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ABSTRACT 

Ultra High Performance (UHP) cementitious binders are a class of cement-based 

materials with high strength and ductility, designed for use in precast bridge connections, 

bridge superstructures, high load-bearing structural members like columns, and in 

structural repair and strengthening. This dissertation aims to elucidate the chemo-

mechanical relationships in complex UHP binders to facilitate better microstructure-

based design of these materials and develop machine learning (ML) models to predict 

their scale-relevant properties from microstructural information.  

To establish the connection between micromechanical properties and constitutive 

materials, nanoindentation and scanning electron microscopy experiments are performed 

on several cementitious pastes. Following Bayesian statistical clustering, mixed reaction 

products with scattered nanomechanical properties are observed, attributable to the low 

degree of reaction of the constituent particles, enhanced particle packing, and very low 

water-to-binder ratio of UHP binders. Relating the phase chemistry to the 

micromechanical properties, the chemical intensity ratios of Ca/Si and Al/Si are found to 

be important parameters influencing the incorporation of Al into the C-S-H gel.  

ML algorithms for classification of cementitious phases are found to require only the 

intensities of Ca, Si, and Al as inputs to generate accurate predictions for more 

homogeneous cement pastes. When applied to more complex UHP systems, the 

overlapping chemical intensities in the three dominant phases – Ultra High Stiffness 

(UHS), unreacted cementitious replacements, and clinker – led to ML models 

misidentifying these three phases. Similarly, a reduced amount of data available on the 

hard and stiff UHS phases prevents accurate ML regression predictions of the 
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microstructural phase stiffness using only chemical information. The use of generic 

virtual two-phase microstructures coupled with finite element analysis is also adopted to 

train MLs to predict composite mechanical properties. This approach applied to three 

different representations of composite materials produces accurate predictions, thus 

providing an avenue for image-based microstructural characterization of multi-phase 

composites such UHP binders. This thesis provides insights into the microstructure of the 

complex, heterogeneous UHP binders and the utilization of big-data methods such as ML 

to predict their properties. These results are expected to provide means for rational, first-

principles design of UHP mixtures.     
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CHAPTER 1 

1 INTRODUCTION 

1.1 BACKGROUND 

Concrete as a construction material has existed for thousands of years, with historic sites 

surviving to this day serving as testament to its longevity and versatility as a building 

material. Yet, there are still many unknowns in the chemical reaction processes, kinetics, 

and the resulting microstructures which ultimately influence concrete’s mechanical 

properties. It is common knowledge that microstructural studies of building materials 

such as steel [1] or timber [2] have led to advancements in their production and quality. 

The large body of work available on the fundamental materials-structure-processing-

property relationships of concrete have led to the use of many unconventional materials 

(such as waste or recycled materials from other industries), the refinement of mixture 

proportions, and the enhancement of tools for material and property interrogation, all of 

which have consequently improved design and construction practices. While great strides 

are being made with the development of new materials and processes, much remains to 

be done to advance the understanding and prediction of the mechanical behavior of 

cementitious binders and their relationship to microstructural and chemical 

characteristics. This is especially true for complex multi-phase binders such as high- and 

ultra-high performance cement systems, which is the focus of this thesis. In conjunction 

with fundamental materials-science based approaches, this work also ventures into big-

data analysis using novel techniques such as machine learning to generalize and expedite 

the predictive effort. 



2 

 

A specialized concrete mixture that demonstrates desirable properties such as high 

strength, ductility, and durability, yet minimizing the use of greenhouse gas producing 

Ordinary Portland Cement (OPC) is Ultra-High Performance Concrete (UHPC). UHPC 

has been utilized in the construction of high strength infrastructural components, bridge 

repair [3] [4], slender structural elements, as well as rehabilitation of pre-existing 

reinforced concrete or steel structures [5]. Featuring multiple cementitious replacement 

materials with controlled particle size distributions to ensure dense packing, UHPC is a 

heterogeneous system where the cementitious materials are incompletely reacted  (e.g., 

low degrees of hydration), owing to a low water-to-binder ratio (w/b). The cost of UHPC 

is significantly higher than that of conventional concrete and varies from $545/m3 to 

$3,000/m3 [6] [7] depending on the constitutive materials. At the same time, the 

compressive, tensile, and flexural strengths of UHPC, as well as its durability, are highly 

dependent on the type and amount of source materials, their packing, and their degree of 

reaction [6] [3]. An important objective of this study is to understand the influence of 

these factors on the fundamental nano-and-microstructural features of UHPCs, so that 

efficient microstructure-based materials design can be implemented for the family of 

these complex material systems.  

A large amount of experimental data, both with respect to properties and microstructures, 

is generated in studies dealing with concrete. The traditional approach is to scientifically 

analyze the data and arrive at interpretations of material behavior, or to use the data for 

property performance prediction. With the advent of tools that examine big data and use 

efficient computing to derive patterns and predictions, it is instructive to use them in the 

field of cement-based materials, which predominantly relies on experimentation. Thus, 
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this study also explores the use of machine learning techniques in the context of UHPCs 

and other multi-phase cementitious systems.  

Machine learning is an artificial intelligence technique that uses large data sets to develop 

prediction tools for a specific problem, which otherwise is tedious or even impossible to 

solve. Significant advances are happening in the topic of machine learning related to 

fields such as health and medicine, security, economics, robotics, etc. Past applications of 

machine learning to materials science include the quantification, classification, 

optimization, evolution, and reconstruction of microstructures, mechanical properties, 

and material performance along the process-structure-property-performance chain [8]. In 

cementitious building materials, machine learning has been applied to predicting 

compressive strength given the mixture design [9, 10, 11, 12, 13], optimizing concrete 

mixture proportions under multiple constraints to satisfy desired strength, cost, and slump 

[14], and reconstructing cementitious phases from prior knowledge of microstructural 

phases and nanoscale mechanical-chemical mapping [15, 16]. To further the 

understanding of the nano- and micro-scale mechanical behaviors of cementitious 

binders, this study will focus on the ability of machine learning to utilize real and/or 

virtual microstructural and chemical data sets to predict material properties.  

