levels (Figure 7.12; Table 7.11).  Note that relatively few high 

population settlements suggest caution in interpreting the relationship between 

dry-period severity and residential abandonment among settlements with high 

population levels (Table 7.4). The slopes of the regressions lines for settlements 

with low (m = 2.6), moderate (m = 1.8), and high (m = 3.6) population levels 

indicate relatively high sensitivity to changes in dry-period severity.  For every 

one percent change in dry-period severity, residential abandonment increased 1.8 

to 3.6 percent.  The slopes, however, are statistically more likely the same than 

different, suggesting no statistical basis to argue differences in sensitivity (78% 

probability of equality of all slopes; at least 52% probability of equality for the 

pairwise comparisons).  The intercept values for settlements with low (b = -27), 

moderate (b = -5), and high population levels (b = -.75) are, when considered 

together, more likely the same than different (p = 64%).  The pairwise 

comparisons, however, show that the intercepts for settlements with low and 

moderate population levels compared to the high population intercept are more 

likely different than the same (low and high: p = 37%; moderate and high: p = 

47%).  The negative intercepts suggest residential abandonment may have been 

very low in the absence of dry-period years and that the level of dry period 

severity that finally induced residential abandonment was higher in high-

population settlements than in low-population settlements.  Correlation 

coefficients (low r = .70; moderate r = .40, high r = .89) and the scatterplots 
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indicate poor to moderate fits of the data to the lines.  Thus, changes in dry-period 

severity explain some of the variance in the relationship between dry-period 

severity and residential abandonment at low (r2 = .49) and high settlement 

population levels (r2 = .78) but little at the moderate population level (r2 = .16).       
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Figure 7.12.  Upper Verde: relationship between dry-period severity and abandonment by settlement population levels. 
 
 

Table 7.11.  Upper Verde: Slopes, Intercepts, Correlation Coefficients, and Their Probability of Equality. 
 

Slopes Intercepts Correlation Coefficients 
Upper Verde Watershed 

Settlements slope probability of 
equality 

intercept probability of 
equality 

r probability of 
equality 

low population levels 2.6 -27 .70 
moderate population levels 1.8 -5 .40 
high population levels 3.6 

low and high: 62% 
mod. and high:52% 
low and mod.: 79% 

all: 78% -75 

low and high: 37% 
mod. and high: 47% 
low and mod.: 96% 

all: 64% .89 

low and high:  65% 
mod. and high:48% 
low and mod.: 72% 
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Summary and Implications 

Watershed Population Density 

 Models of vulnerability to dry periods that emphasize differences in 

watershed population density to explain differences in vulnerability are supported 

by this study.  Evidence supporting this conclusion includes: (1) less sensitive and 

weaker relationships between dry-period severity and residential abandonment 

among those living in areas of low population density than among those living in 

areas of high population density, (2) inter-watershed differences in population 

density explain about half of the variance in the steepness of the slopes (and 

inferred vulnerability to dry periods) among watersheds, and (3) differences in 

density also explain about half of the variance in the fit of the data values 

(correlations) and explained variance in the relationship between dry-period 

severity and abandonment in each watershed.  In the evaluation of combined 

demand and supply models (Chapter Nine) I find that high watershed population 

density is usually associated with greater vulnerability to dry periods regardless of 

the potential productivity of settlement locations.  Thus, people living in 

watersheds with the highest population density were more vulnerable to the risk 

of shortfalls during dry periods, or at least more responsive to dry-period 

vulnerabilities through residential abandonment and movement, than those living 

in watersheds with the lowest population density.  This relationship is not evident 

in the very high density Lower Salt watershed where dry-period severity was not 

correlated with changes in the extent of residential abandonment.  As discussed 

above, conditions in the Lower Salt were demographically and productively 
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unique which suggests relationships identified elsewhere in central Arizona might 

not be evident in this watershed.   

 The influence of watershed population density implies that decisions to 

move into, encourage, and maintain (or not prevent) densely populated areas 

likely increased vulnerability to dry periods, or at least influenced residential 

abandonment during dry periods.  Results also imply that moving into less 

densely populated areas would have been a viable strategy for managing 

vulnerability to dry periods.  Increasing population density might increase 

vulnerability to dry periods by increasing the rate of consumption of resources 

within a given area, restricting movements to acquire resources, and/or increasing 

settlement and cultivation in areas of marginal productivity.   

 The influence of watershed population density on vulnerability to dry 

periods suggests the influence of exogenous events such as immigration on 

vulnerability to dry periods.  Increasing population density due to an influx of 

immigrants into a watershed would have increased vulnerability for all watershed 

residents.  In contrast with settlement-scale events and processes that can increase 

vulnerability and may be amenable to management, increases in watershed 

population density involved many people and places that could not be easily 

controlled.  Limiting immigration throughout a watershed would likely have 

required violence or the threat of violence.  Thus, settlement-scale strategies to 

manage dry-period related shortfall risks may have been necessary but not 

sufficient to reduce vulnerability to dry periods.   

 The strong and sensitive relationship between dry-period severity and 
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residential abandonment in high density watersheds contradicts arguments that 

link increases in areal population density to decreases in residential mobility 

(Cordell 2000:183; Dean 1994:85; Minnis 1996; Powell 1988).  High population 

density could limit residential mobility if settlement locations were already 

claimed, occupied, or hostilities restricted movement.  Evidence from this study, 

however, shows that the percent of rooms abandoned in high density watersheds 

during the five, 50-year intervals from 1200 to 1450 are not systematically lower 

than the percent of rooms abandoned in low density watersheds (See Table 7.1 for 

the central Arizona scale and Table 6.1 for the watershed scale data.  Table 7.3 

identifies watersheds by high and low density).  Thus, the idea that high areal 

population density (watershed or region) is associated with lesser residential 

mobility and low areal population density is associated with greater residential 

mobility is not supported in the central Arizona study area.  Decoupling high 

population density from decreases in mobility questions arguments that have used 

this linkage.  For example, Varien et al. (1996) have argued that increased 

population density due to settlement aggregation in the northern Southwest 

contributed to a socially constrained landscape and increasingly immobile 

organizational entities.  Results identified here find no such linkage between high 

population density and decreased mobility, except in results for the Lower Salt 

watershed (as discussed above in this chapter.)     

Settlement Population Levels  

 Models of vulnerability to dry periods that emphasize differences in 

settlement population levels to explain variation in human responses to dry 
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periods are not supported.  The evidence that supports this conclusion is the 

similarity of the sensitivity and strength of the relationships between dry-period 

severity and residential abandonment among those living in settlements with low, 

moderate, and high population levels throughout the study area.  Thus, people 

living in settlements with high population levels and concomitantly high resource 

demands were about as vulnerable to dry periods as those living in settlements 

with low population levels and low resource demands.  Differences in the 

influence of watershed population density and settlement population levels on 

vulnerability to dry periods suggests the scale at which resource demands are 

assessed is a critical aspect of vulnerability to dry periods.  

 These results do not resolve the currently contradictory views regarding 

the influence of settlement population levels on vulnerability to dry periods 

(Boserup 1965; Malthus 2001 [1798]; Meyer et al. 1998: 241).  One view holds 

that more people place added stress on the environment thereby increasing 

vulnerability to dry periods.  The other view holds that more people reduce 

vulnerability because a more populous society has greater resources with which to 

cope.  Because vulnerability to dry periods among settlements with both low and 

high population levels was similar and relatively high, both or neither view may 

be correct.  Yet, it is significant that settlements with the highest population levels 

were not substantially more vulnerable to dry periods.  This implies that people 

living in settlements with high population levels did not have any apparent 

demographic-related advantage in managing shortfalls risks compared to people 

living in smaller settlements with fewer labor resources.  In other words, any 
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labor advantage was offset by a demand disadvantage.  This result provides no 

support for arguments that emphasize differences in settlements population levels 

to explain differences in vulnerability to dry periods.    

 The finding of consistency in vulnerability between settlements with low 

and high population levels has implications for arguments regarding the causes of 

the pattern of settlement aggregation that began in the U.S. Southwest around 

1100.  Aggregation refers to "the processes that produce spatial clustering of 

households, communities, or archaeological habitation sites" and it appears in the 

archaeological record of the U.S. Southwest sometime after A.D. 1000 (Cordell et 

al. 1994:109).  Subsistence stress has been argued to be among the causal factors 

of settlement aggregation (Haury 1962; Hill et al. 1970; Longacre 1966).  

However, because there is no evidence that settlements with relatively high 

population levels were less vulnerable to dry periods than settlements with low 

population levels, aggregation cannot be considered a 'solution' to subsistence 

stress.  Thus, there is no evidence that population aggregation increased the 

effective organization of labor and more efficient food distribution to manage 

increasing risks of shortfall.  Or, if there were subsistence benefits to aggregation, 

these benefits were short lived and did not result in increased settlement longevity 

or decreased frequency of residential abandonment.   

 In sum, results demonstrate that the veracity of demand models of 

vulnerability to dry periods depend on the spatial scale at which these demands 

are assessed.  This directs attention to the importance of potential thresholds in 

areal population density rather than toward identifying specific settlement 
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population levels in understanding vulnerability to dry periods.  Future efforts to 

evaluate the influence of population levels on vulnerability to dry periods should 

identify and “hold constant” differences in the potential productivity of settlement 

locations and watersheds.  In Chapter Nine, I consider a few demand/supply 

combinations but the focus of this chapter and study is the evaluation of existing 

vulnerability models.  A thorough evaluation of the influence of settlement 

population levels on vulnerability to dry periods under a variety of productivity 

conditions is beyond the scope of this study.  In the next chapter, I consider the 

influence of settlement and watershed-scale environmental conditions on 

vulnerability to dry periods.   
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CHAPTER 8: 
 

THE INFLUENCE OF ENVIRONMENTAL CONDITIONS  
 

ON VULNERABILITY TO DRY PERIODS 
 
 The analyses in this chapter evaluate 'supply' models of vulnerability to 

dry periods by testing the expectation that environmental conditions associated 

with relatively greater resource productivity (supply) resulted in lesser 

vulnerability to dry periods.  The environmental conditions I consider are each 

settlement's location relative to the nearest perennial river and the average annual 

precipitation level of settlement locations.  At the watershed scale, I consider 

precipitation and streamflow discharge levels.  I use these environmental 

conditions, which each identify differences in access to or availability of water, as 

indicators of differences in potential resource productivity and resource supplies 

among settlements and watersheds.  

 In each analysis in this chapter, I compare the relationships between dry-

period severity and residential abandonment among those located in areas of 

greater potential productivity (near perennial rivers and in areas of high average 

annual precipitation and streamflow levels) to the relationships between dry-

period severity and residential abandonment among those located in areas of 

lesser potential productivity (far from perennial rivers and in areas of low average 

annual precipitation and streamflow).  If the environmental conditions considered 

in this chapter influenced vulnerability to dry periods, then the relationships 

between dry-period severity and residential abandonment will be less sensitive 

and weaker where productivity is assumed to have been higher and more sensitive 
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and stronger where productivity is assumed to have been lower.   

 It is important to assess supply models of vulnerability to dry periods and 

the scale at which they might apply so that we have a basis to evaluate arguments 

that rely on intra-regional or inter-settlement productivity differences to explain 

differences in vulnerability to dry periods.  These differences are often used to 

explain settlement location shifting motivated by dry-period increases in shortfall 

risks or why some settlements are abandoned during dry periods and others are 

not.   

 Based on the results presented below, the primary argument of this chapter 

is that models of vulnerability that link environmental conditions associated with 

greater potential resource productivity to lesser vulnerability to dry periods are 

not supported.  People living where potential resource productivity was the 

highest were not less vulnerable to dry periods.  Instead, those in areas with the 

highest potential productivity were often most vulnerable to dry periods.   I 

present the results first by differences in environmental conditions among 

settlements then by differences in conditions among watersheds.  

Settlement Proximity to Perennial Rivers 

 To assess the influence of a settlement's location relative to the nearest 

perennial river on vulnerability to dry periods, I compare the relationships 

between dry-period severity and residential abandonment among rooms located 

near and far from perennial rivers.  Table 8.1 presents the number of rooms 

occupied, the number of rooms abandoned, the percent of rooms abandoned by 

riverine proximity in each watershed and in the total study area, and the 
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associated correlation coefficients and p-levels.  I exclude the Lower Salt 

watershed from this analysis because few settlements are located distant from the 

perennial Lower Salt River and we have already found that people living there 

were either relatively invulnerable to dry periods or if vulnerable, residential 

abandonment was not a response to this vulnerability.  Methods of classifying 

settlements by locations near and far from perennial rivers are presented in 

Chapter Five.   

