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ABSTRACT  

In today's global market, companies are facing unprecedented levels of 

uncertainties in supply, demand and in the economic environment. A critical issue 

for companies to survive increasing competition is to monitor the changing 

business environment and manage disturbances and changes in real time. In this 

dissertation, an integrated framework is proposed using simulation and online 

calibration methods to enable the adaptive management of large-scale complex 

supply chain systems. The design, implementation and verification of the 

integrated approach are studied in this dissertation. The research contributions are 

two-fold. First, this work enriches symbiotic simulation methodology by 

proposing a framework of simulation and advanced data fusion methods to 

improve simulation accuracy. Data fusion techniques optimally calibrate the 

simulation state/parameters by considering errors in both the simulation models 

and in measurements of the real-world system. Data fusion methods - Kalman 

Filtering, Extended Kalman Filtering, and Ensemble Kalman Filtering - are 

examined and discussed under varied conditions of system chaotic levels, data 

quality and data availability. Second, the proposed framework is developed, 

validated and demonstrated in ‘proof-of-concept’ case studies on representative 

supply chain problems. In the case study of a simplified supply chain system, 

Kalman Filtering is applied to fuse simulation data and emulation data to 

effectively improve the accuracy of the detection of abnormalities. In the case 

study of the ‘beer game’ supply chain model, the system’s chaotic level is 

identified as a key factor to influence simulation performance and the choice of 
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data fusion method. Ensemble Kalman Filtering is found more robust than 

Extended Kalman Filtering in a highly chaotic system. With appropriate tuning, 

the improvement of simulation accuracy is up to 80% in a chaotic system, and 

60% in a stable system. In the last study, the integrated framework is applied to 

adaptive inventory control of a multi-echelon supply chain with non-stationary 

demand. It is worth pointing out that the framework proposed in this dissertation 

is not only useful in supply chain management, but also suitable to model other 

complex dynamic systems, such as healthcare delivery systems and energy 

consumption networks.  
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Chapter 1 

INTRODUCTION 

1.1 Motivations 

A supply chain is a system of business enterprises that are linked together 

to satisfy consumer demand (Riddalls 2000). It usually consists of multiple 

echelons, each can be considered as a generic production/distribution process to 

add value to the final product. The connection of neighboring echelons can be 

characterized by backward information flow (orders from downstream entity to 

upstream entity) and forward material flow (products from upstream entity to 

downstream entity). In simplified models, goods flow from one echelon to the 

next till they reach the end-customer. In more realistic models, a supply chain is a 

network with parallel flows between different levels, and relationships between 

entities are complicated and changing with time (Li et al. 2009). 

Although Supply Chain Management (SCM) has been studied for a long 

time, new research questions continue to arise in response to a quickly changing 

business environment (global competition, shorter product life cycles, dynamic 

changes of demand pattern, product varieties and environmental standards, etc) 

and with the increased emphasis on customer-focused strategies (responsiveness, 

adaptation, etc). The failure to adapt to on-going changes potentially leads to the 

mismatch of supply and demand, which often causes dramatic financial loss. For 

example, Cisco Systems had to write-off $2 billion of excess inventory of its 

network infrastructure products when the actual market demands suddenly 

declined in 2001 (Hau 2004). Hendricks and Singhal (2005) studied 885 
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supply/demand mismatches reported by publicly traded firms and found on 

average 6.92% lower sales growth, 10.66% higher growth in cost, and 13.88% 

higher growth in inventories of those companies in the next year of the disruption. 

It is difficult to recover from such disturbance even after two years.  

Haeckel (1999) proposed the concept of the Sense-and-Respond 

enterprise, in which the organizations are adaptive – they identify the changes in 

customer demands and the business environment “as they happen” and make an 

appropriate response to capture new opportunities. Proactively managing supply 

chain uncertainty has been recognized to be increasingly important since the 

uncertainties in demand, supply, and economic conditions have recently reach 

unprecedented levels (Johnson 2010). Empirical evidence advocates the good 

practices of a company include being responsive to environment (the market 

change, supplier conditions, economic trend, etc). Top-performing supply chain 

companies, such as Dell, Walmart and Amazon have the qualities of being Agile 

(quick responsive to short-term demand changes), Adaptive (monitor the 

structural changes and adapt) and Aligned (all portions of the supply chain share 

information, responsibility and work with the same goal) (Hau 2004). Companies 

that successfully build a responsive supply chain stay ahead of their rivals in 

competition and bring tremendous benefits to consumers and society. For 

example, Seven-Eleven Japan (SEJ), which has been recognized as ‘one of the 

world’s most profitable retailers’ (Hau 2004), was able to deliver 64,000 rice balls 

to the assaulted city within six hours after the Kobe earthquake on January 17, 

1995.   
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However, managing a supply chain system in real time and quickly 

responding is challenging. A supply chain is a large-scale complex system that is 

vulnerable to a variety of uncertainties. Individual companies are under risks in 

supply, demand, product and information management (Tang 2006). Since a 

supply chain is a complex system, the decisions and process changes made at one 

level impact the responsiveness-related costs in the upstream supply chain 

(Reichhart and Holweg 2007). Furthermore, each company is legally and 

economically independent and is seeking profits and the convergence of interests 

is not guaranteed; this leads to more dynamics. One well-known example of 

supply chain dynamics is the amplification of demand through echelons from end-

consumers to upstream manufacturers, this is called the ‘bullwhip effect’. Recent 

research points out that supply chains are Complex Adaptive Systems (CAS) 

(Pathak et al. 2007), characterized by deterministic chaos, randomness and 

evolutionary behaviors.  

Fortunately, the current development of Information and Communication 

technologies (ICT) helps to build an information enriched environment 

(Gunasekaran and Ngai 2004). A great deal of data has been available along the 

supply chain. The implementation of an Enterprise Resource Planning (ERP) 

system integrates information at different levels and through different processes 

of a company (Cerpa and Verner 1998). The development of Electronic Data 

Interchange (EDI) (Webster 1995) and the Internet facilitates communication 

between buyers and suppliers and supports cost-efficient information sharing. 

Although information has the potential to help understand and monitor supply 
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chain dynamics, there are challenges as well. First, the information is not always 

as accurate, complete and precise as we hope (Li and Lin 2006). Even if 

information technology (e.g. EDI) is used to share information on end-customer 

demand and inventory levels, there is still often a discrepancy between the data on 

customer demand or inventory levels in information systems, and the real physical 

flow of products (Fleisch and Tellkamp 2005). Second, the information in the 

supply chain exists in different levels of details and is scattered in distributed 

autonomous nodes of a supply chain network. The reluctance to share information 

is prevalent since organizations traditionally perceive information disclosure as a 

loss of power (Mason-Jones and Towill 1997). We envision an integrated model 

that relates and consolidates distributed information and captures the complex 

behaviors of supply chain entities in real time will be a critical facilitator to 

manage supply chain adaptively and more effectively. 

Extensive research has been done to analyze and model supply chain 

dynamics. Riddalls et al. (2000) divide the modeling methodologies into four 

categories - continuous time differential equation models (e.g. System Dynamic 

models), discrete time difference equation models (e.g. state-space models), 

discrete event simulation systems and operational research techniques (linear 

programming, queuing theory, Markov chains and dynamic programming). More 

recently, agent-based simulations (Swaminathan et al. 1998), petri-net based 

models (Blackhurst et al. 2008; Liu et al. 2007), traffic-like network models 

(Unver 2008; Schwartz 2008), artificial intelligent models (Lau et al. 2002; 
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Alfonso et al. 2007) and mathematical tools from the control literature (Sarimvels 

et al. 2008) have been introduced to the supply chain research community.  

Among these methods, simulation-based methods are well known to have 

the flexibility to model dynamic behaviors and complicated structures of supply 

chain (Riddalls et al. 2000). Discrete-event simulations are generally used to 

capture operation-level details and to track the individual entities and their 

attributes (Paul et al. 2004). Continuous-time models are quick to build and run, 

which enable modelers to focus on abstracting the business/operation processes. 

Hybrid simulations are developed to take advantage of both techniques. Paul et al. 

(2004) show an example using discrete time simulation and system dynamic 

models to evaluate alternative decisions in ‘Sense-and-Respond’ systems. The 

development of the Parallel and Distributed Simulation (PDS) paradigm (Terzi 

and Cavalieri 2004) makes the simulation approach more attractive, since it is 

able to reduce simulation cycle time (Taylor et al. 2005) and to facilitate the 

expansion of scope of supply chain simulation (Mustafee et al. 2006).  

While promising, conventional simulations usually lack the capability to 

incorporate real time data to keep up on the changes in real systems. Most 

simulation research is based on the assumption that simulation parameters and 

external input (e.g. demand) are known prior to execution, which limits the 

implementation of simulation in the real-time management of a supply chain 

when the level of uncertainty changes over time and unexpected events occur 

during the interaction between individual nodes. Additionally, a simulation is 

rarely a high-fidelity representation of a dynamic system and it is subject to errors 
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from estimated model parameters, neglected physics, sub-optimal solution 

techniques, etc. Thus, real-time calibration is beneficial, especially in a complex 

system, to compensate for simulation errors. In this dissertation, we focus to 

answer these questions: What is the best way to integrate inaccurate/imprecise 

data with simulation models to better understand supply chain dynamics? How 

can more accurate predictions be made in order to enable prompt response to be 

carried out to handle changes in a complex supply chain?  

1.2 Symbiotic Simulation  

A simulation that interacts with the physical system in a mutually 

beneficial way is called ‘symbiotic simulation’ (or ‘online simulation’). This term 

was coined by the parallel and distributed simulation working group at the 

Dagstuhl Seminar on Grand Challenges for Modeling and Simulation in 2002 

(Fujimoto et al. 2002). In symbiotic simulation, the simulation model benefits 

from the continuous supply of the latest data and the automatic validation of its 

simulation outputs, whereas the physical system benefits from the improved 

performance obtained from the analysis of simulation experiments. A closely 

related research branch that also emphasizes the mutual relationship between 

simulation and physical world is Dynamic Data Driven Application System 

(DDDAS), sponsored by National Science Foundation (NSF) 

(http://www.nsf.gov/cise/cns/dddas/). Some applications of DDDAS are 

introduced by Darema (2005) and Ouyang et al. (2007).  

We review some representative work in the fields of symbiotic simulation 

and DDDAS in order to summarize the existing usage of real-time data in 
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simulations. A majority of the research pulls out real-time data from business/ 

manufacturing information systems and feeds them into online simulations as 

initial states and inputs. Zeng et al. (2009) build an online simulation that 

automatically gets real demand information and solves inventory management 

and order scheduling problems for a chemistry supply chain. Given the real-time 

demand, order scheduling strategies are evaluated and the reorder point for each 

type of raw material is determined dynamically to meet the demand. Another 

example is the symbiotic simulation for semiconductor assembly and test 

operation developed by Low et al. (2005). Key performance indicators of the 

physical system, such as queuing length, are tracked. Online simulations are 

initiated to apply with simulation-based optimization when congestion is detected. 

Low et al. (2007) apply a similar approach in an aerospace spare parts logistics 

case study to carry out dynamic business process re-engineering. Besides, under 

the concept of DDDAS, Koyuncu et al. (2007) build an application in a 

semiconductor supply chain that monitors real-time machine states (temperature, 

pressure, vibration, status, sound), workshop environments (temperature, sound, 

air quality, humidity) and production data (type of process, material, operator skill 

level, product flow volume, time since last maintenance). A Bayesian Belief 

Network model is employed to analyze the potential root cause of abnormality 

and to decide the fidelity of online simulations. In sum, in these research efforts, 

real-time simulations are called on triggers and fed with real world data to analyze 

the most current situation.  
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Furthermore, real world data is used to validate simulation results. It is 

realized that simulations may deviate from real situations and need to be updated 

to model the evolving state of systems. Fujimoto et al. (2007) propose a multi-

agent ad hoc simulation framework for transportation systems. Each agent 

represents a local simulation covering a small area of the transportation surface. 

The agents compare results from local simulations with measurements from the 

‘read world’, which is represented by a larger-scale emulator. When the 

difference between simulation expectation and measurement is larger than a 

predefined threshold, the local simulation rolls back to a previous time point and 

re-start using new available data. The level of data aggregation is found critical 

(Hunter et al. 2006). Mitchell and Yilmaz (2008) propose an innovative multi-

simulation approach for symbiotic simulation when ‘real-world’ data is learned by 

simulation agents. Rather than a single authorative model, an ensemble of 

plausible models collectively provides insights about the system state. Each agent 

incorporates real world data using reinforcement learning algorithm. 

Through the literature review, we conclude that the existing data fusion 

methods in the field of symbiotic simulation usually ignore the errors in 

observations, that makes simulations less capable to accurately model a loosely-

coupled and complex system like a supply chain. First, extracting detailed data 

from different supply chain nodes is difficult even for a major player in the supply 

chain. Second, the data in a supply chain environment often has noise in 

information release and in the transmission process, due to technologically 

motivated reasons, conflicting interests between supply chain partners, etc. A 
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methodology that can optimally incorporate noisy and incomplete data with 

simulation models is required.  

In this dissertation, a framework of symbiotic simulation with a focus on 

studying online data fusion methods is proposed. The data fusion techniques, 

different from simple insertion methods, consider the errors in both the simulation 

and real world measurements. The estimation of a state is improved by extracting 

a maximum amount of information from both the measurements and the 

dynamical model, and this information is combined in an optimal way. Besides, 

the observations are integrated with the whole system state vector based on the 

covariance of variables, so that the states not directly measured are also estimated.  

1.3 Data Fusion Method – Kalman Filtering 

Data Fusion is a general category of techniques to combine information 

from multiple sources to generate better understanding of system states. Strictly 

defined, it is ‘a dynamic process in the association, correlation and combination of 

information from multiple sources resulting in a fused product, which is more 

complete and accurate than any of the separate data elements’ (Waltz and Linas 

1990). The specific data fusion methods we study in the dissertation are Kalman 

Filtering (KF), Ensemble Kalman Filtering (EnKF) and Extended Kalman 

Filtering (EKF).  

Kalman Filtering is a well-known tool in the control community for 

stochastic state and parameter estimation. It originates from the paper of R. E. 

Kalman back in 1960 (Kalman 1960). It is a recursive data processing technique 

that is optimal for a linear Gaussian system. ‘Optimal’ means that it is the linear 
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least square estimator (mean), the maximum likelihood estimator, and provides 

complete information on the probability distribution of state vector. When noise 

does not follow a Gaussian distribution, it is still the least square linear estimator 

(i.e., among all the estimators that are linear combinations of the measurements). 

An introduction of Kalman Filtering is provided in Section 2.3.  

In a linear Gaussian system, Kalman Filtering could be considered as a 

special case of the Bayesian estimation method. It provides an efficient recursive 

computation of Bayesian method in a state-space model. A tutorial that relates 

Kalman Filtering to Bayesian estimation is provided in Barker et al. (1995).  

In a nonlinear system, whose output is not directly proportional to its 

input, Extended Kalman Filtering and Ensemble Kalman Filtering are two 

approximate methods of Kalman Filtering (see Section 3.2 and Section 3.3). As 

an early attempt to adapt Kalman Filtering to nonlinear problems, the Extended 

Kalman Filtering is based on linearization of the nonlinear model system state 

transition function and observation function using the Jacobian matrix. It has been 

successfully applied and become a standard technique used in nonlinear 

estimation and machine learning applications (Wan and Van Der Merwe 2000). In 

comparison, Ensemble Kalman Filtering, introduced in 1990’s, is a relative newly 

developed method. It is an integrated approach combining the Markov Chain 

Monte Carlo method with the Kalman Filtering updating scheme (Evensen 1994). 

It is especially successful in handling large-scale systems such as quasi-

geostrophic ocean model (Evensen 1994) and wild land fire simulation (Mandel et 

al. 2008).   
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1.4 Research Overview 

The objective of this dissertation is to develop an integrated framework of 

simulation and online data fusion to facilitate the study of adaptive management 

of large-scale complex supply chain systems. The study of the proposed 

framework is in three stages.  

In the first stage, we study the use of Kalman Filtering (KF) to fuse 

simulation data and emulation data (representing the real world) in a linear supply 

chain system. A Discrete Event Simulation (DES) of a simplified semiconductor 

manufacturing process is built. The statistical control chart Wineglass (Wu 1988; 

Wu, Hosking et al. 1992) is introduced to signal the abnormality of order 

fulfillment. Experiments show that KF significantly improves the performance of 

estimation of system states, especially specificity (type I error), to filter out noise 

in observations. The tradeoff of specificity and sensitivity are also discussed with 

the use of control chart.  

One limit of the first stage research is that Kalman Filtering assumes a 

linear state-space model. Considering the nonlinear and complex nature of supply 

chain systems, in the second stage, an integrated framework of online simulation 

coupled with nonlinear data fusion methods is proposed.  Extended Kalman 

Filtering (EKF) and Ensemble Kalman Filtering (EnKF) are used in simulation 

calibration. The performance of data fusion is studied in supply chain systems 

with different levels of system chaos (measured by the Lyapunov Exponent 

(Larsen, Morecroft et al. 1999)). Experimental results indicate that under a 

median observation error (5% of end-customer demand) and daily information 
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update, the improvement is up to 80% in a highly chaotic system, and up to 60% 

in a stable system. The advantages and disadvantages of EKF and EnKF are 

analyzed according to varied system chaotic levels, the availability and the quality 

of the real data. EnKF is shown to outperform EKF in systems with high chaotic 

levels.  

Finally, the online calibrated simulation framework is applied to an 

adaptive inventory control problem. Instead of using the result from a single 

simulation replication, an ensemble of simulation replications (called multi-

simulations method) collectively represent the distribution of system states. 

Ensemble Kalman Filtering is adopted for data fusion. The calibrated simulation 

with adaptive order-up-to inventory policy is used in an N-echelon serial supply 

chain to deal with non-stationary demand. Information sharing on demands is 

assumed. In particular, the calibrated simulation consolidates noisy and 

distributed information from different information sources. A closed-form 

expression of Minimum Mean Square Error (MMSE) forecast is derived when the 

shared information does not have noise. Experiment shows that our Calibrated 

Simulation-based Forecast (CSF) generates comparable result to MMSE forecast. 

When the shared information is noisy and the derived MMSE model is not 

directly applicable, CSF is able to provide reliable forecast and facilitate cost 

saving. The impact of observation noise, the locations of information providing 

node in the supply chain, the number of nodes providing information are 

analyzed. Some managerial insights are gained from this study, which are related 
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to the value of information sharing and selection of information provider(s) in the 

supply chain.   

To summarize, the contributions of the work include;  

‐ A symbiotic simulation framework is proposed, developed and 

verified. The framework features the integration of simulations and the 

Kalman Filtering based data fusion method. The estimation of the real 

world is improved by extracting a maximum amount of information 

from both the measurements and the simulation model and the 

information in an optimal way.  

‐ The strategies and configurations of data fusion methods are studied, 

including the choices of data fusion methods, the impact of data fusion 

frequency, data quality, sources of information, and single-data stream 

vs. multi-data stream.  

‐ The integrated framework is demonstrated in ‘proof-of-concept’ case 

studies on representative supply chain problems, including early 

signaling of exceptional orders, the online monitoring of a complex 

supply chain system with noisy and partial observations and a system 

with adaptive inventory management. It is shown that calibrated 

simulation is able to better sense supply chain dynamics thus enables 

real-time proactive decision making. 

The proposed integrated approach can be applied not only in supply chain 

management, but also for a wide range of large-scale dynamic systems, such as 

healthcare delivery management and disease control.  
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1.5 Dissertation Organization  

The remainder of dissertation (Chapter 2, 3 and 4) describe the research 

efforts of each stage. The dissertation is summarized and future research is 

discussed in Chapter 5. 
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Chapter 2 

AN INTEGRATED APPROACH TO MONITORING SUPPLY NETWORK 

DYNAMICS USING KALMAN FILTERING AND CONTROL CHARTS 

In today’s global market, a critical issue for companies to survive 

increasing competition is how to manage perturbations in their supply network. 

Literature indicates that most existing decision tools and models have focused on 

decision strategies that attempt to mitigate the negative consequences from actual 

and potential perturbations. Comparing to these “post” activities, we envision 

proactively sensing the states of the supply network operation is critical to 

understand the network dynamics and make necessary responses in a timely 

manner. In this chapter, we explore the application of Kalman Filtering to monitor 

the dynamic states of the supply network. Further, we integrate the Kalman 

Filtering with a control chart to enhance the sensitivity of detection. An industry 

supply network case is presented to illustrate how the integrated approach can be 

used to improve monitoring the supply network dynamics. We show that Kalman 

filtering is superior to the non-Kalman Filtering approach in specificity (the 

proportion of negatives which are correctly identified). Also we demonstrate how 

to set the time-varying statistical control limits of the re-estimation of system 

states at each milestone. By choosing the appropriate confidence levels, managers 

could tradeoff sensitivity and specificity to achieve a favorable detection 

performance.  



  16 

2.1 Introduction 

A supply network consists of a group of business entities including 

suppliers, manufacturers, distribution centers and customers. The globalization of 

the supply network makes it vulnerable to various types of risk associated with 

the uncertainty or unpredicted events affecting one or more parties in the network. 

