
BioEve: User Interface Framework Bridging IE and IR 

by 
 

Pradeep Kanwar 
 
 
 
 
 

A Thesis Presented in Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
 
 
 
 
 
 
 
 
 
 

Approved October 2010 by the 
Graduate Supervisory Committee: 

 
Hasan Davulcu, Chair 

Valentin Dinu 
Baoxin Li 

 
 
 
 
 
 
 
 
 
 

 

 

 

ARIZONA STATE UNIVERSITY 

December 2010 



  i 

ABSTRACT  
   

Continuous advancements in biomedical research have resulted in the production of vast 

amounts of scientific data and literature discussing them. The ultimate goal of 

computational biology is to translate these large amounts of data into actual knowledge of 

the complex biological processes and accurate life science models. The ability to rapidly 

and effectively survey the literature is necessary for the creation of large scale models of 

the relationships among biomedical entities as well as hypothesis generation to guide 

biomedical research. To reduce the effort and time spent in performing these activities, an 

intelligent search system is required. Even though many systems aid in navigating 

through this wide collection of documents, the vastness and depth of this information 

overload can be overwhelming. An automated extraction system coupled with a cognitive 

search and navigation service over these document collections would not only save time 

and effort, but also facilitate discovery of the unknown information implicitly conveyed 

in the texts. This thesis presents the different approaches used for large scale biomedical 

named entity recognition, and the challenges faced in each. It also proposes BioEve: an 

integrative framework to fuse a faceted search with information extraction to provide a 

search service that addresses the user's desire for "completeness" of the query results, not 

just the top-ranked ones. This information extraction system enables discovery of 

important semantic relationships between entities such as genes, diseases, drugs, and cell 

lines and events from biomedical text on MEDLINE, which is the largest publicly 

available database of the world’s biomedical journal literature. It is an innovative search 

and discovery service that makes it easier to search/navigate and discover knowledge 

hidden in life sciences literature. To demonstrate the utility of this system, this thesis also 

details a prototype enterprise quality search and discovery service that helps researchers 
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with a guided step-by-step query refinement, by suggesting concepts enriched in 

intermediate results, and thereby facilitating the "discover more as you search" paradigm. 
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Chapter 1 

INTRODUCTION 

The discovery of the human gene and rapid developments in the biomedical domain has 

produced large amounts of genetic data resulting in exponential growth of biomedical 

literature. In recent years efforts to analyze this data has been correspondingly 

constrained by the challenge of organizing and analyzing it. The urgency of this task and 

the reward of even partial success in its accomplishment have caused the development 

and interoperability between diverse web-based representations to take center stage. 

Much of the valuable knowledge gained is found in published articles, journals and thus 

in un-structured textual form.  MEDLINE, the primary research database currently 

contains more than 20 million1 abstracts covering from 1948-present. The growth rate of 

MEDLINE database is expected to be 400,000 articles per year (Ulf Leser 2005). This 

data makes the task of expert database curators and reviewers, to recognize and discover 

important connections between biomedical entities, very tedious and time consuming. 

There is a need to understand user interest and retrieve novel information, which may 

otherwise be obscured by the sheer volume of biomedical literature. Tools to help 

researchers achieve this while coping with the information overload are therefore the 

solution. The BioEve Discovery Engine2 is an innovative search and discovery service 

that makes it easier to search/navigate and explore (Ryen W. White 2006) knowledge 

hidden in life sciences literature.  

Bio-Eve’s intuitive and cognitive interface enables discovery of important semantic 

relationships between entities like drugs, diseases, and genes; it highlights these to truly 

                                                           
1 http://www.cas.org/ASSETS/BF043DBCE4274170A03561C274C671D2/medline.pdf 

2 BioEve discovery engine received 2010 ASU Innovation Challenge grant for innovation 
and impact,See http://innovationchallenge.asu.edu/winners2010.html and 
http://asunews.asu.edu/20100506_innovationchallenge 



  2 

facilitate the “discover more as you search” paradigm. BioEve can be accessed 

here3:(http://www.bioeve.org/, Use Firefox/Chrome/Safari browser for faster experience), 

and currently has 1,908,682 abstracts annotated, classified, and indexed. Human genome 

sequencing marked the beginning of the era of large-scale genomics and proteomics, 

leading to large quantities of information on sequences, interactions, and their 

annotations. Many experimental findings are reported in the -omics literature, where 

researchers have access to over 20 million publications, with 2,000 to 4,500 new ones 

every day (source: PubMed citation index4).  

This vast increase in available information demands novel strategies to help 

researchers to keep up-to-date with recent developments. Tools should provide dedicated 

and intuitive strategies that help to find relevant literature, starting with initial keyword 

searches and drilling down results via overviews enriched with auto generated 

suggestions to refine queries. BioEve (http://www.bioeve.org/) provides semantic faceted 

search with real time query refinement, where users can quickly refine their queries and 

drill down to the articles they are looking for in a matter of seconds, corresponding to a 

few number of clicks. BioEve can identify hidden important semantic relationships 

between entities like drugs, diseases, and genes, and highlight them to enable “discover 

more as you search.” 

                                                           
3 Firefox/Chrome/Safari/Opera browsers are recommended for a faster experience 

4 PubMed: http://www.pubmed.gov 
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Figure 1.1 BioEve system overview 

1.1 MOTIVATION 

The motivation behind this thesis work is to develop a system which can identify 

hidden relationships between entities like drugs, diseases and genes and highlights them, 

thereby allowing the researcher to not only navigate the literature, but also to see entities 

and the relations they are involved in immediately, without having to read the article text 

fully, thus providing another aspect of searching relevant articles. Figure 1.2 illustrates 

the motivation for this work which is to facilitate the following paradigms: 

Knowing what keywords to search 

How to refine and narrow large set of results returned 

Insights into important relationship will be of tremendous help 

Faster and easier way to locate relevant articles with fewer clicks than reading pages of 

text 

Discover more as you search, and refine or expand search on the fly with dynamic 

interface  
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Figure 1.2 Motivation 

The figure shows the total number of abstracts (1918682) taken from PubMed5 database 

maintained by United States National Library of Medicine. The PubMed database has a 

rich and up to date collection of biomedical literature, and is used by a lot of applications 

as well as researchers in biomedical domain. Tools should provide dedicated and intuitive 

strategies that help to find relevant literature, starting with initial keyword searches and 

drilling down results via overviews enriched with auto-generated suggestions to refine 

queries. BioEve (http://www.bioeve. org/) provides semantic faceted search with real 

time query refinement, where users can quickly refine their queries and drill down to the 

articles they are looking for in a matter of seconds, to whom correspondence should be 

addressed corresponding to a few number of clicks. BioEve can identify hidden important 

                                                           
5 http://www.ncbi.nlm.nih.gov/pubmed 



  5 

semantic relationships between entities like drugs, diseases, and genes, and highlight 

them to enable discover more as you search. Consider an example where the researcher 

wants to study the relation between benzene, leukemia and Neutrophils cells. Need is to 

find all the top relevance abstracts about the experimental studies explaining the relation 

between these two entities. As shown in the figure, the number of abstracts which talks 

about benzene is 1986. Searching further, the users would want to go through top relevant 

abstracts for the given query. As shown, the disease Leukemia selection narrows down 

the resulting abstract set to 70. Going further ahead in making more filter choices, by 

including Neutrophils cell types in the filter criteria narrows it further down to 3 

abstracts. Required is the system which suggests top relevant and frequently occurring 

bio medical entities meaningful to the user’s search query which would be full filled 

further when the system suggests Hemoglobin as the top relevant gene reducing the 

number of top relevant abstracts count to 2.Thus, the aim here is to reduce the number of 

abstracts for researchers to top relevant ones to through while studying about entity 

relationships. Additionally, the aim is also to implement the paradigm “discover more as 

you search” by identifying other important relationship among entities which otherwise 

goes unnoticed. 

