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ABSTRACT

Video analysis and understanding have obtained more and more attention in re-

cent years. The research community also has devoted considerable effort and made

progress in many related visual tasks, like video action/event recognition, thumb-

nail frame or video index retrieval, and zero-shot learning. The way to find good

representative features of videos is an important objective for these visual tasks.

Thanks to the success of deep neural networks in recent vision tasks, it is natural

to take the deep learning methods into consideration for better extraction of a global

representation of the images and videos. In general, Convolutional Neural Network

(CNN) is utilized for obtaining the spatial information, and Recurrent Neural Network

(RNN) is leveraged for capturing the temporal information.

This dissertation provides a perspective of the challenging problems in different

kinds of videos which may require different solutions. Therefore, several novel deep

learning-based approaches of obtaining representative features are outlined for differ-

ent visual tasks like zero-shot learning, video retrieval, and video event recognition in

this dissertation. To better understand and obtained the video spatial and temporal

information, Convolutional Neural Network and Recurrent Neural Network are jointly

utilized in most approaches. And different experiments are conducted to present the

importance and effectiveness of good representative features for obtaining a better

knowledge of video clips in the computer vision field. This dissertation also concludes

a discussion with possible future works of obtaining better representative features of

more challenging video clips.
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Chapter 1

INTRODUCTION

Videos can be seen as a reflection of the real world. Data streams and visual

information, which are essential in videos, will demonstrate the movement of objects,

the interactions between humans, and the understanding of different scenes. Re-

cently, with the rapid development of hardware/software equipment and the growth

of demand for daily living, video-based communication media, like YouTube, Twitter,

Facebook, and TikTok, are playing a more important role in recording people’s daily

life and sharing moods with friends. Those video clips data are key to understand-

ing and analysis of human being’s daily behaviors and human-computer interaction

as well. In the past few decades, researchers have also devoted efforts to collecting

informative video clips and analyzing corresponding internal knowledge. Especially,

video-based event/activity recognition or related visual tasks make more contribu-

tions to the computer vision field.

The video-based event/activity recognition has brought about enormous and im-

portant challenges to computer vision as well. The computer vision research commu-

nity has made progresses in many related tasks (e.g., action recognition Feichtenhofer

et al. (2016); Simonyan and Zisserman (2014a); Veeriah et al. (2015); Wang et al.

(2015); Donahue et al. (2015); Wang et al. (2016a); Bilen et al. (2016); Lan et al.

(2015); Du et al. (2015), temporal localization Shou et al. (2016); Chao et al. (2018),

video question answering Tapaswi et al. (2016); Antol et al. (2015), video summa-

rization Gong et al. (2014); Lee et al. (2012); Zhang et al. (2016), just to name a

few). And one fundamental and important learning process in these video-based vi-

sual tasks is to obtain a representative feature and capture the sequential context in
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the video clips. Compared with static images, capturing the information from video

clips is more difficult since the sequence of video frames capturing the information

along the temporal axis. The temporal attributes of such information may be the

defining feature of the underlying actions/events, given that the appearance of the

objects/scene can vary dramatically. For instance, the event “a person opening the

trunk of a sedan” may involve a variety of cars of different models/makes/colors, with

the person having different appearances as well, but the sequence of movements of the

person interacting with the rear end of a sedan is typically distinctive. In this sense,

the key of understanding the video lies not only on correctly detecting the objects,

but also on identifying specific temporal interaction patterns. Therefore, the way

to obtain a good representative feature which containing both spatial and temporal

information is the core technique for video-based visual tasks.

In general, video representative features are obtained by encoding spatial (e.g.

histogram of gradient) and temporal (e.g. trajectory or motion flow) information to

a compact 2D feature with a much smaller size compared to the whole video clip size.

This kind of compact 2D feature is much easier to be leveraged on the related visual

tasks since the low dimension feature space requires less computational power while

maintaining the video information. With the success of the deep neural networks

on visual tasks in recent years, the deep-learning-based methods are more commonly

used to capture the information from video clips. The representative features are

extracted by utilizing the Convolutional Neural Network (CNN) or Recurrent Neu-

ral Network (RNN) or both. This dissertation discusses developing algorithms by

leveraging both CNN and RNN to extract features from video clips for several visual

tasks and the efficiency of those deep-learning-based approaches. Furthermore, a new

learning strategy is proposed in this dissertation for spreading out the visual features

in a bounded space for several specific visual tasks. The idea of this new learning
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strategy is essential to learn a more diverse feature space which is more suitable for

understanding the spatial or semantic similarity of video features.

1.1 Overview of Video Representative Features

In recent decades, the rapid development of video technology in many related areas

like social media results in a booming growth of video contents. The understanding

and analysis of video contents like action or events become more and more important

in several aspects from surveillance to personal daily life. To have a better knowledge

of video content, the processing of videos at different levels plays roles and causes

different challenges. The processing of low-level features requires robustness against

errors, the processing of mid-level features demands scale-invariant representative

information, and the processing of high-level needs the semantic knowledge of human

activities. Usually, to obtain features at different levels require different approaches.

But the essence of obtaining features of videos is laying in extracting spatial and

temporal information from video frame sequences.

Generally, compared with static images, the temporal information provides extra

data and knowledge along the time axis. Therefore, combining the temporal informa-

tion along with the spatial data to form a new representative feature for video con-

tents. The conventional techniques utilize hand-crafted descriptors which are derived

from the approaches of image processing, such as Spatial-Temporal Interest Points

Laptev and Lindeberg (2003), HOG/HOF Laptev et al. (2008) and Dense Trajectory

Wang and Schmid (2013). The hand-crafted descriptors combine the gradients which

will describe the spatial information along with optical flow which provides the tempo-

ral information. However, those hand-crafted features usually require high dimension

to preserve both the spatial and temporal information. Therefore, the encoding tech-

niques, such as bag-of-visual-words or fisher vector encoding, are leveraged to encode
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the high dimension and redundant visual features into low dimension and compact

features to represent the video clips. Even though those hand-crafted features are

robust to background clutter, illuminance changes, and video noise, they are lack

discriminative capacity and flexibility of embedding the semantic information.

As a result, researchers are seeking a better and more flexible approach to extract

spatial-temporal information. Thanks to the success of deep neural networks in vi-

sual tasks, utilizing deep-learning-based methods to represent video clips has become

more and more popular in recent years. Compared with conventional hand-crafted

descriptors, the deep-learning-based methods learn the spatial and temporal informa-

tion depending on the objective functions. Moreover, the non-linear computation in

the deep-learning-based methods makes the learned feature space more distinguish-

able for visual tasks like recognition and classification. This top-down processing is

more capable of obtaining essential information since the object functions will lead

the learnable parameters to be tuned to reach the aim of the specific tasks.

Specifically, the convolutional neural network (CNN) achieves a great improve-

ment on image classification task Krizhevsky et al. (2012) in 2012. Thereupon, more

and more CNN based methods are proposed to solve many challenging visual tasks.

However, because CNN utilizes the learnable 2D spatial filters to fulfill the objective,

CNN cannot be simply applied to obtain the video representative features. Thus,

applying the motion information to CNN based methods draws more attention af-

terward. Ji et al. (2013) proposed a 3D CNN structure to capture the temporal

information by expanding the convolutional filter along the time axis. Inspired by

this paper, many other papers which are related to leveraging the 3D CNN structure

to obtain the video representative features, like Tran et al. (2015) and Carreira and

Zisserman (2017), are proposed and achieve a better performance in recognition and

classification visual tasks.
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Another kind of method of implementing optical information into 2D CNN is

utilizing the 2D CNN to obtain the information from the preprocessed optical flow

maps which can be viewed as 2D images containing motion information. Thus the

2D CNN can extract the motion feature with convolutional filters. Simonyan and

Zisserman (2014a) introduces a two-stream structure to fusee both CNN appearance

and optical flow features to form video representations. Feichtenhofer et al. (2016)

inherits the method from Simonyan and Zisserman (2014a) and utilizes the feature

fusion work to obtain a better video feature. The Chéron et al. (2015) also leverage

the two-stream structure and learn the pose patch information to extract better video

representations for action recognition.

Because of the capability of obtaining sequential data, the Recurrent Neural Net-

work (RNN) is usually implemented in the language/text related tasks to obtain

the order information of words. Therefore, the RNN can be also implemented for

video feature extraction because the video clips can be viewed as sequences of frames.

Usually, the spatial features are extracted from a pretrained CNN or hand-crafted

descriptors for each frame to form a new feature vector sequence. Then the newly

formed feature vector sequence is fed into an RNN to obtaining the sequential infor-

mation. The extracted sequential information can be regarded as the motion feature

involving the spatial information so that it can fulfill the visual tasks like action/event

recognition or classification. Baccouche et al. (2010) proposed a method based on us-

ing the Long-Short Term Memory (LSTM), which is a kind of RNN algorithm, to

encoding the hand-crafted descriptors for action recognition. Inspired by Baccouche

et al. (2010), Donahue et al. (2015) is the first one to combine CNN features with RNN

structure. This CNN-RNN based structure has the ability to be easily embedded into

high-level semantic feature space as well since the RNN outputs the feature vector for

each unit and it can be applied with captions or texts. Veeriah et al. (2015) also ap-
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plies RNN with hand-crafted features HOG3D to do the action recognition. Different

from those methods that applying 2D feature extraction to obtain the frame feature

vectors, the Xu et al. (2019) utilizes a 3D CNN to obtain the feature for a block of

frames and then implement the feature vectors to an RNN structure to extract video

features.

With the rapid development of techniques in natural language processing, the

techniques which can be used to obtain better sequential information can also be

applied to video feature extraction. The attention-based methods like transformer

Vaswani et al. (2017) and BERT Devlin et al. (2018) proposed an attention technique

with convolution computation to deal with sequences. Those methods do not contain

RNN structure since the disadvantages of RNN such as gradient vanishing problems

have a bad influence on final performance when dealing with very long sequences.

Following this trend, Girdhar et al. (2019) has already proposed a transformer-based

video action recognition method and Wang et al. (2018) proposed a self-attention

based method to boost the performance on action recognition tasks. The advantage

of those attention-based methods is that they do not have the concern of gradient

vanishing problem since most of them are based on CNN structure. The future

work of video representative feature extraction should be focused on the direction of

techniques that mitigate the gradient vanishing problem.

1.2 Goals and Motivation

The goal of this dissertation is to propose deep-learning-based approaches by uti-

lizing both CNN and RNN to extract video representative features and demonstrate

the efficiency and effectiveness of those extracted video features by several differ-

ent visual tasks like action/event recognition, zero-shot-learning problem, semantic

embedding, and video retrieval.
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For those video related visual tasks, there are several challenging problems re-

mains. In this dissertation, all the newly proposed algorithms are inspired by trying

to solve those challenging problems by enhancing the capacity of obtaining more in-

formative representative features of the same size. The motivations can be highlighted

as below.

1. The recent rapid growth of action categories makes conducting video annotation

an expensive, challenging, and time-consuming task. It is difficult and costly to col-

lect a satisfactory amount of annotated spatial-temporal segments of videos. Building

a bridge between human-level semantic knowledge and the deep-learning-based visual

features provide a solution to mitigate those issues. A good video representative fea-

ture can connect with human-level semantic descriptions so that the information can

be shared to enable unseen classes to be formed in terms of their semantic descriptions

rather than expanding the training data size. Moreover, the good video representa-

tive feature sharing the semantic knowledge also provides a good understanding of

actions/events that happened in the video clips.

2. With the ever-increasing amount of video data generated by surveillance sys-

tems, automatic capabilities for processing/analyzing surveillance videos have become

imperative. However, an action/event may occur in only a short period of time and/or

within a specific local region of the visual field of view in surveillance video data and

thus obtaining a video feature for classifying the action/event is challenging in surveil-

lance video clips.

3. Recently, more challenging video datasets which typically contain video clips

with complex sub-activities in a much longer time period, have brought about new two

challenges, complexity in content and excessive/varying length, to video recognition.

Moreover, occasionally only the event-level labels are available during the training

stage which means the lack of detailed information of sub-activities. Those challenges
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of long and complex videos make finding good representative features more difficult.

Derived from characteristics of long and complex videos, another problem, different

sampling rates for testing video clips, also raised attention.

4. Even though the extracted video features can be good representatives for

different video clips, the diversity of the extracted features can be low because of

the classification-like or the label-driven or the supervised learning object function of

visual tasks will force the features from the same category converge to one feature

point in the feature space. The lack of diversity in the feature space can cause

problems when several visual tasks like retrieval, hashing, or semantic comparison

need to be carried out.

1.3 Contribution

The contribution of this dissertation is described as follow.

1. A more detailed literature review is proposed for different deep-learning-based

methods of obtaining the video representative features on different visual tasks. Sev-

eral benchmark video datasets are also presented in this dissertation.

2. Two two-stream deep learning structures are proposed in this dissertation. For

the zero-shot learning problem, the dissertation also provides a view of the domain

adaption method which makes zero-shot learning performs better. The proposed

two-stream algorithms can embed human-level semantic knowledge into video repre-

sentative features thus reducing the gap between high-level and low-level features.

3. New incorporation of CNN and RNN structure is proposed in this dissertation.

The new deep-learning-based structure can extract spatial and temporal information

simultaneously rather than feeding the CNN features into RNN based recognition

models. Compared with conventional supervised learning approaches, the newly pro-

posed algorithm is trained weakly-supervised.
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4. An RNN based deep learning model is proposed for event-level recognition in

this dissertation. This newly proposed approach not only recognizes events in very

long and complex videos with only event-level available during the training stage but

also maintaining the recognition performance with different sampling rates of testing

video clips.

5. A new strategy of utilizing the Determinantal Point Process (DPP) with an

end-to-end deep neural network is proposed to spread out the learned visual features

in a bounded feature space. A simple but effective algorithm generating a valid sub-

gradient of Determinantal Point Process (DPP) in the case where the Determinantal

Point Process matrix is not invertible is proposed in this dissertation so that the DPP

term can be easily incorporated with deep neural networks and be trained end-to-end

for increasing the diversity of obtained feature space.

1.4 Outline

This dissertation is structured as follow.

Chapter 2 propose the two-stream structure deep-learning-based methods. This

proposed structure mainly focuses on embedding the human-level knowledge into low-

level video features. And two visual tasks, zero-shot learning and video retrieval, are

conducted for demonstrating the efficiency and effectiveness of newly proposed deep

structure.

Chapter 3 describes a new deep-learning-based approach which combining the

CNN and RNN together. This newly proposed combination of CNN and RNN is de-

signed to obtain the spatial and temporal information simultaneously for surveillance

video clips. The action recognition and localization visual tasks are implemented in

this chapter to show the capability of the proposed method with a weakly-supervised

learning process.
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Chapter 4 provides a thought on how to recognize events with very long and

complex video clips. There are three challenges proposed in this chapter. 1. Only

event-level label available (i.e. no sub-activities knowledge is accessible) during the

training stage. 2. Performing the event recognition without fine-tuning the feature

extraction part (i.e. the deep CNN part before RNN part). 3. Maintaining the

performance when the sampling rates of testing video clips are different from the

training video samples.

Chapter 5 proposes a simple but effective method to ensemble the Determinantal

Point Process (DPP) term with neural network to learn a bounded feature space in

which the feature vectors are spread out. Several different visual tasks experiments

on different datasets are conducted to present the effectiveness of the proposed al-

gorithm in diversify the feature vectors and the promising performance of practical

learning problems. One thing need to be emphasized is that there are only image

related datasets utilized in this chapter since the computation burden is low for im-

ages compared with videos with the same amount of labeled data. Moreover, the

demonstration of the proposed algorithm should be clear enough with images in the

spatial domain for the visual tasks.

Chapter 6 concludes this dissertation and makes a summary of the contributions

proposed in this dissertation. This chapter also shows the possible future work of

obtaining a better video representative features for more challenging visual tasks.

Some more challenging problems or tasks are provided in this chapter and analysis of

those tasks should help outlining more directions of extracting video representative

features.
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Chapter 2

DEEP TWO-STREAM STRUCTURE BASED VIDEO FEATURE EXTRACTION

As mentioned above in the Chapter 2 Introduction part, the two-stream deep

learning structure successfully conduct the another CNN based network to acquire

motion information from optical flow maps which are warped based on the theory

from Brox et al. (2004). Simonyan and Zisserman (2014a) is the first to propose the

two-stream structure and the performance on the two benchmark action recognition

short video datasets UCF101 Soomro et al. (2012) and HMDB51 Kuehne et al. (2011)

presents the feasibility and the improvement of this deep two-stream network on

action recognition visual task.

Therefore, inspired by the idea of two-stream structure, two different deep neural

networks are proposed in this dissertation and each of them demonstrates a better

capability of extracting the video information by conducting the networks on zero-

shot learning problem and semantic video retrieval task.

2.1 Recognizing Unseen Actions in a Domain-adapted Embedding Space

With the sustaining bloom of multimedia data, Zero-shot Learning (ZSL) tech-

niques have attracted much attention in recent years for its ability to train learning

models that can handle “unseen” categories. Existing ZSL algorithms mainly take

advantages of attribute-based semantic space and only focus on static image data.

Besides, most ZSL studies merely consider the semantic embedded labels and fail

to address domain shift problem. In this dissertation, a deep two-output model is

proposed for video ZSL and action recognition tasks by computing both spatial and

temporal features from video contents through distinct Convolutional Neural Net-
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works (CNNs) and training a Multi-layer Perceptron (MLP) upon extracted features

to map videos to semantic embedding word vectors. Moreover, this dissertation in-

troduces a domain adaptation strategy named “ConSSEV” – by combining outputs

from two distinct output layers of the proposed MLP to improve the results of zero-

shot learning. The experiments on UCF101 dataset demonstrate the purposed model

has more advantages associated with more complex video embedding schemes, and

outperforms the state-of-the-art zero-shot learning techniques.

2.1.1 Introduction

Video-based action recognition has many applications Wang and Li (2009). Recent

rapid growth of action categories makes conducting video annotation an expensive,

challenging and time consuming task. While conventional classifiers require sufficient

training data to achieve acceptable results on action recognition tasks, it is difficult

and costly to collect satisfactory amount of annotated spatial-temporal segments of

videos. The zero-shot learning (ZSL) algorithm provide a solution to mitigate those

issues by connecting human-level semantic descriptions of the action with low-level

visual features and allowing different categories to share their information –thus en-

able new categories to be built in terms of their human descriptions rather than

extending the size of the training visual-level data. Three keys are rather important

in ZSL algorithm – selecting of visual descriptors, constructing human-level semantic

descriptors and the mapping function to map visual to semantic space.

Most existing ZSL algorithms are realised by building human-level attribute model

to bridge the visual features and their corresponding semantic space. New categories

are then classified in terms of their attributes Lampert et al. (2014); Cheng et al.

(2013). However, it is rather difficult to obtain reliable attribute-based representa-

tion for objects, especially for actions Gan et al. (2015), and this kind of semantic

12



attribute-based ZSL classifiers suffer from lacking distributed representation of each

attribute words.

An alternative approach to the attribute-based method is the Semantic Embed-

ding Space (SES) Mikolov et al. (2013b,a). SES is trained by a skip-grim or continuous

bag-of-words neural network to map the text words into a word vector space – there-

fore enable new categories be simply annotated by the similarity and distribution of

existing text-string vectors and avoid non-scaleably growth of attribute lists as the

emergence of new categories Among all SES models, Word2Vec model is considered

to be the most efficienct model in maintaining semantic meanings while keeping low

model complexity Frome et al. (2013); Xu et al. (2015a); Norouzi et al. (2013).

Although semantic embedding space has demonstrated significant advantages,

most ZSL studies only focus on static images semantic embedding since it is par-

ticularly difficult to extract reliable feature descriptors which cover both seen and

unseen action categories from videos to train the mapping function. Moreover, the

presence of amount of neighbour vectors surrounding the mapped vectors in seman-

tic space has been proven to be a challenge for word-based vectors Dinu and Baroni

(2014) (i.e., “hubness” problem or domain shift problem).

In this section, a deep two-output model is proposed for video ZSL and action

recognition purposes by taking advantages of both “soft” SES labels and conven-

tional“hard” binary labels to train a multi-layer perceptron that map CNN visual

features to their corresponding semantic meanings. A new strategy called “Con-

vex combination of Similar Semantic Embedding Vectors” (ConSSEV) is also imple-

mented to deal with the domain shift problem. The purposed model not only outper-

forms state-of-the-art Xu et al. (2015a) method on UCF101 Soomro et al. (2012) video

action dataset on zero-shot learning but also achieve comparative high accuracy with

the conventional supervised action recognition classifier on action recognition task.
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Figure 2.1: The Framework of the Deep Two-output Model for Video ZSL and Action

Recognition Purposes.

2.1.2 Methodology

The overall framework of the proposed model is illustrated in Fig. 2.1. This

proposed structure is constructed with multi-task learning and two objective functions

can be viewed as a compensation for each us to tuning the learnable parameters more

capable of obtaining features containing semantic meaning.

In the proposed approach, firstly, the frames and optical flow Brox et al. (2004)

are extracted from video contents and then pass them into two different pre-trained

CNN models which can be obtained by utilizing Chéron et al. (2015). The appearance

features and optical flow features are collected from the second last fully connected

layer (i.e., “fc7”) from each CNN. Next both spatial and temporal features are aggre-

gated and concatenated to represent one action by using a sliding window strategy.

Then, a two output layer Multi-Layer Perceptron (MLP) is trained by backpropa-

gating errors from semantic labels and fine-tuned on softmax hard binary labels to
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serve as a mapping function from visual to semantic space. Finally, zero-shot learning

(ZSL) is performed by mapping visual features to semantic space vectors through the

proposed model. The Convex combination of Similar Semantic Embedding Vectors

(ConSSEV) is implemented as a domain shift method as well to boost the performance

of the proposed zero-shot learning algorithm.

Visual Feature Extraction

Considering the success of Pose-based Convolution Neural Network Chéron et al.