Managing supply chain risk can be very challenging due to the complexity and 

dynamics of the system. Risks in such systems exist in demand requirements, 

capacity, delivery time, manufacturing time and cost (Taylor and Brunt 2001), 

which are usually categorized as internal risk factors. Whereas terrorist attacks, 

natural disaster, increased competition from opponents are often referred to 

external risk factors. These risks, if not properly accounted for, will have 

enormous negative impact on supply network performance. For example, Intel 

reported that in the fourth quarter of 2006 profit fell 39% from the year-earlier 

period, to $1.5 billion (Intel New Release, 2007). The profit was hurt by lower 

average selling prices since Intel was forced to cut prices after AMD gained share 

in the market for chips used to power PCs and servers. An explosion at Apache’s 

Varanus Island gas plant in Western Australia on June 3, 2008 cut off 30% of the 

Australia’s domestic gas supply and this crisis was estimated to cause $6.7 billion 

in losses (Gav 2008), assuming energy suppliers are fully recovered by 

December. These external risks are characteristics of high-impact/low probability 

situations which makes it difficult to collect historical data for analysis. However, 

the effect of relatively lower impact internal risks cannot be neglected. Hendircks 

and Singhal (2003, 2005) reported that firms affected by supply network 
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disruptions can expect a reduction in their operating income by 107%, return on 

sales by 114% and return on assets by 92%. A recent study indicated quality, cost, 

on-time delivery, continuity of supply and engineering/production are the five key 

factors associated with supply network performance (Wu et al. 2006). For 

instance, General Motors lost $900 million and Boeing lost $2.6 billion when 

suppliers failed to delivers components on time. Thus, for supply network 

managers to successfully assume the responsibility of contingency planning and 

execution, they must, first and foremost, be able to accurately “sense” subtle 

changes in network state for making proactive “response”.  

Recently, a notable growing interest in the area of supply network 

management, specifically, associated with disruption, is on the solutions that 

“sense” what is going on in a business, alert users to demand signals, plant 

failures, supply outages, and similar occurrences. These tools, named Supply 

Network Event Management have concentrated on the design of the information 

infrastructure to obtain and update real-time information on imminent events 

(Buckley 2006). However, the collected data tends to be incomplete despite the 

huge volume and the data tends to be stored distributed. Moreover, inconsistent 

data exists due to the fact that noise and uncertainty is often introduced during 

data collection. The provision of accurate estimates based on such incomplete 

data or error-prone data is therefore questionable. In this chapter, we first explore 

the application of Kalman Filtering to monitoring the dynamics of the system 

under uncertainty. Kalman Filtering is then integrated with a control chart to 

enhance the sensitivity of detection. A high-end server fulfillment supply network 
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is studied to demonstrate the effectiveness of the integrated approach. The 

remainder of this section is organized as follows: Section 2.2 reviews the 

literature of “sense and response” with focus on sensing in the supply network 

applications. Section 2.3 presents an introduction of Kalman Filtering with 

illustrative examples. The proposed integrated approach is detailed in Section 2.4 

followed by a case study in Section 2.5. Finally, the managerial insights and 

conclusions are drawn in Section 2.6. 

2.2 Literature Review 

In Supply Network Disruption Management, a number of research tasks 

from addressing the uncertainty in location and transportation problem for supply 

network design, multi-echelon inventory decisions, shop floor controls, to the 

linkage between stages such as vendor buyer partnerships have all attracted great 

attention from both academia and industry. Techniques such as mathematical 

programming, simulation, network based modeling have proved to be useful for 

the investigation. For example, Blackhurst et al. (2004) present a network-based 

approach to model uncertainty in a supply network. The approach allows for the 

inclusion of stochastic variables so that uncertainty in the operation of a supply 

network can be modeled. Lu and Li (2006) use Fuzzy sets and possibility theory 

to model supply networks in an uncertain environment. Lu indicates that decision 

makers often consider risk by determining the trade-offs between customer 

service levels and inventory investment in the supply network. Li et al. (2002) 

model the entities in a supply network from three aspects - functionality, process 

flow and co-ordination mechanism. Their model aims to capture the complexity 



  19 

of supply networks under the different scenarios. To quantitatively analyze the 

impacts of disruptions, some studies focus on the cost analysis of the supply-chain 

when the disruption takes place. Wu and Blackhurst (2005) present modeling 

methodologies to manage the synthesis of a supply network by linking 

hierarchical levels of the systems and to model and analyze disruptions in the 

integrated supply network. The work is further extended in Wu et al. (2007) to 

determine how changes or disruptions propagate due to supply network 

disruptions. Qi et al. (2004) analyze the cost in one supplier-one retailer supply 

network under a disruption in demand. In addition, Xiao et al. (2005) introduce an 

indirect evolutionary game model with two-vertical integrated channels to study 

evolutionarily stable strategies of retailers in a quantity-setting duopoly situation 

with homogeneous goods and analyze the effects of the demand and raw material 

supply disruptions on the retailers’ strategies. 

To our knowledge, most existing research focuses on offline impact 

analysis and develops mitigation strategies after the perturbations take place. 

While this approach is useful, we believe that the cornerstone of improved supply 

network performance is online control of both material and information flow. In 

the last two decades, there are significant advances in data capturing and analysis 

systems that offer great potential. For instance, the application of bar codes and 

RFID has provided an opportunity to create useful databases that can drive better 

decisions. Also, the developments within telecommunications have 

complemented other technologies such as microprocessors, EDI, global 

positioning systems, etc. by providing organizations with access to operational 
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real-time information never before available. However, the volume of the 

available data, the noise inherent in the data and the distributed nature of 

collecting data from the supply network elements, together raise a challenging 

question, that is: what is an efficient and effective approach to assessing supply 

network performance given the large volume of data with noise embedded? In 

2004, Wu and O’Grady (2004) embed nonlinear Kalman Filtering into a Petri Net 

model to estimate supply network states. In 2006, Parmar et al. (2006) make the 

first attempt to use Kalman Filtering for exception detection in the production of a 

server fulfillment supply network  Later, Chen et al. (2006) extend Parmar’s work 

to improve the estimates of job completion times in a whole server fulfillment 

supply network. While promising, Kalman Filtering in the studies has been used 

mainly as a technique for predicting delivery due-dates. Even though Upper 

Control Limits (UCLs) and Lower Control Limits (LCLs) are used to trigger 

alerts for troubling operations, the control limits are derived from business 

operation rules and are fixed (e.g., the control limit of the server is defined as 48 

hours). Considering the dynamics of a supply network, the control limits should 

vary as the performance of different stages (tiers) at the supply network is 

assessed. For example, the threshold for triggering the alert should be larger in the 

early stages of the supply network and become tighter as the operation proceeds. 

Such ideas have been well studied in various control chart methods, one of which 

is termed WineGlass (Wu 1988; Wu et al. 1992). WineGlass has been 

successfully applied to monitoring the dynamics of financial systems. It 

statistically tests the consistency between the on-going financial performance 
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(e.g., sales, expenses) and historical performance, initiates the “off-track” alert 

when the performance is beyond the control limit. One evident merit in 

WineGlass is that the UCL and LCL are sensitive to the stages being measured. 

As it approaches the end, the UCL and LCL get tighter. This motivates the 

research to integrate Kalman Filtering and time-varying control chart like 

WineGlass to more accurately and sensitively estimate the supply network states. 

2.3 Kalman Filtering Basics 

2.3.1 Background 

Kalman Filtering is a well-known and often-used tool for stochastic state 

estimation from noisy measurements. Under certain assumptions, Kalman 

Filtering is an optimal, recursive data processing or filtering algorithm. It makes 

an overall best estimate of a state based on all information, i.e., the values of the 

variables of interest. Such an estimate is achieved by incorporating knowledge 

about the system dynamics, statistical description of system noise, measurement 

noise, uncertainty in the dynamic model, and any available information about 

initial conditions of the variables of interest. However, Kalman Filtering is 

recursive, that is, not all data needs to be kept in storage and re-processed every 

time. For example, when a new measurement arrives, information gained in 

successive steps is all incorporated into the latest result.  

In Kalman Filtering, the state  ݔ א ܴ of a discrete-time controlled process 

is estimated through the transition equation and measurement equation. 

Transition Equation: 
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KkRxIuGxx n
kkkk ...1,,111 =∈++= −−− ε      (2.1) 

Measurement Equation: 

KkRzHxz m
kkk ...1,, =∈+= η      (2.2) 

where G is the  system state matrix that relates the state at the previous 

time step k-1(ݔିଵ) to the present step k(ݔ). The matrix I relates the optional 

control input at previous time (ݑିଵ) to the current state ݔ. The matrix H relates 

the system state (ݔ) to the measurement (ݖ). The random variables ߝ and kη

represent the process and measurement noise respectively. They are assumed to 

be white noise with independent normal distributions: ሺߝሻ~ܰሺ0, ܳሻ  and 

,ሻ~ܰሺ0ߟሺ ܴሻ . Kalman Filtering applies time update equations and 

measurement update equations iteratively to obtain estimates of the future state of 

the system. For details of Kalman Filtering, please refer to Kalman (1960). We 

use a simple example to demonstrate the application of Kalman Filtering to detect 

the dynamics of a supply network. 

2.3.2 Illustrative Example – A simple supply network 

Let us consider a supply network consisting of a number of 2nd tier 

suppliers ( ଵܶ), 1st tier suppliers ( ଶܶ), transporters ( ଷܶ), manufacturers ( ସܶ) and 

distribution centers ( ହܶ). For one specific order, assume there is a critical path of 

tasks that will decide the order completion time, ܶௗ. The tasks could be the 

procurement of materials, ordering the shorted components from suppliers, 

critical manufacturing steps, waiting in queue for available machines, shipment of 

parts from one site to another, etc.  
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Without loss of generality, we assume that the time when the order starts 

the first task is 0, thus, the order completion time ܶௗ ൌ ଵܶ  ଶܶ  ڮ  ହܶ . 

When an order is received, two pieces of information are provided to the 

customers: an expected delivery time ܧሺ ܶௗሻ ൌ ሺܧ ଵܶሻ  ሺܧ ଶܶሻ  ڮ  ሺܧ ହܶሻ 

and maximal possible delay represented as a control limit ݎ  0. The end of each 

task is considered as a “time” milestone when we estimate the system state and 

detect potential tardy orders. For this simplified example, the system state x୩ 

refers to the estimated completion time of task ܶ for the order (k=1,..5). Using 

the updated x୩, the order completion time is re-estimated and a control chart is 

drawn with UCL being fixed, that is, UCL = ܧሺ ܶௗሻ   Note UCL is of  .ݎ

interest in this study as we assume the tardiness of order delivery is critical in the 

supply network. The application of Kalman Filtering to the problem is outlined as 

following, where ܧሺ ܶሻ and ܸሺ ܶሻ are the mean and variance of ܶ: 

Step 1: The initialization at the first task (T1). ݔො
ି  is called the “prior 

estimation of order completion time”, and ܲ
ି  is the prior estimation error 

variance: 

ොݔ 
ି ൌ ሺܧ ଵܶሻ        (2.3) 

ଵܲ
ି ൌ ܸሺ ଵܶሻ        (2.4) 

Step 2: For task k (k >1), prior estimation of task completion time and its 

variance at the beginning of each task is calculated based on prior estimation of 

order completion time at previous stage (ݔො
ା): 

ොݔ
ି ൌ ොିଵݔ

ା  ሺܧ  ܶሻ        (2.5) 

ܲ
ି ൌ ܲିଵ

ା  ܸሺ ܶሻ        (2.6) 
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When the order starts task k, the system state increases by the expected 

time of ܶ , ሺܧ ܶሻ, and the variance of the system state increases by the variance 

of ܶ , ܸሺ ܶሻ.  

Step 3: Posterior estimation of task completion time and its variance after 

observing the real completion time of the task, denoted by ݔො
ା and ܲ

ା , are 

calculated as follows: 

ܭ ൌ ܲ
ି/ሺ ܲ

ି  ܴሻ       (2.7) 

ොݔ
ା ൌ ොݔ

ି  ݖሺܭ െ ොݔ
ିሻ       (2.8) 

ܲ
ା ൌ ሺܫ െ ሻܭ ܲ

ି                                                    (2.9) 

After the task k is finished, we use the observed completion time point of 

task ݖ, to update the order completion time and its expected variance by (2.7)–

(2.9). Kalman Filtering tolerates the measurement error in the observation ݖ and 

ܴ  denotes the variance of error. When ܴ ൌ 0 , that is, the observation is 

accurate, the updated system state ݔො
ା  equals to the observation ݖ . When ܴ 

increases, ݔො
ା tends to get closer to ݔො

ି.   

Step 4: Re-estimate the order completion time and determine if the order is 

on track. 

ሺܶିܧ ሻݔ|ݎ݁݀ݎ ൌ ොݔ  ∑ ሺܧ ܶሻୀାଵ,…,            (2.10)  

With the “posterior estimation of task completion time” ݔො, we re-estimate 

the order completion time by (2.10) and plot it in a control chart (Figure 1). As 

shown in Figure 1, assuming the expected delivery time is 60 days and r is 2 days, 

the upper limit is 62 days. At the end of T1, we estimate the completion time is 58 
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days. It increases to 63 days at the end of T4. Since 63 days is out of UCL (62 

days), a signal will be triggered at the end of T4 to draw the manager’s attention.   

Step 5: k=k+1, return to Step 2 until k=5, then stop. 

 

Figure 1. Example of a control chart of Kalman Filtering approach 

Clearly, Kalman Filtering has focused on fusing data to improve the 

estimations of the system states from both the system transitions (expected supply 

network performance) and measurements (observed supply network performance) 

which inherently have errors. To apply Kalman Filtering to detecting 

abnormalities in a supply network, control decisions on whether the current state 

implies an exception should be made. Earlier research explores the use of a fixed 

control limit for control decisions (Chen et al. 2006; Parmar et al. 2006). The 

challenge lies in identifying the control limit. If the control limit is small, too 

many false alarms will likely be triggered. On the other hand, fewer true positive 

alarms might be triggered as the order approaches the end if the control limit is 

large. Thus, the control limit needs to be sensitive to the current stage of the 

operation. Proposed herein is an integration of Kalman Filtering with the 
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WineGlass, a control chart that focuses on the determination of a time-dependent 

UCL with respect to a given confidence level. 

2.4 Proposed Approach – Integrating Kalman Filtering with WineGlass  

2.4.1 Wineglass Background 

WineGlass is a statistical process control method, used to track whether 

the stage-by-stage state is consistent with the overall plan (Wu 1988). When 

monitoring a process, the overall time is divided into a number of small time 

periods. At the end of each time period, we set a “time” milestone k (k = 1, … K) 

and measure the performance. Assume the performance target for the time period 

between the milestone k-1 and k is denoted by ܷ . Let u denote the actual 

performance in the period. The actual-to-track ratio (g) at the milestone k is 

calculated as: 

g ൌ ∑ ୀଵ..ݑ / ∑ ܷୀଵ.. , k=1..K      (2.11) 

WineGlass assumes that u  follows a normal distribution 

ܰሺgܷ, ܷ ଶg2ܷܷሻ, whereݓ ൌ ∑ ܷୀଵ.. , g ൌ ∑ ୀଵ..ݑ /ܷ, and ݓଶ is a constant 

coefficient obtained from historical data. The structure of the variance ݓଶg2ܷܷ 

is based on two assumptions: 1) variance of ݑ is proportional to ܷ and 2) ݓଶ is 

a dimensionless coefficient representing the dynamics of the process. More details 

about these assumptions are discussed in (Wu 1988). Later, Wu et al. (1992) 

determine the conditional distribution of g  is normal with the mean and variance 

in (2.12) and (2.13). Since g is the actual-to-ratio rate of state at the end of the 

process, g ൌ 1 means that the final state is exactly the same as planned. The 

WineGlass technique then generates the upper limit (UCLg(q)) and lower limit 
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(LCLg(q)) for the “time” milestone k (k=1,…K) given a confidence level, q, as 

follows:  

For k=1,2,…K,  

1)1|( ==Kk ggE                                               (2.12) 

).../()...()1|var( 11
2

kKkKk UUUUwgg ++++== +             (2.13) 

/2( ) ( | 1) var( | 1)k k K q k KUCLg q E g g z g g= = + =      (2.14) 

/2( ) ( | 1) var( | 1)k k K q k KLCLg q E g g z g g= = − =     (2.15) 

where z୯/ଶ  is the z-score for type I error rate (1- q/2). At the “time” 

milestone k, if g୩ ב ሺLCLg୩ሺqሻ, UCLg୩ሺqሻሻ , WineGlass concludes g୩  has 

abnormally deviated from expected states. As shown in (2.14) and (2.15), the 

control limits are associated with the time period k. As k increases, the variance 

decreases, the LCLg୩ሺqሻ and UCLg୩ሺqሻ are getting closer to the expected states 

(as shown in Figure 2).   

 

Figure 2. Example of a Wineglass chart 
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2.4.2 Kalman Filtering and WineGlass Integration for Supply Network State 

Monitoring 

The integrated approach extends Kalman Filtering by relying on the 

WineGlass to make time dependent control decisions. Since we are only 

interested in tardy orders, we set one-side control limits in our study. First, we 

will estimate parameters for WineGlass which can be used to generate the 

dynamic UCLg୩ሺqሻ  with respect to actual-to-track ratio g୩ . Secondly, the 

UCLg୩ሺqሻ is converted to UCLk’ for the completion time of operation task T୩. 

Adding UCLk’ with the estimated time of uncompleted tasks, we could get the 

stage-dependent UCLk for the order completion time. Finally, Kalman Filtering is 

used to estimate the supply network states which are judged by UCLk.  

In WineGlass, ݓଶ, a constant coefficient representing the dynamics of the 

system, is estimated from historical data. The larger variance of the process is, the 

larger ݓଶ  is. Let us assume the historical information of n orders with each order 

going through m tasks is available. Assume T୨,୩ (j=1,…n, k =1,…m) denotes the 

expected completion time for task k of the jth order, and Y୨,୩ (j=1,…n, k =1,…m) 

denotes the actual time taken by task k of the jth order. The best estimation of ݓଶ 

is calculated as ݓ ଶ: 
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Next, we need to determine ܷ, the targeted completion time of task k. Let 

us assume ܧሺT୩ሻ represents the expected completion time of task k, the expected 

order completion time is ܧሺ ܶௗሻ, the order delay control limit r is allowed 

delay of a normal order at the last stage, given order tardiness is of interest in this 

study, we define: 

ܷ ൌ ሺܧ ܶሻ ൈ ሺ1  
ாሺ்ೝೝሻ

ሻ      (2.19) 

From (2.12) - (2.14), the UCLgk with the confidence level q is calculated 

as: 

1

1
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= +

+ +
% , 1,2....k =         (2.20) 

where ݖ is the z-score for type I error rate =1- q 

The confidence level q controls the sensitivity of the WineGlass chart. 

When q is 0, there is no tolerance for the difference between target and actual 

performance. When q becomes larger, the control chart becomes less strict thus 

fewer orders will be estimated to be tardy. Given confidence level q, UCLg୩ሺqሻ 

represents the control limit on the ratio, that is, the probability current 

performance is on track. Since Kalman Filtering is applied to estimate the supply 

network states in terms of order completion time, we convert UCLk(q) to the 

control limit on the task completion time by (2.21), and obtain the control limit on 

the order completion time by (2.22): 

UCL
ᇱ ሺqሻ ൌ UCLg୩ሺqሻ  ൈ ∑ U୧୧ୀଵ..୩        (2.21) 
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UCL ሺqሻ ൌ UCL
ᇱ ሺqሻ   ∑ ሺܧ ܶሻୀାଵ,…,     (2.22) 

In the integrated monitoring approach, Kalman Filtering updates the 

estimation of task completion time following the procedure as described in 

Section 2.3.2, so that the order completion time is re-estimated at the end of each 

task. The control limits derived from WineGlass are used to make the control 

decisions.  The next section provides the examples and experimental results for 

Kalman Filtering and the integrated approach in a server fulfillment supply 

network. We focus on the manufacturing stages in a server assembly factory to 

validate our approaches. However, the approaches are general enough to apply to 

the whole supply network. 

2.5 Industry Case Study 

To validate the proposed approach, a high end server fulfillment supply 

network of a multinational computer technology and IT consulting corporation is 

studied. The production of computer server is facing a big challenge to meet 

quotas at the end of each quarter (Parmar et al. 2006). This server fulfillment 

supply network is complicated, including customers, server fulfillment 

production, a peripheral supply of Integrated Circuits (ICs), and warehouses. 

From the end-customer point of view, good service means on-time receipt of 

servers ordered and the required quantities (Fordyne 2001). However, on-time 

delivery is not always assured. A delay in any intermediate supply chain entity not 

only influences the fulfillment of specific orders, but also impacts other orders in 

the manufacturing line. For example, one of main issues that affect the 

performance of server fulfillment supply network is the quality of Integrated 
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Circuits (ICs) from the supplier. In some cases, when ICs are installed into the 

server, defective ICs are not detected until the whole server assembly passes 

through testing. Once defective servers are identified, they reenter the production 

line which requires additional production capacity and materials (chips), thus, the 

fulfillment is delayed and it potentially causes congestion of the production line.  

2.5. 1 Problem Specification  

A simplified representation of the general process in the server fulfillment 

center is shown in Figure 3. The ICs provided by outside suppliers along with 

other peripherals are put on the boards in Panel Assembly. After panel assembly, 

the assembly is tested and is put together with addition peripherals to form a basic 

untested server system. The basic untested server system then goes for system 

test. After the test, the server system is disassembled (Dekit) and the resulting 

tested components are put into storage to fulfill a future customer order. Once a 

customer order is issued by the server demand generator, servers are configured 

depending on the actual requirements. The configured customer servers are then 

tested and sent to packing and shipping. 
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Figure 3. General manufacturing process in server fulfillment center 

2.5.2 Simulation and Performance Metric  

In this study, we develop a simulation model to collect data for validation. 