 At the scale of the total study area (“Central Arizona”), results indicate 

that the relationship between dry-period severity and residential abandonment was 

not influenced by a settlement’s location relative to perennial rivers (Figure 8.1; 

Table 8.2).  The slope of the regression line in the scatterplot of data values 

representing residential abandonment among rooms far from perennial rivers (m = 

2.8) is similar to the slope of the line representing residential abandonment among 

rooms distant from perennial rivers (m = 3.2).  For every one percent change in 

dry-period severity, residential abandonment increased 2.8 to 3.2 percent 

indicating sensitivity to dry periods in both riverine and non-riverine locations.  

The slopes are statistically more likely the same than different (71% probability of 

equality), suggesting no statistical basis to argue differences in sensitivity.  The 

intercept values for settlements far from rivers (b = -27) and near rivers (b = -41) 

are also more likely the same than different (p = 86%).  Correlation coefficients 

(far from rivers r = .88; near rivers r = .96) and the scatterplots indicate a slightly 

better fit and more explained variance in the near riverine room group but the 

correlations are statistically more likely the same than different (p = 57%).  Thus, 
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people living in settlements near perennial rivers were not less vulnerable to dry 

periods than people living far from perennial rivers, as predicted by a resource 

supply model of vulnerability to dry periods. 

 
  



 

Table 8.1. Number and Percent of Rooms Occupied and Abandoned by Proximity to Perennial Rivers, by Watershed. 
 

Number and Percent of Rooms Abandoned and Occupied Watershed Room 
Locations By 
Riverine Proximity  
(Far From or  
Near To) 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449 

 n % n % n % n % n %

Correlation 
Between Dry-

Period 
Severity and 

Percent of 
Rooms 

Abandoned
Central Arizona 
   occupied – far  3,889 5,401 9,014 8,280 1,061
   abandoned – far 1,081 28 2,615 48 1,475 16 7,219 87 1,061 100 .88 (p = .05)
   occupied – near 3,123 4,762 5,629 4,380 559
   abandoned– near 406 13 2,084 44 1,452 26 3,821 87 559 100 .96 (p = .01)
 
Agua Fria 
   occupied – far 755 427 1,570 1,550 700
   abandoned - far 566 75 176 41 20 1 850 5 700 100 .32 (p = .60)
   occupied - near 32 0 367 367 160
   abandoned– near  32 100 0 0 0 207 56 160 100 .07 (p = .93)
 
Lower Verde 
   occupied – far 551 546 1,086 1,011 13
   abandoned - far 80 15 288 53 75 7 998 99 13 100 .89 (p = .04)
   occupied - near 611 1,218 2,232 1,739 231
   abandoned– near  73 12 315 26 493 22 1,508 87 231 100 .93 (p = .02)
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Number and Percent of Rooms Abandoned and Occupied Watershed Room 
Locations By 
Riverine Proximity  
(Far From or  
Near To) 

1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449 

 n % n % n % n % n %

Correlation 
Between Dry-

Period 
Severity and 

Percent of 
Rooms 

Abandoned
Tonto 
   occupied – far 1,189 1,535 1,004 934
   abandoned - far 98 8 906 59 126 13 934 100 .88 (p = .12)
   occupied - near 412 686 440 360
   abandoned– near  16 4 371 54 80 18 360 100 .93 (p = .07)
 
Upper Salt 
   occupied – far 878 2,072 3,883 3,684 348
   abandoned - far 42 5 905 44 884 23 3,336 91 348 100 .97 (p = .01)
   occupied - near 1,203 1,629 1,039 523 13
   abandoned– near  155 13 1,173 72 719 69 510 98 13 100 .96 (p = .01)
 
Upper Verde 
   occupied – far 259 131 196 176
   abandoned - far 128 49 0 0 20 10 176 100 .39 (p = .61)
   occupied - near 610 984 1,471 1,331 155
   abandoned– near  85 14 15 2 140 10 1,176 88 155 100 .84 (p = .08)
Dry-period severity 
indices  
(SFP precipitation) 

14 28 26 38 44



 

 

a. Central Arizona rooms abandoned 
located far from perennial rivers 
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b. Central Arizona rooms abandoned  
near perennial rivers 
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Figure 8.1.  Central Arizona: rooms abandoned by riverine proximity. 
 

 
Table 8.2.  Central Arizona: Slopes, Intercepts, Correlation Coefficients, and 

Their Probability of Equality. 

 
Slopes Intercepts Correlation 

Coefficients 
Central 
Arizona 

Settlements slope probability 
of equality 

intercept probability 
of equality 

r probability 
of equality 

 
far from a 
perennial 
river 

2.8 -27 .88 

 
near a 
perennial 
river 

3.2 

71% 

-41 

86% 

.96 

57% 

 
 
 
 

 193



 

 194

The results for the total study area are consistent with those for individual 

watersheds (except the Upper Salt discussed below).  The slopes of the regression 

lines that describe the linear relationship between dry-period severity and 

residential abandonment, correlation coefficients, and the scatterplots indicate 

relatively similar relationships between dry-period severity and residential 

abandonment among rooms near and far from perennial riverine resources 

(Figures 8.2 through 8.6).  Strong statistical evidence that the pairs of correlation 

coefficients in each watershed are different is also lacking as the probabilities of 

equality of the slopes, intercepts, and correlations are all relatively high (Tables 

8.3 through 8.7).  This similarity suggests resource productivity as affected by 

proximity to perennial rivers, did not influence vulnerability to dry periods, or at 

least decisions to abandon existing settlements.   

The only exception to the broad-scale study area pattern is in the Upper 

Salt where results identify somewhat greater sensitivity to dry periods among 

those living far from perennial rivers (Figure 8.5; Table 8.6).  The slope of the 

line (m = 3.5) representing the relationship between dry-period severity and 

residential abandonment far from perennial rivers is somewhat steeper that the 

line representing the relationship near perennial rivers (m = 2.9).  For every one 

percent change in dry-period severity, residential abandonment increased 3.5% far 

from perennial rivers and 2.9% near perennial rivers.  The slopes and intercepts 

are both more likely different than the same (slopes p = 45%; intercepts p = 5%).  

The data values fit the regression lines equally well (r = .97 and .96, probability of 

equality: 88%) indicating changes in dry-period severity explain residential 
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abandonment equally well among both groups.  Given the relatively small 

difference in sensitivity (about one-half a percent in residential abandonment 

between groups), this exception does not threaten the broad-scale pattern.  

Therefore, models of vulnerability to dry periods that emphasize differences in 

riverine proximity to explain variation in vulnerability to dry periods are not 

supported.  [Because of the consistency of the other findings and the focus of this 

analysis on evaluating models of vulnerability (not explaining residential 

abandonment in each watershed), I do not describe the results for each watershed.  

The details are presented in the associated figures and tables].   

 
 



 

 

a. Agua Fria watershed rooms 
abandoned far from perennial rivers  
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b. Agua Fria watershed rooms 
abandoned near perennial rivers 
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Figure 8.2.  Agua Fria: rooms abandoned by riverine proximity. 
 

 

Table 8.3.  Agua Fria.  Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

 
Slopes Intercepts Correlation 

Coefficients 
Agua Fria 
Watershed 
Settlements slope probability 

of equality 
intercept probability 

of equality 
r probability  

of equality 
 
Far from a 
perennial 
river 

.29 36 .32

 
Near a 
perennial 
river 

.23 

99% 

57 

57% 

.07

83% 
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Figure 8.3.  Lower Verde: rooms abandoned by riverine proximity. 

a. Lower Verde watershed rooms 
abandoned far from perennial rivers 
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b. Lower Verde watershed rooms 
abandoned near perennial rivers 
 

1200-1249

1250-1299

1350-1399

1400-1449

0 10 20 30 40 5

Percent of interval identif ied as 
a dry period

0
0

20

40

60

80

100

P
er

ce
nt

 o
f r

oo
m

s 
ab

an
do

ne
d

r = .93, p = .02

1300-1349

 

 

 

Table 8.4.  Lower Verde: Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

Slopes Intercepts Correlation 
Coefficients Lower Verde 

Settlements slope probability 
of equality 

intercept probability 
of equality 

r probability  
of equality 

 
Far from a 
perennial 
river 

3.4 -47 .89

 
Near a 
perennial 
river 

3.3 

94% 

-49 

67% 

.93

81% 

 



 

Figure 8.4.  Tonto: rooms abandoned by riverine proximity. 

a. Tonto watershed rooms abandoned 
far from perennial rivers 
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b. Tonto watershed rooms abandoned 
near perennial rivers 
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Table 8.5.  Tonto: Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

 
Slopes Intercepts Correlation 

Coefficients 
Tonto 

Watershed 
Settlements slope probability 

of equality 
intercept probability 

of equality 
r probability  

of equality 
 
Far from a 
perennial 
river 

3.9 -58 .88

 
Near a 
perennial 
river 

4 

94% 

-63 

95% 

.93

84% 
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a. Upper Salt watershed rooms 
abandoned far from perennial 
rivers 
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b. Upper Salt watershed rooms 
abandoned near perennial rivers 
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Figure 8.5.  Upper Salt: rooms abandoned by riverine proximity. 
 

 

Table 8.6.  Upper Salt: Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

Slopes Intercepts Correlation 
Coefficients 

Upper Salt 
Watershed 
Settlements slope probability 

of equality
intercept probability 

of equality
r probability  

of equality 
 
Far from a 
perennial 
river 

3.5 -52 .97 

 
Near a 
perennial 
river 

2.9 

45% 

-17 

5% 

.96 

88% 
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a. Upper Verde watershed rooms 
abandoned far from perennial rivers 
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b. Upper Verde watershed rooms 
abandoned near perennial rivers 
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Figure 8.6.  Upper Verde: rooms abandoned by riverine proximity. 

 

Table 8.7.  Upper Verde: Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

 
Slopes Intercepts Correlation 

Coefficients 
Upper Verde 
Watershed 
Settlements slope probability 

of equality 
intercept probability 

of equality 
r probability  

of equality 
 
Far from a 
perennial 
river 

1.8 -8.7 .39

 
Near a 
perennial 
river 

3.4 

60% 

-60 

79% 

.84

50% 
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Settlement Area Precipitation Levels 

 To assess the influence of the average annual precipitation level of a 

settlement's location on dry-period related residential abandonment, I compare the 

relationship between dry-period severity and residential abandonment among 

rooms located in areas receiving low, moderate, and high precipitation.  I examine 

these relationships only at the scale of the total study area.  The range of 

settlement precipitation values is limited at the watershed scale.  For example, 

there are no settlements located in areas of low precipitation in the Upper Salt and 

no settlements located in areas of high precipitation in the Agua Fria.  Methods of 

classifying settlements by low, moderate, and high precipitation levels are 

presented in Chapter Five.   

Results do not demonstrate strong differences in the relationship between 

dry-period severity and residential abandonment by differences in precipitation 

levels (Table 8.8, 8.9; Figure 8.7).  People living in settlement areas with the 

highest precipitation levels were not the least vulnerable to dry periods, contrary 

to model expectations.  The slopes of the regression lines in the low (m = 3.3), 

moderate (m = 2.9), and high precipitation (m = 3.4) level scatterplots identify 

sensitivity to dry-period severity at all settlement population levels.  For every 

one percent change in dry-period severity, residential abandonment increased 2.9 

to 3.6%.  The probability of equality of the slopes is 89% (and 58% to 95% for 

each pair comparison)--more likely to be the same than different.  The intercept 

values for low (b = -57), moderate (b = -30) and high (b = -46) precipitation levels 

are more likely different than the same (p = 43%; and lower for particular pairs).  
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Negative residential abandonment percents are not quantitatively meaningful but 

they suggest residential abandonment in the absence of dry-period years may have 

been the least among settlements with low precipitation.  In sum, there is not a 

strong basis to argue differences in sensitivity or vulnerability to dry periods due 

to settlement-scale average annual precipitation conditions. 

There is, however, some evidence suggesting the possibility of differences 

in the relationship between dry-period severity and residential abandonment at 

different precipitation levels.  The strongest evidence is the difference in the fit of 

the data values to the regression lines in each scatterplot.  As indicated by the 

correlation coefficients (low r = .87; moderate r = .90; high r = .98) and visual 

inspection of the scatterplots, the fit improves as settlement area precipitation 

levels increase.  The correlations are more likely to be different than the same in 

two of the three pair comparisons:  low and high, p = 34%, moderate and high, p 

= 41%, low and moderate, p = 89%.  Differences in the fit of the data values to 

the line demonstrate that changes in dry-period severity explain more of the 

variance in the relationship between dry-period severity and residential 

abandonment as precipitation levels increase.  The r2 values indicate that 76% of 

the variance in the relationship between dry-period severity and residential 

abandonment in areas with low precipitation, 81% of the variance in areas with 

moderate precipitation, and 96% of the variance in areas of high precipitation is 

explained by differences in dry-period severity.  Differences in sensitivity to dry 

periods cannot be argued because of the similarity of the slopes.  Differences in 

explained variance and especially the patterned increase with precipitation levels, 
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however, might indirectly signal differences in vulnerability to dry periods.  I 

continue to investigate these differences in the next section.   