(2015) on recognizing human-pose and action, the video representative features are

extracted in a similar way. Videos are sampled to RGB frames to represent appear-

ances and the optical flows are computed to represent motions Brox et al. (2004).

To describe both appearance features f tapp and motion features f tof , two different

pre-trained CNNs on RGB and optical flow frames are utilized respectively and the

output of the second last fully-connected layer Chatfield et al. (2014) with dimension

k = 4096 is served as the extracted descriptors for video clips. For RGB frames the

publicly available “VGG-f” pre-trained network Chatfield et al. (2014) is used while

the pre-trained temporal network from Gkioxari and Malik (2015) is applied on op-

tical flows maps. A Sliding Window Strategy: a sliding window with size T and

step size S on both f tapp and f tof is applied. Features extracted from the CNNs within

the same window are avg aggregated to obtain fixed-length video descriptors di over

T frames

diapp =
1

T

to+T−1∑
t=t0

f tapp(i) (2.1)

diof =
1

T

to+T−1∑
t=t0

f tof (i) (2.2)

di = [diapp, d
i
of ]. (2.3)
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Finally di is the extracted visual features for the ist class with dimension k = 8192.

Semantic Embedding Space

The semantic embedding space is constructed with the help of the word2vec neural

network Mikolov et al. (2013a) Mikolov et al. (2013b) in this dissertation because

of its reliable mapping function between word corpses and mathematical meaning

expressions. Through this word2vec networks, semantic labels {yi}i=1...n are assigned

to 500-D vectors Zi = g(yi) and are divided by the amount of unique words in

Zi = 1
N

∑N
j=1 g(yij) for normalization purpose.

Mapping Function

Given visual features di and semantic embedded space labels Zi, the goal of the zero-

shot learning problem now is to build a projection model: Z∗ = M(di) that can best

map each video to a vector in the corresponding semantic embedding space. Inspired

by the idea of Venkatesan and Li (2016), A two-output Multi-Layer Perceptron (MLP)

is trained to achieve this goal.

Both the semantic embedding space soft labels Zi and classification hard binary

labels yi are applied on training the MLP. Two distinct loss functions are calculated

and both errors are backpropagated. For semantic soft label loss, a hinge rank loss

function (similar to Frome et al. (2013)) is utilized to measure the similarity of the

semantic output Z∗ and semantic labels Z. The hinge rank loss function is defined

as:

Lse = −
∑
j 6=i

max[0,m− Zi · Z∗ + Zj · Z∗] (2.4)

where m represents the margin value.

For classification hard binary label loss, the softmax loss function is leveraged

because of its robustness for multi-class classification. The probability and loss, of
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which the softmax layer input Z∗ is classified to the jth class (i.e., ȳ = j|Z∗), are

defined as:

P (ȳ = j|Z∗) =
eZ

∗Twj∑K
k=1 e

Z∗Twk

(2.5)

losssm = −
∑
j

1{ȳ = j} log(P (ȳ = j|Z∗)). (2.6)

Here 1{ȳ = j} equals to 1 when predicted label ȳ equals to target label, otherwise it

equals to 0.

Both softmax and semantic outputs leverage visual and semantic similarity to

train MLP since two outputs share information in input and hidden layer. Moreover,

the summation of softmax and semantic loss backpropagate to learn weights in each

layer, so that each loss can be serve as a compensation and fine-tuning method for

the other one

Zero-shot Learning and Conssev Strategy

Zero-Shot learning is then performed on a completely disjoint dataset from training

set. Utilizing the proposed deep-multi output model and word2vec, it is possible

to project both “unseen” visual contents ditest and their corresponding word labels

yitest to semantic embedded space vectors (Z∗test and Zi
test)). Since both vectors are

normalized, a simple cosine similarity is performed to match projected visual contents

and labels

ȳ = arg max cos(Z∗test, Z
i
test). (2.7)

ConSSEV strategy: Due to the disjointedness of train and test set in ZSL, the

trained mapping function M may not be the best fit in the case of mapping test set

and thus biases the similarity measurement Frome et al. (2013); Xu et al. (2015a). In
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this dissertation, a self-adaptive domain shift method is introduced by utilizing both

semantic and softmax outputs in the proposed model to adjust both semantic output

Z∗test and label prototype Zi
test.

For semantic output, the top K training labels that have the highest similarities

with test semantic label vector {Z∗k}k=1...K as that in Eq. (2.7) are first found. Then

a new semantic vector Z̄∗ is formmed by weighted sum of all k vectors with their

corresponding softmax output P (ȳ = k|Z∗k). The adaptive semantic output vector

performs better since it penalized “ambiguous feature results” by weighting smaller

softmax probabilities (“confidences”).

Z̄∗ =
1

K

K∑
k=1

P (ȳ = k|Z∗k) · Z∗k (2.8)

For label prototype, the same self − training techniques as that in Xu et al.

(2015a) on the adaptive data vector obtained by Eq. (2.8) is performed as well.

The new convex combination of semantic output Z̄∗ and test label prototype Z̄i
test

are more directly comparable by using Eq. (2.7).

Conventional Video Recognition

The proposed deep two-stream structure with two-output model can also serve as a

conventional video recognition classifier by supervised training the mapping function

M with all categories. Then each test visual feature ditest is mapped to a vector Z∗ in

semantic space through Z∗ = M(ditest) and matching them with all projected labels

Zi through Eq. (2.7).
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2.1.3 Experiments and Evaluation

Dataset

The proposed model is trained and tested on one of the most popular video action

benchmark dataset – UCF101 Soomro et al. (2012) which contains 13320 videos from

101 cation categories (e.g.“Apply Eye Make”,“Basketball Dunk”, “Brest Stroke”, and

etc). Videos in each action category are grouped into 25 groups where each group

shares some common features, such as background, viewpoints, objects, and etc.

For evaluating ZSL, the same evaluation protocol as in Xu et al. (2015a) is applied

in this dissertation – 30 independent splits for UCF101 dataset with each split contains

a completely disjoint 51 categories for training purpose and 50 for testing purpose.

For conventional action recognition, on the other hand, the standard splits (“Three

Train/Test Splits”) for UCF101 dataset is utilized.

Experiment Setting

Semantic Embedding Space: Word2Vec Mikolov et al. (2013a),Mikolov et al.

(2013b) method is leveraged to embed the text labels. A skip-gram text model is

trained on a corpus containing 5.4 billion words which are extracted from Wikipedia.

Dimension of word vector is set to 500-D to trade-off training complexity and main-

taining semantic meanings Frome et al. (2013); Xu et al. (2015a).

Visual Feature Extraction: To further decrease model complexity, only one frame

is sampled for each three consecutive frames from video and the corresponding op-

tical flow maps Brox et al. (2004) are computed upon them. Two distinct CNNs

are applied to extract features – both contain 5 convolutional and 3 fully-connected

layers. The appearance and optical flow features are extracted from the second last

fully-connected layer (i.e.,“fc7”) which dimension for each feature is 4096. Then the
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sliding window strategy is utilized to aggregate and concatenate the appearance and

optical flow feature vectors into one 8192-D vector.

Mapping function training: A Multi-Layer Peceptron (MLP) is trained with those

aggregated visual features for each video clip. Target labels for softmax output are

so-called “hard binary labels” (i.e., ”1” and ”0” for belonging to the specific class

or not, respectively), and target labels for semantic embedding output are the 500-D

semantic space word vectors. The number of hidden nodes is set to be 1000, learning

rate to be 0.001, the momentum to be 0.9 and margin value for hinge rank loss func-

tion to be 0.9 based on the result of cross-validation. Moreover, for each splits, five

iterations are implemented of all training features with random training order.

Results Comparison: For zero-shot learning, the following methods are imple-

mented as comparisons on the same split data of UCF101: (1) Random Guess: the

method randomly guesses one label from the unseen labels. (2) Attribute Based-

Indirect Attribute Prediction (IAP) Lampert et al. (2014): the method selects the

unseen label by the video representation attributes. (3) Convex Combination of Se-

mantic Embeddings (ConSE) Norouzi et al. (2013): the method uses the conventional

neural network classifier outputs (i.e. softmax probabilities) to weight the training

labels and combine the top K embedded labels to denote a new semantic embedding

word vectors. (4) Dense Trajectories Based Regression Model with Nearest Neigh-

bour (DTRM+NN) Xu et al. (2015a): the model is trained a SVM classifier with RBF

kernel on the dense trajectory descriptors Wang and Schmid (2013). This method

is treated as the baseline. (5) The proposed deep two-stream strucutre with two-

output model with Nearest Neighbour searching: finding the nearest neighbour in

terms of maximal cosine similarity. (6) DTRM+NN+ST: Apply Self-training domain

shift method with DTRM. (6) The proposed deep two-stream strucutre with deep

two-output model with ConSSEV domain shift approach: Apply ConSSEV domain
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Table 2.1: Zero-Shot Learning Performance

Method Accuracy ± Variation

Random Guess 2.0

IAP Lampert et al. (2014) 12.8± 2.0

ConSE Norouzi et al. (2013) 10.5± 2.0

DTRM + NN Xu et al. (2015a) 10.9± 1.5

Proposed + NN 11.3± 2.1

DTRM + NN + ST Xu et al. (2015a) 15.8± 2.3

Proposed + NN + ConSSEV 26.8± 4.4

shift strategy on the proposed model.

For video recognition, the proposed model is validated with the following: (1)

Dense Trajectories Wang and Schmid (2013). (2) Binary SVM classifier with RBF

kernel (DTRM) Xu et al. (2015a). (3) The proposed model Semantic output. (4)

The proposed model Softmax output.

Evaluations

The results of zero-shot learning are presented in Tab 2.1. All listed methods are

significantly better than random guess which shows successful ZSL. Without applying

any kinds of domain shifting techniques and only consider the Nearest Neighbour

(NN), tje proposed deep two-output model achieves a slightly better performance than

existing state-of-the-art semantic-based ZSL (DTRM) – suggesting visual contents are

effectively mapped to semantic space vectors that are near to its human-level semantic
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Table 2.2: Conventional Action Recognition Performance

Method Accuracy

Dense Trajectories Wang and Schmid (2013) 75.1

DTRM Xu et al. (2015a) 73.7

Proposed (Semantic) 74.1

Proposed (Softmax) 72.7

meanings. Although the proposed model fails to demonstrate better performance than

attribute-based model Lampert et al. (2014) when evaluating by NN, it does not suffer

from lack of attributes and costly attribute annotation. By applying the developed

ConSSEV domain shift strategy, the proposed model significantly outperforms other

domain shift counterpart (DTRM+NN+ST).

Overall, the proposed zero-shot learning technique based on MLP has a great

performance among the existing state-of-the-art ZSL methods and the ConSSEV

domain shift strategy between test and train categories proves to be a significant

performance boost on ZSL technique.

The performance of the proposed model conducting conventional action recog-

nition task is listed in Tab 2.2. The final results reveal that the proposed approach

performs comparatively with the baseline method including Dense Trajectories Wang

and Schmid (2013) and Binary SVM classifier with RBF kernel Xu et al. (2015a).

Thus demonstrating the capability of the proposed deep two-output model on address-

ing conventional action recognition tasks. The Dense Trajectory Wang and Schmid

(2013) in the Tab 2.2 shows the performance is slightly better than the proposed

approach. This may due to the sliding window strategy that is used to extract video
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features. Even though motion information of optical flow is utilized in the proposed

model, the averaged features within a sliding window will lose some temporal infor-

mation of video sequences compared with HOF and MBH features applied in Dense

Trajectories Wang and Schmid (2013).

2.1.4 Conclusion

A deep two-stream structure with two-output model to realise the zero-shot learn-

ing paradigm on video recognition is proposed in this section 2.1. A domain shift

technique, Convex Combination of Similar Semantic Embedding Vectors (ConSSEV),

which proves to provide a significant improvement in terms of zero-shot learning accu-

racy by utilizing the known semantic space to express the unknown semantic space,

is purposed. This section shows that the proposed zero-shot learning model with

ConSSEV strategy greatly outperforms baseline zero-shot video action recognition

techniques. And the deep two-stream structure is presented to be a good method

to extract video representative features and it is feasible to combine the semantic

features with low-level visual features.

2.2 Video2Vec: Two-stream Recurrent Neural Networks for Learning

Semantic Spatio-temporal Embeddings of Video Clips

This dissertation proposes a RNN based two-stream structure to learn a better

semantic spatio-temporal embeddings for videos to support high-level video analysis.

The first step of the proposed embedding method employs a deep architecture consist-

ing of two channels of Convolutional Neural Networks (capturing appearance and local

motion) followed by their corresponding Gated Recurrent Unit encoders for capturing

longer-term temporal structure of the CNN features. The resultant spatio-temporal

representation (a vector) is used to learn a mapping via a Multi-Layer Perceptron to
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the word2vec semantic embedding space, leading to a semantic interpretation of the

video vector that supports high-level analysis. This section demonstrates the useful-

ness and effectiveness of this new video representation by conducting experiments on

action recognition, zero-shot video classification, and “word-to-video” retrieval, using

the UCF-101 dataset.

2.2.1 Introduction

Many computer vision applications involve general scene understanding based on

videos. Examples include video-based action/event recognition, vision for human-

computer interaction, and video surveillance, etc. One fundamental task in these

applications is to establish certain mapping from a raw video input to some high-

level semantic labels such as action or event categories, or gesture-based commands,

etc. Typically, raw video data would first be processed for feature extraction before

any technique for establishing the above mapping is applied. The quality of the

features, or more generally, the representation of the videos, plays an important role

and can have significant impacts on subsequent analysis tasks.

Some well-known video features include HOG3D Kläser et al. (2008), STIP Laptev

and Lindeberg (2003), and Dense Trajectories Wang and Schmid (2013), all having

been widely used in video-based analysis. These, what has been mentioned in Chapter

1, are often called ”hand-crafted” features, since they were deliberately designed based

on reasonable considerations. In contrast, techniques relying on deep neural networks

for directly learning features from videos have been seen in recent decades. For

instance, Simonyan and Zisserman (2014a) proposed a CNN-based architecture was

proposed to fuse appearance and optical flow features to form a (frame-level) video

descriptor. Typically, features learned from such approaches are based on the output

of the last Rectified Linear Unit (ReLU) layer in a CNN that contains many hidden
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layers acting as progressive feature extractors. Other than using optical flow as part

of the input (hence capturing some local motion), the CNN-based approaches like

Simonyan and Zisserman (2014a) and the proposed method mentioned in section 2.1

do not have the capacity to model global temporal evolution of the video/features,

which may be the key to obtain a better higher-level semantic analysis. A naive

approach of averaging frame-level representations to form a global representation

would not solve the problem as the temporal structure is no longer maintained.

In this section, the dissertation aims at learning proper vector representations for

videos so as to support a set of common semantic analysis tasks. A deep architecture

is employed as the basic building blocks for their demonstrated performance. In order

to capture the temporal structure of an underlying video, one may utilize Recurrent

Neural Networks (RNNs) on top of frame-level CNNs. Two well-known alternatives

are the Long-Short Term Memory (LSTM) Hochreiter and Schmidhuber (1997) and

Gated Recurrent Unit (GRU) Cho et al. (2014), which mitigate gradient vanishing

by implementing “gate units” that decide what to “forget” and what to “memo-

rize”. In this proposeed approach, GRUs are chosen to further encode frame-level

CNN features, since they have comparative performance to LSTM while requiring

less computation cost, which is an important consideration for video clips.

Furthermore, recognizing that the learned vector representations, although rich

in spatio-temporal information, still lack a semantic organization or clustering that

would directly facilitate a higher-level analysis task like action labeling, an additional

mapping from the learned vector representations of the videos to the word2vec Se-

mantic Embedding Space (SES) Mikolov et al. (2013a) is proposed to be learned. This

learning task relies on labels of the videos in a training set (data-driven) and the SES

learned from Wikipedia documents with more than 1 billion words (prior knowledge

on semantic meanings of the labels). Hence the final mapping effectively leads to an
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Figure 2.2: Overall Framework of the Proposed Architecture for Semantic Spatio-

Temporal Video Embedding.

embedding for the videos into the SES, enabling the utilization of the word (label)

semantics for any higher-level analysis task. The overall framework is illustrated in

Fig. 2.2. In the proposed deep structure, two GRUs are conducted followed by a

two-stream CNN structure which obtains the appearance and motion information for

each frame. A MLP which is similar to the proposed structure in the section 2.1 is

applied with two loss functions. The details of the proposed structure will be further

elaborated in the following sub-sections.

To illustrate the usefulness of such a learned embedding, the proposed approach

is evaluated by using three video analysis tasks as case studies: action recognition,

zero-shot learning for action classification, and semantic video retrieval. All experi-

ments are based on the commonly-used UCF-101 dataset Soomro et al. (2012), for its

diversity of contents (and hence challenges for an analysis algorithm) as well as the

ready availability of results from many baselines (and hence making it easy to assess
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the significance of any performance gains).

2.2.2 Related Work

Conventional action recognition tasks utilize hand-crafted descriptors such as

STIP Laptev and Lindeberg (2003), HOG3D Kläser et al. (2008), and dense features

Wang and Schmid (2013) to capture spatio-temporal information. Such features have

found wide applications in the literature. However, in general hand-crafted descrip-

tors lack semantic and discriminative capacity and thus cannot effectively represent

higher-level information Wang et al. (2015). In recent years, many deep-learning

approaches have been applied to video feature extraction. The Simonyan and Zis-

serman (2014a) introduced a method to fuse both CNN appearance and optical flow

features while the Wang et al. (2015) proposed descriptors that pool both low-level

hand-crafted features and CNN feature to represent videos.

Despite of the fusion process, the above deep-learning approaches and the proposed

method in section 2.1 still do not fully leverage temporal information of the given

video. To overcome this limitation, several more recent approaches Srivastava et al.

(2015); Donahue et al. (2015); Ng et al. (2015) attempted to encode the video by

LSTM. The LSTM can be considered as a gated RNN, which is capable of discovering

the implicit temporal structure of the input sequences while avoiding the gradient

vanishing problem. In the above literature, representing videos by LSTM was shown

to have some advantages when modeling complex temporal dynamics and competitive

results on tasks like action recognition have been reported. Unfortunately, all of the

above LSTM-based methods encode videos without considering semantic meanings of

the representation. As a result, the learned representation does not directly support

high-level semantic tasks such as semantic video retrieval (retrieving videos by word

descriptions never used in training) and zero-shot video classification (recognizing
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unseen video categories).

Associating video representations with semantics has been studied in various con-

texts including content-based video retrieval Li et al. (2016); Gitte et al. (2014);

Veltkamp et al. (2013); Snoek and Worring (2009). In Venugopalan et al. (2015,

2014); Donahue et al. (2015), attempts have been made to generate semantic label

sequences from video inputs. However, these efforts do not seem to explicitly asso-

ciate videos with semantic meaning derived directly from the semantic labels of the

videos (but rather relying on external dictionaries). Lacking is a learned embedding

of videos that may directly lead to semantic interpretation of a novel video, which

may or may not have any textual labels. Such an embedding could lead to a new pre-

sentation that supports high-level semantic analysis. The proposed approach in this

Chapter attempts to achieve this by learning the mapping between spatio-temporal

representations and the label vectors in the word2vec semantic space. And compared

with the method mentioned in the section 2.1, the proposed method in this section

tries to capture a hierarchical temporal information by conducting a two-stream RNN

structure.

The proposed two-stream RNN based semantic embedding will easily support

zero-shot learning for video classification (to be further illustrated in following sub-

section). Most existing zero-shot learning techniques focus on static images and

many rely on attributed-based representations Lampert et al. (2014). In practice, it

is difficult to obtain sufficient amount of data for training comprehensive attribute-

based representations for a large number of categories. The proposed newly video

representation is advantageous on this regard since the basic embedding space derives

its semantics from general human knowledge base (e.g., meanings of words learned

from Wikipedia documents), and only the last stage of mapping requires video labels

to train.
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Figure 2.3: Illustrating the Working of the Proposed Two-stream RNN Model.

2.2.3 Methodology

Given a dataset of video clips with corresponding semantic labels, the goal of the

proposed method in this section is to learn a fixed-length vector representation for

each video so that the representation captures spatio-temporal information of the

underlying video as well as the semantics contained in the labels. The proposed

approach achieves this goal by a deep architecture demonstrated in Fig. 2.2. The

approach consists of three major learning steps. The first step extracts spatial and

(local) temporal features using two CNN channels. The second step encodes (more

global) temporal structures of the video (in terms of learned CNN features) by GRUs.

The third step learns a mapping from the encoded spatio-temporal video representa-

tions to a word2vec semantic embedding space by an MLP. The proposed architecture

is an end-to-end learning model that can be trained by back-propagation with a loss

computed by summing the results of the hinge rank loss function and the softmax

loss function at the output layer of the model. These steps are elaborated as below.
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An illustration of the proposed method is shown in Fig. 2.3. As it is known

that video clips carry similar semantic meanings can vary greatly in terms of spatio-

temporal features (e.g., videos v6 “NBA” and v5 “Dribbling” are far from each other

when only temporal encoding is performed). The global temporal structure of these

features is encoded by the two-stream GRUs structure. A learned mapping further

embed the GRU-encoded spatio-temporal feature into a semantic embedding space,

where diverse videos sharing the similar semantics cluster together (e.g., “NBA” and

“Dribbling” videos are projected to similar coordinate after embedding).

CNN-based Spatio-temporal Feature Sequences

With a collection of video clips V where each clip v ⊂ V contains a sequence of

frames with a specific order {f1, ..., fn} and label lv. As described in the section 2.1,

the RGB frames are first pulled out to represent spatial information and compute the

optical flows maps from the frames to represent (local) motion information. Both the

optical flows maps and the RGB frames are processed at 10fps, and the optic flows

maps are computed by using the implementation described in Brox et al. (2004) and

the section 2.1.