1.2 THESIS OUTLINE 

The primary objective of this work is to develop a framework providing web 

based search interface in biomedical field, which would help researchers and scientists in 

faster discovery of connections and patterns between different biomedical entities. After 

identifying the entity types like drugs, diseases, chemicals, gene and proteins, we index 

them on Solr to aid in performing faceted search. The major contribution of this work is 

to identify biomedical entities and phrases indicating their connections and facilitate 

users to discover and study these connections as well as discover new patterns among 
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these entities. Chapter 2 discusses the related work supporting our approach. Chapter 3 

describes the BioEve: novel integrative system architecture in detail, explaining each 

building block of this framework. We recognized different types of bio entities and 

biomedical terms and tagged them to facilitate faceted search. Different entities tagging 

approaches are elaborately discussed in Chapter 4. 

. Chapter 5 describes the annotation mechanism for bio entities and events. Chapter 6 

details the BioEve: web-based user interface and guidelines on how to use it and the user 

feedbacks and comments about this system. Chapter 7 summarizes this work and 

describes the future work to be done on this BioEve system. 
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Chapter 2 

BACKGROUND AND RELATED WORK 

The vast amount of biomedical information available on shared systems like PubMed 

requires a way to identity hidden relationships between entities like drugs, diseases and 

genes and highlights them, thereby allowing the researcher to not only navigate the 

literature, but also to see entities and the relations they are involved in immediately, 

without having to read the article text fully, thus providing another aspect of searching 

relevant articles. The existing web-based search interfaces provide the bridge between 

Information Extraction (IE) and Information Retrieval (IR). However, current need is to 

assist the researchers and scientists in faster, smarter searches and pattern discoveries 

while studying the existing knowledge base. Information extraction (IE) is a process 

which selectively structures and combines data found implicitly or explicitly in one or 

more texts (for e.g. biomedical literature) including extracting entities, relations, and 

events. Typical key areas of information extraction in biomedical domain research are 

named entity recognition, co-reference resolution, terminology extraction, and 

relationship extraction (for e.g. extracting protein - protein interactions)6. 

2.1 INFORMATION EXTRACTION FROM BIOMEDICAL TEXT 

The last two decades have seen unprecedented growth in both the production of 

biomedical data and amount of published literature discussing it. Advances in 

computational and biological methods have remarkably changed the scale of biomedical 

research. Complete genomes can now be sequenced within months and even weeks 

(Shatkay 2005), computational methods expedite the identification of tens of thousands 

of genes and large-scale experimental methods. The main developments in this area have 

been related to the identification of biological entities (named entity recognition), such as 

                                                           
6 http://en.wikipedia.org/wiki/Information_extraction 
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protein and gene names in free text, the association of gene clusters obtained by 

microarray experiments with the biological context provided by the corresponding 

literature, automatic extraction of protein interactions and associations of proteins to 

functional concepts (e.g. gene ontology terms). Using conventional methods for finding 

implicit and explicit information from this huge collection of literature is very difficult. 

Hence the need for new information extraction methods in biomedical text mining is 

needed. Though scientists in the field are aided by many online databases of biochemical 

interactions, currently a majority of these are labor intensively curated by domain experts.  

Information extraction from text has therefore been pursued actively as an attempt to 

extract knowledge from published material and to speed up the curation process 

significantly. The most used online source of biomedical literatures is 

PubMed/MEDLINE7 database, which is maintained by National Center of Biotechnology 

Information (NCBI) and contains over 20 million scientific abstracts. 

Two of the main obstacles in the way of fully automatic extraction of facts from 

free-form natural language text are ambiguity and variability. For example, even a simple 

relationship such as one protein binding another can be expressed in a surprising number 

of ways; twenty two ways are shown in the table below (Pyysalo 2008): 

                                                           
7 http://www.ncbi.nlm.nih.gov/pubmed/ 
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1. e1 binds e2 

2. e1 cross-links e2 

3. binding of e1 to e2 

4. e1 binding to e2 

5. binding to e1 by e2 

6. e1 is able to bind to e2 

7. e1 is shown to bind e2 

8. e1 is an antigen known to bind e2 

9. e1 (an e2-binding protein) 

10. partners that associate with e1: e2 and e3 

11. e1 is involved in binding to e2 

12. e1 has been implicated in e2 binding 

13. e1 binding region of e2 

14. e1 is secreted as a protein that binds 

e2 

15. affinity of e1 for e2 

16. e1 regulates e3 by binding to e2 

17. association of e1 with e2 

18. e1 is directly associated with e2 

19. e1, which binds to e2, 

20. e1 is a receptor for e2 

21. e1 binding sites of e2 

22. e1 is expressed as a receptor for e2 

Table 2.1 Protein-Protein Binding relationships 

Most efforts, concerned with information extraction in biomedical domain, are focused in 

using curated lexica or natural language processing for identifying relevant phrases and 

facts in text. Information extraction from free-text utilizes shallow-parsing techniques 

(Walter Daelemans 1999), Parts-of-Speech (Brill 1992), noun and verb phrase chunking 

(Andrei Mikheev 1997), verb subject and object relationships (Walter Daelemans 1999), 

and learned (Mary Elaine Califf 1999), (Mark Craven 1999), (Seymore K. 1999) or hand-

build patterns to automate the creation of specialized databases. Manual pattern 

engineering approaches employ shallow parsing with patterns to extract the interactions. 

In the (Ono T 2001) system, sentences are first tagged using a dictionary based protein 

name identifier and then processed by a module which extracts interactions directly from 

complex and compound sentences using regular expressions based on part of speech tags. 

IE systems look for entities, relationships among those entities, or other specific facts 
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within text documents. The success of information extraction depends on the 

performance of the various subtasks involved. 

In the biomedical context, the first step toward information extraction is to 

recognize the names of proteins (Fukuda K 1998), genes, drugs and other molecules. The 

next step is to recognize interaction events between such entities (Blaschke C 1999), 

(Christian Blaschke 2002), (Thomas J 2000), (Ono T 2001), (Udo Hahn 2002)and then to 

finally recognize the relationship between interaction events. 