 
 
 
 
 
 



 

Table 8.8. Central Arizona: Number and Percent of Rooms Occupied and Abandoned by Settlement Area Precipitation Level. 
 

Number and Percent of Rooms  

Room Locations by 
Precipitation Levels 1200 to 1249 1250 to 1299 1300 to 1349 1350 to 1399 1400 to 1449 

 n % n % n % n % n %

Correlation 
Between 
Dry-Period 
Severity 
and 
Percent of 
Rooms 
Abandoned

Central Arizona   
   occupied – low (8-14”)  755 1,096 1,248  1,148 190  
   abandoned – low 104 14 117 11 100 8 958 83 190 100 .87, p = .06 
   
   occupied– mod. (14-22”) 5,781 7,778 11,346  9,951 1,315  
   abandoned – moderate 1,367 24 4,096 53 1,839 16 8,636 87 1 100 .90, p = .04 
   
   occupied – high (22-36”) 476 1,289 2,049  1,561 115  
   abandoned – high 16 3 486 38 988 48 1,446 93 115 100 .98, p = .01 
   
Dry-period severity  
indices (SFP precipitation) 

14 28 26  38 44
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Figure 8.7. Central Arizona: relationship between dry-period severity and rooms abandoned by settlement area precip. levels. 

tion Coefficients 

Table 8.9.  Slopes, Intercepts, Correlation Coefficients, and Their Probability of Equality. 

Slopes Intercepts Correla
Central Arizona 

slope lity of inte of Settlements probabi
equality 

rcept probability 
equality 

r probability of 
equality 

Low precip. levels 3.3 -57 .87 
Moderate precip. levels 2.9 -30 .90 
High precip. levels 3.4 

low and high: 95% 
mod. and high: 58% 
low and mod.: 75% 

all: 89% 
-46 

low and high: 28% 
mod. and high: 97% 
low and mod.: 37% 

all: 43% 
.98 

low and high:  34% 
moderate and high: 41%
low and moderate: 89% 
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Settlement Area Precipitation Levels by Riverine Proximity 

 To further investigate the influence of settlement area precipitation levels 

on vulnerability to dry periods, I compare the relationships between dry-period 

severity and residential abandonment among those living in areas of low, 

moderate, and high precipitation near and far from perennial rivers.  I conduct this 

analysis at the scale of the entire study area to maximize the number of rooms in 

each productivity classification.  I first create two groups of rooms: those located 

near perennial rivers and those far from perennial rivers.  I then identify within 

each of these groups those rooms located in areas of low, moderate, and high 

precipitation levels.  After inspecting the room counts in each classification, I 

exclude two groups of rooms from this analysis due to low numbers of 

rooms/settlements: rooms far from perennial rivers in areas of low precipitation 

and rooms near perennial rivers in areas of high precipitation.  I examine the 

relationship between dry-period severity and residential abandonment for each of 

the remaining groups.  Table 8.10 identifies the number of rooms occupied, 

abandoned, the percent of rooms abandoned in each classification, and the 

relationship with dry-period severity.   

For people living near perennial rivers, results do not demonstrate strong 

differences in the relationship between dry-period severity and residential 

abandonment by differences in precipitation levels (Table 8.10, 8.11; Figure 8.8).  

Note that I exclude the high precipitation, near riverine room group as the number 

of rooms in the category is limited.  The slopes of the regression lines in the low 

(m = 3.5) and moderate (m = 3.1) precipitation group scatterplots identify 
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sensitivity to dry-period severity at both precipitation levels.  For every one 

percent change in dry-period severity, residential abandonment increased 3.1 to 

3.5%.  We cannot draw strong conclusions about differences in sensitivity, 

however, because the statistical probability of equality of the slopes is high (p = 

79%).   

 Consistent with the analysis in the previous section, there is weak 

evidence that as precipitation levels increased, vulnerability to dry periods 

increased.  The evidence suggesting this possibility is the difference in the fit of 

the data values to the similarly sloped regression lines in each scatterplot.  As 

indicated by the correlation coefficients (low r = .86; moderate r = .97) and visual 

inspection of the scatterplots, the fit improves as settlement area precipitation 

levels increase between the low and moderate precipitation groups.  The 

correlations are more likely to be different than the same (p = 42%).  The 

correlations demonstrate that changes in dry-period severity explain almost all of 

the variance in residential abandonment in the moderate precipitation group (r2 = 

.94) and less in the low precipitation group (r2 = .74).  The low precipitation 

group intercept (b = -62) and moderate group intercept (b = -36) are also more 

likely different than the same (p = 24%).  Differences in the intercepts suggest 

that in the absence of dry-period years, residential abandonment might have been 

the least in the low precipitation group.  In sum, this evidence strengthens the  

finding that people living in settlement areas with higher precipitation levels were 

not the least vulnerable to dry periods. 



 

Table 8.10.  Central Arizona: Number and Percent of Rooms Occupied and Abandoned by Settlement Area Precipitation 

Level; Includes Only Those Near Perennial Rivers. 

 
Number and Percent of Rooms  

Rooms Located Near 
Perennial Rivers by 
Precipitation Levels 1200 to 1249 1250 to 1299 

1300 to 
1349 

1350 to 1399 
1400 to 

1449 

 n % n % n % n % n %

Correlation 
Between 
Dry-Period 
Severity and 
Percent of 
Rooms 
Abandoned 

Central Arizona   
   occupied – low (8-14”)  628 1,007 1,235  1,135 177  
   abandoned – low 66 11 41 4 100 8 958 84 177 100 .86, p = .06 
   
   occupied – mod. (14-22”) 2,441 3,551 4,078  3,115 382  
   abandoned – moderate 324 13 1,992 56 1,166 29 2,733 88 382 100 .97, p = .01 
   
   occupied – high (22-36”) 54 204 316  130  
   abandoned – high 16 30 51 25 186 59 130 100 n/a1 
   
Dry-period severity indices 
(SFP precipitation) 

14 28 26 38 44 
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1 Excluded from analysis due to low number of rooms.   

 



 

 

a. Rooms abandoned near perennial 
rivers and in areas receiving 8-14” 
of precipitation annually 
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annually 
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Figure 8.8. Scatterplots of relationship between dry-period severity and rooms 

abandoned among people living near perennial rivers. 

 

Table 8.11.  Central Arizona: Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

Slopes Intercepts Correlation 
Coefficients 

Central 
Arizona 

Settlements slope probability 
of equality 

intercept probability 
of equality 

r probability 
of equality 

 
Near river, 
low 
precipitation  

3.5 -62 .86 

 
Near a river, 
moderate 
precipitation  

3.1 

79% 

-36 

24% 

.97 

42% 
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Among people living far from perennial rivers, results demonstrate that 

those living in settlement areas with the highest precipitation levels were not the 

least vulnerable to dry periods (Table 8.12, 8.13; Figure 8.9).  The slopes of the 

regression lines in the moderate (m = 2.7) and high (m = 3.5) precipitation level 

scatterplots identify greater sensitivity to dry-period severity at the high 

precipitation level.  For every one percent change in dry-period severity, 

residential abandonment increased 2.7% in the moderate precipitation group and 

3.5% in the high precipitation group.  The probability of equality of the slopes is 

50%--as likely to be different as the same.  The intercept values for the moderate 

precipitation group (b = -26) and high precipitation group (b = -49) are more 

likely the same than different (p = 97%).  Correlation coefficients (moderate r = 

.83; high r = .99) and the scatterplots indicate that the fit of the data to the line 

improves between the moderate and high precipitation level scatterplots.  The 

probability of equality of these correlations is low, p = 14%.  The correlations 

demonstrate that changes in dry-period severity explain almost all of the variance 

in residential abandonment in the high precipitation group and less of the variance 

in the moderate precipitation groups.  These results imply (but do not strongly 

demonstrate) that vulnerability to dry periods may have been greater among those 

living in areas receiving the highest precipitation levels.   

 
 



 

Table 8.12.  Central Arizona: Number and Percent of Rooms Occupied and Abandoned by Settlement Area  

Precipitation Level; Includes Only Those Located Far From Perennial Rivers. 

Number and Percent of Rooms  

Rooms Located Far From 
Perennial Rivers by 
Precipitation Levels 1200 to 1249 1250 to 1299 

1300 to 
1349 

1350 to 1399 
1400 to 

1449 

 n % n % n % n % n %

Correlation 
Between 
Dry-Period 
Severity 
And Percent 
Of Rooms 
Abandoned 

Central Arizona   
   occupied – low (8-14”)  127 89 13  13 13
   abandoned – low 38 30 76 85 0 0 0 0 13 100

n/a1 

   
   occupied – mod. (14-22”) 3,340 4,227 7,268  6,836 933  
   abandoned – moderate 1,043 31 2,104 50 673 9 5,903 86 933 100 .83, p = .08 
   
   occupied – high (22-36”) 422 1,085 1,733  1,431 115  
   abandoned – high 0 0 435 40 802 46 1,316 92 115 100 .99, p = .01 
   
Dry-period severity indices 
(SFP precipitation)  

14 28 26  38 44
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1 Excluded from analysis due to low number of rooms.   
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b.  Far from perennial rivers and in 
areas receiving between 22 and 36 
inches of precipitation annually 
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Figure 8.9. Scatterplots of relationship between dry-period severity and rooms 

abandoned among people living far from perennial rivers in areas of moderate and 

high precipitation. 

 
Table 8.13.  Central Arizona: Slopes, Intercepts, Correlation Coefficients,  

and Their Probability of Equality. 

Slopes Intercepts Correlation 
Coefficients 

Central 
Arizona 

Settlements slope probability 
of equality 

intercept probability 
of equality 

r probability 
of equality

 
Far from a 
river, moderate 
precipitation  

2.7 -26 .83 

 
Far from a 
river, high 
precipitation  

3.5 

50% 

-49 

97% 

.99 

14% 
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The remainder of this chapter continues this evaluation of supply models 

of vulnerability to dry periods at the watershed scale.  Relationships identified and 

suggested at the settlement-scale find additional confirmation at the watershed 

scale.   

Watershed Precipitation Levels 

 Differences in precipitation levels among watersheds explain some of the 

inter-watershed differences in the relationships between dry-period severity and 

residential abandonment identified in Chapter Six.  To identify inter-watershed 

differences in precipitation levels, I use the weighted average annual precipitation 

level of all settlements within each watershed presented in Chapter Five, Table 

5.4 (presented again in Table 8.14 below).  I use the slopes of the lines describing 

the relationship between dry-period severity and abandonment in each watershed 

to identify differences in vulnerability to dry periods (Chapter Six, Table 6.2).  I 

rank the slopes from shallowest (least vulnerable) to steepest (most vulnerable).  

The scatterplots of actual values (Figure 8.10 a., r = .35, p = .57) and ranked 

values (Figure 8.10 b., Spearman’s rho = .60, p = > .10) demonstrate the 

relationship between the variables.  Watersheds with settlements in areas with the 

lowest precipitation levels (Agua Fria, Upper Verde) were less vulnerable to dry 

periods than watersheds with settlements in areas with the highest precipitation 

levels (Upper Salt, Tonto, Lower Verde).  Thus, watershed precipitation levels 

explain some of the inter-watershed differences in vulnerability to dry periods 

identified in Chapter Six.  



 

Table 8.14.  Influence of Settlement Area Precipitation Levels on Vulnerability. 

 

Watershed 

Slope of Regression Lines 
Describing Relationship 

Between Dry-Period Severity 
and Residential Abandonment 

(see Table 6.2) 

Weighted Average Annual 
Precipitation of All 

Settlements (see Table 5.4) 

 slope rank average rank 
 
Agua Fria 1 1 16.4 2 
 
Upper Verde 3.1 2 14.7 1 
 
Upper Salt 3.2 3 20.3 5 
 
Lower Verde 3.3 4 17.2 3 
 
Tonto 3.9 5 18.5 4 
 
 
 
a. Actual values of correlations and 

precipitation levels 
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b. Indices of vulnerability and 
precipitation levels 
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Figure 8.10.  Scatterplots of relationships between weighted average annual 

precipitation of all settlements and the correlations between dry-period severity 

and residential abandonment within each watershed. 
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Watershed Precipitation Levels Plus Streamflow Discharge Levels 

 In this final analysis, I consider the combined influence of both 

precipitation and streamflow discharge levels on vulnerability to dry periods.  I 

create a single index of water-related productivity for each watershed.  This index 

is the sum of each watershed's precipitation and streamflow discharge level rank 

(as discussed in Chapter Five; see also Table 5.3, 5.4).  The index is crude but 

approximates differences in the availability of water (precipitation and 

streamflow) in each watershed.  I compare this index to the slopes of the 

regression lines describing the relationship between dry-period severity and 

residential abandonment in each watershed (Chapter Six, Table 6.2).  For 

consistency, I rank these slopes by steepness (as above).   

