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ABSTRACT  

   

Distributed inference has applications in fields as varied as source localization, 

evaluation of network quality, and remote monitoring of wildlife habitats. In this 

dissertation, distributed inference algorithms over multiple-access channels are 

considered. The performance of these algorithms and the effects of wireless 

communication channels on the performance are studied. 

In a first class of problems, distributed inference over fading Gaussian multiple-

access channels with amplify-and-forward is considered.  Sensors observe a phenomenon 

and transmit their observations using the amplify-and-forward scheme to a fusion center 

(FC). Distributed estimation is considered with a single antenna at the FC, where the 

performance is evaluated using the asymptotic variance of the estimator. The loss in 

performance due to varying assumptions on the limited amounts of channel information 

at the sensors is quantified. With multiple antennas at the FC, a distributed detection 

problem is also considered, where the error exponent is used to evaluate performance. It 

is shown that for zero-mean channels between the sensors and the FC when there is no 

channel information at the sensors, arbitrarily large gains in the error exponent can be 

obtained with sufficient increase in the number of antennas at the FC. In stark contrast, 

when there is channel information at the sensors, the gain in error exponent due to having 

multiple antennas at the FC is shown to be no more than a factor of 8/  for Rayleigh 

fading channels between the sensors and the FC, independent of the number of antennas 

at the FC, or correlation among noise samples across sensors. 

In a second class of problems, sensor observations are transmitted to the FC 

using constant-modulus phase modulation over Gaussian multiple-access-channels. The 

phase modulation scheme allows for constant transmit power and estimation of moments 

other than the mean with a single transmission from the sensors. Estimators are 
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developed for the mean, variance and signal-to-noise ratio (SNR) of the sensor 

observations. The performance of these estimators is studied for different distributions of 

the observations. It is proved that the estimator of the mean is asymptotically efficient if 

and only if the distribution of the sensor observations is Gaussian.  
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Chapter 1

INTRODUCTION

1.1 Sensor Networks

Sensor networks provide a safe and low-cost sensing alternative to monitoring envi-

ronmental conditions or physical phenomena where it may be otherwise difficult or

impossible to do so. Typical examples involve identification of certain signal sources

at a remote or unreachable area. These sensing tasks may be monitoring characteristics

of hazardous materials, chemicals near a volcano, temperatures in a furnace, shifts in

undersea tectonic plates, animal activities in dense forests, hormones in the blood or

detecting toxins or explosives in the air, to name a few [1–12].

Sensor networks consist of infrastructure that allows the observation and collec-

tion of information of interest by using autonomous nodes deployed in space [1, 9, 10,

13]. These autonomous nodes contain sensing, processing and communication capabil-

ities that allow us to observe and if required, to act on certain occurrences and events.

Depending on the types of sensors available on the nodes, a single sensor network can

be specialized to observe a single type of physical phenomenon, or a single network

can be used to collate information from various physical conditions. Advances in hard-

ware technology have allowed for the development of small, low power sensing nodes

that have the capability to perform sophisticated sensing along with being outfitted with

transceivers for wireless communications [2, 14–20].

The sensor nodes themselves can range from being extremely small (smart-

dust [14]) to large platforms collecting telemetry on tanks or aircrafts [9]. Depending on

how sensor nodes are used and deployed, their capabilities can vary widely. Extremely

small sensor nodes cannot have very sophisticated hardware or large computing capac-

ities. Larger nodes that are supported by a more complex infrastructure can have more

sophisticated sensors with larger memories, transceiver capabilities, higher computing

power and different types of sensing abilities. These can be further supported by larger

1



computers with better computing capabilities, at the cost of higher power requirements

and loss of mobility, in addition to being more difficult to deploy.

A major constraint that is faced when dealing with autonomous nodes is that

these nodes are severely power limited [1, 9, 10]. In most cases, the nodes are supplied

with power (charged batteries) and then deployed. In realistic situations, the batteries

cannot be recharged or replaced once the sensors are deployed. A node that loses power

will have to be discarded. Therefore, whenever nodes are autonomously deployed, the

algorithms used on the nodes are designed for minimal power consumption and hence,

to maximize the battery life of the node. It should be noted that while computing

operations do consume power, most of the power is consumed by their transceivers

[1, 9, 10, 20]. Hence, there is a need for efficient communication schemes to maximize

transfer of information while consuming limited power.

Due to hardware and power limitations, when deployed individually, disposable

sensors are capable of only simple computations and tend to perform poorly with some

sensing tasks. However, when deployed in large numbers, sensors can be used to form

intelligent networks and sensor data can be accumulated at a central location to obtain

better results, using a process called data fusion. When connected to centralized com-

puters, more complicated computations can be performed on the data gathered. The

topology of sensor networks can be classified broadly into three types based on the

presence or absence of a fusion center (FC) and the organization of the sensors.

In network literature, ad-hoc networks (Figure 1.1) refer to devices placed to

form a network without a controlling base station. These devices discover each other

and cooperate intelligently in order to function as a network.

When applied to sensors, ad-hoc sensor networks are constructed using the

same principles [21–51]. Low-power sensors are placed in an observation field with-

out a fusion center. Algorithms are developed for diverse applications such as data

routing, collaborative inference and distributed signal processing, all subject to power

2



Figure 1.1: An example of an ad-hoc network with no fusion center.

constraints.

Data-transmission between sensors in an ad-hoc network is typically achieved

using multi-hop routing, i.e., sensors in between the source and destination are used

to route the data between the transmitter and the receiver. These sensors behave as

relays in addition to their functions as sensors. When the messages are passed on by

the relays, the data can be passed on digitally (for example, decode and forward) or

using analog methods such as the amplify-and-forward technique.

With no fusion center, connectivity between all sensors may not be guaranteed.

The transmit power radiated by each sensor must be such that the connection between

neighboring nodes is guaranteed, without interfering with other communications. Con-

ditions and degrees of connectivity are described in [21,26,29,31,34]. In these papers,

the authors consider an ad-hoc network in a fixed area and compute the minimum power

required or the minimum number of neighboring nodes to guarantee connectivity in the

network. It is shown that the introduction of even a few base stations significantly im-

proves the connectivity of a sparse network. The amount of data transfer that occurs

between a given set of transmitters and receivers within a unit area of an ad-hoc net-

work in unit time is defined as the capacity of a wireless network. Capacity of wireless

ad-hoc networks for different conditions are analyzed in [27, 28, 30, 35, 40, 41].

Another configuration for sensors is called the hierarchical configuration (See

Figure 1.2). In this setting, sensors, in addition to observing data, collect decisions

3



Figure 1.2: Hierarchical model - Data passes through multiple sensors.

from other sensors. The sensors use all this information to arrive at their own decisions

and pass along their decision to subsequent sensors [5,52–54]. Typical applications are

in sequential detection and sequential estimation.

In other sensor networks, sensors gather data and transmit them to a fusion

center (in Figure 1.3), which processes the data. The transmissions over the channels

between the sensors and the fusion center may be additive or orthogonal. When the

transmissions are orthogonal, the transmissions from each sensor reaches the fusion

center individually. The transmissions from the sensors do not interfere with each other.

Therefore, the fusion center can choose to select each transmission independent of the

other sensor transmissions. On the other hand, when the channels are additive (also

called multiple-access channels [55, pp. 378]), the transmissions of the sensors add

incoherently in noise before the fusion center has access to the data. The fusion center

cannot select individual sensor transmissions. The bandwidth requirements of sensor

networks with orthogonal channels scale linearly with the number of sensors, whereas,

when the channels are multiple-access, transmissions are simultaneous and in the same

frequency band, keeping the utilized bandwidth independent of the number of sensors

4



in the sensor network. For this multiple access channel model, it has been shown in [56]

that a simple amplify-and-forward scheme for analog signals is asymptotically optimal

over AWGN channels. It has also been shown in a distributed estimation context, that if

the fading channels are zero-mean, having no channel state information at the sensors

results in poor performance [57].

Transmissions from the sensors to the FC can be analog or digital. The digital

method consists of quantizing the sensed data and then transmitting the data digitally

over a rate-constrained channel [58–61]. In these cases, the required channel band-

width is quantified by the number of bits being transmitted between the sensors and the

fusion center. One such analog method consists of amplifying and then forwarding the

sensed data to the FC, while respecting a power constraint [57]. The transmissions can

be appropriately pulse-shaped and amplitude modulated to consume finite bandwidth.

The major drawback of the amplify-and-forward scheme is that the transmit power de-

pends on the sensing noise realizations and therefore may not be bounded. A solution

to this problem is the use of phase modulation techniques with constant modulus trans-

missions from the sensors. Distributed estimation and detection algorithms with this

transmit scheme are studied in [62–65].

Sensor networks that use this architecture are typically used for collaborative

signal processing applications such as joint estimation, distributed detection, histogram

estimation, etc. Due to the presence of multiple sensors, statistical methods perform

very well since the number of observed data points can be very large. Histogram es-

timation using type based multiple access (TBMA) is introduced in [66]. Distributed

detection is described in [64, 67–77]. Work and results in distributed estimation are

in [57, 62, 63, 65, 78–84].

1.2 Applications of Sensor Networks

A few popular applications of sensor networks are described in this section.

Sensor networks can be used for traffic control [85], to warn drivers of areas

5



Figure 1.3: Sensor networks with a fusion center.

of congestion, to divert traffic to increase the efficiency of the roadways, and also to

monitor roads for accidents and stoppages [86]. Sensor networks can be deployed to

manage parking areas and to detect illegal use of parking areas. In addition, sensors

can also be used to alert emergency services when required. These networks can be

used to detect forest fires, toxic gas leaks in occupied mines, etc. Sensor networks can

also be used for monitoring vital signs for medical purposes [11].

When deployed in an area to monitor sources such as climate changes, animal

behavior, bird migration patterns, etc., the application is known as habitat monitoring.

Such sensor deployment is used in sanctuaries and other protected areas. In [3,5] sensor

networks are used for habitat monitoring in remote islands for data collection. Sensors

developed for this applications need to be inconspicuous in order not to interfere with

the natural behavior of wildlife. The Smart Dust system [14] is another example where

sensors are made inconspicuous, in this case by reducing their size.

In a related application, the authors in [2] have developed system that is used

for localization tasks. Such systems are also used in applications such as identifying

the location of a sound source [6–8]. Once data is acquired, sensors can also be used
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for more complicated tasks such as classification and tracking [4, 12]

In the next section, a literature review of distributed detection (Section 1.3) is

presented, followed by a literature review of distributed estimation in Section 1.4, both

for centralized sensor networks.

1.3 Distributed Detection

A detection problem that is solved with the help of multiple observations that are ag-

gregated at a fusion center is called distributed detection. During hypothesis testing,

when the a-priori probabilities of the hypotheses are not known, the Neyman-Pearson

(NP) formulation is used and when the a-priori probabilities are known, the Bayesian

risk approach is used [87]. The typical distributed detection problem involves local al-

gorithms on the sensors and a central algorithm at the fusion center. Depending on the

hypotheses, the likelihood ratio tests (LRTs) can be locally optimized at the sensors.

When a large number of sensors are deployed, asymptotic results indicate that

the performance of the detector at the fusion center depends on the receiver operating

characteristics (ROC) of the detectors at the individual sensors [88]. In addition, an

LRT is performed at the fusion center as well. Since the performance depends on the

LRTs at the sensors as well as at the fusion center, the algorithms have to be jointly

optimized. This optimization can be done as a single one-shot solution, or iteratively,

progressively improving the performance of the algorithms at the sensors and the fusion

center [89]. For analysis with a finite number of sensors, the minimum number of

sensors required to attain a certain performance is shown in [90].

Various metrics are used to characterize the performance of systems engaged

in distributed detection. The most common techniques used are the probability of de-

tection [91], the shape of the ROC curve [87], the J-divergence [92] and the error

exponent [64, 77, 93, 94].

Distributed detection problems have been mainly studied assuming a single re-
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ceive antenna at the FC. It is possible that introducing multiple antennas at a receiver

may overcome the degradations caused by multi-path fading and noise. Inspired by

conventional MIMO systems, a natural question is how much performance gain can be

expected from adding multiple antennas at the FC in a distributed detection problem.

However, this question cannot be directly answered by the studies in the MIMO litera-

ture. Adding multiple antennas to the FC for distributed detection problems is different

when compared to the analysis of conventional MIMO systems for two reasons: (i) the

presence of sensing noise (the parameter of interest is corrupted before transmission);

and (ii) a large number of sensors enable asymptotic analysis.

In [95], a decision fusion problem with binary symmetric channels between the

users and the FC is considered where the data are quantized at the sensors, transmitted

over parallel channels, and processed after being received by three antennas. In [92],

the authors consider multiple antennas at the FC. However, they consider a set of deter-

ministic gains for the orthogonal channels, known at the sensors. They do not consider

multiple-access channels, or characterize the performance benefits of adding antennas

at the FC in the presence of fading. The system models in [72, 74, 96–99] are similar

to adding multiple antennas at the FC, where the authors consider other forms of di-

versity, such as independent frequencies, CDMA codewords or several time intervals

over fast-time-varying channels. When asymptotic techniques are used to investigate

the benefits of adding multiple antennas at the fusion center, it can be shown that the

gain on the error exponent by adding antennas to the FC when there is no channel state

information (CSI) at the sensors grows linearly with the number of antennas. In stark

contrast, when there is CSI at the sensors, only limited gains are possible by adding

antennas at the FC [77,100,101]. This is unlike what is seen in traditional MIMO wire-

less communications, where adding antennas at the FC will result either in diversity

gain or array gain, for asymptotically large SNRs.
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1.4 Distributed Estimation

Distributed estimation deals with estimating the value of a random parameter by using

a large number of observations that are provided by geographically separated sensors,

whose observations are aggregated at a fusion center.

The authors in [59,60,78] consider quantized transmissions between the sensors

and the fusion center. In these cases, the bandwidth is quantified by the number of

bits being transmitted between the sensors and the fusion center. Furthermore, the

system model used in [59, 60, 78] assumes that the channels between the sensors and

the FC are orthogonal. In [102], the authors use the transmission model introduced

in [59, 60, 78], and consider the effects of sending one-bit from each sensor through

orthogonal binary symmetric channels (BSC). Similarly, in [103], the authors consider

an imperfect channel modeled as a BSC. However, the channels are not fading in either

of the cases. In the detection problems considered in [91] and [104], the authors use

a transmission model where local detection decisions are transmitted over orthogonal

fading channels to the fusion center.

Distributed estimation over multiple access channels with deterministic coeffi-

cients is considered in [81], where optimal sensor gains are derived for a finite number

of sensors with perfect channel knowledge at the sensors. It is well-known (see, for

example, [66]) that if the multiple-access channel between the sensors and the FC is

fading with a zero-mean, and the sensors have no channel knowledge, the performance

of the estimator is poor because the signals at the FC add incoherently over fading chan-

nels. A solution to this problem is to provide channel information to the sensors with

feedback from the FC. In [84], orthogonal Rayleigh fading channels are considered be-

tween the sensors and FC. Performance is analyzed when perfect channel information

is available at the sensors.

In [57, 105, 106], performance over multiple access fading channels is exam-

ined, and asymptotic results for variance are derived. Using the amplify-and-forward
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scheme, the variance of the estimate is computed. The performance for different de-

grees of channel state information at the sensors (CSIS) for Rayleigh faded channels,

when there is no CSIS, partial CSIS and full CSIS are investigated. It is shown that

the feedback of only channel phase, even when quantized, leads to a surprisingly small

performance loss. Also, the effect of errors in feedback on the performance are char-

acterized. Furthermore, the effects of multiple antennas at the FC are characterized

in [100, 107].

When constant modulus phase-modulation schemes are used at the sensors, in-

formation about the data is stored in the empirical characteristic function of the data.

Using this, it is possible to estimate the location parameter, the scale parameter and the

SNR of the data. SNR estimation finds applications in diverse areas in signal processing

and communications, such as signal strength estimation for cognitive radio, in diversity

combining and in bit-synchronization applications. SNR estimation for signals em-

bedded in Gaussian noise are considered in [108, 109]. In the case of non-Gaussian

noise, scale and location parameters are estimated simultaneously, and then combined

to estimate the SNR, as reported in [110–114].

In a sensor network situation, sensors phase modulate the observations using

a constant-modulus scheme and transmit these signals to a fusion center (FC) over a

Gaussian multiple-access channel [55]. Due to the additive nature of the multiple-

access channel, the signals transmitted from the sensors add and approximate the char-

acteristic function of the signal and noise, as the number of sensors increases. At the

FC, a noisy version of this empirical characteristic function is received in Gaussian

noise, and the location and scale parameter are estimated from this value. A single

transmission from each sensor to the FC is used for the estimation of the location pa-

rameter and the scale parameter. A single snapshot in time is sufficient for the estima-

tion [62, 63, 65].
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1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. A distributed estimation problem

is discussed in Chapter 2. A single antenna is present at the FC. The asymptotic perfor-

mance of the estimator is evaluated when the channels between the FC and the sensors

are AWGN or fading, and when the sensors have full, partial and no channel informa-

tion. In addition, speed of convergence is also characterized. With multiple antennas

at the FC, a distributed detection problem is considered in Chapter 3. The channels

between the sensors and the FC can be AWGN, Rayleigh fading or Ricean fading. Fur-

thermore, differing amounts of channel information are considered at the FC. In each

case, the performance is characterized in terms of the number of antennas at the FC.

Constant-modulus phase modulated transmissions from the sensors are consid-

ered in Chapter 4 and Chapter 5. In Chapter 4, the location parameter of a signal

embedded in noise is estimated. The performance for different sensing noise distri-

butions is considered and asymptotic efficiency is evaluated in each case. Both the

location parameter and the scale parameter are estimated in Chapter 5. These estimates

are then combined to form an estimate for the SNR of the signal in noise. Performance

is evaluated for different cases of sensing noise.

Concluding remarks and future work are presented in Chapter 6 .
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Chapter 2

DISTRIBUTED ESTIMATION OVER FADING MULTIPLE-ACCESS CHANNELS

2.1 Introduction

In this chapter, the effect of different channel fading models on the performance of the

system is characterized. Partial channel feedback is considered and the asymptotic vari-

ance expressions for large number of sensors for different fading channel models and

feedback scenarios are derived. Due to the asymptotic analysis used, the dependence

of performance on the specific channel realizations can be removed, and the individual

effects of feedback of channel phase only, imperfect channel phase feedback, and noisy

feedback channels, on the performance can be decoupled. With correlated channels it

is shown that for the M-dependent channel correlation model, the asymptotic results

continue to hold. Also the speed of convergence is investigated as well as the effects

of power, observation noise and channel correlation on the speed of convergence. The

asymptotic analysis also allows comparison with the AWGN benchmark by revealing

the factor by which the number of sensors should be increased to attain AWGN perfor-

mance over fading channels with limited feedback.

2.2 System Model

Figure 2.1 shows our wireless sensor network setup with L sensors, which transmit

observations to an estimator at the FC. The lth sensor amplifies its observation by a

Figure 2.1: System Model.
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factor αl . The sensors transmit the amplified observations over L independent channels

to the FC where the estimate θ̂ is produced. The flat fading channel hl , between the

lth sensor and the fusion center, is normalized to ensure E[|hl|2] = 1,∀l, since when

the sensors are placed close to each other and the far away from the FC, the distances

between the sensors and the FC, in each case will be approximately the same, and the

assumption of E[|hi|2] is valid. The observation noise added at the lth sensor is given by

nl ∼C N (0,σ2
n ),∀l, and the channel noise with normalized variance is v∼C N (0,1).

The parameter being estimated, θ , has a variance of σ2
θ

. It is assumed that all these

random variables are mutually independent of each other. The received signal at the

FC is given by

y =
L

∑
i=1

(θ +ni)αihi + v, (2.1)

where the time index is dropped since the estimation is done in a single time snapshot.

Power Constraint

A total power constraint is imposed on the sensors. The signal transmitted by the lth

sensor is (θ +nl)αl . The total transmitted power averaged over the parameter and noise

distribution is given by

PT = E

[
L

∑
l=1
|αl(θ +nl)|2

]
= (σ2

θ +σ
2
n )

L

∑
l=1
|αl|2. (2.2)

In terms of the total power, PT , the sensor gains, {αl}, are constrained by

P :=
L

∑
l=1
|αl|2 =

PT

σ2
θ
+σ2

n
. (2.3)

Estimation of θ

It is assumed that the FC has complete knowledge of the channels and sensor gains but

only statistical information about the noise sources. Given the received signal in (2.1),

the minimum variance linear unbiased estimate for θ is given as follows:

θ̂ =
y

∑
L
i=1 αihi

= θ +
∑

L
i=1 niαihi

∑
L
i=1 αihi

+
v

∑
L
i=1 αihi

. (2.4)
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Its variance, conditioned on the channel coefficients, is given by

var
(

θ̂

∣∣∣h)= E
[
|θ − θ̂ |2

∣∣∣h]= σ2
n ∑

L
i=1

(
|αi|2 |hi|2

)
+1∣∣∑L

i=1 αihi
∣∣2 , (2.5)

where h = [h1 h2 . . . hL]
T .