With advent of Multi-core machines, and cheaper hardware cost, parallelization 

and distributed processing are attractive alternatives for processing extremely large 

collections. Information extraction is particularly amenable to parallelization, as the main 

information extraction steps, (e.g., part-of-speech tagging, shallow syntactic parsing, 

named entity recognition) operate over each document independently (Stephen Dill 

2003).  Most parallel data mining and distributed processing architectures (e.g., Google’s 

MapReduce8 or Apache Hadoop9 can be easily adapted for information extraction over 

large collections.  

Large scale systems for information extraction include many different classifiers 

and extractors. In systems containing may learned components, it is important to cleanly 

share information between the components and to flexibly sequence the actions of the 

components, (Cohen 2003), discuss how to cleaning share information between 

components. 

2.2 TEXT CATEGORIZATION 

Text Categorization, is labeling of natural language texts with thematic categories from a 

predefined set of category-tags. There are two main approaches: Knowledge Engineering 

                                                           
8 MapReduce: http://labs.google.com/papers/mapreduce.html 

9 Hadoop: http://hadoop.apache.org/ 
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and Machine Learning. While Knowledge Engineering approaches rely on a domain 

expert to specify the classification rules, machine learning approaches are automated and 

prevalently use various clustering and classification algorithms. Conventional 

classification algorithms are often augmented using feature selection procedures that 

enhance the categorization of documents. Word co-occurrences with ontologies used for 

the semantics of the words are also used in the classification of documents. The 

CONSTRUE (Philip J. Hayes 1990) system follows the knowledge engineering approach, 

where the rules are specified as a disjunction of conjunctive clauses. The machine 

learning (ML) approach need existence of a training set of documents, already classified 

into set of categories. There are two kinds of ML-based categorization, known as hard 

and soft classification. Hard classification assigns a truth value (either True or False) to 

each document, where as soft classification gives a ranking (by relevance) to each 

document. 

2.3 NAMED ENTITY RECONGITION 

Entity extraction or Named entity identification is the process of identifying the words or 

phrases of interest such as genes, proteins, protein families, drugs, chemicals and 

pathways in text. Entity identification has also been thoroughly researched over the years, 

with various challenges such as the BioCreative10 and shared tasks in conferences 

addressing the issues and evaluating the performances using common corpora. The 

simplest and frequently used approach to entity identification is a dictionary matching 

approach where the entity names are compiled as a dictionary and a string match with an 

entry in the dictionary tags the words or phrases as gene or protein names.  

                                                           
10 http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html 
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A variety of publicly available databases provide the resources for entity names. NCBI’s 

LocusLink11 and HUGO12 are among the databases that provide gene and protein names 

and their synonyms.  

Entity Identification systems generally use rule based approaches and machine 

learning techniques to mark the phrases of interest in text. Rule based approaches rely on 

regular expressions and heuristic rules to identify gene names. Fukuda et al. follow a 

combination of regular expressions and expansion rules to identify single word and multi-

word gene names. Some of the machines learning approaches followed for NER include 

decision trees, Bayesian classifiers, hidden markov models, iterative error reduction, 

boosted wrapper induction and support vector machines. The ABGene system from 

Tanabe and Wilbur (Lorraine Tanabe 2002) uses the Brills tagger to learn transformation 

rules to tag the gene and protein names in text. The rules are based on the word 

occurrences, neighboring words and part of speech tags of the words and the neighbors. 

Research in entity recognition has resulted in the development of various corpora for the 

purpose of providing a benchmark for the entity recognition systems. The GENIA corpus, 

a hand -annotated corpus of abstracts from over 2000 MEDLINE articles on human blood 

transcription factors uses the GENIA ontology to tag concepts in text. ABNER (Settles 

2005)system uses Conditional Random fields (CRF), complemented by a set of 

orthographic and semantic features to identify proteins, genes, cell lines and cell types. 

Semantic features were in the form of hand curated lexicons and ones drawn from 

databases and Google data sets. Addition of these semantic features worked well for 

classification of low frequency classes in the corpus. 

 

                                                           
11 http://www.ncbi.nlm.nih.gov/pro jects/LocusLink/ 

12 http://www.gene.ucl.ac.uk/nomenclature/ 
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2.4 INFORMATION RETRIEVAL IN BIOMEDICAL INFORMATICS 

With the advancement of genomic and proteomic technologies, the increased number of 

publications discussing genes and proteins leads to the ultimate goal of modern large 

scale biology to translate these large amounts of data into actual knowledge of biological 

processes for text mining and interpretation and planning of large scale experiments. 

Information retrieval (IR) (Shatkay 2005) is a necessary first step towards text mining. It 

is the process of identifying a subset of documents accurately and efficiently whose 

content is most relevant to a user’s need within a large collection.  Various approaches of 

IR includes Boolean queries, index structures, similarity based approaches and text 

categorization. PubMed applies Boolean query to its search feature.  

In the large-scale genomics, many methods to support IR have been introduced 

and developed for e.g. Swanson’s ‘transitive’ relations theory i.e. indirect links among 

entities as clues for yet unknown relationships. This reasoning was further studied and 

automated by Weeber and Srinivasan and Libbus and Wren. Also, Shatkay introduced 

thematic analysis methods for finding functional relationships among genes (Shatkay 

2005). 

However, since information retrieval does not look for explicitly stated 

information in literature, it has the disadvantage of foreshadowing the undiscovered facts. 

Therefore, to successfully mine the biomedical literature, it is important to relate the 

merits and limitations of the different IR methods. 

2.5 KEYWORD AND FACETED SEARCH 

PubMed is one of the most well known and used citation indexes for the Life Sciences. It 

provides basic keyword searches and benefits largely from a hierarchically organized set 

of indexing terms, MeSH, that are semi-automatically assigned to each article. Screenshot 

of PubMed Interface is shown in figure 2.1. PubMed also enables quick searches for 
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related publications (Bénel A. 2002) given one or more articles deemed relevant by the 

user. A few commercial products are currently available that provide additional services, 

but they also rely on basic keyword search, with no real discovery or dynamic faceted 

search. Examples are OvidSP13 and Ingenuity Answers14, both of which support book-

marking as one means of keeping track of visited citations. 

 

Figure 2.1: Screenshot of PubMed; Results for query “leukemia”. 

Research tools such as EBIMed15 provide additional cross-referencing of entities to 

databases such as UniProt16 or to the GeneOntology17. They also try to identify relations 

between entities of the same or different types, such as protein-protein interactions, 

                                                           
13 http://www.ovid.com/site/resources/index_ovidsp.jsp 

14 http://www.ingenuity.com/products/answers.html 

15 EBIMed: http://www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp 

16 http://www.uniprot.org/ 

17 http://www.geneontology.org/ 
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functional protein annotations, or gene–disease associations. GoPubMed18 guides users in 

their everyday searches by mapping articles to concept hierarchies, such as the Gene 

Ontology and MeSH (Andreas Doms 2005). For each concept found in abstracts returned 

EBIMed by the initial user query, GoPubMed computes a rank based on occurrences of 

that concept. Thus, users can quickly grasp which terms occur frequently, providing clues 

for relevant topics and relations, and refine subsequent queries by focusing on particular 

concepts, discarding others. 