Results identify a positive relationship between the productivity and 

vulnerability indices (Figure 8.11; Table 8.15).  Specifically, the scatterplot shows 

two groups of watersheds.  In the upper right of the scatterplot are the Tonto, 

Lower Verde, and Upper Salt.  I identified these watersheds in Chapter Six as 

areas where changes in residential abandonment were strongly related to changes 

in dry-period severity.  These watersheds have the highest water-related 

productivity indices and the greatest vulnerability to dry periods.  In the lower left 

are the Agua Fria, Upper Verde, and Lower Salt.  I identified these watersheds in 

Chapter Six as areas where changes in residential abandonment were not strongly 

related to changes in dry-period severity.  These watersheds have the lowest 

water-related productivity indices and the lowest vulnerability.  [Of course, the 
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extent of water-related productivity in the Lower Salt is debatable--very high 

streamflow, very low precipitation.]  If people living in areas with the greatest 

water-related productivity were the least vulnerable to dry periods, I would expect 

the opposite of what was found.  In sum, differences in precipitation and 

streamflow levels explain some of the inter-watershed differences in vulnerability 

identified in Chapter Six.  Where water-related resource productivity was highest, 

vulnerability to dry periods was greatest.  And, where water-related resource 

productivity was lowest, vulnerability to dry periods was the least.     

 



 

Table 8.15.  Influence of Water-Related Productivity on Vulnerability. 
  

Watershed 

Slope of 
Regression 

Lines 
Describing 

Relationship 
Between Dry-

Period Severity 
and Residential 
Abandonment 
(See Table 6.2) 

Mean Annual  
Discharge, 

acre-feet/year 
(See Table 5.3) 

 

Weighted 
Average 
Annual 

Precipitation of 
All Settlements  
(See Table 5.4) 

Water-
Related 

Productivity 
Index  

(Sum of 
Precipitation 

Plus 
Streamflow 

Level  
Ranks) 

 slopes rank discharge rank average rank index 
 
Lower Salt -.01 1 644,942 6 9.3 1 7 
 
Agua Fria 1.0 2 16,327 1 16.4 3 4 
 
Up. Verde 3.1 3 128,062 3 14.7 2 5 
 
Upper Salt 3.2 4 474,817 5 20.3 6 11 
 
Low. Verde 3.3 5 409,875 4 17.2 4 8 
 
Tonto 3.9 6 113,232 2 18.5 5 7 
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Figure 8.11.  Scatterplot of relationship between indices of water-related 

productivity and vulnerability. 
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Summary and Implications 

 Models of vulnerability to dry periods that link environmental conditions 

associated with greater potential resource productivity to lesser vulnerability to 

dry periods are not supported.  People living where potential productivity is 

assumed to be highest were not less vulnerable to dry periods than those living 

where potential productivity is assumed to be the lowest.  Differences in potential 

productivity considered in this analysis were all related to access to water 

(riverine and precipitation); therefore, results also demonstrate that vulnerability 

models that link increasing access to water with lesser vulnerability to dry periods 

are not supported.   

Evidence supporting this conclusion at the settlement-scale includes 

similar relationships between dry-period severity and residential abandonment 

among riverine and non-riverine settlements and among settlements located in 

areas of low, moderate, and high average annual precipitation.  Similarly, people 

living in watersheds with settlements located in areas with the highest average 

precipitation levels were not the least vulnerable to dry periods.   

Results also suggest that as potential resource productivity increased, 

vulnerability to dry periods somewhat increased.  The evidence supporting this 

conclusion includes: (1) watersheds with settlements in areas with the highest 

precipitation levels had the steepest slopes of the regression lines describing the 

relationship between dry-period severity and abandonment; and (2) watersheds 

with settlements in areas with the highest combined precipitation and streamflow 
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indices also had the steepest slopes and greatest inferred vulnerability to dry 

periods.   

Differences in the frequency of food shortfalls between areas of low and 

high potential resource productivity may explain why people living in areas with 

the least potential productivity were in some cases less vulnerable to dry periods, 

or at least less responsive with movement, than people living in areas with the 

most potential productivity.  If shortfalls were more frequent in areas of low 

productivity, then people living under these conditions may have been more 

effective at managing these risks than people living in areas of high productivity 

where shortfalls were likely less frequent.  Strategies such as diet and crop 

diversification, increases in physical food storage, exchanges for food, decreases 

in food consumption, and the development of water management strategies for a 

variety of precipitation conditions can all be used to manage shortfall risks (e.g., 

Braun and Plog 1982; Burns 1983; Dean 2006; Halstead and O’Shea 1989b:3-4; 

Minnis 1985; Rautman 1993; Slatter 1979:80-84).  Most of these strategies, 

however, require efforts to develop over time and could not be effectively 

initiated as immediate responses to particular increases in shortfall risk associated 

with a specific dry period.  Thus, in high productivity areas residential 

abandonment as a response to shortfall risks may have been the most effective 

response.   

 Greater investments in water management infrastructure (e.g., check dams, 

terracing, water diversion structures) in areas of low productivity might also 

explain why vulnerability as expressed by residential abandonment was less 
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among those living in areas of lower potential productivity.  Janssen et al. (2003) 

use the "sunk-cost effect" (Arkes and Ayton 1999) to link investments in physical 

structures to delays in adaptive adjustments in response to disturbances, such as 

dry periods.  Using examples from the prehistoric northern Southwest, they argue 

that this tendency to hold onto previous investments even if these investments are 

a rationally bad choice explains the delayed demise (relative to hamlets) of 

Puebloan villages in the face of resource stress.  Further research is needed, 

however, to determine if people living in areas of lower potential productivity 

made greater investments in physical water management infrastructure.  For 

people living near perennial rivers, results suggest that any investments in 

irrigation agriculture infrastructure did not substantially decrease mobility, given 

the strong and sensitive relationship between dry-period severity and residential 

abandonment among people living near perennial rivers.    

 Greater vulnerability to dry periods in areas of higher potential 

productivity may address an important argument used to refute the influence of 

the "Great Drought" of 1276 to 1299 (Douglass 1929) on the depopulation of the 

northern U.S. Southwest.  Jett (1964:285) has argued "...if drought were the 

reason for abandonment, why would relatively well-watered areas such as Mesa 

Verde, Canyon de Chelly, and the Mogollon Mountains be deserted while less-

favored areas, such as the Hopi and Little Colorado, grew in population?"  

Precipitation levels at Hopi and along the Little Colorado were lower than in 

Mesa Verde, Canyon de Chelly, and the Mogollon Mountains.  Although I do not 

identify areas where population levels increased, the pattern of increases in 
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abandonment during dry periods in areas with the highest productivity identified 

by Jett (1964) is consistent with the pattern identified in this study.   

 That living in an area with greater access to or availability of water did not 

decrease vulnerability to dry periods likely demonstrates the importance of factors 

that affect resource productivity other than water.  These factors include soils, 

temperature, slopes of land, extent of arable land etc. and they are not necessarily 

reflected by proximity to perennial rivers or average precipitation levels.  Social 

factors (e.g., the existence of food exchange relationships, territoriality that 

restricted movements) that affect the risk of shortfalls are also not accounted for 

when local-scale environmental settlement characteristics are emphasized.   

 In sum, results do not support simplified notions of the relationship 

between access to and availability of water and vulnerability to dry periods.  In 

the next chapter, I consider the combined influence of demographic and 

environmental conditions on vulnerability to dry periods.   
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CHAPTER 9: 

THE COMBINED INFLUENCE OF DEMOGRAPHIC  

AND ENVIRONMENTALCONDITIONS ON  

VULNERABILITY TO DRY PERIODS 

 The analyses in this chapter evaluate 'demand and supply' models of 

vulnerability to dry periods by testing the expectation that people living where 

demand was highest (high population settlements, high density watersheds) and 

potential supply lowest (far from perennial rivers, low precipitation areas) were 

more vulnerable to dry periods than those living where demand was lowest (low 

population settlements, low density watersheds) and potential supply highest (near 

perennial rivers, high precipitation areas).  The indicators of demand and supply 

were employed in Chapters Seven and Eight.   

 In each analysis in this chapter, I compare the relationships between dry-

period severity and residential abandonment where demands were high and 

supplies low to the relationships where demands were low and supplies high.  If 

the balance between population and available resources influenced vulnerability 

to dry periods in the region, then the relationship between dry-period severity and 

residential abandonment will be stronger and more sensitive where imbalances 

were potentially the greatest and weaker and less sensitive where imbalances were 

the least likely.  We expect differences in vulnerability because when dry periods 

decrease productivity, the extent of shortfall risk and associated vulnerability is 

assumed to be related to the differential between resource demands and supplies.  
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By simulating the extremes of the possible differential--high demand/low supply 

(population-resource imbalances most likely) and low demand/high supply 

(population-resource imbalances least likely)--I test the influence of these 

conditions on the extent of residential abandonment and vulnerability to dry 

periods.   

 It is important to assess demand and supply models and the scale at which 

they might apply so that we have a basis to evaluate arguments that emphasize 

population-resource imbalances to explain intra-regional differences in impacts 

and responses to dry periods across time and space.  It is reasonable to assume 

that population-resources imbalances influenced impacts and responses to dry 

periods.  However, were these imbalances always predictive of vulnerability or 

merely among the many factors operating to influence vulnerability to dry 

periods?  By considering long-term relationships between dry-period severity and 

residential abandonment among those living where the imbalances were likely the 

greatest, we identify the role of population-resource balances in vulnerability to 

dry periods over time.   

 Based on the results presented below, the primary argument of this chapter 

is that models of vulnerability that emphasize the influence of watershed-scale 

population-resource imbalances on vulnerability to dry periods are supported.  

People living in watersheds with high population density in areas of low potential 

productivity were more vulnerable to dry periods than people living in watersheds 

with low population density in areas of high potential productivity.  Results also 

demonstrate that high watershed population density is more often associated with 
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greater vulnerability to dry periods regardless of the potential productivity of 

settlement locations. Models of vulnerability to dry periods that emphasize the 

influence of settlement-scale imbalances are, however, not supported.  Thus, the 

scale at which resource demands are assessed is a critical aspect of population-

resource models and demand models (Chapter Seven) of vulnerability to dry 

periods.  I present the results by the two indicators of resource demand (watershed 

population density and settlement population levels) followed by a watershed-

scale analysis.   

Demand (Watershed Population Density) and Supply 

This analysis compares the relationship between dry-period severity and 

residential abandonment where resource demands were high (rooms located in 

watersheds with high population density) and potential supplies low (rooms 

located far from perennial rivers) to the relationships between dry-period severity 

and residential abandonment where resource demands were low (rooms located in 

watersheds with low population density) and potential supplies high (rooms 

located near perennial rivers).  I do not use precipitation levels as an indicator of 

productivity because too few settlements were identified in low density, high 

precipitation and high density, low precipitation areas for the analysis.  

To identify rooms located in these extreme conditions, I classified all 

rooms in the Agua Fria and Upper Verde as located in a low density area and all 

rooms in the Lower Verde, Upper Salt, and Tonto as located in a high density area 

based on density calculations in Chapter Five, Table 5.2 (this method also used in 

Chapter Seven).  Among rooms located in high density watersheds, I identified 
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those far from perennial rivers to identify rooms where demands were high and 

supplies low (imbalances high).  Among rooms located in low density watersheds, 

I identify those near perennial rivers to identify rooms where demands were low 

and supplies high (imbalances low).  I identified the total number of rooms 

occupied, abandoned, and the percent of rooms abandoned during each 50-year 

interval for each of these groups of rooms (Table 9.1).  I then calculated the 

slopes, intercepts, and correlations between dry-period severity and the percent of 

rooms abandoned for both combinations (Table 9.2).  I exclude the Lower Salt 

watershed because inclusion of the high number of rooms in this watershed--all 

classified as located in a high density watershed, near a perennial river, and in an 

area of low precipitation--would dominate the results of these analyses.   