Performance over AWGN channels

First, the performance of the system over AWGN channels is examined, which will

serve as a benchmark for the fading channel case. For AWGN channels, hl = 1,∀l.

Due to symmetry, and to respect the power constraint, the gain on each sensor is set to

αl =
√

P/L,∀l. Substituting in (2.5), we obtain

var
(

θ̂

∣∣∣h)= σ2
n P+1
PL

. (2.6)

Note that the variance in (2.6) goes to zero like O(L−1) in the number of sensors.

Scaling the variance in (2.6) with L, and defining

CAWGN :=
σ2

n P+1
P

(2.7)

as a benchmark against which to compare the asymptotic variances of other schemes,

which will be addressed next.

2.3 Asymptotic Analysis of Performance

When the channels, hl , are fading and random, the conditional variance in (2.5) is also

random. When the variance in (2.5) goes to zero in such a way that

lim
L→∞

Lvar
(

θ̂

∣∣∣h)=C (2.8)

in probability, where C is a deterministic constant, (2.8) is called the asymptotic vari-

ance. It has already been seen that for the AWGN case, C is given in (2.7). Different

channel models and feedback schemes considered subsequently will have an associated

value of asymptotic variance. Much of the remainder of the chapter will be devoted to

calculating and interpreting the asymptotic variance under different assumptions on the

channel and feedback schemes.
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The following theorem will often prove useful towards evaluating the asymp-

totic variance over fading channels.

Theorem 2.3.1 Let XL and YL be two random sequences that converge in probability

to deterministic constants x0 and y0, respectively. Let f (x,y) be a scalar function of x

and y. Then, f (XL,YL)→ f (x0,y0) in probability, if f (·, ·) is continuous at (x0,y0).

Proof The proof follows directly from [115, Theorem C.1, pp. 422].

�

2.4 Performance over Fading channels

Flat fading channels are considered between the sensors and the FC. It will be shown

that whether the sensors have channel state information will greatly influence perfor-

mance. The no channel state information at the sensors (CSIS) case will be used to

motivate the need for some channel knowledge at the sensor side.

No Channel State Information at the Sensors

In the simplest case, the sensors have no channel information. Therefore, due to the

i.i.d. channel statistics, the sensor gains are each set to αl =
√

P/L,∀l, in order to

satisfy the power constraint in (2.3). Substituting into (2.5), we get

var
(

θ̂

∣∣∣h)= 1
L

σ2
n

P
L ∑

L
l=1 |hl|2 +1

P
∣∣ 1

L ∑
L
l=1 hl

∣∣2 . (2.9)

Using the law of large numbers, substituting (2.9) in the definition of asymptotic

variance in (2.8), and using Theorem 2.3.1 with f (x,y) = (σ2
n Px+ 1)/(P|y|2), XL =

L−1
∑

L
l=1 |hl|2, YL = L−1

∑
L
l=1 hl , evaluated at x0 = E[|hl|2] = 1, y0 = E[hl],

CNoCSIS =
σ2

n P+1

P |E [hl]|2
, (2.10)

provided E[hl] 6= 0.

For zero-mean channels, the signals received at the FC from different sensors

combine incoherently, resulting in poor performance as seen in (2.10), which is unde-
15



fined for E[hl] = 0, suggesting that Lvar
(
θ̂ |h
)

does not converge for zero-mean chan-

nels.

In fact, this result, that for Rayleigh fading channels, the value of Lvar
(
θ̂ |h
)

does not converge in probability for the no CSIS case, can be shown to be true for any

deterministic or random set of αi’s independent of h. To see this, consider

var
(

θ̂

∣∣∣h,α)= σ2
n ∑

L
i=1

(
|αi|2 |hi|2

)
+1∣∣∑L

i=1 αihi
∣∣2 ≥ 1∣∣∑L

i=1 αihi
∣∣2 , (2.11)

because σ2
n ≥ 0 and ∑

L
i=1

(
|αi|2 |hi|2

)
≥ 0. For any set of channel gains that satisfy

the power constraint with equality ∑
L
l=1 |αl|2 = P, the denominator on the right hand

side of (2.11) is an exponential random variable with mean P. Since the expected value

of the inverse of an exponential random variable does not exist, E
[
var
(

θ̂

∣∣∣h)] with

respect to the channel distribution does not exist.

The well-known Ricean channel model is now considered as an example of the

nonzero-mean scenario.

Example – Ricean channels

A Ricean channel can be represented as [116]

hl =

√
1

K +1
hdi f f

l +

√
K

K +1
e jω , (2.12)

where hdi f f
l ∼ C N (0,1) is the diffuse component, ω is the phase of the specular

component, and K > 0 is the ratio of the specular power to the power of the diffuse

component. Using (2.12), the value of CNoCSIS in (2.10) is

CNoCSIS =
σ2

n P+1
P

K +1
K

. (2.13)

Clearly (2.13) is worse than CAWGN in (2.7) by a factor of (K + 1)/K > 1. As

K increases, the channels have less fading, and CNoCSIS approaches CAWGN . On the

other extreme, as K→ 0, only the diffuse component remains with Rayleigh amplitude,

resulting in the value of CNoCSIS growing without bound. Since the variances under
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both scenarios are O(L−1), the ratio of asymptotic variances, (K +1)/K, in (2.13), can

be interpreted as the factor by which the number of sensors should be increased by

a system with no CSIS over fading channels, to get AWGN performance. Throughout

the manuscript, the ratio of asymptotic variances of any two schemes can be interpreted

similarly.

Perfect Channel State Information at the Sensors

In rich scattering environments, the non-zero-mean assumption on the channel does

not always hold. When the channel is zero-mean, an incoherent sum of faded signals

are received at the FC, leading to unacceptable performance as seen in (2.10). One

solution to the zero mean channel problem is to provide channel information to the

sensors, which can be obtained through feedback, or by exploiting reciprocity on some

systems [117]. The gains αl used at the sensors may then depend on the channel, in

order to make the effective channels {αlhl} non-zero mean.

To obtain a benchmark for our subsequent results with partial CSI, the optimal

set of gains, derived in [81], are used, which require full-CSIS. Consider the sensor

gains that minimize the variance of θ̂ in (2.5) subject to the power constraint on the

sensors in (2.3):

minimize
{αi}

σ2
n ∑

L
l=1 |αl|2|hl|2 +1∣∣∑L

l=1 αlhl
∣∣2 ,

subjectto
L

∑
l=1
|αl|2 ≤ P. (2.14)

Let ψl :=∠hl be the phase of the lth sensor’s channel. Applying the Cauchy-Schwarz

inequality to the denominator of the objective function in (2.14), it is clear that the

phase of the sensor gain that provides the best performance is given by ∠αl = −ψl ,

which means that only {|αl|} need to be optimized.

Substituting ∠αl = −ψl , swapping the objective function and the constraint,

and introducing a new variable, s = ∑
L
l=1 (|αl||hl|), (2.14) becomes a (convex) second
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order cone programming problem [118] in the variables {|αl|} and s [81]:

minimize
{|αi|},s

L

∑
k=1
|αk|2,

subjectto σ
2
n

L

∑
l=1
|αl|2|hl|2 +1≤ vts2,

L

∑
l=1

(|αl||hl|)− s = 0, (2.15)

where vt is a constant value below which the variance of the estimate must be con-

strained.

Using the Karush-Kuhn-Tucker conditions [118], the solution is given as:

αl =

√√√√√√
P

L

∑
i=1

(
|hi|

1+P |hi|2 σ2
n

)2

(
|hl|

1+P |hl|2 σ2
n

)
e− jψl , (2.16)

and the optimum conditional variance is given by

var
(

θ̂

∣∣∣h)=( L

∑
l=1

1
σ2

n +
1

P|hl |2

)−1

. (2.17)

Note that αl in (2.16) can be computed at the FC and fed back to the sensors.

The conditional variance in (2.17) is an achievable best-case benchmark for the condi-

tional variance over fading channels.

The asymptotic variance for this optimized case can be calculated using (2.8),

(2.17) and Theorem 2.3.1, with f (x,y) = 1/x, XL = L−1
∑

L
l=1(σ

2
n +(P|hl|2)−1)−1, eval-

uated at x0 = E[(σ2
n +(P|hl|2)−1)−1], to obtain

COPT =

E

 1
σ2

n +
1

P|hl |2

−1

. (2.18)

For Rayleigh fading channels, it is straightforward to calculate (2.18), which

can be expressed in closed form as

COPT =
2σ4

n P

2σ2
n P− exp

(
1

2σ2
n P

)
E1

(
1

2σ2
n P

) , (2.19)
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where E1(·) is an exponential integral function [119, pp. 228].

Now to compare COPT in (2.18) with CAWGN . Since COPT is obtained over

fading channels, one would conjecture that CAWGN ≤COPT . This is indeed the case by

noting that (σ2
n + 1/Px)−1 is a concave function of x, and using Jensen’s inequality.

This establishes the expected result that the performance over fading channels cannot

be better than that over AWGN channels.

By examining (2.7) and (2.18), it is also clear that for small σ2
n , both CAWGN

and COPT approach P−1. On the other hand, the asymptotic variance expressions for

large P yield

lim
P→∞

CAWGN = lim
P→∞

COPT = σ
2
n . (2.20)

In conclusion, COPT can be obtained in closed form for Rayleigh fading chan-

nels, and it is always no less than CAWGN . They coincide when σ2
n is small, or when P

is large. Therefore, for large L, when the sensing noise is small, or when the transmit

power is large, it is possible to obtain near-AWGN performance over fading channels.

Phase-Only (PO) CSIS

For the scheme described in Section 2.4, calculation of αl requires computing (2.16) at

the FC for each sensor. Also, the amplification factors, αl , have a large dynamic range

that depend on the channel coefficients, which is undesirable due to the need for having

inexpensive power amplifiers. This motivates the consideration of a constant gain at

each sensor, so that each sensor compensates only for the phase of its channel. The

sensors need only phase information in this case, implying less feedback, and provide

a constant magnitude gain, requiring low-cost amplifiers. Also the loss in performance,

with this choice of equal magnitudes for αl when compared to the full CSIS case, is

sufficiently small, which is another reason why the equal |αl| case is important.

Theorem 2.4.1 When the sensors have only knowledge of channel phase, the asymp-
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totic variance is given by

CPO =
σ2

n P+1
P

1

(E [|hl|])2 . (2.21)

Proof As in Section 2.4, ∠αl = −ψl is the choice of phase at each sensor that min-

imizes the variance. In order to use phase-only feedback, and to respect the power

constraint, |αl|2 = P/L,∀l. Therefore

αl =

√
P
L

e− jψl . (2.22)

Substituting in (2.5),

var
(

θ̂

∣∣∣h)= 1
L

σ2
n

P
L ∑

L
l=1 |hl|2 +1

P
[ 1

L ∑
L
l=1 |hl|

]2 . (2.23)

The asymptotic variance for this phase-only (PO) case is now computed. From (2.8),

(2.23) and using Theorem 2.3.1 with f (x,y) = (σ2
n Px+1)/(Py2), XL = L−1

∑
L
l=1 |hl|2,

YL = L−1
∑

L
l=1 |hl|, evaluated at x0 = E[|hl|2] = 1, and y0 = E[|hl|], (2.21) yields the

proof.

�

Notice that the first term in the right hand side of (2.21) is CAWGN given in

(2.7). The second term satisfies (E[|hl|])−2 ≥ 1 due to Cauchy Schwarz inequality

and the fact that E[|hl|2] = 1. This implies that CPO ≥ CAWGN , as expected. Indeed,

CPO ≥ COPT ≥ CAWGN , since the optimized choice of the gains will outperform the

phase-only case. However, (2.21) provides the further insight that CPO is a constant

multiple of CAWGN for any value of P or σ2
n . In (2.20), it is shown that as P increases,

COPT and CAWGN converge to σ2
n . As CPO is compared with COPT , as P increases, the

ratio of asymptotic variances gets arbitrarily close to a factor of 4/π . This is also seen

in the simulations in Figure 2.4.

The phase-only system over fading channels will have approximately the same

performance as a system over AWGN channels if its number of sensors is larger by a
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factor given by (E[|hl|])−2 ≥ 1. Rayleigh, Ricean and Nakagami fading examples are

now considered to see what this constant factor is for these cases.

Example 1 – Rayleigh Fading

For Rayleigh fading channels, hl ∼ C N (0,1), and |hl| is Rayleigh distributed. In this

case, (2.21) yields

CPO =
σ2

n P+1
P

4
π
. (2.24)

Since 4/π < 1.3, over Rayleigh fading channels, one can obtain AWGN performance

asymptotically if the number of sensors for the phase-only scenario is about 30%

larger than that of the AWGN scenario, because the variance is O(L−1). The value

of (E[|hl|])−2 is less over Ricean channels and depends on the Ricean factor as seen

below.

Example 2 – Ricean Fading

Substituting the first moment of a Ricean random variable [116, Equation (4)] into

(2.21),

CPO =
σ2

n P+1
P

1
(K +1)Γ2(3/2)e−2K 1F2

1 (3/2;1;K)
, (2.25)

where 1F1(·; ·; ·) is the confluent hypergeometric function [119, pp. 504]. As expected,

the value of (E[|hl|])−2 for the Ricean case lies between 4/π and 1 when K varies

between 0 and ∞, respectively. Therefore, (2.25) has equations (2.7) and (2.24) as

special cases corresponding to K→ ∞, and K = 0, respectively.

Example 3 – Nakagami Fading

For fading channels with Nakagami distributed envelopes, with parameter m∈ [1/2,∞),

E[|hl|] =
Γ
(
m+ 1

2

)
Γ(m)

1√
m
,

where Γ(·) is the gamma function [119, pp. 225].

Substituting in (2.21),

CPO =
σ2

n P+1
P

mΓ2(m)

Γ2
(
m+ 1

2

) . (2.26)
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Similar to the Ricean case, as m→∞ (AWGN channels), the value of CPO for Nakagami

channels converges to CAWGN ; when m = 1, the value of CPO for Nakagami channels

converges to CPO for Rayleigh fading channels in (2.24). When m= 1/2, the Nakagami

distribution is a one-sided Gaussian and represents a more severe fading scenario than

the Rayleigh case. In this case, (2.26) becomes (π/2)CAWGN , which is worse than the

Rayleigh case, (4/π)CAWGN , since π/2 > 4/π .

Continuous Channel Feedback with Phase Error

When the channel phase feedback is not correct, the performance of the estimator will

deteriorate. Let ψ̂l denote the estimated phase being fed back to sensor l. The error in

feedback is given by ψ̃l = ψ̂l−ψl . A common model for phase error is the von Mises

random variable [120], whose pdf can be described by

f
Ψ̃
(ψ̃) =

1
2πI0(κ)

eκ cos ψ̃ , ψ̃ ∈ [−π,π), (2.27)

where κ denotes the inverse variance of the random variable and In(·) is the nth order

modified Bessel function of the first kind. When κ = 0, the distribution collapses to a

uniform random variable, and approximates a Gaussian random variable with variance

1/κ for large κ . The parameter κ quantifies the accuracy of the feedback phase. When

there is no error, κ → ∞, and for large error, κ → 0. The phase is known at the fusion

center without any error, and this correct phase is used at the estimator. The value of

the phase is corrupted on the feedback channel. Since the magnitude of the gain at each

sensor is fixed, only the phase estimated for each channel is fed to the corresponding

sensors.

Theorem 2.4.2 When the sensors have noisy estimates of the channel phase, with the

error in feedback whose p.d.f. is given as in (2.27), the asymptotic variance is given by

CPO(κ) =

[
I1(κ)

I0(κ)
− L1(κ)

I0(κ)
− 2

πI0(κ)

]−2

CPO, (2.28)

where Lm(·) is the mth order modified Struve function [119, pp. 498].
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Proof With the phase feedback of ψ̂l , the sensor gains are set to

αl =

√
P
L

e− jψ̂l , l = 1, . . . ,L, (2.29)

and the conditional variance is given by

var
(

θ̂

∣∣∣h)= 1
L

σ2
n P 1

L ∑
L
l=1 |hl|2 +1

P
∣∣ 1

L ∑
L
l=1 |hl|e− j(ψ̂l−ψl)

∣∣2 . (2.30)

Using (2.8) and (2.30) and Theorem 2.3.1 with f (x,y) = (σ2
n Px+ 1)/(P|y|2),

XL = L−1
∑

L
l=1 |hl|2, and YL = L−1

∑
L
l=1 |hl|e− j(ψ̂l−ψl), evaluated at x0 = E[|hl|2] = 1

and y0 = E[|hl|e− j(ψ̂l−ψl)], and recalling that |hl| is statistically independent of ψl and

therefore also of e− j(ψ̂l−ψl), for Rayleigh fading channels, the following asymptotic

variance in the presence of continuous feedback error is obtained:

CPO(κ) =CPO

∣∣∣E (e− jψ̃l
)∣∣∣−2

. (2.31)

To calculate the expectation in (2.31), the distribution of ψ̃l in (2.27) and [121,

§3.365, pp. 345] is used to obtain E(e− jψ̃l) and substitute into (2.31) to get the desired

result in (2.28).

�

Quantized Channel Phase Feedback

Since the channel phase cannot be fed back with infinite precision, it is natural to in-

vestigate the effects of quantization. A constant amplitude transmission is assumed

for each sensor, and the channel phases are uniformly quantized for feedback to the

sensors. This is optimal for the Rayleigh fading channel model, which has uniformly

distributed phase. For the Ricean and Nakagami models, the phase of the channels may

be non-uniform. The Rayleigh case are selected here to get a simple framework within

which to evaluate the effect of feedback quantization.

For Rayleigh fading channels, ψl :=∠hl are uniformly distributed over [0,2π).

With Q bits of quantization, [0,2π) is divided equally into 2Q sectors, each constituting
23



Figure 2.2: Phase to bits mapping for quantized feedback.

of 2π/2Q radians. The center of each sector is chosen as {exp( j2πk/2Q)}2Q−1
k=0 so

that the quantization points yield error magnitudes of at most π/2Q radians. To send

the appropriate phase feedback, each sector is mapped to a unique Q-bit sequence, as

shown in Figure 2.2, where as an example, Q = 3 is assumed.

Let

αl =

√
P
L

e− j fQ(ψl), (2.32)

where fQ(ψl) is the quantized phase given by the element x ∈
{

2πk
2Q

}2Q−1

k=0
which mini-

mizes (|ψl− x|)mod2π .

Following from (2.29) - (2.31), the expectation in (2.31) is computed using the

facts that ψl is uniformly distributed over [0,2π) and φ = ( fQ(ψl)−ψl) is uniformly

distributed on [−π/2Q,π/2Q). From this:

E
[
e− jφ

]
=

2Q−1

π

∫ π

2Q

− π

2Q

e− jφ dφ =
2Q

π
sin
(

π

2Q

)
. (2.33)

It follows that the asymptotic variance in the presence of Q-bit quantization is
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Q 1 2 3 4 5
CPO[Q]

CPO
2.4674 1.2337 1.0530 1.0130 1.0032

Table 2.1: Degree of deterioration due to quantization.

given by

CPO[Q] =
[
sinc(2−Q)

]−2
CPO, (2.34)

where CPO is as in (2.24), and sinc(x) :=sin(πx)/(πx).

The loss in performance caused due to quantization is [sinc(2−Q)]−2, which

takes the value of 2.4674 for Q = 1 and goes to 1 as Q→ ∞. Table 2.1 contains the de-

terioration in asymptotic performance due to quantization (CPO[Q]/CPO) for different

values of Q. Notice that by using three bits of quantization, there is an increase in vari-

ance of only about 5%. Therefore, a system with perfect phase feedback will perform

similarly to a system with three-bit quantized phase feedback, if the latter system has

5% more sensors.

Error in Quantized Feedback

Suppose that each bit that is fed back could be received in error equally likely with

probability p. Since p is often much less than one, the single-bit error events will

dominate the performance. The error in phase that is committed with each single bit

error is evaluated. This clearly depends on the bit assignment. To get an analytically

tractable setting, a natural bit assignment is assigned to each sector as in Figure 2.2.

Note that in this case, a single bit error will cause a phase error of ±2π

2Q (2k) for k =

0, . . . ,2Q−1, with the minus sign used if the error is 1→ 0 and the plus sign is used

otherwise.