As the same as the way of extracting frame features mentioned in section 2.1,

two pre-trained CNN models are then used to extract appearance fv app and optical

flow features fv of respectively. The “VGG-f” Simonyan and Zisserman (2014b) pre-

trained model on the ImageNet ILSVRC-2012 dataset Deng et al. (2009) is responsible

for extracting appearance features while the pre-trained networks implemented by

Gkioxari and Malik (2015) is used to extract optical flow features. The fv app and

fv of are collected from the last Rectified Linear Unit (ReLU) layer from each pre-

trained model.
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GRU-based Temporal Encoding

Given the spatio-temporal feature sequences fv app and fv of , each of them is encoded

independently with two variable-length GRUs. The choice of encoding separately is

based on the hypodissertation that fv app and fv of contain different and/or comple-

mentary types of information of the video at different space-time scale and thus they

should not be pooled together at the frame level.

As shown in Fig. 2.4, the GRU memorizes a state variable h. The state variable

can be either updating or remaining the same, depending on the value of the update

gate z. The reset gate r controls the influence of previous input sequence toward

the current input.the Gated Recurrent Unit (GRU) uses the reset gate rn and the

update gate zn (both gates take values between zero and one) to memorize and forget

sequence states, thus mitigating the gradient vanishing problem while maintaining the

power to discover temporal relationship. Given an input sequence x = (x1, ..., xN),

Figure 2.4: A Standard Gated Recurrent Unit Cho et al. (2014).

.
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the GRU encoder feeds forward the input by iterating the following equation from

n = 1 to N :

rn = σ(Wrxn + Urh
n−1) (2.9)

zn = σ(Wzxn + Uzh
n−1) (2.10)

h̃n = tanh(Wxn + U(rn • hn−1) (2.11)

hn = (1− zn) • hn−1 + zn • h̃n (2.12)

where hn is the model state at Step n, h̃n is the proposed state update at Step n, σ()

denotes the logistic sigmoid function, • denotes element-wise product and Wr, Wz,

UR, Uz denote hidden variables Cho et al. (2014).

The GRU architecture utilized in this section is shown in the middle part of

Fig. 2.2, where each GRU contains 1024 hidden units. Various numbers of units are

experimented and chose 1024 to best trade off complexity and performance. Upon the

GRU outputs, a mean-pooling layer is implemented to obtain a fixed-length repre-

sentation. The outputs of the GRU encoder are the appearance video representation

Eapp
v and the optical flow video representation Eof

v , both having 1024 dimensions.

Finally, a simple concatenation is performed to combine the appearance and op-

tical flow representations at the video level: Ev = [Eapp
v ;Eof

v ]. This results in a

temporally-encoded representation Ev of 2048 dimensions.

2.2.4 Experiments and Performances

The proposed video representation architecture is evaluated on UCF-101 dataset

Soomro et al. (2012) (13320 video clips from 101 categories) by conducting three

visual tasks: video action recognition, video zero-shot learning, and semantic video

retrieval. All three tasks are solved by learning video representations using the same
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Table 2.3: 3-Fold Recognition Accuracy on UCF-101 Dataset

Algorithm Accuracy (%)

Dense Trajectory (Wang et al) Wang and Schmid (2013) 75.1

LRCN (Donahue et al) Donahue et al. (2015) 82.9

Composite LSTM model (Srivastava et al) Srivastava et al.

(2015)
84.3

Two-stream Convolution Net (Simonyan et al) Simonyan and

Zisserman (2014a)
88.0

Deep LSTM with 30 Frame (Ng et al) Ng et al. (2015) 88.6

TDDs (Wang et al) Wang et al. (2015) 91.5

The Proposed method (softmax) 86.9

architecture. Dense optical flow maps and RGB frames are extracted at 10fps. Each

GRU unit contains 1024 hidden units. The MLP has 2048, 1200 and 500 neurons in its

input, hidden and output layers respectively. Learning rate for the whole end-to-end

structure is initialized as 0.0001 for the first 15 epochs and then reduced by half for

every 15 epochs. The batch size is set to 30 videos per batch. The margin for hinge

rank loss computation, however, varies between tasks: 0.4 for zero-shot classification

and 0.55 for video recognition and semantic video retrieval.
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Table 2.4: Zero-Shot Learning Accuracy on UCF-101 Dataset

Algorithm Accuracy (%)

ConSE (Norouzi et al) Norouzi et al. (2013) 10.5

SES (Xu et al) Xu et al. (2015a) 10.9

IAP (Lampert et al) Lampert et al. (2014) 12.8

DAP(Lampert et al) Lampert et al. (2014) 14.3

The Proposed Method 14.7

Video Action Recognition

For video action recognition, the three train-test split rule in Soomro et al. (2012) is

conducted to train and test the proposed video representation architecture. When

testing, test videos are categorized to the trained label that has maximum probability

based on the softmax layer output.

The performance of proposed method is compared with Wang and Schmid (2013)

and Donahue et al. (2015); Srivastava et al. (2015); Ng et al. (2015); Simonyan and

Zisserman (2014a); Wang et al. (2015) as shown in Table 2.3. Compared with Si-

monyan and Zisserman (2014a); Wang et al. (2015), the newly video representative

features do not require late classifier-based fusion or pooling method. Compared with

Ng et al. (2015), the new video representation does not train multi-layer LSTMs and

thus is more time efficient. It can be assumed that applying late fusion and multi-

layer GRUs can potentially lead to further improvements. However, this sub-section

mainly focuses on demonstrating that the proposed video representation can handle
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much high-level task.

Video Zero-Shot Learning

For video zero-shot classification, 10 training and testing experiments are performed.

For each experiment, 101 categories are randomly splited into two sub-datasets: train-

ing dataset with 51 categories and testing dataset with the rest 50 categories. During

the testing stage, test videos are categorized to the ”unseen” test label that has max-

imum cosine similarity (nearest neighbor) to the obtained temporal and semantic

embedded representation.

The results of the proposed method are compared with Xu et al. (2015a); Norouzi

et al. (2013); Lampert et al. (2014) as shown in Table 2.4. The proposed represen-

tation outperforms Xu et al. (2015a); Norouzi et al. (2013); Lampert et al. (2014)

by around 2% and 4% and slightly outperforms the state-of-the-art attribute-based

model DAP Lampert et al. (2014) by around 0.5%. The superior performance of the

proposed video representation indicates the effectiveness of the proposed semantic

embedding technique that encodes semantics as well as spatio-temporal information.

Semantic Video Retrieval

To further demonstrate that the proposed representation can perform “semantic as-

sociation” of videos, the dissertation challenges it with the semantic video retrieval

task. For this task, the first train-test split rule in Soomro et al. (2012) is applied to

separate the UCF-101 dataset. A word pool which contains 40 words were created

manually to serve as query words. Query words are never seen in training dataset and

the retrieve results are the retrieved video clips denoted by the corresponding cate-

gories in UCF-101 dataset. When testing, all test videos are fed forward through the

trained architecture firstly and obtain the corresponding semantic embedding repre-

35



Table 2.5: Query Word Pool and the Corresponding Retrieval Results

Query

Labels
Top10 Retrieve Results

Query

Labels
Top10 Retrieve Results

NBA Basketball Dunk (10) Extreme
Rock Climbing Indoor (5), Uneven Bars

(2), Soccer Juggling (2), Pole Vault (1)

Orchestra Playing Cello (9), Playing Piano (1) Tide
Cliff Diving (4), Surfing (2), Throw Discus

(2), Sky Diving (1), Rafting (1)

Army Military Parade (10) India
Paying Tabla (4), Playing Sitar (2), Head

Massage (1), Cricket Shot (1), Mixing (1)

Music Playing Sitar (9), Playing Piano (1) Celebrate

Military Parade (6), Long Jump (1), Band

Marching (1), Ice Dancing (1), Blowing

Candles (1)

Computer Typing (10) Home-run

Baseball Pitch (5), Basketball Dunk (3),

Field Hockey Penalty (1), Frisbee Catch

(1)

Park Biking (9), Golf Swing (1) Boat
Kayaking (4), Rafting (2), Rowing (2),

Cliff Diving (1), Push Ups (1)

Summit
Cliff Diving (7), Skiing (2), Rope Climbing

(1)
Toy

Yo-yo (4), Nun chucks (4), Pull Ups (1),

Juggling Ball (1)

School Skate Boarding (10) Snow

Skiing (2), Ice Dancing (2), Cricket Bowl-

ing (1), Pole Vault (1), Blowing Candles

(1), Blow Dry Hair (1), Rafting (1), Sky

Diving (1)
Park Biking (9), Golf Swing (1) Acrobatics Juggling Balls (5), Soccer Juggling (5)

Water kayaking (10) Ocean
Cliff Diving (4), Sky Diving (3), Kayaking

(2), Rafting (1)

FIFA Soccer Penalty (8), Soccer Juggling (2) Hurl

Throw Discus (2), Mopping Floor (2),

Baby Crawling (1), Javelin Throw (1),

Cricket Shot (1), Blowing Candles (1), Pull

Ups (1)
Club Golf Swing (8), Soccer Juggling (2) Hiking Biking (5), Kayaking (4), Rafting (1)

Nature
Tai Chi (7), Hammering (2), Walking with

Dog (1)
Swim

Diving (5), kayaking (3), Cricket Bowling

(1), Sky Diving (1)

Beethoven Playing Cello (8), Playing Voilin (2) Jogging
Biking (5), Skate Boarding (2), Soccer Jug-

gling (1), Skiing (1), Ice Dancing (1)

Classical Playing Cello (7), Playing Voilin (3) Foam
Blowing Candles (7), Pull Ups (1), Rope

Climbing (1), Juggling Balls (1)
Yankees Baseball Pitch (10) Hip-hop Trampoline Jumping (6), Swing (4)

Duel Boxing Punching Bag (8), Punch(2) Scramble
Pull Ups (6), Trampoline Jumping (2),

Rope Climbing (1), Cricket Shot (1)

Lifting
Body Weight Squats (4), Rope Climbing

(4), Pull Ups (2)
Mat

Rope Climbing (4), Pommel Horse (3),

Trampoline Jumping (2), Javelin Throw

(1)

Martial
Fencing (3), Archery (3), Boxing Punching

Bag (3), Balance Beam (1)
Parachuting

Diving (6), Cricket Bowling (2), Hand

Stand Walking (1), Sky Diving (1)

Tumbling
Trampoline Jumping (8), Throw Discus

(1), Frisbee Catch (1)
Hunting

Horse Riding (3), Kayaking (3), Nun

chucks (3), Frisbee Catch (1)
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Figure 2.5: Example Result of the Proposed Architecture Performing the Semantic

Video Retrieval Task.

sentation. Then, for each query word, the proposed architecture retrieves top 10 test

video clips that have maximum cosine similarity (nearest neighbor) to the word2vec

transformed query word. As an illustration of semantic video retrieval demonstrated

in Fig. 2.5, by inputting the query word “Acrobatics” which is not in the original

labels pool, the proposed architecture retrieves “Juggling Balls” and “Soccer Jug-

gling” video clips, which are available in the original dataset. Note that, for a query

which contains multiple words, the same averaging method as described previously is

performed.

The query word pool and the corresponding retrieval results are shown in Table

2.5 and the number in the brackets denoted how many retrieved video clips belong

to this category in the top10 hit list. It shows that the proposed model is capable

of capturing both visual contents and their semantics. One specific example is the

retrieved results using the query word “NBA”. All retrieved videos belongs to the
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“Basketball Dunk” category in the UCF-101 dataset.

2.2.5 Conclusion

In this section, a two-stream deep structure with two-channel RNN encoders that

learns semantic spatio-temporal embbeddings for videos is proposed. Gated Recurrent

Units are utilized to temporally encode deep CNN features while an MLP is trained

to further embed the learned spatio-temporal features into a semantic space given

by word2vec. The proposed video representation architecture is evaluated on the

UCF-101 dataset for action recognition, zero-shot classification and semantic video

retrieval. The experimental results suggest that the proposed approach is able to

compute video representations useful and effective for semantic visual analysis tasks.

In particular, the semantic video retrieval example demonstrates that the proposed

approach can support retrieving semantically meaningful videos simply based on a

word query.

2.3 Summary

In this chapter, two deep two-stream structure based models are proposed. The

performance on several visual tasks, like zero-shot learning, video action recognition,

and semantic video retrieval, demonstrate that the two-stream structure is capable of

obtaining the temporal information for deep features based on the optical flow maps.

However, the disadvantage of the two-stream structure is obvious as well. The simple

fusion or combination of two feature vectors which are obtained from two channels

separately will mix the information acquired from the deep neural network, since the

feature vector is highly condensed from sequences of frames to a 4k dimension vector.

Therefore, the following chapter will introduce a deep model which will obtain feature

maps instead of feature vectors.

38



Chapter 3

INCORPORATION OF CNN AND RNN FOR SURVEILLANCE VIDEO

REPRESENTATIVE FEATURE EXTRACTION

As described in Chapter 1, with the rapid growth of different video data, the

demands of obtaining representative features for more complex video clips increase

exponentially. One kind of the complex video data based on the surveillance system

draws more and more attention in recent years since those surveillance video data has

close relationship with people daily life. In surveillance video analysis, action/event

localization and recognition are two critical capabilities, which have been largely

addressed separately in the literature. In this section, an approach is proposed to

simultaneously localize and recognize visual events from raw surveillance videos, em-

ploying an end-to-end learning strategy. The proposed approach formulates the task

as weakly-supervised sequential semantic segmentation, in which a specific convolu-

tional RNN is utilized to capture not only the appearance and the motion information

but also their temporal evolution patterns. The proposed approach is tested on the

VIRAT 2.0 dataset. The experimental results, in comparison with relevant existing

state-of-the-art, suggest that the proposed approach is promising in extracting video

representative features and delivering a practical solution.

3.1 Introduction

Video-based surveillance systems have become a key technology in maintaining law

and order. Current technological and political trends are accelerating deployment of

video-based surveillance systems in our society. With ever-increasing amount of video

data generated by such systems, automatic capabilities for processing and analyzing
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surveillance videos have become imperative. Among others, key automatic capabili-

ties include the detection of the occurrence of any event/action of interest, including

both where and when an event/action happened (spatio-temporal localization) and

what has happened (event/action recognition). As such, action and event recognition

in surveillance videos has received significant attention in recent years.

As describes in Chapter 1, unlike static images, a sequence of video frames

captures the interactions among objects along the temporal axis. The temporal at-

tributes of such interactions may be the defining feature of the underlying actions,

given that the appearance of the objects/scene can vary dramatically. For example,

the event “a person opening the trunk of a sedan” may involve a variety of cars of

different makes/models/colors, with the person having different appearances as well,

but the sequence of movements of the person interacting with the rear end of a sedan

is typically distinctive. In this sense, the key of recognizing events lies not only on

correctly detecting the objects, but also on identifying specific temporal interaction

patterns. Following such intuitions, different from some works mainly focusing on

appearance of frames Chang et al. (2017); Tran et al. (2015), a more effective line

of works was proposed seeking to incorporate interactions via motion information

Simonyan and Zisserman (2014a); Feichtenhofer et al. (2016); Wang et al. (2016b),

which is introduced in the Chapter 3 as the deep two-stream framework. A typical

two-stream recognition framework considers both appearance and motion informa-

tion, and categorizes a video clip into a specific class. This procedure amounts to

answering “what” happens in a video.

However, in raw surveillance videos, an event may occur in only a short period of

time and/or within a small local region of the visual field of view, and thus the

aforementioned methods became less effective as the task is no longer to simply

classify a short video clip capturing an underlying action/event. To handle such
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situations, a parallel series of algorithms are devised to localize events spatially Tran

et al. (2014); Ke et al. (2005) or temporally Tang et al. (2012); Yeung et al. (2016).

The spatial and temporal “localizers” attempt to answer the question “where” and

“when” an event happens in a long video, respectively. It is worth noting that, in

many situations (like many simultaneous actions/events occurring in a video), the task

of event localization may inevitably be dependent of event recognition. Nevertheless,

this task has not be fully addressed, despite of its practical importance.

In this chapter, a novel and unified framework that can simultaneously localize

(both spatially and temporally) and recognize events in a long surveillance video is

proposesd. Given an input video clip, the proposed model seeks to answer “when,

where and what happens” simultaneously, through an end-to-end learning and in-

ference framework without requiring explicit preprocessing steps like separate object

detection and motion-based segmentation. To the best of current knowledge, this is

the first attempt to address such tasks in surveillance video using an end-to-end learn-

ing approach. To achieve this, an inspiration is drawn from 2D semantic segmentation

and consider the task as one of sequential weakly-supervised semantic segmentation

over a sequence of frames. The ground-truth spatial-temporal bounding boxes is

treated as weak labeling and an end-to-end model to localize and recognize events

is trained correspondingly. The proposed approach employs a convolutional RNN

structure (ConvRNN) Xingjian et al. (2015) to capture both the order information of

frames and the spatio-temporal features. The proposed model can handle arbitrary

video length without the need of clipping out the event region, and thus is suitable

for real-world applications. The approach is evaluated by using the VIRAT dataset

and obtained promising results.
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3.2 Related Work

As introduced in the Chapter 3, the two-stream or multi-stream deep neural

networks have been used to obtain state-of-the-art performance in a few related tasks

like video classification Karpathy et al. (2014); Wang and Ji (2017); Simonyan and

Zisserman (2014a); Wang et al. (2016b) and action recognition Wang et al. (2016a);

Hu et al. (2016). Most multi-stream deep neural networks involve fully connected

layers to fuse and extract effective representation (a feature vector) Wang and Ji

(2017); Wang et al. (2016a); Simonyan and Zisserman (2014a). Such features are

widely utilized in a large variety of video-based task (in particular, video-based event

localization and recognition).

Even though event localization and recognition in surveillance video share some

common sub-tasks like extracting spatial-temporal features, these two tasks are dis-

tinguished from each other. In general, event localization focuses on locating an event

within a frame (spatial) Tran et al. (2014); Ke et al. (2005) and/or on the time axis

(temporal) Xu et al. (2015b); Tang et al. (2012); Lai et al. (2014); Yeung et al. (2016).

Event recognition, on the other hand, can be viewed as a classification problem, where

higher-level semantic features are often employed Wang and Ji (2017); Piergiovanni

and Ryoo (2018); Fernando et al. (2015).

Most localization algorithms seek to localize some given events. The authors

of Tran et al. (2014) proposed an algorithm to find the optimal spatial-temporal

path along with a 3D event detection volume by using a pre-detected score. Lai

et al. (2014) segments the video into multiple instances and learns to predict on

instance with only video-level label. Recently, reinforcement learning is also applied

to predict the beginning and ending time of an event Yeung et al. (2016). On the other

hand, typical event recognition algorithms need to know the approximate spatial and
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temporal position of the events. The authors of Wang and Ji (2017) utilized low-level

STIP Laptev (2005) and GIST features Oliva and Torralba (2001) to represent video

context, which helped to improve recognition. However, the training and testing sets

are cropped from the raw videos. Fernando et al. (2015) devised a ranking scheme to

represent the video with more robust features, but the event still has to occupy most

of the frames spatially.

Some efforts have been devoted to solve segmentation in 3D volume by taking into

account the temporal information Siam et al. (2017); Wang et al. (2016a); Fayyaz

et al. (2016) which is similar to the proposed method. The main difference is that,

while the aforementioned methods only focus on object segmentation, the proposed

model seeks to find the specific interaction patterns between objects. Additionally,

the proposed method does not need the training samples to be pixel-level, which

alleviates the burden of training data acquisition. It should also be noted that,

the proposed approach does not contain any fully connected layers and only utilizes

the feature maps instead of feature vector. This procedure has its counterpart in

2D semantic segmentation Badrinarayanan et al. (2017); Long et al. (2015), where

feature maps proved sufficient to capture the context information and are suitable

for the following manipulations like deconvolution and unpooling. The proposed

model takes advantage of both the multi-stream neural network structure and fully

convolutional neural networks to fulfill the event localization and recognition task

simultaneously in a unified learning framework.

Compared with existing works separately focusing on event localization and recog-

nition, the proposed framework only utilizes the multi-class classification loss as the

objective function and predict heatmaps for different event labels. The proposed

method leverages the channel of optical flow maps, which go through a processing

pipeline similar to the appearance channel, so that the model can potentially learn
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higher-order motion patterns and their interactions. Thus the proposed two-stream

convolutional RNN based deep neural network is well-suited for addressing simulta-

neous event localization and recognition.

3.3 Methodology

Video

N Video frames

N Optical flow

VGG16
The last convolutional 
layer output

VGG16
The last convolutional 
layer output

N feature maps seqs

ConvRNN
Encode the RGB 
feature maps sequence

ConvRNN   
Encode the Optical 
Flow feature map 
sequences

N feature maps seqs

N feature maps seqs
N feature maps seqs

1*1 Conv 
Fusion Layer

Fused features encoding 
appearance and motion

Deconv and 
Upsample

N Heatmap seqs

Heatmap 1 Heatmap 2 Heatmap 3 Heatmap 4

Heatmap 5 Heatmap 6 Heatmap 7

Zoomed in Heatmaps for one frame

Cross Entropy 
Loss

Figure 3.1: Overview Structure of the Proposed Framework.

3.3.1 Overview of the Proposed Approach

An overall structure of the proposed model can be found in Fig. 3.1. The illustra-

tion is based on a subset of the VIRAT dataset which contains 6 events from parking

lot surveillance videos. The 7 heatmaps correspond to the confidence map of each

event in addition to an extra “background” event. Assume that a video sequence con-

sists of frame {Xi}, where i ∈ {1, ..., N} is the index of the frame. The corresponding

optical flow map is {Yi}. The main flow of the proposed algorithm starts from taking

as input the video frames and optical flow maps, and then feeding them into two
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Figure 3.2: Optical Flow Map as an Image.

separate pretrained VGG16 networks Simonyan and Zisserman (2014b). The output

features of VGGs are then fed into two ConvRNNs to capture the temporal patterns.

The ConvRNNs can output patterns with the identical dimension as the input feature

map. With such a property, the patterns can be decoded into heatmaps in a seman-

tic segmentation fashion by using deconvolution and upsampling layers, where each

channel of the heatmaps corresponds to the confidence falling into a specific event

class.