BioEve can identity hidden relationships between entities like drugs, diseases and 

genes and highlights them, thereby allowing the researcher to not only navigate the 

literature, but also to see entities and the relations they are involved in immediately, 

without having to read the article text fully, thus providing another aspect of searching 

relevant articles. Screenshot of BioEve Interface is shown in figure 2.2. 

Before we identity semantic relationships between entities, first important task in 

biomedical text mining is to recognize named entities occurring in unstructured article 

text, such as genes and diseases. Named entity recognition (NER) is helpful to identify 

relevant documents, index a document collection, and facilitate information retrieval and 

semantic searches (Settles 2004). 

A faceted search system (or parametric search system) presents users with key 

value meta-data that is used for query refinement (Jonathan Koren 2008). By using facets 

(which are meta-data or class labels for entities such as genes or diseases), users can 

easily combine the hierarchies in various ways to refine and drill down the results for a 

given query; they do not have to learn custom query syntax or to restart their search from 

scratch after each refinement. Studies have shown that users prefer faceted search 

interfaces because of their intuitiveness and ease of use (Vineet Sinha 2005). (Hearst 

                                                           
18 http://www.gopubmed.org/web/gopubmed/ 
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2006) Hearst share their experience, best practices, and design guidelines for faceted 

search interfaces, focusing on supporting flexible navigation, seamless integration with 

directed search, fluid alternation between refining and expanding, avoidance of empty 

results sets, and most importantly making users at ease by retaining a feeling of control 

and understanding of the entire search and navigation process (Hearst 1999). 
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Figure 2.2 Screenshot of BioEve; Results for query “leukemia” 
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CHAPTER 3 

BIOEVE: SYSTEM ARCHITECTURE 

BioEve system (Syed Toufeeq Ahmed 2010) currently consists of 1.9 million PubMed 

abstracts annotated and indexed. The layered system architecture as shown in figure 3.1 

can be split into four main logical layers as below: 

3.1 DATA INDEXING 

The data store layer has the mechanism for data indexing. MEDLINE dataset is available 

as zipped XML files that needed XML2text conversion and then we ingested them into 

an indexer for faster access and keyword based text search that allows us to select a 

particular subset of the abstracts for further processing. We used Apache Lucene19 for 

indexing. Pubmed datasets were available to us in XML format. Our main interest was 

the content of the abstract and the Pubmed ID which uniquely identifies it. Since we 

aimed to filter a sizable number (approximately 2 million) of bio - entity rich abstracts, 

following were some of the challenges we faced: 

• Filtering required content from a large number of abstracts was required. Faster 

processing technique was required to complete this in a feasible time frame. 

• Storing this information as plain text would require a lot of storage space. Hence there 

was a need for compressed storage of this data. 

• With respect to any processing in future, there may be a need for analyzing more 

information about an abstract.   Maintaining this data should be as less cumbersome as 

possible. 

• There should be optimized indexing on the data, so that simple keyword searches 

should be done in a faster manner, over this entire dataset. 

                                                           
19 http://lucene.apache.org/ 
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• Query formulation should be simple and easy to use, without having to delve into 

complex query languages like SQL. 

To address the above challenges, we used Digester (Apache Digester n.d.), a subproject 

of the Jakarta Commons project, to obtain the Pubmed ID, abstract title and text. It offers 

a simple, high-level interface for mapping XML documents to Java objects. 

3.2 BIOMEDICAL ENTITY TAGGING AND ANNOTATION 

Second layer in the architecture is of Information Extraction Layer where the relevant 

information is extracted from the abstract text. For recognizing different gene/protein 

names, DNA, RNA, cell line and cell types, we leveraged ABNER (Settles 2005), a 

biomedical Named Entity Recognizer. We used OSCAR320 (Open Source Chemistry 

Analysis Routines) to identify chemical names and chemical structures. To annotate 

disease names, symptoms and causes, we used a subset of the Medical Subject Heading 

(MeSH) dataset. To extract event types and relations we built an extraction system that 

uses dependency parser and CRF based classifier.  

3.3 MANAGEMENT OF XML DATA 

3.3.1 Sedna XML database 

As part of the BioEve system version 0.1, we used Sedna (Sedna n.d.) XML database 

which is an open source native XML database and comes with full-text search integrated 

with XQuery support. The native XML databases (NXDBs) store XML documents 

according to graph logical structure, in which the nodes represent elements and attributes 

and the edges define the element/sub-element and element/attribute relationships. These 

systems implement many characteristics that are common to traditional databases, such as 

storage, indexing, query processing, transactions and replication. The flexibility in 

representing XML data makes it difficult to typify, store, and process such documents.  

                                                           
20 http://sourceforge.net/projects/oscar3-chem/ 
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The management of XML data is complex. This is due, mainly, to the following 

characteristics (i) data model - XML documents are represented by a graph based data 

model, which increases the complexity of its structure (ii) heterogeneity – a XML 

document may have a sub-element completely absent or repeated several times. 

Regarding query processing, the XML model does not have a formal algebra yet. The 

W3C has developed formal semantics to the XPath and XQuery languages. However, it is 

complex, making it difficult to perform decomposing operations. Most of the native XML 

databases tend to choke for larger data and same is the performance issue experienced by 

us with Sedna. The challenges faced with Sedna are: 

1. XQueries tend to become more complex as the data density increases. Example 

xquery used for Sedna is as below: 

declare ordering unordered; 

for $y in index-scan('pmid-by-idtext-a1files', "1800446", 'EQ')  

let $names := $y//data(@EntityName) 

let $types := $y//data(@EntityType) 

where $names = 'benzene' 

return  

( 

if ($types = ('PROTEIN','RNA','CELL LINE', 'CELL TYPE')) 

  then <i>Protein/Genes: {$names}</i> 

else (),  

if ($types = 'DISEASE')  

   then <i>Disease: {$names}</i> 

else (), 

if ($types = ('DRUG', 'CHEMICAL'))  
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  then <i>Drug/Chemical: {$names}</i> 

else () 

) 

2. Frequent out of memory errors encountered. 

3. Slow indexing of large xml files and slow xquery responses. 

4. Doesn't support all the xquery-functions yet and XSLT support is limited. 

5. For our data size (approximately 20 million abstracts from MedLine), Sedna didn’t 

scale well with poorer xquery response time.  

Hence, for indexing full Medline data, we needed a better performing system with 

added features to make the query, search and response quality better while being 

scalable, highly available, easy-to-maintain search solution that doesn't cost a fortune 

to install. The solution we found is Solr21. 

3.3.2 Solr Indexing and Faceting Layer 

Solr, an open source enterprise search platform suited our requirements. It comes with 

features of powerful full-text search, hit highlighting, faceted search, dynamic clustering, 

database integration, and rich document (e.g., Word, PDF) handling. Along with these 

features, Solr is highly scalable, providing distributed search and index replication 

making it one of the most used platforms by many of the world’s largest internet sites 

(e.g. NASA, AT&T, Apple Inc., Disney etc) for the search and navigation features.  