In order to evaluate the performance of the system, the expectation in (2.31), the

only factor affected by errors in feedback, is recalculated. To calculate this expected

value in the presence of errors, the event is conditioned so that it contains all bit vec-

tors with i errors. Since the single error case is the main interest, the expectation is
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expressed as:

E
[
e− jφ

]
=

Q

∑
i=0

Ai(p) = A0(p)+A1(p)+
Q

∑
i=2

Ai(p) , (2.35)

where for notational convenience, Ai(p) :=E
[
e− jφ

∣∣∣ierrors
]

Pr [ierrors] for i= 0, . . . ,Q.

Evaluating the i = 0 term:

A0(p) = (1− p)Qsinc(2−Q). (2.36)

To evaluate the single-error case, recall that φ =±2π

2Q (2k), where k∈{0, . . . ,Q−

1} denotes the bit that is toggled and the sign is determined by the value of the bit.

Therefore,

A1(p) =
(1− p)Q−1 p

2

[
Q−1

∑
k=0

e− j 2π

2Q (2k) +
Q−1

∑
k=0

e− j 2π

2Q (−2k)
]

= (1− p)Q−1 p
Q−1

∑
k=0

cos
(

2π

2Q 2k
)
. (2.37)

Noting that Ai(p) for i≥ 2 are o(p) as p→ 0 1,

E
[
e− jφ

]
=(1− p)Qsinc(2−Q)

+(1− p)Q−1 p
Q−1

∑
k=0

cos
(

2π

2Q 2k
)

+o(p) . (2.38)

The asymptotic variance in the presence of Q-bit quantization and feedback errors,

CPO[Q, p), is obtained by finding the ratio CPO/|E
[
e− jφ ] |2 using (2.38):

CPO[Q, p) =
CPO

|A0(p)+A1(p)+o(p)|2 . (2.39)

It is straightforward from (2.39) that CPO[Q,0) =CPO[Q]. Table 2.2 shows the

effect of errors on the feedback channel. Even with only five bits (Q= 5) and p= 10−3,

the deterioration from CPO is about only about 1%, compared to perfect phase feedback.

When the value of p reduces, predictably, the loss in performance also reduces.
1A function A(p) = o(p) as p→ 0 means A(p)/p→ 0 as p→ 0
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Q p = 10−1 p = 10−2 p = 10−3 p = 10−4

1 4.4705 2.5993 2.4801 2.4687
2 2.4471 1.3136 1.2414 1.2345
3 2.1207 1.1253 1.0600 1.0537
4 2.0532 1.0838 1.0198 1.0136
5 2.0416 1.0740 1.0100 1.0039

Table 2.2: CPO[Q, p)/CPO for different values of p and Q.

The performance in (2.39) is the performance of the estimator over Rayleigh

fading channels when the sensors are provided with quantized phase-only feedback

with errors on the feedback channel. As mentioned earlier, when p = 0, the perfor-

mance reduces to the quantized, phase only result, CPO[Q] from (2.34). When p = 0

and Q→ ∞, CPO[Q, p) reduces to CPO from (2.21), which is the performance with

phase-only feedback with Rayleigh fading channels. This in turn is a factor (4/π)

worse than the performance over AWGN channels. Remarkably, this chain of relation-

ships between the asymptotic variances can be decoupled and seen individually in our

framework.

2.5 Effects of Fading Correlation

For the value of limL→∞ Lvar
(

θ̂

∣∣∣h) to converge to a constant, using Theorem 2.3.1, the

sample means, XL and YL, need to separately converge in probability. It is well known

that the weak law of large numbers holds for a wide range of correlation models [122].

For simplicity, it is assumed that the channels are M-dependent, i.e., if s− r > M, then

the two vectors [h1 h2 . . . hr] and [hs hs+1 . . . hL] are independent. Under

this M-dependent model, the following theorem can be stated.

Theorem 2.5.1 The asymptotic variance results in (2.7), (2.13), (2.18), (2.19), (2.21) -

(2.26), (2.31), (2.28), (2.34) and (2.39) hold when the channels, {hl}, are M-dependent.

Proof Using the terminology, f (·, ·),XL,YL,x0 and y0 introduced in Theorem 2.3.1.

There exist choices for f (·, ·),XL,YL,x0 and y0 for each of the cases considered in
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Sections 2.2 and 2.4. For example, in the case of phase-only CSIS (Section 2.4),

f (x,y) = (σ2
n Px+ 1)/(Py2), XL = L−1

∑
L
l=1 |hl|2, YL = L−1

∑
L
l=1 |hl|,x0 = E[|hl|2] = 1

and y0 = E[|hl|]. The partial sums XL and YL for each of the cases mentioned in the

statement of Theorem 2.5.1 converge in probability due to the law of large numbers

for M-dependent sequences [122, Theorem 27.4] and the corresponding f (·, ·) satisfies

f (XL,YL)→ f (x0,y0) in probability, based on the result of Theorem 2.3.1.

�

Though correlation does not affect the asymptotic variance to which Lvar
(

θ̂

∣∣∣h)
converges, the correlation will affect the speed of convergence. The speed of conver-

gence is now quantified.

Speed of Convergence

It has been shown that limL→∞ Lvar
(

θ̂

∣∣∣h) converges in probability to a value C, under

various conditions. Since Lvar
(

θ̂

∣∣∣h)−C goes to zero, it will be appropriately normal-

ized with
√

L/C to ensure its convergence in distribution to a nondegenerate random

variable. Toward this goal, consider

A[L] :=
√

L

Lvar
(

θ̂

∣∣∣h)−C

C

 (2.40)

The sequence A[L] approaches a Gaussian random variable with zero mean and

variance σ2
A as L → ∞. This will establish that the normalized difference between

Lvar
(

θ̂

∣∣∣h) and its asymptotic value C scales as L−1/2 with σ2
A quantifying the size of

the discrepancy between Lvar
(

θ̂

∣∣∣h) and C as a measure of the speed of convergence.

Clearly, a small σ2
A implies faster convergence than a large σ2

A. In order to calculate the

value of σ2
A, the behavior of A[L] needs to be analyzed. This approach can be used for

all the channel and feedback models considered. As an illustrative example, the case of

the phase-only feedback case is examined, and the value of σ2
A is derived.
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σ
2
A =16π

[
1−2M− π

4
+π

M

∑
l=1

2F1

(
−1

2
,−1

2
;1; |r[l]|2

)]

+
π

4

(
σ2

n P
σ2

n P+1

)2
(

1+2
M

∑
l=1
|r[l]|2

)
. (2.41)

Theorem 2.5.2 For the phase-only case with Rayleigh fading channels, the conditional

variance of the estimate is given in (2.23) and CPO is in (2.24). Then, A[L] is asymptot-

ically Gaussian with variance given in (2.41), where r[l] :=E[hih∗i−l] and 2F1(·, ·; ·; ·) is

the Gauss hypergeometric series [119, pp. 556].

Proof The proof is shown in Section 2.7.

�

Note that 2F1(−0.5,−0.5;1;z) ranges from 1 to 4/π so that σ2
A > 0 as expected.

Note also that the value of σ2
A in (2.41) is a monotonically increasing function of |r[l]|2

for each l. Therefore, if the correlation between any pair of sensors is increased, the

convergence is slower, which is expected. It is also monotonically increasing with

σ2
n P. Recall that due to the amplify and forward scheme employed at the sensors, P

multiplies observation noise. Therefore, increase in P increases observation noise, and

one can consider the effect of the product σ2
n P without loss of generality. Therefore, as

either σ2
n or P increases, σ2

A increases and convergence slows down.

The asymptotic results derived for independent channels between the sensors

and the FC continue to hold if the channels are M-dependent. However, σ2
A is affected

by the degree correlation, and also depends on the values of P, σ2
n and M. It should

also be noted here that the M-dependent correlation model is adopted for simplicity and

more elaborate correlation models can also be used. In fact, any correlation model that

satisfies the conditions of the central limit theorem for α-mixing random variables [122,

Thm. 27.4, pp. 364] can be used to obtain similar results. Hence, inspecting the proof
29



0 20 40 60 80 100
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Number of Sensors (L )

A
s
y
m

p
t
o
t
ic

V
a
r
ia

n
c
e

Monte-Carlo Estimation vs. C

Cpo[ 3] - Rayle igh Fading Channel s

Cpo - Rayle igh Fading Channel s

CA W GN

Figure 2.3: The theoretical values (dots) match the Monte-Carlo estimates (solid lines)
versus L; about 50 sensors are needed for convergence.

in Appendix 2.7, the results here can be extended to any correlation model on {hl} for

which [X̃L ỸL] in (2.42) is asymptotically normal.

2.6 Numerical Results

The results obtained are verified using simulations. Simulations determine how many

sensors are required for the asymptotic results to hold. The asymptotic results are then

compared against each other. The behavior of σ2
AC

from (2.41) is also studied.

Figure 2.3 compares the Monte-Carlo estimates of the asymptotic variances

against the values of CAWGN , and CPO and CPO[Q], for Q = 3 bits of feedback, over

Rayleigh fading channels, when σ2
n = 1, θ ∼ C N (0,1) and P = 1, versus the num-

ber of sensors L. All the Monte-Carlo estimates are obtained by averaging over 105

realizations. It can be seen that the best performance is obtained when the channels

are AWGN, and the ratio between the phase only case and AWGN case is exactly a

factor of 4/π . There is further loss due to quantization of channel phase feedback. The
30
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mance over Rayleigh fading channels is identical.

Monte-Carlo estimates and the theoretical values converge as L increases. As few as

L = 20 sensors are sufficient to come within 2% of the asymptotic value, and at most

L = 50 is needed for convergence.

In all subsequent simulations, the values of the asymptotic variance are com-

pared against P. Parameters are set to σ2
n = 1, θ ∼ C N (0,1), and L = 100 for Monte

Carlo simulations.

Figure 2.4 shows the effect of power on performance. Note that CPO closely ap-

proximates COPT for medium amounts of power. For large power, the performance for

AWGN channels and perfect CSIS for Rayleigh fading channels is the same, verifying

(2.20), whereas the phase-only case performs worse with a deterioration upper-bounded

by 4/π , verifying (2.24).

Figure 2.5 shows the effect of quantization on the performance of the system.

For two bits of quantization, there is a loss in performance by a factor of about 1 dB
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Figure 2.5: Effect of quantization on asymptotic variance - Rayleigh fading channels.
As few as four bits of quantization causes negligible loss in performance compared to
the phase-only case.

compared to CPO. The loss incurred due to quantization is negligible for Q = 4 bits.

When the error in feedback is continuous, the loss in performance can be seen

in Figure 2.6. Since the error in feedback is modeled as a von Mises random variable,

the performance loss is characterized by the κ parameter. A lower value of κ indicates

larger error, and the error goes to zero as κ→∞. The curves in Figure 2.6 also indicate

that κ = 50 is large enough for negligible error in the system.

Figure 2.7 shows the effects of error on the feedback channel. The natural bit

mapping analyzed in Section 2.4 is not the only choice. In fact, if Gray coding is used,

the performance is marginally better than the natural bit mapping for low powers, and

the difference is more clearly visible at high values of p, such as p = 10−1 (not shown).

In Figure 2.7, p = 2×10−2, and the performance of the natural bit-mapping scheme is

almost identical to the Gray code, and the approximation, CPO[Q, p) from (2.39), is a
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very good match to the simulation results.

Figures 2.8 and 2.9 study the performance over Ricean channels. The AWGN

case is shown as a benchmark. Figure 2.8 shows the performance of the system over

Ricean fading channels with no CSIS. For (large) K = 20, the performance is close

to the AWGN performance and for (small) K = 0.1, the performance is poor. For the

partial CSIS case (Figure 2.9), for small K, the performance is close to CPO for Rayleigh

fading channels and for large K, the performance is close to CAWGN .

In Fig. 2.10 the joint effect of increasing L and P is considered to compensate

for a loss of asymptotic variance due to fading and limited feedback. It is possible to

get AWGN performance over fading channels provided that the number of sensors are

increased by the correct amount determined by the ratio of the asymptotic variances. A

similar idea might be to compensate for this loss by increasing power as well. Figure
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Figure 2.7: Effect of error on feedback channel - Rayleigh fading models. The plot
demonstrates the effect of errors on the feedback channel.

2.10 compares the AWGN performance with the phase-only case, as an example. A

point in this plot indicates that the phase-only scheme can achieve AWGN performance

if its power and number of sensors is larger by a factor indicated by that point. For

example, if the power of the phase-only feedback scheme over fading channels is 3

dB above that of the scheme over AWGN channels, then about a 10% increase in the

number of sensors is needed to get AWGN performance if PPO = 5 dB and σ2
n = 1. It

is clear that the penalty paid by increasing the power is substantial. In particular, if we

insist that the schemes have the same number of sensors, anywhere between 4−15 dB

of increased power is necessary to get the same variance. This indicates that for most

practical applications one would opt for increasing the number of deployed sensors

rather than increasing power.

Figure 2.11 shows the effect of M and σ2
n P on σ2

A, which quantifies the speed of

convergence of the asymptotic variance, for the phase-only case discussed in Theorem
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2.5.2. The parameter σ2
A from (2.41) is compared for M = 1,2, . . . ,8 with two correla-

tion models, r[l] = 1, l = 0,1, . . . ,M, which implies equal channels, and r[l] = e−0.1l, l =

0,1,2, . . . ,M, or an exponentially correlated model. For each of the correlation models,

the value of σ2
A increases as the number of correlated channels increases. Further, as

the value of σ2
n P increases, the value of σ2

A increases and convergence slows down.

However, the effect of σ2
n P on σ2

A is not as pronounced as the effect of correlation on

σ2
A.

2.7 Proof of Theorem 2.5.2

It is to be shown that A[L] in (2.40) is asymptotically Gaussian with variance given in

(2.41) for the phase-only case where the conditional variance, var
(

θ̂

∣∣∣h), is given by

(2.23). Substituting (2.23) in (2.40),

A[L] = aLX̃L−bLỸL, (2.42)
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Figure 2.9: Comparison of partial CSIS schemes for Rayleigh fading and Ricean fading
channels with small and large K. Performance with large K approximates AWGN
performance, and small K performance is similar to performance over Rayleigh fading
channels.

where x0 := limL→∞ L−1
∑

L
i−1 |hi|2 = 1 and y0 := limL→∞ L−1

∑
L
i=1 |hi| =

√
π/2. Also,

X̃L :=
√

L
(
L−1

∑
L
i=1 |hi|2− x0

)
and ỸL :=

√
L
(
L−1

∑
L
i=1 |hi|− y0

)
, with the definitions,

bL :=(σ2
n Px0 + 1)

(
[L−1

∑
L
l=1 |hi|]+ |y0|

)
/
(
P[L−1

∑
L
i=1 |hi|]2|y0|2

)
and further,

aL :=σ2
n
[
L−1

∑
L
i=1 |hi|

]−2.

Due to the weak law of large numbers and Theorem 2.3.1, a0 := limL→∞ aL =

4σ2
n/π and b0 := limL→∞ bL = 16(σ2

n P+ 1)/(π3/2P) in probability. Moreover, by in-

voking the central limit theorem for M-dependent random variables [123], the vector

Z̃L :=[X̃L ỸL] is asymptotically Gaussian with a 2× 2 covariance matrix Σ whose el-

ements are given by Σ1,1 = limL→∞ var(X̃L), Σ2,2 = limL→∞ var(ỸL) and Σ1,2 = Σ2,1 =

limL→∞ cov(X̃L,ỸL), where cov(X ,Y ) is the covariance between X and Y . Using the
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Rayleigh channel with phase-only feedback.

M-dependence of hi and the fact that it is complex Gaussian,

Σ1,1 = 1+2
M

∑
l=1
|r[l]|2, (2.43)

Σ2,2 = 1−2M− π

4
+π

M

∑
l=1

2F1

(
−1

2
,−1

2
;1; |r[l]|2

)
, (2.44)

and Σ1,2 = Σ2,1 = 0, where r[l] = E[hih∗i−l].

It is now established that A[L] in (2.42) is a linear combination of two asymp-

totically normal sequences X̃L and ỸL where the combining coefficients are sequences

that converge in probability. Using [115, Theorem C.4], A[L] is asymptotically normal

with zero mean and variance given by Σ1,1 +Σ2,2−2Σ1,2a0b0. Substituting (2.43) and

(2.44), (2.41) is obtained.

�
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Figure 2.11: Effect of number of correlated channels on σ2
A.
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Chapter 3

DISTRIBUTED DETECTION WITH MULTIPLE ANTENNAS AT THE FUSION

CENTER

3.1 Problem Summary

In this chapter, a distributed detection problem over a multiple access channel, where

the FC has multiple antennas is considered (Figure 3.1). The data collected by the

sensors are transmitted to the FC using the amplify and forward scheme, with a total

power constraint on the sensor gains. Performance is evaluated when the sensors have

no channel information, have full channel information and partial channel information

in the presence of fading, both with zero and non-zero mean. Analysis is performed for

two cases: (a) large number of sensors and a fixed number of antennas, and (b) large

number of antennas and sensors with a fixed ratio. In each case, the error exponent is

used as the metric to quantify performance through the effect of channel statistics and

the number of antennas. It is shown that the system performance depends on the chan-

nel distribution through its first and second order moments. This information is used

to address our main objective, which is to quantify the gain possible by adding mul-

tiple antennas at the FC over fading multiple-access channels for distributed detection

problems.

Figure 3.1: System Model: A random parameter is sensed by L sensors. Each sensor
transmits amplified observations over fading multiple access channels to a fusion center
with N antennas.
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3.2 System Model

A sensor network, illustrated in Figure 3.1, consisting of L sensors and a fusion center

with N antennas is considered. The sensors are used to observe a parameter Θ∈ {0,θ}.

The value, xl , observed at the lth sensor is

xl =


ηl underH0

θ +ηl underH1

(3.1)

for l = 1, ...,L. It is assumed that ηl ∼ C N (0,σ2
η) are iid, the hypothesis H1 occurs

with a priori probability, 0 < p1 < 1, and the hypothesis H0 with probability p0 =

1− p1. The lth sensor applies a complex gain, αl , to the observed value, xl . This

amplified signal is transmitted from sensor l to antenna n over a fading channel, hnl ,

n = 1, ...,N, and l = 1, ...,L, which are iid and satisfy E[|hnl|2] = 1. Unless otherwise

specified, no other assumptions are made on the channel distribution. The nth antenna

receives a superposition of all sensor transmissions in the presence of iid channel noise,

νn ∼ C N (0,σ2
ν ), such that

yn =
L

∑
i=1

hinαi(Θ+ηi)+νn, (3.2)

where {ηi}L
i=1 and {νn}N

n=1 are independent.

Defining α as an L× 1 vector containing {αi}L
i=1, D(α) an L× L diagonal

matrix with the components of α along the diagonal, the received signal is expressed

in vector form as

y = HαΘ+HD(α)η +ν , (3.3)

where H is an N×L matrix containing the elements hnl in the nth row and lth column,

η is an L×1 vector containing {ηi}L
i=1, and ν is an N×1 vector containing {νn}N

n=1.

Based on the received signal, y (from (3.3)), the FC decides on one of the two hypothe-

ses H0 or H1. Since the FC has full knowledge of H and α , y is Gaussian distributed
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under both hypotheses:

H0 : y∼ C N (0N ,R(α))

H1 : y∼ C N (θHα,R(α)) (3.4)

where 0N is an N× 1 vector of zeros and R(α) is the N×N covariance matrix of the

received signal given by

R(α) = σ
2
ηHD(α)D(α)HHH +σ

2
ν IN . (3.5)

We consider detection at a single snapshot in time, and therefore, we do not have a time

index.