1.2 RESEARCH OBJECTIVES  

This research focuses, first, on fundamentally understanding the inter-relationships 

between the micromechanical, microchemical, and bulk mechanical properties of 

economical, non-proprietary UHP cementitious binders developed in a previous work at 

ASU. Next, the large datasets made during this study, supplemented with datasets from 

other well-known studies, are utilized in conjunction with customized machine learning 
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algorithms to classify microstructures and/or predict the mechanical properties of 

complex heterogeneous systems. Finally, the ability of machine learners to interpret 

microstructural images and predict the mechanical properties for any two-phase 

composite system, including UHP mortars, is explored. The major objectives are listed 

below:  

1. To link the micromechanical properties of UHP binders to their constitutive 

materials – which is a function of the type and amount of binder materials (e.g., 

cement, limestone, fly ash, silica fume) and the extent of their reaction. 

2. To evaluate the fundamental microstructural phase chemistry in UHP binder 

systems and examine the chemistry-property relationships at the nano-/micro-

scale.  

3. To develop machine learning algorithms capable of classifying the complex 

material microstructure into distinct cementitious phases, given the chemical 

intensity and/or the micromechanical features. 

4. To develop machine learning regression algorithms capable of predicting the 

micromechanical properties of different phases in complex heterogeneous binders 

based on information from microstructural chemical maps (which can then be 

upscaled using analytical homogenization or numerical tools) to reduce the 

reliance on highly expensive, sophisticated, and time-consuming experiments. 

5. To combine microstructural image-based machine learning techniques and 

finite element analysis to predict the mechanical properties of a generic two-phase 

composite, as a means of generalizing this approach for multi-phase media. 
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1.3 RESEARCH APPROACH  

The first task of this study deals with a thorough micromechanical investigation of the 

mechanical properties (hardness and stiffness) of conventional OPC and UHP 

cementitious binders after 30 and 90 days of hydration. Grid nanoindentation, where 

thousands of nanoscale indents are made on polished cementitious binder surfaces to 

account for the statistical heterogeneity in the sample, is performed. Nanoindentation 

coupled with Bayesian statistical analysis help reveal the mechanical clustering of 

distinct phases in the complex, heterogeneous microstructure. These clusters are 

chemically identified by synthesizing data from X-ray diffraction (XRD) and 

thermogravimetric analysis (TGA), as well as an understanding of the hydration products 

of cementitious systems. The UHP mixtures are comprised of several cementitious 

replacement materials and a low w/b that produces phases with higher hardness and 

stiffness than the OPC paste owing, in part, to the retention of a significant amount of 

unhydrated starting minerals. Furthermore, formation of an Ultra High Stiffness (UHS) 

hydration phase is also preferred in low w/b mixtures, the origins of which is probed in 

this work through experiments and packing density calculations of the resultant C-S-H 

gel. Elastic homogenization approaches are performed to ensure that the nanomechanical 

data can reliably be upscaled into bulk material properties.   

Once the mechanical properties of the different microstructural phases in UHP binders 

are determined, the next phase of the work focuses on developing qualitative 

relationships between the micromechanical properties and cementitious phase chemistry. 

To accomplish this goal, nanoindentation measurements of stiffness and hardness are 

paired with chemical maps from scanning electron microscopy (SEM) coupled with 
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energy-dispersive X-ray spectroscopy (EDS) analysis. The chemical mapping is carried 

out in a qualitative manner rather than a quantitative manner. Bayesian statistical 

clustering is repeated with this additional microchemical information, providing new 

insights into the chemistry and micromechanics of UHP phases. The chemical intensity 

ratios, including the Ca/Si and Al/Si ratios, are used to infer the changes in the reaction 

product (C-(A)-S-H gel) chemistry. The relative dependence of Al incorporation in the 

gel based on the gel chemistry is explored in detail. The relationship between stiffness 

and hardness of the reaction product phases in the UHP binders, and their dependence on 

the reaction product chemistry is elucidated.   

The next phase of this thesis deals with synthesizing the large amount of data generated 

in this work, as well as related works in recent years, towards useful, generalizable 

models for material performance. Given the large quantity of data gathered on 

nanoindentation stiffness, nanoindentation hardness, microstructural images, and 

chemical maps, machine learning algorithms are deemed ideal to develop classification 

and regression models based on these data sets. Classification algorithms are generated in 

this work using the elemental intensity chemical maps and the micromechanical data such 

that each indent can be attributed to a microstructural phase. The fundamental premise is 

that if microstructural chemical maps of complex binders such as UHPC are available 

(which are easy to obtain using a generic scanning electron microscopes outfitted with an 

EDS system), then the correlation between phase chemistry and phase nanomechanical 

properties can be accurately identified. Such phase identification through machine 

learning would eliminate or minimize the need for complex nanomechanical 

experimentation. Phase labels for training data are obtained from the microchemical 
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mapping, and the final classification algorithms are tested on data not used in model 

generation to determine the degree to which they could predict the cementitious phase, 

without knowing the original composition of the paste or the degree of reaction of the 

system (i.e., age). For verification purposes, the classification algorithms are also applied 

to the data for more conventional cementitious mixtures.  

Further, regression machine learning techniques are employed to predict the 

nanoindentation stiffness from the elemental intensities obtained from the SEM and EDS 

maps. For relatively less complex systems such as plain OPC pastes, pastes containing 

smaller amounts of reactive cement replacement materials, and well-hydrated systems, 

chemical intensity maps coupled with regression machine learning provide an easy and 

reliable methodology to predict the phase stiffnesses. On the other hand, the stiffnesses of 

the UHP paste phases are difficult to model using any of the machine learning methods. 

The difficulty of regression machine learners to predict the stiffness based solely on the 

elemental intensities for UHP pastes stems from the microstructural complexity and lack 

of a large amount of high-quality training data. Specifically, it is noticed that the 

prediction quality is better for the major reaction product (C-S-H), but a large scatter in 

the data for the high modulus phases and the mixed reactant/product phases reduced the 

overall predictive ability.  

While the previous explorations of classification and regression are based on discrete data 

obtained from microstructural images, the final component of this thesis forays into using 

microstructural images themselves, coupled with finite element analysis, as training data 

for the machine learning algorithms. Here, generic two-phase composites – e.g., a 

unidirectional carbon fiber composite, a UHP cement paste-sand mortar, and a cement 
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paste with steel particle inclusions, with available experimental data are considered. 