3.3.2 Appearance and Motion Features

It is natural to extract appearance features from frames using pre-trained CNN

architecture (i.e. VGG16). The consideration behind employing VGG to deal with

optical flow is explained in the following. The two channels of optical flow correspond

to the horizontal and the vertical movements. In order to convert the flow to optical

flow map, the map can be viewed as a two-channel flow vector field and an extra

channel of the flow magnitude. An example can be found in Fig. 3.2. In the figure,

the left one is the original frame from a video clip. The middle one depicts the optical

flow in vector field. The right one is the optical flow image obtained by adding an
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additional magnitude channel. It can be observed that, human can easily identify the

motion pattern from such flow images. In the proposed approach, a CNN structure is

employed to capture and extract motion information from such inputs. It is possible

to employ pre-trained VGG, as the motion fields from a real surveillance video depicts

properties like smoothness, similar to a natural image. In the setting of the proposed

method, the last output before the first fully-connected layer of VGG is taken as

appearance and motion features.

3.3.3 Recurrent Convolutional Neural Network

As the joint localization and recognition is considered as a 3D sequential semantic

segmentation problem, the dimension of the extracted temporal feature after feeding

the RNN structure should be consistent, yielding the requirement for the following de-

convolution and upsampling procedures. To this end, a specific type of incorporation

of CNN and RNN called ConvRNN is employed Xingjian et al. (2015) to calculate

the temporal features. Suppose the feature map at time t is ft, a ConvRNN in LSTM

fashion is calculated as:

rt = σ(Wfr ⊗ ft +Whr ⊗ ht−1 +Wcr ◦ ct−1 + br) (3.1)

zt = σ(Wfz ⊗ ft +Whz ⊗ ht−1 +Wcz ◦ ct−1 + bz) (3.2)

ct = zt ◦ ct−1 + rt ◦ tanh(Wfc ⊗ ft +Whc ⊗ ht−1 + bc) (3.3)

ot = σ(Wfo ⊗ ft +Who ⊗ ht−1 +Wco ◦ ct + bo) (3.4)

ht = ot ◦ tanh(ct) (3.5)

where ⊗ and ◦ denote the convolution operator and Hadamard’s product, respec-

tively. σ is the activation function and W is the kernel. A variant of ConvRNN is to

employ a Gated Reccurent Unit (GRU) Chung et al. (2014). The mathematical de-
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tails is described here. Intuitively, for each position in the feature map at time t, the

corresponding output is affected by a neighborhood around the same position from

time t− 1. When the motion at this position is faster, a kernel with a larger size can

be utilized. Conversely, the smaller size of kernel size is sufficient to capture the slow

motion. This is a reasonable setting since the speed of common objects in surveil-

lance videos should have a limit. An advantage of ConvRNN structure is that the

number of the parameters can be significantly reduced as only convolutional kernels

are involved. Thus the training of the proposed model can be efficient. ConvRNN

can be viewed as a generalized version of traditional RNN, since if the kernel size is

extended to the feature map size, the layer involving W becomes fully connected.

3.3.4 Feature Fusion

In the feature fusion layer, the outputs of two ConvRNNs are fused into one to be

a suitable feature shape for the following manipulations. To this end, one 1× 1 fully-

convolutional layer is conducted. For the output of the ConvRNNs c(I) ∈ Rm×m×p and

c(O) ∈ Rm×m×p (c(I) and c(O) are the feature maps corresponding to the appearance

and optical flow channels, respectively), firstly they are concatenated into one feature

map c(F ) ∈ Rm×m×2p, then an 1 × 1 kernel is applied on it. All 1 × 1 kernels are

learnable during the training phase, and serve as the function of “feature fusion” to

find the optimal way of combining 2p features.

3.3.5 Deconvolution and Upsampling

The output of aforementioned fusion layer at time t is ct, which is with the identical

first two dimensions as input feature map c(I) and c(O) (typically this is a 3D matrix).

For algorithms handling the task of 2D semantic segmentation Badrinarayanan et al.

(2017); Long et al. (2015), a general framework is an encoder consisting of convolu-
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tional and pooling layers followed by a decoder with deconvolutional and unpooling

layers. Considering the dimensional benefit, the output ct can also be decoded into

a heatmap, of which the pixel level label reveals the event category. This is based on

the intuition that the ConvRNN output ct encodes both the frame-level information

(from CNNs) and temporal information (from RNNs). Assuming there are k different

events in total, another knid of background event k+1 is further added corresponding

to the class of no event happening. Thus the output of the semantic decoder would

be with size a × b × (k + 1), where a × b is the dimension of the frame, in other

words, the size of each heatmap of the output is the same as the each input size. To

accelerate the calculation, the unpooling procedure is replaced with a simple bilinear

upsampling strategy. A basic decoding unit with a deconvlution followed by a bilinear

sampling is constructed. In the setting of the proposed algorithm, there are 4 such

units concatenated in the decoder. Denote the output heatmap Ht ∈ Ra×b×(k+1).

3.3.6 Loss Function and Training

In the training phase, the cross-entropy is utilized to evaluate the loss between the

calculated heatmap Ht and the ground-truth label. In the setting of this proposed

method, the ground-truth labels are 3D bounding boxes lying in the frame volume.

While the projection of a box on the temporal axis defines an interval showing when an

event starts and ends, the projection on the frames corresponds to the spatial location.

Then the elements within the 3D bounding box are made to be the corresponding

label value. For any elements outside the bounding box, they are assigned the value

k + 1, which is the “background” containing no meaningful events. Denote such

volume with ground-truth label Ĥ. Then the loss function becomes:
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L =
∑
a,b,t

Ha,b,t log(
1

Ĥa,b,t

) + λZ2 (3.6)

where Z is the parameter of the proposed model. Note that, unlike object detection

which is a regression in terms of bounding boxes, the proposed algorithm is a pixel-

wise classification problem. The bounding box is treated as weakly supervised label,

since it is difficult to define the exact boundary of an event and its constituent objects,

and the bounding box only gives a coarse approximation.

3.3.7 Prediction and Testing

When processing a new video, given heatmap Ht, a soft-max function is applied

to obtain the confidence Lt;abl for event l at each pixel position (a, b):

Lt;abl =
exp(Ht;a,b,l)∑k+1
j=1 exp(Ht;a,b,j)

(3.7)

Then the dominant label is the one with the maximal confident Lt;ab = maxl Lt;abl

at position (a, b). Thus the prediction at time t is Lt. By stacking all the time point

t, a 3D matrix which encodes the event label and the (spatial and temporal) location

information can be obtained.

3.4 Experiments and Results

3.4.1 Dataset and Evaluation Criteria

All the experiments were based on the VIRAT 2.0 dataset which consists of

over 200 video clips summing up to 8 hours. Only 6 events with human-vehicle

interactions captured from parking lots are considered in this dissertation: Loading

a Vehicle (LAV), Unloading a Vehicle (UAV), Opening a Trunk (OAT), Closing a

Trunk (CAT), Getting into a Vehicle (GIV) and Getting out of a Vehicle (GOV).

49



All videos are downsampled to a smaller resolution 224 × 224. Then the events are

temporally cropped and extended by 20 frames on both directions and downsampled

the frame rate to 5 FPS.

Considering the difference with traditional methods, the following three different

criteria are defined to evaluate.

1) For the event recognition task, the proposed model can predict pixel-wise label

for each frame. Therefore a majority voting process is defined to obtain the video-

level label for each sample. First, the dominant pixel label are found, which is the

most among all the predicted labels, as the frame-level label. Second, the number of

frame-level labels of different events are counted and the most frame-level label are

found as the video-level label. Last, the new video-level labels are utilized to compute

the event recognition accuracy.

2) For the spatial localization task, since the proposed algorithm does not gen-

erate bounding boxes, a simple evaluation metric called percentage of Hit frames is

developed. One frame can be called a “Hit” if the predicted high-confidence region is

within the ground truth bounding box. Then the percentage of Hit frames in an event

is counted. The average Hit percentage of the dataset can represent the performance

of the spatial localization task.

3) For the temporal localization task, the capability of the proposed model in

predicting the starting and ending frames within each video clip should be evaluated

and the missing prediction during each event would be found as well. Therefore, this

kind of evaluation is treated as the retrieval problem where precision and recall are

key factors to evaluate the performance of the proposed algorithm. F measure (or F

score) which combine the information of precision and recall is utilized to evaluate

tthe proposed model’s performance on temporal localization.
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3.4.2 Implementation Details

As shown in Fig. 3.1, the pre-trained VGG16 network Simonyan and Zisserman

(2014b) is utilized to extract the feature maps from the last convolutional layer to

represent both RGB and Optical Flow maps. The number of feature maps for each

frame is 512. The output dimension of ConvRNNs is set to 128 and the size of 1× 1

convolutional fusion layer is 1×1×128. There are four deconvolution and upsampling

layers in the proposed model. The number of output channels of each deconvolutional

layer is {128, 64, 32, 7} and the last 7 represents the number of events + background.

The bilinear upsampling layer is used after each deconvolutional layer to enlarge the

output size as twice as its original size.

For the training stage, the learning rate is initialized as 10−4 and the Adam

algorithm is utilized to update weights. The total number of epochs is set to 600

and the learning rate drop by a factor of 0.5 if the training loss does not change for 20

epochs. The coding of the system was based on the PyTorch Deep Learning Toolbox

1 and the experiments were run on a server with one single Tesla K40C GPU and

160G RAM.

In the experiments, three different structures in terms of feature fusion are im-

plemented. A model merely based on RGB frames and two-stream structures with

a simple feature fusion method, which simply connects two streams of feature maps

along the channel axis instead of utilizing the fusion 1× 1 convolutional layer is built

for comparison. The ConvRNN is further equipped with LSTM and GRU. And Wang

and Ji (2017) is selected for comparison.

1https://pytorch.org/
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Figure 3.3: Event Localization and Recognition Results on VIRAT 2.0 Dataset.
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Table 3.1: Performance Comparison on VIRAT dataset.

Task Tmp Loc Spt Loc Recog

224 one-stream

LSTM
0.6815/ 0.7670 69.06% / 80.97% 45.18% / 69.80%

224 two-stream

LSTM
0.7647/ 0.7810 80.97% / 83.19% 72.73% / 73.71%

224 two-stream

LSTM no 1× 1
0.7511 0.7721 79.98% / 82.19% 70.68% / 74.95%

224 two-stream

GRU
0.7517/ 0.7751 80.28% / 80.53% 66.34% / 70.34%

Hierarchical

ContextWang

and Ji (2017)

– – 66.45%/–

3.4.3 Results

The quantitative results based on the evaluation metric are demonstrated in Ta-

ble 3.1. In the table, The left and the right scores report the performance on testing

and training samples, respectively. The best results are in bold. The event recogni-

tion task is compared with Wang and Ji (2017) since they reported state-of-the-art

performance on the VIRAT dataset with the same 6 events. Though the metric is dif-

ferent, the proposed method is evaluated more stringently since Wang and Ji (2017)

assumes a segmented video (with event bounding boxes given) while the proposed

method deals with a raw video. Hence the results suggest that the proposed model

performs competitively. Lacking a suitable baseline in the literature for both spatial

53



and temporal segmentation for events in surveillance videos, the evaluation of these

tasks were only based different settings of the proposed model, as reported in the ta-

ble. Sample results of temporal and spatial localization in different scenes are shown

in Fig. 3.3. Overall, it is fair to state that the proposed model was able to deliver

state-of-the-art performance on event recognition while predicting the temporal and

spatial locations of the events with reasonable accuracy in surveillance video data.

3.5 Conclusion

An approach is proposed to fulfil simultaneous event localization and recognition

tasks in surveillance video, employing an end-to-end learning framework. The learning

process is only weakly supervised in that the supervision comes from merely the event

bounding boxes (e.g., no requirement for object IDs or elaborate object contours). In

the testing/evaluation stage, there is no demands for preprocessing steps like object

detection or motion segmentation, which are commonly required in many existing

approaches. Hence the proposed approach has the potential of providing a more

practical solution. Experimental results demonstrated that the proposed method was

able to deliver superior performance in comparison with a few competitions, which

supports the claim in the beginning of this chapter.

Moreover, the proposed algorithm presents the capability of capturing spatial and

temporal information simultaneously which should be more practical in understanding

and analysis of the people’s daily life video data. The fusion layer, which utilizes the

1 × 1 convolutional layer to fuse the feature maps from two channels, demonstrates

the effectiveness and usefulness compared with simple fusion method described in

Chapter 3.
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Chapter 4

A NEWLY PROPOSED RNN STRUCTURE FOR VERY LONG AND COMPLEX

VIDEO REPRESENTATIVE FEATURE EXTRACTION

As introduced in above-mentioned chapters, many successful approaches have been

proposed for recognizing events in short and homogeneous videos, but doing so with

long and complex videos remains a challenge. One particular reason is that events in

long and complex videos can consist of multiple heterogeneous sub-activities (in terms

of rhythms, activity variants, composition order, etc.) within quite a long period. This

fact brings about two main difficulties: the excessive and varying length and the com-

plex dynamic and rhythm of video clips. To address this, a new RNN structure called

Rhythmic RNN (RhyRNN) is proposed. This newly proposed RhyRNN is capable

of handling long video sequences (up to 3,000 frames) as well as capturing rhythms

at different scales. Two novel modules: diversity-driven pooling (DivPool) and bi-

linear reweighting (BR), which consistently and hierarchically abstract higher-level

information, are proposed as well. The behavior and the performance of RhyRNN is

studied and shown empirically to present the proposed method can work well even

when only event-level labels are available in the training stage (compared to algo-

rithms requiring sub-activity labels for recognition), and thus is more practical when

the sub-activity labels are missing or difficult to obtain. Extensive experiments on

several public datasets demonstrate that, even without fine-tuning the feature back-

bones, the proposed method can achieve promising performance for long and complex

videos that contain multiple sub-activities.
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4.1 Introduction

As mentioned in the above-mentioned chapter, the video-based event/activity

recognition has brought about enormous and important challenges to computer vision

in recent years. The research community has devoted considerable effort and made

progresses in many related tasks (e.g., action recognition Feichtenhofer et al. (2016);

Simonyan and Zisserman (2014a); Veeriah et al. (2015); Wang et al. (2015); Donahue

et al. (2015); Wang et al. (2016a); Bilen et al. (2016); Lan et al. (2015); Du et al.

(2015), temporal localization Shou et al. (2016); Chao et al. (2018), video question

answering Tapaswi et al. (2016); Antol et al. (2015), video summarization Gong et al.

(2014); Lee et al. (2012); Zhang et al. (2016), to name a few). By learning more

representative features and capturing stronger sequential context, deep-learning-based

approaches have delivered the state-of-the-art results on several datasets of short

video clips (e.g. UCF101 Soomro et al. (2012), KTH Schuldt et al. (2004), HMDB51

Kuehne et al. (2011)). Recently, more challenging datasets (e.g. VIRAT Oh et al.

(2011), Charades Sigurdsson et al. (2016) and Breakfast Kuehne et al. (2014)), which

typically contain video clips with complex and/or multiple sub-activities in a much

longer time period, have brought about new challenges to video event recognition. To

address these, some event recognition algorithms were proposed Duan et al. (2012);

Tran and Davis (2008); Jiang et al. (2013); Wang and Ji (2017); Xu et al. (2015b);

Hussein et al. (2019a); Wu et al. (2019); Piergiovanni and Ryoo (2018); Feichtenhofer

et al. (2019); Xu et al. (2019); Fernando et al. (2020), taking into account either long-

time dependency or the activity variation to some extent. In this chapter, a specific

RNN structure is investigated to understand long and complex videos.

For clarity of discussion, a distinction is made between activity and event. Con-

sider one example for each. “Jogging”, which belongs to activity in the defined
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context, exhibits relatively fixed or homogeneous visual pattern and temporal dy-

namic (repetitive motion in this case). In contrast, “Cooking spaghetti”, which is

categorized as an event, is composed of multiple sub-activities (e.g., “bringing out

condiment”, “boiling spaghetti”, etc.) that can occur in different rhythms, orders or

visual appearances, resulting in much more complex scene dynamics for an algorithm

to capture. Furthermore, some events can occur over a significantly longer time pe-

riod than activities. In general, events in long videos brings about two challenges

to video-based recognition: complexity in content and excessive and varying length,

making it challenging to adapt a traditional activity recognition model designed for

much simpler videos.

Another important yet barely investigated issue in video-based recognition is,

how to identify video events when only event-level labels are available for training

a model. This arises frequently due to lack of detailed labeling information that

is difficult and/or costly to obtain for long videos. Though some previous methods

incorporate sub-activity labels to enhance event-level recognition Kuehne et al. (2014,

2016); Hussein et al. (2019a,b), such fine-grained labels are not always available in

practice because of the aforementioned reason. In general, the event label describing

a long video is highly abstract in nature, and it may imply a lot of latent contexts.

In this chapter, a progress towards long and complex video event recognition (with

or without sub-activity labels) is made by conducting RNN based structure. And a

way to perform video-based recognition when only event-level labels are available is

further studied. To this end, the Rhythmic RNN (RhyRNN) which dynamically

captures the multi-level contexts, as well as a diversity-driven sequential pooling

(DivPool) and a Bilinear Re-weighting (BR) mechanism is proposed. This work has

the following contributions: 1) the RhyRNN is newly introduced which can ease the

gradient back-propagation for long and complex sequences. Thee RhyRNN also allows
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to capture latent video context at different levels; 2) The DivPool and BR strategies

are developed in this chapter, which further enable multi-level feature aggregation

(analogous to pooling in CNNs) with varying sequence length; 3) The property and

behavior of all the proposed modules are studied analytically and empirically; 4)

The proposed method delivered superior or competitive performance in long video

datasets compared to the state-of-the-art algorithms even without fine-tuning feature

backbones.

4.2 Related Work

Short activity recognition

Some early video datasets (e.g., KTH Schuldt et al. (2004) and UCF101 Soomro

et al. (2012)) typically contain activity/action-level video clips, which are homoge-

neous in content without too complex temporal dynamics. A conventional trial for

activity recognition employed 2D CNN features to perform recognition Karpathy et al.

(2014), while some variants incorporate complementary frame-level motion features

Simonyan and Zisserman (2014a); Bilen et al. (2016, 2017). The main drawback of

such a line of works is that the temporal patterns cannot be well learned since neither

short nor long range dependencies are explicitly taken into account. 3D CNNs are

natural extension from 2D by introducing one additional kernel dimension on the

time axis Tran et al. (2015); Carreira and Zisserman (2017); Wang et al. (2018), but

with excessive parameters. To alleviate this, several works were proposed to decouple

the 3D kernel into combinations of lower dimension (e.g., Chollet (2017); Tran et al.

(2018); Xie et al. (2018)). Another line of works in parallel to CNNs employs RNNs

Du et al. (2015); Lan et al. (2015); Sharma et al. (2015); Donahue et al. (2015). RNNs

can handle varying length of videos compared with CNNs, but suffer from gradient

vanishing/explosion issue especially when the sequence is too long.
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Complex event recognition

Datasets consisting of long and complex videos bring about new challenges Oh

et al. (2011); Kuehne et al. (2014); Sigurdsson et al. (2016). Extending CNNs for

long-range video recognition has become an aroused research interest recently. To

capture more complex temporal patterns in long videos, Sigurdsson et al. (2017)

stacks a CRF on top of CNN output. Under some specific sampling procedure, TSN

Wang et al. (2016a) and TRN Zhou et al. (2018) model the video-level representation

by considering inter and intra video relations, respectively. Non-local networks Wang

et al. (2018) built upon 3D CNN can range up to 128 time steps, hence is capable

of handling more complex dynamics. Timeception Hussein et al. (2019a) can further

capture the dependencies up to 1024 frames by designing multi-scale convolutional

kernels. In parallel to CNNs, RNNs are also investigated to tackle long and varying

video length with complex context. Yeung et al. (2018) considers dense labeling in

complex videos, where the expensive part is to densely label the training data. Wang

et al. (2016c) proposed a hierarchical RNN to capture temporal visual attention. Both

Lan et al. (2015) and Du et al. (2015) devise hierarchical RNN structures to obtain

multi-level representation, which proved effective in understanding video content. In

Sharma et al. (2015), soft attention is computed spatially and temporally via deep

RNNs, which helps the model to focus selectively on more meaningful parts of a video.

RNNs

LSTM Hochreiter and Schmidhuber (1997) and GRU Cho et al. (2014) are succes-

sively proposed to address the gradient vanishing/exploding issue by introducing the

gating mechanism against standard RNNs. There is a series of further developments

following this strategy Gers et al. (1999); Campos et al. (2017); Kanuparthi et al.

(2019). Skip-RNN Campos et al. (2017) learns to keep the hidden state intact at

some steps once “Skip” is emitted. H-detach Kanuparthi et al. (2019) detaches the
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gradient flow of LSTM structure at an arbitrary time step under a Bernoulli distri-

bution. Some other efforts focused on the variants of standard RNNs without using

gating. Multiplicative Integration Wu et al. (2016) couples the operations on inputs

and hidden states. In this fashion, the vanishing gradient is likely to be correlated

by the input sequence. Unitary-RNN Arjovsky et al. (2016) allows smoother gradi-

ent flow by constraining RNNs to have a unitary transition matrix. Very recently,

IndRNN Li et al. (2018) was proposed, which enforces the neurons in each RNN unit

to be independent. By doing so, IndRNN can handle long sequences and achieved

state-of-the-art performance on multiple benchmarks.

4.3 Methodology

4.3.1 Algorithm Overview

The overview framework of the proposed method consisting of three modules is

illustrated in Fig. 4.1, RhyRNN, DivPool and BR (a recognition module). BR refers

to the GRU equipped with bilinear re-weighting in the setting of the proposed method.

The model takes visual features as input and feeds them sequentially to RhyRNN.