Power Constraint

The ith sensor transmits αi(Θ+ηi). The total transmitted power is given by

PT = E

[
L

∑
i=1
|αi(Θ+ηi)|2

]
=
(

p1θ
2 +σ

2
η

) L

∑
i=1
|αi|2 . (3.6)

It should also be noted here that the instantaneous transmit power from the sensors is

|αi(θ +ηi)|2. This is a function of the actual realizations of sensing noise, making

it difficult to predict and constrain. Therefore, we constrain αi’s, which allows im-

posing an average (over sensing noise) power constraint. The sensor gains, {αi}, are

constrained by

P :=
L

∑
i=1
|αi|2 =

PT

p1θ 2 +σ2
η

. (3.7)

The Detection Algorithm and its Performance

Given the received data, y, the FC selects the appropriate hypothesis according to

ℜ{θyHR(α)−1Hα}
H1
≷
H0

1
2

θ
2
α

HHHR(α)−1Hα + τ, (3.8)

where τ is a threshold that can be selected using the Neyman-Pearson or the Bayesian

approach. Using (3.4) and (3.8), and the Bayesian test with the detection threshold, τ =
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(1/2) ln(p0/p1), the probability of error conditioned on the channel can be calculated

as

Pe|H(N) = p0Q(ω + τ/ω)+ p1Q(ω− τ/ω) , (3.9)

where ω :=θ
√

αHHHR(α)−1Hα/2 for brevity, N is the number of antennas at the FC

and Q(x) =
∫

∞

x
1√
2π

e−y2/2dy. The error exponent is defined in terms of the conditional

error probability for the FC with N antennas as [72, 73, 94]

E (N) = lim
L→∞
−1

L
logPe|H(N). (3.10)

Note that even though Pe|H(N) in (3.9) is a channel-dependent random variable, we will

show that the limit in (3.10) converges in probability to a deterministic constant for the

cases of interest to us. Substituting (3.9) into (3.10), using L’Hôpital’s rule, and the

Leibniz Integral rule for differentiating under the integral sign,

E (N) = lim
L→∞

1
8

1
L

θ
2
α

HHHR(α)−1Hα (3.11)

in probability, which does not depend on p0 and p1. Since E (N) is the negative expo-

nent of the probability of error, a larger value represents better performance. The error

exponent in (3.11) is a deterministic performance metric over fading channels and de-

pends on fading statistics. It can also be viewed as a “generalized SNR” expression

in this system with multiple sensor and channel noise sources. We follow [72, 73, 94]

in our definition of the error exponent in (3.10). Alternatively, one can consider the

unconditional error exponent, EH[Pe|H(N)], which would depend on the distribution of

H in (3.10), in place of Pe|H(N). We will not pursue this approach herein.

Our primary focus throughout this paper is the dependence of (3.11) on

(i) the number of antennas, N, for different fading-channel distributions;

(ii) different assumptions about the dependence of the sensor gains, α , on the channel,

H.
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With the Neyman-Pearson test, rather than the Bayesian test, it can be shown

that the error exponent is given by limL→∞ 0.5L−1θ 2αHHHR(α)−1Hα , which does

not depend on the false alarm probability and is a factor of four greater than the error

exponent derived in the Bayesian case. Since the two cases differ only by a fixed

constant, the Bayesian approach will be used throughout.

3.3 Performance over AWGN channels

The error exponent with AWGN channels is computed to establish a benchmark for the

fading case of the next section, which is our main focus. For AWGN channels, hnl = 1.

Due to symmetry and to respect the power constraint, αi =
√

P/L,∀i. Defining 1L as

an L× 1 vector of ones, and 1N×L as an N×L matrix of ones, we have α =
√

P/L1L

and H = 1N×L. Substituting these in (3.5),

R:=R(
√

P/L1L) = σ
2
ηP1N×N +σ

2
ν IN . (3.12)

The inverse of (3.12) can be expressed using the Sherman-Morrison-Woodbury formula

for matrix inversion and substituted into (3.11) to yield

EAWGN(N) :=
1
8

Nγsγc

Nγc + p1γs +1
, (3.13)

where the sensing SNR is defined as γs :=θ 2/σ2
η , and the channel SNR, γc :=PT/σ2

ν .

Since the partial derivative ∂EAWGN(N)/∂N > 0, for the AWGN case, having multiple

antennas improves the error exponent which can be interpreted as array gain on the

channel SNR γc. As a special case, consider N = 1, to get the result for the single

antenna case:

EAWGN(1) =
1
8

γcγs

γc + p1γs +1
. (3.14)

With p1 = 0.5, γc = 1 and γs = 1, adding a second antenna at the FC provides a gain

of 3.1dB. Adding a third antenna provides a further gain of 1.34dB, indicating dimin-

ishing returns. To study the benefits of having multiple antennas, we compare the error

exponent in each case with EAWGN(1). The multiple antenna gain for the AWGN case
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is given by

GAWGN(N) :=
EAWGN(N)

EAWGN(1)
=

Nγc +N p1γs +N
Nγc + p1γs +1

. (3.15)

It can be seen from (3.15) that by making N sufficiently large, and γc sufficiently small,

(3.15) can be made arbitrarily large. In contrast, it will be seen in Section 3.4 that when

the channels are fading and known at the sensors, the corresponding gain expression

will be bounded for all parameter values, indicating limited gains due to antennas.

3.4 Performance over Fading Channels

Suppose that the elements of the channel matrix, H, are non-zero-mean, that is, hnl =√
K/(K +1)+ (1/

√
K +1)hdi f f

nl , where the first term is the line-of-sight (LOS) com-

ponent, hdi f f
nl is the zero-mean diffuse component, and the parameter K is the ratio

of the LOS power to the power of the diffuse component, chosen so that the channel

satisfies E[|hnl|2] = E[|hdi f f
nl |2] = 1.

In what follows, different cases of channel state information at the sensors

(CSIS) are considered.

No Channel State Information at the Sensors

When the sensors have no channel knowledge, then the sensor gains are set to α =√
P/L1L due to the i.i.d. nature of the channels and to respect the power constraint in

(3.7). Substituting in (3.5),

R :=R(
√

P/L1L) = σ
2
ηP

1
L

HHH +σ
2
ν IN . (3.16)

Since the elements of H are i.i.d., from the weak law of large numbers,

lim
L→∞

R = σ
2
ηP

K
K +1

1N×N +
σ2

ηP+σ2
ν (K +1)

K +1
IN , (3.17)

in probability. Since the right-hand-side of (3.17) is non-singular, it can be seen that

limL→∞ R−1 = (limL→∞ R)−1 [124, Thm. 2.3.4]. Using the matrix inversion lemma on
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(3.17) and substituting into (3.11),

ENoCSIS(N,K) =
θ 2

8
P(K +1)

σ2
ηP+σ2

ν (K +1)
lim
L→∞

N

∑
n=1

∣∣∣∣∣1L L

∑
l=1

hnl

∣∣∣∣∣
2

− θ 2

8
σ2

ηP2K(K +1)[
σ2

ηP+σ2
ν (K +1)

][
σ2

ηPNK +σ2
ηP+σ2

ν (K +1)
] lim

L→∞

∣∣∣∣∣1L N

∑
n=1

L

∑
l=1

hnl

∣∣∣∣∣
2

. (3.18)

Using the weak law of large numbers and (3.7), the error exponent can be expressed in

terms of γc and γs as

ENoCSIS(N,K) :=
1
8

NKγcγs

γc(NK +1)+(p1γs +1)(K +1)
, (3.19)

which can be shown to be a monotonically increasing function of N, K, γs and γc, as

expected. For the single antenna case, using (3.14) it can be seen that ENoCSIS(1,K) =

EAWGN(1)K/(K +1), which is a factor K/(K +1) worse than EAWGN(1).

As the antennas increase, limN→∞ ENoCSIS(N,K) = γs/8, which is the same as

limN→∞ EAWGN(N). That is, so long as there is some non-zero LOS component, as

the number of antennas at the FC increases, the performance approaches the AWGN

performance even in the absence of CSI at the sensors. Furthermore, it can be seen that

limK→∞ ENoCSIS(N,K) = EAWGN(N), which matches the AWGN result, as expected.

To characterize the gain due to having multiple antennas at the FC, we define

GNoCSIS(N,K) :=
ENoCSIS(N,K)

ENoCSIS(1,K)
=

N(K +1)(γc + p1γs +1)
γc(NK +1)+(p1γs +1)(K +1)

. (3.20)

When the channel noise is large, (γc → 0), we have GNoCSIS(N,K) = N and the gain

increases with the number of antennas at the FC. However, when γc → 0, the abso-

lute performance of the system is poor, as can be verified by substituting in (3.19).

Conversely, when the channel SNR grows, the maximum gain in (3.20) is given by

(K + 1)/K. This leads to the conclusion that when the channels between the sensors

and the FC are relatively noise-free, there is little advantage in having multiple antennas

at the FC when K is large. When the channel is zero-mean (K = 0), the error exponent

in (3.19) is zero for any N, indicating that the probability of error does not decrease
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exponentially with L for any N, confirming results from [57, 66, 75]. However, from

(3.20), it is clear that the gain satisfies limK→0 GNoCSIS(N,K) = N, which shows that

when the channel is zero-mean, gain in the error exponent due to antennas is linear and

can be made arbitrarily large. We have thus established the following:

Theorem 3.4.1 For zero-mean channels, with no CSI at the sensors, the error exponent

in (3.19) is zero and therefore, the error probability does not decrease exponentially

with L for any number of antennas, N. The antenna gain, defined in (3.20) satisfies

limK→0 GNoCSIS(N,K) = N, implying unlimited gains from multiple antennas for zero-

mean channels when CSI is unavailable at the sensors.

In what follows, it will be seen that when CSI is available at the sensors, the

antenna gain is bounded over all parameter values for zero-mean channels.

Channel State Information at the Sensors

We have just seen that when the non-zero-mean channel assumption does not hold,

the incoherent sum of signals at each each antenna leads to poor performance at the

FC, which results in a zero error exponent. If channel information is available at the

sensors, the sensor gains can be adjusted in such a way that the signals are combined

coherently. It should be noted here that full CSI at the sensors implies full CSI of the

network, H, at the sensors. In such a case, α is chosen as a function of the channels, H.

As a benchmark result for fading channels, the sensor gains are selected in such

a way as to maximize the error exponent of the system given in (3.11), subject to the

power constraint in (3.7):

αOPT = argmax
α

[
α

HHHR(α)−1Hα
]

subjectto‖α‖2 ≤ P, (3.21)

to obtain the error exponent in the presence of CSIS,

ECSIS(N) = lim
L→∞

θ 2

8
1
L

α
H
OPT HH (

σ
2
ηHD(αOPT )D(αOPT )

HHH +σ
2
ν IN
)−1 HαOPT . (3.22)
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The optimization problem in (3.21) is not tractable when N > 1 since R(α)

depends on H and α . In order to assess the effect of number of antennas, the solution

for (3.22) with N = 1, and two upper bounds on (3.22) are derived for N > 1.

Solution for Single Antenna at the FC

When N = 1, the channel matrix reduces to a column vector, given by [h1h2 . . .hL]
T ,

where hi is the channel between the i-th sensor and the FC. The maximization problem

in (3.21) reduces to

αOPT = argmax
α

∣∣∣∣∣ L

∑
i=1

αihi

∣∣∣∣∣
2

σ
2
η

L

∑
i=1
|αi|2 |hi|2 +σ

2
ν

subjectto
L

∑
i=1
|αi|2 ≤ P. (3.23)

A similar problem was formulated in [76] and in a distributed estimation framework

in [57, 81]. We recognize that the best value for the phase of the sensor gain is ∠αl =

−ψl where ψl = ∠hl . Therefore, we set ∠αl = −ψl,∀l. We then define s :=∑
L
i=1 αihi

and swap the objective function with the constraint so we can rewrite the optimization

problem as

αOPT = argmin
{|αi|},s

L

∑
k=1
|αk|2 subjectto σ

2
η

L

∑
l=1
|αl|2 |hl|2 +1≤ vts2

L

∑
l=1

(|αl||hl|)− s = 0, (3.24)

where vt is an auxiliary variable. The optimization problem in (3.24) is now a (convex)

second-order-cone problem [118]. Using the Karush-Kuhn-Tucker conditions [118],

the optimal solution is given by

αi =

√√√√√√
P

L

∑
l=1

(
|hl|

P|hl|2σ2
η +σ2

ν

)2

(
|hi|

σ2
ηP|hi|2 +σ2

ν

)
e− j∠hi. (3.25)

The error exponent can be obtained by substituting (3.25) in (3.22) with N = 1:

ECSIS(1) = lim
L→∞

θ 2

8
1
L

L

∑
l=1

1

σ2
η + σ2

ν

P|hl |2
=

θ 2

8
E

 1

σ2
η + σ2

ν

P|hl |2

 (3.26)
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from the weak law of large numbers, where the expectation is with respect to {hl}. As

an example, for Rayleigh fading channels (3.26) yields [121, §3.353]

ECSIS(1) =
1

32
γs

[
2− p1γs +1

γc
exp
(

p1γs +1
2γc

)
E1

(
p1γs +1

2γc

)]
, (3.27)

where E1(·) is an exponential integral function [119, pp. 228]. The expression for

ECSIS(1) is obtained when the channels between the sensors and the FC are fading.

To compare with the AWGN case, note that Px/(σ2
ηPx+σ2

ν ) in (3.26) is a concave

function of x, and from Jensen’s inequality, EAWGN(1)≥ ECSIS(1), as expected.

Since (3.26) is rather complicated, it is desirable to find a simpler expres-

sion as a lower bound to (3.26). Any choice of ‖α‖2 = P will yield such a lower

bound, since αOPT is optimal. Considering phase-only correction at the sensors, αi =√
P/Lexp(− j∠hi) is substituted in (3.11) with N = 1 to yield the error exponent for

phase-only CSIS for N = 1:

EPO(1) = lim
L→∞

θ 2

8

P

[
1
L

L

∑
l=1
|hl|
]2

σ
2
ηP

1
L

L

∑
l=1
|hl|2 +σ

2
ν

. (3.28)

From the weak law of large numbers, the random sequences in the numerator and de-

nominator converge separately. However, since the expression for EPO(1) is a continu-

ous function of these sequences, the value of EPO(1) converges to [115, Thm. C.1]

EPO(1) = (E[|hl|])2EAWGN(1) (3.29)

in probability, since E[|hl|2] = 1. The expression in (3.29) serves as a lower bound to

ECSIS(1) as follows:

1
ζ

EAWGN(1)≤ ECSIS(1)≤ EAWGN(1), (3.30)

where ζ = (E[|hl|])−2.
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Upper Bound (AWGN channels)

Since (3.21) cannot be solved in closed form when N > 1, one cannot evaluate the error

exponent in (3.22) by substitution as it was done for N = 1. Two upper bounds on

(3.22) will be convenient at this stage. Since the AWGN performance is a benchmark

for fading channels, the error exponent of the system over AWGN channels is an upper

bound on that of fading channels, even in the case of full CSIS. Therefore, the first

upper bound to (3.22) is given in (3.13):

ECSIS(N)≤ EAWGN(N) =
1
8

Nγsγc

Nγc + p1γs +1
. (3.31)

Upper Bound (No Sensing Noise)

Clearly, (3.22) is a monotonically decreasing function of the sensing noise variance,

σ2
η . The second benchmark is obtained by setting σ2

η = 0, which also affects αOPT in

(3.21), since R(α) no longer depends on α when σ2
η = 0. Substituting this in (3.21),

the optimal value of α when σ2
η = 0 is

argmax
α

(
α

HHHHα
)

subjectto‖α‖2 ≤ P. (3.32)

The solution to (3.32) is the eigenvector corresponding to the maximum eigenvalue of

HHH, scaled in a way to satisfy the constraint with equality. Substituting into (3.22)

with σ2
η = 0, we have the second upper bound to ECSIS(N):

B(N,K) =
θ 2

8
P

σ2
ν

lim
L→∞

λmax

(
1
L

HHH
)
, (3.33)

where λmax(·) denotes the maximum eigenvalue function. Since it can be seen that

λmax(HHH) = λmax(HHH), and λmax(·) is a continuous function of the matrix elements

[124, Thm. 8.1.5], one can interchange the limit with the maximum eigenvalue function

[115, pp. 422, Thm. C.1] to yield

B(N,K) =
θ 2

8
P

σ2
ν

λmax

(
lim
L→∞

1
L

HHH
)
. (3.34)

From the weak law of large numbers,

lim
L→∞

1
L

HHH =
K

K +1
1N×N +

1
K +1

IN×N , (3.35)
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in probability, so that with the substitutions σ2
η = 0 and θ 2P/σ2

ν = γc/p1, we have the

bound:

ECSIS(N)≤ B(N,K) =
1
8

γc

p1

NK +1
K +1

. (3.36)

In (3.36), B(N,K) is an upper bound when there is sensing noise in the system. When

there is no sensing noise, it is the actual error exponent of the system with full CSIS.

Furthermore, limK→∞ B(N,K) = limγs→∞ EAWGN(N), verifying that as K→∞, B(N,K)

converges to the AWGN error exponent with no sensing noise. In addition, if K = 0,

there is no advantage to having multiple antennas at the FC, for asymptotically large

number of sensors, since the right hand side of (3.36) is independent of N in that case.

Since both EAWGN(N) and B(N,K) are upper bounds to ECSIS(N), a combi-

nation of the two bounds, min[EAWGN(N),B(N,K)], provides a single, tighter upper

bound. Equating the right hand sides of (3.31) and (3.36), it can be shown that this

combined upper bound is given by

C(N,K) =


EAWGN(N) if σ2

η ≥ N−1
N(NK+1)

B(N,K) if σ2
η ≤ N−1

N(NK+1)

. (3.37)

Combining the upper and lower bounds,

1
ζ

EAWGN(1)≤ ECSIS(1)≤ ECSIS(N)≤C(N,K), (3.38)

obtained from (3.27), (3.30) and (3.37). The bounds in (3.38) will be used to further

examine the effect of N on ECSIS(N).

The value of ECSIS(N) from (3.22) is the best achievable performance for fading

channels. Defining the gain due to multiple antennas in the case of full CSI at the

sensors as GCSIS(N) :=ECSIS(N)/ECSIS(1), the following theorem can be stated:

Theorem 3.4.2 When the channels have full CSI at the sensors, the gain due to multi-

ple antennas at the FC can be upper bounded as

GCSIS(N)≤ ζ
ECSIS(N)

EAWGN(1)
≤ ζ min

[
N(z+1)
Nz+1

,(z+1)
NK +1
K +1

]
, (3.39)
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where z :=γc/(p1γs +1).

Proof The first inequality in (3.39) follows from the first inequality in (3.38). The

second inequality in (3.39) follows from the last inequality in (3.38) and dividing the

terms of (3.37) by (3.14).

�

With p1 = 0.5, K = 1, γc = 1 and γs = 1, for N = 2, GCSIS(2) ≤ 1.4286ζ . For

N = 3, GCSIS(3)≤ 1.6667ζ and for N = 4, GCSIS(4)≤ 1.8182ζ . These results indicate

that there is diminishing returns in the multiple antenna gain.

Corollary 3.4.3 GCSIS(N) can be bounded by an expression depending on N and K

only:

GCSIS(N)≤ ζ
N2K +2N−1

N(K +1)
(3.40)

Proof The first argument of the min[·, ·] function of the right hand side of (3.39) is a

decreasing function in z and the second argument is an increasing function in z. There-

fore, when the arguments are equal for fixed values of N and K, the maximum value

of the min[·, ·] function is obtained. This occurs when z = N−1(NK + 1)−1(N − 1),

allowing us to upper bound the min[·, ·] function by the value in (3.40).

�

Corollary 3.4.4 When the channels have zero-mean, the maximum gain due to hav-

ing multiple antennas at the FC is bounded by a constant independent of N and only

dependent on ζ = (E[|hl|])−2:

GCSIS(N)≤ 2ζ . (3.41)

51



Proof Substituting K = 0, it is clear that (3.40) is monotonically increasing in N. Tak-

ing the limit as N→ ∞ yields the proof.

�

As an example, in the case of Rayleigh fading, when full channel information is

available at the sensors, the maximum gain that can be obtained by adding any number

of antennas at the FC for any channel or sensing SNR is at most 2ζ = 8/π , which is

less than 3.

The results in (3.39)-(3.41) have been derived for the case of iid sensing noise.

We now address the correlated sensing noise case. To this end, we define Rη as the

L×L covariance matrix of the sensing noise samples, {ηl}L
l=1.

Theorem 3.4.5 Suppose that the sensing noise samples are correlated and let λmin be

the minimum eigenvalue of Rη . The gain due to multiple antennas in (3.39) holds with

the change z = γc/(p1γ̃s +1), where γ̃s :=θ 2/λmin.

Proof The proof is shown in Section 3.6.

�

It can be seen from Theorem 3.4.5 that any full-rank sensing noise covariance

matrix changes the conclusion in (3.39) only through a redefinition of z. By maximiz-

ing over z, the same upper-bound in (3.40) is obtained, and for zero-mean channels,

the bound in (3.41) remains valid. This shows that the bounds in (3.40) and (3.41) are

general, and hold even when the iid condition is relaxed to any arbitrary full-rank co-

variance matrix, Rη . The gain due to adding multiple antennas is still upper-bounded

by a factor of 2ζ , for zero-mean channels, when there is full CSI at the sensors.

Phase-only CSIS

One simplification to the full CSIS case is to provide only channel phase information

to the sensors. For the single antenna case, and when the channels between the sensors
52



and the FC have zero-mean, the phase-only results have been presented in (3.29) and

(3.30). What follows is an extension of those results to the multiple antenna case when

K = 0.