Apache Solr is written in Java and runs as a standalone full-text search server within 

a servlet container such as Tomcat. It uses the Lucene (Apache Software 

Foundation.“Apache Lucene–Overview“ n.d.) Java search library at its core for full-text 

indexing and search, Its REST-like HTTP/XML and JSON APIs makes it easy to use 

from virtually any programming language. The XML documents are indexed and on Solr 

                                                           
21 http://lucene.apache.org/solr/ 
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using HTTP POST and GET requests to the Solr Web application deployed in a servlet 

container. The default Solr response format is XML and we used it for faceted 

classification (Denton 2003) and navigation.  

The annotated and tagged Medline abstract information is converted into XML 

format for Solr indexing. In order to facilitate indexing and faceting over the extracted 

semi-structured text articles, both web interface layer and faceting layer needs to share a 

common schema. A sample of shared schema used for BioEve is shown below: 

<field name="pmid" type="string" indexed="true" stored="true" required="true" /> 

<field name="text" type="text" indexed="true" stored="true" multiValued="true"/> 

<field name="title" type="text" indexed="true" stored="true"/> 

<field name="PubYear" type="text" indexed="true" stored="true"/> 

<field name="gene" type="string" indexed="true" stored="true" multiValued="true" /> 

<field name="cell_type" type="string" indexed="true" stored="true" multiValued="true" 

/> 

<field name="cell_line" type="string" indexed="true" stored="true" multiValued="true" 

/> 

<field name="drug" type="string" indexed="true" stored="true" multiValued="true" /> 

<field name="rna" type="string" indexed="true" stored="true" multiValued="true" /> 

<field name="dna" type="string" indexed="true" stored="true" multiValued="true" /> 

<field name="disease" type="string" indexed="true" stored="true" multiValued="true" /> 

   The Solr input xml file has the format as below: 
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<? xml version='1.0' encoding='UTF-8’?> 

<add> 

<doc> 

<field name="pmid">6086383</field> 

<field name="text"> Levels of collagenolytic activity produced by circulating 

polymorphonuclear leucocytes (PMN) of patients exposed to asbestos and patients 

with asbestosis were found to be similar to those of normal controls.</field> 

<field name="cell_type">circulating polymorphonuclear leucocytes</field> 

<field name="cell_type">circulating polymorphonuclear leucocytes</field> 

<field name="cell_type">PMN</field><field name="drug">leucocytes</field> 

<field name="drug">leucocytes</field><field name="drug">PMN</field> 

<field name="disease"> asbestosis </field><field name="disease"> asbestosis 

</field> 

<field name="Gene_expression">produced</field> 

<field name="Negative_regulation">normal</field> 

</doc> 

</add> 

Table 3.1 Solr input (XML) file sample 

There are many other off the shelf systems are available such as in academia; Flamenco 

project22 (from University of California Berkeley) and mspace23 (University of 

Southampton) and in enterprise area; Apache Solr24 and Endeca25 which enables faceted 

classification and navigation over these facets/fields. 
                                                           

22 http://flamenco.berkeley.edu/ 

23 http://mspace.fm/ 

24 http://lucene.apache.org/solr/ 
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3.3 WEB INTERFACE 

Web services are typically application programming interfaces (API) or web APIs that 

are accessed via Hypertext Transfer Protocol and executed on a remote system hosting 

the requested services. A typical web service web API is typically a defined set of 

Hypertext Transfer Protocol (HTTP) request messages along with a definition of the 

structure of response messages, usually expressed in an Extensible Markup Language 

(XML) or JavaScript Object Notation (JSON) format26. Having faceting engine as a web 

service has many advantages as it abstracts interface design and implementation from 

faceting layer and also providing web APIs makes it easier for the user interface 

designer/developer. 

We implemented BioEve user interface using AJAX, JavaScript and JSON to provide 

rich dynamic experience. Chapter 6 covers the user guidelines on how to use system’s 

web-interface in more details. Also provided is a sample BioEve query/response using 

web API in section 6.2. The web API also allows bulk import of data with output either 

in XML or JSON format.  

In terms of functional modules, the BioEve system consists of three main functional 

modules (S. P. Syed Toufeeq Ahmed 2010) as shown in Figure 1.1: 

1. Extraction and Annotation Engine — To tag different gene/protein names, DNA, 

RNA, cell line and cell types, we leveraged ABNER (Settles 2005), a biomedical 

Named Entity Recognizer. We used OSCAR35 (Open Source Chemistry Analysis 

Routines) to identify chemical names and chemical structures. To annotate disease 

names, symptoms and causes, we used a subset of the Medical Subject Heading 

(MeSH) dataset.  

                                                                                                                                                                             
25 http://www.endeca.com/ 

26 http://en.wikipedia.org/wiki/JSON, http://wiki.apache.org/solr/SolJSON 
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2. Semantic Faceted Search Server — Extraction engine pipeline is connected to a 

faceted search server with input as XML tagged abstracts (entities like genes, 

diseases and relationships). We used the Apache Solr library for faceted search 

(Tunkelang 2009), which also provides an enterprise quality full-text search. 

3. BioEve Search Interface—The BioEve interface provides three features for cognitive 

search and navigation. The interface presents a number of entities types (on the left  

 
Figure 3.1: Layered Architecture of BioEve 

panel) along with the specific instances/values, from previous search results, and the 

current query. Users can choose any of the highlighted values of these entity types to 

interactively refine the query (add new values/remove any value from the list with 

just one click) and thereby drill down to the relevant articles quickly without actually 

reading the entire abstracts. Users can easily remove any of the previous search 

terms, thus widening the 
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current search. The interface, implemented with the Web 2.0 technologies AJAX27 

and JavaScript, provides a rich dynamic feel and interactive usability without the 

need to reload the entire page after each refinement. The web interface runs on an 

Apache Tomcat server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
27 http://github.com/evolvingweb/ajax-solr 
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CHAPTER 4 

BIOMEDICAL NAMED ENTITY RECOGNITION 

Biomedical literature contains a rich set of biomedical entities providing key information 

to access the knowledge. A biomedical named entity is a word or sequence of words that 

can be classified as name or biomedical term, such as gene, disease, protein, DNA, RNA, 

etc.  The process of biomedical named entity recognition involves identifying and 

semantically classifying these terms into their correct categories.  We applied ABNER 

(Settles 2005), a Biomedical Named Entity Recognizer, an open source software tool for 

molecular biology text mining , to tag different gene types including protein names, 

DNA, RNA, cell line and cell types. We used OSCAR3 (Oscar3 n.d.) (Open Source 

Chemistry Analysis Routines) to identify chemical names and chemical structures. To 

capture an ontology relationship, we used Unified Medical Language System (UMLS) 

Mesh database. These entities tagging operations are explained in more details below: 

4.1 GENE TAGGING 

To being with 2 million Medline abstracts, we used ABNER (Settles 2005) for the 

purpose tagging different gene names like proteins, cell line, DNA etc. ABNER, at its 

core, is a machine learning system using conditional random fields (CRFs) which 

employs a set of orthographic and semantic features. It has an overall F Measure of 70 in 

terms of recognizing occurrences of proteins, DNA, RNA, cell lines and cell types. 