Specifically, the simulation models 6 out of 10 server manufacturing stages, a six 

step serial stage that is identified as show in Figure 4 (PA to PF). The simulation is 

implemented using SIMUL8®. Based on industrial data, the processing time 

distributions for all six processes are assumed triangular with the parameters 

shown in Table 1.  The time between arrivals of entities (orders) is exponentially 

distributed with an average of 14.9 hours. 

 

Figure 4. Six-stage serial process of simplified production (PA to PF) 
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Table 1. Assumed parameters of triangular distribution for processing time and 

number of machines at each process (Parmar et al. 2006) 

 

In each simulation run, 1000 orders are released and the first 500 orders 

are used as a warm-up period and the second 500 orders are used for the study. 

We first collect data from 30 simulation runs as historical data to obtain the 

estimates of the mean and variance of the completion time of the orders. Then, 

another run is conducted as an emulation, which mimics the actual processing of 

incoming orders. The 30 simulations are used to characterize the transition 

process, and the emulation run represents the measurement in the context of 

Kalman Filtering. 

Assume there is a rework route between process B and process C because 

of the defect issue of one type of IC required in process B. After installing the 

chip into the products (XYZ-servers in this study), the testing process of the 

XYZ-server will determine whether this chip fails or passes. If this chip fails, the 

current XYZ-server which has a failed chip needs to be reworked and a new chip 

is requested for process B. Since this study aims to study how to sensitively 

initiate the triggers for out of control, we purposely differentiate emulation from 

Process Low (in hours) Mod (in hours) High (in hours) Resources 

A 6 8 17 1 

B 30 60 75 5 

C 18 35 92 5 

D 30 60 80 6 

E 8 13 17 2 

F 25 45 60 4 
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simulation, that is, we set the chip defect rate to be zero for the 30 simulation 

runs, and 1% defect rate for the emulation. The study on the impact of different 

defect rates will be reported separately. Meanwhile, we assume the promised 

order time is the average order completion time from the 30 simulation runs. To 

define a true tardy order, we apply control limit r (in hours) on the emulation 

results, i.e. if the completion time of an emulated order is later than the promised 

order completion time by r hours, it is considered to be a true tardy order. Both 

Kalman Filtering and the integrated approach monitor each order at each stage. 

They will decide whether to send out a signal to mark the order as an abnormal 

(potential tardy) order stage by stage. Thus, at each stage, let:  

‐ CS: True tardy order correctly signaled as being tardy 

‐ FS: Non-tardy order wrongly signaled as being tardy (Type I error) 

‐ FN: True tardy order wrongly non-signaled (Type II error) 

‐ CN: Non-tardy order correctly non-signaled 

We introduce two metrics: sensitivity (2.23) measures the proportion of 

actual tardy orders that are correctly identified and specificity (2.24) measures the 

proportion of the non-tardy orders that are correctly identified. 

FN)  (CS of #
 CS of #ySensitivit

+
=

       (2.23) 

 FS)  (CN of #
CN of #ySpecificit
+

=
              (2.24)  

A Receiver Operating Characteristic (ROC) chart (Hanley and McNeil 

1982) is used as a graphical plot to demonstrate the performance of Kalman Filter, 

the integrated approach in terms of sensitivity and specificity. The horizontal axis 



  35 

of ROC chart is 1-specificity, and the vertical axis of an ROC chart is sensitivity. 

A good monitoring performance means both high sensitivity and high specificity, 

which is denoted by a point close to (0,1) in a ROC chart. The larger the area 

under ROC curve is, the better the monitoring performance is. 

2.5.3 Experimental Results  

We collect the statistics of mean and variance of the time that an order 

spends in each manufacturing stage from the 30 simulation runs (Table 2). Also, 

we use the simulation data to estimate the WineGlass coefficient ݓଶ following 

(2.16) - (2.18), which is 0.01437. 

In the emulation run, we assume the order delay tolerance r is 24 hours. In 

this case, we have 109 true tardy orders among the total 500 orders.  

Table 2. Mean and variance of processing time in each stage (in hours) 

 

Experiment I – Comparison Study on Approaches with and without Kalman 

Filtering 

To apply Kalman Filtering for supply network dynamics detection, important 

parameters include mean and variance of processing time (Table 2) and white 

noise from measurements (represented as the emulation measurement errors, ܴ). 

This set of experiments is conducted to (1) demonstrate the advantage of applying 

Kalman Filtering to monitor system dynamics, and (2) study the performance of 

 Process 

A 

Process 

B 

Process 

C 

Process 

D 

Process 

E 

Process 

F 

T_order 

E(T) 21.44 59.82 49.53 57.69 13.54 47.89 249.91 

Q(T) 30.01 125.89 263.63 117.86 8.82 98.15 644.36 
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Kalman Filtering based detection, under varied measurement noise ܴ over [0, 16, 

36, 64, 100, 144, 196]. To signal potential tardy orders, we use the fixed UCL, 

which equals to the historical order completion time adding a predefined 

tolerance, that is,  ܧሺ ܶௗሻ    .hours at each stage 273.91 = 24 + 249.01 = ݎ 

Table 3 and Table 4 summarize the sensitivity (Se) and specificity (Sp) of 

detections at the end of process A through E given the emulation measurement 

errors. The results of the detection based on the direct use of noisy emulation 

observations are shown in Table 3, and the results of detection using the fused 

simulation and emulation data based on Kalman Filtering are shown in Table 5. 

As seen from (2.7) - (2.9), the updated state estimations equal to the emulation 

observations when ܴ =0, that is why the results from Table 3 and Table 4 are the 

same for ܴ =0.  

 

Table 3. Experiment I - Non-Kalman Filtering approach (r=24 hours) 

 

 

 

Rk Process A Process B Process C Process D Process E 

Se Sp Se Sp Se Sp Se Sp Se Sp 

0 0.21 0.98 0.43 0.97 0.70 0.96 0.78 0.96 0.77 0.96 

16 0.18 0.98 0.45 0.96 0.69 0.96 0.75 0.96 0.73 0.96 

36 0.22 0.97 0.48 0.96 0.72 0.96 0.75 0.94 0.72 0.94 

64 0.21 0.96 0.42 0.96 0.65 0.94 0.73 0.93 0.75 0.94 

100 0.22 0.95 0.43 0.94 0.64 0.94 0.72 0.94 0.74 0.94 

144 0.17 0.95 0.46 0.93 0.67 0.93 0.74 0.94 0.72 0.92 

196 0.28 0.92 0.49 0.92 0.60 0.91 0.73 0.91 0.70 0.91 
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Table 4. Experiment I – Kalman Filtering approach (r=24 hours) 

 
Figure 5 shows the ROC charts obtained with and without Kalman 

Filtering for ܴ = 16, 36, 64, 100, 144, 196. We conclude that the overall 

performances of both methods improve as processes move from A through E. 

This implies that the identifications of the tardy orders are more accurate as the 

order approaches the last process. Secondly, the Kalman Filtering approach 

consistently outperforms the approach without Kalman Filtering under various 

observation errors ( ܴ ). Considering the sensitivity (vertical axis), both 

approaches achieve comparable results, however, the specificity (horizontal axis) 

of Kalman Filtering is always better. This indicates the approach without Kalman 

Filtering tends to misclassify non-tardy orders more thus generate more false 

alarms. We also observe from Figure 5 that with the increase of ܴ , the 

performance differences between the two approaches increase. We conclude that 

in the cases there exist larger observation noise the approach without Kalman 

Filtering deteriorates greatly. While promising, both approaches have lower 

Rk Process A Process B Process C Process D Process E 

Se Sp Se Sp Se Sp Se Sp Se Sp 

0 0.21 0.98 0.43 0.97 0.70 0.96 0.78 0.96 0.77 0.96 

16 0.10 0.99 0.40 0.97 0.66 0.96 0.76 0.96 0.75 0.96 

36 0.01 1.00 0.37 0.98 0.69 0.97 0.73 0.96 0.70 0.97 

64 0.00 1.00 0.27 0.98 0.62 0.97 0.72 0.96 0.76 0.97 

100 0.00 1.00 0.27 0.99 0.57 0.97 0.75 0.96 0.73 0.95 

144 0.00 1.00 0.12 1.00 0.57 0.97 0.67 0.97 0.74 0.96 

196 0.00 1.00 0.14 0.99 0.50 0.97 0.65 0.96 0.70 0.96 
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sensitivity (less than 80%). Therefore, in the second experiment, we explore the 

integration of Kalman Filtering with WineGlass for improved performance. 

 

Figure 5. The ROC charts of Kalman Filtering vs. Non-Kalman Filtering 

approach (Rk = 16, 36, 64, 100, 144, 196) 

 

Experiment II – Comparison Study on Kalman Filtering and Integration Kalman 

Filtering with WineGlass 

From Table 2, the average variance of each process is 107. To reduce the 

bias on observation, we decide to use ܴ  =100 to test the performance of the 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 
 

Horizontal -axis: 1- specificity       Vertical -axis: sensitivity 
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integrated approach. In the integrated approach, the UCL’k is determined jointly 

by the confidence level q and control limit r. To keep consistency with 

Experiment I, assume r=24 hours. First, based on the mean processing time of 

each stage (shown in Table 2), we calculate the targeted completion time ܷ using 

(19). Note ܧሺ ைܶௗሻ = 249.91 is determined by assuming the mean processing 

time of the six tasks. We obtain UA=23.50, UB=65.57, UC=54.28, UD=63.23, 

UE=14.84, UF=52.49. Next, we calculate the UCLgk, UCL’k and UCLk following 

(2.20) - (2.22). For example, assuming q=0.9, the corresponding z-score=1.28, for 

process A, we get: 

5.1
5.23

49.52...57.65*01437.0*28.11...~1 =
+

+=
+

+=−
A

FB
qA U

UUwzgUCL

   
25.355.23*5.1'

..
==×= ∑ = FAi iAA UUCLUCL

  

7.285...' =++= FBAA UUUCLUCL  

The UCL of each process with r=24 and q=0.9 is summarized as follow.  

 

Table 5. UCLs for order completion time at the end of Processes A-F (r =24, 

q=0.9) 

 

 

 

 

 Process 

A 

Process 

B 

Process 

C 

Process 

D 

Process 

E 

Process 

F 

UCL  285.70 293.63 294.93 292.03 290.48 273.91 
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Table 6. Experiment II – the integrated approach (Rk=100, r=24 hours) 

 

Varying q from 0.01 to 0.99, we can observe the tradeoff between true 

position rate (sensitivity) and false positive rate (1-specificity) of the integrated 

approach (Table 6). Note the last two rows in Table 6 are the results from Kalman 

Filtering and non-Kalman Filtering approaches. We use ROCKIT  to fit bi-normal 

ROC curves. Figure 6 shows the resulting ROCs of detections by the integrated 

approach at process A to E. In each figure, the performance of the Kalman 

Filtering based approach with fixed control bound = 273.91 is highlighted with 

▲. We also mark the point on the integrated approach by ■ where sensitivity is 

 Process A Process B Process C Process D Process E 

q Se Sp Se Sp Se Sp Se Sp Se Sp 

0.01 1.00 0.00 0.99 0.06 1.00 0.27 1.00 0.47 1.00 0.53 

0.05 1.00 0.00 0.92 0.31 0.98 0.48 0.95 0.65 0.97 0.71 

0.1 1.00 0.02 0.92 0.43 0.97 0.58 0.93 0.72 0.93 0.77 

0.2 0.91 0.18 0.83 0.58 0.94 0.71 0.92 0.81 0.90 0.85 

0.3 0.83 0.50 0.80 0.74 0.89 0.80 0.87 0.87 0.88 0.89 

0.4 0.63 0.75 0.68 0.83 0.83 0.85 0.83 0.91 0.83 0.91 

0.5 0.46 0.87 0.57 0.89 0.76 0.89 0.79 0.94 0.81 0.93 

0.6 0.28 0.95 0.49 0.93 0.68 0.93 0.75 0.96 0.73 0.95 

0.7 0.15 0.99 0.39 0.96 0.58 0.96 0.64 0.97 0.67 0.97 

0.8 0.05 1.00 0.27 0.99 0.49 0.99 0.53 0.99 0.56 0.99 

0.9 0.00 1.00 0.15 1.00 0.30 0.99 0.37 1.00 0.40 1.00 

0.95 0.00 1.00 0.15 1.00 0.28 1.00 0.29 1.00 0.37 1.00 

0.99 0.00 1.00 0.01 1.00 0.03 1.00 0.11 1.00 0.13 1.00 

KF 0.00 1.00 0.27 0.99 0.57 0.97 0.75 0.96 0.73 0.95 

Non-

KF 

0.22 0.95 0.43 0.94 0.64 0.94 0.72 0.94 0.74 0.94 
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close to 0.8. It is observed that the approach with fixed control bound suffers low 

sensitivity in the early process (Figure 6a). As the sensitivity improves from 

process A through E, the specificity decreases (Figure 6b-e). In the integrated 

approach, q can be used to balance sensitivity and specificity. Since high-end 

server costs $1M and even higher, the supply network manager will focus more 

on satisfying customers’ order and reducing any delays. Thus, sensitivity may be 

more important than specificity which drives the need for the integrated approach, 

especially, at the earlier processes of the supply network. The points marked by ■ 

in Figure 6(a)–(e) are the examples when monitoring the processes with 

sensitivity ≈ 0.8. Figure 6(f) combines the ROC chart and Kalman Filtering 

solution of each process. The results confirm that as the operation progresses from 

A through F, the overall performance improves. Figure 6(f) compares the ROCs at 

all five processes. Area Under Curve (AUC) is usually used as an indicator to 

assess the detection performance (Hanley and McNeil 1982). The results indicate 

AUC increases from 0.73, 0.82, 0.92, 0.95 to 0.96 for process A through E. 

In summary, our first experiment was conducted to compare the approach 

with Kalman Filtering and without Kalman Filtering. We conclude Kalman 

Filtering achieve comparable sensitivity but outperforms greatly in specificity. 

Due to the fact that sensitivity may be more important for high-end server supply 

network, we explore the integration of WineGlass to Kalman Filtering to balance 

sensitivity and specificity. Experimental results indicate that sensitivity of the 

earlier stages of the supply network can be greatly enhanced by the use of 

WineGlass.  
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Horizontal -axis: 1- specificity.       Vertical -axis: sensitivity. 

Figure 6. ROC Charts for Process A, B, C, D, E and all five processes 
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2.6 Conclusions and Future Work  

Most existing research in responsive supply network management has 

focused on mitigation strategies during the onset of disturbances/perturbations. 

This research attempts to proactively sense the system status, which enriches the 

practices in the field of “sense and response”. We study Kalman Filtering, a 

control theory based approach in applying for system status sensing. Noting the 

undesirable property of a fixed control bound used in the Kalman Filtering 

approach, we integrate Kalman Filtering with a control chart method called 

WineGlass for better detection of abnormalities. A simulation model representing 

a server fulfillment supply network is developed to validate the proposed 

approach. In our experiments, 30 simulation replicates are made to collect 

processing statistics and a single emulation run is conducted to represent the real-

time measurement. Thus, fusing data from simulation and emulation based on 

Kalman Filtering and an approach integrating Kalman Filtering and WineGlass 

are studied. We conclude that Kalman Filtering greatly improves the specificity 

and its sensitivity can be then enhanced by employing the WineGlass method. In 

the future, we will conduct more experiments including different defect rates (in 

this study, we set 1% for emulation). We will further explore other time sensitive 

control chart methods. In addition, we will apply the approach to other service 

industries such as retailer businesses, and/or transportation systems.  
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Chapter 3 

MONITORING AND STUDYING SUPPLY CHAIN DYNAMICS: A DATA 

FUSION APPROACH 

Effective supply chain management is becoming increasingly important 

for companies to be competitive in today’s global market. It is a challenging task 

to manage a supply chain due to the complexity and dynamics inherent in the 

system. Though a great amount of research efforts have spent on modeling supply 

chains, the accuracy of models has always been of concern. First, the estimated 

parameters for the model may not be accurate. Secondly, the assumptions for the 

model formulation and model initialization may not truly reflect the dynamics in a 

real supply network operation. Another level of difficulty added is that the 

dynamics and disturbance may not be well accounted in developing and 

initializing the models. To address these issues, the application of data fusion 

techniques to real-time calibrate the running models is proposed. Specifically, a 

simulation based on discrete time difference equation model for a well studied 

beer game supply chain is implemented. Two data fusion methods including 

Extended Kalman Filtering and Ensemble Kalman Filtering are explored to 

monitor the supply chain dynamics. The advantages and disadvantages of each 

calibration method are analyzed under varied system dynamics, different levels of 

information availability and quality of the real time data. Experimental results 

indicate that dynamic data calibrated simulation model is significantly improved 

in terms of prediction accuracy. With appropriate tuning, the accuracy 
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improvement up to 80% can be achieved in chaotic system; and up to 60% in 

stable systems.  

3.1 Introduction 

A supply chain is a system of business enterprises that are linked together 

to satisfy consumer demand (Riddalls 2000). It usually consists of multiple 

echelons, each can be considered as a generic production/distribution process to 

add value to the final product. In simplified models, goods flow from one echelon 

to the next till they reach the end-customer. In more realistic models, a supply 

chain is a network with parallel flows (both information and material) between 

different echelons, the inter-relationships between entities are more complicated 

and will evolve over time (Li et al. 2009).  

Quickly changing business environment including global competition, 

shorter product life cycles, dynamic changes of demand pattern, product varieties 

and environmental standards along with the increased emphasis on customer-

focused strategies calls for an effective supply chain management. Yet the 

challenges facing the decision makers are the prevalence of uncertainties stemmed 

from the suppliers, the customers and/or the manufacturers. Research has 

explored ways to model the uncertainties in order to alleviate the negative 

impacts. As a result, supply chain risk management has gained great attention 

lately. Tang (Tang 2006) provides a comprehensive overview and categorizes the 

supply chain risk research based on supply, demand, product, information 

management as well as risk mitigation strategies. Most research is based on the 

assumptions that the risk and uncertainties are known as a prior. This limits the 
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implementation of adaptive supply chain which is designed to make real time 

adjustment in responding to the changing environment. Instead of assuming the 

uncertainties are known, the key of adaptive supply chain is to “sense/know” the 

operating environment so that timely responses can be made. One example is 

“sense and response” enterprise proposed by Haeckel (1999) in which the system 

can identify the changes in customer demands and business environment “as they 

happen” and make appropriate response to capture new opportunities. The failure 

to adapt to the on-going changes potentially leads to the mismatching of supply 

and demand, which often causes dramatic financial loss (Hendricks and Singhal 

2005). Fortunately, the advancement in information and communication 

technologies (Gunasekaran and Ngai 2004) nowadays makes large amount of data 

readily available for the participants in the supply chain to detect the supply chain 

dynamics. The challenges from this data rich environment are lying in the large 

quantity of data and data quality (e.g., incomplete data, noisy data and conflicting 

data). Thus, an adaptive supply chain requires a robust sense method to ensure the 

effectiveness of responses. 

In this chapter, two data fusion techniques based on Kalman Filtering are 

studied for better sensing the supply chain dynamics. Kalman Filtering is known 

as a technique for model calibration by recursively fusing data from real 

measurement into model. Parmar et al. (2006) make the first attempt to study the 

application of Kalman Filtering to detect product quality in a server fulfillment 

supply network with the focus on the production line. In Chapter 2, we propose 

the use of Kalman Filtering to monitor a simplified server supply network 
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performance (e.g. delivery date) with various uncertainties, such as supplier 

quality, demand variation. While promising, Kalman Filtering is designed for use 

in linear state system which may limit its applications to a complex nonlinear 

supply network. Therefore, Extended Kalman Filtering and Ensemble Kalman 

Filtering (Evensen 2006) for nonlinear system are of particular interests in this 

study. Two sets of comparison experiments are conducted to gain the insights on 

the performance of each in supply chain model calibration. The supply chain 

model studied is a four-echelon beer game model consisting of a retailer, a 

wholesaler, a distributor and a manufacturer. We are particularly interested in this 

model because it can present different levels of chaos and dynamics depending on 

the parameter setting (Hwarng and Xie 2008; Larsen et al. 1999) which will make 

the comparison more meaningful.  

The chapter is organized as follows. Section 3.1 summarizes the literature 

in supply chain dynamics and data fusion. It is followed by the introduction of 

Extended Kalman Filtering and Ensemble Kalman Filtering. The detailed 

experiment studies and analysis are explained in Section 3.4.The conclusions with 

future directions are provided in Section 3.5.  

3.2 Supply Chain Dynamics  

The dynamics and complexity of a supply chain increase uncertainties 

which potentially lead to chaos within the network (Wilding 1998). There exist 

notable research efforts to capture and analyze supply chain dynamics. Riddalls et 

al. (Riddalls 2000) categorize the modeling methodologies into four: discrete 

event simulation systems, operation research models, continuous time differential 
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equation models and discrete time difference equation models. Operation research 

models such as linear programming, nonlinear programming, queuing theory, 

stochastic programming suffer from their limits in scalability. That is, the large-

scale supply network introduces a large number of variables which prohibits the 

applications of these operation research methods. Secondly, the convergences of 

nonlinear programming model have always been an issue. Thirdly, most 

optimization techniques provide less insight on how system parameters affect the 

solution. In comparison, discrete event simulation is well positioned to take 

account of stochastic factors. However, it requires extensive domain expertise and 

time to develop discrete event simulation models. In addition, though discrete 

event simulation models are known to help understand the system dynamics, 

whether the model is sufficiently accurate and precise to represent the real-world 

scenarios has always been a difficult question to tackle. When there are 

divergences between simulation results from real system observations, no simple 

strategy exists to reverse the result deviation by adjusting the initial setting and 

simulation parameters to “rebuild and restart” the model. To monitor and control 

the system in real-time, models based on differential equations are more 

appealing. This is because many influential characteristics can be explicitly 

presented in the differential equations. Tools and methodologies can then be 

implemented to gain insights into the system dynamics. Consider that the 

dynamics of any supply chain are fundamentally discrete in nature. That leaves 

discrete time difference equation model, a hybrid approach which enables 

classical controls within a discrete framework, a suitable method to model supply 
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chain dynamics. Such model could be further enhanced through the calibration 

using real time data as shown in this chapter. 