Since there is only phase information at the sensors, the amplitudes of the sensor

gains are selected such that |αl|=
√

P/L,∀l, so that D(α)D(α)H = (P/L)IL and R(α)

is given by (3.16).

With phase-only information, one can constrain |αi| to be constant to reformu-

late (3.21) as the following:

αPO = argmax
α

α
HHHHα subjectto |αi|2 =

P
L
, i = 1,2, . . . ,L. (3.42)

In Section 3.4, a semidefinite relaxation approach will be presented to solve (3.42).

Asymptotically large sensors and antennas

When CSIS is available, (3.39 - 3.41) shows that only limited multiple antenna gains

are available. It is interesting to see whether such limits would still be present if N→∞

simultaneously with L. A similar problem was considered, but in the context of CDMA

transmissions in [74]. Note that this will in general yield results different than first

sending L→ ∞ and then N → ∞ as was done in Section 3.4. Such a situation can

be interpreted as a case where a group of sensors is transmitting to another group,

functioning as a virtual antenna array [125]. For such a system the scaling laws when

L and N simultaneously increase [126, pp. 7], in such a way that

lim
L,N→∞

L
N

= β , (3.43)

are of interest. It should be noted that in spite of scaling the number of sensors and

antennas, the power constraint is still maintained.

In this case, the error exponent is redefined as

E ∞(β ) = lim
L,N→∞

−1
L

logPe|H(N), (3.44)
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with (3.43) satisfied. Similar to the upper bounds in (3.31) and (3.36), upper bounds on

(3.44) are now derived. For the AWGN case,

E ∞(β )≤ E ∞
AWGN := lim

L,N→∞
EAWGN(N) = lim

L,N→∞

1
8

Nγsγc

Nγc + p1γs +1
=

1
8

γs. (3.45)

When there is no sensing noise, with σ2
η = 0, the second bound can be calculated as

E ∞(β )≤ B∞(β ) := lim
L,N→∞

θ 2

8
P

σ2
ν

λmax

(
1
L

HHH
)
. (3.46)

For fading channels with K > 0, it can be shown that the error exponent in (3.46) goes

to infinity. Therefore, with any line-of-sight (LOS) and no sensing noise, increasing

the number of sensors and the number of antennas to infinity provides very good per-

formance. When K = 0, the Marc̆enko-Pastur Law [126, pp. 56] provides an empirical

distribution of the eigenvalues of N−1HHH. From [127,128], the maximum eigenvalue

of N−1HHH is shown to converge in such a way that

lim
L,N→∞

λmax

[(
1√
N

H
)H( 1√

N
H
)]

=

(
1+
√

β

)2

β
, (3.47)

in probability, which yields

B∞(β ) =
1
8

γc

p1

(1+
√

β )2

β
, (3.48)

which is the optimum performance of the system in the absence of sensing noise. Sim-

ilar to (3.37), the minimum of (3.45) and (3.48) yields

E ∞(β )≤min [E ∞
AWGN ,B

∞(β )] =


1
8γs if Pσ2

η ≥ β

(1+
√

β )2

1
8

γc
p1

(1+
√

β )2

β
if Pσ2

η ≤ β

(1+
√

β )2

. (3.49)

The gain due to antennas is expressed in terms of the ratio β in (3.43) and can be written

as G∞(β ) :=E ∞(β )/ECSIS(1). Using the bounds, we have the following:

Theorem 3.4.6 With asymptotically large number of sensors and antennas, the gain

due to having multiple antennas at the FC is bounded by

G∞(β )≤ ζ

1+

(
1+
√

β

)2

β

 . (3.50)
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Proof The relationship between EAWGN(1) and ECSIS(1) from (3.30) provides a lower

bound on ECSIS(1), and consequently an upper bound on G∞(β ), to yield the first in-

equality in (3.51) below. The expression in (3.49) provides an upper bound on E ∞(β ),

and dividing by (3.14) yields the second inequality in

G∞(β )≤ ζ
E ∞(β )

EAWGN(1)
≤ ζ min

[
1+

1
w
,(1+w)

(1+
√

β )2

β

]
, (3.51)

where w :=γc/(p1γs + 1). The first argument in the min[·, ·] function decreases as w

increases, while the second argument is an increasing function of w. Therefore, the

min[·, ·] function is maximized when arguments of the min[·, ·] function are equal for a

fixed value of β . This result is obtained when w = (1+
√

β )−2β , to yield (3.50) and

the proof.

�

To interpret (3.50), cases corresponding to three values of β , are considered:

(i) β � 1(NscalesfasterthanL): When the number of antennas increases at a faster

rate than the number of sensors, it can be seen that B∞(β ) is large. When there is

no sensing noise, the performance obtained is exactly B∞(β ) as seen in (3.48). In

this case, arbitrarily large gains are achievable. In case there is sensing noise in

the system, E ∞
AWGN and B∞(β ) become bounds, and the gain is bounded as shown

in (3.50). As β → 0 in this case, the bound goes to infinity, which indicates that

there could be large gains possible.

(ii) β = 1(NscalesasfastasL): The number of antennas at the FC and the number of

sensors scale at the same rate, the maximum possible gain can be calculated from

(3.50) to yield G∞(1)≤ 5ζ .

(iii) β � 1(NscalesslowerthanL): When the number of sensors scales much faster

than the number of antennas at the FC, it resembles the previous setting where
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K > 0 K→ 0
GNoCSIS(N,K) O(N) when γc = 0; O(N)

from (3.20) O(1) when γc > 0
GCSIS(N,K) O(N) O(1)
from (3.40)

G∞(β ) Undefined O(β−1) as β → 0;
from (3.50) O(1) as β → ∞

Table 3.1: Order of gain due to multiple antennas at the FC for large number of sensors,
L.

L→ ∞, first, and N was scaled. Not surprisingly, when β is large in this case,

G∞(β )≤ 2ζ , same as in Section 3.4.

It should be noted here that in cases (ii) and (iii), where both the number of sensors and

antennas are scaled to infinity simultaneously, only limited gain is achievable, when the

sensors have complete channel knowledge.

In Table 3.1 we summarize the rate at which the gain due to number of antennas

increases, both when CSI is available and unavailable at the sensor side. Recalling that

the gain is defined in terms of the ratio of error exponents relative to the single antenna

case, all the results in the table apply when L is large, which is a major distinguishing

factor between this study and standard analysis of multi-antenna systems. It is seen

that when K > 0 the gain in error exponent grows like O(N) depending on whether

CSIS is available and whether γc = 0. More interestingly, when the channel is zero-

mean (K → 0), adding antennas improves the error exponent linearly when CSIS is

not available. In stark contrast, when CSIS is available, the gain is bounded (O(1)) by

2ζ . Finally, the row on the bottom of Table 3.1 illustrates how the gain depends on the

ratio β = L/N as both N and L increase. The error exponents for K > 0 are infinite,

yielding an undefined gain. For zero-mean channels, the dependence on β indicates an

increasing gain when β is small (L� N), and bounded gain when β is large (L� N).
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Realizable Schemes

So far, we have provided bounds on the achievable gains due to antennas when CSI

is available at the sensors, without providing a realizable scheme. This is because the

calculation of αOPT in (3.21) in closed form is intractable. Moreover, it is not clear

how α should be chosen as a function of H when N > 1 to achieve a multiple-antenna

gain. This is because each sensor sees N channel coefficients, corresponding to N

antennas, and each channel coefficient has a different phase making the choices of ∠αi

non-trivial. We now present two sub-optimal schemes for the full CSIS case that are

shown to provide gains over the single antenna case.

Method I: Optimizing Gains to Match the Best Antenna

In this method, the sensor gains, α , are selected in order to target the best receive

antenna. However, the received signals at all of the other antennas are also combined

at the FC, which uses the detection rule defined in (3.8).

Since L is finite for any practical scheme, (3.25) will be used to select α and

(3.26) without the limit can be used to assess which antenna has the “best” channel co-

efficients. Therefore, using the channels from the sensors to all of the receive antennas,

n∗ = argmax
n

θ 2

8
1
L

L

∑
l=1

1

σ2
η + σ2

ν

P|hnl |2
, (3.52)

is calculated and the sensor gains are set to (3.25) computed for the channels {hn∗i}L
i=1.

The FC then uses all of the receive antennas for detection using (3.8). Since there are

multiple antennas at the FC, for any realization of the channels between the sensors and

the FC, the error exponent of this scheme is at least as good as the single antenna case.

Such an approach requires the calculation of (3.52) and the corresponding α

from (3.25). Since these calculations require the complete knowledge of H, they can

be calculated at the FC, and fed back to the sensors.
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Method II: Maximum Singular Value of the Channel Matrix

It was shown in Section 3.4 that when σ2
η = 0, the bound obtained in (3.36) is achiev-

able. In this method, the values of α are selected as though there is no sensing noise.

The sensor gains, α , are selected in such a way that they are a scaled version of the

eigenvector corresponding to λmax
(
HHH

)
, such that ‖α‖2 =P. In most practical cases,

sensing noise is non-zero, and therefore, this method is sub-optimal. Similar to Method

I, α can be calculated at the FC and fed back to the sensors.

Hybrid of Methods I and II

Since Method II is tuned to perform optimally when there is no sensing noise, it out-

performs Method I when the sensing SNR, γs, is high. As the sensing SNR reduces,

Method I begins to outperform Method II. These observations are illustrated and elab-

orated on in the simulations section (Section 3.5, Figure 3.8).

Since one of the schemes performs better than the other based on the value of

γs, a hybrid scheme can be used: Method I for low values of γs, and Method II for

high values. The exact value where the cross-over occurs depends on the parameters

of the system, and can determined empirically. An example is shown in the simulation

section in Figure 3.8, where it is also argued that an underestimation of the value of γs

is tolerable, while an overestimation is not.

Semidefinite Relaxation

Following [81, 129] a semidefinite relaxation of the problem in (3.42) is obtained as

follows:

XPO = argmax
X

trace(HHHX) subjectto X� 0,

Xii =
P
L
, i = 1,2, . . . ,L, (3.53)

where X is an L× L matrix. If X has a rank-1 decomposition, X :=ααH , then α is

a solution to (3.42) [81, 129]. In the more likely case where X does not have rank-1,
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Figure 3.2: Monte-Carlo Simulation: E[Pe|H(N)] for AWGN channels, Rayleigh fading
channels and Ricean channels with no CSIS.

then an approximation to the solution of (3.42) is obtained by choosing α as the vector

consisting of the phases of the eigenvector corresponding to the maximum eigenvalue

of X. The semidefinite relaxation in (3.53) causes a loss of upto a factor of π/4 in

the final answer of (3.42) [129]. The phases of eigenvector corresponding to the max-

imum eigenvalue of XPO are extracted to constitute a possible set of values of α . In

order to obtain the solution to the SDR problem, an eigenvalue decomposition of XOPT

is required, which is an O(L3) operation [124]. It is argued with the help of simula-

tions (Figure 3.9) that the SDR outperforms the hybrid scheme when γs is small, at the

expense of increased complexity.

3.5 Simulation Results

The theoretical results obtained are verified using simulations. The channels are gen-

erated as complex Gaussian (Rayleigh or Ricean) for the purposes of simulation, even

though the results only depend on the first and second order moments of the channels.
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In Figure 3.2, it is verified that increasing the number of sensors improves the

performance except when the channels are Rayleigh fading and there is no CSIS. Since

the error exponent is zero for the Rayleigh fading case with no CSIS, the asymptotic

average probability of error is computed and plotted. The Ricean case outperforms

the Rayleigh fading case, and the AWGN channels provide the best performance. It

can also be seen that the decay in probability of error is exponential in L, when the

channels between the sensors and the FC are AWGN or Ricean fading. The decay

is slower than exponential when the channels are Rayleigh fading. This confirms the

observations in Section 3.4. In all cases, the performance improves as the number of

antennas increases.

In Figure 3.3, the expression of error exponent is compared against the value of

L−1 logPe|H(5) for increasing L, with AWGN channels and Ricean fading channels be-

tween the sensors and the FC. It can be seen that fewer than 200 sensors are required for
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Figure 3.4: Error exponent vs γs for N = 1,2,10 for AWGN channels and Ricean chan-
nels and no CSIS.

the asymptotic results to hold. Therefore, in subsequent simulations, L = 200 sensors

have been used.

The effect of increasing the number of antennas on the error exponent for the

AWGN case and Ricean fading case with no CSIS is seen in Figure 3.4. As expected,

increasing γc improves performance and there is an improvement in performance as the

number of antennas at the FC increases. As predicted in Section 3.4, with an increase

in N, the performance of EAWGN(N) and ENoCSIS(N,K) get closer to each other. There

is a large performance gain between the N = 1 case and the N = 2 case, and almost the

same gain between the N = 2 case and the N = 10 case, indicating diminishing returns,

corroborating the results in Section 3.3.

In Figure 3.5, the error exponent is evaluated when there is a single antenna

at the FC. The cases of AWGN channels, Ricean channels with no CSIS, Rayleigh

fading channels with full CSIS and Rayleigh fading channels with phase-only CSIS are
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Figure 3.5: Optimal Rayleigh performance, AWGN performance and Ricean no CSIS
performance with one antenna at the FC.

compared in Figure 3.5. It is seen that the AWGN performance is the best, and when

the Ricean channels have larger line of sight, the performance improves, as expected.

In fact, by increasing the amount of LOS, the no-CSIS Ricean case performs better than

the full CSIS Rayleigh channel case, when γc is large. The performance of the Ricean

no CSIS case is a constant factor K/(K+1) worse than the AWGN case, corroborating

the result of ENoCSIS(1,K). Similarly, the performance of the phase-only CSIS case

confirms the result in (3.30). For Rayleigh fading channels, the phase-only CSIS case

performs a constant π/4 worse than the AWGN case.

For the case of full CSIS, but with multiple antennas at the FC, bounds were de-

rived on the error exponent of the system in Section 3.4 and Section 3.4, and combined

to provide a single bound in (3.37). The value of ECSIS(1) is set as a lower-bound on

ECSIS(N). In Figure 3.6, with N = 1, the upper bound can be seen to be about 0.76 dB

(in terms of error exponent) away from the actual value at γc = 8 dB. For small values
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Figure 3.6: For a single antenna, optimal performance and performance bounds.

of γc, the AWGN bound is better, and as γc increases, the bound with the no sensing

noise assumption is better, as expected.

Figure 3.7 shows the effect of increasing the number of antennas at the FC on

the antenna gains of the different systems. Also, for the cases of partial CSIS and full

CSIS, the upper bounds on the antenna gains are plotted. The actual error exponent for

the AWGN case is larger than for the Ricean no-CSIS case. However, as seen in Figure

3.7, the gain for the Ricean no-CSIS case is larger than the gain for the AWGN channel

case. The bound on the Ricean CSIS antenna gain grows rapidly with N, as predicted

by (3.40). The maximum gains possible for the Rayleigh CSIS case and the Rayleigh

no CSIS cases are also plotted. These results indicate that with full CSIS, there is not

much to be gained by adding antennas at the FC, corroborating our results in Section

3.4.

The schemes introduced in Section 3.4 for the known CSIS case are simulated
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in Figure 3.8. The performance of these schemes are evaluated for N = 5 and N = 50.

The performance of these systems is compared against a lower bound given by ECSIS(1)

from (3.27) and an upper-bound, C(5,K) from (3.37). The hybrid scheme from Section

3.4 selects the better of the two practical methods depending on the value of γs. It can

be seen that even with these simple sub-optimal practical schemes, the hybrid scheme

is always better than ECSIS(1), indicating that it is possible to obtain multiple antenna

gain. However, for each N, the hybrid scheme does not approach the upper-bound

of C(5,K). When N = 5, this is an expected result, since firstly, C(N,K) is a bound

that is not necessarily achievable, and secondly, the practical schemes are obtained as

sub-optimal approximations to the optimal scheme with full CSIS. The hybrid scheme

for N = 50 provides more gain over ECSIS(1) than the hybrid scheme for N = 5, but

does not beat C(5,K). This means that although gains are possible with the practical

schemes, large gains are not possible, as predicted by the bounds in Section 3.4. For
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Figure 3.8: Practical Schemes for N = 5 and N = 50 vs. ECSIS(1) and C(5,1).

the hybrid scheme, Method I is better at low values of γs and Method II is better at high

values of γs. The value of γs at which the hybrid scheme changes methods can also

be seen in the simulations. In Figure 3.8, the system has a channel SNR, γc = 10 dB,

p1 = 0.5 and the Ricean-K parameter is one. When there are five antennas at the FC,

the hybrid scheme changes from Method I to Method II at γs ≈ 3 dB, and when N = 50,

the change occurs at γs ≈ 8.25 dB. It can be seen that the hybrid scheme changes from

Method I to Method II at different values of γs based on the system parameters. It

can also be seen that when Method I is selected by the hybrid scheme, the error in

performance between Method I and Method II is small. However, when Method II is

selected by the hybrid scheme, the performance gap between Method I and Method II

increases rapidly as γs increases. Therefore, an underestimation of the value of γs is

tolerable, while an overestimation is not.

The semidefinite relaxation (SDR) approach in Section 3.4 is compared against
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Figure 3.9: Hybrid realizable scheme, SDR relaxation and C(N,K) vs γs.

the hybrid scheme (Section 3.4) in Fig 3.9. For the SDR solution, the value of XOPT

from (3.53) is calculated using CVX, a package for specifying and solving convex pro-

grams in MATLAB [130]. It can be seen from these simulations that for low values of

sensing SNR, γs, the SDR solution outperforms the hybrid scheme. However, as the

value of γs begins to increase, the hybrid scheme (which is designed to be optimal as

γs→ ∞) outperforms the SDR solution. The comparison with the upper-bound on the

optimal error exponent, C(N,K) is tight with respect to the better of the hybrid and SDR

approaches. In order to obtain the solution to the SDR problem, an eigenvalue decom-

position of XOPT is required, which is an O(L3) operation [124]. The SDR outperforms

the hybrid scheme when γs is small, at the expense of increased complexity.

3.6 Proof of Theorem 3.4.5

We begin by noting that the presence of correlation in ηl affects the total average trans-

mit power. Therefore, to prove Theorem 3.4.5, we need to reconsider the following in
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presence of correlation: (i) the power constraint; (ii) the AWGN upper-bound in (3.31);

(iii) the “no sensing noise” upper-bound in (3.36), which will then be used to redefine

the combined upper-bound in (3.37).

(i) Power constraint: The total transmitted power is given by

PT = E

[
L

∑
l=1
|αl (Θ+ηl)|2

]
= α

H (p1θ
2IL +Rη

)
α, (3.54)

and constrained as

α
H (p1θ

2IL +Rη

)
α ≤ PT . (3.55)

If (3.55) holds, then

‖α‖2 ≤ PT

p1θ 2 +λmin
:=P, (3.56)

also holds. Since (3.56) is less stringent than (3.55), if (3.56) is used instead of the

original power constraint in (3.55), an upper-bound will be obtained in the subsequent

derivation of the error exponent.

(ii) Upper-bound (AWGN channels): Recall that in this case, H = 1N×L. Since

the sensing noise is not iid, α has to be selected in such a way that the error exponent

is maximized:

maximize
α

α
H1L×NR(α)−11N×Lα subjectto α

H
α ≤ P, (3.57)

to yield the error exponent in the AWGN case with correlated sensing noise:

EAWGN(N)≤ 1
L

θ 2

8
(αopt

AWGN)
H1L×NR(αopt

AWGN)
−11N×Lα

opt
AWGN , (3.58)

where α
opt
AWGN provides to solution to (3.57) and the inequality in (3.58) is due to (3.11)

and the modified power constraint in (3.56). To fully compute an upper bound on

the right hand side of (3.58), first, R(α) is inverted and simplified. For the case of

correlated noise, R(α) is given by

R(α) = 1N×LD(α)RηD(α)H1L×N +σ
2
ν IN

� λmin1N×LD(α)HD(α)1L×N +σ
2
ν IN , (3.59)
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where A � B indicates that the matrix (A−B) is positive semi-definite. Using the

Sherman-Morrison-Woodbury formula for matrix inversion,

R(α)−1 � 1
σ2

ν

IN−
1

σ2
ν

1N×L

[
diag

(
1

λmin|αi|2
)
+

1L×N1N×L

σ2
ν

]−1

1L×N
1

σ2
ν

. (3.60)

Invoking the Sherman-Morrison-Woodbury formula for matrix inversion once again,

R(α)−1 � 1
σ2

ν

IN−
1

σ2
ν

M1N×N , (3.61)

where

M :=

L

∑
l=1

λmin

σ2
ν

|αl|2

1+N
L

∑
i=1

λmin

σ2
ν

|αi|2
≤ λminP

NλminP+σ2
ν

, (3.62)

due to the fact that αHα ≤ P from (3.56).