Results provide some support for the expectation that vulnerability to the 

risk of shortfalls was influenced by population-resource imbalances when 

watershed population density is used as the indicator of resource demands.  The 

slope of the regression line in the high density/far riverine group (imbalances 

high) is steeper (m = 3.5) than in the low density/near riverine group (m = 3.2) 

(imbalances low).  Steeper slopes indicate greater sensitivity to changes in dry-

period severity.  The slopes cannot, however, be demonstrated to be statistically 

different (probability of equality: 88%, Table 9.2).  The intercept values for the 

high density/far riverine group (b = -49) and the low density/near riverine group 

(b = -55) are more likely different than the same (p = 41%).  The negative 

intercepts suggest residential abandonment may have been very low in the 

absence of dry-period years in both groups.  The strongest support for concluding 
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differences between the relationships is the fit of the data values to the regression 

lines and the associated correlation coefficients.  The fit of the data values is 

clearly much better in the high density/far riverine group (r = .95; Figure 9.1 a.) 

than in the low density/near riverine group (r = .82; Figure 9.1 b.).  Differences in 

the fits and correlations demonstrate that changes in dry-period severity explain 

90% of the variance in residential abandonment in the high density/distant 

riverine group and only 67% of the variance in the low density/near riverine 

group.  Statistical support for the observed difference in the correlations is, 

however, equivocal (probability of equality is 50%).  In sum, these results suggest 

differences in vulnerability to dry periods between the two groups but all 

statistical measures of the relationship do not support this conclusion.   

 



 

Table 9.1. Demand (Watershed Population Density) and Supply  

(Proximity to Riverine Resources). 

Temporal 
Intervals 

Dry-
Period 

Severity 
Indices 

a.  Rooms Located in 
High Density 

Watersheds Far from a 
Perennial Rivers 

(High Demand, Low 
Supply) 

b.  Rooms Located in 
Low Density Watersheds 

Near a  
Perennial River 

(Low Demand, High 
Supply) 

  occupied abandoned occupied abandoned 
  n n % n n %

1200 to 1249 14 2,618 220 8 642 117 18

1250 to 1299 28 4,153 2,099 51 984 15 2

1300 to 1349 26 5,973 1,085 18 1,838 140 8

1350 to 1399 38 5,629 5,268 94 1,698 1,383 81

1400 to 1449 44 361 361 100 315 315 100
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Figure 9.1.  Scatterplots of rooms located in a high or low density watershed far 

and near perennial rivers. 
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Table 9.2.  Probability of Equality of Slopes, Intercepts, and Correlation 

Coefficients of Relationship Between Rooms Located in High and Low Density 

Watersheds Far and Near Perennial Rivers. 

Slopes Intercepts Correlation 
Coefficients Room 

Locations slope probability 
of equality 

intercept probability 
of equality 

r probability 
of equality 

High density, 
far from a 
perennial 
river 

3.5 -49 .95 

 
Low density, 
near 
perennial 
river 

3.2 

88% 

-55 

41% 

.82 

50% 

 

Results also demonstrate that high watershed population density is 

associated with greater vulnerability to dry periods in two out of three 

productivity scenarios (settlements located in areas with moderate precipitation 

levels, settlements located far from perennial rivers).  That is, when we hold 

potential productivity constant among settlements and vary watershed population 

density, residential abandonment is usually more sensitive to changes in dry-

period severity and/or changes in dry-period severity explain more of the variance 

in residential abandonment in high density watersheds than in low density 

watersheds.  I support this conclusion by varying population density by settlement 

area precipitation levels and riverine proximity and comparing relationships.     

Moderate Precipitation Levels 

Among all settlements located in areas with moderate average annual 
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precipitation levels (14” to 22”), the relationship between dry-period severity and 

residential abandonment is clearly stronger and more sensitive in high density 

watersheds than in low density watersheds (Figure 9.2 and Table 9.3, 9.4).  The 

slope of the regression line in the high density/moderate precipitation group 

scatterplot (m = 3.3) is steeper than the slope of the line in the low 

density/moderate precipitation group (m = 1.3).  Steeper slopes indicate greater 

sensitivity to changes in dry-period severity.  For every one percent change in 

dry-period severity, residential abandonment increased 3.3% in the high density 

group and 1.3% in the low density group.  The probability of equality of the 

slopes is 35%--more likely to be different than the same.  The intercept values for 

the high density group (b = -44%) and the low density group (b = -12) are more 

likely the same than different (p = 84%).  Correlation coefficients (high density r 

= .95; low density r = .37) and the scatterplots indicate that the fit of the high 

density group data to the line is very strong and much better than the fit with the 

low density group data.  The probability of equality of these correlations is low, p 

= 15%.  The r2 values indicate that 90% of the variance in residential 

abandonment in the high density group is explained by differences in dry-period 

severity while only 14% of the variance in residential abandonment is explained 

in the low density group.  Factors other than dry-period severity are influencing 

changes in residential abandonment in the low density group.  In sum, these 

results imply that vulnerability to dry periods was greater among those living in 

high density watersheds when precipitation levels are held constant.    



 

Table 9.3.  Demand (Watershed Population Density)  

and Supply (Precipitation Levels). 

a.  Rooms Located in High 
Density  

Watersheds Receiving 
Moderate Precipitation 

(High Demand, Low 
Supply) 

b.  Rooms Located in Low 
Density Watersheds 
Receiving Moderate 

Precipitation 
(Low Demand, High 

Supply) 
occupied abandoned occupied abandoned 

Temporal 
Intervals 

Dry-
Period 

Severity 

n n % n n %
1200 to 1249 14 4,343 448 10 966 707 73

 
1250 to 1299 

28 6,522 3,461 53 661 100 15

 
1300 to 1349 

26 7,763 1,689 22 2,528 80 3

 
1350 to 1399 

38 6,518 6,020 92 2,448 1,571 64

 
1400 to 1449 

44 438 438 100 877 877 100
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Figure 9.2.  Scatterplots of rooms located in a high or low density watershed 

receiving moderate precipitation. 
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Table 9.4.  Probability of Equality of Slopes, Intercepts, and Correlation 

Coefficients of Relationship Between Rooms Located in High and Low Density 

Watersheds Receiving Moderate Precipitation. 

Slopes Intercepts Correlation 
Coefficients Room 

Locations slope probability 
of equality 

intercept probability 
of equality 

r probability 
of equality 

High density, 
moderate 
precipitation  

3.3 -44 .95 

 
Low density, 
moderate 
precipitation  

1.3 

35% 

-12 

84% 

.37 

15% 

 
 

Far From Perennial Rivers 

Among all settlements located far from perennial rivers, the relationship 

between dry-period severity and residential abandonment is clearly stronger and 

more sensitive in high density watersheds than in low density watersheds (Figure 

9.3 and Table 9.5, 9.6).  The slope of the regression line in the high density/distant 

riverine group scatterplot (m = 3.5) is steeper than the slope of the line in the low 

density/distant riverine group (m = 1.3).  Steeper slopes indicate greater 

sensitivity to changes in dry-period severity.  For every one percent change in 

dry-period severity, residential abandonment increased 3.5% in the high density 

group and 1.3% in the low density group.  The probability of equality of the 

slopes is 29%--more likely to be different than the same.  The intercept values for 

the high density group (b = -49%) and the low density group (b = 12) are more 

likely the same than different (p = 92%).  Correlation coefficients (high density r 
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= .95; low density r = .41) and the scatterplots indicate that the fit of the high 

density group data to the line is very strong and much better than the fit of the low 

density group data.  The probability of equality of these correlations is low, p = 

16%.  The r2 values indicate that 90% of the variance in residential abandonment 

in the high density group is explained by variation in dry-period severity while 

only 17% of the variance in residential abandonment is explained in the low 

density group.  Factors other than dry-period severity are influencing changes in 

residential abandonment in the low density group.  In sum, these results 

demonstrate that in settlement locations far from perennial rivers, vulnerability to 

dry periods was greater in high density watersheds than in low density 

watersheds.      



 

Table 9.5.  Demand (Watershed Population Density) and  

Supply (Far from a Perennial River). 

Temporal 
Intervals 

Dry-
Period 

Severity 
Indices 

a.  Rooms Located in 
High Density Watersheds 

Far From Perennial 
Rivers 

(High Demand, Low 
Supply) 

B.  Rooms Located in 
Low Density Watersheds 

Far From  
Perennial Rivers 

(Low Demand, Low 
Supply) 

  occupied abandoned occupied abandoned 
  n n % n n %

1200 to 1249 14 2,618 220 8 1,014 694 68

1250 to 1299 28 4,153 2,099 51 558 176 32

1300 to 1349 26 5,973 1,085 18 1,766 40 2

1350 to 1399 38 5,629 5,268 94 1,726 1,026 59

1400 to 1449 44 361 361 100 700 700 100
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b. Low density, far from river 
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Figure 9.3.  Scatterplots of rooms located in a high or low density watershed far 

from a perennial river. 
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Table 9.6.  Probability of Equality of Slopes, Intercepts, and Correlation 

Coefficients of Relationship Between Rooms Located in High and Low Density 

Watersheds Far From a Perennial River. 

 
Slopes Intercepts Correlation 

Coefficients Room 
Locations slope probability 

of equality
intercept probability 

of equality
r probability 

of equality 
High density, 
far from a 
perennial 
river 

3.5 -49 .95 

 
Low density, 
far from a 
perennial 
river 

1.3 

29% 

12 

92% 

.41 

16% 

 
 
Near Perennial Rivers  

Among all settlements located near perennial rivers, the relationship 

between dry-period severity and residential abandonment in low and high density 

watersheds is too similar to convincingly argue that the relationships were 

different (Figure 9.4 and Table 9.7, 9.8).  The slopes of the regression lines are the 

same (high density m = 3.2; low density m = 3.2) with a probability of equality of 

98%.  Thus, there is no statistical basis to argue that one group was more sensitive 

to dry periods than the other.  The intercept values for the high density group (b = 

-37) and the low density group (b = -55) are more likely different than the same (p 

= 25%).  The intercepts suggest residential abandonment may have been lowest in 

the low density group in the absence of dry-period years.  The linear fit of the data 

values to the regression line is better in the high density/near riverine group (r = 
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.98) than in the low density/near riverine group (r = .82).  Differences in the r2 

values demonstrate that changes in dry-period severity explain 96% of the 

variance in the relationship between dry-period severity and residential 

abandonment in the high density group and only 67% of the variance in the low 

density group.  The correlations are statistically more likely to be different than 

the same (p = 25%).  Differences in the fit of the data values to the line suggest 

that factors other than changes in dry-period severity influenced changes in 

residential abandonment in low density watersheds.  In sum, differences in the 

relationship between dry-period severity and abandonment are evident between 

the two groups but a strong argument for differences in vulnerability to dry 

periods cannot be supported.   

 
 
 
 
 



 

Table 9.7.  Demand (Watershed Population Density) and  

Supply (Near a Perennial River). 

Temporal 
Intervals 

Dry-
Period 

Severity 
Indices 

a.  Rooms Located in 
High Density Watersheds 

Near Perennial Rivers 
(High Demand,  
High Supply) 

b.  Rooms Located in 
Low Density Watersheds 

Near Perennial Rivers 
(Low Demand,  
High Supply) 

  occupied abandoned occupied abandoned 
  n n % n n %

1200 to 1249 14 2,226 224 11 642 117 18

1250 to 1299 28 3,533 1,859 53 984 15 2

1300 to 1349 26 3,711 1,292 35 1,838 140 8

1350 to 1399 38 2,622 2,378 91 1,698 1,383 81

1400 to 1449 44 244 244 100 315 315 100
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b. Low density, near river 
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Figure 9.4.  Scatterplots of rooms located in a high or low density watershed near 

a perennial river. 
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Table 9.8.  Probability of Equality of Slopes, Intercepts, and Correlation 

Coefficients of Relationship Between Rooms Located in High and Low Density 

Watersheds Near a Perennial River. 

Slopes Intercepts Correlation 
Coefficients Room 

Locations slope probability 
of equality

intercept probability 
of equality

r probability 
of equality 

High 
density, near 
river 

3.2 -37 .98 

 
Low density, 
near river 

3.2 

98% 

-55 

25% 

.82 

25% 

 
 

 
Demand (Settlement Population Levels) and Supply 

 This analysis compares the relationships between dry-period severity and 

residential abandonment where resource demands were high (rooms located in 

settlements with high population levels) and potential supplies low (rooms located 

far from perennial rivers and rooms in areas of low precipitation) to the 

relationships between dry-period severity and residential abandonment where 

resource demands were low (rooms located in settlements with low population 

levels) and potential supplies high (rooms located near perennial rivers and rooms 

in areas of high precipitation).   