RhyRNN outputs embedded features with the same length as the sequence. Using

a diversity score, DivPool is then applied to select the most informative features as

inputs to the following recognition module. For the final recognition stage, a GRU

equipped with BR module is employed. The output of GRU at the final timestamp

will be fed to a two-layer fully connected network at last. Each part will be described

in details in the following sections. The proposed approach is motivated by the

following considerations. First, the proposed approach should be capable of handling

long sequences. To this end, it is necessary to design a specific RNN structure which

eases the gradient flow under this setting. Second, since complex events contain latent
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Figure 4.1: Overview Framework of the Proposed Approach.

contexts in different scales, the proposed approach needs to capture such multi-level

dynamics. A hierarchical model, in this case, can be a good choice as done in a large

body of relevant literature.

4.3.2 Rhythmic Recurrent Neural Network

One essential part of the proposed algorithm is to deploy an architecture that is

capable of handling a long and complex sequence. In this chapter, the Rhythmic

Recurrent Neural Network, RhyRNN structure is proposed, which is inspired in part

by IndRNN Li et al. (2018) and Skip-RNN Campos et al. (2017), and is much more

powerful than both (see Sec. 4.4). IndRNN enforces each neuron operating on the

hidden state to be independent, and the update rule of IndRNN reads:

ht = σ (Wxt + u� ht−1 + b) (4.1)
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where � is the element-wise product and σ(·) is the activation function (ReLU func-

tion in Li et al. (2018)). ht corresponds to the hidden state at time t. It has been

shown that, by enforcing the neuron independence (no matrix multiplication), back-

propagation upon Eq. (4.1) becomes more stable and manageable. IndRNN has

delivered good performance for very long sequences.

While IndRNN alleviates gradient vanishing by replacing matrix multiplication

with scalar multiplication, the RhyRNN is proposed to further shorten the longest

path of the computational graph of IndRNN independently for each neuron, through

introducing a skip operator. This idea is similar to Campos et al. (2017) that im-

plements skip operation on conventional RNN, which can be viewed as a Bernoulli

distribution sampler on UPDATE or COPY operations at each timestamp t (an anal-

ogous idea appeared in h-detach Kanuparthi et al. (2019) which is applied on LSTM).

The proposed RhyRNN differs from Skip-RNN in such a way that, unlike Campos

et al. (2017) where UPDATE and COPY operations are computed on a whole hid-

den state ht by a matrix multiplication, the proposed RhyRNN structure decides the

choice of UPDATE or COPY operation by using Hardmard’s product, which fur-

ther makes the decision independent of each neuron. The mathematical formula of

RhyRNN can be written as follows:

st = fbinarize(ot) (4.2)

ht = st � h̃t + (1− st)� ht−1 (4.3)

∆ot = ζ(wp � ht + bp) (4.4)

ot+1 = st �∆ot + (1− st)� (ot + min(∆ot,1− ot)) (4.5)

where ζ(·) is the sigmoid activation function and fbinarize is the step function: fbinarize :

[0, 1]n → {0, 1}n, which binarizes each input element. wp is the weight vector that can

62



be learned to obtain the incremental value ∆ot. h̃t is obtained by Eq (4.1) (replacing

ht with h̃t) and ht−1 is the hidden state from the previous timestamp.

Remark. There are two advantages of utilizing Hardmard’s product in computing

the gate value st. Firstly, it keeps the independence of each neuron in IndRNN intact,

which allows each neuron to have a distinct strategy of choosing UPDATE/COPY

operations and thus being capable of capturing the varying context in different scales.

This advantage will be demonstrated in Section 4.4. Secondly, the computation of

the gradient of the RhyRNN is easier and more stable compared to either IndRNN or

Skip-RNN, since the lengths of gradient path for different neurons can be shortened

due to the skip operator, and the absence of matrix multiplication will yield more

tractable gradient flow.

To enable the intra-neuron interaction, multiple layers of RhyRNNs are stacked

and a matrix multiplication Wl is applied between layers to aggregate the global

information. Specifically, assuming ht,l to be the input to RhyRNN (ht,0 = xt) at

layer l and time t, the hidden state will be:

ht,l = σ(Wlht,l−1 + ul � ht−1,l + bl) (4.6)

Skip regularization

To limit the computational budget, a regularization term that controls the fre-

quency of UPDATE s similar to Campos et al. (2017) is introduced. This term is

written as:

L = λ
∑
t,k

st,k (4.7)

where st,k refers to the kth binary neuron decision (on COPY or UPDATE and the

λ is a parameter which called cost per sample, see Eq. (4.2). In general, this term

sums up the number of UPDATE s on all neurons at every time step and this term

forces the network converges with fewer UPDATE decisions.
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Figure 4.2: A Basic Unit in RhyRNN.

Gradient analysis

A strategy is employed to approximate the gradient of the step function fbinarize

as in Campos et al. (2017):

∂fbinaries(x)/∂x = 1 (4.8)

In other words, Eq. (4.2) and Eq. (4.8) are implemented in forward-pass and

backward-pass for the network, respectively. Following such a setting, the gradient

during the backward pass by taking an example is shown in Fig. 4.2. In all the

following analyses, the bias b and bp are all discarded for simplicity. In Fig. 4.2, it

shows that the UPDATE is emitted at time i and j and all the resting operations in

between are COPY s. This segment can be viewed as a basic unit since any forward

pass of RhyRNN can be separated into such segments (with varying numbers of

COPY s). ⊗ and ⊕ correspond to element-wise product and plus, respectively. A

sequence can be divided into several consecutive basic units. Then the gradient back-

propagated can be written as the product of multiple gradients of such units. Since
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all operations between i and j are COPY s, the hidden state hi will directly pass until

j, thus in the forward pass there is:

hj+1 = σ(Wxj + u� hi) (4.9)

In Eq. (4.9) a term fbinarize(oj) is omitted since it equals 1 (see Fig. 4.2 at time j).

However, this term will participate in the backward pass according to the gradient

defined in Eq. (4.8). The Eq. (4.9) can be expanded as follows:

hj+1 = fbinarize

(
j−i∑

ζ (wp � hi)

)
︸ ︷︷ ︸

=1,for the basic unit

�σ(Wxj + u� hi) (4.10)

Given Eq. (4.10) and after a series of mathematical manipulations, the gradient at

time i can be obtained by taking into account Eq. (4.8):

∇Ji =
∂hj+1

∂hi
= u� σ′ + σ �

j−i∑
wp �wp � (1−wp � hi)� hi︸ ︷︷ ︸ (4.11)

where the term within the underbrace is the basic unit for any such segment and σ′ is

the gradient of function σ. Thus, one can calculate the gradient at any time k (where

at k there is an UPDATE emitted) by calculating the element-wise product:

∂J

∂hk

∣∣∣∣
k=UPDATE

=
∏

l=UPDATE ,l>k
∇Jl (4.12)

where
∏

is the element-wise product.

Two facts involved in this gradient chain rule is notified: 1) there is only scalar

multiplication involved in the unit (and element-wise product of multiple such units)

which is more tractable than matrix multiplication; 2) hidden states his directly par-

ticipate in the back-propagation, which can correlate and thus stabilize the gradient

from vanishing/exploding as discussed in Multiplicative Integration Wu et al. (2016).

In this sense, RhyRNN has a gradient behavior benefiting from both IndRNN and

Multiplicative Integration. More details on related analysis can be found in Li et al.

(2018) and Wu et al. (2016).
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4.3.3 Diversity-driven Pooling Layer

Though the proposed RhyRNN can capture the context at different scales to some

extent, it still cannot fully utilize the intrinsically hierarchical context of long videos.

In this section, a temporal pooling strategy that explicitly selects most contributing

hidden states within a sequence is proposed.

The pooling stage is essential in CNNs, which aggregates low-level representations

into high-level ones. A series of works also focused on temporal pooling where the ob-

jective is to hierarchically shorten and abstract the temporal representations Girdhar

and Ramanan (2017); Fernando et al. (2016); Xu et al. (2017); Nguyen et al. (2018).

In this chapter, a simple yet efficient method termed as diversity-driven sequential

pooling (DivPool) by mostly diversifying the capacity of the pooled representations

is proposed. The method is based on the observation that, since a video is always

highly redundant, an effective pooled representation should ignore the slight difference

across frames and concentrate on the most significant changes. Thus, the proposed

pooling method performs selection to maximally diversify the hidden states (features).

To this end, the dissimilarity by cosine distance between ht and its previous state ht−1

is firstly calculated as:

at = 1−
hth

T
t−1

‖ht‖‖ht−1‖+ ε
(4.13)

where ε > 0. Then all ats are sorted in descending order and the α% most dissimilar

states are selected as the pooled features. Note that this procedure works in an incre-

mental fashion and thus a pairwise distance calculation on all states is not necessary,

yielding high efficiency in implementation.

The DivPool layer has no learning parameters and thus is similar to max-pooling

or average-pooling in CNNs. Yet it differs from max-pooling or average-pooling since

it performs pooling globally on all features. Besides, it generates the pooling cue in
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an incremental fashion which is adopted in some effective sequential pooling strate-

gies Girdhar and Ramanan (2017); Fernando et al. (2016). The only overhead of

performing DivPool is on sorting at, which is typically O(n log n) and can be efficient

in practice.

Back-propagation

DivPool dynamically generates links across RhyRNN layers in the computational

graph. The generated links will be effective during a forward-backward round for the

network computation. The back-propagated gradients will only follow the general

RNN’s update path together with the current effective links. Fig. 4.3 schematically

shows an example. In the Fig. 4.3, the black arrow indicates the flow in forward pass.

Orange and blue arrows correspond to the shortest and the longest backward path

from state h1,0 to the loss during backward pass, respectively. The “backward 1” path

is shorter than “backward 2” path due to this hierarchy. From the Fig. 4.3, it can be

observed that DivPool can greatly shorten the shortest computational path, which

is dominant (compared to other longer paths) in propagating gradients to avoid the

vanishing issue. For example, assuming the pooled ratio is 0.5 with q RhyRNN layers

and the sequence length is n, the length of the shortest path becomes O(q + log(n)).

4.3.4 Bilinear Reweighting for Recognition

With DivPool, the redundancy and the complexity of the input video sequence

has been reduced. In the following stage, to better incorporate the dependency of

the long-range selected hidden states, the bilinear reweighting (BR) mechanism is

designed to capture the temporal relation among the pooled hidden states.

In the proposed model, a simplified bilinear reweighting (BR) strategy is employed

to learn and enhance the temporal correlation of patterns within the pooled hidden

states (features). The BR module is applied to the output sequence of DivPool and to
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Figure 4.3: Schematic Diagram of Hierarchical Architecture with DivPool.

embed the hidden states to a new feature re-weighted by the pairwise affinity scores.

BR module is inspired by bilinear attention Kim et al. (2018) but follows the metric

properties. Assuming that the selected features from DivPool form a feature matrix

V, BR rule can be written as:

S = V>norm(M)V

V̂ = V ◦ softmax (proj (norm(S)))

(4.14)

where M = PP> is a symmetric semi-definite matrix and P is the parameter to

be learnt. This decomposition is to reduce the number of weights to be learned.

The output V̂ is the re-weighted feature matrix. norm(·) performs column-wise L2-

normalization and proj(·) projects a square matrix into a vector by summarizing the

elements per-column. norm(·) performs twice to avoid the magnitude of the final

affinity being too large (which may result in almost a one-hot reweighting vector).

Note BR (Eq. (4.14)) differs from Bilinear Pooling in Kim et al. (2018) by introducing

a column-wise projection operator. In this sense, only the magnitude of the input is
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adjusted, rather than replacing the input by a sum of all other inputs. The intuition is

that, since the input V carries temporal information, a summing schema may violate

or mix up this intrinsic (e.g. ordering information).

The output sequence V̂ of BR module is then fed to a standard GRU Cho et al.

(2014). The output of the GRU module at the final time step is utilized as the video-

level feature and two fully connected layers are appended following GRU to conduct

recognition for different datasets.

4.4 Experiment

4.4.1 Datasets and Reference Methods

Experiments are conducted on Breakfast Kuehne et al. (2014), VIRAT 2.0 surveil-

lance video Oh et al. (2011) and Charades Sigurdsson et al. (2016). All the exper-

iments were done on a computer equipped with a single GTX Titan Xp GPU with

12GB memory.

Breakfast dataset

Kuehne et al. (2014) comprises of 10 breakfast preparation related events that are

performed by 52 different individuals in 18 different kitchen scenes. The total number

of video clips is 1989. The overall video duration is about 77 hours and the average

length of each video is about 140 seconds. Events in the Breakfast dataset are very

complicated since each event contains several sub-activities, indicating much higher

intra-class variations. The dataset is splited into training and testing by following

the “s1” split in Kuehne et al. (2014).

VIRAT 2.0 surveillance video dataset

Oh et al. (2011) includes about 8 hours of high-resolution surveillance videos (i.e.

1080p or 720p) with 12 kinds of events from 11 different scenes. In the experiment,
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only the 6 types of person-vehicle interaction events that occur on the parking lot

scene are considered. The input video sequence only contains the event area that is

cropped based on the ground truth bounding box. The training and testing video

samples are randomly selected by following the ratio of 7:3. As such, the training

multiple rounds are conducted and the average performance is reported.

Charades dataset

Sigurdsson et al. (2016) is a multi-label action video benchmark with 157 classes

in total. Each video is around 30 seconds and contains 6 singleton actions on average.

The experiment is conducted by following the same training/testing split in Hussein

et al. (2019a) which contains 7.8k and 1.8k videos in each. The mean average preci-

sion (mAP) is reported on two challenging tasks: multi-label action recognition and

temporal localization.

Reference methods

Several existing algorithms are employed for comparison. C3D Tran et al. (2015),

TSN Wang et al. (2016a) and TRN Zhou et al. (2018) are implemented in a sim-

ple version with only spatial (RGB) features (without optical-flow). Two-stream

Simonyan and Zisserman (2014a) and Temporal Fields Sigurdsson et al. (2017)

utilize both RGB and optical flow features. IDT Wang and Schmid (2013) alters to

employ action trajectories. For C3D, it is trained from scratch on all datasets and

preprocess frames by following the Tran et al. (2015). For TSN, the frame feature

is extracted from a pre-trained VGG16 which won’t be fine-tuned in the training

stage. Only the segmental consensus part of TSN are trained. The plain IndRNN

Li et al. (2018) is also compared for the Breakfast dataset by stacking 6 layers of

IndRNN cells and setting the dropout ratio to 0.5 for each other layer. 3D-ResNet

Hara et al. (2018) is employed as both a peer method and a backbone. Timeception

Hussein et al. (2019a) (TC) is compared since the authors claimed that Timecep-
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tion is a strong baseline for complex video and can capture long range dependency.

(Supervised) SuperEvents Piergiovanni and Ryoo (2018) and (weakly-supervised)

ActGraph Rashid et al. (2020) are selected for comparison on Charades. For the

tests of the methods with CNN backbone on Breakfast and Charades, the same frame

sampling procedure as in Hussein et al. (2019a) is conducted.

4.4.2 Implementation Details

ResNet101 He et al. (2016) pre-trained on ImageNet and I3D Carreira and Zis-

serman (2017) pre-trained on Kinetics400 are employed to extract features for all

frame-wise based algorithms. For event recognition and multi-label action recogni-

tion/localization tasks, Cross-Entropy and Binary Cross-Entropy are applied as loss

functions, respectively. For the proposed method, either ResNet101 or I3D backbone

is NOT fine-tuned on three selected datasets during the training stage due to GPU

resource limitation, different from some prior works Hussein et al. (2019a); Wang

et al. (2018); Feichtenhofer et al. (2019); Wu et al. (2019) which update the CNN

backbones. The features are obtained from the last pooling layer of ResNet101 and

I3D, yielding 2048-d and 1024-d, respectively. The output (as well as all hidden state)

dimension of RhyRNN is 256 and the dimension of the output of BR is 128. Further-

more, there are two fully connected layers with 100 and the number of classes (e.g.

10 for event recognition on Breakfast) neurons following BR.

For 3D-ResNet50 and Timeception Hussein et al. (2019a) models, the 3D video

segments with size of 1 × 7 × 7 (time × height × width) are extracted from a 3D

ResNet-50 model which is pre-trained on Kinetics-400 Kay et al. (2017). This ex-

periment is implemented by following the settings in Hussein et al. (2019a) and 64

uniformly sampled video segments are collected, while each segment contains 8 suc-

cessive frames.
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All the proposed and baseline algorithms are implemented with PyTorch Paszke

et al. (2017) toolbox. The proposed model is trained with 100 epochs and the Adam

optimizer with the learning rate 1e − 5 is utilized. The pooling ratio for DivPool is

set to 25% and the control parameter λ for the skip regularization is set to 1e − 7

empirically. For the Breakfast dataset, the training samples are subsampled every

5 frames. The first and last 10 frames are removed from the training samples since

those frames are mostly redundant.

4.4.3 Breakfast Dataset

Experimental results (of event-level recognition and multi-label activity recogni-

tion) on this dataset are summarized in Tab. 4.1a 1 . In Table. 4.1a, the performances

of (a) event recognition (in Acc) and multi-label classification (in mAP), (b) different

settings of RhyRNNs are presented. “RhyRNN(2-layer)” is a model stacked with 2

layers of RhyRNNs concatenated with 2 fully connected layers. Blue color corresponds

to singleton RNNs. In general, the proposed method (full setting) outperformed

all the other peer methods in event-level recognition, with competitive performance

against state-of-the-art on multi-label recognition. It also can be observed that the

proposed RhyRNN (2-layer) has better performance compared to IndRNN (6-layer)

or SkipRNN without introducing any other modules.

The behavior of the proposed model with multiple RhyRNN + DivPool settings

(without BR) is further evaluated on Breakfast, as shown in Tab. 4.1b. Specifically, “4

RhyRNN + 1 DivPool” and “4 RhyRNN + 2 DivPool” settings are added, referring to

the structure {4×RhyRNN+DivPool} and {2×RhyRNN+DivPool+2×RhyRNN+

1The method TC Hussein et al. (2019a) is re-implemented following the same setting but did
not obtain the performance reported in the original paper. Since there is a large gap between the
re-implementation and their results, the best performance of Hussein et al. (2019a) is reported in
the re-implementation.
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Table 4.1: Results on Breakfast dataset.

(a) Event Recognition

Method Feature Acc (%) mAP (%)

TSN Wang et al. (2016a) 2D 14.3 -

LRCN Donahue et al. (2015) 2D 13.3 -

C3D Tran et al. (2015) 3D 14.6 -

IndRNN(6-layer) Li et al. (2018) 2D 19.4 14.1

SkipRNN Campos et al. (2017) 2D 31.9 28.7

IndRNN(+DivPool+BR) 2D 42.7 40.8

SkipRNN(+DivPool+BR) 2D 40.2 -

3D-Res50 Hara et al. (2018) 3D 23.7 -

3D-Res50+TC Hussein et al. (2019a) 3D 40.3 41.2

RhyRNN(2-layer) 2D 35.8 30.5

RhyRNN(+DivPool+BR) 2D 44.3 41.9

(b) Different Settings

Setting Acc

2 RhyRNN + 1 DivPool 43.7

4 RhyRNN + 1 DivPool 43.1

4 RhyRNN + 2 DivPool 41.4
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Table 4.2: Results on VIRAT 2.0 dataset.

Method original S1 S2 S3

C3D Tran et al. (2015) 42.9 40.2 37.7 41.1

TSN Wang et al. (2016a) 52.4 52.1 51.6 51.9

IndRNN (6-layer) Li et al. (2018) 77.6 78.3 78.2 78.0

IndRNN (+DivPool+BR) 79.0 77.4 78.2 78.2

Ours (full setting) 81.9 81.5 81.7 80.4

DivPool}, respectively. It can be concluded that 2-layer RhyRNN (standard setting

in all tests) has slightly better performance than other two.

Independent Skip strategy

To investigate the effectiveness of “Skip” operations in RhyRNN, the Skip opera-

tions of the first 10 neurons of the weights in the second RhyRNN layer on a break-

fast video clip (with length 212) in the testing stage is visualized (in Fig. 4.4). In

the figure, yellow and blue bars correspond to “UPDATE” and “COPY ” operations,

respectively. Vertical and horizontal axes refer to channel and frame, respectively.

10 neurons perform Skip with almost different rhythm to each other. It is seen that

almost every neuron (each row) indeed holds a distinct and independent Skip rhythm

as well. While some neurons emit UPDATE s with high frequency to capture the

context in high temporal resolution (e.g., neuron 1, 4 and 10), other neurons learn

lazier strategies.

4.4.4 Video and Image Retrieval and Analysis Tool 2.0 Dataset

The performance of the proposed method with full setting (RhyRNN + DivPool +

BR) on this dataset is shown in Tab. 4.2. Specifically, the capacity of algorithms un-

der varying sampling rhythm is compared to training rhythm. As shown in Tab. 4.2,
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Figure 4.4: Visualization of “skip” Operation on the First 10 Channels/Neurons (out

of 256) at the Second Layer of RhyRnn on a Video with 212 Frames from the Breakfast

Dataset.

“original” indicates sampling each frame (and feature) with the same sampling rhythm

at the training stage. The other three scenarios are designed with different combi-

nations of sampling rates. To make the problem more challenging, first each testing

video sequence is equally divided into three intervals and apply different sampling

rates to each interval to form a new testing sequence. For scenario one (S1), the first

and the third intervals are subsampled with every 2 and 5 frames respectively, while

keeping the rhythm intact for the middle interval. In scenario two (S2), the first and

third intervals are sampled every 5 and 2 frames, respectively (reverse way of S1). For

the last scenario (S3), a half length of the testing frames is randomly sampled out.

Since the randomness of the last scenario brings uncertainty, the well-trained model is

tested 5 times and the average performance of this scenario is reported accordingly. It

can be seen that the proposed model is quite stable under varying sampling rhythm.
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4.4.5 Charades Dataset

For the Charades dataset, the I3D Carreira and Zisserman (2017) with 1024-D

output feature pre-trained on Kinetics-400 is employed without inheriting any frame-

level knowledge from or fine-tuning on the Charades dataset Carreira and Zisserman

(2017); Wang et al. (2018); Hussein et al. (2019a). The frame stride is set to 8 for the

I3D model and the size of the feature matrix for each video clip equals to Timelength×

1024 where the TimeLength = FrameLength/8. Two challenging tasks are evaluated

in the experiment: multi-label (MLA) recognition and temporal localization.