Random images are generated representing different volume fractions, size distributions, 

and shapes of the inclusions. These images are used as inputs into a linear elastic finite 

element analysis to predict the elastic properties and stresses in the constituent phases of 

the composites. The results of validated finite element analysis are utilized as the ground 

truth to train the machine learning models. Given other two-phase microstructures that 

the model has not yet encountered, the algorithm enables adequate prediction of the 

composite mechanical properties. Figure 1-1 outlines the evolution of this study and 

summarizes the study’s approach to achieving the objectives. 

 

Figure 1-1: Flowchart summarizing the research approach of this study and how the 

approach will address each of the objectives. 

Objectives 

1-2

Approach: Nanoindentation, SEM/EDS, and Bayesian 
statistical clustering to connect the micromechanical and 
microchemical properties of UHP cementitious binders.

Objectives

3-4

Approach: Develop machine learning models to predict 
the cementitious phase and mechanical properties of 
UHPC cementitious binders.

Objective 

5

Approach: Train machine learners to predict the 
mechanical properties of any two-phase composite 
microstructural image to generalize image-based 
micromechanical property prediction.
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1.4 DISSERTATION OUTLINE 

The core of this dissertation consists of five research papers (Chapters 3-7) that have been 

published, submitted, or are being prepared for submission. The overall organization of 

the thesis is shown below. 

Chapter 1 provides a brief introduction about the topic of the study and presents the 

background and significance of cementitious materials and machine learning. The 

research objectives are identified, and a chapter outline is presented. 

Chapter 2 presents a thorough literature review covering the UHPC materials and 

methods used for their microstructural characterization. The basics of machine learning 

and its methods are also introduced here, though explicit details on classification and 

prediction can be found in the corresponding chapters. 

Chapter 3 demonstrates the use of experimental nanoindentation results along with 

Bayesian statistical clustering to understand the micromechanical response of individual 

phases in UHPC microstructures. The heterogeneous nature of UHP binders is first 

explored solely using information available from the micromechanical testing. Data from 

this study is used in conjunction with homogenized models to predict the elastic response 

of the UHP binders.  

Chapter 4 evaluates the UHP binders from a combined micromechanical and 

microchemical viewpoint, utilizing nanoindentation, scanning electron microscopy, and 

energy dispersive X-ray analysis. Bayesian clustering is again performed with both the 

nanoindentation stiffness and relative chemical intensity ratios at every indentation point. 

Resulting clusters are compared to understand the role of different cementitious 
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replacement materials and reaction progress on the phase chemistry, which is related to 

the micromechanical properties. 

Chapter 5 introduces machine learning classifiers that can be used to identify the major 

cementitious phase at each indentation point in a microstructure, given microchemical 

and/or micromechanical information. Data from several different cementitious 

microstructures are individually used to train the classifiers and establish the relationships 

between mixture complexity and accurate phase identification.   

Chapter 6 showcases machine learning regression models that are used to predict the 

microstructural stiffness of individual points within cementitious binders given the 

relative chemical intensity from SEM and EDS. Machine learning models are developed 

from several different cementitious mixtures to relate the heterogeneity to the ability of 

the algorithms to learn from the data. Suggestions to improve the machine learning 

predictions of complex microstructures such as UHP pastes are explained.  

Chapter 7 explores the use of generic two-phase microstructural images, coupled with 

finite element analysis, to train machine learning regression algorithms to predict 

mechanical properties. Machine learning models capable of interpreting two-phase 

microstructural images with varying inclusion volume fractions, size distributions, and 

shapes are generated. The application of dimensionality reduction techniques on the 

correlation functions used as inputs to image-based machine learning regression models 

are discussed. 

Chapter 8 summarizes the conclusions of this study and recommends related topics for 

future research. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter is divided into three main sections. The first section discusses ultra-high 

performance (UHP) binders and the different cement replacement materials used, along 

with their effects on the microstructural development of UHP binders. The second section 

deals with the sample preparation methods and materials characterization tools utilized in 

this study. Lastly, the principles and application of machine learning methods as applied 

to materials characterization is discussed.   

2.2 ULTRA-HIGH PERFORMANCE CONCRETE AND CEMENT 

REPLACEMENT MATERIALS   

2.2.1 Ultra-High Performance Concrete (UHPC) 

Ultra-High Performance Concrete (UHPC) is a specialized concrete with a low water-to-

binder ratio (w/b) and enhanced particle packing, resulting in low porosity, high 

resistance to cracking, high compressive and tensile strengths, high ductility, and 

enhanced durability. Compared to High Performance Concrete (HPC), or concrete only 

produced with Ordinary Portland Cement (OPC), UHPCs enable production of 

infrastructural components at lower life-cycle costs owing to their high strength and 

durability. With high longevity leading to financial savings in terms of reduced 

maintenance and longer service life, UHPCs are considered as one of the most important 

advances in the materials field of structural engineering. UHPC is defined by the United 

States Federal Highway Administration (FHWA) as a cementitious composite with 

compressive strength in excess of 150 MPa (22 ksi) and tensile strength in excess of 5 
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MPa (0.72 ksi) [3] [4]. Due to a low w/b and high particle density, UHPC has greater 

durability compared to HPC or other types of conventional concrete. For a desired 

strength, UHPC can also be used to produce structural elements with reduced cross-

sectional areas, and therefore self-weight. Typically, UHPC is produced with a w/b 

between 0.15-0.0.25 and dense particle packing through the use of multiple cement 

replacement materials [4]. With proper mixing techniques, the low w/b helps in reducing 

the porosity and often eliminates the need for air entrainment [4] as UHPC has sufficient 

tensile strength to resist the stresses induced by freezing-and-thawing.  

Applications of UHPC are well-documented, and include the construction of high-

strength columns and bridge decks, strengthening of pre-existing reinforced concrete or 

steel structures [5], as well as field-cast connections between bridge elements [3]. Three 

key challenges to the implementation of UHPC into common construction practice 

include the high initial cost, the specialized mixture design needs, and the equipment 

requirements for installation. A cubic yard of UHPC is estimated to cost 13-17 times 

more than that of conventional concrete in North America [4] [17] due to the stringent 

performance requirements that demand expensive materials and processing. Specialized 

tools and considerations for the installation of UHPC include high energy mixers to 

properly mix the constituent materials in such low w/b ratios, the consistent distribution 

and orientation of fibers, as well as rigid curing requirements to maximize the strength 

and durability [17]. Several studies have addressed UHPC mixture design from the 

viewpoint of maximizing particle-packing in order to produce the greatest gains in 

durability and strength [18] [19] [20]. Efforts to reduce the cost [6] and increase the 

sustainability of UHPC  through the incorporation of readily available materials such as 
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river sand to substitute for quartz sand [21], pozzolanic industrial wastes like silica 

fume/microsilica from silicon production, fly ash from coal burning power plants, or 

mine tailings [22] have yielded UHPCs with high compressive strength [23]. 