 To identify rooms located in these extreme conditions, I classified all 

rooms in the study area as located in a settlement with high population levels 

(high demand) or low population levels (low demand) based on the classifications 

used in Chapter Seven, Table 7.4.  Among rooms located in settlements with high 



 

 238

population levels, I identified those far from perennial rivers and in areas of low 

precipitation.  This procedure identified rooms where demands were high and 

supplies low.  Among rooms located in settlements with low population levels, I 

identified those near perennial rivers and in areas of high precipitation.  This 

procedure identified rooms where demands were low and supplies high.  I 

identified the total number of rooms occupied, abandoned, and the percent of 

rooms abandoned during each 50-year interval for each of these groups of rooms 

(Table 9.9).  I then calculated the slopes, intercepts, and correlations between dry-

period severity and residential abandonment (the percent of rooms abandoned) for 

both combinations (Table 9.10).  I exclude the Lower Salt watershed as 

demographically and productively unique and because conditions there would 

dominate all results.     

Results do not support the expectation that vulnerability to dry periods 

was strongly influenced by population-resource imbalances when settlement 

population levels are used as the indicator of resource demands (Table 9.10; 

Figure 9.5).  The relationship between dry-period severity and residential 

abandonment in the high population settlement/far from riverine group is too 

similar to the relationship in the low population settlement/near riverine group to 

convincingly argue that the relationships were different.  The slopes of the 

regression lines are both relatively steep (high population/far from riverine: m = 

3.7; low population/near riverine: m = 3).   Statistical support for differences in 

the slopes is equivocal (probability of equality 48%)--almost as likely to be the 

same as different.  The intercept values for the high population group (b = -67%) 
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and the low population group (b = -34) both suggest low rates of residential 

abandonment when there were no dry-period years (probability of equality 30%).  

Correlation coefficients (high population/far from riverine r = .95; low 

population/near riverine r = .94) and the scatterplots indicate that the fit of the 

data to the regression lines are very similar.  The probability of equality of the 

correlations is also very high--93%.  The good linear fits of the data values 

demonstrate that changes in dry-period severity explain a similar extent of 

variance in residential abandonment in both relationships.  In sum, these results 

do not provide a strong basis to conclude that vulnerability to dry periods was 

different under these circumstances.   

 
Table 9.9.  Demand (Settlement Population Levels)  

and Supply (Riverine Proximity). 

 
a.  Rooms Located in 

Settlements With High 
Population Levels  

Far From Perennial 
Rivers  

(High Demand, Low 
Supply) 

b.  Rooms Located in 
Settlement With Low 

Population Levels  
Near to Perennial Rivers 

(Low Demand, High 
Supply) 

occupied abandoned occupied abandoned 

Temporal 
Intervals 

Dry-
Period 

Severity 

n n % n n %
1200 to 1249 14 120 0 0 1,065 131 12

 
1250 to 1299 

 
28 

1,614 370 23 1,373 892 65

 
1300 to 1349 

 
26 

4,367 600 14 1,269 304 24

 
1350 to 1399 

 
38 

4,377 3,842 88 965 766 79

 
1400 to 1449 

 
44 

535 535 100 199 199 100
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c. Low population settlement, near 
river (low demand/high supply) 
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Figure 9.5.  Scatterplots of rooms located in a settlement with high or low 

population levels, far or near a perennial river. 

 
 

Table 9.10.  Probability of Equality of Slopes, Intercepts, and Correlation 

Coefficients of Relationship Between Rooms Located in Settlements with High or 

Low Population Levels Far or Near a Perennial River. 

Slopes Intercepts Correlation 
Coefficients Room 

Locations slope probability 
of equality

intercept probability 
of equality

r probability  
of equality 

High 
population, 
far from 
river 

3.7 -67 .95 

 
Low 
population, 
near river 

3 

48% 

-34 

30% 

.94 

93% 
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These results are consistent with those that use settlement area 

precipitation levels as the indicator of differences in resource supplies (Table 

9.11, 9.12; Figure 9.6).  The relationship between dry-period severity and 



 

 241

residential abandonment in the high population settlement/low precipitation group 

is too similar to the relationship in the low population settlement/high 

precipitation group to convincingly argue that the relationships were different.  It 

is important to note that the reliability of these results may be somewhat 

compromised by the low numbers of settlements and associated rooms in these 

extreme conditions.  The slopes of the regression lines are both relatively steep 

(high population/low precipitation: m = 3.8; low population/high precipitation: m 

= 4).  The probability of equality of the slopes is 89%--much more likely to be the 

same than different.  These similarities provide no statistical basis to argue that 

one group was more sensitive to dry periods than the other.  The intercept values 

for the high population group (b = -78%) and the low population group (b = -48) 

both suggest low rates of residential abandonment when there were no dry-period 

years (probability of equality 4%).  Correlation coefficients and the scatterplots 

show that the data values in the low population/high precipitation group (r = .98) 

better fit the regression line than the data values in the high population/low 

precipitation group (r = .88).  The correlations are more likely to be different than 

the same (p = 45%).  The associated r2 values indicate that 96% of the variance in 

the relationship between dry-period severity and residential abandonment in the 

high settlement population group is explained by changes in dry-period severity.  

Only 77% of the variance in the relationship between dry period severity and 

residential abandonment is explained by changes in dry-period severity in the low 

population group.  In sum, the evidence does not demonstrate that people living in 

settlements with high population levels and low potential resource supplies were 
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more vulnerable to dry periods than people living in settlements with low 

population levels and high potential resource supplies, as expected.  Instead, the 

evidence suggests vulnerability may have been greater for those living where 

demands were the least and supplies the greatest, contrary to model expectations.    

 
Table 9.11.  Demand (Settlement Population Levels)  

and Supply (Precipitation Levels). 

 
a.  Rooms Located in 

Settlements With High 
Population Levels 

Receiving Low 
Precipitation  

(High Demand, Low 
Supply) 

b.  Rooms Located in 
Settlements With Low 

Population Levels 
Receiving High 

Precipitation 
(Low Demand, High 

Supply) 

Temporal 
Intervals 

Dry-
Period 

Severity 

occupied abandoned occupied abandoned 
  n n % n n %

1200 to 1249 14 362 0 0 301 16 5

1250 to 1299 28 662 0 0 399 311 78

1300 to 1349 26 662 0 0 343 190 55

1350 to 1399 38 662 537 81 153 153 100

1400 to 1449 44 125 125 100  
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b.  Low population settlement, high 
precipitation (low demand/high supply) 
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Figure 9.6.  Scatterplots of rooms located in a settlement with high or low 

population levels and high or low precipitation levels. 

 

Table 9.12.  Probability of Equality of Slopes, Intercepts, and Correlation 

Coefficients of Relationship Between Rooms Located in Settlements with High or 

Low Population Levels and Low or High Precipitation Levels. 

 
Slopes Intercepts Correlation 

Coefficients Room 
Locations slope probability 

of equality
intercept probability 

of equality
r probability 

of equality 
High 
population, 
low 
precipitation  

3.8 -78 .88 

 
Low 
population, 
high 
precipitation  

4 

89% 

-48 

4% 

.98 

45% 
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As in the previous analysis of resource demands using watershed 

population density, I examine the influence of settlement population levels on 

vulnerability to dry periods while holding potential productivity constant among 

settlements.  Results (not included) demonstrate that the relationship between dry-

period severity and residential abandonment is similar in each case.  This 

similarity provides no support for the influence of settlement population levels on 

vulnerability to dry periods across a range of environmental conditions.  These 

results are consistent with those identified in the evaluation of demand models 

(Chapter Seven) wherein no influence of settlement population levels on 

vulnerability to dry periods was detected.   

Watershed-Scale Demand and Supply 

 This analysis examines the influence of watershed-scale population-

resource balance on the relationships between dry-period severity and residential 

abandonment within each watershed, as identified in Chapter Six.  The purpose of 

this analysis is to understand the contribution of population-resource balance to 

the identified variation in inter-watershed vulnerability to dry periods.   

 To identify inter-watershed differences in potential population-resource 

imbalances, I create a demand/supply index for each watershed (Table 9.13; 

Figure 9.7).  Demand is represented by each watershed's population density (as 

assessed in Chapter Five, Table 5.2).  Supply is represented by the weighted 

average annual precipitation level of settlements by watershed (as identified in 

Chapter Five, Table 5.4).  I use precipitation levels as the indicator of potential 

resource supplies because it affects all settlements in the watershed, as opposed to 
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the streamflow discharge levels which primarily affect those living near perennial 

rivers.  To create the indices, I divide a watershed's density by the weighted 

average annual precipitation level of all settlements within each watershed.  

Lower numbers represent relatively low demand and high supply; thus, places 

where population-resource imbalances should have been least likely.  Higher 

numbers represent relatively high demand and low supply; thus, places where 

population-resource imbalances should have been most likely.  Hence, the lower 

the number, the lower the expected vulnerability to dry periods.  I rank the index 

for comparison to the ranked vulnerability index, with 1 representing the 

shallowest slope of the relationship between dry-period severity and residential 

abandonment (inferred low vulnerability) and 6 representing the steepest slope  

(inferred high vulnerability).  I exclude the Lower Salt watershed from this 

analysis because both population density and precipitation levels are extreme 

outliers in this study and potential resource supplies in the Lower Salt were most 

strongly related to discharge levels of the Lower Salt River.    

 Results as displayed in the scatterplot (Figure 9.7 a.) indicate that as 

potential population-resource imbalances increased, the slope of the regression 

line representing the relationship between dry-period severity and abandonment in 

each watershed increased in steepness (that is, inferred vulnerability to dry 

periods increased).  Using a ranking index of the slope values for consistency also 

demonstrates a positive and strong relationship between potential population-

resource imbalances and vulnerability to dry periods (Figure 9.7 b.; Spearman’s 

rho = .87).  Thus, differences in population-resource balance among watersheds 
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explain much of the differences in the relationship between dry-period severity 

and residential abandonment identified by the aridity model (Chapter Six).   
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Table 9.13.  Watershed-Scale Potential Population-Resource Imbalances. 
 

Slopes 
Representing 
Relationship 

Between Dry-
Period Severity 
and Residential 
Abandonment 
(See Table 6.2) 

Index of Potential 
Population-Resource 

Imbalances1 
(Density Divided by 

Precipitation 
Multiplied by 100) 

Watershed 

slopes rank 

Watershed 
Population 

Density 
(See Table 

5.2) 

Weighted 
Average 
Annual 

Precipitation 
of All 

Settlements 
(See Table 

5.4) 
index rank 

 
Agua Fria 1.0 1 .19 16.4 1.2 1.5 
 
Upper 
Verde 3.1 2 .17 14.7 1.2 1.5 
 
Upper 
Salt 3.2 3 .54 20.3 2.7 4 
 
Lower 
Verde 3.3 4 .37 17.2 2.2 3 
 
Tonto 3.9 5 .61 18.5 3.3 5 
 

1Lower numbers represent relatively low demand, high supply--places where 
population-resource imbalances should have been least likely.   



 

 
a. Actual values of slopes and index 

of potential imbalances 

Agua Fria

Upper Verde
Low er Verde

Tonto

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Index of potential population-
resource imbalances (lower
numbers, imbalances least)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
lo

pe
 o

f l
in

e 
de

sc
rib

in
g

re
la

tio
ns

hi
p 

be
tw

ee
n 

dr
y 

pe
rio

d
se

ve
rit

y 
an

d 
ab

an
do

nm
en

t

Upper Salt

b. Index of vulnerability and index of 
potential imbalances 

Agua Fria

Upper Verde

Upper Salt

Low er Verde

Tonto

0 1 2 3 4 5

Ranked index of potential population-
resource imbalances (lower numbers,

imbalances least)

6
0

1

2

3

4

5

6

7

In
d

e
x 

o
f v

u
ln

e
ra

b
ili

ty
 to

 d
ry

 
p

e
ri

o
d

s 
(1

 =
 lo

w
e

st
)

Spearman's rho = .87
p = .1 > p > .05

Figure 9.7.  Scatterplots of relationship between potential population-resource 

imbalances and the slope of the lines describing the relationship between dry-

period severity and residential abandonment.  

 
Summary and Implications   

 Models of vulnerability to dry periods that emphasize watershed-scale 

differences in the extent of population-resource imbalances to explain variation in 

vulnerability to dry periods are supported by this study.  Evidence supporting this 

conclusion includes:  first, stronger and more sensitive relationships between dry-

period severity and residential abandonment where density was high and supplies 

low than where density was low and supplies high; and, second, as watershed-

scale differences in potential imbalances increased, the slope of the regression 

lines describing the relationship between dry-period severity and residential 

abandonment in each watershed generally became steeper.  Results do not, 

however, support the expectation that vulnerability to dry periods was influenced 
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by imbalances in settlement-scale resource demands and supplies.  Evidence 

supporting this conclusion includes the similarity in the relationships between 

dry-period severity and residential abandonment where settlement population 

levels were high and supplies low compared to where settlement population levels 

were low and supplies high.   