The Tab. 4.3 presents the performance of the two tasks. In the table, for (a)

recognition, “w/o BR” and “w/ BR” refer to the settings removing and keeping BR,

respectively. For (b) localization, “S” and “W” refer to “supervised” and “weakly

supervised”, respectively. *IndRNN in the table indicates IndRNN+DivPool+BR.

The result of Skip-RNN is quoted from original paper Campos et al. (2017) where

mAP is calculated per 100 frames instead of 25 frames. In the table, the ”TS”

represents two-stream and ”TF” represents temporal fields.

Tab. 4.3a shows the MLA recognition performance of different algorithms on the

Charades dataset. And the results demonstrate that the proposed algorithm has

a competitive capacity compared to the state-of-the-art on capturing the temporal

information of sub-actions in the complex videos.

Tab. 4.3b summarizes the results of temporal localization. To this end, the model

parameters pre-trained on MLA recognition task is inherited but with removing the

DivPool module 2 . Then the last 2 fully-connected layers is fine-tuned with BCE

loss on MLA recognition task (only for the last time stamp) for 5 epochs. In the

testing stage, the output of the RhyRNN at each time stamp is passed through the

2DivPool cannot work frame-wise since it selects only a portion of time stamps. Therefore DivPool
from the full setting is removed.
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Table 4.3: Result on Charades of Multi-Label Activity (MLA).

(a) MLA Recognition

Method Modality mAP(%)

C3D Tran et al. (2015) RGB 10.9

TS Simonyan and Zisserman (2014a) RGB+Flow 18.6

TS+LSTM Simonyan and Zisserman (2014a) RGB+Flow 17.8

IndRNN* Li et al. (2018) RGB 21.1

IDT Wang and Schmid (2013) RGB+Flow 17.2

TF Sigurdsson et al. (2017) RGB+Flow 22.4

TRN Zhou et al. (2018) RGB 25.2

The Proposed(w/o BR) RGB 24.6

The Proposed(w/ BR) RGB 25.4

(b) MLA Localization

Model Training mAP(%)

LSTMPiergiovanni and Ryoo (2018) S 10.4

Skip-RNNCampos et al. (2017)† S 8.94

TS+LSTMPiergiovanni and Ryoo (2018) S 18.2

SuperEventsPiergiovanni and Ryoo (2018) S 19.4

TFSigurdsson et al. (2017) S 12.8

I3DCarreira and Zisserman (2017) S 17.2

ActGraphRashid et al. (2020) W 15.8

The Proposed W 17.6
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last 2 fully-connected layers to produce score of action classes for each frame. Action

class with the highest score is regarded as the predicted label for the current frame.

Since during the training stage no frame-level label is provided, the proposed model

is trained in a weakly supervised fashion, which is more challenging than fully

supervised localization task (e.g. Piergiovanni and Ryoo (2018); Sigurdsson et al.

(2017)). Surprisingly, it can be seen that the proposed model outperforms several

fully supervised counterparts and a very recent weakly-supervised method ActGraph

Rashid et al. (2020). This observation supports the claim that RhyRNN is capable

of capturing temporal context at multiple levels.

4.4.6 Ablation Analysis and Model Size

Ablation analysis was conducted on the Breakfast dataset following the settings

in Sec. 4.4.3. Results are summarized in Tab. 4.4. In the full setting, 2 layers of

RhyRNNs are stacked followed by DivPool and BR. By turning off DivPool, all the

output states of RhyRNN are simply fed to BR. On the other hand, the BR is removed

and the pooled states are fed to a naive GRU once turning off BR. The capacity of

the RhyRNN module is tested in capturing complex temporal information by turning

off both DivPool and BR modules as well.

It can be observed that the full setting (RhyRNN + DivPool + BR) delivers

the best performance among all. And the DivPool module plays a more important

role in understanding the long and complex videos, compared with the BR mod-

ule. Moreover, the RhyRNN module itself is able to acquire information from long

and complex videos compared with some conventional algorithms presented in the

Tab 4.1a. In general, the proposed modules in the framework consistently enhance

the performance.

Tab. 4.5 summarizes the models sizes on different setting under event-level recog-
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Table 4.4: Ablation Study

RhyRNN DivPool BR Acc mAP

√ √ √
44.3 41.9

√ √
× 43.7 40.5

√
×

√
40.7 35.2

√
× × 35.8 -

Table 4.5: Model Size

Method Model size

TC Hussein et al. (2019a) 15.8MB

The Proposed (Full setting) 23.2MB

The Proposed (RhyRNN+DivPool) 20.4MB

nition on the Breakfast dataset. The size of the proposed model with or without BR

is around 20MB, comparative to the size of state-of-the-art method TC Hussein et al.

(2019a), which claimed to be capable of reducing the model size significantly.

4.5 Conclusion

In this chapter, the task of recognizing events in long and complex videos is fully

studied. Since there is critical distinction between traditional action recognition based

on short clips and event recognition using long videos, simply adapting the methods

for the former to the latter is ineffective. To address this, an end-to-end RNN frame-

work is designed taking into account the latent context at multiple levels. Especially,

three novel and essential parts were proposed: RhyRNN, DivPool and BR. By taking

advantage of each, the proposed model can capture video context at different scales in
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an adaptive and hierarchical fashion. The property of the proposed model is investi-

gated in this chapter and demonstrated its superiority through extensive experiments

even without the need of fine-tuning the feature extraction backbones.
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Chapter 5

INCORPORATING DETERMINANTAL POINT PROCESS WITH DEEP

LEARNING MODELS FOR LEARNING A DIVERSE FEATURE SPACE

As mentioned in the Chapter 1 Introduction, many visual tasks, like hashing,

semantic retrieval, graph knowledge construction and so on, require a diversity in the

feature space. However, the classification-like, or the label information drive, or the

supervised learning process tasks may force the training of the model of obtaining

visual features converge into several points depended on the number of categories

which should cause problem and performance decay for those visual tasks. Even

though the retraining or transfer learning of pretrained model with different object

functions could mitigate the influence of the lack of diversity, the costly progress of

defining a suitable object function and the retraining of the model is still a problem

for obtaining a more diverse and representative visual features. Therefore, in this

chapter, a more effective and useful algorithm is proposed to ensemble a regularization

term with the common neural networks for classification problem to spread out the

obtained feature vectors in the space without requirement of new object functions.

As it is already been known that, the determinantal point processes (DPPs) is an

effective tool to deliver diversity in multiple machine learning and computer vision

tasks. Under the deep learning framework, DPP is typically optimized via approxi-

mation, which is not straightforward and has some conflicts with the diversity require-

ment. However, there have been no deep learning paradigms to optimize DPP directly

since it involves matrix inversion that may result in computational instability. This

fact greatly hinders the use of DPP on some specific objective functions where DPP

would otherwise serve as a term to measure the feature diversity. In this chapter, a
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simple but effective algorithm is designed to optimize the DPP term directly through

expressing with L-ensemble in the spectral domain over the gram matrix, which is

more flexible than learning on parametric kernels. By further taking into account

additional geometric constraints, the proposed algorithm seeks to generate valid sub-

gradients of the DPP term in cases where the DPP gram matrix is not invertible

(no gradients exist in this case). In this sense, the proposed algorithm can be easily

incorporated with multiple deep learning tasks. In this chapter, several experiments

on image related datasets show the effectiveness of the proposed algorithm, indicating

promising performance for practical learning problems.

5.1 Introduction

Diversity is desired in multiple machine learning and computer vision tasks (e.g.,

image hashing (Chen et al., 2017; Carreira-Perpinán and Raziperchikolaei, 2016), de-

scriptor learning (Zhang et al., 2017), metric learning (Mishchuk et al., 2017) and

video summarization (Sharghi et al., 2018; Liu et al., 2017)), in which sub-sampled

points or learned features need to spread out through a specific bounded space. Orig-

inated from quantum physics, determinantal point processes (DPP) have shown its

power in delivering such properties (Kulesza et al., 2012; Kulesza and Taskar, 2011b).

Compared with other diversity-oriented techniques (e.g., entropy (Zadeh et al., 2017)

and orthogonality (Zhang et al., 2017)), DPP shows its superiority as it incorporates

only one single metric and delivers genuine diversity on any bounded space (Kulesza

et al., 2012; Affandi et al., 2013; Gillenwater et al., 2012). Therefore, DPP has been

utilized in a large body of diversity-oriented tasks.

In general, sample points from a DPP tend to distribute diversely within a bounded

space A (Kulesza et al., 2012). Given a positive semi-definite kernel function κ :

A×A → R, the probability of a discrete point set X ⊂ A under a DPP with kernel
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function κ can be characterized as:

Pκ(X ) ∝ det(LX ) (5.1)

where L is a |X | × |X | matrix with entry Lij = κ(xi,xj) and xi,xj ∈ X . L is called

L-ensemble. Note that A is a continuous space, whereas X is finite. In the Hilbert

space associated with κ, larger determinant implies larger spanned volume, thus the

mapped points tend not to be similar or linearly dependent.

DPP can be viewed from two perspectives: sampling and learning. A comprehen-

sive introduction to mathematical fundamentals of DPP for sampling from a discrete

space can be found in Kulesza et al. (2012). Based on this, a line of works has been

proposed (Kulesza and Taskar, 2011a; Kang, 2013; Hennig and Garnett, 2016). In

this dissertation, the chapter 6 concentrates on demonstation of learning DPPs. In

learning of DPP, the term det(L) is typically treated as a singleton diversity mea-

surement and is extended to learning paradigms on continuous space (Chao et al.,

2015; Kulesza and Taskar, 2010; Affandi et al., 2014). There are generally two lines

of strategies to learn DPPs:

Approximation. This type of methods is to convert DPP into a simpler format

which can ease and stabilize the computation. low-rank approximation proves pow-

erful in easing the computational burden (Gartrell et al., 2017), in which the gram

matrix is factorized as L = BB> where B ∈ <n×m with m� n. This decomposition

can also reduce the complexity which is originally a cubic time of |L|. Kulesza and

Taskar (2011b) explicitly expressed the kernel with κ(x,y) = σ1σ2δ(x)>δ(y), where

σ measures the intrinsic quality of the feature and δ(·) is function mapping input x

to a feature space. In this sense, the pairwise similarity is calculated in Euclidean

feature space with cosine distance. Elfeki et al. (2019) suggest approximating a given

distribution by approximating the eigenvalues of the corresponding DPP. As such, the
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computation can be eased and become stable. Following this, DPP is also applied

on some visual tasks, such as video summarization (Sharghi et al., 2018), ranking

(Liu et al., 2017) and image classification (Xie et al., 2017). It can be noted that the

approximation is not straightforward for DPP, thus cannot fully deliver the diversity

property (e.g. resulting in rank-deficiency).

Direct optimization. While the aforementioned methods optimize DPP with

specific approximation, a series of efforts also seek to optimize the DPP term di-

rectly (Gillenwater et al., 2014; Mariet and Sra, 2015; Bardenet and Titsias, 2015).

In this setting, the whole gram matrix L corresponding to the pairwise similarity

among features is updated directly, which allows accommodating more flexible fea-

ture mapping functions rather than an approximation. Gillenwater et al. (2014)

proposed an Expectation-Maximization algorithm to update marginal kernel DPP

K = L(L + I)−1, together with a baseline K-Ascent derived from projected gradient

ascent (Levitin and Polyak, 1966). Mariet and Sra (2015) extended DPP from a

fixed-point perspective and Bardenet and Titsias (2015) proposed to optimize DPP

upon a lower bound in variational inference fashion. A key problem of such line of

works is that the computation is not differentiable, making it difficult to be used in

deep learning frameworks.

To the best of current knowledge, there is no previous method incorporating DPP

as a feature-level diversity metric in deep learning. A key difficulty in doing such

method is that the calculation of the gradient of det(L) involves matrix inversion,

which can be unstable and inaccurate in GPUs. Though K-Ascent seems to be a

naive rule, it still needs explicit matrix inversion in the first step before the projection

procedure. This fact greatly hinders the tight integration of DPP with deep networks.

Some alternative methods seek to reach diversity under more constrained settings. For

example, Zhang et al. (2017) resorted to a global pairwise orthogonality constraint
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in hyper-sphere and Zadeh et al. (2017) employed statistical moments to measure

the diversity. However, compared with DPP, such measurements are unable to fully

characterize diversity in an arbitrary bounded space.

In this dissertation, rather than providing more efficient DPP solvers, the way of

delivering a feasible feature-level DPP integration under the deep learning framework

is concentrated on. To this end, the spectral decomposition of DPP is revisited and

a sub-gradient generation method which can be tightly integrated with deep learning

is proposed in this chapter. The proposed method differs from either approximation

or direct optimization by introducing a “differentiable direct optimization” proce-

dure, thus can produce genuinely diverse features in continuous bounded space. The

proposed algorithm is stable and scalable to the relatively large dataset with a spe-

cific mini-batch sampling strategy, which is verified by several experiments on various

tasks.

The contribution of this chapter can be concluded as follows:

• The spectral sub-gradient is proposed for DPP, which overcomes the long-lasting

optimization difficulty in deep learning frameworks.

• The proposed method can regularize the network to learn a smoother mapping.

• The newly proposed DPP regularizer can enhance the performance of specific

diversity-driven tasks.

Notations: Bold lower case x and bold upper case K represent vector and ma-

trix, respectively. det(·) and (·) calculate the determinant and trace of a matrix,

respectively. A ⊗ B is the element-wise product of matrices A and B. |X | and |x|

measure the cardinality of a finite set X and the L2 length of a vector x, respectively.

〈x,y〉 calculates the inner product of the two vectors. x = diag(X) transforms a di-

agonal matrix X into its vector form x, and vice versa. The “positive semi-definite”
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and “positive definite” are referred to PSD and PD, respectively. Denote < the real

numbers.

5.2 Background

5.2.1 Determinantal Point Process

L-ensemble expression of DPP requires L to be PSD, whereas kernel expression

further constrains K < I (each eigenvalue of K is less than 1). A conversion from

L to K can thus be written as K = L(L + I)−1 following the truth
∑
X det(LX ) =

det(L + I), which is the marginal normalization constant given a specific L. While

there is always conversion from L to K, the inverse may not exist (Kulesza et al.,

2012). In practice, one may construct L-ensemble first, then normalize it into a

marginal kernel. This fact may give rise to the difficulty of deep networks. Since a

conversion from K to L might not exist, the network needs carefully adjusting the

gradients under specific constraints to ensure the updated L to be valid. As L and

K share the same eigenvectors vi, a pair of L and K holds the relation:

K =
∑
i

λiviv
>
i ⇐⇒ L =

∑
i

λi
1− λi

viv
>
i (5.2)

where λi is the ith eigenvalue. It is seen that such conversion is not straightforward

to be directly integrated with deep learning framework. Therefore, the ensemble L is

optimized directly in this dissertation.

5.2.2 Gaussian Kernel

The Gaussian kernel is briefly introduces in this subsection, which works on Hilbert

space with infinite dimension. Mercer’s theorem Friedman et al. (2001) ensures the

PSD properties when constructing new kernels with existing ones under a specific

procedure. Such procedure is also employed in multiple kernel learning paradigms

86



(Affandi et al., 2014; Kulesza and Taskar, 2011b; Chao et al., 2015), which is out of

the scope of this dissertation.

A Gaussian kernel is defined as κ(xi,xj) = exp (−|xi − xj|2/σ2), where σ is a con-

trolling parameter. Thus an L-ensemble matrix becomes Lij = κ(xi,xj). According

to the definition, Lii = 1 and for any element in the matrix can be described in an

interval as Lij ∈ (0, 1]. With Gaussian kernel, a nice property 0 ≤ det(L) ≤ 1 can be

inferred. This can be easily verified by applying geometric inequality to the eigenval-

ues of L. Although not tight, this property shows that the determinant value with

Gaussian kernel is bounded. This fact inspires one version of the proposed algorithm

detailed in the next section. Throughout this chapter, all of the discussion is based

on the Gaussian kernel unless specified.

Note: Since the similarity between each point pairs are measured in a continu-

ous space, the normalization of L2 norm (or Euclidean Distance) should be a good

measurement for the similarity metric. Compared with the L2 norm, L1 norm (or the

Manhattan Distance) is not so suitable for measuring the continuous feature space.

Therefore, it is natural to use the Gaussian Kernel (a normalization function of L2

norm distance) other than Laplacian Kernel (a normalization function of L1 norm

distance). However, the kernel itself only defines the similarity metric for feature

space. Therefore, for different situations, the Gaussian kernel (or the similarity met-

ric) can be replaced by any other kernels. But in this chapter, the Gaussian Kernel

is only considered since the data is more suitable for L2 norm distance.

5.3 Method

Given vectorized inputs Ii ∈ Rh where i = 1, ..., n, the goal of this proposed

method is to learn a map f such that the features xi = f(Ii) can spread out within

a bounded feature space xi ∈ S. Hereafter the space is referred to an Euclidean
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bounded space (e.g., [−1, 1]d) without loss of generality. Given any loss function J ,

the chain rule of gradient involving DPP is written as:

∆J =
∂J

∂ det(L)

∂ det(L)

∂L

∂L

∂X
(5.3)

where X refer to the features before DPP layer. While calculating ∂J/∂ det(L) and

∂L/∂X is straightforward, the main difficulty lies on the calculation of ∂ det(L)/∂L.

The discussion of the calculation of this term is conducted under two case: 1) When

the inversion L−1 can be stably obtained, the derivation of the gradient of DPP det(L)

is shown on Sec 5.3.1; 2). When L is not invertible or L−1 is difficult to calculate, the

procedure to handle the case by generating valid sub-gradient is given in details in

Sec 5.3.2. Since the objective of this chapter is to diverse features, det(L) will serve

as a (partial) objective term to be directly maximized.

5.3.1 Derivation of Gradient

With kernel κ, a DPP regularization term seeks to maximize the possibility of a

feature configuration xi, i = 1, ..., n. As this possibility is proportional to det(L),

the objective is max det(L). This can become a regularization term where diversity is

required. Thus with a general loss function LG, the aim is to solve minLG−λ1 det(L),

with the controlling parameter λ1 ≥ 0. For the time being, the kernel matrix L is

supposed to be invertible (the case when L is not invertible will be discussed in

the next section), hence L−1 exists. Without loss of generality, the gradient of the

determinant equipped with Gaussian kernel is discussed in this dissertation. For

other kernels the derivation is analogous. For a Gaussian Kernel, Lij can be further

factorized as:

Lij = exp

(
−
∑

l(xil − xjl)
2

σ2

)
(5.4)
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where xij is the jth dimension of feature xi. Using chain rule, the derivative of det(L)

w.r.t. xil can be written as:

∂ det(L)

∂xil
= det(L)

(
L−1 ∂L

∂xil

)
(5.5)

where on the ijth position of ∂L
∂xil

the corresponding element is:(
∂L

∂xil

)
ij

= exp

(
−|xi − xj|2

σ2

)(
−2(xil − xjl)

σ2

)
(5.6)

Eq (5.6) can be more compactly expressed as:

∂L

∂xil
= L⊗M(il) (5.7)

where M(il) is such a matrix that, except for the ith column and row, all resting

elements are 0s. Besides, the ijth and jith elements of M(il) are both −2(xil−xjl)

σ2 . In

summary, Eq (5.5) can be simplified as:

∂ det(L)

∂xil
= det(L)

(
L−1

(
L⊗M(il)

))
(5.8)

To ease the computation and fully utilize the chain rule in deep learning archi-

tecture, the DPP loss is decomposed into two layers, and the corresponding gradient

product can be expressed as:

(
∂ det(L)

∂L

)
·
(
∂L

∂x

)
(5.9)

While the existing package can be utilized to obtain ∂L/∂x reliably, the way to

stably calculate ∂ det(L)/∂L becomes essential. The detail will be presented in the

next section once the term is hard to calculate.

5.3.2 Proper Spectral Sub-gradient for Back-propagation

The calculation of the gradient ∂ det L/∂L involves computing the inverse matrix

L−1. However, the kernel matrix L is not always invertible. This situation happens
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iff there exists at least a pair of features xi and xj such that xi = xj. In this

case, there exist two identical columns/rows of L and the 0 eigenvalue results in the

non-invertibility. This phenomenon is sometimes caused by ReLU function, which

will map different input values onto an identical one. Even when all features are

distinct, the numerical precision (typically on float number in GPU) may also lead

to failure. It is occasionally observed that GPU calculation of L−1 reports error even

no eigenvalue is 0. One may imagine a naive replacement of matrix inverse with the

pseudo-inverse, which can be applied on singular matrices. However, pseudo-inverse

will keep the zero eigenvalues intact (still rank-deficiency), and the back-propagated

gradient will play no part to increase the determinant value (both 0 before and after

updates).

To address this, the objective of DPP max det(L) is firstly diverged to be consid-

ered. Since DPP term seeks to maximize the determinant, for a configuration L(t) at

iteration t with det(L(t)) = 0, any sufficiently small η sufficing det(L(t+1)) > 0 with

η = L(t+1) − L(t) can be a valid ascending direction. Thus the following definition is

given:

Definition 5.3.1. Proper Sub-gradient: For a PSD matrix L such that det(L) = 0,

L̂ is called its proper sub-gradient if L̂ is a sub-gradient and det(L + αL̂) > 0 for

sufficiently small α > 0.