However, the performance of ABNER is not very impressive. The following table 

summarizes the precision and recall for various entities learned by ABNER28:  

                                                           
28 http://pages.cs.wisc.edu/~bsettles/abner/ 
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Entity Recall Precision F1 (S-F1) 
Protein 77.8 68.1 72.6 (84.9) 

DNA 63.1 67.2 65.1 (76.1) 

RNA 61.9 61.3 61.6 (78.5) 

Cell Line 58.2 53.9 56.0 (68.2) 

Cell Type 65.6 79.8 72.0 (82.1) 

Overall 72.0 69.1 70.5 (82.0) 
 

Table 4.1NLPBA model. Five entities trained on 18,546 sentences, evaluated on 3,856 

 
Entity Recall Precision F1 (S-F1) 

Protein 65.9 74.5 69.9 (83.7) 
 

Table 4.2 BioCreative model. One entity (subsuming genes and gene products) 

trained on 7,500 sentences, evaluated on 2,500. 

ABNER classifier for gene names is coupled with a disease dictionary created from 

MeSH to train Mallet based CRF classifier and OSCAR classifier for chemical names. 

This system helps in identifying the semantic relations in biomedical text in terms of 

Gene−Disease relations and Disease−Treatment relations as well as discovers hidden 

relations as explained in section 2.4. However, ABNER doesn’t perform that well for the 

larger dataset of over 20 million abstracts available on PubMed at present. Hence for this 

big data, we have applied the dictionary based approach for tagging and annotation using 

HUGO (Tina A. Eyre 2006). 

 The HUGO29 Gene Nomenclature Committee (HGNC) maintains a database of 

unique and approved human gene names and symbols. Current estimates predict the total 

number of protein coding human genes as 20�000–25�000, and over 18�000 of these 

now have been assigned HGNC approved nomenclature. The custom data download 

feature enables the users to download the HGNC data in both plain text and HTML 

format. Another important functionality with the custom download feature is that the 
                                                           

29 http://www.genenames.org/ 
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results are generated dynamically hence are up-to-date whenever the user returns to the 

saved URL. The performance of entity tagging process for over 20 million abstracts using 

this plain text file for dictionary based approach is very fast compared to ABNER in 

terms of execution hours.  

4.2 DISEASE TAGGING 

We used the Unified Medical Language System (UMLS) Mesh database to capture 

ontologies for entities present in abstract text. There are 49,712 entries, one for each tree 

number in 2009 MeSH, which contains 25,184 main headings 4. For tagging 2 million 

Pubmed abstracts more efficiently, an inverted index of Pubmed abstracts was created for 

each valid MeSH entry. It could also be used to identify broad areas which may interest 

the user, based on what the user searched. Also, a subset of these annotations was filtered 

out to annotate disease names, symptoms and causes. 

 

 

Figure 4.1 Bio Named entity recognition process 
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4.3 CHEMICAL/DRUG TAGGING 

OSCAR (Open Source Chemistry Analysis Routines) is open source software for the 

semantic annotation of chemistry papers. This library uses various sources including hand 

- annotated texts, dictionary based on chemical names and structures. It not only 

recognizes chemical names, adjectives and processes, but is able to link them into their 

meaning using an ontology — a rigorous and exhaustive organization of some knowledge 

domain that is usually hierarchical and contains all the relevant relationships. By using 

such a system, the researcher is freed from having to hunt for every permutation of a 

specific word, because OSCAR automatically links the word with its alternatives. It also 

can enrich the text-search by providing further information about the terms it identifies, 

such as chemical properties and molecular structure. 
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CHAPTER 5 

ANNOTATION DESIGN 

Traditional keyword search is based on syntactic matching, where documents returned 

contain the terms searched either partially or fully. However, there could be terms which 

are synonymous or semantically same as keywords searched for. Documents which have 

the term ”conjunctivitis” could be useful for the user, even if these documents do not 

contain the term ”eye diseases”. Biomedical Named Entity Recognition can be thought of 

as a sequence segmentation problem: each word is a token in a sequence to be assigned a 

label (Settles 2004). Inherently this tagging process captures entity type relationships, 

where the assigned label is a semantic parent class of the tagged entity. We captured two 

types of annotations; one which identifies biomedical entities and the other records event 

trigger phrases. 

5.1 BIOMEDICAL ENTITY ANNOTATION30  

This section describes in brief the tools and sources used by the Bio-Entity Tagging 

module. 

� ABNER (Settles 2005): This tool is a Biomedical Named Entity Recognizer) is an 

open source software tool for molecular biology text mining. At its core is a machine 

learning system using conditional random fields with a variety of orthographic and 

contextual features (Settles 2005). We use ABNER in this work to tag protein names, 

DNA, RNA, cell line and cell types. 

� OSCAR3 (Oscar3 n.d.): OSCAR3 (Open Source Chemistry Analysis Routines) is 

open source software for the semantic annotation of chemistry papers. This library 

uses various sources including hand - annotated texts, dictionary based on chemical 

                                                           
30  This work is contributed by Radhika Nair 
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names and structures. Maximum Entropy Markov Model (MEMM) and N - gram 

based classifiers are some among the ones used for entity recognition. 

� Ontology Tagging: We used the Unified Medical Language System (UMLS)31 Mesh 

database to capture ontologies for entities present in abstract text. There are 49,712 

entries, one for each tree number in 2009 MeSH, which contains 25,184 main 

headings32. For tagging 2 million PubMed abstracts more efficiently, an inverted 

index of PubMed abstracts was created for each valid MeSH entry. It could also be 

used to identify broad areas which may interest the user, based on what the user 

searched. Also, a subset of these annotations was filtered out to annotate disease 

names, symptoms and causes. 

Table 5.1 5 is an example of the bio - entity annotation. Entity Type records entity 

type information for biomedical entities, which can be one of the 7 predefined types, 

namely PROTEIN/GENE, DNA, RNA, CELL LINE, CELL TYPE, 

CHEMICAL/DRUG and DISEASE. The type CHEMICAL encompasses the drug 

category. Entities tagged as disease include disease names and also symptoms and 

causes for diseases. These annotations are referred to as a1 annotations. 

ID   Entity Type  Start    End    Entity Name 

T1   PROTEIN     290      307     steroid receptors 

Table 5.1 Bioentity Annotations 

Ontology annotations have the format as shown in Figure 5.2. Here, the entity type 

captures the semantic ontology valid MeSH entities in the abstract. The ontology 

representation is an ordered representation, where the labels represent parent - child 

relationship going from left to right. In the example shown below, escherichia is a 
                                                           

31 http://www.nlm.nih.gov/research/umls/ 

32 http://www.nlm.nih.gov/mesh/2009/download/mtr abt.html 
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specialized form of enterobacteriaceae, whereas enterobacteriaceae is a kind of 

gammaproteobacteria and so on. 