Incorporating so many different materials to form a cohesive cementitious binder 

introduces specific challenges. The major consideration when producing UHPC is to 

ensure mechanical homogeneity, maximum particle packing density and minimum size of 

flaws [17]. The following sections address the cementitious replacement materials 

included in the UHP binders used in this study, and provides an overview of the effects of 

their incorporation into the microstructure and the properties of the resulting composite.   

2.2.2 Fly Ash 

Fly ash is an amorphous material produced as a by-product of coal-burning power 

generation plants. ASTM C618-19 identifies two main classes of fly ash: Class C with 

greater than 18% calcium oxide leading to cementitious and pozzolanic properties, and 

Class F with less than 18% calcium oxide with only pozzolanic properties [24]. Different 

types of fly ash are generated by differences in burning equipment and types of coal [24]. 

Cementitious materials react with water to form hard and stiff products such as calcium 

silicate hydrate (C-S-H) and calcium hydroxide (CH). A pozzolanic material reacts with 

cement hydration products, especially calcium hydroxide (CH), to produce additional C-

S-H gel with a decreased Ca/Si ratio [25] [26] [27]. It is well known that reducing the 

Ca/Si ratio increases the elastic modulus, strength, and hardness of the C-S-H gel [25] 

[28] [29]. In general, Class F fly ash can be used to replace 10-30% of cement by mass 
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while Class C fly ash can be used in higher proportions [4]. Both types of fly ash are 

indicated in the ternary diagram of CaO-Al2O3-SiO2 in Figure 2-1 [30].  

Figure 2-1: CaO-Al2O3-SiO2 ternary diagram of cementitious materials and hydrate 

phases from the work [31] adapted from [27]. 

 

When incorporated into cementitious mixtures, fly ash reduces the heat of hydration [32], 

delays setting [23] [32] [4], and acts as a filler at early ages. Fly ash has a greater effect 

on the long-term compressive strength due to its delayed reaction and pozzolanic activity 

[32]. Although fly ash demonstrates large variability in its chemical composition due to 

types and sources of coal and processing, the components of glassy (amorphous silica) 

phase (SiO2, Al2O3, and Fe2O3) have a high correlation with the pozzolanic activity and 
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consequently the compressive strength [32]. The aluminates in fly ash also participate in 

other cementitious reactions such as its reaction with limestone to form carboaluminate 

phases [33] [34] [35].  

2.2.3 Microsilica 

Microsilica, or silica fume, is generated as a by-product of silicon metal manufacturing 

and is comprised almost entirely of SiO2. The microsilica particles are very fine, an entire 

magnitude smaller than that of OPC [4], such that its incorporation densifies the 

microstructure, but also causes potential agglomeration and decreases the workability [4] 

[19]. Microsilica is a highly reactive with a small particle size, and thus large surface 

area, which serves as nucleation sites for high pozzolanic activity [27] [19]. These 

nucleation sites outside of clinker grains generate early pozzolanic reactions to consume 

CH and produce additional C-S-H [27]. The addition of microsilica surface area for 

hydration is used to off-set the retardation effects of fly ash or superplasticizers needed to 

achieve functional workability in UHP mixtures [19]. Scanning electron microscope 

(SEM) images of microsilica are shown in Figure 2-2 to demonstrate their size and 

morphology. The refined microstructural packing from microsilica incorporation leads to 

improved moisture and ionic transport resistance of concrete [23]; however issues such as 

additional air entrapment due to the increased viscosity when combining components 

needs to be carefully considered [19].  
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(a) 

 

(b) 

Figure 2-2: Scanning electron microscope (SEM) images in secondary electron (SE) 

mode of microsilica (silica fume) at: (a) 6500x magnification and (b) 35000x 

magnification. 
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2.2.4 Limestone 

Limestone is an abundant mineral comprised primarily of CaCO3 and is commonly 

employed as an “inert filler” in UHPCs (though they demonstrate minor reactivity under 

favorable chemical conditions) to reduce the OPC content, reduce capillary porosity, and 

improve workability. Use of limestone with a fineness similar to or lower than the 

average OPC particle size has been shown to improve workability [36] [37]. At higher 

dosages (in excess of 15% by mass of cement), limestone has a dilution effect that can 

reduce the strength of the cementitious binders [35]. The term “inert filler” only applies 

to limestone in cementitious systems lacking sufficient alumina to react with the calcium 

carbonate [35] [33]. Limestone is known to react with hydratable aluminate phases from 

reactants such as tricalcium aluminate (C3A) in OPC, and especially pozzolanic 

admixtures like metakaolin and fly ash [35], to produce stable carboaluminate phases 

such as calcium monosulfoaluminate, calcium hemicarboaluminate, and calcium 

monocarboaluminate [36] [35]. The carboaluminate phases are reported to possess 

similar stiffness as limestone or microsilica particles [38, 39] and consumes portlandite 

(CH) [33] [35], thereby leading to an increase in the overall compressive strength and 

stiffness of the cementitious mixture. The effects of limestone as a filler or 

microstructural enhancer in UHP binders is highly dependent on the particle fineness and 

its proportion relative to hydratable aluminates [40]. 

2.2.5 Superplasticizers 

Superplasticizers are the chemical admixture used to dramatically increase the flowability 

of cementitious mixes. A superplasticizer is an individual or mix of polymers which are 

absorbed into the surface of particles and carry a negative surface charge [4]. This 
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negative charge around the surface of particles repels water molecules and therefore 

increases workability. Adsorption of admixtures onto the particle surfaces depends on the 

composition and surface are of particles [4]. Typically, superplasticizer is added by ~5% 

by mass of binder. Careful consideration and note of how much superplasticizer is added 

must be made when developing and comparing cementitious mixture designs. 

2.3 METHODS 

2.3.1 Materials, Mixing, and Curing 

The binder contents in the UHP pastes, addressed in detail in each individual chapter, are 

based on previous studies at ASU [18, 41] that proportioned a family of UHP binders 

based on optimal particle packing, rheology, and substantial clinker factor reduction. The 

mixing procedure for UHP pastes followed that used in previous authors [18] and ASTM 

C1738, using a high-speed shear mixer and blending all dry powders prior to wet mixing. 