It is shown that if a proper sub-gradient L̂ can be found at det(L) = 0, back-

propagation procedure in deep learning can consequently perform calculation using

L̂. To obtain such L̂, it should be noted firstly that L can be eigen-decomposed as

following since it is symmetric and PSD:

L = UΛU> (5.10)
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where U is the orthogonal eigenvector matrix and Λ’s diagonal elements are the cor-

responding eigenvalues. As L has zero eigenvalues, the rank of Λ is lower than the di-

mension of L. All eigenvalue are sorted into descending order to k = (σ1, ..., σq, 0, ..., 0),

where q < n. Then a simple yet effective amplification procedure by amplifying any

eigenvalue smaller than ∆ to ∆ is employed. The amplified eigenvalues are now

k̄ = (σ1, ..., σs,∆, ...,∆), where s ≤ q. Let the diagonalized amplified eigenvalue ma-

trix be Λ̄ (w.r.t. k), then the modified matrix with small positive determinant can

be written as:

L̄ = UΛ̄U> (5.11)

Now that det(L̄) =
∏q

i=1 σi
∏n

j=q+1 ∆ > 0. For any ε > 0, a sufficiently small ∆

such that det(L̄) < ε can be chosen wisely. Thus the continuity of this procedure is

guaranteed. The difference L̂ = L̄−L can be viewed as a proper ascending direction

w.r.t. L, as by adding L̂, det(L + L̂) becomes above 0 as well as arbitrarily small. It

is trivial to prove that L̂ is a sub-gradient on a neighbor of L, thus L̂ is also a proper

sub-gradient sufficing Definition 5.3.1. This procedure is summarized in Algorithm

1 and is termed as DPPSG. Intuitively, once encountering an identical or too close

feature pair xi and xj, this procedure tries to enhance the diversity by separating

them apart from each other.
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Algorithm 1 DPPSG

Input: K, tolerance ∆; Output: K̄

UΛU> ← K

(σ1, ..., σn)← diag(K)

for i in {1, ..., n} do

if σi < ∆ then

σi ← ∆

end if

end for

Λ̂← diag(σ1, ..., σn)

K̂← UΛ̂U>

K̄← K̂−K

Inspired by geometric inequality, an improved version of the algorithm taking

into account the property of Gaussian kernel is provided in this dissertation as well.

First it is easy to show that the function
∏

i σi is concave in the feasible set
∑

i σi = n

(diagonal of Gaussian gram matrices are 1s, thus trace is n) and the maximal objective

is reached out iffσi = 1. Therefore, any point b = (1− θ)(σ1, ..., σn) + θ(1, ..., 1) will

increase the objective
∏

i σi. By letting θ being a small enough value, the proper sub-

gradient becomes Udiag(b− σ)U>, where σ = (σ1, ..., σn). This version of update

differs from DPPSG as it generates sub-gradients under geometric constraints. The

method is summarized in Algorithm 2 and is termed as DPPSG*.
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Algorithm 2 DPPSG*

Input: K, tolerance θ; Output: K̄

UΛU> ← K

(σ1, ..., σn)← diag(K)

b = (1− θ)(σ1, ..., σn)− θ(1, ..., 1)

Λ̂← diag(b)

K̂← UΛ̂U>

K̄← K̂−K

During implementation, the irregularity of L is examined to determine whether to

adopt a normal back-propagation (in Sec 5.3.1) or sub-gradient (in Sec 5.3.2). This

can be done by verifying if the determinant value in the forward pass is less than a

pre-defined small enough value β. This proper sub-gradient based back-propagation

method can be used to integrate to deep learning framework with other objectives

involving matrix determinant. It should be emphasized that the proposed method

is different from the line of gradient-projection based methods, such as K-Ascent.

While projection-based methods calculate the true gradient then project it back to

a feasible set, the proposed methods generate proper sub-gradient directly. Without

explicitly computing matrix inversion, sub-gradients, in this case, is more feasible for

deep learning framework.

Mini-batch sampling a balanced sampling strategy is employed for each mini-

batch. Assuming the batch size is n and there are c classes in total, in each mini-batch

the distribution of samples generally follows the whole training sample distribution

on c classes. This strategy is considered to utilize the intrinsic diversity of the original

data. Besides, mini-batch sampling can constrain the overhead of DPP computation

depending only on the batch size, which can be viewed as a constant in practice.
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5.3.3 Bounding the Features with Wasserstein GAN

Practically, the features are always required to lie in a bounded space. This is

essential in some applications as a bounded space is more controllable. Especially,

sometimes one may demand that the features should suffice to a pre-defined distribu-

tion P . This bounding requirement is crucial to the objective of DPP since maximiz-

ing determinant tends to draw feature points infinitely apart from each other. A naive

method to achieve this is to truncate the features or using barrier functions. However,

these methods will result in irregularly dense distribution on the learned feature space

boundary. To overcome this issue, the Wasserstein GAN (WGAN) Arjovsky et al.

(2017) is conducted to enforce the features mapped to a specific distribution P . The

definition of WGAN are referred to Arjovsky et al. (2017) and the pseudo-algorithm

can be structed as shown in Algorithm 3 which is originally from Arjovsky et al.

(2017),

To this end, m 1 points x̄i are randomly sampled from the distribution P under

balanced sampling, which are treated as positive samples. The generator f(·) takes a

feature as input and outputs the corresponding embedding. Denote the discriminator

h(·) (which is also the mapping from input to feature). Then the WGAN loss for

discriminator is:

LW = Ex̄∼P [h(x̄)]− EI∼p(I) [h(f(I))] (5.12)

1the m is chosen as the batch size for simplicity. One can change this value for the own purpose.
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Algorithm 3 WGAN. All the default values are in the original paper is = 0.00005,

c = 0.01, m = 64, ncritic = 5

Require: α, the learning rate. c, the clipping parameter. m, the batch size. ncritic,

the number of iterations of the critic per generator iteration.

Require: w0, initial critic parameters. θ0, initial generator’s parameters.

while θ has not converged do

for t0, ..., ncritic do

Sample {x(i)}mi=1 ∼ Pr a batch from the real data.

Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.

gw ← ∇w[ 1
m

∑m
i=1fw(x(i))− 1

m

∑m
i=1fw(gθ(z

(i)))]

w ← w + ·RMSProp(w, gw)

w ← clip(w,−c, c)

end for

Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.

gθ ← −∇θ
1
m

∑m
i=1fw(gθ(z

(i))

θ ← θ − α ·RMSProp(θ, gθ)

end while

According to the Arjovsky et al. (2017), the generator loss LC = −E[h(f(I))] is

incorporated into general loss LG and obtain

L = LG − λ1LD + λ2LC , (5.13)

where λ1 > 0 and λ2 > 0 are controlling parameters and LD is the DPP term. In

general, the second and third losses serve as regularization. While the DPP term LD

makes the points spread out over the whole space, the WGAN term LW enforce the

points to be under a distribution P . These two terms are set to negative as the aim

is to maximize them. In the implementation, LW and L are trained alternatively.
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5.4 Experiments and Settings

In this section, two experiments are conducted. One is about metric learning

and image hashing on MNIST and CIFAR to verify the effectiveness of the pro-

posed method, while another is for local descriptor retrieval task based on HardNet

(Mishchuk et al., 2017). There is no video related visual dataset is utilized for the ex-

periments since the image related dataset is conducted quickly in training and testing

stage in the mean time the feature extraction procedure is similar to video feature

extraction. Since the demonstration of the effectiveness of the proposed methods on

visual tasks is the main purpose in this dissertation, a more clear and simple image

classification and retrieval tasks are only considered in the experiments.

5.4.1 Verification Test

MNIST This simple dataset is suitable to reveal the geometric properties of

the features on various tasks. The image retrieval task equipped with contrastive

loss LC =
∑
L(i)=L(j) (xi − xj)

2 + α
∑
L(i)6=L(j) max (µ− (xi − xj)

2, 0) under Gaussian

DPP regularization is tested, where L(i) indicates the label of the ith feature and

xi is the learnt feature. A simple network structure is employed for MNIST. This

network consists of 3 convolutional layers (Conv) followed by 2 fully connected layers

(FC). Batch normalization (Ioffe and Szegedy, 2015) is applied on each layer. The

number of filters of each Conv are 32, 32 and 64, respectively. The sizes of the filters

are identically 5× 5. For the first Conv, a maxpooling layer is applied with. For the

other 2 Convs, the average pooling layer is adopted. The dimensions of the last FCs

are 200 and 2 (for 2D visualization).

The detail of the structure of the employed backbone is {conv 1(5× 5)+maxpool

+conv 2(5×5)+avepool+conv 3(5×5)+avepool+fully con1(200-d)+fully con2(2-d)+
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fully con3(10-d)+contrastive loss} . The DPP and WGAN regularization is added to

the features at “fully con2” layer, which is 2-dimensional thus better for visualization.

The parameters for the MNIST experiment are set as follows: α = 5, λ1 = 103,

λ2 = 106, margin µ = 0.8, variance for Gaussian kernel σ = 0.2 and ∆ = 10−7.

During the training, the batch size is set to 200. In each iteration of DPP and WGAN

training, 2, 000 adversarial points are sampled uniformily from the space [−1, 1]2. The

RMSprop is adopted and the learning rate is 10−4 for all tests. In the testing stage,

2, 000 points are sampled from [−1, 1]2 and calculate the Wasserstein distance with

all the testing samples. This procedure is conducted 10 times and the mean distance

is reported.

Table 5.1: Retrieval Performance on MNIST.

mAP-k(%)

k 10 20 50 100

baseline 63.90 62.87 61.43 58.65

DPPSG 67.22 67.45 65.82 62.78

DPPSG* 67.94 68.73 66.32 62.75

DPPSG+WGAN 68.07 69.34 66.19 63.40

DPPSG*+WGAN 69.14 70.32 68.04 64.58

The performance can be found in Table 5.1 and the feature distribution is visual-

ized in Fig. 5.1. In Fig. 5.1, left and right of each sub-image represents the training

and testing samples, respectively. The (a) sub-image is the contrastive loss for metric

learning; The (b) sub-image is the contrastive loss + DPP regularization; The (c)

sub-image is contrastive loss + DPP regularization + WGAN regularization. For (c),

the features are generally lying in the space [−1, 1]2. From Table 5.1, it is observed
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that the performance on retrieval task can be enhanced by adding the DPP and

WGAN regularization terms. It is shown that DPP term can enhance the retrieval

performance by avoiding feature points from concentrating too much. In this sense,

the learned map around the separating boundary can be much smoother. As retrieval

task typically requires the existence of top-k inter-class samples rather than concen-

trating property, the DPP term is more preferable. In Fig. 5.1(c), it demonstrates

that the feature points generally fall into the pre-defined space [−1, 1]2. The utility of

such space is high without sacrificing the retrieval performance. Typically, DPPSG*

is slightly superior to DPPSG. Thus in the following testing, only the performance

under DPPSG* setting (termed as DPP* for short) is reported.

CIFAR–10 image hashing The image hashing experiment is conducted on

CIFAR–10 which seeks to produce binary code for images. To this end, the bi-

nary hashing code generation procedure in Lin et al. (2015) which is activated by a

Sigmoid function is applied in this section. The number of neurons in the second last

layer equals to the number of bits of the hashing codes. It is anticipated that DPP

regularization can enhance the utility in binary code space since the code can spread

out 2 . Two lengths of binary code (12 and 16) are tested for evaluation. And the

16–bit feature distribution using TSNE (Maaten and Hinton, 2008) is visualized in

Fig. 5.2 (a) and (b), and the binary code histogram comparison in Fig. 5.3. In Fig. 5.2,

compared with (b), (a) is more uniformly distributed in the feature space. The quan-

titative results (“acc” in the Table is the classification accuracy.) are summarized in

Table 5.2. As Lin et al. (2015) jointly solve binary code generation and classification,

both retrieval performance (mAP) and classification performance (Acc) are reported

in this experiment. It is shown that the proposed method can significantly enhance

the binary space utility while keeping the performance almost intact.

2Higher binary code space utility can enhance the hashing speed and save the storage.
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The same network structure as a high-cited method DCH (Lin et al., 2015)is

conducted for this experiment. DPP and WGAN loss is applied on the second last

fully connected layer (the dimension of this layer corresponds to the length of digits

in the hashing code).

The parameters in the hashing related experiments are used as following: variance

for Gaussian Kernel σ = 2, the coefficients for the loss term of DPP is λ1 = 102 and

for the loss term of discriminator and generator in WGAN is 10 and 1 respectively.

The batch size is set to 500 and the learning rate is initialized to 0.01 with a changing

rate of 0.1 at every 150 epoch. The total number of epoch is set to 350 and the Adam

optimizer is adopted to update the proposed model.

Degradation on CIFAR-10 image hashing For the performance degradation

with DPP on hashing task, The Fig. 5.3 can be taken as an example to explain. In

the figure, the histograms up and down correspond to DPP+WGAN and Lin et al.

(2015), respectively. It is shown that original DCH features concentrate on several

digits (generally 10 digits corresponding to 10 classes), while DPP features diffuse to

almost the whole discrete space. In this sense, if one retrieves the k-th closest hashing

code, DCH can find the hashing code with a small searching radius. However, one

has to greatly enlarge the search radius for k-th closest code in DPP feature space

since the distribution is much more even. In this sense, DPP will inevitably causes

degradation since large searching radius will more likely to reach a code in other class.

Therefore, it is naturally to think “utility vs mAP” is an intrinsic conflict and needs

to reach a trade-off.
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Table 5.2: Image Hashing on CIFAR–10.

mAP-k (%) Acc

k 50 100 all

12–bit

DCH 82.9 83.9 85.9 83.5

DPP 81.7 81.9 81.7 89.9

16–bit

DCH 84.9 85.4 86.7 92.0

DPP 83.9 83.7 82.9 91.5

CIFAR–100 metric learning All the convolutional layers in VGG-19 (Simonyan

and Zisserman, 2014b) are employed as the base and discard its final fully connected

layers. Thus the output size of this base VGG-19 network is 1 × 1 × 512. Then

3 fully connected layers with ReLU activation are concatenated on each after that

with dimensions 512, 100 and 20, respectively. Contrastive loss is applied on the

20-dimensional space. The DPP and WGAN loss, together with contrastive loss, is

applied on the final fully connected layer (20-dimension). The network is trained from

scratch without any pre-training.

The parameter setting of CIFAR–100 metric learning is as follows: α = 1, λ1 =

103, λ2 = 103, margin µ = 0.8, variance for Gaussian kernel σ = 0.2 and ∆ = 10−6.

The rest of the settings are the same as those of MNIST test.

For image retrieval task, the top-k mean average precision (abbreviated as mAP-

k) is adopted to evaluate the performance. The top-k average precision (abbreviated

as Precision-k) is also presented, which is calculated as:
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Figure 5.1: Feature Distribution of Mnist Dataset under Different Settings.

Precision(bj)@K =

∑K
i=1 I(bj)P (bj)@i∑K

i=1 I(bj)
(5.14)

where b is the corresponding class and I is the indicator function:

I(b) =


1 if b is a true positive

0 if b is a false positive

(5.15)

Thus mAP-k is the reweighted version of Precision-k:
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mAP(bj) =

∑N
j=1 Precision(bj)@K

N
(5.16)

Aside from mAP, the top-k average precision (Precision-k) and the Wasserstein

distance to the pre-defined distribution (Gap to P) are reported as well. The perfor-

mance on coarse (20 classes) and fine (100 classes) levels can be found in Table 5.3.

In either setting, it is demonstrated that DPP+WGAN significantly outperform the

baseline. Thus it can be inferred that the DPP term can serve as a regularization not

only for the feature itself but also for the smoothness of the mapping. Since the DPP

term avoids the features from concentrating too much, the learned mapping should

also be from a smoother function family.

Table 5.3: Metric Learning Performance on CIFAR–100 Dataset with Course (20)

and Fine (100) Classes.

mAP-k (%) Precision-k (%) Gap to P

k 10 20 50 10 20 50

On coarse (20) classes

Baseline 6.98 6.74 6.82 9.44 9.36 9.35 –

DPP* 45.35 48.09 48.74 55.62 53.04 51.08 –

DPPW* 47.30 52.18 54.37 60.60 58.44 57.39 0.046

On fine (100) classes

Baseline 17.98 18.24 18.06 23.21 23.47 22.76 –

DPP* 28.43 28.49 28.37 35.18 34.79 33.26 –

DPPW* 30.50 31.28 32.49 40.15 40.76 38.36 0.032

Batch size VS. performance The influences of batch size on the performance

with DPP regularization is also studied in this dissertation. To this end, the perfor-
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mance on CIFAR-100 100-class retrieval with different batch sizes is reported. The

results are shown in Table 5.4. Generally, with larger batch size, the algorithm can

reach out better mAP. It is notified that the computational efficiency of DPP sub-

gradients is high, which adds very slight overhead (even with 500 batch size) to each

iteration of common back-propagation under contrastive loss, which can be neglected.

Table 5.4: Impact of Batch Size (B-size) in CIFAR-100 100 Classes.

mAP-k(%)

b-size 10 20 50

200 30.50 31.28 32.49

300 30.78 32.27 32.29

400 31.44 33.46 33.51

500 33.97 34.49 35.38

5.4.2 Local Descriptor Retrieval

This evaluation utilizes the UBC Phototour dataset (Brown and Lowe, 2007),

which consists of three subsets (Liberty, Notre Dame, and Yosemite) with around

400k 64×64 local patches for each. This experiment follows the protocol in Mishchuk

et al. (2017) to treat two subsets as the training set and the third one as the testing

set. As each pair of matched image patches includes only two patches, there is

no need to apply balanced sampling in this test. The DPP regularization term is

simply added to the objective of state-of-the-art algorithm HardNet (Mishchuk et al.,

2017). The batch size is 512. The FPR (false positive rate) and FDR (false discovery

rate) following Mishchuk et al. (2017); Han et al. (2015) is reported in this section.

Results are summarized in Table 5.5. In the Table 5.5, Notre, Yose and Lib are

short for “Notre Dame”, “Yosemite” and “Liberty”, respectively. Following HardNet
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Mishchuk et al. (2017), the FPR at true positive rate is reported at 95%. The best

results are in bold. Several baselines are selected for comparison (i.e. SIFT (Lowe,

1999), MatchNet (Han et al., 2015), TFeat-M (Balntas et al., 2016), L2Net (Tian

et al., 2017) and HardNet (Mishchuk et al., 2017)). The latest version (termed as

HardNet+) is also compared with the proposed method following the update of the

(Mishchuk et al., 2017). And the proposed method is conducted only under DPPSG*

setting and name the proposed method HardDPP. It is demonstrated that with DPP

regularization, the performance of HardNet can be further enhanced. Note that in

HardNet there is no WGAN integrated as the mapped features lie in the surface

of a hyper unit sphere. While the sampling strategy of HardNet emphasizes the

embedding behavior near the margin, DPP regularization can further focus on global

feature distribution.

Table 5.5: Performance of UBC Phototour Comparison.

Training Notre + Yose Lib + Yose Lib + Notre Mean

Testing Lib Notre Yose FDR FPR

SIFT 29.84 22.53 27.29 26.55

MatchNet 7.04 11.47 3.82 5.65 11.6 8.7 7.74 8.05

TFeatM 7.39 10.31 3.06 3.8 8.06 7.24 6.47 6.64

PCW 7.44 9.84 3.48 3.54 6.56 5.02 5.98

L2Net 3.64 5.29 1.15 1.62 4.43 3.3 3.24

HardNet 3.06 4.27 0.96 1.4 3.04 2.53 3.0 2.54

HardNet+ 1.47 2.67 0.62 0.88 2.14 1.65 1.57

HardDPP 1.21 2.17 0.58 0.70 1.79 1.32 1.31 1.17
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5.4.3 Overhead of Determinatal Point Process

Calculating SVD or matrix inversion on a large number of features can be time

consuming. However, in the proposed setting, a common practice in deep learning

– mini-batch – is employed to avoid such computation on a whole batch. It can be

concluded that mini-batch strategy can limit the computational cost such that the

extra overhead of DPP is only dependent on the batch size (thus other parts of the

networks have no impact on this overhead). Therefore, although the complexity of

the proposed method is O(n3), n only corresponds to the batch size rather than whole

sample number in the proposed setting, which is much more manageable in practice.

The average overhead comparison on CIFAR-10 hashing task with varying batch sizes

(100, 200, 250, 400 and 500) on a GTX 1080 GPU as in Table 5.6 (time in seconds)

is reported as:

Table 5.6: Overhead of a Single Batch and a DPP Calculation on CIFAR-10 Hashing

Task with Varying Batch Size. Time Is in Seconds.

batch size 100 200 250 400 500

overhead-all 0.175 0.263 0.308 0.411 0.493

overhead-DPP 0.011 0.029 0.033 0.042 0.056

where “overhead-all” and “overhead-DPP” refer to the average time cost (s) for

a single batch on all the computation and only DPP computation (both forward and

backward), respectively. It can be concluded as that, compared to other computation,

the extra overhead of DPP is small (even in a simple network as CIFAR-10 hashing).

Besides, a batch size up to 500 is considered to be sufficient in most of the applications.

In practice, any trick is not employed to reduce such overhead (since it is out of the

main focus) but simply utilized standard functions provided by PyTorch.
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5.5 Conclusion

In this chapter, the problem of learning diverse features via a determinantal point

process under deep learning framework is investigated. To overcome the instability

in computing the gradient which involves the matrix inverse, an efficient and reliable

procedure called proper spectral sub-gradient generation is proposed. The generated

proper sub-gradient can replace the true gradient and performs well in applications.

And how to constrain the features into a bounded space is also considered in this

chapter, since in such a way one can ensure the behavior of the network more pre-

dictable. To this end, the Wasserstein GAN is further incorporated into the developed

framework. Together, DPP+WGAN showed significant performance on both some

common criteria and feature space utility.
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Figure 5.2: Visualization of 16–bit Hashing Code Results on CIFAR–10.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation, three different kinds of deep neural network structures are

proposed for extracting video representative features. The essentials of obtaining

video representative features concentrate on acquiring temporal information along

with appearance information. Even though the informative spatial features may be

enough for easy action recognition for some simple video clips (i.e. some simple

actions like ”waving hands” with no scenes changing in KTH dataset Schuldt et al.