ID    Ontology    Start    End   Entity Name 
 

T8    [bacteria,  471       484    escherichia 
                                       proteobacteria, 
                                       gammaproteobacteria, 
                                       enterobacteriaceae] 

Table 5.2 Ontology Annotation 

5.2 ANNOTATION FORMAT AND XML SCHEMA MAPPING 

Our intent was to identify biomedical named entities and their semantic ISA relationships 

and Ontology relationships, events and their classification and convert it into an XML 

schema. This information is later uploaded to Solr as XML formatted document. Instead 

of tagging the actual plain text, we create a list of annotations for each PUBMED 

abstract. Each annotation (R. N. Syed Toufeeq Ahmed 2009) has a unique Annotation ID, 

annotation type, its start and end position in the abstract and the actual entity name. 

5.3 XML SCHEMA33 

Following a modular approach, we created four XML Schema designs. This section 

describes XML tree structure for each type of schema. PubMed ID is captured in all 

schemas to aid in cross references across tables. 

Document Model 

This schema captures the PubMed ID and the abstract text (includes the title as well). The 

XML tree structure for this schema is shown in Figure 5.1. PMID element stores unique 

PubMed ID assigned to each abstract. Abstract title and text are separated stored as 

attributes. 

                                                           
33 This work is partly contributed by Radhika Nair 
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< events > 

< PMID idtext=’8562886’ > < / PMID> 

< AbstractTitle text=’The effect of Toremifene ··· ’>< AbstractTitle> 

<AbstractText text=’ Toremifene exerts multiple ···’> < /AbstractText> 

< /events> 

Figure 5.1. Document Model (a0 XML Schema) 

Bioentity Model 

This schema transforms biomedical entity annotations in to XML format as shown in 

Figure 5.2. The attribute ID records the entity ID, Position captures the start and end 

positions of the abstract in an ordered fashion. Entity Type records entity type 

information, which can be one of the 7 predefined types as discussed in section 

Biomedical Entity Annotations. Entity name is duplicated under EntityName as well as 

element value to allow flexibility in querying and as a option for any further changes to 

the format. 

< events > 

< PMID idtext=’8562886’ > < / PMID> 

<AnnotationId ID=’T0’ Position=’60 83’ EntityType=’CELL TYPE’ 

EntityName=’human mononuclear cells’> human mononuclear cells 

< /AnnotationId> 

< /events> 

Figure 5.2. Bioentity Model (a1 XML Schema) 

Trigger Word Model 

This schema currently does not incorporate complete event extraction including 

participants. Only trigger words are identified and mapped to schema shown in Figure 
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5.3. The elements and attributes are similar to a1 schema. EntityType attribute can take 

one of the predefined seven class labels. 

Ontology Model 

The only difference in this schema with respect to other schemas is that now the 

EntityName stores the ontology information in an ordered fashion. Figure 5.4 shows the 

a3 schema format. Possibly for the next version of this project, complete event 

annotations may be available to identify participants for events as well. These annotations 

would form a part of the  

< events > 

< PMID idtext=’8562886’ > < / PMID> 

< TriggerAnnotationId text=’T8’ Position=’324 334’ 

EntityType=’Gene expression’ EntityName=’expression’> expression 

< /TriggerAnnotationId> 

< /events> 

Figure 5.3. Trigger Word Model (a2 XML Schema) 

< events > 

< PMID idtext=’8562886’ > < / PMID> 

<AnnotationId text=’T1’ Position=’210 220’ EntityType=’study 

characteristics’ EntityName=’in vitro’> in vitro 

< / AnnotationId > 

< /events> 

Figure 5.4. Ontology Model (a3 XML Schema) 

a2 schema. Complete set of annotations for a sample abstract along with their 

corresponding XML Schemas are illustrated in Table 3.1. 
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Multi - Label Model 

This schema captures multiple events per sentence. It is slightly different from other 

schemas in that, it does not store the actual sentence for which labels are stored. For each 

sentence the most likely events types present in that sentence is stored along with their 

probabilities. 

< events > 

< PMID idtext=’8562886’ > < / PMID> 

<AnnotationId text=’T8’ Position=’120 180’ > 

<EventType = ”Gene expression” prob = ”0.6”> < /EventType> 

<EventType = ”Phosphorylation” prob = ”0.3”> < /EventType> 

< / AnnotationId > 

< /events> 

Figure 5.5. Multi-Label Model (a4 XML Schema) 
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CHAPTER 6 

BIOEVE: WEB-BASED USER INTERFACE 

6.1 USER INTERFACE WALKTHROUGH 

Interface is divided into left panel and right panel, see figure 6.1. 

Left panel– offers suggestions and insights (based on co-occurrence frequency with the 

query terms) for different entities types, such as Genes, Diseases, Drugs/chemicals, Cell 

Lines, Cell types etc.  

_Top of the left panel shows users current query terms and navigation so far (see “You 

Selected”). Here user can also de-select any of the previously selected entities or even all 

of them by single click on “remove all”. By de-selecting any entities, user is essentially 

expanding the search and the results in the right panel are refreshed on the fly to 

remaining query entities to offer a rich dynamic navigation experience.  

_ Search box on left panel offers query entity suggestion (in light blue) as user types. 

These are frequently occurring entity names. 

_ Below Search box, we have navigation categories (Genes, Diseases, Drugs/chemicals, 

Cell Lines, Cell types etc), user can click on any of the entity names (in light blue) to 

refine the search, by clicking user adds that entity name to the search and the results on 

the right panel are refreshed on the fly to reflect newly added query refinement. 

_ User can add or remove number of refinements to the current search query until she/he 

reaches the desired results set (shown in the right panel). 

Right Panel– shows user’s current search results and is automatically refreshed based on 

user’s refinement and navigation choices on the left panel. 

_ Abstracts results on this panel show “title” of the abstract (in light red), full abstract 

text (in black, if abstract is available). 
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_ Below the full abstract text, the list of entities mentioned in that abstracts (in light blue) 

are shown. These entities names are click-able and will start a new search for that entity 

name, with just one click. 

_ We also provide a direct link to the abstract page on PubMed.gov incase use wants to 

access additional information like authors and their affiliation. 

_ Additionally we also provide a direct link to full text of the article from PubMed 

Central (PMC). Note: Only around 7% of the abstracts have full article text in PubMed 

Central, so most of the links to PMC will lead to page not found on PubMed central 

server. 