However, fusing real time data is not without challenges because (1) 

redundant or even conflicting data may be collected; (2) data may be inaccurate or 

missing as a result of manual entries; (3) there exists unavailable information due 

to the reluctance to share private information among the supply chain participants. 

There is a need for a robust data fusion model that takes into account both the 

noise, incompleteness from the real time data, and the uncertainty, inaccuracy 

from the model. Data fusion is ‘a dynamic process in the association, correlation 

and combination from multiple sources resulting in a fused product, which is 

more complete and accurate than any of the separate data elements’ (Waltz and 

Linas 1990). Known as one of optimal (minimum error variance) unbiased linear 

filters, the recursive process of Kalman Filtering by fusing measurement data 

(e.g., from sensor) into system data (from model) makes it an attractive tool for 

linear system calibration. For a complex nonlinear system such as supply chain, 

extensions of Kalman Filtering, such as Extended Kalman Filtering and Ensemble 

Kalman Filtering should be considered.  

3.3 Methodology 

3.3.1 Kalman Filtering Basics 

Kalman Filtering (KF) is the optimal state estimation method in a linear 

state-space model (Welch and Bishop 2001). Let x୩ be an n-dimensional vector 

process, called the state of the system. Let z୩ be an m-dimension vector process, 
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representing the measurement of the system. The discrete-time state-space system 

(without control input) can be mathematically described by two equations:  

State Transition Equation:  x୩ ൌ G୩x୩ିଵ  ε୩    (3.1) 

Measurement Equation:  z୩ ൌ H୩x୩  η୩      (3.2) 

where G୩ is a nൈn matrix, which linearly relates the state at the previous 

time  x୩ିଵ to the current state x୩. H୩ is a mൈn matrix, showing how the system 

state x୩  linearly relates to observation z୩  .  ε୩  and η୩  are the noise in state 

transition and measurement, following multivariate Gaussian distribution. 

ε୩~i. i. d N୬ሺ0, Q୩ሻ, η୩~i. i. d N୫ሺ0, R୩ሻ. Assume ε୩ and η୩ are independent.  

Equations (3.3)-(3.7) of KF recursively calculate the prior estimate x୩
ି, the 

optimal posterior estimate x୩
ା  and their error covariance matrix P୩

ି , P୩
ା  where 

P୩
ି ൌ Eሾሺx୩ െ x୩

ିሻሺx୩ െ x୩
ିሻሿ , P୩

ା ൌ Eሾሺx୩ െ x୩
ାሻሺx୩ െ x୩

ାሻሿ . In specific, 

Equations (3.3) and (3.4) project the estimate and error covariance of system state 

from time t-1 to time t. The prior estimate x୩
ି  and error covariance P୩

ି  are 

dependent on the linear operating matrix G୩ and the process noise covariance Q୩. 

After that, with the goal of minimizing the posterior estimate error covariance P୩
ା, 

Equations (3.5) - (3.7) are the optimal procedures to inject observation z୩ with the 

prior estimate. In (3.5), the Kalman gain K୩ is calculated optimally. It decides 

how much the posterior estimate x୩
ା will be adjusted to consider the deviation 

between the model and the observation (z୩ െ H୩x୩
ି) as in (3.6). The posterior 

estimate error covariance P୩
ା is then calculated by (3.7).  

x୩
ି ൌ G୩x୩ିଵ

ା          (3.3) 
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P୩
ି ൌ G୩P୩ିଵ

ା G୩
  Q୩       (3.4) 

K୩ ൌ P୩
ିH୩

൫H୩P୩
ିH୩

  R୩൯ିଵ
     (3.5) 

x୩
ା ൌ x୩

ି  K୩ሺz୩ െ H୩x୩
ିሻ      (3.6) 

P୩
ା ൌ ሺI െ K୩H୩ሻP୩

ି       (3.7) 

Kalman Filtering is one of the optimal linear estimators (i.e., among all the 

estimators that are linear combinations of the measurements) according to the 

least square criteria. It can also be derived from Bayesian estimation (maximum 

likelihood criteria) when the initial system state follows Gaussian distribution 

(Barker et al. 1995). KF has been successfully applied in many areas. As 

examples in the context of supply chain management, Aviv uses state space 

model and KF as a general framework to predict the demand in the study of 

forecasting/inventory replenish policies (Aviv 2003). The application of KF in 

monitoring the fulfillment of server supply network has been studied in Parmar et 

al. (2006). However, a notable issue with KF is that it only applies to a linear 

state-space system shown in (3.1) – (3.2), thus, its application is limited in a 

complex supply chain which is nonlinear in system transition or measurement. 

3.3.2 Extended Kalman Filtering (EKF) for nonlinear system  

In a nonlinear state-space model, the functions of state transition equation 

(g୩) and the measurement equation (h୩ሻ are nonlinear:   

State Transition Equation: x୩ ൌ g୩ሺx୩ିଵ, ε୩ሻ      (3.8) 

Measurement Equation: z୩ ൌ h୩ሺx୩, η୩ሻ     (3.9) 
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As an extension, Extended Kalman Filtering (EKF) first linearizes the 

nonlinear functions before applying similar recursive steps as those in KF. In 

details, the recursive equations for Extended Kalman Filtering are:  

x୩
ି ൌ G′୩x୩ିଵ

ା          (3.10) 

P୩
ି ൌ G′୩P୩ିଵ

ା G′୩  Q୩       (3.11) 

K୩ ൌ P୩
ିH′୩൫H′୩P୩

ିH′୩  R୩൯
ିଵ

     (3.12) 

x୩
ା ൌ x୩

ି  K୩ሺz୩ െ H′୩x୩
ିሻ      (3.13) 

P୩
ା ൌ ሺI െ K୩HԢ୩ሻP୩

ି       (3.14) 

where the matrix GԢ୩ is the Jacobian matrix of gሺሻ evaluated at x୩ିଵ
ା , H′୩ is 

the Jacobian matrix of hሺሻ evaluated at x୩
ି.  

EKF has become a standard technique used in nonlinear estimation and 

machine learning applications (Wan and Van Der Merwe 2000). However, the 

local linearization in EKF may lead to poor error covariance updates and in some 

cases unstable growth of error covariance matrix (Evensen, 1992). 

3.3.3 Ensemble Kalman Filtering (EnKF) for nonlinear system 

Instead of linearization, Ensemble Kalman Filtering (EnKF) uses Monte 

Carlo simulation to approximate the nonlinear state transition function g୩ሺሻ . 

Unlike KF and EKF where the estimation error is analytically propagated from 

time t-1 to time t, a group of samples of the system state, called an ensemble, is 

used to track the evolution of system state in EnKF. The mean and covariance of 

the ensemble, derived from samples, are taken as state estimation and error 

covariance.  
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Let V is the ensemble size,  x୧୩ is the state of ith instance in the ensemble 

at time k. At each time point of data fusion, every instance in the ensemble x୧ሺ୩ିଵሻ
ା  

advances to  x୧୩
ି  following g୩ሺሻ. The sample mean is taken as the prior estimation 

of system state ሺx୩
ିሻ  and the error covariance is approximated by the sample 

covariance (P୩
ି), which is used in the calculation of Kalman gain in Equation 

(3.17). Next, each instance x୧୩
ି  is updated with the noisy observation z୧୩ . The 

posterior estimation of system state ( x୩
ା) is calculated by the ensemble mean. It is 

proven that EnKF converges to KF for a linear system as V →∞ (Evensen 2006). 

x୩
ି ൌ ∑ ୶ౡ

ష
సభ


         (3.15) 

where x୧୩
ି ൌ ݃ሺx୧ሺ୩ିଵሻ

ି , ε୧୩ሻ, ε୧୩~Nሺ0, Q୩ሻ    

P୩
ି ൌ ൣ∑ ሺx୧୩

ି െ x୩
ିሻሺx୧୩

ି െ x୩
ିሻ

୧ୀଵ ൧/ሺV െ 1ሻ    (3.16) 

K୩ ൌ P୩
ିH′୩ ൫H′୩P୩

ିH′୩  R୩൯
ିଵ

     (3.17) 

 where H′୩ is the Jacobian matrix of h୩ሺሻ evaluated at x୩
ି.   

x୩
ା ൌ ∑ ୶ౡ

శ
సభ


        (3.18) 

where x୧୩
ା ൌ x୧୩

ି  K୩ሺz୩ െ H′୩x୧୩
ି െ η୧୩ሻ , (η୧୩~ Nሺ0, R୩ሻ)  

P୩
ା ൌ ൣ∑ ሺx୧୩

ା െ x୩
ାሻሺx୧୩

ା െ x୩
ାሻ

୧ୀଵ ൧/ሺV െ 1ሻ    (3.19) 

Since it was first proposed in 1994, EnKF has been applied to a number of 

complex and large-scale systems, including systemquasi-geostrophic ocean model 

(Evensen 1994), wild land fire simulation (Mandel et al. 2008), reservoir 

engineering (Krymskaya et al. 2009), atmospheric model (Houtekamer and 
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Mitchell 2001), estimation model of soil moisture (De Lannoy et al. 2007), just to 

name a few.  

In summary, both EKF and EnKF have successful applications. 

Considering a supply network with dynamic behaviors, some interesting questions 

are: will EKF and EnKF achieve comparable performance for calibrating supply 

chain models, some are highly dynamic, some are stable? How will the calibration 

frequency impact the performance? How will the calibration data impact the 

performance? Experiments on a ‘beer game’ supply chain are conducted 

attempting to answer the questions. 

3.4 Experiments 

In this section, a simulation based on discrete time difference equation 

model and data fusion methodology is developed to study the dynamics in a 

nonlinear system. The method is tested in the classic ‘beer game’ supply chain 

(Sterman 1989). Three experiments are designed to explore 1) chaotic behavior of 

a supply chain system 2) the impact of data availability on data fusion 

performance and 3) the impact of data accuracy on data fusion performance.  

3.4.1 Game Supply Chain Model 

The beer game model (Sterman 1989) is a typical serial supply chain, 

having four entities - a retailer, a wholesaler, a distributor and a factory. The order 

flow (right to left in Figure 7) and the product flow (left to right in Figure 7) 

connect the four autonomous nodes sequentially. The end-customer demand input 

into the retailer is exogenous. Each level has its own buffer stock (S) to absorb 

uncertainty in demand. In each level of echelon, six state variables considered are:  
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‐ S (Stock): inventory level 

‐ SL(Supply Line): placed orders that have not been received 

‐ B (Backlog): customer orders that haven’t been fulfilled 

‐ EOR (Estimated customer Order Rate): estimation of orders from 

customers per time unit 

‐ OR (Order Rate): orders placed to supplier per time unit  

‐ SR (Shipment Rate): the number of products shipped to customer per 

time unit 

 

Figure 7. Beer Game supply chain model 

Using subscripts 1 to 4 for retailer, wholesaler, distributor and factory 

respectively, the overall system state X is presented as a vector of 24 states = 

ሾSଵ, SLଵ, Bଵ, EORଵ, ORଵ, SRଵ, Sଶ, … , SRଷ, Sସ, SLସ, Bସ, EORସ, ORସ, SRସሿ.  

Note Order Rate (OR୧) for each echelon is highlighted in Figure 7 which is 

used as measurement, that will be discussed in Section 3.4.2. 

At time k, each echelon places an order to its supplier, which aims to 1) 

supply customer demand, 2) compensate for discrepancy in the desired stock level 

and current stock level, and 3) compensate for discrepancy in the desired supply 

line and current supply line. The discrete time difference equations for the 

ordering amount are shown in (3.20) – (3.23) (Hwarng and Xie 2008). Note that 

DS is Desired Stock and DSL is Desired Stock Level.  
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EOR ୧,୩ାଵ ൌ θ୧ כ OR୧ିଵ,୩    ሺ1 െ θ୧ሻ כ EOR୧,୩   (3.20) 

where θ୧ is the exponential smoothing parameter  

 

DS୧,୩ାଵ  ൌ EOR୧,୩ାଵ כ opl୧  B୧,୩     (3.21) 

where opl୧ is time for order processing lag, B୧,୩ is the backlog 

 

DSL୧,୩ାଵ ൌ EOR୧,୩ାଵ כ ssl୧      (3.22) 

where ssl୧ is time for shipment lag 

 

OR୧,୩ାଵ ൌ MaxሾሺDS୧,୩ାଵ െ S୧,୩ሻαୗ୧ 

ሺDSL୧,୩ାଵ െ SL୧,୩ሻαୗ୧  EOR୧,୩ାଵ  ε୧,୩, 0ሿ  (3.23) 

where ε୩  is the disturbance in the order rate, ε୩ ~i. i. d. Nሺ0, σଶሻ . 

Parameters αୗ א  ሺ0,1ሻand αୗ א ሺ0,1ሻ decide the compensation ordering amount 

for the discrepancy in Stock and Supply Line.  

Some research (Hwarng and Xie 2008; Larsen et al. 1999) observe that the 

two parameters (αୗ and αୗሻ are associated with the chaotic behavior of the ‘beer 

game’ supply chain. Detailed discussion is provided in Section 3.4.5. 

The simulation is built in Matlab with the minimum time step of 

simulation being a week, the total simulation time being 100 weeks. The 

experiment parameters are adopted from Sterman (1989) (Table 7). The 

exogenous customer demand is assumed to be a step function, started from 4 

units/week for the first 50 weeks, doubled to 8 units/week for the next 50 weeks 

(Table 8).  
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Table 7. Simulation Parameters (i=1,2,3,4) 

 

 

Table 8. End-customer demand 

 

3.4.2 Observation of Beer Game Supply Chain   

Let assume that we can only observe the order rate (OR୧) at different 

levels of the beer game supply chain. The measurement of the system is denoted 

by Z୩, then, 

Z୩ ൌ ሺORଵ,୩, ORଶ,୩, ORଷ,୩, ORସ,୩ሻ   η୩    (3.24) 

where η୩ is observation error, η୩~Nሺ0, Rሻ.  

3.4.3 Beer Game Supply Chain Simulation and Emulation Development  

A pair of emulation and simulation is implemented to evaluate the 

prediction accuracy of the simulation model with/without data fusion. Emulation 

is a random instance of the dynamic model that mimics a ‘real world’. Simulation 

represents the modeling of the system and it is adjusted with the data collected 

from emulation when data fusion is used.  

Simulation is initialized at the system equilibrium (see Table 9). 

Emulation is initialized at the system equilibrium with a Gaussian noise 

Parameters Values 

opl୧ 3 weeks 

ssl୧ 1 week 

θ୧ 0.25 

End-customer  4 units/week, where k=1,2,. 50 

order time series 8 units/week, where k=51,…, 100 
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δ~Nሺ0,0.16ሻ added to the initial stock level S୧,  (i=1,2,3,4). In emulation, the 

supply chain dynamics is also reflected by the white noise (σଶ ൌ0.16) in the 

ordering rate OR୧,୩ , i =1,2,3,4.  

The pair of simulation and emulation is run in parallel. When data fusion 

is adopted, observations are collected from emulation following (3.24). 

Simulation is paused and calibrated by the observation (measurement) data using 

EKF or EnKF. Otherwise, simulation advances without any calibration, which is 

considered as the benchmark model (without calibration). 

Table 9. Initial state of simulation (i=1,2,3,4) (Hwarng and Xie 2008) 

 

 

3.4.4 Performance Metric 

Given that emulation represents the “real” operating supply chain system, 

the differences between the simulation states and the emulation states are 

considered as an accuracy measurement of the simulation. One measurement is 

the Mean Square Error (MSE) that is calculated as:  

MSE୶ ൌ ට∑ ൫୶ౡ
౩ౣ౫ౢ౪ି୶ౡ

ౣ౫ౢ౪൯
మ

౪సభ


       (3.25) 

State Variables Values 

S୧, 12 units 

SL୧, 4 units 

B୧, 0 

EOR୧, 4 units/week 

OR୧, 4 units/week 

SR୧, 4 units/week 
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where x୩
ୱ୧୫୳୪ୟ୲୧୭୬ denotes the simulation state, x୩

ୣ୫୳୪ୟ୲୧୭୬ is the emulation 

state for time k.  

For any of two simulation models, the ratio of their MSE (Equation (3.25)) 

is called Theil’s Inequality Coefficient U א ሺ0, ∞ሻ (Makridakis et al. 2008). Let 

the simulation without calibration be the benchmark model. Theil’s U can be used 

to assess the relative performance of a simulation calibration method (3.26). The 

comparison based on Theil’s U lead to three potential conclusions: (1) When U 

=1, the performance of calibrated model is equivalent to that of benchmark 

model; (2) When U <1, calibrated model outperforms benchmark model; and (3) 

When U >1, calibrated model underperforms benchmark model. The smaller U is, 

the better calibrated model performs. Let ܷாி , ܷாி  be Theil’s Inequality 

Coefficient for the models calibrated by EKF and EnKF respectively. If ܷாி > 

Uாி , we conclude that EnKF outperforms EKF; otherwise, EnKF 

underperforms EKF.  

ܷ ൌ ୗሺେୟ୪୧ୠ୰ୟ୲ୣୢ ୗ୧୫୳୪ୟ୲୧୭୬ሻ
ୗሺୣ୬ୡ୦୫ୟ୰୩ሻ        (3.26) 

ܷாி ൌ ୗሺ ୗ୧୫୳୪ୟ୲୧୭୬ େୟ୪୧ୠ୰ୟ୲ୣୢ ୵୧୲୦ ሻ
ୗሺୣ୬ୡ୦୫ୟ୰୩ሻ      (3.27) 

ܷாி ൌ ୗሺ ୗ୧୫୳୪ୟ୲୧୭୬ େୟ୪୧ୠ୰ୟ୲ୣୢ ୵୧୲୦ ୬ሻ
ୗሺୣ୬ୡ୦୫ୟ୰୩ሻ                      (3.28) 

Since totally 24 states are studied in the beer game, the average of U is 

used as the overall performance indicator in our study. 

3.4.5 Benchmark Models and Associated Chaotic Behaviors 

Larsen et al. (1999) and Hwarng and Xie (2008) have conducted 

interesting study to explore the chaotic behaviors of the beer game model. It has 
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been found that the simple beer game could behave quite differently with different 

parameter settings. Intuitively, for highly chaotic setting, the simulation could 

deviate from the emulation greatly. Therefore, the first step in this study is to 

explore the characteristics of beer game chaotic behavior so that appropriate 

benchmark models can be identified. 

The chaotic level of a system can be measured by Lyapunov Exponent 

(LE) (Larsen et al. 1999; Hwarng and Xie 2008; Makui and Madadi 2007; Pathak 

et al. 2010). LE describes the exponential divergence rate of the outputs compared 

to the difference in initial states. Interpreted in a general way, LE is “the average 

factor by which an error is amplified within a system” (Makui and Madadi 2007). 

For a system which can be presented by x୩ାଵ ൌ fሺx୩ሻ, where x୩ is the system 

state, LE (denoted by ߣ ) is derived as in Equation (3.29). If the system is 

diverging (the distance between pairs of points increases exponentially), LE is 

positive. If the system is oscillating, LE is 0. If the system converges, LE is 

negative.   

|x୩ାଵ െ x୩| ൌ |xଵ െ x| expሺλnሻ , λ  0   

=>     λ ൌ  lim୬՜ஶ ∑ ln|fԢሺx୩ሻ|୬ିଵ
୲ୀ       (3.29) 

For the ‘beer game’ model, Hwarng and Xie (2008) analyze the system 

behaviors given different values of two parameters - αୗ and αୗ – and, as a result, 

they divide the parameter spaces into 11 regions (shown in Figure 8(a)). For 

example, 0.8  αୗ  1 and 0  αୗ  0.13  defines region 1. Within each 

region, the system behaviors (measured by LE) are homogeneous.  LE of different 

parameter regions are collected from Hwarng and Xie (2008) shown in Figure 
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8(b). It is observed that in general LE decreases from region 1 to region 11, that 

is, the level of chaotic behavior decreases from region 1 to region 11.  

 

 

Figure 8. (a) Parameter Region (Hwarng and Xie 2008) (b) Average LE in 

different parameter regions (derived from Hwarng and Xie (2008)) 

Next, we further explore the characteristics of the model to identify 

representative configurations of parameters αୗ  and αୗ . For each region, we 

randomly locate αୗ and αୗ, resulting in the values listed in Table 10 (e.g. αୗ ൌ

0.95 and αୗ=0.05 for region 1).  

Each pair of αୗ and αୗ corresponds to a configuration of the ‘beer game’ 

supply chain. Totally 22 configurations are identified upon which both simulation 

and emulation are executed. The average MSEs of the four echelons are 

calculated, which results in 4* 22=88 rows of data. A regression analysis is 

conducted to identify the significant factors impacting system MSE: the region 

(region 1 to 11), the group of parameter setting and the interaction. As shown in 

Table 11, the parameter region is the only significant factor.  