The procedure is briefly summarized as follows: (i) adding all water and superplasticizer 

to the mixer, (ii) mixing at 4000 rpm for ~30 seconds and carefully adding the blended 

dry powders to the mixer, (iii) mixing at 12,000 rpm for ~30 seconds, (iv) allowing the 

paste to rest for 2 minutes, and (v) final mixing at 12,000 rpm for ~90 seconds. Following 

mixing, the paste was poured into plastic test tubes 2.5 cm (1 inch) in diameter, sealed, 

and allowed to cure for the desired time period.  

2.3.2 Mercury Intrusion Porosimetry (MIP) 

The pore structure of the pastes was evaluated using Mercury Intrusion Porosimetry 

(MIP). In this method, crushed paste samples are filled with mercury at high pressures to 

quantify the size and volume of pores. For MIP experiments, small pieces of the paste 

were weighed and placed in the low-pressure chamber of the porosimeter (Quantachrome 
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Instruments Pore Master) pictured in Figure 2-3. The sample was filled with mercury 

starting from ambient pressure to 345 kPa (60 psi). The sample was then placed in the 

high-pressure chamber and the applied pressure increased to 414 MPa (60,000 psi). The 

pore diameter, d, as a function of the intrusion pressure was obtained from the Washburn 

equation [42] as: 

𝑑 =
−4𝜎cos (𝜃)

Δ𝑃
           (1) 

where ΔP is the difference in the pressure between successive steps (MPa), θ is the 

contact angle between mercury and the cylindrical pore, taken as 130° in this study, and σ 

is the surface tension between mercury and the pore walls, taken as 485 mN/m [43] [44] 

[45]. The critical pore size, indicative of the percolating pore size of the material, was 

obtained from the peak of the differential pore volume curve. The porosity of the sample, 

φ, was determined from the cumulative volume of mercury intruded and the bulk density 

of the sample, obtained from helium pycnometry.  

Figure 2-3: Quantachrome Instruments Pore Master mercury intrusion porosimeter 

utilized in this study. 
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2.3.3 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis is the technique of heating a powdered sample at a controlled 

rate to measure the change in mass as the various components decompose at different 

temperature ranges. The mass loss profile plots the change in mass with respect to the 

temperature to identify the presence and relative mass of reaction products. TGA was 

performed on cement paste samples to primarily determine the calcium hydroxide (CH) 

and calcium carbonate contents [46]. The tests were performed in an inert N2 

environment at a gas flow rate of 20 ml/s. The samples were heated from ambient 

temperature to 900oC at a heating rate of 15oC/min in a Perkin Elmer simultaneous 

thermal analyzer (STA 6000) pictured in Figure 2-4. 

 

Figure 2-4: Perkin Elmer simultaneous thermal analyzer (STA 6000) utilized in this 

study. 

 

2.3.4 X-Ray Diffraction (XRD) 

X-Ray Diffraction (XRD) is the study of the crystalline structure of materials using the 

angle at which incoming X-rays are diffracted. XRD spectra were obtained using a 
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Siemens D-5000 Powder X-ray Diffractometer utilizing a Cobalt (Co) K radiation with 

2 mm and 0.2 mm slits to identify the crystalline phases in the samples, pictured in Figure 

2-5. Following previous studies of cement pastes, the scanning angle (2θ) range used was 

from 10o to 80o with a step size of 0.02o and 1 second per step [47, 48, 49], with MDI 

Jade 9 software used for peak identification.  

 

Figure 2-5: Siemens D-5000 Powder X-ray Diffractometer utilized in this study. 

2.3.5 Nanoindentation 

Nanoindentation is a testing method to characterize the nanomechanical response of 

materials or material phases. Here, a tip of known geometry penetrates the surface of a 

sample and tracks the applied load and depth of penetration into the sample. In studies of 

cementitious materials, grids of nanoindentation points were used to characterize the 
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hardness and linear elastic stiffness of cement hydration products [50] [51] [52] with 

phase identification determined via statistical nanoindentation [50] [51]. Figure 2-6(a) is 

a photograph of the Ultra Nanoindentation Tester (UNHT3; Anton Paar) utilized in 

testing and Figure 2-6(b) is a close-up of nanoindentations made on the surface of a 

polished UHP binder by the diamond tipped Berkovich indenter.   
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(a) 

 

(b) 

Figure 2-6: (a) Anton Paar Ultra Nanoindentation Tester (UNHT3) utilized in this study 

and (b) 200x magnification microscope image of a microindent (lower left) and part of a 

nanoindentation grid (top right) on a polished UHP paste surface. 

 

𝟐𝟎𝝁𝒎 
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Use of nanoindentation to characterize the hardness and Young’s modulus of cement 

hydration phases has been performed on a variety of cementitious mixtures. Several 

studies have focused on the identification and characterization of hydration products of 

OPC [52] [53] [54] [55]. Nanoindentation has also been used to characterize the changes 

in mechanical properties of OPC pastes undergoing heat treatment [56]. Similarly, 

nanoindentation has also been used to characterize the hydration products of systems 

proportioned using different w/b [57]. Nanoindentation has also been used in studies 

incorporating different mineral admixtures that partially replace cement. For example, 

cement pastes with fly ash replacement of cement at 20%, 30%, and 60% by mass were 

studied [58] [59] [60]. Nanoindentation of cements using slag as a 50% and a 60% 

replacement by mass were addressed as well [60] [61]. Silica fume replacement of 

cement by mass ranging from 8% to 32% was also studied using nanoindentation in 

previous studies [59] [62] [63]. 

In most of these studies, the four most commonly identified hydration phases via 

nanoindentation were low density (LD) C-S-H (also called outer product C-S-H), high 

density (HD) C-S-H (also called inner product C-S-H), ultra-high density C-S-H mixed 

with CH, and unhydrated cement clinker. Nanoindentation has also been used to 

characterize the constituents of Portland cement powder including clinker, alite, belite, 

tricalcium aluminate, and calcium aluminoferrite [64]. The hardness and Young’s 

Modulus of unreacted fly ash particles in blended cement pastes have also been 

investigated by nanoindentation [58] [59]. 