By substituting (3.61) in (3.57), the solution to (3.57) is upper-bounded by the

solution to

maximize
α

α
H1L×Lα subjectto α

H
α ≤ P. (3.63)

The value of α that maximizes (3.63) is the eigenvector corresponding to the maximum

eigenvalue of 1L×L, scaled to satisfy the constraint with equality. Substituting this in

(3.58), the bound in (3.31) obtained, with the substitution, γs = γ̃s, where γ̃s = θ 2/λmin

and PT ≤ P/(p1θ 2 +λmin).

(iii) Upper-bound (no sensing noise): With no sensing noise, Rη = 0L×L. The

optimization problem to obtain the best error exponent is the same as in (3.32), to yield

(3.36).

Combining the modified AWGN upper-bound and the no sensing noise upper-

bound in (3.36), a joint upper-bound is obtained, which is identical to (3.37), except

for the substitution σ2
η = λmin and γ̃s = θ 2/λmin. It follows that (3.39) holds with

z = γc/(p1γ̃s +1), to provide the proof.

�
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Chapter 4

INEQUALITIES RELATING THE CHARACTERISTIC FUNCTION AND FISHER

INFORMATION

4.1 Problem Summary

We investigate the relationship between the Fisher information about a location param-

eter and the characteristic function of the additive noise by providing a new derivation

for two inequalities that involve the Fisher information and the characteristic function.

These inequalities were originally derived using a different approach and applied in a

quantum physics setting to estimate the survival probability of a quantum state in [131].

Conditions for equality are also delineated herein for the first time in the literature, and

used to investigate the asymptotic efficiency of a distributed estimation scheme over a

Gaussian multiple-access channel.

4.2 The Inequalities

Consider a model where a deterministic location parameter, θ , is related to observa-

tions xl = θ +ηl , l = 1, . . . ,L, where ηl are iid and real-valued random variables. Let

the characteristic function of ηl be ϕ(ω) :=E[e jωηl ] and let the Fisher information be

defined as [55, 132]

I(η) :=
∫

∞

−∞

[p′(x)]2

p(x)
dx < ∞, (4.1)

where p(x) is the pdf of ηl , assumed to be continuously differentiable, and with support

(−∞,∞). Note that I(η) is the Fisher information in xl about θ , and is a deterministic

value which does not depend on θ . In the following, η denotes a random variable with

the same distribution as any ηl .

We present the following theorem, which provides two bounds involving I(η)

and ϕ(ω). It was proved first in [131] using the Cramér-Rao inequality. We provide an

alternate proof which also delineates the condition for equality for the first time in the

literature. The condition for equality will be central in Section 4.3 to establish neces-

sary and sufficient conditions for the asymptotic efficiency of a distributed estimation
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algorithm over a Gaussian multiple-access channel.

Theorem 4.2.1 Let ϕR(ω) and ϕI(ω) be the real and the imaginary parts of ϕ(ω),

respectively. We have

ω
2
ϕ

2
I (ω)≤ I(η)

[
1
2
[1+ϕR(ω)]−ϕ

2
R(ω)

]
, (4.2)

ω
2
ϕ

2
R(ω)≤ I(η)

[
1
2
[1−ϕR(ω)]−ϕ

2
I (ω)

]
, (4.3)

with equality in both (4.2) and (4.3) if and only if ω = 0.

Proof Let s(x) := p′(x)/p(x) be the score function, where we recall that p(x) is the pdf

of ηl . Let g(x) be a differentiable function satisfying limx→±∞ g(x)p(x) = 0. Using

Stein’s identity [133, Lemma 1.18], we have

E [g(η)s(η)] =−E
[
g′(η)

]
. (4.4)

Applying the Cauchy-Schwarz inequality yields

E2[g′(n)]≤ I(η)E[g2(η)], (4.5)

with equality if and only if s(x) = αg(x) for some α and all x. It can be seen that

by substituting g1(x) :=cos(ωx)−ϕR(ω) for g(x) in (4.5), equation (4.2) is obtained.

Similarly, g2(x) :=sin(ωx)−ϕI(ω) substituted for g(x) yields equation (4.3).

To examine when equality occurs, first note that if ω = 0, since ϕR(0) = 1 and

ϕI(0) = 0, equations (4.2) and (4.3) become equalities. Conversely, consider ω 6= 0.

The equality condition for (4.3) is s(x)=αg2(x), which yields the first order differential

equation
p′(x)
p(x)

= α [sin(ωx)−ϕI(ω)] , (4.6)

which must provide a solution satisfying p(x) ≥ 0 and
∫

∞

−∞
p(x)dx = 1. The solution

to (4.6) is of the form p(x) = Ce−αxϕI(ω)e−
α

ω
cos(ωx), which is unbounded as x→−∞

when ϕI(ω) 6= 0, and periodic when ϕI(ω) = 0. In either case,
∫

∞

−∞
p(x)dx = 1 is not
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Figure 4.1: System model: Wireless sensor network. The estimator is located at the
fusion center.

possible. This shows that there is no pdf satisfying (4.6) when ω 6= 0, and therefore,

equality in (4.3) cannot be attained for ω 6= 0. The same conclusion can be drawn about

equation (4.2), using a similar argument with s(x) = αg1(x).

�

4.3 Application to Distributed Estimation

A sensor network, illustrated in Figure 4.1, consisting of L sensors is considered. The

value, xl , observed at the lth sensor is

xl = θ +ηl (4.7)

for l = 1, ...,L, where θ is a deterministic, real-valued, unknown parameter in a bounded

interval of known length, [0,θR], where θR < ∞, and ηl are iid real-valued random

variables. We will assume that ηl has zero mean and variance σ2
η , when the mean

and variance exist. Due to constraints in the transmit power, we consider a scheme

where the lth sensor transmits its measurement, xl , using a constant modulus base-band

equivalent signal,
√

ρe jωxl , over a Gaussian multiple access channel so that the received

signal at the fusion center is given by

yL =
√

ρ

L

∑
l=1

e jωxl +ν , (4.8)

where the transmitted signal at each sensor has per-sensor power of ρ , ω ∈ (0,2π/θR]

is a design parameter to be optimized, and ν ∼ C N (0,σ2
ν ) is independent of {ηl}L

l=1.
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Note that the restriction ω ∈ (0,2π/θR] is necessary even in the absence of sensing and

channel noise (yL =
√

ρe jωθ ) to uniquely determine θ from yL.

In a centralized problem, θ is estimated from {xl}L
l=1. The Cramér-Rao bound

is the well known benchmark on the variance of unbiased estimators with finite samples

and is proportional to [I(η)]−1 [134, pp. 120]. For large L, the asymptotic variance is

an appropriate performance metric. Under certain regularity conditions, the benchmark

on the asymptotic variance is given by [I(η)]−1 [134, pp. 439]. Hence, the Fisher

information has a central role to play in establishing benchmarks for the estimation of

a location parameter for centralized estimation problems which address estimators of

θ based on {xl}L
l=1.

For the distributed setting, based on (4.8), the estimators of θ rely on yL. The

desire to have constant modulus transmissions over a Gaussian multiple-access channel

causes the fusion center in Figure 4.1 to have access to only yL, rather than {xl}L
l=1.

Clearly, yL has less information about θ than {xl}L
l=1. In what follows, we quantify this

loss by examining the efficiency of the minimum (asymptotic) variance estimator, and

comparing it with the benchmark for the centralized problem, [I(η)]−1, for different

distributions on the sensing noise, η . Using Theorem 4.2.1, it is shown that there is no

loss in efficiency if and only if η is Gaussian.

The Estimator

To estimate θ , we normalize yL in (4.8) and define:

zL :=
yL

L
=
√

ρe jωθ 1
L

L

∑
l=1

e jωηl +
ν

L
, (4.9)

where zL = |zL|exp( j∠zL) = zR
L + jzI

L, and zR
L and zI

L are the real and imaginary parts

of zL, respectively. Also zL :=[zR
LzI

L]
T and z̄(θ) :=[E[zR

L]E[z
I
L]]

T =
√

ρ[ϕR(ω)cosωθ −

ϕI(ω)sinωθ ϕR(ω)sinωθ +ϕI(ω)sinωθ ]T .

Given yL (or equivalently zL), the estimator with the smallest asymptotic vari-
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ance is given by [115, (3.6.2), pp. 82]

θ̂L = argmin
θ

[zL− z̄(θ)]Σ−1(θ)[zL− z̄(θ)]T , (4.10)

where

Σ(θ) =

 Σ11(θ) Σ12(θ)

Σ21(θ) Σ22(θ)

 (4.11)

is the 2× 2 asymptotic covariance matrix of zL, satisfying limL→∞

√
L[zL− z̄(θ)] =

N (0,Σ(θ)). Its elements are given by

Σ11(θ) = ρ
[
vc cos2(ωθ)+ vs sin2(ωθ)

]
Σ22(θ) = ρ

[
vs cos2(ωθ)+ vc sin2(ωθ)

]
Σ12(θ) = Σ21(θ) = ρ(vc− vs)sin(ωθ)cos(ωθ),

where vc :=var[cos(ωηl)] = 1/2+ϕR(2ω)/2−ϕ2
R(ω) and vs :=var[sin(ωηl)] = 1/2−

ϕR(2ω)/2−ϕ2
I (ω).

Estimators of the form in (4.10) have an asymptotic variance given by [115,

Lemma 3.1]

AsV(ω) =

[(
∂ z̄(θ)

∂θ

)T

Σ
−1(θ)

(
∂ z̄(θ)

∂θ

)]−1

. (4.12)

It can be seen that by substituting the values of ∂ z̄(θ)/∂θ =
√

ρω[−ϕR(ω)sinωθ −

ϕI(ω)cosωθ ϕR(ω)cosωθ−ϕI(ω)sinωθ ]T and Σ
−1(θ), whose elements can be ex-

pressed in terms of Σ11(θ), Σ22(θ) and Σ12(θ), the asymptotic variance is given by

AsV(ω) =
2vcvs

ω2
[
vsϕ

2
I (ω)+ vcϕ2

R(ω)
]

=

(
1+ϕR(2ω)−2ϕ2

R(ω)
)(

1−ϕR(2ω)−2ϕ2
I (ω)

)
ω2
[
ϕ2

R(ω)
(
1+ϕR(2ω)−2ϕ2

R(ω)
)
+ϕ2

I (ω)
(
1−ϕR(2ω)−2ϕ2

I (ω)
)] .

(4.13)

Note that AsV(ω) depends on the sensing noise through its characteristic function, and

does not depend on the channel noise variance, σ2
ν , which washes out for large L.
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Asymptotic Efficiency

We now address the asymptotic efficiency of θ̂L and characterize the condition under

which AsV(ω) can be made arbitrarily close to [I(η)]−1:

Theorem 4.3.1 The estimator in (4.10) can be arbitrarily close to being asymptotically

efficient by the proper choice of ω , that is,

inf
ω∈(0,2π/θR]

AsV(ω) =
1

I(η)
, (4.14)

if and only if η is Gaussian.

Proof We begin by showing that if (4.14) holds, then η is Gaussian. Using Theorem

4.2.1, the inequalities in (4.2) and (4.3) can be rewritten for ω > 0 as

ω2ϕ2
I (ω)(1

2 [1+ϕR(ω)]−ϕ2
R(ω)

) < I(η), (4.15)

ω2ϕ2
R(ω)(1

2 [1−ϕR(ω)]−ϕ2
I (ω)

) < I(η), (4.16)

where we use that when ω 6= 0, (4.2) and (4.3) are strict inequalities. Adding the in-

equalities in (4.15) and (4.16), rearranging the resulting inequality and recalling (4.13),

we have
1

I(η)
< AsV(ω), ω ∈ (0,2π/θR]. (4.17)

Equation (4.17) indicates that the infimum in (4.14) is not attained for any non-zero

finite value of ω . Since ω is bounded above, the only way for (4.14) to hold is

when limω→0 AsV(ω) = [I(η)]−1. It is easy to verify, using L’Hospital’s rule, that

limω→0 AsV(ω) = σ2
η , the variance of ηl . Therefore, for (4.14) to hold, we have

[I(η)]−1 = σ2
η . The only distribution that satisfies this is the Gaussian [133, Lemma

1.19]. This completes the proof of the first half.

To show that (4.14) holds when ηl is Gaussian, ϕ(ω) = e−ω2σ2
η/2 is substituted

into (4.13) to yield:

AsV(ω) =
1

ω2 e−σ2
η ω2
(

e2σ2
η ω2−1

)2
, (4.18)
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which is non-decreasing in ω , since

∂AsV(ω)

∂ω
=

2e−2σ2
η ω2

ω3

(
e2σ2

η ω2−1
)[

(1− e2σ2
η ω2

)+2σ
2
ηω

2 +2σ
2
ηω

2e2σ2
η ω2
]
≥ 0,

(4.19)

for ω > 0.

�

The phase modulated scheme considered here has the advantage of constant

modulus transmissions. Due to the use of phase modulation, the result in Theorem

4.3.1 is related to the efficiency of the estimator of a location parameter using the em-

pirical characteristic function (ECF), defined as ϕ̂(ω) :=L−1
∑

L
l=1 e jωxl . It can be seen

from (4.9) that zL =
√

ρe jωθ ϕ̂(ω) + ν/L is related to the ECF through scaling and

additive noise. The efficiency of empirical characteristic function based estimators has

been considered for arbitrary parameters (that is, not just location parameters) in [112],

but with a continuum of infinitely many values of the argument, ω , of the ECF. In the

current distributed estimation application, the evaluation of ϕ̂(ω) for many values of

ω at the fusion center corresponds to many transmissions per sensor observation, re-

quiring large bandwidth. In contrast, we consider a single value of ω for estimation,

requiring a single transmission per sensor. The analog transmissions are assumed to be

appropriately pulse-shaped and phase modulated to consume finite bandwidth.

When the sensing noise distribution is symmetric, the cost function on the right

hand side of (4.10) that needs to be minimized can be expressed as

c(θ) =[zL− z̄(θ)]Σ−1(θ)[zL− z̄(θ)]T

=
1

2ρ2vcvs

[
−4ρ

3/2vsϕ(ω)[zI
L sin(ωθ)+ zR

L cos(ωθ)]+2ρ
2vsϕ

2(ω)

+ρ(vc− vs)
(
(zI

L)
2− (zR

L)
2)cos(2ωθ)−2ρ(vc + vs)zI

LzR
L sin(2ωθ)

+ρ(vc + vs)
(
(zI

L)
2 +(zR

L)
2)]. (4.20)
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Differentiating with respect to θ , we have

∂c(θ)
∂θ

=
2ωzR

L cos(ωθ)

ρvcvs

[
zI

L
zR

L
− tan(ωθ)

]
×
[(

1+
zI

L
zR

L
tan(ωθ)

)
vc +

(
1−

√
ρϕ(ω)

zR
L cos(ωθ)

zI
L

zR
L

tan(ωθ)

)
vs

]
. (4.21)

The values of θ at which (4.21) is zero are given by

θ ∈
{

nπ± π

2
ω

,
1
ω
∠zL,

∠zL +2nπ± π

2
ω

}
, (4.22)

where ω 6= 0 and n ∈ Z+. The value of θ that minimizes c(θ) is easily verified by

substituting the values of θ from (4.22) into (4.20) and is given by

θ̂ =
1
ω
∠zL. (4.23)

Hence, in the presence of symmetric noise, the estimator in (4.10) that minimizes the

asymptotic variance reduces to the simple expression in (4.23), which was first consid-

ered in [135]. However, in [135], neither the optimality (in terms of minimizing the

asymptotic variance) nor the efficiency of the estimator in (4.23) was considered.

Quantifying Relative Efficiency

One way of interpreting Theorem 4.3.1 is to observe that when the sensing noise is

Gaussian, no information is lost by analog phase modulation if ω is chosen sufficiently

small. On the other hand, information is lost when the sensing noise follows other

distributions. To see this more clearly, we define the relative efficiency between the

asymptotic variance and the Fisher information as:

E (η) =

[
I(η) inf

ω∈(0,2π/θR]
AsV(ω)

]−1

. (4.24)

It can easily be verified that E (η) is scale-invariant in the sense that E (αη) = E (η)

for any α ∈ R. Moreover, based on Theorem 4.3.1 and (4.17), 0 ≤ E (η) ≤ 1, where

the equality in the upper-bound is achieved only if η is Gaussian.

The relative efficiency in (4.24) depends only on the distribution of the sensing

noise. The values of E (η) for several distributions are provided in Table 4.1. The re-

sult in Table 4.1 for the Gaussian case has been established in Theorem 4.3.1. For the
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Distribution Gaussian Laplace Cauchy Uniform
E (η) 1 2/3 0.5c2e−c(1− e−c)−1 ≈ 0.65 0

Table 4.1: E (η) for different distributions.

Laplace sensing noise, ϕ(ω) = (1+ω2σ2
η/2)−1, AsV(ω) = σ2

η(1+σ2
ηω2/2)/(1+

2σ2
ηω2), and infω∈(0,2π/θR]AsV(ω) = 3σ2

η/4, by inspecting the third derivative of

AsV(ω). Similarly for the case of Cauchy distribution, ϕ(ω) = e−γω , AsV(ω) =

e2γω(1− e−2γω)/2ω2, and infω∈(0,2π/θR]AsV(ω) = 4γ2ec(1− e−2c)/c2, by examining

the first derivative of AsV(ω) where γ is defined as the scale parameter of the Cauchy

random variable, c :=2+W (−2e−2), and W (·) is the Lambert W -function [136]. For

the uniform distribution, an extension of the definition in (4.1) can be used to argue

that the Fisher information is infinite [134, pp. 119], and the relative efficiency of the

estimator as defined in (4.24) is zero.

We have seen that the Gaussian sensing noise is the only distribution with the

highest possible efficiency when the observations xl are transmitted with phase mod-

ulation over Gaussian multiple-access channels and the estimator in (4.10) is used.

However, it is possible that other sensing noise distributions, which yield less effi-

ciency, have better asymptotic variances. This is because efficiency is defined relative

to the Fisher information. For example, for Laplace sensing noise, the proposed es-

timator is not asymptotically efficient, but has better asymptotic variance than in the

Gaussian case, since its inverse Fisher information, [I(η)]−1, is lower. In conclusion,

Gaussian sensing noise has the only distribution that does not suffer a loss in efficiency

when the sensed data xl is mapped to constant modulus transmissions over Gaussian

multiple-access channels.

4.4 Numerical Results

In Figures 4.2 and 4.3, the asymptotic variance and the value of [I(η)]−1 in dB are

plotted versus ω , when the sensing noise is Gaussian, Laplace, uniform and Cauchy

distributed.
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Figure 4.2: Plot of asymptotic variance vs. ω .

From Figure 4.2, the asymptotic variance approaches [I(η)]−1 only as ω → 0

for Gaussian sensing noise, and is bounded away from [I(η)]−1 for other values of ω .

The estimator in (4.10) is not efficient when the sensing noise is non-Gaussian. Using

the definition of relative efficiency in (4.24), it can seen from Figure 4.2 that E (η) in

the case of Gaussian sensing noise is 0dB, and in the case of Laplace sensing noise is

about−3.5dB. In Figure 4.2, it can be verified that infω AsV(ω)≈ 0.75, which is about

−2.5dB at ω = 1/
√

2, which is lower than the Gaussian sensing noise case.

From Figure 4.3 the relative efficiency for Cauchy noise is about −3.8dB, ver-

ifying the value shown in Table 4.1. The inverse Fisher information for the uniform

case is 0 (−∞ dB) and is not shown in Figure 4.3. The relative efficiency as defined in

(4.24), for uniform noise, is therefore zero. When the sensing noise follows the Cauchy,

uniform or Laplace distributions, the estimator is not asymptotically efficient.
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Figure 4.3: Plot of asymptotic variance vs. ω . Note that the value of [I(η)]−1 is 0 (−∞

dB) for the uniform sensing noise case and is not shown.
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Chapter 5

DISTRIBUTED VARIANCE AND SNR ESTIMATION USING CONSTANT

MODULUS SIGNALING OVER GAUSSIAN MULTIPLE-ACCESS CHANNELS

5.1 Problem Summary

In this chapter, the location and scale parameter of a signal embedded in noise are

estimated in a distributed fashion. Several sensors are exposed to a signal in (not nec-

essarily Gaussian) noise as seen in Figure 1. These sensors phase modulate the obser-

vations using a constant-modulus scheme and transmit these signals to a fusion center

(FC) over a Gaussian multiple-access channel [55, pp. 378]. Due to the additive nature

of the multiple-access channel, the signals transmitted from the sensors add and ap-

proximate the characteristic function of the signal and noise, as the number of sensors

increases. At the FC, a noisy version of this empirical characteristic function s received

in Gaussian noise, and the location and scale parameter are estimated from this value.