 

(a)      (b) 
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Table 10. Configurations of the ‘beer game’ model for each parameter region 

 

 

 

 

 

 

 

 

 

 

Table 11. Effect test of regression of MSE on parameter region, parameter set and 

their interaction 

 

Figure 9 illustrates the MSE at each region. It has similar pattern as that of 

Figure 8(b). In addition, we observe MSEs in Regions 1 and 2 are high, in 

Regions 3-7 are medium and in Regions 8-11 are low. Since parameter setting ( 

αୗ and αୗሻ has no significant impact on chaotic performance, we choose Region 

Regions Parameter Set A Parameter Set B 

αୗ   αୗ αୗ   αୗ 

1 0.95 0.05 0.9 0.02 

2 0.9 0.1 0.8 0.05 

3 0.85 0.18 0.8 0.13 

4 0.8 0.19 0.7 0.12 

5 0.75 0.2 0.65 0.12 

6 0.7 0.2 0.6 0.12 

7 0.65 0.3 0.5 0.13 

8 0.65 0.4 0.35 0.12 

9 0.2 0.1 0.1 0.03 

10 0.4 0.3 0.3 0.15 

11 0.6 0.5 0.95 0.8 

Source Degree of 

Freedom 

Sum of 

Squares 

F Ratio Prob > F 

Regions 10 15645.005 15.8965 <.0001* 

ParameterSet (αୗ, αୗ) 1 23.325 0.2370 0.6280 

Region*ParameterSet 10 234.588 0.2384 0.9911 



  63 

1, Region 5 and Region 11 to represent highly chaotic, low chaotic and stable 

systems in the following comparison study.  

 

Figure 9. Relationship between system chaos (11 parameter regions) and 

simulation accuracy (Mean Square Error) 

From this experiment, we conclude that the accuracy of simulation is 

tightly related to the system chaotic level that is measured by LE. For example, 

MSE for region 1 is much higher than that of region 11. In other words, in a 

highly chaotic system, the simulation state of the system can deviate significantly 

from the real system even for a small difference between simulation and real 

system at the initial stage. Therefore, without fusing real-time data into models, a 

simulation is prone to error in predicting the system state, especially for a chaotic 

system. The results of this experiment motivate us to explore the approach to 

integrate simulation and real time data by data fusion techniques. 
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3.4.6 Comparison Experiment I – The impact of data fusion frequency (the 

availability of the data) on data fusion methods  

Two data fusion methods – EKF and EnKF are applied to calibrate 

simulation models with real-time measurements. This experiment is designed to 

explore the impact of data fusion frequency on the performance of EKF and 

EnKF. Four levels of frequency are tested - every 1, 4, 8 and 12 weeks. For 

EnKF, a number of additional experiments are conducted to locate an appropriate 

ensemble size (V). We set V=400 here as EnKF performs well with reasonable 

computation expenses for the beer game.  

Table 12. Experiment design – the impact of data fusion frequency 

 

For each combination of data fusion technique and parameter setting, 20 

pairs of simulation and emulation are run to calculate the mean and variance of 

Theil’s U. The experiment results are summarized in Table 13 and illustrated in 

Figure 10. In Table 13, the best calibration accuracy is 0.20 indicating 80% 

performance improvement. In addition, it is observed that there exist apparent 

advantages of data fusion techniques for dynamic systems (both highly and low 

chaotic) over stable systems. Especially, when the real data is more frequently 

Methods EnKF 

EKF 

Data Fusion Frequency Every 1,4,8,12 weeks 

Parameter Region Highly chaotic (Region 1) 

Low chaotic (Region 5) 

Stable (Region 11) 

Observation Error Variance (R) 0.16 
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injected to the model (e.g., every 1 week), ܷாி  is 0.20 and ܷாி  is 0.21 for 

highly chaotic systems, ܷாி is 0.55 and ܷாி is 0.58 for stable system. Such 

advantage diminishes as real time data is less frequently injected. Specifically, the 

advantage of EKF statistically decreases in comparison with EnKF. Secondly, as 

the time duration of data fusion interval increases, the calibration accuracy of all 

three types of systems decreases. However, EnKF statistically outperforms EKF 

for some cases. For example, in a highly chaotic system, when the data is fused 

every 8, or even 12 weeks, EnKF is preferred over EKF. The difference between 

EKF and EnKF for any system under frequent data fusion (e.g., every 1 week, 

every 4 week) is undistinguishable. Therefore, for the second comparison 

experiment, we design the experiments on more frequent data fusion scenarios. 

 

Figure 10. Comparison of EKF and EnKF performance (Theil’s U) with varying 

data fusion frequency 

 

 

 

(a) (b) (c) 
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Table 13. Performance comparison between EKF and EnKF with varying data 

fusion frequency 

 

3.4.7 Comparison Experiment II – The impact of measurement error (the quality 

of data) 

It is recognized that the collected data for calibration may not be always complete, 

accurate. In this experiment, we test the impact of data quality quantified by the 

measurement error on the performance of both EKF and EnKF (Table 14). Five 

levels of measurement error is tested – variance R= 2.56, 1.44, 0.16, 0.04, 0.01 

(note R=0.16 is used in the first comparison experiment).  As discussed earlier, 

System 

Dynamics 

Data fusion 

Frequency 

UEKF UEnKF Outperformed 

Method* Mean Standard 

Deviation 

Mean Standard 

Deviation 

High chaotic 1 0.20 0.0094 0.21 0.0128 / 

High chaotic 4 0.23 0.0227 0.23 0.0227 / 

High chaotic 8 0.63 0.0975 0.28 0.0309 EnKF 

High chaotic 12 0.93 0.0781 0.47 0.1824 EnKF 

Low chaotic 1 0.23 0.0173 0.24 0.0205 / 

Low chaotic 4 0.27 0.0310 0.27 0.0277 / 

Low chaotic 8 0.40 0.0269 0.34 0.0700 / 

Low chaotic 12 0.73 0.0587 0.49 0.1942 EnKF 

Stable 1 0.55 0.0615 0.58 0.0862 / 

Stable 4 0.74 0.0845 0.74 0.0788 / 

Stable 8 0.87 0.0235 0.89 0.1062 / 

Stable 12 0.90 0.0126 0.90 0.0732 / 

* A method is preferred if and only if its performance is significant better than another 

method (p value <0.1) 
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we specifically focus on the data quality issue under scenarios with frequent data 

fusion (every 1 and 4 weeks) in this experiment.  

Table 14. Experiment design – the impact of measurement error 

 

The experiment results are shown in Table 15. There is not statistically 

difference between EKF and EnKF for accuracy improvement for all three types 

of system under 1 week data fusion and 4 week data fusion. To better illustrate the 

performance, the average performance of two methods for different system under 

1 week, 4 week fusion interval is shown in Figure 11. The first observation is that 

more frequent data fusion (e.g., every 1 week) of real time data always 

outperforms less frequent data fusion (e.g., every 4 week). The performance 

improvements in both highly and low chaotic systems are greater than that for 

stable systems.  That is, ܷாி  and ܷாி  range from 0.20 to 0.33 for dynamic 

systems and from 0.42 to 0.88 for stable systems. In addition, with the decrease of 

observation error, the calibration performance improves for all three types of 

systems. However, the improvement magnitude for stable system appears to be 

larger than that of dynamic systems. By average, the improvement (decrease of 

Theil’s U) for stable system changes from 0.78 to 0.46 when data fusion 

Methods  EnKF 

EKF 

Data fusion frequency Every 1, 4 weeks 

Parameter Region Highly chaotic (Region 1) 

Low chaotic (Region 5) 

Stable (Region 11) 

Observation Error variance (R) 2.56, 1.44, 0.16, 0.04, 0.01 
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frequency is ‘every 1 week’ and from 0.87 to 0.72  when data fusion frequency is 

‘every 4 weeks’; the improvement for low chaotic system drops from 0.27 to 0.22 

(‘every 1 week’) and from 0.31 to 0.27 (‘every 4 weeks’); and the improvement 

for highly chaotic system is from 0.23 to 0.20 (‘every 1 week’) and from 0.27 to 

0.23 (‘every 4 weeks’). This is intuitive that stable system is more sensitive to 

measurement errors, while in dynamic system, the impact of measurement error is 

compromised by the dynamics of the system. 

Table 15. Performance comparison between EKF and EnKF with varying 

observation error 

System 

Dynamics 

Observation 

Error 

Variance 

(R) 

Data fusion frequency 

=every 1 week 

Data fusion frequency 

=every 4 week 

UEKF UEnKF Average UEKF UEnKF Average 

High chaotic 2.56 0.23 0.23 0.23 0.29 0.25 0.27 

High chaotic 0.64 0.21 0.22 0.215 0.27 0.26 0.265 

High chaotic 0.16 0.20 0.21 0.205 0.23 0.23 0.23 

High chaotic 0.04 0.20 0.21 0.205 0.23 0.22 0.225 

High chaotic 0.01 0.20 0.20 0.20 0.23 0.23 0.23 

Low chaotic 2.56 0.27 0.27 0.27 0.32 0.30 0.31 

Low chaotic 0.64 0.25 0.26 0.255 0.30 0.29 0.295 

Low chaotic 0.16 0.23 0.24 0.235 0.27 0.27 0.27 

Low chaotic 0.04 0.23 0.24 0.235 0.27 0.27 0.27 

Low chaotic 0.01 0.21 0.23 0.22 0.27 0.27 0.27 

Stable 2.56 0.77 0.79 0.78 0.88 0.86 0.87 

Stable 0.64 0.67 0.71 0.69 0.80 0.81 0.805 

Stable 0.16 0.55 0.58 0.565 0.74 0.74 0.74 

Stable 0.04 0.53 0.59 0.56 0.70 0.72 0.71 

Stable 0.01 0.42 0.50 0.46 0.74 0.70 0.72 
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Figure 11. EKF an EnKF performance (Theil’s U) under varying observation 

error variance 

3.5 Conclusions and Future Work 

The dynamics and uncertainty of supply chain have drawn great attention 

from both research academics and industry. A precursor for better understanding 

the system is to robustly and accurately sense the system status. In this chapter, 

two data fusion techniques: Extended Kalman Filtering and Ensemble Kalman 

Filtering are studied to calibrate the ‘beer game’ simulation model. The dynamics 

of the model is first explored to locate three benchmark systems: highly chaotic, 

low chaotic and stable system. Theil’s Inequality Coefficient, ܷ, over MSE is 

then used to assess the calibration performance over these three type systems. We 

conclude data calibration can significantly improve the system estimation 

accuracy. For highly dynamic system, the improvement can be up to 80%. 

Considering EKF and EnKF, for the cases when the real time data is less 

frequently injected for model calibration, EnKF statistically performs better than 
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EKF. For the cases with more frequent fusion, the calibration performance 

exhibits no statistical difference between the two methods. This is confirmed from 

both two comparison experiments. In exploring data quality issue, we observe the 

less measurement error is, the better calibration is. A stable system is more 

sensitive to this type of error.  

This research demonstrates the value of data fusion to monitor the 

dynamics of nonlinear supply chain. Based on the availability of the real time data 

and system chaotic levels, the managers may choose EKF or EnKF. While 

promising, the computational tradeoff between the two methods has not been 

explored. Considering a system with n states and m measurements, the 

computation cost for EKF is Oሺnଶ  mଶሻ , the computation cost for EnKF is  

OሺnV  mଶሻ where V is the number of ensembles. Thus, for a large-scale supply 

chain where n is a large number, the advantage of EnKF over EKF may be 

apparent. Since the beer game studied has only 24 states, such advantage is not 

shown. One immediate next study is to explore a more complex supply chain with 

more state variables. Secondly, we are planning to develop control strategies with 

the capability of better sensing system states to make superior responses. Thus a 

fully sense and response framework can be presented. 
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Chapter 4 

AN ONLINE CALIBRATED SIMULATION FOR ADAPTIVE INVENTORY 

MANAGEMENT  

This chapter presents an online calibrated simulation-based approach for 

adaptive inventory management. The simulation incorporates information on a 

regular basis using a data fusion method called Ensemble Kalman Filtering. It is 

able to incorporate real-time noisy data into simulation, to interpret their influence 

on the correlated variables, and to predict the future state of the supply chain by 

considering all available information. A case study is shown where information 

sharing is applied in a multi-echelon supply chain facing non-stationary end-

consumer demand. When the shared information does not have noise, a closed-

form expression of Minimum Mean Square Error (MMSE) forecast is derived 

explicitly. Information sharing is beneficial to the node that receives information 

and all its upstream suppliers. Experiment results show that Calibrated 

Simulation-based Forecast (CSF) generates comparable result to MMSE forecast. 

When the shared information has noise, the derived MMSE model is not directly 

applicable, but CSF is still able to provide reliable forecast to facilitate cost 

saving. We explore various scenarios under varied levels of observation noise, 

different information source(s) in the supply chain and different number of nodes 

providing information. Some managerial insights are gained from this study, 

which are related to the value of information sharing and the selection of 

information source(s) in a serial supply chain.   
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4.1 Introduction 

To respond to a quickly changing business environment and to develop 

customer-focused strategies, companies need to manage inventory in an adaptive 

way. Without the capability of accurately ‘sensing’ and quickly ‘responding’ to 

the evolving consumer demand patterns and unexpected supply conditions, 

companies are taking the risks of over-stocking and under-stocking. Either one is 

costly.  One well-known lesson is from Cisco Systems, who had to write-off $2 

billion of excess inventory of its network infrastructure products when the actual 

market demands suddenly declined in 2001 (Hau 2004). Besides, the shortage of 

supply also can be destructive. As an example, Boeing lost $2.6 billion when its 

suppliers failed to deliver components on time (Wu et al. 2006).  

To effectively manage the highly dynamic supply chain and take prompt 

actions to minimize the striking influence of unexpected disruptions, companies 

need to manage the uncertainties in the whole supply chain and enable informed 

decisions in a prompt manner. There are several challenges in monitoring supply 

chain dynamics and making accurate prediction for inventory management. First, 

the supply chain system needs to be considered as a whole. Ignoring inter-node 

interaction may lead to biased prediction results. Hayya et al. (2006) point out that 

the bullwhip effect measured in a ‘sequential-pairs’ execution is different from 

the results of a whole-system simulation, because the former does not consider the 

cascading stock-out effect in the chain. Second, the supply chain is often under 

non-stationary uncertainties, that is, the probability distribution of uncertain 

variables changes over time. In particular, the end-consumer demand is often non-
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stationary. A number of factors, including short product cycle times, seasonality, 

customer buying patterns, may lead to the time-varying dynamics in demand 

(Neale and Willems 2009). The non-stationary characteristic implies that the 

modeling of random processes in a supply chain needs to be continuously updated 

and improved to capture the latest state of dynamics. Third, sometimes we only 

have partial information (not knowing the exact distributions) of the involved 

random variables. The combination of these three factors poses grand challenges 

to researchers. As pointed out by Treharne and Sox (2002), research that 

considers both non-stationary demand and partial information is relative limited in 

the literature compared to the study of full information and stationary supply 

chain. 

In this chapter, we propose a simulation-based approach for adaptive 

inventory control. Although most research in supply chain inventory control use 

analytical models, we advocate the use of simulation for several reasons. First, 

simulation is powerful to model large-scale system and to capture interactive 

behaviors between supply chain players. Second, simulation is flexible to model 

realistic constraints and heterogeneous configurations. For example, in the study 

of multi-echelon supply chain systems, while analytical models usually assume 

that each node uses the same optimal inventory control policies, simulation 

studies can be used to explore the situation when some echelons derivate from the 

optimal policy (Son and Sheu 2008). Third, with the recent development of 

simulation techniques (e.g. data-driven (Tannock et al. 2007), web-based, agent-

based, the enrichment of visualization), simulations are faster and more user-
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friendly. It could play as a “communicative means” between the analyst and the 

problem owners (D. J. van der Zee 2005). 

However, there are notable challenges in the use of simulation in adaptive 

supply chain management. Given the fact that analytical methods dominate in 

practice and in theoretic studies, the foremost question is will a simulation be 

reliable and effective in inventory control? Compared to analytical models, the 

question that how can a simulation model incorporate real time information is 

less studied. A conventional simulation usually is built with stationary parameters 

estimated from history data. Since it does not ‘learn’ from new available data, it is 

difficult for the simulation to keep up to the changes in real world and really 

‘sense’ the evolving supply chain environment.  

In this chapter, we propose a calibrated simulation model which is a 

hybrid approach taking advantage of both simulation and data fusion methods. 

The simulation is featured by 1) fusing noisy new information from real-world 

data that is provided by an emulation model in this study and 2) using a 

simulation ensemble to estimate both the mean and variance of system state. By 

data fusion, the simulation model can incorporate noisy information from 

different nodes (information sources) in a supply chain. The proposed framework 

is generalized and is able to handle different types of information (e.g. inventory 

level, demand, lead time).  To validate the Calibrated Simulation-based approach, 

we first compare Calibrated Simulation-based Forecast (CSF) with the analytical 

derived MMSE forecast under the assumption that the demand information does 

not have noise. The numerical results show that the performance of CSF is 
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comparable to MMSE forecast method, which is known to be optimal. Taking 

advantage of the CSF approach, we are able to explore the benefits of information 

sharing under more complicated assumptions when the observation noise is non-

zero and multiple information sources are available. Some managerial insights are 

gained regarding the selection of information source(s) in the supply chain.   

The remainder part of this chapter is organized as follows. In Section 4.2, 

we position our work with respect to prior related research. The data fusion 

method – Ensemble Kalman Filtering (EnKF) is introduced in Section 4.3, and 

some properties of EnKF are proved to support the framework. In Section 4.4, we 

introduce the supply chain model and the adaptive order-up-to control policies. 

The derivation of MMSE forecast and the introduction of the CSF framework are 

in Section 4.5 and Section 4.6 respectively. Numerical experiments are presented 

in Section 4.7, followed by the summary and discussion about the future work in 

Section 4.8.  

4.2 Literature Review 

The literature in the area of supply chain inventory management is 

extensive. We focus on reviewing the work that is related to our motivation, 

model and methods. Forecasting coupled with adaptive inventory control is 

probably the most common approach for a company to be responsive to external 

uncertainty such as customer demand. Graves (1999) study the adaptive base-

stock policies in N-echelon serial supply chain with ARIMA(0,1,1) end-consumer 

demand. Our work extends his model to incorporate information lead time and 

information sharing.  
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A variety of optimization approaches have been used in adaptive inventory 

control as well. Treharne and Sox (2002) employ dynamic programming to study 

adaptive and non-adaptive control of a two-node supply chain. Demand 

realizations are used to update the system states in a Partially Observed Markov 

Process model. They show that adaptive policies considering the updates of 

demand structure outperform non-adaptive control policies. Perea-Lopez et al. 

(2003) build a Mixed Integer Linear Programming to find the global optimal 

solution in a multi-product, multi-echelon supply chain (manufacturing and 

distribution centers) when customer demand is updated daily. Liang and Huang 

(2006) study a heterogeneous supply chain system where companies may have 

different inventory policies, such as (R,S), (s,Q) and (s,S).  In their study, a 

centralized agent captures all the system states and Genetic Algorithm is used to 

find the optimal parameter settings for all supply chain entities. 

Some information sharing and collaborative forecasting strategies have 

been proposed to coordinate the ordering behaviors among supply chain players. 

For example, Aviv (2003) proposes a time-series framework for Collaborative 

Planning, Forecasting and Replenishment based on linear state-space models and 

Kalman Filtering. In this study, since simulation models are considered, Ensemble 

Kalman Filtering, an approximate method to Kalman Filtering in nonlinear 

systems, is adopted to consolidate information.  

4.3 Data fusion - Ensemble Kalman Filtering   

Ensemble Kalman Filtering (EnKF) is an approximate method of the well-

known Kalman Filtering (KF) (Welch and Bishop 2001) in a non-linear system. 
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EnKF originates from Evensen (1994), where Monte Carlo method is used with 

the Kalman Filtering. The research of EnKF has attracted great attention lately 

(Evensen 2003, 2006; Krymskaya et al. 2009) and it has been successfully applied 

in a number of large-scale systems, such as quasi-geostrophic ocean model 

(Evensen 1994), wild land fire simulation (Mandel et al. 2008) and atmospheric 

model (Houtekamer and Mitchell 2001).  

4.3.1 Ensemble Kalman Filtering  

In EnKF, assume x୩ is a n-dimension vector, representing the system state 

at the end of period k; z୩ is an m-dimension vector, representing the measurement 

of x୩. The system transition and the observation process follow (4.1) and (4.2). 

State Transition Equation: x୩ ൌ g୩ሺx୩ିଵ, ε୩ሻ    (4.1) 

Measurement Equation: z୩ ൌ h୩ሺx୩, η୩ሻ    (4.2) 

where g୩ሺ. ሻ  is the state transition function, h୩ሺ. ሻ  is the measurement 

function, showing how the observation z୩ is related to the current system state 

(x୩) . 

ε୩ is the process noise in period k. ε୩~i. i. d. Nሺ0, Q୩ሻ 

η୩ is the measurement noise in period k. η୩~i. i. d. Nሺ0, R୩ሻ 

Ensemble Kalman Filtering (EnKF) uses Monte Carlo method to 

approximate the nonlinear state transition function g୩ሺሻ. In Monte Carlo method, 

a set of data points (instances) are sampled to describe the probability density of 

the system state x୩ . Let V is the ensemble size, each instance x୧୩  is an n-

dimension state vector. The group of data points ሼx୧୩ሽୀଵ..  is called an 

‘ensemble’. The statistical prosperities of the state variable x୩ can be calculated 
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from the ensemble. For example, the sample mean xన୩തതതതis the unbiased optimal 

estimator of x୩  and it converges to x୩  when the ensemble size approaches to 

infinite due to the Central Limit Theorem and Monte Carlo method.  