 Further support was also identified for the independent influence of high 

watershed population density on vulnerability to dry periods.  People living in 

watersheds with high population density (excluding the Lower Salt) were more 

vulnerable to dry periods than those living in watersheds with low population 

density when potential productivity was held constant in two of three productivity 

scenarios.  This result is consistent with the evaluation of demand models of 

vulnerability to dry periods wherein differences in watershed population density 

was identified as an influence on vulnerability to dry periods without considering 

differences in potential productivity among settlements (Chapter Seven).  I have 

discussed the implications of finding a relationship between high watershed 

population density, residential abandonment, and vulnerability to dry periods at 

the end of Chapter Seven and will not repeat those arguments here.   

 Identification of the persistent influence of watershed-scale population-

resource imbalances and watershed population density on vulnerability to dry 

periods in the context of the substantial social changes occurring throughout 

central Arizona during the period of study (see Chapter Four) justifies a 

continuing focus on the basic issues of resource supply and demand in our study 

of vulnerability to dry periods.  Evaluating and integrating the influence of 
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sociocultural changes and events into existing models of vulnerability is the next 

necessary step.   
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CHAPTER 10: 

SUMMARY OF RESULTS AND CONTRIBUTIONS 

 This study investigates the influence of demographic and environmental 

conditions on the vulnerability of subsistence agriculturalists to dry periods.  My 

approach to this investigation is to evaluate prominent and often implicit models 

of vulnerability to dry periods that have been used by archaeologists and others to 

explain and predict spatial and temporal differences in human vulnerability to dry 

periods.  The foundation of these models is an assumption of resource marginality 

that presumes widespread vulnerability to dry periods due to regional-scale 

aridity.  This effort is motivated by the strong impact these models have had on 

our understanding of climatic influences on human behavior and the lack of 

careful scrutiny of both the models and marginality assumption.  This final 

chapter summarizes the empirical results of Chapters Six through Nine and 

discusses the contributions of this effort to archaeological research in the U.S. 

Southwest, climate-human behavior studies, and methodological contributions to 

similar studies.   

Summary of Results 

For central Arizona during the 1200 to 1450 period, results of this study 

(summarized in Table 10.1) support conceptual models that emphasize the 

contribution of high watershed population density and watershed-scale 

population-resource imbalances to relatively high vulnerability to dry periods.  

Models that emphasize the contribution of: (1) settlement population levels, (2) 

settlement locations distant from perennial rivers, (3) settlement locations in areas 
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of low average annual precipitation; and (4) settlement-scale population-resource 

imbalances to relatively high vulnerability to dry periods are, however, not 

supported by this study.  Results also suggest that people living in watersheds 

with the greatest access to and availability of water were the most vulnerable to 

dry periods, or at least most likely to move when confronted with dry conditions.  

Thus, commonly held assumptions of differences in vulnerability due to 

settlement population levels and inherently water-poor environmental conditions 

are not supported.  The assumption of regional-scale resource marginality and 

widespread vulnerability to dry periods due to low average precipitation is also 

not consistently supported throughout the study area.     



 

Table 10.1.  Summary of Results. 
 

Model 
Type 

Conditions Expected 
To Influence 
Vulnerability To Dry 
Periods 

Expected Influence 
On Vulnerability To 
Dry Periods 

Actual Influence On 
Vulnerability To Dry 
Periods 

 
Aridity 

 
regional scale aridity 

 
increase as dry-
period severity 
increases 

 
increased as severity 
increased in three of 
six watersheds  

    
Demand 
models 

settlement population 
levels 

increase as settlement 
population levels 
increase 

no influence 

    
 watershed population 

density 
increase as watershed 
population density 
increases 

increased as 
watershed population 
density increased1 

usually regardless of 
the potential 
productivity of 
settlement locations 

    
Supply 
models 

settlement proximity 
to perennial rivers 

greater among 
settlements far from 
perennial rivers than 
among those near 
perennial rivers 

no influence2  

    
 settlement area 

precipitation levels 
increase as 
precipitation levels 
decrease 

may have increased as 
precipitation levels 
increased 

    
 settlement area 

precipitation levels in 
locations near and far 
from perennial rivers  

greater among 
settlements far from 
perennial rivers 

living near a perennial 
river had no effect on 
influence of 
precipitation levels on 
vulnerability 

    
 watershed 

precipitation levels 
decrease as 
precipitation levels 
increased 

increased as 
precipitation levels 
increased 
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Model 
Types 

Conditions Expected 
To Influence 
Vulnerability To Dry 
Periods 

Expected Influence 
On Vulnerability To 
Dry Periods 

Actual Influence On 
Vulnerability To Dry 
Periods 

Supply 
models 
(cont.) 

watershed 
precipitation levels 
plus streamflow 
discharge levels 

greater among 
settlements with least 
access to water 

increased as 
precipitation plus 
streamflow levels 
increased 

    

 
Demand 
and 
supply 
models 

 
population–resource 
imbalances (high 
watershed 
population density, 
low resource 
productivity) 
 

 
increase as resource 
demands exceed 
supplies 

 
increased as resource 
demands exceed 
supplies 

 population-resource 
imbalances (high 
settlement 
population levels, 
low resource 
productivity) 

increase as resource 
demands exceed 
supplies 

no influence 

 
1Lower Salt is an exception. 
2Upper Salt is an exception.
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Contributions to Archaeological Research in the U.S. Southwest 

 This study contributes to our understanding of the prehistory of central 

Arizona and the U.S. Southwest by enhancing understanding of conditions that 

affect human vulnerability to dry periods.  This understanding allows us to 

appraise arguments that rely on untested models of vulnerability and assumptions 

of widespread resource marginality.  It also suggests new strategies for advancing 

our interpretations of some of the critical events in prehistory including the 

depopulation of central Arizona and hypotheses of rising warfare in the region, as 

I discuss below.   

14th and 15th Century Depopulation of Central Arizona 

 The evaluation of models of vulnerability to dry periods resulting in the 

identification of specific demographic and environmental conditions that 

contribute to this vulnerability provides us with a new method for evaluating 

arguments that invoke climatic influences on human behavior.  We can use this 

method to evaluate dry-period influences on the depopulation of central Arizona 

and elsewhere.  I (Ingram 2008) have previously argued that two prolonged and 

severe dry periods during the late 14th and mid-15th centuries were a catalyst for 

the depopulation.  Stahle et al. (2000, 2007:142) refer to these dry periods as 

“megadroughts,” which imply a “very large-scale drought more severe and 

sustained than any witnessed during the period of [modern] instrumental weather 

observations.”  Only five have been identified in the western U.S. since A.D. 

1300 (Stahle et al. 2007).   

As a test of the influence of these dry periods on regional depopulation, 
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we can compare the actual temporal order of settlement abandonment and the 

demographic and environmental characteristics of settlements abandoned to an 

expected pattern if the depopulation were influenced by a dry period.  We can 

expect a regional, dry-period related, spatial and temporal pattern of abandonment 

to begin with those identified as most vulnerable to dry periods transitioning over 

time to those least vulnerable.  In other words, if dry-period risks of shortfall 

influenced the depopulation, we would expect that the pattern of abandonment 

might reflect differences in vulnerability to dry periods.   

Based on current results, we should expect settlements located in high 

density watersheds to be abandoned earlier than settlements located in low density 

watersheds.  We should also expect settlements located in areas with the greatest 

access to or availability of water to be abandoned earlier than settlements located 

in areas with the least access to or availability of water.  These expectations will 

not, however, apply in the Lower Salt where results differed from the rest of 

central Arizona.  An advantage of this approach is that the destinations of 

population movements need not be known since the focus is on patterns of 

abandonment in response to dry periods.  This allows for the possibility of both 

movement elsewhere and in situ demographic decline, as suggested by Hill et al. 

(2004).  The approach will be most effective if the period of study is lengthened 

to include an earlier and longer pre-depopulation period for the analysis of 

vulnerability to dry periods.  In central Arizona, further progress also needs to be 

made in understanding the conditions that contributed to vulnerability to dry 

periods in the Lower Salt River watershed.  The proposed approach, while 
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imperfect, is an improvement over simply relying on space-time coincidences 

between severe dry periods and regional depopulation to argue dry-period 

influences.  It is also an improvement over simply dismissing climatic influences 

on a depopulation because previous dry periods did not result in depopulation.   

 Investigation of dry-period influences on the depopulation will also 

require explaining why in watersheds where there was little long-term or prior 

evidence of the influence of dry-period severity on residential abandonment (e.g., 

Agua Fria, Upper Verde, Lower Salt), circumstances changed such that people in 

those watersheds moved when dry-period severity increased.  It might be that we 

can use the principle of space-for-time substitution to examine short-term changes 

in vulnerability.  That is, the strong and sensitive long-term relationship between 

dry-period severity and residential abandonment among settlements located in 

watersheds with high population density demonstrates the influence of high areal 

population density on vulnerability to dry periods.  In watersheds without long-

term evidence of a relationship between dry-period severity and residential 

abandonment, perhaps a sudden shift in conditions understood to increase 

vulnerability will explain an increase in vulnerability to dry periods where it had 

not been previously identified.  In the case of high watershed population density, 

a rapid influx of immigrants that increases density could explain why conditions 

abruptly changed.   

 This proposed method of evaluating dry-period influences on a regional 

depopulation need not be limited to central Arizona but may be applied in any 

region with adequate prehistoric or modern data.  It is especially important to 
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apply these methods in the prehistoric northern Southwest where dry periods have 

been implicated in two regional depopulations (Chaco and the Mesa Verde 

region).  Temporal resolution of the abandonment dates of many settlements are 

well known, demographic characteristics are better documented, and climatic and 

environmental data are at least comparable if not superior to the data available for 

central Arizona.  Efforts in the northern Southwest and other regions that explore 

and test these methods should begin with identifying the conditions that 

contribute to long-term vulnerability to dry periods.  Conditions identified in 

central Arizona may or may not apply elsewhere.  Studies that identify these 

conditions will allow us to compare results, and perhaps further understand how 

and why particular conditions contribute to vulnerability to dry periods.   

Finally, this study’s results for the Lower Salt River watershed should 

remind us that there is no formula for predicting or detecting vulnerability to dry 

periods in all locations.  Population density was high in the Lower Salt but 

vulnerability to dry periods as identified by residential abandonment was not 

detected.   Despite the unique conditions in this watershed (discussed in Chapters 

Three and Seven), attention to increases in population density as a factor 

influencing residential abandonment and ultimately depopulation are still 

warranted.  That residential abandonment was not associated with changes in dry-

period severity in the high density Lower Salt may suggest that opportunities for 

improving conditions through movement were not available or preferred--not 

necessarily that people there were invulnerable to dry periods.  Low overall rates 

of residential abandonment in the Lower Salt also suggest the effectiveness of 
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strategies to manage declines in streamflow-related productivity.  The negative 

influence of increasing population density on Phoenix basin residents has been 

identified by Abbott and Foster (2003) in a large, well-documented village 

(Pueblo Grande) in the early Classic period.  This population increase is 

coincident with a decline in the health of village residents and a number of social 

changes that they argue contributed to a prolonged period of decline.  My findings 

of the relationship between population density and residential abandonment 

outside of the Lower Salt are consistent with the argument that increasing 

population density in the Phoenix basin contributed to the decline of conditions 

that ultimately led to the depopulation of the Lower Salt.  The residents of the 

Lower Salt, unlike people living elsewhere in central Arizona, did not 

immediately move away but were instead able to hold on through “centuries of 

decline”, as argued by Abbott and colleagues (Abbott 2003:227; Abbott 2003 

ed.).   

Conflict and Warfare 

 Rising conflict and warfare has been argued for central Arizona during the 

period of study (LeBlanc 1999; LeBlanc and Rice 2001; Rice 2001; Wilcox et al. 

2001a, 2001b; Wilcox and Holmlund 2007 and others).  Crucial evidence of this 

conflict includes a pattern of population movement that resulted in clusters of 

settlements surrounded by unoccupied areas.  Conflict can produce settlement 

clusters and unoccupied zones if people aggregate to decrease their real or 

perceived risk of harm associated with increases in hostilities.  Settlements in 

close proximity may gain defensive or offensive strength in numbers and provide 
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early warnings of attack to nearby settlements (e.g., Wilcox and Haas 1994; 

Wilcox et al. 2001a, 2001b; Rice 2001).  Unoccupied zones may reduce the 

potential for conflict by raising the transportation costs between people and 

providing resources in emergency situations (e.g., DeBoer 1981; LeBlanc 1999; 

Martin and Szuter 1999).  Unoccupied zones also delineate settlement clusters and 

spatial associations may indicate a political relationship or polity (Wilcox 1981; 

Upham 1982).   