Indentations are made by applying a load to the Berkovich three-sided pyramid 

nanoindenter tip with a known Poisson’s ratio and Young’s Modulus at a constant rate 
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until a determined maximum applied load or maximum displacement into the sample is 

achieved [50] [51]. The load is held for a certain time, then unloaded at a constant rate. 

The load applied to the tip and the subsequent displacement into the sample is plotted, 

such as shown in Figure 2-7. 

 

Figure 2-7: Ideal force-displacement curve generated during indentation, taken from the 

work [65]. 

According to Oliver and Pharr, the linear unloading portion of the force-displacement 

curve alongside the contact area of the tip to the sample surface is used to calculate the 

hardness (H) and the effective Young’s Modulus (Eeff) [65] [66]. The hardness is 

calculated as: 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴
                 (2) 

Where Pmax is the maximum load applied and A is the contact area of the indenter into the 

surface, not to be confused with the residual area left after the indenter has been removed 

from the surface. The effective linear elastic Young’s Modulus is found as:  
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𝐸𝑒𝑓𝑓 =
√𝜋

2
∗

𝑆

√𝐴
                 (3) 

Where S is slope of the unloading curve [65] [66]. The effective Young’s Modulus is 

related to the known Poisson’s ratio and Young’s modulus of the tip, as well as an 

assumed value for the Poisson’s ratio of the material. 

1

𝐸𝑒𝑓𝑓
=

1−  𝜐2

𝐸
+

1 − 𝑣𝑖
2

𝐸𝑖
                 (4) 

Where 𝜐 is the Poisson’s ratio of the sample, 𝜐𝑖 is the Poisson’s ratio of the nanoindenter, 

and Ei is the Young’s Modulus of the nanoindenter [65] [66].  

Oliver and Pharr developed the numerical method to estimate the contact area of the tip A 

as: 

𝐴 = ∑ 𝐶𝑛(ℎ𝑐)2−𝑛8
𝑛=0                 (5) 

Where 𝐶𝑛 are the constants by curve-fitting and hc is the depth of the indent into the 

material [65] [66]. The total depth of the indent, h, is equal to: 

ℎ = ℎ𝑐 + ℎ𝑠                 (6) 

Where hc is the depth of the indent into the material and hs is the surface displacement 

until the edge of the indent.  

2.3.6 Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray 

Spectroscopy (EDS) 

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) 

are two common materials characterization techniques based on subjecting the sample to 

high-energy electrons and detecting the resulting signals. In the case of SEM possible 

modes include secondary electron (SE) detection as well as back-scattered electron (BSE) 

detection. Secondary electrons result from the inelastic scattering of the primary and 
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backscattered electron beams and are used to generate detailed surface topographical 

images. Backscattered electrons are generated from the elastic scattering events between 

the source beam and the sample, resulting in a greater energy and larger interaction 

volume, but lowered spatial resolution compared to SE [67]. An important feature of BSE 

imaging is the brightness contrast, which is proportional to the average atomic number of 

the phase [67] [68]. The backscatter coefficient, a measure of the backscattered electron 

fraction, is estimated to have a cubic relationship to the pure element atomic mass [67]. 

For multi-element phases, the backscatter coefficient may be estimated using the mass 

fractions of each element to determine the contrast between constituents. In cements, the 

contrast between alite and belite is strong, while the contrast between belite and 

tricalcium aluminate is too low to distinguish between the two phases [67] [68].  

In energy dispersive X-ray spectroscopy (EDS) analysis, the source electron beam is 

impinged on the sample and the characteristic X-rays resulting from the radiative 

electronic transition within the sample are detected. The energy of the X-rays returning 

from the surface are mapped, generating a set of statistical curves within each pixel [68]. 

These curves are well-studied, and their relative heights and energies are known to 

correspond to different elements. Elements can be quantified from EDS images using 

standards of known chemical composition; otherwise the analysis is qualitative in nature 

and represents the relative abundance of each element throughout the sample. Several 

studies have utilized nanoindentation paired with qualitative and/or qualitative SEM-EDS 

analysis in order to establish the chemical composition of each location within the 

nanoindentation grid [51] [59] [69] [70] [71]. The technique is destructive to the surface 

of the sample; therefore after scanning over the grids they are effectively destroyed, and 
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further scanning will reflect the composition below that of the interaction volume. The 

interaction volume and escape depth of the signal X-rays are dependent on the 

microscope parameters as well as the sample density and composition [69] [72]. It has 

been shown through Monte-Carlo simulations that, for both clinker and C-S-H phases, 

most of the characteristic X-rays escaping the material using a 15 keV accelerating 

voltage at a 15 mm working distance are generated within a depth of 2 μm [69] [72]. 

Continuous spectrum background (signal noise) is inherently present in EDS mapping, 

leading to low elemental intensities even in spots where the element is not present [68]. 

This necessitates an understanding of the relative elemental intensities that can occur in 

cement-based materials to accurately interpret the EDS maps. In terms of sample 

preparation, cement is a non-conductive material, and thus a conductive coating such as 

carbon or gold-palladium must be applied to the sample to avoid charge build-up from 

the electron source beam that would skew the picture quality and EDS results [73]. 

Photos of the Nanoimage TableTop - SNE-4500M Plus SEM used during 

experimentation are shown in Figure 2-8(a) with a picture of the sample stage during 

calibration shown in Figure 2-8(b). 
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(a) 

 

(b) 

Figure 2-8: (a) Nanoimage TableTop - SNE-4500M Plus SEM utilized during 

experimentation and (b) image of SEM sample stage during calibration with cement paste 

sample loaded. 
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2.3.7 Sample Preparation for Nanoindentation and SEM/EDS 

Sample preparation is key to ensure that the nanoindentation results follow the analysis 

assumption that the sample surface is perfectly smooth [50] [51], and that the electrons 

could successfully reflect back to the detector. The typical procedure for sample 

preparation commonly reported in several studies was followed in this study as well. 

First, the cement paste sample was cut to a certain height so that the sample was easy to 

polish and would fit into the testing equipment. Next the sample surface was sanded by 

hand or by polishing machine. Polishing was completed in ascending grit size from 400 

grit to 1200 grit, then 9 m down to 1 m using a combination of silicon carbide papers 

and diamond particles suspended in oil [50]. Between grit sizes, the samples were 

ultrasonicated in a bath of isopropyl alcohol (IPA) to clean any lingering cement particles 

that could potentially scratch the surface in subsequence polishing. Figure 2-9(a) features 

the glassy, polished surface of a UHP binder sample post-polishing. Cement hydration 

was suspended by storing the sample in IPA at all times [74]. Storage in IPA ensures that 

the cement sample did not continue to hydrate, which would increase the surface 

roughness and change the volume fraction of hydration products in the sample.  