Similar to Kalman Filtering (see Section 3.3), EnKF recursively follows a 

two-stage procedure to estimate the system state x୩. Let superscript ‘-’ represent 

the results after the ‘prediction’ stage (called prior estimation), ‘+’ represent the 

results after the ‘update’ stage (called posterior estimation).  x୩  and P୩  are the 

estimation and the error covariance matrix of the system state in period k. 

At the ‘prediction’ stage (see (4.3)-(4.4)), each instance in the ensemble, 

x୧ሺ୩ିଵሻ
ା , is projected from time k-1 to k by the Monte Carlo approximation of  

g୩ሺڄሻ. The process noise ε୩ is sampled in the transition of individual instances, 

thus the propagation of noise is implicitly included in the density probability of 

x୧୩
ି . The sample mean and sample covariance of the ensemble ሼx୧୩

ି ሽୀଵ.. are taken 

as prior state estimation (x୩
ି) and prior error covariance matrix (P୩

ି).  

At the ‘update’ stage (Equations (4.5)-(4.7)), the prior estimation x୩
ି  is 

updated when the measurement z୩ is available. The approximate of Kalman Gain, 

K୩, is calculated in (4.5) and it decides how much the posterior estimation x୩
ା will 

be adjusted to consider the deviation between the prior estimation and the 

observation (z୩ െ H′୩x୩
ି ) in (4.6). The calculation of K୩  actually follows the 

update procedure of Kalman Filtering (see Section 3.3). It ensures that the 

estimate x୩
ା  is the optimal estimator in a linear Gaussian system. When the 

process noise ε୩ is not Gaussian, x୩
ା is still the best linear estimator (Welch and 

Bishop 2001). Note that K୩ is an approximate of the Kalman Gain in Kalman 
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Filtering, because its calculation is based on the ensemble error covariance P୩
ି, 

instead of the true state error covariance. However, it will converge to the true 

Kalman Gain when P୩
ି converges to the true state error covariance matrix with 

increasing ensemble size. Incorporating the latest measurement z୩, x୩
ା and P୩

ା are 

called posterior estimate and error covariance matrix of the system state. 

x୩
ି ൌ ∑ ୶ౡ

ష
సభ


, where x୧୩

ି ൌ g୩ሺx୧ሺ୩ିଵሻ
ି , ε୧୩ሻ, ε୧୩~Nሺ0, Q୩ሻ  (4.3)  

P୩
ି ൌ ൣ∑ ሺx୧୩

ି െ x୩
ିሻሺx୧୩

ି െ x୩
ିሻ

୧ୀଵ ൧/ሺV െ 1ሻ    (4.4) 

K୩ ൌ P୩
ିHԢ୩

൫HԢ୩P୩
ିHԢ୩

  R୩൯
ିଵ

     (4.5) 

where H′୩  is the Jacobian matrix of h୩ሺሻ evaluated at x୩
ି . The operator  

ሺ·ሻିଵ represents pseudo inverse if the matrix inside is singular.   

x୩
ା ൌ ∑ ୶ౡ

శ
సభ


, where x୧୩

ା ൌ x୧୩
ି  K୩ሺz୧୩ െ H′୩x୧୩

ି ሻ    (4.6) 

P୩
ା ൌ ൣ∑ ሺx୧୩

ା െ x୩
ାሻሺx୧୩

ା െ x୩
ାሻ

୧ୀଵ ൧/ሺV െ 1ሻ    (4.7) 

Equations (4.6) and (4.7) can be written in simpler forms as: 

x୩
ା ൌ x୩

ି  K୩ ൬z୩   ∑ ౡ

సభ


െ ∑ ୌ୶ౡ

ష
సభ


൰  

 ൌ x୩
ି  K୩ሺz୩ െ Hx୩

ିሻ       (4.8) 

P୩
ା ൌ

ቂ∑ ൫୶ౡ
శ ି୶ౡ

శ൯൫୶ౡ
శ ି୶ౡ

శ൯


సభ ቃ

ିଵ
    

 ൌ ∑ ሾሺ୍ିౡୌሻ൫୶ౡ
ష ି୶ౡ

ష൯൫୶ౡ
ష ି୶ౡ

ష൯ሺ୍ିౡୌሻାౡሺகౡሻሺகౡሻౡ
ሿ

సభ
ିଵ

 

ൌ ሺI െ K୩HሻP୩
ିሺI െ K୩Hሻ  K୩R୩K୩

 

ൌ ሺI െ K୩HሻP୩
ି      (4.9) 
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4.3.2 Some Properties of Ensemble Kalman Filtering  

In this section, we prove that the estimation error of system states is 

monotonically reduced by integrating new measurement data. The resulting 

lemmas quantify the benefits of new measurements and theoretically support the 

integrating of new data into an online Monte Carlo simulation using EnKF.  

We suppress the subscript k. The superscripts ‘+‘ and ‘-’ are omitted when 

the derivation is applied to both prior estimation and posterior estimation. In this 

section, let the subscript i represent the ith state variable in the state vector. 

With the concerns that the ensemble error covariance matrix P obtained 

from (4.4) and (4.7) are only approximates instead of the true state error 

covariance matrixes, we first prove that P converges to the true error covariance 

matrix when the ensemble size V ՜ ∞.  

Lemma 1.  The ensemble error covariance Pି and Pା converge to the true 

prior and posterior error covariance when the ensemble size V ՜ ∞. 

Proof: Let p୧୨ denote the ij element in P, which is the sample covariance 

of ith state variable and the jth state variable. Let ݔపഥ  is the sample mean of the ith 

state variable. According to the theory of Monte Carlo Simulation and Central 

Limit Theorem, ݔఫഥ  is an unbiased estimator of the mean of ݔ , denoted by ܧሺݔሻ. 

Mathematically presented as lim
՜ஶ

పഥݔ ൌ ሻ  and limݔሺܧ
՜ஶ

ఫഥݔ ൌ   . ൯ݔ൫ܧ

Therefore, we have  

lim
՜ஶ

p୧୨ ൌ  lim
՜ஶ

ݔሺൣܧ െ పഥݔ ሻ൫ݔ െ ఫഥݔ ൯൧ 

 ൌ ܧ  ቂ൫ݔ െ ሻ൯ݔሺܧ  ቀݔ െ  ൯ቁቃ           (4.10)ݔ൫ܧ
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Since each element of matrix P (p୧୨) converges to the true error covariance 

element, matrix P converges to the true error covariance matrix in the limit of an 

infinite ensemble size. ז 

It is worth mentioning that the trace of P (the sum of diagonal elements of 

P) equals to the sum of square error of state variables.  

lim՜ஶ p୧୧ ൌ ܸሺݔሻ       (4.11) 

lim՜ஶ p୧୧ TrሺPሻ ൌ lim՜ஶ p୧୧ ∑ p୧୧
୧ୀ୬
୧ୀଵ ൌ ∑ ܸሺݔሻ୬

୧ୀଵ    (4.12)  

Where ܧሺ·ሻ  and ܸሺ·ሻ  are the expectation and variance of a random 

variable. Trሺ·ሻ denotes the trace of a matrix.  

Next, we prove two lemmas to show the changes in sample error 

covariance matrix at each update.  

Lemma 2. The sum of square error of state variables, ∑ Vሺx୧ሻ୬
୧ୀଵ , is 

reduced at each update by lim
՜ஶ

TrሺPିHሺHPିH  RሻିଵHPିሻ, which is larger 

than or equal to 0.  

Proof: From (4.9), (4.12),  

TrሺPାሻ ൌ TrሺPିሻ െ TrሺKHPିሻ     (4.13) 

∑ ܸሺݔ
ାሻ୬

୧ୀଵ െ ∑ ܸሺݔ
ିሻ୬

୧ୀଵ ൌ  lim
՜ஶ

TrሺKHPିሻ   (4.14) 

Substituting (4.5) into (4.14) yields 

 ∑ ܸሺݔ
ାሻ୬

୧ୀଵ െ ∑ ܸሺݔ
ିሻ୬

୧ୀଵ ൌ lim
՜ஶ

TrሺPିHሺHPିH  RሻିଵHPିሻ  (4.15) 

Since Pି  and R  are covariance matrix, HPିH  R  is symmetric and 

positive-semidefinite. Its inverse ሺHPିH  Rሻିଵ is also positive-semidefinite.  

According to the definition of positive semi-definite matrix, there is 
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TrሺPିHሺHPିH  RሻିଵHPିሻ  0.      

So, lim
՜ஶ

TrሺPିHሺHPିH  RሻିଵHPିሻ  0 

From (4.11) and (4.12), we get  ∑ ܸሺݔ
ାሻ୬

୧ୀଵ   ∑ ܸሺݔ
ିሻ୬

୧ୀଵ  ז .

Lemma 3. The square error in the ith state variable, Vሺx୧ሻ,  is reduced at 

each update by lim
՜ஶ

P୧
ିHሺHPିH  RሻିଵHP୧

ି, which is larger than or equal to 

0. 

Proof:  According to Equation (4.5) and (4.9),  

p୧୧
ା ൌ p୧୧

ି െ P୧
ିHሺHPିH  RሻିଵHP୧

ି    (4.16) 

Considering Equation (4.9), we have  

 ܸሺݔ
ାሻ െ   ܸሺݔ

ିሻ ൌ lim
՜ஶ

P୧
ିHሺHPିH  RሻିଵHP୧

ି   (4.17) 

Because ሺHPିH  Rሻିଵ  is positive-semidefinite, P୧
ିHሺHPିH 

Rെ1HPi−≥0.  That implies ܸ݅ݔ ܸ݅ݔെ. ז 

 

4.4 The Supply Chain Model 

4.4.1 Notation 

Let subscript k denote time period. Let superscript i represent the number 

of the node. For convenience, the end-consumer is numbered as node 0 and the 

external supplier is node N+1.  

L  : production/transportation lead time from node i+1 to i, a nonnegative integer 

݈  : information lead time from node i to i+1, a nonnegative integer 

ࣦ  : replenishment lead time at node i.  ࣦ ൌ ݈+ L 

݄  : inventory holding cost rate at node i 
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ܾ  : backorder cost rate at node i 

ܥ
   : local cost at node i in period k.  

ࣦሺሻ  : replenishment lead time from node i to j (j>i) . ࣦሺሻ ൌ ࣦ  ࣦାଵ . . ࣦ ିଵ 

݈ሺሻ  : information lead time from node i to j (j>i) . ݈ሺሻ ൌ ݈  ݈ାଵ . . ݈ିଵ .  

ε
   : random noise in the demand process of node i in period k 

α୧  : moving average coefficient in the demand process of node i  

d୩
୧  : customer demand of node i in period k. It equals to the orders placed by node 

i-1 in period ݇ െ ݈ିଵ 

D୩
୧   : lead time demand of the next ࣦ periods from period k at node i. 

 D୩
୧ ൌ d୩ାଵ

୧  d୩ାଵ
୧  ڮ d୩ାࣦ

୧  

Δ
   : demand history from period 1 to period k at node i. Δ

 ൌ ሼ݀
 , ݀ିଵ

 , …  , ݀ଵ
 ሽ 

ࣟ
   : history of demand noise from period 1 to period k at node i. 

 ࣟ
 ൌ ሼߝ

 , ିଵߝ
 , …  , ଵߝ

 ሽ  

ܫ ܰ
   : on-hand inventory or backlog. When it is positive, it is the on-hand inventory 

at the end of period k; when it is negative, its absolute value is backorders at the 

end of period k 

ܱܴ
   : orders placed to supplier at node i in period k  

SR୩
୧   : shipment sent to customer at node i in period k   

WIP୩
୧  : work in process at node i in period k 

Eሺ·ሻ  : expectation of the random variable 

Vሺ·ሻ  : variance of the random variable 

STD(·)  : standard deviation of the random variable 
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4.4.2 Model Description 

Considering a simplified N-echelon supply chain in a series, where end-

consumer orders arrive at node 1, which will order from node 2, and so on. Let us 

call node i the immediate ‘downstream’ node to node i+1, and node i+1 the 

immediate ‘upstream’ node to node i. The last node N orders from an outsider 

supplier which always has sufficient supply. At each node, the received orders 

will be shipped immediately if there is sufficient on-hand inventory. Unfulfilled 

orders are fully backlogged. A well-known example of such a serial supply chain 

is the ‘Beer Game’ model (Fangruo and Rungson 2000) shown in Figure 12. The 

supply chain consists of four echelons - Retailer (node 1), Wholesaler (node 2), 

Distributor (node 3) and Factory (node 4).   

 

Figure 12. Beer Game supply chain model (N=4) 

Similar to the Beer Game model described in Fangruo and Rungson 

(2000), we assume one product, unlimited capacity, constant lead times, constant 

cost coefficient in our model. At time period k, the following events happen in 

sequence at each node i. (1) Orders (d୩
୧ ) that are placed by the customer node i-1 

in period k- ݈ିଵ is received.  (2) The shared information to/from other nodes is 

sent/ received if information sharing is adopted. (3) The lead time demand ( 

D୩
୧ ) is forecasted and the manager determines this period’s replenishment order 

ܱܴ
  based on the forecast. (4) The orders that are shipped by supplier in period k- 
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  are received. (5) Products are shipped to customers according to the customerܮ

demand. Any demand that cannot be met is backordered. (6) Inventory cost and 

backlog cost is evaluated.  

There are three aspects where our model is different with that of Fangruo 

and Rungson (2000). First, information sharing strategy is assumed, that is, each 

node may send/ receive information from other nodes. The customer demand, 

received at the beginning of each period, could be shared immediately at the same 

period. Second, the lead time demand forecast needs to be updated at each period 

because the demand is non-stationary (the probability distribution changes along 

the time). The order-up-to level is updated accordingly. Third, backorder cost is 

charged at each stage instead of only being charged at the first echelon. Each node 

is treated as an independent cost center. Note that the inventory control decisions 

are distributed at different nodes. Instead of trying to optimize the whole supply 

chain performance as in Fangruo and Rungson (2000), each node sets the goal to 

minimize local cost.  

4.4.3 End-consumer Demand – ARIMA(0,1,1) model 

ARIMA is a general class of time-series model (Box and Jenkins 1994). It 

is often used to describe the end-consumer demand in a supply chain 

management. We assume the end-consumer demand ሼd୩
ଵ ሽ is an ARIMA(0,1,1) 

process, and it is presented as 

݀ଵ
ଵ ൌ ଵߤ  ଵߝ

ଵ        (4.18) 

݀
ଵ ൌ ݀ିଵ

ଵ െ  ሺ1 െ ିଵߝଵሻߙ
ଵ  ߝ

ଵ     (4.19) 
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where ߤଵ  is the process average, ߙଵ  is the moving average coefficient 

(0 ൏ ଵߙ  1) and the noise series   ߝ
ଵ~ ݅. ݅. ݀ ܰሺ0,   ଶሻߪ

Given 0 ൏ ଵߙ  1, the process is non-stationary. A larger value of ߙଵ 

leads to a less stable process. Considering the initial condition in (4.18) and 

repeatedly applying (4.19), we get (4.20), where the demand at period k can be 

divided to two parts 1) the unknown random noise ߝ
ଵ and 2) the discounted past 

random noises adding the initial process mean ( ଵߙ ∑ ௧ߝ
ଵ௧ୀିଵ

௧ୀଵ  ଵሻߤ , that is 

already known before period k. ߙଵ ∑ ௧ߝ
ଵ௧ୀିଵ

௧ୀଵ   ଵ implies that the random noiseߤ

ିଵߝ
ଵ  shifts the mean of the process by ߙଵߝିଵ

ଵ . Especially, when ߙଵ ൌ 1, the 

demand process (4.19) is a random walk.  

 ݀
ଵ ൌ ߝ

ଵ  ଵߙ ∑ ௧ߝ
ଵ௧ୀିଵ

௧ୀଵ   ଵ      (4.20)ߤ

4.4.4 Adaptive Order-up-to Policy 

Next, we introduce the adaptive order policy used in the model. The 

superscript i is omitted because the discussion is applied to each node. Let y୩ be 

the inventory position (= on-hand inventory + outstanding order - backlog) after 

placing the order in period k, OR୩ be the orders placed to the supplier, d୩ is the 

demand received, the balance equation of inventory position is 

y୩ ൌ y୩ିଵ െ d୩   OR୩      (4.21) 

In an order-up-to policy, a node orders OR୩  from its supplier to bring 

inventory position to the desired ‘order-up-to level’, denoted by y୩
 Let EሺD୩|kሻ .כ

and VሺD୩|kሻ represent the forecast and forecast error of the lead time demand 

(D୩ ൌ  ∑ d୩ା୲
୲ୀࣦ
୲ୀଵ. ) at period k.  
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y୩
כ ൌ EሺD୩|kሻ   zඥVሺD୩|kሻ       (4.22) 

Using (4.20) and (4.21), the order rate in period k is 

OR୩     ൌ  y୩
כ െ y୩ିଵ

כ  d୩       (4.23) 

OR୩   ൌ EሺD୩|kሻ െ EሺD୩ିଵ|k െ 1ሻ   z൫VሺD୩|kሻ െ VሺD୩ିଵ|k െ 1ሻ൯ 

 d୩           (4.24) 

When any of the forecast EሺD୩|kሻ and its error variance VሺD୩|kሻ changes 

over time, the desired inventory level y୩
 will change accordingly, which is called  כ

the ‘adaptive order-up-to policy’ (Graves 1999). z is a factor which is decided by 

the desired service level. Given that local cost C୩ ൌ h · maxሺܫ ܰ, 0ሻ   b ·

maxሺെܫ ܰ, 0ሻ  is a linear combination of on-hand inventory charge and backlog 

charge, the value of z for the myopic optimal policy is Φିଵሺ ୠ
୦ାୠ

ሻ,  where Φିଵሺ·ሻ 

is the inverse of the cumulative density function of standard normal distribution 

(Zhang 2004). 

A forecasting method with minimum forecast error ඥVሺD୩|kሻ is the 

optimal solution to minimize the one-period cost. To prove that, we can derive the 

expectation of cost at period k  ࣦ, which is decided by the orders sent in period 

k, as  

EሺC୩ାࣦሻ ൌ ሾh · Qାሺെzሻ   b · QିሺzሻሿඥVሺD୩|kሻ     (4.25) 

where Qାሺെzሻ ൌ  Eሾሺx െ zሻା|x~Normalሺ0,1ሻሿ, 

 Qିሺzሻ ൌ ሾሺz െ xሻା|x~Normalሺ0,1ሻሿ, are functions that only depend on z 

(Zhang 2004).  
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4.5 Analytical Forecast – with/without information sharing 

In the non-information sharing scenario, the manager is unaware of the 

demand at other nodes and merely observes the orders from its customer. Forecast 

method only uses local demand history Δ୩
୧ ൌ  ሼd୩

୧ , d୩ିଵ
୧ , …  , dଵ

୧ ሽ . In the 

information sharing scenario, besides local information Δ୩
୧ , the manager also 

receives demand information from downstream node j, Δ୩
୨ . An application 

example of the information sharing situation is the sharing of Point-of-Sale data 

(Steckel et al. 2004).   

In this section, we present the MMSE forecast for both with and without 

information sharing scenarios in a supply chain model described in Section 4.4. 

Here we assume the shared demand information does not have noise and it only 

comes from one of the downstream node. In the simulation approach (Section 

4.6), we will relax these two constraints.  

4.5.1 Non-information sharing 

It is known that, for an ARIMA(0,1,1) process, the Minimum Mean 

Square Error (MMSE) forecast is the Single-Exponential Smoothing (SES) 

method. Graves (1999) shows that, for a multi-echelon serial supply chain, if the 

end-consumer demand is ARIMA(0,1,1) and each node adopts the adaptive order-

up-to policy with SES forecast, the demand at each node is an ARIMA(0,1,1) 

process.  
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Without assuming information lead time, information sharing is not 

beneficial in the supply chain, because each node can get the optimal forecast if it 

can derive its own ARIMA(0,1,1) process parameters.  

We extend Graves’s model to incorporate information lead time and find 

that the demand at each node is still ARIMA(0,1,1) process. According to 

Proposition A1, the parameters of demand process at node i are: 

α୧ ൌ α୧ିଵ/ሺ1   ࣦ୧ିଵα୧ିଵ).      (4.26) 

ε୩
୧ ൌ  ൫1   ࣦ୧ିଵα୧ିଵ൯εିషభ

୧ିଵ       (4.27) 

µ୧ ൌ µଵ        (4.28) 

By recursively using (4.26) and (4.27), we observe that the demand noise 

at node i in period k is actually the amplified noise of end-consumer demand 

delayed by the information lead time ݈ଵሺሻ. 

ε୩
୧ ൌ  ൫1  ࣦଵሺሻαଵ൯εିభሺሻ

ଵ       (4.29) 

When ݈ଵሺሻ ൌ 0, the result is consist with the findings in Graves (1999). 

In Proposition A3, we derive the MMSE forecast of lead time demand and 

the forecast error variance in this extended model: 

E൫D୩
୧ |Δ୩

୧  ൯ ൌ ࣦ୧F୩ାଵ
୧         (4.30) 

where F୩
୧  is SES forecast at node i at time k, refer to (4.20) and (4.21) 

V൫D୩
୧ |Δ୩

୧ ൯ ൌ V൫ε୩
୧ ൯ࣦ୧ ൜1  α୧൫ࣦ୧ െ 1൯  ൫൯

మ
൫ࣦିଵ൯൫ଶࣦିଵ൯


ൠ   (4.31) 

4.5.2 Information sharing 

We further extend the model to consider information-sharing. Assume 

node i receives, in addition to local demand, demand information at downstream 
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node j. It is also assumed that node i know parameter (α୨) and ߤ, because it either 

receives the parameter information from node j or derives the values by analyzing 

history data d୩
୨ .  