All sensors transmit using the same single value of ω , the parameter of the characteris-

tic function. The value of ω is a design parameter in the phase-modulation scheme and

is determined based on performance measures. A single transmission from each sensor

to the FC is used for the estimation of the location parameter and the scale parameter.

A single snapshot in time is sufficient for the estimation.

Once the signal is received at the FC, a minimum-variance estimator is used to

jointly estimate the location and scale parameters. Additionally, from the structure of

the characteristic functions, naive estimators are developed for each distribution. The

performance of the estimates are measured using the asymptotic covariance matrix of

the estimates. The location and scale parameter estimates are used to construct the

estimate for SNR, and the asymptotic variance of the SNR estimator is also computed.

In contrast to the distributed estimation framework considered in this work, in

centralized estimation, the observations of the signals embedded in noise are directly

available to the estimator [109–114]. In [110–113], the location and scale parame-
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Figure 5.1: System model: Wireless sensor network with constant modulus transmis-
sions from the sensors. The estimator is located at the fusion center.

ters are separately estimated from the characteristic function of the signal embedded in

noise. It is also assumed in these works that the estimator has full access to a contin-

uum of infinitely many values of the argument of the characteristic function, ω . In the

current distributed estimation application, the evaluation of the characteristic function

for many values of ω at the fusion center corresponds to many transmissions per sen-

sor observation, requiring large bandwidth. In contrast, in this framework, all sensors

transmit using a single value of ω , indicating limited bandwidth requirements.

In this chapter, distributed estimation of the location parameter and scale pa-

rameter of a random signal is performed. In contrast to [109–114], where centralized

estimation is used to find the SNR, a distributed framework is used. In order to con-

serve bandwidth, a single value of ω is used for transmissions by all the sensors. In

contrast to [61], where the estimation is performed independently at each sensor, due

to the phase modulation used here, a single transmission from each sensor is enough

for successful estimation at the FC. At the FC, the location parameter and the scale pa-

rameter are simultaneously estimated, using a minimum-variance estimator, and a naive

estimator based on the structure of the characteristic function of each noise distribution.

It is shown that the estimates of the location parameter and the scale parameter are in-

dependent of each other in all cases. The naive estimators have the same performance

as the minimum-variance estimator, but with lower complexity. In each case, the values
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of the ω that minimize the asymptotic variances of the location parameter and the scale

parameter are also calculated. It is also shown with the help of simulations that the

estimators are asymptotically efficient only if the noise distribution is Gaussian.

5.2 System Model

A sensor network, illustrated in Figure 5.1, consisting of L sensors is considered. The

sensors observe a deterministic parameter, θ , in noise. The value, xl , observed at the

lth sensor is

xl = θ +σηl (5.1)

for l = 1, ...,L, where θ is a deterministic, real-valued, unknown parameter in a bounded

interval of known length, [0,θR], where θR < ∞, and ηl are iid real-valued random vari-

ables drawn from a distribution symmetric about its median, zero, and σ > 0 is a scale

parameter. In what follows, the location parameter of xl is defined as the median of the

distribution of xl . The sensing SNR is defined as γ :=θ 2/σ2. Due to constraints in the

transmit power, we consider a scheme where the lth sensor transmits its measurement,

xl , using a constant modulus base-band equivalent signal,
√

ρe jωxl , over a Gaussian

multiple access channel so that the received signal at the fusion center is given by

yL =
√

ρ

L

∑
l=1

e jωxl +ν , (5.2)

where ν ∼ C N (0,σ2
ν ) is the noise on the channel. All sensors transmit using the

same single value of ω , requiring a single transmission per sensor. The transmissions

are assumed to be appropriately pulse-shaped and phase modulated to consume finite

bandwidth. The transmission power at each sensor is the same and is given by ρ . Two

cases of power constraint are considered in this paper. In the first case, a total power

constraint scenario is considered, where ρ =P/L. Irrespective of the number of sensors

in the system, the power in the system remains the same. Due to this power constraint,

the channel noise plays an important role in performance as will be shown. The other

transmission scheme is a per-sensor power constraint, where ρ = P. Adding sensors
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adds power to the system, and as L→∞, the channel noise can be ignored. This can also

be considered a special case of the per-sensor power constraint approach with σ2
ν → 0.

The parameter, ω ∈ (0,2π/θR], in the right hand side of (5.2), is a design param-

eter to be optimized, and ν ∼ C N (0,σ2
ν ) is the channel noise independent of {ηl}L

l=1.

Note that the restriction ω ∈ (0,2π/θR] is necessary even in the absence of sensing and

channel noise (yL =
√

Pe jωθ ) to uniquely determine θ from yL.

The objective of this work is to estimate the values of θ and σ . Using these

estimates of θ and σ , the estimate of the SNR of the system is calculated. In order to

generalize the problem to include distributions for which moments are not defined, such

as the Cauchy distribution, the problem can be interpreted as estimating the location

parameter and the scale parameter of xl , represented by θ and σ , respectively.

5.3 Total Power Constraint

In the total power constraint regime, the total transmit power is held to a constant

irrespective of the number of sensors in the system. In a system of L sensors, if the

total power available is P, then each sensor transmits with a power of P/L. The signal

at the FC, shown in (5.2) is given by

yL =

√
P
L

L

∑
l=1

e jωxl +ν . (5.3)

The Estimator

At the FC, the estimator acts on the received signal, yL. Defining

zL :=
yL√

L
=
√

P
1
L

L

∑
i=1

e jωxi +
ν√
L
, (5.4)

it can easily be seen that in the absence of channel noise (σ2
ν = 0), |zL| ≤

√
P. Due to

noise in the system, however, this may not always be the case. The effects of having

zL >
√

P on the estimator will be examined in detail later in this section. Asymptoti-
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cally, as L→ ∞,

z := lim
L→∞

zL =
√

P lim
L→∞

1
L

L

∑
i=1

e jωxi

=
√

Pe jωθ
ϕη(σω), (5.5)

where

ϕη(σω) = E
[
e jωσηi

]
(5.6)

is the characteristic function of ηi. The characteristic function, ϕη(σω) ∈ R, since the

distribution of ηi is symmetric about the median, ∀i. Also define zL :=[zR
LzI

L]
T where zR

L

and zI
L are the real and imaginary parts of zL, respectively. The vector zL converges for

large L to z̄ = [z̄Rz̄I]T , where z̄R = limL→∞ zR
L and z̄I = limL→∞ zI

L and z̄R and z̄I are also

the real and imaginary parts of z, respectively. Due to the central limit theorem, this

convergence takes place in such a way that

z̃ = lim
L→∞

√
L(zL− z̄) (5.7)

is a 2×1 Gaussian random vector with zero mean and a 2×2 covariance matrix Σ(θ)

with elements

Σ11(θ) = P
[
vc cos2(ωθ)+ vs sin2(ωθ)

]
+

1
2

σ
2
ν

Σ22(θ) = P
[
vs cos2(ωθ)+ vc sin2(ωθ)

]
+

1
2

σ
2
ν

Σ12(θ) = Σ21(θ) = P(vc− vs)sin(ωθ)cos(ωθ), (5.8)

where vc :=var[cos(ωηl)] = 1/2+ϕη(2σω)/2−ϕ2
η(σω) and vs :=var[sin(ωηl)] =

1/2−ϕη(2σω)/2.

From zL obtained at the FC, the values of θ and σ need to be estimated. The

estimator for [θ̂ σ̂ ]T which yields the minimum variance is given by [115, (3.6.2), pp.

82]  θ̂

σ̂

= argmin
θ ,σ

[zL− z̄]Σ−1(θ)[zL− z̄]T . (5.9)
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The asymptotic covariance of this estimator is given by [115, Lemma 3.1]

C
(
θ̂ , σ̂

)
=
[
JT

z Σ
−1(θ)Jz

]−1
, (5.10)

where Jz is the Jacobian matrix of z̄ with respect to θ and σ and is given by

Jz = ω
√

Pe−ω2σ2/2

 −sin(ωθ) −ωσ cos(ωθ)

cos(ωθ) −ωσ sin(ωθ)

 . (5.11)

This yields the following asymptotic covariance matrix:

C
(
θ̂ , σ̂

)
=


P+σ2

ν−Pϕη (2σω)

2Pω2ϕ2
η (σω)

0

0
P+σ2

ν−2Pϕ2
η (σω)+Pϕη (2σω)

2P
[

∂ϕη (σω)

∂σ

]2

 . (5.12)

From the structure of zL in (5.5), alternate estimators for θ and σ can be built.

Separating the signal into its absolute and phase components,

|zL|=
√

Pϕη(σω), (5.13)

∠zL = ωθ , (5.14)

where (5.13) depends on σ and not θ , whereas (5.14) depends on θ and not σ , and

can be used to construct low-complexity estimators. The estimator for θ̂ is the solu-

tion to (5.14) and the estimator of σ̂ is the solution to (5.13). While these estimators

are low-complexity, their performance needs to be studied. In what follows, the rela-

tionship between these estimators and the minimum-variance joint estimator in (5.9) is

established.

Theorem 5.3.1 The estimates θ̂ and σ̂ that solve (5.14) and (5.13), respectively, are

those that minimize (5.9) when |zL| ≤
√

P.

Proof The estimator in (5.9) can be simplified to θ̂

σ̂

= argmin
σ

argmin
θ

{
−|zL|2

[
ϕ

2
η(σω)+1

]
+Pϕ

2
η(σω) [ϕη(2σω)−1]

+
[
zR cos(ωθ)+ zI sin(ωθ)

]2
−2
√

Ps(θ)ϕη(σω)
[
zR cos(ωθ)+ zI sin(ωθ)

]}
, (5.15)
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where the joint minimization is no longer required due to the separation of θ and σ .

Defining s(θ) = zR cos(ωθ)+ zI sin(ωθ), the problem is rewritten first as θ̂

σ̂

= argmin
s(θ)

{
−|zL|2

[
ϕ

2
η(σω)+1

]
+Pϕ

2
η(σω) [ϕη(2σω)−1]

+
[
zR cos(ωθ)+ zI sin(ωθ)

]2
−2
√

Ps(θ)ϕη(σω)
[
zR cos(ωθ)+ zI sin(ωθ)

]}
, (5.16)

which yields

sopt(θ) = |zL|. (5.17)

The minimization problem in (5.15) can now be rewritten as

σ̂ = argmin
σ>0

[1−ϕη(2σω)]
[
|zL|−

√
Pϕη(σω)

]
. (5.18)

The first term in (5.18) can be made arbitrarily small as σ → 0. For large L, it can

be seen from (5.4) that the effect of the channel noise is diminished, and with high

probability, |zL| ≤
√

P. When |zL| >
√

P, the objective function is minimized when

σ→ 0, the estimator returns σ̂→ 0, which indicates that the estimator has failed. When

|zL| ≤
√

P, the objective function is minimized when |zL|−
√

Pϕη(σω) = 0, which is

identical to (5.13). Substituting this value in (5.17), the equation in (5.14) is obtained,

completing the proof.

�

Since the two estimators are identical, their performance will also be the same,

as given by (4.12), which is a diagonal matrix. This implies that the estimate of the

location parameter and the estimate of the scale parameter are asymptotically indepen-

dent. The asymptotic variances of the location and scale parameters can be denoted

individually as AsV
θ̂
(ω) and AsVσ̂ (ω), respectively.

The estimator for θ presented as the solution to (5.14) is the same as the estima-

tor used in [62,135], where only the estimate of the location parameter was considered.
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Therefore, in the rest if this paper we will focus on the estimation of σ and the perfor-

mance of this estimator. For the estimation of γ and to study the performance of the

estimator of γ , the results of [62, 135] are used.

From the scale parameter and the location parameter of xl , the SNR of the trans-

mission can be estimated as

γ̂ =
θ̂ 2

σ̂2 . (5.19)

From the asymptotic covariance matrix of θ̂ and σ̂ , the asymptotic variance of γ̂ is

given by [108]

AsVγ̂(ω) =

[
∂γ

∂θ

∂γ

∂σ

]
C
(
θ̂ , σ̂

) ∂γ

∂θ

∂γ

∂σ

 , (5.20)

where γ = θ 2/σ2, and AsVγ̂(ω) depends only on θ̂ , σ̂ and the covariance matrix of

θ̂ and σ̂ . Therefore, in what follows, for SNR estimation, we will concentrate on the

estimation of θ̂ and σ̂ , and evaluate the performance of these estimates.

Theorem 5.3.2 Let ω1, ω2 and ω3 minimize AsV
θ̂
(ω), AsVσ̂ (ω) and AsVγ̂(ω), re-

spectively. If AsV
θ̂
(ω) and AsVσ̂ (ω) are convex functions of ω , then

ω1 ≤ ω3 ≤ ω2. (5.21)

Proof If ω1 minimizes AsV
θ̂
(ω), then

∂AsV
θ̂
(ω)

∂ω

∣∣∣
ω=ω1

= 0,
∂ 2AsV

θ̂
(ω)

∂ω2

∣∣∣
ω=ω1

> 0. (5.22)

Similarly for ω2

∂AsVσ̂ (ω)

∂ω

∣∣∣
ω=ω2

= 0,
∂ 2AsVσ̂ (ω)

∂ω2

∣∣∣
ω=ω2

> 0. (5.23)

When the asymptotic variances expressions are convex in ω , then the minima are

unique.

From (5.20), the expression for the asymptotic variance of γ̂ is given by

AsVγ̂(ω) = αAsV
θ̂
(ω)+βAsVσ̂ (ω), (5.24)
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where α = 4θ 2/σ4 > 0 and β = 16θ 2/σ6 > 0. Since the coefficients of AsV
θ̂
(ω) and

AsVσ̂ (ω) in (5.24) are positive, if AsV
θ̂
(ω) and AsVσ̂ (ω) are convex function of ω ,

then AsVγ̂(ω) is also a convex function of ω . If ω3 is the minimizer of AsVγ̂(ω), it is

required to verify that

∂AsVγ̂(ω)

∂ω

∣∣∣
ω=ω3

= 0,
∂ 2AsVγ̂(ω)

∂ω2

∣∣∣
ω=ω3

> 0. (5.25)

To verify the second-derivative condition of (5.25), rewriting the left-hand-side in terms

of AsV
θ̂
(ω) and AsVσ̂ (ω) yields

α
∂ 2AsVσ̂ (ω)

∂ω2

∣∣∣
ω=ω3

+β
∂ 2AsVσ̂ (ω)

∂ω2

∣∣∣
ω=ω3

, (5.26)

which is greater than zero since α > 0, β > 0 and due to the convexity of AsV
θ̂
(ω)

and AsVσ̂ (ω).

The condition for the first-derivative of (5.25) can be rewritten similarly so that

that the condition to be verified is given by

∂AsVγ̂ (ω)

∂ω

∣∣∣
ω=ω3

∂AsVγ̂ (ω)

∂ω

∣∣∣
ω=ω3

=−β

α
. (5.27)

The right hand side of (5.27) should always be negative since both α > 0 and β > 0.

This happens only when one of the slopes of AsV
θ̂
(ω) and AsVσ̂ (ω) is positive and the

other is negative. By studying the functions, it can be seen that when the functions are

convex, and when ω1 < ω2, the ω axis can be divided into three regions: (i) ω < ω1,

where both AsV
θ̂
(ω) and AsVσ̂ (ω) have negative slope; (ii) ω1 < ω < ω2, where

AsV
θ̂
(ω) has a positive slope and AsVσ̂ (ω) has a negative slope; and (iii) ω > ω2,

where AsV
θ̂
(ω) and AsVσ̂ (ω) both have positive slope. Therefore, the condition in

(5.27) is satisfied only when ω1 ≤ ω3 ≤ ω2. A similar argument can be made when

ω1 > ω2.

�
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In what follows, Theorem 5.3.1 is verified for three sensing noise distributions:

Gaussian, Laplace and Cauchy. In addition, the optimum values of ω for estimating θ ,

σ and γ are also determined.

Gaussian Distribution

The case of Gaussian distributed sensing noise is considered first. The noise at the sen-

sors is given by ηi ∼N (0,σ2),∀i, where σ is the standard deviation of the Gaussian

distribution. The characteristic function in this case is given by

ϕη(σω) = e−ω2σ2/2 (5.28)

and the value of z is

z =
√

Pe jωθ e−ω2σ2/2. (5.29)

The low complexity estimators constructed from z using (5.13) and (5.14) are given by

θ̂ =
1
ω
∠z, (5.30)

σ̂ =
1
ω

√
log
(

P
|z|2
)
. (5.31)

The asymptotic covariance matrix for these estimates can be calculated to be

C
(
θ̂ , σ̂

)
=

 P+σ2
ν−Pe−2ω2σ2

2Pω2e−ω2σ2 0

0 P+σ2
ν−2Pe−ω2σ2

+Pe−2ω2σ2

2Pω4σ2e−ω2σ2

 . (5.32)

By substituting the Gaussian characteristic function from (5.28) in (5.12), it can be eas-

ily verified that the covariance matrices in (5.12) and (5.32) are identical, as expected.

The value of ω that minimizes the asymptotic variance of σ̂ needs to be com-

puted. Making the substitution β ← ω2σ2 and differentiating with respect to β , the

following equation is required to be solved to find the stationary points of the asymp-

totic variance of σ̂

β

[
e2β

(
σ2

ν

P
+1
)
−1
]
− e2β

(
σ2

ν

P
+1
)
+2eβ −1 = 0. (5.33)
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It is straightforward to show that in the Gaussian case, ∂ 2AsVσ̂ (ω)/∂ω2 > 0. There-

fore, the asymptotic variance is convex, and the solution to (5.33) leads to the unique

minimum, ω
opt
σ =

√
β

opt
σ /σ , where β

opt
σ is the solution to (5.33). Similarly, it can be

shown that the asymptotic variance of θ̂ is convex. The value of ω that minimizes the

asymptotic variance is given by ω
opt
θ

=
√

β
opt
θ

/σ , where β
opt
θ

is the solution to(
σ2

ν

P
+1
)
(β −1)e2β +(β +1) = 0. (5.34)

Neither (5.33) nor (5.34) can be solved analytically, but the solutions can be obtained

numerically.

The asymptotic variance of the SNR estimate is calculated using (5.20) and is

given by

AsVγ̂(ω) =
ω2σ4

[
P+σ2

ν −Pe−2ω2σ2
]
+θ 2

[
P+σ2

ν −2Pe−ω2σ2
+Pe−2ω2σ2

]
2Pω4σ4e−ω2σ2 .

(5.35)

Let the value of ω that minimizes AsVγ̂(ω) be denoted by ω
opt
γ . From Theorem 5.3.2,

ω
opt
γ is the unique minimizer of AsVγ̂(ω), and ω

opt
θ
≤ ω

opt
γ ≤ ω

opt
σ . It is easy to verify

that ω
opt
γ =

√
β

opt
γ /σ , where β

opt
γ is the solution to

β

[
β

{
e2β

(
σ2

ν

P
+1
)
+1
}
− e2β

(
σ2

ν

P
+1
)
+1
]

+γ

[
β

{
e2β

(
σ2

ν

P
+1
)
−1
}
−2
{

e2β

(
σ2

ν

P
+1
)
−2eβ +1

}]
= 0. (5.36)

Laplace Distribution

Let ηi be drawn from a Laplace distribution of mean zero and variance σ2. The char-

acteristic function is

ϕη(σω) =
1

1+ ω2σ2

2

(5.37)

and the value of z is

z =

√
Pe jωθ

1+ ω2σ2

2

. (5.38)
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The naive estimators in this case are

θ̂ =
1
ω
∠z, (5.39)

σ̂ =

√
2

ω

√√
P
|z| −1, (5.40)

with the asymptotic covariance matrix given by

C
(
θ̂ , σ̂

)
=


(

σ2
ν

P +1
)
(1+4ω2σ2)−1

2ω2(1+4ω2σ2)
2
(1+ω2σ2)

−2 0

0

(
σ2

ν
P +1

)
(1+4ω2σ2)(1+ω2σ2)

2
+(1+ω2σ2)

2−2(1+4ω2σ2)

8ω4σ2(1+4ω2σ2)(1+ω2σ2)
−2

 . (5.41)

Using (5.20), the asymptotic variance of γ̂ is given by

AsVγ̂(ω) =
θ 2 (1+ω2σ2)2

2Pω4σ8 (1+4ω2σ2)

[
4σ

4
ω

2{4Pω
2
σ

2 +σ
2
ν

(
1+4ω

2
σ

2)}
+θ

2
{

2σ
4
ω

4P
(
5+2ω

2
σ

2)+σ
2
ν

(
1+4ω

2
σ

2)(1+ω
2
σ

2)2
}]

.