Minimizing the topography of the sample surface and maintaining a slope less than or 

equal to 3% in all directions will prevent damage to the nanoindenter tip and fulfill the 

analysis assumption of a perfectly smooth surface. Evaluation of the sample surface was 

performed qualitatively by visually noting the reflectivity and the presence of scratches 

on the surface. The more reflective the surface and the fewer the visible scratches, the 

more acceptable the surface is to place a nanoindentation grid. Quantitively, the root 

mean square roughness number (RMS) was determined using atomic force microscopy 
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(AFM). An important caveat is that RMS is highly dependent on the size of the area 

being scanned, such that the RMS of a square of side length 10 m will be very different 

from the RMS of a square of side length 5 m scanned over the same area [51]. 

Using microscopes with 5x, 20x, and 50x magnifications, the location of the 

nanoindentation grid placement was determined. It was necessary to create physical 

indicators on the sample surface, such as a scratch, to indicate the grid location. Without 

a proper map of measurements and landmarks on the surface, locating the 

nanoindentation points again in the SEM/EDS would be nearly impossible. Finally, to 

prevent static charge on the surface of the non-conductive cementitious surface, AuPd 

sputter coating was applied prior to scanning in the SEM/EDS. Figure 2-9(b) features a 

typical cement paste sample after polishing, grid locating, and sputter coating.  



32 

 

 

(a) 

 

(b) 

Figure 2-9: UHP paste sample: (a) after polishing at 1200 grit and ultrasonication, and  

(b) after marking grid location, carbon taping to the sample holder, and AuPd sputter 

coating. 
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2.3.8 Atomic Force Microscopy (AFM) 

Following surface preparation procedures, surface roughness was measured using Atomic 

Force Microscopy (AFM). AFM is a surface measurement technique most commonly 

used to map the topology or calculate the interatomic forces of a sample [75]. In AFM, a 

laser is reflected off a cantilever tip that is in physical contact with the sample (contact 

mode) or vibrating at a set frequency just above the sample surface (tapping mode). 

Given the mechanical properties of the cantilever and the feedback from the laser, a 3D 

topographical map of the surface can be generated to measure the average roughness of 

the sample surface. Past cementitious studies have employed AFM prior to 

nanoindentation [50, 76, 77] to quantify the root mean square roughness (Sq) and ensure 

that depth of the indentation will be at least 5 times greater than Sq [78]. This roughness 

criterion, first proposed in [76], assures that the Hertzian contact (two smooth spherical 

surfaces with different radii and elastic constants in contact) assumed by nanoindentation 

analysis holds true [65] [66]. AFM in dynamic (tapping) mode was performed in this 

study using a Nanosurf Flex AFM inside of vibration dampening container, pictured in 

Figure 2-10(a). The pyramidal silicon tip, pictured on a UHP sample surface in Figure 

2-10(b), was calibrated using the Sader method [79]. 
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(a) 

 

(b) 

Figure 2-10: (a) Nanosurf Flex AFM with a cement paste sample (b) Microscope side-

view of the AFM tip (circled in red) on a UHP paste polished surface at 10x 

magnification (field view is 5 x 3 mm).  
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2.4 MACHINE LEARNING  

2.4.1 Background 

Machine learning (ML) is a set of mathematical and computational techniques to analyze 

a large set of data, gaining new insights into patterns, predicting outcomes, and 

optimizing design parameters [8]. Empirically based, ML depends on a large set of 

reliable data instead of modeling underlying physical mechanisms to make predictions 

and decisions. In cases where large datasets are not available or are costly to acquire, the 

machine learning technique of transfer learning can be used to train an algorithm 

originally on a source set with a sufficiently large number of data points, and later 

transfer the algorithm to a target set of data with less points [80] [81]. Machine learning 

approaches are divided into three board categories depending on the type of information 

available and the desired output. Supervised ML is when both input and output data is 

available and the algorithm is being trained to make a prediction based on all the 

available information [82]. Unsupervised learning is used when the goal is to discover 

patterns and relationships between the input variables, often taking the form of clustering 

data into groups [15]. Finally, reinforcement learning is a ML operating in a dynamic 

environment seeking to perform operations that maximize a “reward” signal, reinforcing 

that behavior [83]. Examples of RL applications include autonomous vehicles learning 

how to drive or spelling auto-correction dictionaries.  

Material science investigations into the process-structure-property-performance chain 

using machine learning dates to the early 2000s through the quantification, classification, 

optimization, evolution, and reconstruction of microstructures and mechanical properties 

[8] [84]. In recent years, materials-based machine learning efforts have focused on 
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linking images to microstructural properties, specifically through the generation and 

sampling of 2D [85] and 3D representative volume elements [86]. In the cementitious 

sciences, a number of recent studies have addressed the applications of machine learning 

as a viable prediction tool for the compressive strength of concrete given the input 

material and mixture proportions [11] [87] [88], including cements incorporating fly ash 

[9] [82] [89]. Machine learning has not been adequately applied to innovative concrete 

types such as UHPCs, self-healing concrete, geopolymers, etc. [90], which this study 

aims to accomplish through selected, focused utilization of ML to UHP binders. Some of 

the most common machine learning techniques available to study materials mechanics 

include support vector regression (SVR) [9, 14, 10], gaussian process regression (GPR) 

[12, 91], decision tree/forest ensembles [11] [87] [9], and artificial neural networks [11] 

[9] [82] [89]. The focus of this study will be on ensemble and ANN machine learning 

models, whose applications and limitations are detailed below. 