 The identification of specific demographic and environmental conditions 

that contribute to vulnerability to dry periods provides us with a method of 

evaluating evidence relied on in models of conflict and warfare in the region.  The 

reliance of these models on patterns of population movement into settlement 

clusters and out of surrounding areas allows us to compare these patterns of 

movement to what we would expect if these movements were related to increases 

in dry-period shortfall risks and vulnerability to these risks.  Such an evaluation is 

warranted in central Arizona because the formation of a number of buffer zones 

and settlement clusters is temporally coincident with the "Great Drought" of 1276 

to 1299.  If settlements abandoned in buffer zones are located in areas of greater 

potential vulnerability to dry periods and if settlements that remain and increase in 

size are located in areas identified as among the least vulnerable to dry periods, 

then dry-period influences on the pattern of population movement will be 

implicated.  Such a finding does not contradict models of conflict; rather, it 

introduces a problem of equifinality associated with the settlement patterns used 

to support the warfare models.  That is, two processes (warfare and dry periods) 
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can be argued to have influenced the same settlement pattern.  Consequently, 

more weight will need to be placed on the other supporting lines of evidence for 

increasing warfare (defensive site locations and architecture, line-of-site 

connections, patterns of burned or abandoned settlements on the edges of clusters, 

etc.).   

 The challenge to the marginality assumption identified in this study 

questions economic and environmental bases of conflict in the region.  Rice 

(2001) has argued that escalating conflict due to resource disparities between 

canal irrigators of the Phoenix basin and their immediate non-irrigating neighbors 

(generally to the north) created a gradual rise in the frequency and scale of 

demands for the canal irrigators' resources.  While irrigation-based productivity in 

the Phoenix Basin was not matched elsewhere, the results of my study do not 

demonstrate a pattern of long-term vulnerability to dry periods in the Agua Fria or 

Upper Verde watersheds, which contains some of the immediate and non-

irrigating neighbors as well as settlement clusters and buffer zones of the 

hypothesized Verde Confederacy (Wilcox et al. 2001b).  The spatial distribution 

of vulnerability to dry periods identified in this study questions the notion of 

impoverished peripheral farmers raiding the Phoenix Basin for food resources.  

For the Southwest in general, LeBlanc (1999:32-42) suggests the basis of conflict 

was also competition over scarce resources.  Increasing population levels across 

the Southwest in the 1200s, he argues, coincided with declines in resource 

productivity associated with a period of global cooling.  The result was increasing 

competition for resources that resulted in escalating violence.  Again, the spatial 



 

 262

distribution of vulnerability to dry periods identified in my study provide no 

support for widespread resource marginality, even in the context of the 

hypothesized period of lowered regional-scale productivity due to a period of 

cooling.     

 In sum, advancing archaeological understanding of the depopulation and 

increasing warfare involves, in part, understanding population movements.  The 

results of this study demonstrate that in three of the six watersheds considered, 

population movements were strongly related to variation in dry-period severity 

during the 1200 to 1450 period.  Arguments that attempt to explain these 

movements or rely on these movements as evidence of other phenomena, then, 

will be incomplete without considering the role of vulnerability to dry periods on 

these movements.   

Contributions to Climate-Human Behavior Studies 

 This study is the most comprehensive examination of the influence of 

climate on human behavior yet conducted in central Arizona.  It is also the only 

effort in the U.S. Southwest to systematically evaluate models of vulnerability to 

dry periods and identify the influence of specific demographic and environmental 

conditions.  The results of this study, when considered generally, make an 

effective case for a substantially more complex and nuanced relationship between 

climate and human behavior than those implied by assumptions of resource 

marginality, endemic shortfalls, and widespread vulnerability to climatic 

conditions.  With this recognition, archaeologists and other scholars can pursue 

much needed advancements in understanding the important and dynamic 
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contribution changing climatic conditions have played and will play in the course 

of human history.  Improving understanding of human vulnerability to changing 

climatic conditions and changes in this vulnerability over time and under varying 

conditions is the necessary next step.  By taking this step and employing a 

vulnerability approach, archaeologists provide a vital connection between modern 

studies of vulnerability of relatively short duration to archaeological studies of 

vulnerability of substantially longer duration.  The results of such an effort will 

undoubtedly prove beneficial for archaeologists and the global change 

community, who are rapidly advancing both methods and theories of vulnerability 

to climatic conditions.   

 An important implication of this study is that we should begin our thinking 

about climatic influences on human behavior with the assumption that there was 

no influence.  This is an obvious point (the null hypothesis) but the widespread 

acceptance of the assumption of resource marginality (demonstrated by its 

frequent use and a paucity of challenges to the assumption) suggests that we are 

beginning our thinking with assuming the influence of climatic conditions.  

Argument seems to be necessary to demonstrate that there was (is) no climatic 

influence on human behavior in arid climates.  Furthermore, efforts that 

empirically demonstrate rather than assume particular relationships will ultimately 

be more convincing and testable.   

 A productive next step for investigations of climatic influences on human 

behavior is to consider other aspects of climate that affect resource productivity 

and the risk of food shortfalls.   Flood induced stream channel change (Graybill et 
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al. 2006), unprecedented warm or cool temperatures (Salzer 2000a, 200b), 

variation in intra-annual precipitation patterns (Gregory and Nials 2007), and 

changes in temporal or spatial variability of precipitation and streamflow (Dean 

1996) can individually or in combination affect resource productivity and human 

decision making.  The methods developed in this study are amenable to testing the 

influence of any of these conditions on population movement or other potential 

indicators of vulnerability to dry periods.   

 Attention to the study of vulnerability to potentially harmful 

events/processes may stimulate renewed interest and progress among 

archaeologists and others interested in climate-human behavior studies.  A 

vulnerability approach may address one of the primary weaknesses of climate-

human behavior studies: explaining why at some times and places climate appears 

to influence human behavior and at other times it does not.  An emphasis on 

vulnerability may also help explain why the magnitude of a climate-related risk 

often does not explain the magnitude of the response, contrary to predictions 

generated by studies of risk (e.g., Halstead and O'Shea 1989a).  Attention to 

vulnerability to climatic conditions or other environmental changes could also 

provide archaeologists a point of entry into global environmental changes studies 

concerned with both vulnerability and adaptation to climatic, environmental, and 

social change.  Archaeologists, with long-term datasets, are particularly well 

positioned to contribute to these growing research emphases (van der Leeuw and 

Redman 2002).   
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Methodological Contributions 

 The focus on long-term relationships between dry-period severity and 

residential abandonment is a unique methodological contribution of this study.  I 

consider this relationship over 250 years, or roughly 10 human generations.  This 

focus addresses the challenge of distinguishing a space-time coincidence from a 

likely causal relationship.  Problems of distinguishing the two, also understood as 

a problem of correlation vs. causation, are a source of weakness of many climate-

human behavior studies.  When long-term relationships are the analytical focus, 

these problems are diminished as relationships detected during longer periods will 

be much more reliable than relationships detected during shorter periods.  

Increasing the period of study and using more temporally refined archaeological 

data will be beneficial but it will create other types of problems.  If a dry-period 

occurs, when should we expect a human response if the dry-period had an impact?  

Because there are lags in both behavioral and environmental responses to 

decreases in precipitation (and sometimes no response), determining vulnerability 

and impacts will not be as simple as identifying temporally coincident dry periods 

and settlement abandonment.       

 The multiple spatial scales used in this study are also a unique 

methodological contribution to climate-human behavior studies.  Spatial scales 

considered include settlements, watersheds, and combinations of watersheds.  

Investigating climate's potential influence at multiple scales is in contrast to those 

that consider potential impacts at the scale of a single settlement, river, or across 

entire regions at particular times such as during a regional depopulation.  
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Considering multiple scales provides redundancy necessary for increasing validity 

and minimizing the analytical impact of influences on human behavior other than 

those of primary interest.  The availability of regional-scale settlement data such 

as those used in this analysis offers unprecedented opportunities to examine the 

relationship between climate and human behavior at multiple spatial scales.  

Multi-scale analyses can also be applied to historic and modern climate-human 

behavior studies.  

 The spatial scale at which one considers vulnerability to climatic 

conditions has a strong impact on results.  For example, during data exploration 

for this study I found a sensitive and strong positive relationship between dry-

period severity and residential abandonment throughout the central Arizona study 

area, excluding the Lower Salt watershed.  This relationship supports the 

assumption of marginality, endemic shortfalls, and widespread vulnerability to 

dry periods.  When I examined the relationship between dry-period severity and 

residential abandonment at the watershed scale, however, differences among 

watersheds were evident.  These differences demonstrate critical differences in 

the relationship between dry periods and residential abandonment and potential 

vulnerability.  Thus, vulnerability to dry periods no longer appeared widespread.  

Perhaps differences in results due to the use of different spatial scales in other 

climate-human behavior studies are responsible for both the diversity of opinions 

regarding climatic influences on human behavior and a lack of overall consistency 

in results.   

 Establishing a broad-scale spatial pattern at the watershed or regional level 
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provides a method of evaluating relationships at smaller scales and potentially 

identifying factors that contributed to or lessened vulnerability to dry periods.  

When a long-term relationship between dry periods and population movement is 

established in particular places (as in some watersheds in this study), individual 

settlement histories can be better understood.  For example, if a particular 

settlement is abandoned during a dry-period and the broad-scale and long-term 

pattern in the relationship between dry periods and abandonment has 

demonstrated that as dry-period severity increased, settlement abandonments 

increased, then the likelihood of climatic influences on this settlement is 

increased.  Without a broad-scale and long-term climate-settlement history (or 

alternative lines of evidence), the possibility of a space-time coincidence between 

the dry-period and the abandonment of the settlement cannot be reduced.  If the 

settlement's trajectory differed from the broad-scale, long-term pattern, then 

specific investigation will be necessary to explain why the trajectory of the 

settlement did not follow patterns seen over long periods and large spatial scales.  

Such exceptions will be useful in identifying factors that contributed to or 

lessened vulnerability to dry periods.   

 The approach used in this study to examine the potential influence of 

demographic and environmental conditions on vulnerability to dry periods can be 

used to examine the influence of other conditions.  For example, differences in 

climate's influence based on differences in social, political, and cultural 

conditions should also be considered as well as other environmental conditions 

that affect resource productivity (e.g., soil type and quality).  The approach used 
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in the study is a basic, well understood scientific procedure with broad 

applicability.  It is essentially an analysis of variance.  I compare changes in dry-

period severity to variation in the extent of residential abandonment.  To 

understand the extent to which demographic and environmental factors influenced 

the extent of abandonment I varied these conditions.  Differences in the sensitivity 

and strength of the relationship between dry periods and abandonment under these 

different conditions were used to infer the influence of these conditions.   

 This study also demonstrates the importance of the selection of indicators 

of resource supply and demand for an evaluation of different types of 

vulnerability models.  For example, results of the evaluation of demand models 

identified support for the influence of watershed population density on 

vulnerability to dry periods but no support for the influence of settlement 

population levels.  If only one indicator of resource demands had been used, 

results would have supported or refuted demand models.  Instead, multiple 

indicators of demand revealed the impact of different scales of demand on 

vulnerability to dry periods.  Future efforts to evaluate vulnerability models or 

identify the influence of particular conditions on vulnerability to dry periods will 

also benefit from employing multiple indicators that reflect different spatial 

scales.   

Conclusion 

 In conclusion, I hope this study provokes renewed interest in climate's 

influence on human behavior in the U.S. Southwest and elsewhere.  When we are 

unburdened by an assumption of resource marginality that considers endemic 
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shortfalls and widespread vulnerability to dry periods as a pre-existing condition 

of life in arid and semi-arid regions, renewed opportunities to investigate climate's 

influence on human behavior and the course of human history become available.  

A vulnerability approach, because of its focus on social conditions rather than 

environmental hazards, is particularly well suited to anthropologically-oriented 

archaeological research.  I also hope that this study has effectively demonstrated 

alternative methods to investigate potential climatic influences on human 

behavior that do not rely on single space-time coincidences.  It is well understood 

that these coincidences do not demonstrate climate's influence.  Refinements in 

approaches to evaluating climatic influences on human behavior must keep pace 

with accumulating paleoclimatic and archaeological data or frustration with the 

particularistic aspects of the variable relationship may discourage continued 

interest and analytical and interpretive advancements.  In the context of the 

worldwide dialog on the potential impacts of increases in atmospheric 

temperatures on human subsistence and well being, interpretive and 

methodological advancements are particularly important.    
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