When information is shared, the optimal MMSE forecast at node i and 

forecast variance are, according to Proposition A4: 

E൫D୩
୧ |Δ

 , Δ
 ൯ ൌ ࣦ୧F୩ାଵ

୧  ∑ ൣα୧൫ࣦ୧ െ t൯  1൧ε୩ା୲
୧୲ୀ୫୧୬ ሺೕሺሻ,ࣦሻ

୲ୀଵ    (4.32) 

V൫D
୧ |Δ

 , Δ
 ൯ ൌ V൫ε୩

୧ ൯ࣦכ ൜1  α୧൫ࣦכ െ 1൯  ൫൯
మ

൫ࣦିכଵ൯൫ଶࣦିכଵ൯


ൠ    (4.33) 

where ࣦכ ൌ ሺࣦ୧ݔܽ݉ െ ݈ሺሻ ,0ሻ and ݈ሺሻ is the information lead time from 

node j to node i.  

Comparing (4.30) and (4.32), we see that by observing Δ
 , node i is 

informed of the end-consumer noise ε୩
ଵ earlier by ݈ሺሻ periods and it can use the 

information to improve forecast of lead time demand. As a result, the forecast 

error V൫Dାଵ
୧ |Δ

 , Δ
 ൯ is less than V൫D୩

୧ |Δ୩
୧ ൯  if ݈ሺሻ >0. Comparing (4.31) and 

(4.33), we can see that the benefits of information sharing is actually decided by 

݈ሺሻ, which measures how many periods the demand at node j is advanced than 

the demand at node i. The forecast error becomes 0 when ࣦ୧  ݈ሺሻ. 

The orders from node i still follow an ARIMA(0,1,1) process. The 

parameters for the ordering process at node i (the demand process of its supplier 

node i+1) are: 

α୧ାଵכ ൌ αଵ/ሺ1  ࣦଵሺሻߙଵ   (4.34)     .(כଵࣦߙ 

ε୩
୧כ ൌ  ൫1  ࣦଵሺሻߙଵ  ൯ε୩ି୪షభכଵࣦߙ 

୧ିଵ      (4.35) 
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µ୧כ ൌ µଵ        (4.36) 

Comparing (4.26) - (4.29) with (4.34) - (4.36), we find that the 

amplification of demand noise (the bullwhip effect) is reduced at node i when 

information sharing is assumed. It implies that the upstream nodes will benefit 

from the information sharing by receiving smoother demand signals.  

ሺௗశభכሻ
ሺௗశభሻ

ൌ  ൫ைோכ ൯
൫ைோ൯

ൌ ቀଵାࣦభሺሻఈభା ఈభࣦכ

ଵାࣦభሺశభሻఈభ ቁ
ଶ

൏ 1     (4.37) 

Here we illustrate the analytical results by a numerical example. Assume 

i=3 (Distributor), j=1 (Retailer), ݈ ൌ ݈ିଵ ൌ ڮ ൌ  ݈ଵ ൌ 1 ,  ࣦ ൌ 3 , α ൌ 0.25 , 

V(ε୩
ଵሻ ൌ 10.  

When this is no information sharing,  

ܸ൫D
 |dଵ..

୧ ൯ ൌ ሺ3 ൈ ሺ1  1.5ሻଶ  0.25 ൈ 2 ൈ 3 ൈ ሺ1  1.5ሻ 

 0.25ଶ ൈ 2 ൈ 3 ൈ
5
6ሻ ൈ 100 ൌ 2281.65  

When there is information sharing,  ࣦכ ൌ 3 െ 2 ൌ 1 

 ൫D
 |dଵ..

୧ , dଵ..
୨ ൯ ൌ V൫ε୩ା୧

୧ ൯ࣦכ ൜1  α୧൫ࣦכ െ 1൯  ൫൯
మ

൫ࣦିכଵ൯൫ଶࣦିכଵ൯


ൠ 

   ൌ ሺ2.5 כ 10ሻଶ ൌ 625 

The standard deviation of forecast error is reduced by 

√ଶଶ଼ଵ.ହି√ଶହ
√ଶଶ଼ଵ.ହ

ൌ52.3% 

The orders from Distributor are less dynamical. The bullwhip effect is 

reduced by 1 െ  ቀଵାࣦభሺሻఈభା ఈభࣦכ

ଵାࣦభሺశభሻఈభ ቁ ൌ 15.4%  

 



  92 

4.5.3 Discussion 

Equation (4.33) shows that the value of information sharing is related to 

the information lag between node j and node i (l୨ሺ୧ሻ), and the replenishment lead 

time of node i (ࣦ୧ ). Equation (4.33) implies that if node i has a very long 

replenishment lead time (ࣦ୧  lଵሺ୧ሻ), the most valuable demand information is the 

Point-of-Sale data.  However, if the demand information transmits without delay 

(lead time information is 0), sharing demand information is redundant. The result 

is consistent with the findings in Graves (1999) and Gilbert (2005).  

Equation (4.37) shows that the bullwhip effect at node i is reduced by 

information sharing. As we know that forecast is a factor to cause the bullwhip 

effect (Chen et al. 2000), the reduction of the bullwhip effect can be understood as 

a result of that the lead time covered by the forecast is reduced from ࣦ to ࣦכ. 

However, this conclusion may not apply to other supply chain structure or 

demand patterns. For example, Zhang (2005) finds the delayed demand 

information (instead of advanced demand information) dampens the bullwhip 

effect in for AR(1) demand. 

4.6 Calibrated Simulation based Forecast 

In this section, we introduce the concept and implementation of a 

calibrated simulation.  

4.6.1 Simulation Model – Initialization and Execution  

One important feature of the calibrated simulation is that the model states 

and parameters are allowed to have uncertainty. Their distribution information is 

contained in the V parallel simulation instances, called an ‘ensemble’. The initial 
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ensemble is sampled at the beginning of simulation. Each simulation instance is 

advancing independently, yet updated collectively when new information is 

available using EnKF. The approach that uses multiple simulation instances 

collectively to represent the system state is called ‘multisimulation’ (Mitchell and 

Yilmaz, 2008). With the ensemble, we can predict not only the mean, but also 

estimate the covariance of performance matrix.  

The time line of the calibrated simulation is illustrated in Figure 13.  

New 
information 

coming

Decision making 
support

Simulation Timelinet1 t2

New 
information 

coming

Decision making 
support

Initialization

 

Figure 13. The execution timeline of a calibrated simulation 

Initialization: Suppose the mean of initial state and the its error covariance 

are x and P. We generate V samples of the initial state, denoted them by ሼx୧}, 

i=1…V.  

Execution: The simulation is paused when 1) real time information is 

available and the simulation needs to be calibrated, or 2) a decision making is 

needed. These are separated activities and can be considered as sequential events 

in the simulation lifetime (Figure 13). If the two activities are requested at the 

same time point, simulation calibration has a higher priority since data fusion can 

improve the model accuracy (see Lemma 2 and 3) to better support the decision 

making. 
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4.6.2 Simulation Calibration 

The calibration requires an explicit definition of a system state vector x୩. 

The state vector doesn’t need to include all the simulation states and parameters. 

Three basic rules should be considered when constructing the state vector:  

‐ Constant variables, controlled variables that don’t have uncertainty 

may NOT be included. It is simply because that their error variances 

are already 0 and will not benefit from update.  

‐ Variables that are not correlated to any observed state variables may 

NOT be included. These variables will not benefit from update 

according to Lemma 2.  

‐ The uncertain initial state or parameters, even they are constant in real 

world, should be included. With continuous integration of new data, 

the calibrated simulation will improve the estimation of the unknown 

parameters to finally reach its true value. This kind of problem is 

called parameter estimation and one example is provided in Welch and 

Bishop (2001).   

Note that it will not be harmful if more variables are included than 

necessary; however, the computational cost for the calculation of covariance 

matrix will increase with the size of state vector. 

For the specific supply chain model we studied (Figure 12), there are two 

types of entities in a supply chain: end-consumer and supply chain nodes. For this 

system, we design a 22-dimension state vector. The first two state variables are 

used to track the AMIMA end-consumer demand. A description of how to present 
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ARIMA demand in a state space model is provided by Aviv (2003). For an 

ARIMA(0,1,1) process, the state vector has two variables Y୩ ൌ ሺyଵ yଶሻ and the 

model is,  

Y୩ ൌ  ቀ1 α
0 0ቁ Y୩ିଵ  ൬ 0

Ԗ୲
൰ , Ԗ୲~Nሺ0, σଶሻ    (4.38) 

Where Ԗ୲ is the inherent noise in the time-series, α is the moving average 

coefficient.  

This expression is equivalent to (4.18) and (4.19) when d୩
ଵ ൌ ሺ1 1ሻY୩   µ.  

Besides, the state vector contains the states for each supply chain node. 

Each node has five state variables, X୧ ൌ ሺIN୩
୧ , WIP୩

୧, OR୩
୧ , SR୩

୧ , E൫D୩
୧ ൯ሻ . As a 

result, the whole system vector is a 22-dimension vector shown in (4.39)  

x ൌ

ۏ
ێ
ێ
ێ
ۍ

Y
Xଵ

Xଶ

Xଷ

Xସے
ۑ
ۑ
ۑ
ې
        (4.39) 

Since EnKF does not set any constraint on the transition function g(), a 

Monte Carlo simulation can be used to replace the nonlinear g() function to 

advance the state vector. The sampling of process noise is included in the 

execution of individual simulation instances. Given that the simulation has 

advanced to period k and get the prior estimation of system state x୩
ି,  at the time 

point of simulation calibration, the real-world information is treated as 

measurement and H୩ and R୩ need to be determined. The prior covariance matrix 

of the system state (P୩
ି) is estimated from the states of the simulation ensemble in 

period k. Then, the K୩  matrix is calculated. The observations and simulation 



  96 

predictions are compared and their differences ሺz୩ െ Hx୧୩
ି െ η୧୩ሻ  are used to 

determine how much the prior simulation state x୧୩
ି  should be adjusted. Each 

simulation instance x୧୩
ି is then updated according to (4.6) to get x୧୩

ା . 

Lemma 4. If we have m set of observations with observation functions H୨ 

and observation errors R୨, j = 1.. m. We define two ways of data fusions.  By 

Method 1, we call (4.5) – (4.7) recursively (without using (4.3) -(4.4)) until all the 

m observation sets are integrated. By Method2, we define H ൌ ሺHଵ
, … H୫

 ሻ and 

R ൌ ൮ 

Rଵ 0 … 0 0
0 Rଶ … 0
0
0 

…
0

… 0
… R୫

൲ and apply (4.5) – (4.7) one time. It turns out that 

these two methods generate the same result.  

Proof: Refer to Willner et al. (1976).  

Lemma 4 indicates that we can either integrate the observation m times, 

each time using a 1 by n observation matrix H, or using an m by n matrix to 

fusing information, if their observations errors are independent.  

4.6.3 Simulation-based prediction   

As mentioned in Section 4.4.2, for the adaptive order-up-to control, the 

desired order-up-to level ሺݕ
 is decided by the forecast of lead time demand and (כ

the forecast error.  

ݕ
כ ൌ ሺD୩|kሻܧ       ඥܸሺD୩|kሻݖ 

Where ݖ ൌ Φିଵሺ 
ା

ሻ , Φିଵሺ·ሻ  is the inverse of the cumulative density 

function of standard normal distribution.  
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Note ܧሺD୩|kሻ and ܸሺD୩|kሻ are conditional on previous information from 

period 1 to k-1.  With the Calibrated Simulation approach, we can use the sample 

mean and mean variance of simulation results to predict ܧሺD୩|kሻ and ܸሺD୩|kሻ, 

because all the available information has been integrated into the ensemble.  

ሺD୩|kሻܧ ൌ ∑ ൫ܦ
 ൯

ୀ
ୀଵ  /ܸ      (4.40) 

ܸሺD୩|kሻ ൌ
∑ ሾቀೖ

 ቁ
ೕ

ିாሺୈౡ|୩ሻሿ ೕసೇ
ೕసభ

ିଵ
     (4.41) 

4.7 Experiments  

Three experiments are presented in this section. In the first experiment, 

Calibrated Simulation-based Forecast (CSF) and analytical MMSE forecast are 

compared. The second experiment uses CSF to evaluate the value of information 

when observation noise is present. We also investigate the question-which 

downstream node provides the maximum value in their demand information? It is 

followed by exploring the scenarios with multiple information sources in the third 

experiment.  

The supply chain model studied in these experiments has been introduced 

in Section 4.4.  

4.7.1 Experiment I - Analytical Forecast vs. Calibrated Simulation-based 

Forecast 
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The configurations of the supply chain, Ensemble Kalman Filtering and 

the parameters for inventory control policies at different echelons are summarized 

in Table 16 - Table 18. For each forecast method and the benchmark model, 20 

replicates are run, each with a different random seed to generate consumer 

demand. Each run has 250 periods.  

Table 16. Supply chain configurations  

 

Table 17. The configurations of Ensemble Kalman Filtering 

 

Table 18. Ordering policies and parameters at Retailer, Wholesaler, Distributor 

and Factory 

Parameters for the End-consumer 

ARIMA(0,1,1) process  

ଵߪ ൌ ଵߙ ,10 ൌ 0.25 

Unit backlog cost ($/unit) ܾଵ ൌ ܾଶ ൌ ܾଷ ൌ ܾସ ൌ 5 

Unit on-hand inventory cost ($/unit) ݄ଵ ൌ 1 , ݄ଶ ൌ 0.75, ݄ଷ ൌ 0.5, ݄ସ ൌ 0.25 

Service level = h/(h+b) 0.84, 0.9, 0.93, 0.96 for node 1 to 4 respectively 

Replenishment Lead Time  ࣦଵ ൌ ࣦଶ ൌ ࣦଷ ൌ 3, ࣦସ ൌ 2 

Information Lead Time ݈ଵ ൌ ݈ଶ ൌ ݈ଷ ൌ ݈ସ ൌ 1 

The standard deviation of observation error  0 

Ensemble size (V) 100 

 Non-information sharing 

(Benchmark) 

Information sharing  

(MMSE, CSF) 

Parameters α  of SES STDሺD୩|kሻ α  of SES STDሺD୩|kሻ 

Retailer 0.250 21.93 0.250 21.93 

Wholesaler 0.143 34.82 0.143 34.82 

Distributor 0.100 47.76 N/A N/A 

Factory 0.0769 47.76 0.0909 40.69 
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Three types of metrics are evaluated to compare the performance of 

different forecast methods. Note that i=1,2,3,4 for R, W, D, F  

‐ Local cost 

 Cost_i ൌ ∑ ሾh୧max൫IN୩
୧ , 0൯  bimax൫െIN୩

୧ , 0൯ሿ
୩ୀଵ   

Total supply chain cost 

 CostTotal ൌ ∑ ∑ ሾh୧max൫IN୩
୧ , 0൯   b୧max൫െIN୩

୧ , 0൯ሿ
୩ୀଵ

ସ
୧ୀଵ   

‐ Stock-out time 

 StockOut_ i ൌ # of stock-out periods at node i/ simulation time 

‐ Fill rate  

 FR_i ൌ  ୗ୳୫ሺ୭୰ୢୣ୰ୱ  ୧୫୫ୣୢ୧ୟ୲ୣୢ ϐ୧୪୪ୣୢ ୟ୲ ୬୭ୢୣ ୧ሻ
ୱ୳୫ሺ୭୰ୢୣ୰ୱ ୰ୣୡୣ୧୴ୣୢ ୟ୲ ୬୭ୢୣ ୧ሻ   

The experiment results are included in Table 19 (a) – (c). All the metrics 

are normalized by the performance of the benchmark model to reduce the impact 

of different demand seeds. It is observed that MMSE forecast and CSF have no 

significant differences in all performance matrices (p<0.05).  

 

Table 19. (a) Cost _ MMSE and CSF Comparison 

 

  MMSE  CSF  Method Comparison (P-value)  

 mean stddev mean stddev MMSE vs. CSF 

Cost_total 0.837 0.039 0.839 0.038 0.638 
Cost_1 (R) 0.984 0.021 0.984 0.020 0.971 
Cost_2 (W) 0.980 0.031 0.981 0.031 0.921 
Cost_3 (D) 0.528 0.030 0.530 0.030 0.756 
Cost_4 (F) 0.855 0.009 0.862 0.014 0.144 
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Table 19. (b) Stockout Time _ MMSE and CSF Comparison 

 

Table 19. (c) Fill Rate _ MMSE and CSF Comparison 

  MMSE  CSF  Method Comparison (P-value)  

 mean stddev mean stddev MMSE vs. CSF 

FR_1 (R) 1.001 0.002 1.001 0.002 0.908 
FR_2 (W) 1.001 0.003 1.001 0.002 0.971 
FR_3 (D) 1.001 0.001 1.001 0.001 0.596 
FR_4 (F) 1.000 0.001 1.000 0.001 0.637 

 

Since there is no significant difference between two forecast methods, we 

take the average of cost saving of the two methods to represent the supply chain 

performance under information sharing. Compared with the benchmark model 

(non-information sharing), the supply chain under information sharing has 

significant (p<0.05) saving in total supply chain cost (Cost_total), Distributor 

Cost (Cost_D) and Factory Cost (Cost_F). The costs at the Retailer and 

Wholesaler are reduced slightly, but not statistically significant. In Figure 15, we 

see the distributor’s cost is reduced by 52.8%, which is close to the derived value 

52.3% in the example in Section 4.5.2. The reduction of demand noise at Factory 

  MMSE  CSF  Method Comparison (P-value)   

 mean stddev mean stddev MMSE vs. CSF 

Stockout_1 (R) 0.981 0.022 0.980 0.024 0.791 
Stockout_2 (W) 0.957 0.068 0.957 0.077 0.588 
Stockout_3 (D) 1.201 0.450 1.251 0.490 0.717 
Stockout_4 (F) 1.085 0.257 1.124 0.214 0.460 
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is estimated to be 15.3%, which is consistent with the analytical result shown in 

Table 19. 

 

Figure 15. Cost comparison of information sharing vs. non-information sharing  

Table 20. Reduction in demand forecast MSE at Factory  

Note: the MSE of non-information sharing is 32.5 

Through the above comparison study, we conclude that the analytical 

model introduced in Section 4.5 is correct and the performance of CSF is close to 

the optimal MMSE forecast in this specific case.  
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Table 21. Experiment design – the impact of information source, observation 

error when Factory replenishment lead time = 1, 2, 3  

 

The experiments results are plotted in Figure 17 – Figure 19.  

In the case when the replenishment lead time of Factory is long (ࣦସ =3) 

shown in Figure 17, when STD(observation error)=0, the cost saving increases as 

the information source moves from Distributor  to Wholesaler to Retailer, being 

28.7%, 52.0% to 100% respectively. When the observation error increases, it is 

not surprised to see that the cost saving reduces. Interestingly, we find that the 

drop of cost saving is accelerated when the information provider moves 

downstream. The increase of observation error has the largest impact when 

Retailer’s demand is shared and the least impact when the Distributor’s demand is 

shared. As a result, the demand sharing from Retailer provides the highest cost 

saving when STD(observation error)<15 and Wholesaler becomes the most 

valuable information source when STD(observation error)>15.    

Similar impacts of observations errors are found when the replenishment 

lead time in Factory is medium or short (Figure 18 or 19). When the Factory 

Factors Levels 

Information Source (IS) Retailer (j=1), Wholesaler (j=2), 

Distributor (j=3) 

Observation error Standard Deviation = 0, 5, 10, 20, 30 

Replenishment lead time of Factory ࣦସ ൌ 1,2,3 
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replenishment lead time is 1 and there is no observation error, Factory is able to 

accurately predict its lead time demand by analyzing the demand of any 

downstream node when the observation error is 0. When observation error 

increases, the information from Distributor isthe best information source since it 

is most robust to observation errors.  

We can gain some insight about why observation noise is more influential 

on downstream demand information than on upstream demand information from 

the update procedure of EnKF. In Lemma 2, we see that the reduced sum of 

square error is TrሺPିHሺHPିH  RሻିଵHPିሻ. In our case, H is a row vector 

because there is only one observation variable.  

TrሺPିHሺHPିH  RሻିଵHPିሻ ൌ  TrሺPିHHPିሻ/ሺp୧୧
ି  Rሻିଵ  (4.42) 

where p୧୧
ି is the error variance of prior estimation of the ith state variable. 

R is the variance of observation error. 

From (4.42), it is easy to see that the impact of R is relative to the value of 

p୧୧
ି. Since the noise in demand is amplified from downstream node to upstream 

node because of the bullwhip effect, p୧୧
ି increases from Retailer to Wholesaler to 

Distributor. Therefore, the observation error R is less influential from Retailer to 

Wholesaler to Distributor. In other words, the demand information is less 

sensitive to the observation noise when the information source moves up the 

supply chain.  
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Figure 17. Cost saving under varying observation errors _ long Factory 

replenishment lead time (L4=3) 

 

Figure 18. Cost saving under varying observation errors _ medium Factory 

replenishment lead time (L4=2) 
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Figure 19. Cost saving under varying observation errors_ short Factory 

replenishment lead time (L4=1) 

In sum, we find there are two factors determining the values of 

information sharing in the studied supply chain. First, information source that is at 

the downstream side of the supply chain (closer to end-consumer) brings more 

advanced demand information to benefit the prediction of lead time demand. 