 

Figure 6.1 Screenshot of BioEve (version 1.0) user interface with the left panel and right 

panel view. 
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6.2 BIOEVE SAMPLE QUERY 

BioEve facilitates the “discover more as you search” paradigm by making the sought 

information available with just a few clicks. It helps in facilitating what Swanson’s 

introduction of ‘transitive’ relations had demonstrated. For instance he fetched the most 

relevant literature reports about fish oil causing reduction in blood viscosity and decrease 

in platelet aggregability. He also identified another set of documents mentioning these 

symptoms as characteristics of Raynaud’s syndrome. Thus, based on these two findings 

he established the hitherto unknown connection which is fish oil can treat Raynaud’s 

syndrome thus revealing yet undiscovered relationships between different biomedical 

concepts found in the literature. BioEve aims to facilitate such findings through user 

friendly web-interface which shows such findings and helps in discovering new facts 

with just few clicks as shown in few steps below (and figure 6.2): 

 (a) - Let us start our search with query “Benzene”. BioEve’s auto-complete feature pulls 

out the name from its indexed terms while typing. The search results in 1986 articles, 

which we are now going to filter further to navigate to the information we are looking 

for. 

(b) - Some helpful insights given by BioEve could be the Top Genes, in which 

“hemoglobin” is highlighted as a term frequently mention in the result set. Following this 

link narrows down the search to articles potentially discussing relationships between 

benzene and hemoglobin, resulting in 37 citations. 

(c) - In Top Diseases, the user can see that the disease “leukemia” stands out, as it 

frequently occurs in the current result set. Leukemia is a blood cancer disease which is 

characterized by increasing while blood cell counts and falling hemoglobin count. 

Selecting “leukemia” refines the results further to 3. 
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(d) - If we scroll down to Top Cell Types, we find that “neutrophils” is highlighted. 

Clicking on “neutrophils” narrows the results to 2 publications, which can easily be 

browsed for details on the described association. 

(e) - The highest ranked publication is titled “A hematology survey of workers at a 

styrene-butadiene synthetic rubber manufacturing plant”, see Figure 6.2. With a few 

clicks we discovered relevant articles that describe relationships between benzene, the 

disease leukemia, hemoglobin gene, and the neutrophils cell types. 

Figure 6.2 Screenshot of sample query final results 

6.3 USER FEEDBACK AND COMMENTS 

As part of performing system evaluation, we asked three life sciences researchers to 

evaluate BioEve search and their feedbacks are as below (paraphrased).  

1. Dr. Fasahath Husain, Research Fellow, University of California, Berkeley, 

Email:fasahath@berkeley.edu 

I am a life science researcher and use PubMed extensively to search for research 

articles. 
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I also use Google Scholar but not nearly as much as Pubmed. Pubmed is a very 

popular search system because of historic reasons but the searching capability of 

Pubmed has lot to be desired. 

Being a life science researcher I find many of syntax in Pubmed quite tedious. 

Something I don’t want to learn or remember or even type in each time. On request 

of ww.bioeve.org developer, I tried the BioEve website. I am impressed by ease of its 

use. Although I did not get nearly all the data I was looking for, primarily because it 

is at preliminary stage, I think the search idea is headed in the right direction. 

Strengths of BioEve: 

1. Search could be a stepwise search, where we can refine our search until we get the 

precise content we are seeking. 

2. If we require a certain alteration in the search results we can cancel a term from 

anywhere in the middle. This ability in search is very useful so that I do not have to 

restart my search. 

3. Compared to Pubmed and Google Scholar the input for BioEve search is 

incredibly cognitive. 

4. After the search, BioEve gives a direct link to Pubmed based on PMID; a big plus. 

5. Unlike Google Scholar search, which is information overload, results from BioEve 

are quite refined. 

Weaknesses and suggestions: 

1. Pubmed and Google Scholar have integrated their search with local ISP. I have 

direct access to University library subscriptions when I use University ISP to search 

data using Pubmed (through library website) or Google Scholar. BioEve may have to 

work with Pubmed to make sure the search links are connected to local ISP. 
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2. Search based on date is something I miss. If I want to search for scientific 

development in a particular year, I can roughly find out using Google Scholar and 

Pubmed, but never exactly. I hope BioEve can introduce this option. 

3. Perhaps because of its preliminary stage, I did not find nearly enough articles I 

looked for. There is extensive data about my topic, about 40,000 articles and I will be 

impressed if could search specifically within those articles. 

When I have the confidence that BioEve is indexing all the data without 

missing any critical article, I will be compelled to use this search tool. I believe a 

finished product will be immensely useful and could become a popular tool for life 

science researchers. 

2. Dr. Sukru Tuzmen, Adjunct Professor at Arizona State University, former 

Investigator and Head, Molecular Genetics Laboratory at Pharmaceutical Genomics 

Division, Translational Genomics Research Institute (TGen) through Skype 

”You have a powerful search. Synchronize this with MEDLINE, add complete 

MEDLINE. Connect with more databases, OMIM, Entrez Gene ... You can get cell 

line database from ATCC.org” 

”This is impressive! But you need to have all articles and new journals as they have 

fresh information, sometimes new published results cancel out old results.” 

3. Dr. Mostafa Afifi, Post-Doc Researcher, Faculty of Kinesiology, University of 

Calgary  

As a researcher I found BioEve very useful as its a more focused research tool. I use 

pubmed on a regular basis and find its search tools difficult to use and at many times 

far from what I am looking for. BioEve on the other hand is much more user friendly 

and an easier user interface. I particularly like the idea of having larger fonts for the 
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more relevant terms highlighting what is researched more often. I applaud the 

creator for his effort! 
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CHAPTER 7 

CONTRIBUTION AND FUTURE WORK 

In this thesis report, we presented BioEve system, a discovery engine, with an intuitive 

and cognitive faceted search interface that enables discovery of important knowledge 

hidden in life sciences literature. BioEve (screenshot of version 1.0 is shown in figure 

6.1, and is available at www.bioeve.org) demonstrates its potential and usability, but 

nonetheless we still have work to do to make it more complete and mainstream service. 

Here are few next steps for us: 

Processing and indexing of the entire MEDLINE collection: 

BioEve currently has around 10% of the entire MEDLINE dataset. While processing and 

classifying the 1.9 million articles that are now available through a fast discovery 

interface, we saw that BioEve will scale well to 19 million articles and more. 

Keeping BioEve up-to-date and complete: 

We would like to add a synchronization module that will frequently check with 

MEDLINE for supplement articles as they are published; these will typically be in the 

range of 2500-4500 new articles per day. Frequent synchronization is necessary to keep 

BioEve abreast with MEDLINE collection and give users the access to the most recent 

articles. 

Normalizing and grounding of entity names: 

As the same gene/protein can be referred by various names and symbols (for example, 

the TRK-fused gene is also known as TF6; TRKT3; FLJ36137; TFG), a user searching 

for any of these names should find results mentioning any of the others. Removal of 

duplicates and clean-up of non-biomedical vocabulary that occurs in the entity tag clouds 

(like “conclusions”) will further improve navigation and search results. 

Cross-referencing with biomedical databases: 
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We want to cross-reference terms indexed in BioEve with biological databases. For 

example, each occurrence of a gene could be linked to EntrezGene and OMIM; cell lines 

can be linked and enriched with ATCC.org’s cell line database; we want to cross-

reference disease names with UMLS and MeSH to provide access to ontological.  
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