(5.42)

To minimize the asymptotic variance of θ̂ it can be shown that ω
opt
θ

is given by

ω
opt
θ

=
√

β
opt
θ

/σ , where [62]

√
β

opt
θ

=
1

12

(
c

σ2
ν

P +1
+

25σ2
ν

P +4
c

+2

)
, (5.43)

and

c =
[
125

(
σ2

ν

P

)3

+258
(

σ2
ν

P

)2

+141
(

σ2
ν

P

)

+3
√

3

√(
σ2

ν

P

)(
σ2

ν

P
+1
)3(

375
σ2

ν

P
+32

)
+8
]1/3

. (5.44)

To minimize the asymptotic variance of σ̂ , one needs to calculate ω
opt
σ =

√
β

opt
σ /σ ,

where β
opt
σ is the solution to the quintic equation

16
(

σ2
ν

P
+1
)

β
5+2

(
12

σ2
ν

P
+13

)
β

4−
(

7
σ2

ν

P
+8
)

β
3−23

σ2
ν

P
β

2−9
σ2

ν

P
β − σ2

ν

P
= 0.

(5.45)
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Similarly, the asymptotic variance of γ̂ is minimized at ω
opt
γ =

√
β

opt
γ /σ , where β

opt
γ is

the solution to the quintic equation

16
(

γ +2+ γ
σ2

ν

P
+2

σ2
ν

P

)
β

5 +2
(

13γ−8+12γ
σ2

ν

P
−8

σ2
ν

P

)
β

4

+7
(

7γ
σ2

ν

P
−14

σ2
ν

P
−8γ

)
β

3− (23γ +2)
σ2

ν

P
β

2−9γ
σ2

ν

P
β − γ

σ2
ν

P
= 0. (5.46)

The quintic equations in (5.45) and (5.46) cannot be solved analytically. However, the

solutions to these can be obtained numerically.

Cauchy Distribution

Since the Cauchy distribution does not have any moments defined, the scale parameter

in this case is selected to be the Cauchy parameter. The characteristic function is given

by

ϕη(σω) = e−σω (5.47)

to yield

z =
√

Pe jωθ e−ωσ (5.48)

and the naive estimates of θ and σ are given as

θ̂ =
1
ω
∠z, (5.49)

σ̂ =
1
ω

log

(√
P
|z|

)
. (5.50)

These naive estimators have the asymptotic covariance matrix given by

C
(
θ̂ , σ̂

)
=

 P+σ2
ν−Pe2ωσ

2Pω2e−2ωσ 0

0 P+σ2
ν−Pe2ωσ

2Pω2e−2ωσ

 , (5.51)

which is a scaled 2×2 identity matrix. The asymptotic variance of γ̂ can be calculated

using (5.20) and is given by

AsVγ̂(ω) =
2θ 2 (θ 2 +σ2)(P+σ2

ν −Pe2ωσ
)

Pω2σ6e−2ωσ
. (5.52)
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Since the asymptotic variances of both θ̂ and σ̂ are identical, from Theorem

5.3.2, the same value of ω minimizes the asymptotic variances of all θ̂ , σ̂ and γ̂ . Taking

the first derivative of the asymptotic variance with respect to ω and equating to zero,

the value of ω that minimizes the asymptotic variances is given by

ω
opt =

2+W
[
− 2P

e2(P+σ2
ν)

]
2σ

, (5.53)

where W (·) is the Lambert-W function [136].

5.4 Per-Sensor Power Constraint

In the case of per-sensor power constraint, the total transmit power increases as the

number of sensors in the system increases, with the channel noise remaining the same.

Each sensor transmits with a power of P and the signal at the FC, shown in (5.2) is

given by

yL =
√

P
L

∑
l=1

e jωxl +ν . (5.54)

As the number of sensors increases, the effect of channel noise becomes negligible

and can be ignored. In fact, the results in the case of per-sensor power constraint can

be interpreted as a special case of the results in Section 5.3, with σ2
ν → 0. While this

simply a special case of the results presented in the previous section, the development is

included since closed form solutions can be obtained for ωopt for all cases considered.

The Estimator

At the FC, the signal from (5.54) is modified to give

ζL :=
yL

L
=
√

P
1
L

L

∑
i=1

e jωxi +
ν

L
, (5.55)

which as L→ ∞, converges in probability to

ζ = lim
L→∞

ζL =
√

P lim
L→∞

1
L

L

∑
i=1

e jωxi =
√

Pe jωθ
ϕη(σω). (5.56)

Defining ζ L = [ζ R
L ζ I

L] and ζ = [ζ Rζ I], ζ L converges to ζ in such a way that

ζ̃ = lim
L→∞

√
L(ζ L−ζ ) (5.57)
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is a 2×1 Gaussian random vector with zero mean and a 2×2 covariance matrix Σ̃(θ)

with elements

Σ̃11(θ) = P
[
ṽc cos2(ωθ)+ ṽs sin2(ωθ)

]
Σ̃22(θ) = P

[
ṽs cos2(ωθ)+ ṽc sin2(ωθ)

]
Σ̃12(θ) = Σ̃21(θ) = P(ṽc− ṽs)sin(ωθ)cos(ωθ), (5.58)

where ṽc :=var[cos(ωηl)] = 1/2+ϕη(2σω)/2−ϕ2
η(σω) and ṽs :=var[sin(ωηl)] =

1/2−ϕη(2σω)/2. The minimum variance estimator for [θ̂ σ̂ ]T in this case is given by θ̂

σ̂

= argmin
θ ,σ

[ζ L−ζ ]Σ̃
−1
(θ)[ζ L−ζ ]T , (5.59)

and the asymptotic covariance matrix of the estimates is given by

C
(
θ̂ , σ̂

)
=
[
JT

z Σ̃
−1
(θ)Jz

]−1
=


1−ϕη (2σω)

2ω2ϕ2
η (σω)

0

0
1−2ϕ2

η (σω)+ϕη (2σω)

2
[

∂ϕη (σω)

∂σ

]2

 , (5.60)

which can be verified to be (5.12) with σν → 0. The estimate of the computed as given

in (5.19), with asymptotic variance as given in (5.20). Theorem 5.3.1 and Theorem

5.3.2 continue to hold.

The three sensing noise distributions considered previously, the Gaussian dis-

tribution, the Laplace distribution and the Cauchy distribution are considered again for

the per-sensor power constraint case. Since the sensing noise stays the same, the low-

complexity estimators stay the same, but their performance changes. In each case, the

performance is evaluated and the values of ω that minimize the asymptotic variances

of θ̂ , σ̂ and γ̂ are calculated.

Gaussian Distribution

The performance in this case is given by substituting σν = 0 in (5.32) to give

C
(
θ̂ , σ̂

)
=

 1−e−2ω2σ2

2ω2e−ω2σ2 0

0

(
1−e−ω2σ2)2

2ω4σ2e−ω2σ2

 . (5.61)
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The asymptotic variance of γ̂ is given by

AsVγ̂(ω) =
θ 2
(

1−2e−ω2σ2
+ e−2ω2σ2

)
+ω2σ4

(
1− e−2ω2σ2

)
2ω4σ4e−ω2σ2 . (5.62)

The value of ω that minimizes the asymptotic variance of θ̂ is given by

ω
opt
θ

= argmin
ω

1− e−2ω2σ2

2ω2e−ω2σ2 . (5.63)

It can easily be verified that the objective is minimized as ω
opt
θ
→ 0. In a similar way,

it can be shown that ω
opt
σ → 0 minimizes the asymptotic variance of σ̂ . From Theorem

5.3.2, AsVγ̂(ω) is also minimized when ω
opt
γ → 0.

Laplace Distribution

The asymptotic covariance matrix is given by (5.41) with σν → 0:

C
(
θ̂ , σ̂

)
=

 2σ2(1+ω2σ2)
2

1+4ω2σ2 0

0 (2ω2σ2−1)(1+ω2σ2)
3

4ω2(1+4ω2σ2)

 . (5.64)

The asymptotic variance of the estimate of γ is given by

AsVγ̂(ω) =
γ
(
1+ω2σ2)2 (8+5γ +2θ 2ω2)

(1+4ω2σ2)
. (5.65)

To identify the value of ω that yields the best performance for estimating θ , the

following problem needs to be solved:

ω
opt
θ

= argmin
ω

2σ2 (1+ω2σ2)2

1+4ω2σ2 . (5.66)

By inspecting the first derivative, it can be verified that ω
opt
θ

= 1/σ
√

2. For the case of

σ̂

ω
opt
σ = argmin

ω

(
2ω2σ2−1

)(
1+ω2σ2)3

4ω2(1+4ω2σ2)
. (5.67)

This is minimized at ω
opt
σ =

√
3
√

33−13/4σ > ω
opt
θ

. The value of ω that minimizes

AsVγ̂(ω) is similarly calculated to be

ω
opt
γ =

√
−13θ 2−16σ2 +

√
(9θ 2 +16σ2)(33θ 2 +16σ2)

4θσ
. (5.68)
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Cauchy Distribution

In the case of Cauchy distributed sensing noise, the asymptotic covariance matrix for

the estimates, θ̂ and σ̂ , is given by

C
(
θ̂ , σ̂

)
=

 1−e−2ωσ

2ω2e−2ωσ 0

0 1−e−2ωσ

2ω2e−2ωσ

 , (5.69)

which, similar to (5.51), is a scaled 2×2 identity matrix. The asymptotic variance of γ̂

is given by

AsVγ̂(ω) =
2γ (γ +1)

(
1− e2ωσ

)
ω2σ2e−2ωσ

. (5.70)

Since AsV
θ̂
(ω) and AsVσ̂ (ω) are identical, the value of ω that minimizes them is

the same. Therefore, from Theorem 5.3.2, the same value of ω minimizes AsV
θ̂
(ω),

AsVσ̂ (ω) and AsVγ̂(ω), and is given by

ω
opt = (2+W (−2e−2))/2σ . (5.71)

5.5 Simulation Results

Simulations are used to verify the numerical results obtained above. In each case

of sensing distribution, the minimum variance estimator is simulated, and compared

against the respective naive estimators for θ and σ . These estimators are then com-

pared against the CRLB.

In Figure 5.2, the naive estimators and the minimum-variance estimator are

compared when the sensing noise is Gaussian. The asymptotic variances of the two

estimators are plotted and compared. It can be seen from the graph that for both the

estimate of the location parameter, θ̂ , and scale parameter, σ̂ , the performance is the

same for both the naive estimator and the minimum variance estimator. When com-

pared against the CRLB, in the case of Gaussian sensing noise, both the estimators are

asymptotically efficient, since the asymptotic variances are the same as the respective

values of the CRLB. This result was also seen previously in [63].

In Figure 5.3, the sensing noise is Laplace distributed. In this case, it can be

verified that the performance of the naive estimator and the minimum-variance estima-
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Figure 5.2: Asymptotic variance vs. scale parameter. Sensing noise is Gaussian dis-
tributed. The asymptotic variances match the CRLB.

tor is the same for each of the location parameter and scale parameter. However, the

estimators are not asymptotically efficient as the the asymptotic variances are larger

than the CRLB.

Cauchy distributed sensing noise was considered for the results shown in Figure

5.4. The estimators of both the location parameter and the scale parameter have the

same performance. This is verified in the figure. Also, both parameters have the same

CRLB, which are lower than the asymptotic variances of the location parameter and the

scale parameter. Therefore, in the case when the sensing noise is Cauchy distributed,

the estimators are also not asymptotically efficient.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

In the preceding chapters, four distributed inference problems were presented. In the

first case, distributed estimation was studied with a single antenna at the FC. In the

second case, distributed detection with multiple antennas at the FC was considered. In

both cases, the channels between the sensors and the FC were fading and the systems

were studied with differing amounts of channel information at the sensors. In Chapter 4

and Chapter 5, constant-modulus phase modulated transmissions from the sensors were

aggregated at the FC over Gaussian multiple-access channels. The scale parameter and

the location parameters were estimated, then combined to form an SNR estimate. The

performance of these estimators was studied. The asymptotic efficiency of the estimator

of the location parameter was also studied.

In Chapter 2, the asymptotic variance of a linear estimator over fading multiple-

access channels was evaluated for distributed estimation with different feedback sce-

narios and channel conditions. It was argued that the ratio of the asymptotic variances

can be viewed as the factor by which the number of sensors for the system with the

larger asymptotic variance would have to be increased so that the two systems have

the same variance, for large number of sensors (about 50 or less as seen in the simula-

tions). It was observed that for multiple access channels, performance with no CSI at

the sensors was very poor. When the sensors have full channel information, the opti-

mal sensor gains to obtain an achievable benchmark were derived, to give the smallest

possible variance over fading channels. Furthermore, as the available power increased,

this performance approached the AWGN performance. However, the drawback of this

approach was the need for complete channel knowledge at the sensors and the required

calculations to find the optimal sensor gains. When the channels were Rayleigh fading,

the phase-only case had a performance loss of a factor of exactly 4/π when compared
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to the AWGN channel case. This penalty was shown to decrease for line of sight sce-

narios.

The effects of inexact phase information at the sensors were also investigated.

Continuous errors in phase feedback, phase quantization and errors on the feedback

channel were also considered. Remarkably, in the asymptotic regime, when the num-

ber of sensors is large, it was possible to decouple the individual effects of phase-only

feedback, quantization, and error in feedback, analytically. It was shown that using as

few as three bits of channel phase information only caused deterioration of about 5%

in the asymptotic variance, and that these systems were also robust to errors on the

feedback channels. In the case of correlated channels, it was determined that a finitely

correlated model guaranteed convergence to the asymptotic variance. In addition, a

metric was derived to measure the speed of convergence and its dependence on the

effect of noise, power and channel correlation on the speed of convergence was deter-

mined. With simulations, it was shown that only a few tens of sensors were needed for

the asymptotic results to hold. Simulations were used to verify the analytical results for

different fading models and feedback scenarios, and to show how the value of σ2
A was

affected by correlation, M, observation noise and P.

A distributed detection system with sensors transmitting observations to a fu-

sion center with multiple antennas was considered in Chapter 3. The error exponent

was computed from the conditional probability of error. It was shown, that in certain

cases, the error exponent converged to zero, indicating that that the error probability

was not decaying exponentially, and the average asymptotic probability of error was

used to evaluate such systems.

The performance with AWGN channels between the sensors and the FC was

used as a benchmark. When the sensors had no channel information, Rayleigh fading

channels and Ricean fading channels were considered between the sensors and the

fusion center. When the channels were Ricean fading, the results were evaluated using
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the error exponent, which is a function of the Ricean-K factor. As the number of

antennas increased, or as the Ricean-K factor increased, performance improved. When,

K = 0, i.e., when the channels were Rayleigh fading, the error exponent was zero,

which indicated poor performance and the average asymptotic probability of error was

computed. Finally, in all cases, adding antennas at the FC provided improvement in

performance.

When the sensors had full channel information, the sensor gains were set to

maximize the error exponent. When there were multiple antennas at the FC, the opti-

mization problem was not tractable. Therefore, one lower bound and two upper bounds

were computed and the minimum of the two upper bounds was used as the tight upper

bound.

When the sensors only adjusted their phases for transmission, the performance

was independent of the number of antennas at the FC. The performance was between

EAWGN(1) and (π/4)EAWGN(1).

Having multiple antennas at the fusion center provided a gain of at most 2.

However, if both the number of sensors and antennas scaled to infinity in such a way

that the number of antennas at the FC scaled at least as fast as the number of sensors,

larger gain was shown to be achieved. However, such a system is not practical for

implementation.

Implementable, low-complexity, sub-optimal schemes were developed. In one

approach, the system was configured to beamform to the antenna that provided the best

performance, where the FC still used the data gathered at the other antennas. On an

average, this was shown to perform better than in the single antenna case. Another

approach was to assume there was no sensing noise, and the sensor gains were tuned

for such a system even when sensing noise was present. In such a situation, the system

performed optimally when the sensing noise in the system was low. A hybrid scheme

was proposed which selected the better of these two methods depending on the sensing
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SNR.

Depending on the number of sensors and antennas at the FC, and their rates of

growth, the following system design recommendation can be made. If CSIS is available

and the number of antennas at the FC is very much less than the number of sensors, then

for better performance, it is recommended to increase the number of sensors, rather than

the number of antennas at the FC. However, if the number of antennas at the FC can

be increased at a much faster rate than the number of sensors, it is possible to achieve

greater gains due to adding antennas at the FC.

In Chapter 4, the relationship between the Fisher information and the charac-

teristic function was studied through two bounds. The condition for equality was also

derived, for the first time in literature.

This result was used to prove the asymptotic efficiency of a distributed estima-

tor that minimized the asymptotic variance in the presence of Gaussian sensing noise.

Different sensing noise distributions were considered, and in all cases, the loss in ef-

ficiency was quantified through a scale-invariant relative efficiency metric that takes

values between 0 and 1. This metric depends only on the distribution of the sensing

noise used, and was computed for the Gaussian, Laplace, Cauchy and uniform cases.

These relative efficiency values were interpreted as the amount of information lost due

to constant modulus transmissions over Gaussian multiple-access channels relative to

having perfect access to all sensor measurements. Numerical evaluations confirmed the

result that the estimator of the location parameter derived in the chapter was asymptot-

ically efficient only when the sensing noise is Gaussian.

A problem of simultaneous distributed estimation of the scale parameter and

location parameter of a signal embedded in noise was considered in Chapter 5 for dif-

ferent sensing noise distributions. Sensors observed a parameter in sensing noise and

modulated the observations using a constant-modulus exponential scheme. The sensors

transmitted the observations over a Gaussian multiple-access channel to a fusion center.
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Due to the additive nature of the channel, the signal received at the FC converged to the

characteristic function of the sensing noise distribution as the number of sensors grew

large. Two cases of sensor power were considered, one with a power constraint on each

sensor, and one with a total power constraint across all the sensors.

At the fusion center, two types of estimators were used to estimate the location

parameter and scale parameter. One of them, a minimum-variance estimator, was used

to simultaneously estimate the parameters. Additionally, for each of the different sens-

ing noise distributions, a low-complexity estimator was derived based on the structure

of the characteristic function of the distribution. It was shown that these estimators are

identical. For each case of sensing distribution, the optimum transmission parameter,

ω , was calculated.

The asymptotic efficiency of the estimators was also evaluated. It was found that

only in the case of Gaussian sensing noise, the estimators are asymptotically efficient.

6.2 Future Work
Variable PAPR transmissions

In the problems considered in Chapter 2 and Chapter 3, the peak to average power

ratio (PAPR) is infinite. In the constant modulus problem considered in Chapter 4 and

Chapter 5, the PAPR is one. The case with infinite PAPR indicates the need for power

amplifiers with a large dynamic range. When the PAPR is one, all sensors transmit at

the same power level all the time. This indicates that if a sensor has a power source

with finite energy, the lifetime of the sensor is fixed. If some transmissions can occur

with a lower energy, the overall life of the sensor can be increased. Therefore, if the

transmission is redefined in such a way that

y =
L

∑
i=1

√
ρi(xi)e jω f (xi)+ v, (6.1)

the task would be to choose ρi(·) and f (·) to satisfy a given PAPR, while maintaining

good performance, which is similar in structure to the received signal in (2.1), with

phase-only CSIS. It can be easily seen from Section 2.4 that the penalty incurred due
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to such a transmission is given by

PG :=
E[|ρi|]

E2[|√ρ i|]
. (6.2)

The minimum value of PG = 1 when all the values of ρi are deterministic and equal.

In order to find the best distribution of ρ , the following optimization problem may be

posed:

argmin
ρ

PG subject to sup(ρ) = PP

sup(ρ)
E[|ρi|]

= PA, (6.3)

where PP is the peak allowable power and PA is the PAPR of the system. This problem

can be solved to obtain different distributions of ρ under different conditions imposed

on the nature of the distribution. In each case, the resulting estimator can be evaluated

and studied.

Distributed Consensus

The problems in this dissertation all have a centralized sensor network architecture

where the sensors observe a parameter embedded in noise and transmit their obser-

vations to the FC with minimal processing at the sensors. An alternate structure to

this the paradigm of distributed consensus, where sensors communicate amongst them-

selves without a fusion center. Graph theory is used to determine the connectivity of

the sensor network, consequently to establish a communication scheme. These compu-

tations are too demanding to be carried out at the sensors. While the consensus model

assumes no centralized computer (such as a fusion center), this communication scheme

is determined outside the network and fed to the network. Such a system does not ac-

count for changes in the network during operation. Future work in this are could be to

develop distributed algorithms for routing and scheduling that can be broken down into

fragments and processed at each sensor.
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Additionally, estimators and communication schemes developed in Chapter 4

and Chapter 5 can be extended to the case of networks with no FC. The performance

and efficiency of the algorithms under these conditions can be studied.
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