Second, the information provider that is at the upstream side of the supply chain 

(closer to Factory) is more robust to observation noise. Such tradeoff makes 

different information source is preferred when the replenishment lead time change 

(Figure 17 to Figure 18). 

4.7.3 Experiment III– Single and Multiple Information Sources 

In the last experiment, we investigate scenarios when multiple information 

sources exist. The questions include how to integrate multiple items of data? Will 

more data brings more benefits?  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

Co
st
 S
av
in
g 
at
 F
ac
to
ry

STD( observation error)

IS=Retailer(j=1)
IS=Wholesaler (j=2)
IS=Distributor (j=3)

Information Source (IS)Information Source (IS)



  108 

A similar information sharing scenario is assumed to as in Experiment II, 

that is, Factory receives downstream information and uses Calibrated Simulation-

based Forecast to predict its future demand.  However, in this experiment, the 

information may come from multiple nodes and the combinations of information 

sources are considered (Table 22). The observation error is fixed as 

STD(observation error)=10 and the replenishment lead time ࣦସ ൌ 2.  

Table 22. Experiment design – single and multiple information sources 

 

Using the update schema of EnKF, it is flexible to incorporate more than 

one information source. When there is more than one measurement used in 

calibration, the observation is a vector instead of a scalar variable. Lemma 4 in 

Section 4.6.2 indicates that it is equivalent to integrate each information source 

one at a time (using a row vector H) or to integrate them together (using the H 

matrix).  In our implementation, we use the latter method.  

In 

Factors Levels 

Information Source(s) R, W, D 

R +W, W+ D, R+D 

R+W+D 
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Figure 20, a tree plot shows the result when one or multiple information sources 

are used. At the lowest level, only one information source is adopted. As a result, 

Wholesaler is the best information source. At the middle level, two information 

sources are assumed. At the highest level, Factory uses the demand information 

from all the three downstream nodes. We find that the value at a parent node in 

the tree is no less than the value at any of its children, which implies that using 

additional information always improves the cost savings.  

An interesting finding is that the combination of the two top individual 

information sources (W+D) doesn’t provide the best information combination. 

Instead, W+R delivers more cost saving than W+D. This finding can be explained 

by the correlation between the information provided at different nodes.  

Table 23. Cost saving at Factory (single and multiple information sources) 

Information Sources(s) Average Cost 

Saving at Factory 

Standard deviation of Cost 

Saving at Factory 

R 30.7% 5.9% 

W 50.4% 4.5% 

D 25.6% 3.9% 

R+W 57.6% 3.2% 

W+D 58.8% 2.9% 

R+D 45.1% 3.2% 

R+W+D 63.6% 2.8% 
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Figure 20. Cost saving at Factory (single and multiple information sources) 

 

4.8 Summary and Future Research 

In this chapter, we present the use of Calibrated Simulation in adaptive 

inventory control. We first evaluate the correctness of Calibrated Simulation-

based Forecast (CSF) by comparing it with MMSE forecast when the shared 

information is not noisy. After the CSF approach is validated, we use CSF to 

explore scenarios when shared information has noise and when there are more 

than one information sources available.  

Managerial insights are gained about the information sharing and adaptive 

inventory control in a serial supply chain with ARIMA (0,1,1) demand. First, 

information sharing downstream demand reduces the cost at the node that 

receives the information, and reduces the bullwhip effect of the node. There are 

two factors influence the selection of information provider. (1) When there is no 

observation noise, the benefit is conditional on the difference of the information 

lead time from the information provider to information receiver and the 

information receiver’s replenishment lead time. A closed-form formula to 
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calculate the reduction in forecast error given downstream demand information is 

provided. (2) When the shared information is noisy, the downstream observation 

data is more sensitive to noise than upstream data. This is mainly because the 

demand noise are amplified through each echelon (the bullwhip effect), that 

makes the observation errors become less disturbing. When choosing the 

information provider, both factors take effect. The dominant strategy is changing 

depends on the lead time of Factory.  

Second, incorporating data from multiple sources in the supply chain helps 

reduce the forecast variance in CSF, thus reduces the cost. Manager should notice 

that the combination of top information provider doesn’t deliver the best value as 

a team.  

We should mention that the simulation approach has its disadvantages 

compared to analytical methods. In implementing Ensemble Kalman Filtering, the 

computation cost grows high considering that we need to run V simulation in 

parallel with the physical system (emulation). However, we argue that since the 

simulation of each instance is independent and could be executed in parallel. The 

newly developed techniques such as distributed simulation, grid computing, could 

alleviate such pressure.  

Last but not least, the integrated framework of simulation and a nonlinear 

data fusion method is flexible to extend to more complicated supply chain 

scenarios. This approach has the potential to predict the dynamical behaviors of 

the supply chain nodes from a system view by integrating different sources of 

noisy information. It can be used to provide real-time information for decision 
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making in adaptive supply chain management. In this study, we use it as a 

prediction tool. However, this framework could be coupled with other 

optimization techniques, such as simulation-based optimization, to find optimal 

control in real time.  

Future work will be to further develop the simulation technique (e.g. 

sampling approach, guided information collection) and apply this approach in 

solving more complicated supply chain problem.  
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Chapter 5 

CONCLUSIONS AND FUTURE RESEARCH 

An integrated framework of online simulation and data fusion is proposed 

and developed to facilitate the study of adaptive management of large-scale 

complex supply chain systems. An online simulation is regularly calibrated by 

fusing noisy real world data to track the dynamics of a supply chain. This 

framework enables monitoring early signals of exceptional events and provides 

more accurate information for decision makers to manage a supply chain in a 

prompt manner.  

The framework can be used to analyze the system-level behaviors of a 

nonlinear and complex supply chain system. It has several advantages over 

conventional simulation approaches. (1) It is able to take advantage of noisy 

information. Kalman Filtering-based data fusion provides an “optimal” way to 

integrate all available information taking care of the observation error to assure 

the deficit data will not harm the results.  The model is flexible enough to 

incorporate various sources of information, such as expert opinion, marketing and 

sales information. (2) The simulation is continually validated by the process of 

data fusion. The deviation between simulation and emulation is reduced, in other 

words, a calibrated simulation usually has higher prediction accuracy than a 

traditional simulation model.  

The proposed framework can be used to ‘sense and respond’ to the 

changing environment of a large-scale and complex supply chain. In Chapter 4, 

we have seen that this integrated approach is able to include more realistic 
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constraints (e.g. observation noise) to reveal different aspects of decision making. 

Potentially, the ability of the framework to incorporate multiple information 

sources and to consider the overall dynamics of the system will lead to better 

supply chain performance (e.g. cost saving). 

In future research, this framework will be investigated to solve practical 

supply chain problems. One potential use of the calibrated simulation is to 

incorporate dispersed information to provide a comprehensive view of the risks in 

a company’s supply system. Given the fact that there is a large amount of 

information available across a supply chain (e.g. RFID, transaction data, 

manufacturing data), a flexible and dynamic model like the calibrated simulation 

will help companies to translate information into knowledge that can lead to 

effective actions. In addition, several technical problems regarding to the 

framework implementation need be further addressed, such as how to reduce the 

computational cost, and how to handle discrete type of state variables. 
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APPENDIX A 

DEMAND FORECAST WITH/WITHOUT INFORMATION SHARING IN AN 

N-ECHLON SUPPLY CHAIN WITH ARIMA (0,1,1) END-CONSUMER 

DEMAND 
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This appendix provides the derivations of Minimum Mean Square Error 

(MMSE) forecast of demands for the entities in a serial supply chain, when the 

end-consumer demand process is ARIMA(0,1,1). The detailed description of the 

supply chain model is in Section 4.4.  

From the node that is closest to end-consumer (downstream) to the node 

that is farthest to end-consumer (upstream), the entities in the serial supply chain 

are numbered from 1 to N. For each node i, we assume the following notations.  

L  : production/transportation lead time from node i+1 to i, a nonnegative integer 

݈  : information lead time from node i to i+1, a nonnegative integer 

ࣦ  : replenishment lead time at node i.  ࣦ୧ ൌ l୧+ L୧ 

d୩
୧  : demand of node i in period k. It equals to the orders placed by node i-1 in 

period ݇ െ ݈ିଵ 

D୩
୧   : lead time demand of the next ࣦ periods from period k at node i. 

 D୩
୧ ൌ d୩ାଵ

୧  d୩ାଵ
୧  ڮ d୩ାࣦ

୧  

ܱܴ
   : orders placed to supplier at node i in period k  

Proposition A1: For a node, if 1) the demand from its customer is an 

ARIMA(0,1,1) process (Equations (A.1) – (A.2)); and 2) the node uses the Single-

Exponential Smoothing (SES) method (Equations (A.3) – (A.4)) in the adaptive 

order-up-to policy, the demand at its supplier is an ARIMA(0,1,1) process with 

parameters ߙାଵ ൌ ఈ

ଵାఈ ାଵߤ , ൌ ߤ  and the random noise  ߝ
ାଵ ൌ ൫1 

 .  െ݈݅݅݇ߝ݅ߙࣦ݅

݀ଵ
 ൌ ߤ  ଵߝ

         (A.1) 

݀
 ൌ ݀ିଵ

 െ  ൫1 െ ିଵߝ൯ߙ
  ߝ

      (A.2) 
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Where ߝ
 ~ i.i.d. N (0, ሺߪሻଶ) 

Fଵ
୧ ൌ µ୧        (A.3) 

F୩ାଵ
୧ ൌ α୧ כ d୩

୧  ሺ1 െ α୧ሻ כ F୩
୧      (A.4) 

Proof:  From (A.1) and (A.2), it is easy to derive  

݀
 ൌ ߝ

  ߙ ∑ ௧ߝ
୧௧ୀିଵ

௧ୀଵ         (A.5)ߤ

From (A.3) and (A.4), it is easy to derive  

F୩ାଵ
୧ ൌ ߙ ∑ ௧ߝ

୧௧ୀ
௧ୀଵ                        (A.6)ߤ

Substituting k with k+1 in (A.5) and subtracting it from (A.6), we get  

ାଵܨ
 െ ݀ାଵ

 ൌ ାଵߝ
          (A.7) 

ܸ൫ܨାଵ
 െ ݀ାଵ

 ൯ ൌ ܸ൫ߝାଵ
 ൯ ൌ ሺߪሻଶ      (A.8) 

Equation (A.8) implies that the forecast error variance of F୩ାଵ
୧  is time-

invariant, that is, VሺD୩|kሻ ൌ VሺD୩ିଵ|k െ 1ሻ. Consequently, the order placed by 

the adaptive order-up-to policy (4.24) is  

ܱܴ
 ൌ ൫ܧሺܦ|݇ሻ െ ݇|ିଵܦሺܧ െ 1ሻ൯   ݀  

ൌ ࣦሺ ܨାଵ
 െ ܨ

 ሻ   ݀
      (A.9) 

From (A.5), (A.6) and (A.9), it is easy to derive (A.10). 

ܱܴ
 ൌ  ࣦ൫ ܨାଵ

 െ ܨ
 ൯   ݀

  

 ൌ ሺ1   ࣦߙሻߝ
  ߙ ∑ ௧ߝ

௧ୀିଵ
௧ୀଵ       (A.10)ߤ

Compared with the general expression of the ARIMA(0,1,1) model in 

(A.5), the order sent from node i (A.10) is actually an ARIMA(0,1,1) process. 

Since the information lead time between node i and node i+1 is assumed to be ݈.  

݀
 ൌ ܱܴି

 ൌ ିߝ
ାଵ  ାଵߙ ∑ ௧ିߝ

୧ାଵ௧ୀିଵ
௧ୀଵ   ାଵ   (A.11)ߤ
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Where 

ାଵߙ ൌ ఈ

ଵାࣦఈ         (A.12) 

ߝ
ାଵ ൌ ൫1  ିߝ൯ߙܮ

        (A.13) 

ାଵߤ ൌ          (A.14)ߤ

 ז

Proposition A2: In an ARIMA (0,1,1) demand model, the history of noise 

ࣟ
 ൌ ሼߝ

 , ିଵߝ
 , …  , ଵߝ

 ሽ   and the history of demand Δ
 ൌ  ൛݀

 , ݀ିଵ
 , …  , ݀ଵ

 ൟ 

contain the same information, therefore, they can be derived from each other.  

Proof: Equations (A.1) – (A.2) show that {݀
 } can be derived from {ߝ

 }. 

By rewriting (A.1) and (A.2) to (A.15) and (A.16), it is easy to see that {ߝ
 } can 

be derived from {݀
 } as well. 

ଵߝ
 ൌ ݀ଵ

 െ           (A.15)ߤ

ߝ
 ൌ ݀

 െ ݀ିଵ
   ൫1 െ ିଵߝ൯ߙ

       (A.16) 

 ז

Proposition A3: Assume the end-consumer demand of the supply chain is 

ARIMA(0,1,1) and all the downstream nodes of node i (node 1 to i-1) use the SES 

forecast and adaptive order-up-to policy. For the ith node in a serial Supply Chain, 

given the local demand history, the MMSE forecast of the lead time demand (D୩
୧ ) 

is ࣦ୧F୩ାଵ
୧ , where ࣦ୧ is the replenishment lead time of node i and F୩ାଵ

୧  is the SES 

forecast. 

Proof: According to Proposition A2, the expectation of the lead time 

demand given local information Δ
  is 
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E൫D୩
୧ หΔ

 ൯ ൌ E൫d୩ାଵ
୧ หΔ

 ൯  E൫d୩ାଶ
୧ หΔ

 ൯   …  E൫d୩ାࣦ
୧ หΔ

 ൯ 

ൌ  E൫d୩ାଵ
୧ หࣟ୩

୧ ൯  E൫d୩ାଶ
୧ หࣟ୩

୧ ൯ . . E൫d୩ାࣦ
୧ หࣟ୩

୧ ൯ (A.17) 

Since the end-consumer demand of the supply chain is ARIMA(0,1,1) and 

all its downstream nodes use the SES forecast and adaptive order-up-to policy, 

according to Proposition A1, the demand at node 1 to i all follow the 

ARIMA(0,1,1) model.  Mathematically, the demand at node i can be represented 

as 

݀
 ൌ ߝ

  ߙ ∑ ௧ߝ
୧௧ୀିଵ

௧ୀଵ           (A.18)ߤ

where ߤ is the initial process average for the demand at node i, ߙ is the 

moving average coefficient ( 0 ൏ ߙ  1 ) and the noise series is  

ߝ 
 ~ ݅. ݅. ݀ ܰ൫0, ሺߪሻଶ൯  

In period k, given the information ࣟ୩
୧ ൌ ሼߝ

୧ , ିଵߝ
୧ ଵߝ …

୧ ሽ, it is easy to see 

that the MMSE forecast of future demand ݀ା
  is 

E(݀ା
 |ࣟ୩

୧ ߙ =( ∑ ௧ߝ
୧௧ୀ

௧ୀଵ   , for all j>0     (A.19)ߤ

Compared with (A.6), Equation (A.19) actually equals to the SES demand 

forecast , denoted by F୩ାଵ
୧ . Hence, we have 

E൫D୩
୧ หΔ

 ൯ ൌ ࣦF୩ାଵ
୧        (A.20) 

The variance of forecast error is derived as  

V൫D୩
୧ |Δ

 ൯ ൌ ܸ ቀD୩
୧ െ E൫D୩

୧ หΔ
 ൯ቁ 

ൌ V ቆ ሾ݀ା௧
 െ ൫݀ା௧ܧ

 หࣟ୩
୧ ൯ሿ

୲ୀࣦ

୲ୀଵ
ቇ 
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ൌ V ቆ ൣα୧൫ࣦ୧ െ t൯  1൧ε୩ା୲
୧

୲ୀࣦ

୲ୀଵ
ቇ 

ൌ  V൫ε୩
୧ ൯ࣦ୧ ൜1  α୧൫ࣦ୧ െ 1൯  ൫൯

మ
൫ࣦିଵ൯൫ଶࣦିଵ൯


ൠ   (A.21) 

 ז

Proposition A4: Assume the end-consumer demand of the supply chain is 

ARIMA(0,1,1) and all the downstream nodes of node i (node 1 to i-1) use the SES 

forecast and adaptive order-up-to policy. For the ith node in a serial Supply Chain, 

the MMSE forecast of the lead time demand (D୩
୧ ) is 

E൫D୩
୧ |Δ

 , Δ
 ൯ ൌ ࣦ୧F୩ାଵ

୧  ∑ ൣα୧൫ࣦ୧ െ t൯  1൧ε୩ା୲
୧୲ୀ୫୧୬ ሺೕሺሻ,ࣦሻ

୲ୀଵ  (A.22) 

V൫D
୧ |Δ

 , Δ
 ൯ ൌ V൫ε୩ା୧

୧ ൯ࣦכ ൜1  α୧൫ࣦכ െ 1൯  ൫൯
మ

൫ࣦିכଵ൯൫ଶࣦିכଵ൯


ൠ   

where ࣦכ ൌ ሺࣦ୧ݔܽ݉ െ ݈ሺሻ ,0ሻ     (A.23) 

Proof: Recursively applying (A.13), we get 

ߝ
 ൌ ൫1  ࣦିଵߙିଵ൯ߝିషభ

ିଵ  

ൌ ൫1  ࣦିଵߙିଵ൯൫1  ࣦିଶߙିଶ൯ߝିషభିషమ
ିଶ  

 ൌ ڮ ൌ   ∏ ሺ1  ࣦ௧ߙ௧ሻ௧ୀିଵ
௧ୀଵ ିೕሺሻߝ

ଵ     (A.24) 

 where ݈ሺሻ ൌ ݈ିଵ  ݈ିଶ . . ݈  

Since ൫1  ࣦߙ൯ ൌ ఈ

ఈశభ,  ∏ ሺ1  ࣦ௧ߙ௧ሻ௧ୀିଵ
௧ୀଵ ൌ ఈೕ

ఈ   (A.25) 

Substitute (A.25) in (A.24), we get  

ߝ
 ൌ ఈೕ

ఈ ିೕሺሻߝ 
        (A.26) 

Because d୩
୧ ൌ ε୩

୧  α୧ ∑ ε୲
୧୲ୀ୩ିଵ

୲ୀଵ  µ୧ , F୩ାଵ
୧ ൌ α୧ ∑ ε୲

୧୲ୀ୩
୲ୀଵ  µ୧, there are  

d୩ାଵ
୧ ൌ F୩ାଵ

୧   ε୩ାଵ
୧  
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dାଶ
୧ ൌ d୩ାଵ

୧  ൫α୧ െ 1൯ε୩ାଵ
୧   ε୩ାଶ

୧ ൌ F୩ାଵ
୧   α୧ε୩ାଵ

୧   ε୩ାଶ
୧  

d୩ାଷ
୧ ൌ d୩ାଶ

୧  ൫α୧ െ 1൯ε୩ାଶ
୧  ε୩ାଷ

୧ ൌ F୩ାଵ
୧  α୧൫ε୩ାଵ

୧   ε୩ାଶ
୧ ൯   ε୩ାଷ

୧   

…  

Finally, we sum the daily demands, d୩ା୨
୧ , to get the demand over the lead 

time, D୩
୧ , as 

D୩
୧ ൌ d୩ାଵ

୧  d୩ାଶ
୧  . . d୩ାࣦ

  

ൌ ࣦF୩ାଵ
୧  ∑ ൣα୧൫ࣦ െ t൯  1൧ε୩ା୲

୧୲ୀࣦ
୲ୀଵ    

From (A.26), there is  

D୩
୧ ൌ ࣦF୩ାଵ

୧  ∑ ൣα୧൫ࣦ െ t൯  1൧ ఈೕ

ఈ εା௧ିೕሺሻ
୨୲ୀࣦ

୲ୀଵ    (A.27) 

When there is information shared between node i and the downstream 

node j, node i observes the demand at j. That means, at period k, the random noise 

εା௧ିೕሺሻ
୨ , … ε

୨  are known.  

Case I: When ݈ሺሻ ൏ ࣦ, the unknown part in (A.27) is 

   ∑ ൣα୧൫ࣦ െ t൯  1൧ε୩ା୲
୧୲ୀ

୲ୀଵାೕሺሻ  .  

Therefore, 

E൫D୩
୧ |Δ

 , Δ
 ൯ ൌ ࣦ୧ ൌ ࣦ୧F୩ାଵ

୧    ൣα୧൫ࣦ୧ െ t൯  1൧ε୩ା୲
୧

୲ୀೕሺሻ

୲ୀଵ
 

V൫D
୧ |Δ

 , Δ
 ൯ ൌ V ቆ ൣα୧൫ࣦ୧ െ t൯  1൧ε୩ା୲

୧
୲ୀࣦ

୲ୀଵାೕሺሻ
ቇ 

ൌ V൫ε୩ା୧
୧ ൯ࣦכ ൜1  α୧൫ࣦכ െ 1൯  ൫൯

మ
൫ࣦିכଵ൯൫ଶࣦିכଵ൯


ൠ   

where  ࣦ୧כ ൌ ࣦ୧ െ ݈ሺሻ 
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Case II: When  ݈ሺሻ  ࣦ,  

E൫D୩
୧ |Δ

 , Δ
 ൯ ൌ ࣦ୧F୩ାଵ

୧   ൣα୧൫ࣦ୧ െ t൯  1൧ε୩ା୲
୧

୲ୀࣦ

୲ୀଵ
 

V൫D
୧ |Δ

 , Δ
 ൯ ൌ  0 

Combining Case I and Case II, we get Equation (A.22) and (A.23).ז 

 