(2004)), the incorporation of temporal information may boost the performance on

several visual tasks. Two main methods of temporal information acquisition have been

utilized in this dissertation. One is leveraging the Convolutional Neural Networks

(CNNs) to obtain temporal information from the optical flow maps which are built

by warping the motion vectors into a 2D matrix Brox et al. (2004). The CNNs treat

the optical flow maps as images and obtain the temporal information by convolving

computation. Another method is utilizing the Recurrent Neural Network (RNN) to

encode the order information of spatial information. The RNN can obtain temporal

information by learning the sequential order of the frame feature vectors.

The proposed methods in this dissertation demonstrate the capability and supe-

riority of deep learning based structures in acquiring spatio-temporal information by

conducting several different visual tasks. The Zero-Shot Learning (ZSL) problem and

the semantic video retrieval, which are presented in Chapter 2, shows the proposed

two-stream based deep neural networks have the capability of elaborating the semantic
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embedding space with the extracted spatio-temporal features to form a representative

feature which contains high-level human semantic meaning. However, the two-stream

based deep models are weak at dealing with very long videos and acquiring sub-actions

information. The experiments of simultaneous event recognition and localization task

mentioned in Chapter 3 demonstrate the two-stream based ConvRNN structure can

generate heatmaps for categorizing events and locating the corresponding time period

by a weakly-supervised way. This proposed two-stream based ConvRNN method is

better at acquiring sub-actions information compared with the proposed methods in

Chapter 2. But the gradient vanishing/explosion problem still heavily impacts the

RNN related methods. Therefore, a newly RNN based structure called RhyRNN is

proposed in Chapter 4 which will greatly mitigate the gradient vanishing/explosion

problem. Moreover, by implementing a diversity-driven sequential pooling layer and

a bilinear reweighting layer with the RhyRNN, the proposed method is capable of

handling very long video clips (i.e. number of sequences is larger than 3000). The ex-

periments in Chapter 4 demonstrates that the proposed method can extract effective

representative features from a very long and complex video with only event-level label

information. The Multi-Label classification experiment in Chapter 4 also shows the

capability of the proposed method in obtaining structural sub-action information even

without any sub-action level label knowledge. Even though all the proposed methods

in Chapter 2, 3, 4 can complete the classification/recognition or localization tasks

very well, some visual tasks, like semantic retrieval, learning hashing code, or graph

knowledge mapping, require a diverse feature space. Therefore, a method, which in-

corporates the Determinantal Point Process (DPP) with the deep learning methods,

is proposed to learn a diverse feature space. A newly designed strategy of gradient

computation for the determinant matrix makes the incorporation of the Determinan-

tal Point Process with deep learning more convenient and efficient. Moreover, the
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experiments in Chapter 5 demonstrate the efficiency and capability of obtaining a

more diverse feature space for better performance in visual tasks like hashing and

semantic retrieval.

In summary, all the proposed methods in this dissertation present the core idea of

obtaining video representative features by conducting deep neural networks to extract

temporal information and collaborating the corresponding spatial information. The

newly formed video representative features are shown to be useful and effective in

several visual tasks by all the experiments mentioned in this dissertation.

6.2 Future Work

Since the temporal information is more and more important in the understanding

of the recent video data, a better way of extracting temporal information is the

future direction of the related research. Similarly, the technique in Natural Language

Processing (NLP) requires the capability of obtaining the order information of texts or

languages. Therefore, it is natural to link the technique of NLP with video processing.

Recently, the BERT Devlin et al. (2018) and Multi-Head Self Attention Vaswani

et al. (2017) becomes more and more popular in the NLP field since it depends

on CNN-based attention mechanism so that the gradient vanishing problem is no

longer considerable. Therefore, applying the BERT or Multi-Head Self Attention on

extracting the order/sequential information is a good way to overcome the challenges

in obtaining video representative features.

Considering the challenging problems about the visual tasks in very long and

complex video data raised in Chapter 5, another possible method is to acquire

the latent information (i.e. the sub-actions) should be a new future direction. The

conventional topic model is a good way to extract latent information for documents.

It is able to summarize the documents with topic distributions. Therefore, it is easy
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to think about utilizing the topic model to extract the topic distribution which can

be viewed as the sub-action distribution for each video. However, the difficulty in the

topic model is also obvious. The fixed number of topics is not flexible compared with

current methods. Therefore, the way to alleviate the impact of the fixed number of

topics is an essential part of developing a topic model based video processing method.

Because of the structure of the video sequential data, it is natural to think that

the video can be summarized with several thumbnail frames or the most informative

frames. According to the current research of the video summarization algorithm, the

thumbnail frames or the most informative frames make the most contribution to the

final event or activity recognition. However, sometimes the selected thumbnail frames

are hard to capture the potential sequential information for a better understanding

of the complex events. Therefore, the graph-based method should be a good way to

enhance the potential sequential information or the correlation of the selected frames.

The Graph Convolutional Network (GCN) can be applied to the thumbnail frames

if a good adjacent matrix could be obtained or defined before the thumbnail frames

selection. And as has been demonstrated in many visual papers, the GCN is good at

learning a better knowledge map for the semantic embedding of images which can be

extended to the video processing area. Thus obtaining better representative features

for understanding video contents.
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Chéron, G., I. Laptev and C. Schmid, “P-CNN: Pose-based CNN Features for Ac-
tion Recognition”, in “ICCV 2015 - IEEE International Conference on Computer
Vision”, (Santiago, Chile, 2015), URL https://hal.inria.fr/hal-01187690.
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Kläser, A., M. Marsza lek and C. Schmid, “A spatio-temporal descriptor based on
3d-gradients”, in “British Machine Vision Conference”, pp. 995–1004 (2008), URL
http://lear.inrialpes.fr/pubs/2008/KMS08.

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in “NIPS”, (2012).

Kuehne, H., A. Arslan and T. Serre, “The language of actions: Recovering the syntax
and semantics of goal-directed human activities”, in “CVPR”, (2014).

Kuehne, H., J. Gall and T. Serre, “An end-to-end generative framework for video
segmentation and recognition”, in “WACV”, (2016).

Kuehne, H., H. Jhuang, E. Garrote, T. Poggio and T. Serre, “HMDB: a large video
database for human motion recognition”, in “ICCV”, (2011).

Kulesza, A. and B. Taskar, “Structured determinantal point processes”, in “NIPS”,
(2010).

Kulesza, A. and B. Taskar, “k-dpps: Fixed-size determinantal point processes”, in
“ICML”, (2011a).

Kulesza, A. and B. Taskar, “Learning determinantal point processes”, in “UAI”,
(2011b).

Kulesza, A., B. Taskar et al., “Determinantal point processes for machine learning”,
Foundations and Trends R© in Machine Learning 5, 2–3, 123–286 (2012).

Lai, K.-T., F. X. Yu, M.-S. Chen and S.-F. Chang, “Video event detection by inferring
temporal instance labels”, in “CVPR”, pp. 2243–2250 (2014).

117



Lampert, C., H. Nickisch and S. Harmeling, “Attribute-based classification for zero-
shot visual object categorization”, Pattern Analysis and Machine Intelligence, IEEE
Transactions on 36, 3, 453–465 (2014).

Lan, T., Y. Zhu, A. Roshan Zamir and S. Savarese, “Action recognition by hierarchical
mid-level action elements”, in “ICCV”, (2015).

Laptev and Lindeberg, “Space-time interest points”, in “Proceedings Ninth IEEE
International Conference on Computer Vision”, pp. 432–439 vol.1 (2003).

Laptev, I., “On space-time interest points”, IJCV 64, 2-3, 107–123 (2005).

Laptev, I., M. Marszalek, C. Schmid and B. Rozenfeld, “Learning realistic human
actions from movies”, in “2008 IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 1–8 (IEEE, 2008).

Lee, Y. J., J. Ghosh and K. Grauman, “Discovering important people and objects for
egocentric video summarization”, in “CVPR”, (2012).

Levitin, E. and B. Polyak, Constrained Minimization Methods (USSR Computational
Mathematics and Mathematical Physics, 1966).

Li, H., L. Liu, F. Sun, Y. Bao and C. Liu, “Multi-level feature representations for
video semantic concept detection”, Neurocomputing 172, 64–70 (2016).

Li, S., W. Li, C. Cook, C. Zhu and Y. Gao, “Independently recurrent neural network
(indrnn): Building a longer and deeper rnn”, in “CVPR”, (2018).

Lin, K., H.-F. Yang, J.-H. Hsiao and C.-S. Chen, “Deep learning of binary hash codes
for fast image retrieval”, in “CVPRW”, (2015).

Liu, J., Z. Wu and F. Li, “Ranking video segments with lstm and determinantal point
processes”, in “ICIP”, (2017).

Long, J., E. Shelhamer and T. Darrell, “Fully convolutional networks for semantic
segmentation”, in “CVPR”, pp. 3431–3440 (2015).

Lowe, D. G., “Object recognition from local scale-invariant features”, in “ICCV”,
(1999).

Maaten, L. v. d. and G. Hinton, “Visualizing data using t-sne”, JMLR 9, Nov, 2579–
2605 (2008).

Mariet, Z. and S. Sra, “Fixed-point algorithms for learning determinantal point pro-
cesses”, in “ICML”, (2015).

Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient estimation
of word representations in vector space”, CoRR abs/1301.3781, URL
http://arxiv.org/abs/1301.3781 (2013a).

118



Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed represen-
tations of words and phrases and their compositionality”, in “Advances in Neural
Information Processing Systems 26”, edited by C. Burges, L. Bottou, M. Welling,
Z. Ghahramani and K. Weinberger, pp. 3111–3119 (Curran Associates, Inc., 2013b).

Mishchuk, A., D. Mishkin, F. Radenovic and J. Matas, “Working hard to know your
neighbor’s margins: Local descriptor learning loss”, in “NIPS”, (2017).

Ng, J. Y., M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga and
G. Toderici, “Beyond short snippets: Deep networks for video classification”, CoRR
abs/1503.08909, URL http://arxiv.org/abs/1503.08909 (2015).

Nguyen, P., T. Liu, G. Prasad and B. Han, “Weakly supervised action localization
by sparse temporal pooling network”, in “CVPR”, (2018).

Norouzi, M., T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. Corrado
and J. Dean, “Zero-shot learning by convex combination of semantic embeddings”,
CoRR abs/1312.5650, URL http://arxiv.org/abs/1312.5650 (2013).

Oh, S., A. Hoogs, A. Perera, N. Cuntoor, C. Chen, J. T. Lee, S. Mukherjee, J. K.
Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah, C. Von-
drick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A. Roy-
Chowdhury and M. Desai, “A large-scale benchmark dataset for event recognition
in surveillance video”, in “CVPR”, (2011).

Oliva, A. and A. Torralba, “Modeling the shape of the scene: A holistic representation
of the spatial envelope”, IJCV 42, 3, 145–175 (2001).

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga and A. Lerer, “Automatic differentiation in pytorch”, (2017).

Piergiovanni, A. and M. S. Ryoo, “Learning latent super-events to detect multiple
activities in videos”, in “CVPR”, (2018).

Rashid, M., H. Kjellström and Y. J. Lee, “Action graphs: Weakly-supervised action
localization with graph convolution networks”, arXiv preprint arXiv:2002.01449
(2020).

Schuldt, C., I. Laptev and B. Caputo, “Recognizing human actions: A local svm
approach”, in “ICPR”, (2004).

Sharghi, A., A. Borji, C. Li, T. Yang and B. Gong, “Improving sequential determi-
nantal point processes for supervised video summarization”, in “ECCV”, (2018).

Sharma, S., R. Kiros and R. Salakhutdinov, “Action recognition using visual atten-
tion”, in “NIPS Time Series Workshop”, (2015).

Shou, Z., D. Wang and S.-F. Chang, “Temporal action localization in untrimmed
videos via multi-stage cnns”, in “CVPR”, (2016).

119



Siam, M., S. Valipour, M. Jagersand, N. Ray and S. Yogamani, “Convolutional gated
recurrent networks for video semantic segmentation in automated driving”, in “In-
telligent Transportation Systems (ITSC), International Conference on”, pp. 1–7
(2017).

Sigurdsson, G. A., S. Divvala, A. Farhadi and A. Gupta, “Asynchronous temporal
fields for action recognition”, in “CVPR”, (2017).

Sigurdsson, G. A., G. Varol, X. Wang, A. Farhadi, I. Laptev and A. Gupta, “Hol-
lywood in homes: Crowdsourcing data collection for activity understanding”, in
“ECCV”, (2016).

Simonyan, K. and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos”, in “NIPS”, (2014a).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014b).

Snoek, C. G. M. and M. Worring, “Concept-based video retrieval”, Found. Trends
Inf. Retr. 2, 4, 215–322, URL http://dx.doi.org/10.1561/1500000014 (2009).

Soomro, K., A. R. Zamir and M. Shah, “UCF101: A dataset of 101 hu-
man actions classes from videos in the wild”, CoRR abs/1212.0402, URL
http://arxiv.org/abs/1212.0402 (2012).

Srivastava, N., E. Mansimov and R. Salakhutdinov, “Unsupervised learn-
ing of video representations using lstms”, CoRR abs/1502.04681, URL
http://arxiv.org/abs/1502.04681 (2015).

Tang, K., L. Fei-Fei and D. Koller, “Learning latent temporal structure for complex
event detection”, in “CVPR”, pp. 1250–1257 (2012).

Tapaswi, M., Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun and S. Fidler,
“Movieqa: Understanding stories in movies through question-answering”, in
“CVPR”, (2016).

Tian, Y., B. Fan and F. Wu, “L2-net: Deep learning of discriminative patch descriptor
in euclidean space”, in “CVPR”, (2017).

Tran, D., L. Bourdev, R. Fergus, L. Torresani and M. Paluri, “Learning spatiotem-
poral features with 3d convolutional networks”, in “ICCV”, (2015).

Tran, D., H. Wang, L. Torresani, J. Ray, Y. LeCun and M. Paluri, “A closer look at
spatiotemporal convolutions for action recognition”, in “CVPR”, (2018).

Tran, D., J. Yuan and D. Forsyth, “Video event detection: From subvolume localiza-
tion to spatiotemporal path search”, PAMI 36, 2, 404–416 (2014).

Tran, S. D. and L. S. Davis, “Event modeling and recognition using markov logic
networks”, in “ECCV”, (2008).

120



Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser
and I. Polosukhin, “Attention is all you need”, in “NIPS”, (2017).

Veeriah, V., N. Zhuang and G.-J. Qi, “Differential recurrent neural networks for action
recognition”, in “ICCV”, (2015).

Veltkamp, R., H. Burkhardt and H.-P. Kriegel, State-of-the-art in content-based image
and video retrieval, vol. 22 (Springer Science & Business Media, 2013).

Venkatesan, R. and B. Li, “Diving deeper into mentee networks”, arXiv preprint
arXiv:1604.08220 (2016).

Venugopalan, S., M. Rohrbach, J. Donahue, R. Mooney, T. Darrell and K. Saenko,
“Sequence to sequence-video to text”, in “Proceedings of the IEEE International
Conference on Computer Vision”, pp. 4534–4542 (2015).

Venugopalan, S., H. Xu, J. Donahue, M. Rohrbach, R. Mooney and K. Saenko,
“Translating videos to natural language using deep recurrent neural networks”,
arXiv preprint arXiv:1412.4729 (2014).

Wang, H. and C. Schmid, “Action recognition with improved trajectories”, in “IEEE
International Conference on Computer Vision”, (Sydney, Australia, 2013), URL
http://hal.inria.fr/hal-00873267.

Wang, L., Y. Qiao and X. Tang, “Action recognition with trajectory-pooled deep-
convolutional descriptors”, in “CVPR”, (2015).

Wang, L., Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang and L. Van Gool, “Tem-
poral segment networks: Towards good practices for deep action recognition”, in
“ECCV”, (2016a).

Wang, X., R. Girshick, A. Gupta and K. He, “Non-local neural networks”, in “Pro-
ceedings of the IEEE conference on computer vision and pattern recognition”, pp.
7794–7803 (2018).

Wang, X. and Q. Ji, “Hierarchical context modeling for video event recognition”,
PAMI 39, 9, 1770–1782 (2017).

Wang, Y., J. Song, L. Wang, L. Van Gool and O. Hilliges, “Two-stream sr-cnns for
action recognition in videos.”, in “BMVC”, (2016b).

Wang, Y., S. Wang, J. Tang, N. O’Hare, Y. Chang and B. Li, “Hierarchical attention
network for action recognition in videos”, arXiv preprint arXiv:1607.06416 (2016c).

Wang, Z. and B. Li, “Human activity encoding and recognition using low-level visual
features.”, in “Proceedings of International Joint Conference on Artificial Intelli-
gence (IJCAI)”, pp. 1876–1883 (2009).

Wu, C.-Y., C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl and R. Girshick, “Long-
term feature banks for detailed video understanding”, in “CVPR”, (2019).

121



Wu, Y., S. Zhang, Y. Zhang, Y. Bengio and R. R. Salakhutdinov, “On multiplicative
integration with recurrent neural networks”, in “NIPS”, (2016).

Xie, P., R. Salakhutdinov, L. Mou and E. P. Xing, “Deep determinantal point process
for large-scale multi-label classification”, in “ICCV”, (2017).

Xie, S., C. Sun, J. Huang, Z. Tu and K. Murphy, “Rethinking spatiotemporal feature
learning: Speed-accuracy trade-offs in video classification”, in “ECCV”, (2018).

Xingjian, S., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong and W.-c. Woo, “Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting”,
in “NIPS”, pp. 802–810 (2015).

Xu, S., Y. Cheng, K. Gu, Y. Yang, S. Chang and P. Zhou, “Jointly attentive spatial-
temporal pooling networks for video-based person re-identification”, in “ICCV”,
(2017).

Xu, X., T. Hospedales and S. Gong, “Semantic embedding space for zero-shot action
recognition”, in “Image Processing (ICIP), 2015 IEEE International Conference
on”, pp. 63–67 (2015a).

Xu, Y., C. Zhang, Z. Cheng, J. Xie, Y. Niu, S. Pu and F. Wu, “Segregated temporal
assembly recurrent networks for weakly supervised multiple action detection”, in
“AAAI”, (2019).

Xu, Z., Y. Yang and A. G. Hauptmann, “A discriminative cnn video representation
for event detection”, in “CVPR”, (2015b).

Yeung, S., O. Russakovsky, N. Jin, M. Andriluka, G. Mori and L. Fei-Fei, “Every
moment counts: Dense detailed labeling of actions in complex videos”, IJCV 126,
2-4, 375–389 (2018).

Yeung, S., O. Russakovsky, G. Mori and L. Fei-Fei, “End-to-end learning of action
detection from frame glimpses in videos”, in “CVPR”, (2016).

Zadeh, S. A., M. Ghadiri, V. S. Mirrokni and M. Zadimoghaddam, “Scalable feature
selection via distributed diversity maximization.”, in “AAAI”, (2017).

Zhang, K., W.-L. Chao, F. Sha and K. Grauman, “Video summarization with long
short-term memory”, in “ECCV”, (2016).

Zhang, X., X. Y. Felix, S. Kumar and S.-F. Chang, “Learning spread-out local feature
descriptors.”, in “ICCV”, (2017).

Zhou, B., A. Andonian, A. Oliva and A. Torralba, “Temporal relational reasoning in
videos”, in “ECCV”, (2018).

122



APPENDIX A

RELATED PUBLICATION

123



• Yikang Li, S. Hu, B. Li, ”Recognizing Unseen Action in a Domain-Adaptive
Embedding Space”, IEEE International Conference on Image Processing (ICIP)
2016

• Yikang Li, S. Hu, B. Li, ”Video2Vec: Learning Semantic Spatio-Temporal Em-
beddings for Video Representation”, IEEE International Conference on Pattern
Recognition (ICPR) 2016

• Yikang Li*, T. Yu*, B. Li, ”Simultaneous Event Localization and Recognition
for Surveillance Video”, IEEE International Conference on Advanced Video and
Signal-based Surveillance (AVSS) 2018 Oral.

• Yikang Li*, T. Yu*, B. Li, ”RhyRNN: Rhythmic RNN for Recognizing Events
in Long and Complex Videos”, European Conference on Computer Vision 2020.

• T. Yu, Yikang Li, B. Li, ”Learning Diverse Features via Determinantal Point
Process”, IEEE International Conference on Learning Representations 2020.

This dissertation is based on the papers listed above. Furthermore, in the pro-
cessing of pursuing my PhD degree, I also completed other manuscripts or papers,
which were related to the general effort of my research but were not included in the
dissertation. Those papers will be listed as following:

• Yikang Li, T. Yu, B. Li, ”Recognizing Video Events with Varying Rhythm”,
arXiv:2001.05060.

• Y. Zha, Yikang Li, T. Yu, S. Kambhampati, B. Li, ”Plan-Recognition-Driven
Attention Modeling for Visual Recognition”, Workshop on Plan, Activity, and
Intent Recognition at AAAI 2019.

• Y. Zha, Yikang Li, S. Gopalakrishnan, B. Li, ”Recognizing Plans by Learning
Embeddings from Observed Action Distributions”, International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) 2018

• Yikang Li*, P.L.K. Ding*, B. Li, ”Mean Local Group Average Precision (mL-
GAP): A New Performance Metric for Hashing-based Retrieval”, arXiv preprint
arXiv:1811.09763

• Yikang Li*, P.L.K. Ding*, B. Li, ”Training Neural Networks by Using Power
Linear Units (PoLUs)”, arXiv preprint arXiv:1802.00212

• P.S. Chandakkar, Yikang Li, P.L.K. Ding, B. Li, ”Strategies for Re-Training a
Pruned Neural Network in an Edge Computing Paradigm”, IEEE International
Conference on Edge Computing (EDGE) 2017

• Z. Tu, J. Cao, Yikang Li, B. Li, ”MSR-CNN: Applying Motion Salient Region
Based Descriptors for Action Recognition”, IEEE International Conference on
Pattern Recognition (ICPR) 2016

124