2.4.2 Forest Ensembles 

Forest ensembles are based on the architecture of a decision tree and follow a sequence of 

input feature splits to predict outputs [87] [9]. A basic form of forest ensemble is the 

Random Forest (RF), in which the best split of the data into branches and nodes is 

determined by considering all of the input features and checking a criterion, such as 

mean-squared error, to select the most discriminative threshold [92, 87]. Each individual 

decision tree in the RF ensemble does not use the entire set of training data, but a 

bootstrap sample made from subsets of the training data with replacement [87]. Another 

forest ensemble is the Extra Trees (ET) regressor in which the splits are drawn at random 

for each input feature and the best split, as measured by the chosen criteria, is selected as 
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the splitting rule [92, 87]. In the ET regression model, the entire dataset is incorporated 

into each individual tree [92]. The prediction results of the individual trees are averaged 

to produce the output prediction in the RF and ET regressions. Figure 2-11 features 

flowcharts depicting the differences between the random forest (Figure 2-11(a)) and extra 

tree (Figure 2-11(b)) ensemble methods. In a Gradient Boosted Tree (GBT) ensemble, an 

initial tree is trained with the entire data set using all available features. All subsequent 

trees in the forest are trained to minimize the residual (least squares error) between the 

predicted and actual values of the previous tree via steepest gradient descent [9, 92]. The 

final prediction is calculated as the weighted sum of the predictions of each tree, where 

for each tree beyond the first, the prediction is multiplied by the learning rate, with 

typical values between 0.01 and 0.1 [9, 92]. A specialized form of the GBT is Extreme 

Gradient Boosted (XGB) tree [93]. XGB performs shrinkage and column subsampling 

techniques to prevent overfitting between boosted trees and additionally offers scalability 

through parallel tree boosting (efficient computing regardless of data size) [93].   
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(a) 

 

(b) 

Figure 2-11: Flowcharts of: (a) Random forest (RF) tree ensemble, and (b) Extra Trees 

(ET) forest ensemble. Based on an illustration from [94]. 
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2.4.3 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANN) mimic synaptic response in vertebrate brains and are 

organized into an input layer, hidden layer(s), and an output layer [95]. ANNs are some 

of the most popular among researchers for their ability to map complex non-linear 

relationships between multiple variables [8]. Between layers, neurons are fully connected 

to every other neuron. Each connection has a unique weight, w, relating the two neurons. 

The number of input layer neurons is equal to the number of inputs; the number of output 

layer neurons is equal to the number of outputs; and there can be any number of neurons 

in the hidden layer(s). An example schematic of a full-connected ANN is shown in 

Figure 2-12. The ANN can be shallow with only a few hidden layers, or deep with many 

layers. Generally, networks with > 10 hidden layers are considered deep networks [83]. 

The value within each neuron of the hidden layer(s) and output layer depends on the 

previous neurons, the weights, and the chosen activation function [95]. 

Utilization of the gradient of the previous iteration to train the weights of the ANN is 

known as backpropagation. Backpropagation is the backbone of weight optimization 

schemes, such as the RMSprop optimizer with an adaptive learning rate formula [96]. 

This learning rate is used to automatically adjust the initial learning rate for each 

parameter when generating the updated weights. 

As indicated in the equations above, neural networks feature many fitting parameters that 

allow them to predict nonlinear interactions. A disadvantage of neural networks is the 

potential for over-fitting the data, or training the weights to precisely match the training 

data set and render the algorithm unable to accurately predict results of the test data set 

[9]. To minimize over-fitting, a dropout rate can be incorporated into the ANN [97]. A 
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dropout rate is a hyperparameter probability that any neuron and its connections will be 

temporarily excluded from the network [97]. While testing, the entire neural network is 

used, but the connection weights are multiplied by the dropout rate to combine the effect 

of the thinned-out training networks. More details on how ANNs are implemented to 

specific problems of interest can be found in Chapters 5, 6, and 7. 

Figure 2-12: Schematic of a typical fully-connected feed-forward artificial neural 

network (ANN). 

 

 

2.5 SUMMARY 

This chapter reviewed key studies and state of the art work on ultra-high performance 

(UHP) binders, cementitious material microstructural characterization techniques, and 

machine learning (ML) algorithms for understanding the process-structure-property-

performance chain in materials science. The different cement replacement materials used 

in this study, along with their effects on the microstructural development of UHP binders, 

were addressed. Sample preparation methods and equipment were discussed. Lastly, the 

principles and application of machine learning methods as applied to materials 

characterization were discussed.   
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CHAPTER 31 

3 ELUCIDATING THE NANO-MECHANICAL BEHAVIOR OF MULTI-

COMPONENT BINDERS FOR ULTRA-HIGH PERFORMANCE CONCRETE 

3.1 INTRODUCTION 

Ultra-high performance concrete (UHPC) is becoming more prominent in infrastructural 

construction because of its wide-ranging benefits: high compressive and flexural strengths 

result in smaller cross-sections and material savings; improved ductility enables efficient 

structural design; and enhanced durability provides beneficial attributes to service-life and 

sustainability [18]. UHPC binders employ a very low water-to-binder ratio (w/b) and a 

high volume of reactive powders to ensure efficient space filling and porosity reduction 

[18]. The attributes that contribute to a denser and stiffer microstructure are responsible for 

its enhanced strength and durability. The demand for a denser microstructure has 

traditionally resulted in the use of very high amounts of cementing materials and fine fillers 

(including highly reactive supplementary cementing materials such as microsilica and 

metakaolin, and expensive fine fillers like ground quartz) [19] [98] [99] [20], thereby 

increasing the cost of UHPC and impacting large-scale adoption. Several recent efforts 

have focused on tailoring the UHPC microstructure with commonly available cement 

replacement materials and fine fillers in order to make it more cost-effective, sustainable, 

and durable [21] [100] [36] [41] [101]. The use of coarse aggregates is not common in 

UHPC, but recent studies have reported the development of UHPC with coarse aggregates 

to counter issues relating to volumetric stability, given the high paste content in UHPC [41] 

 
1 This chapter is derived from the publication: E. L. Ford, A. Arora, B. Mobasher, C. G. Hoover and N. 

Neithalath, "Elucidating the nano-mechanical behavior of multi-component binders for ultra-high 

performance concrete," Construction and Building Materials, vol. 243, p. 118214, 2020. 
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[102] [103]. The understanding that physical particle packing effects of binding materials 

and fillers/aggregates are as important (or even more important) as the ultimate degrees of 

reactivity has resulted in scientific binder selection methods that comprehensively account 

for microstructural packing using a stochastic packing model with periodic boundary 

conditions [18]. This ensures a dense microstructure even at a low water content that does 

not favor optimal reaction product formation. The microstructure of UHPCs thus formed 

are highly heterogeneous, with several reaction products and unreacted particles. The UHP 

binders that are discussed in this study, which have been shown to be significantly cheaper 

compared to proprietary mixtures and other available alternatives [41], utilize cement 

replacement levels of 30% or 50% (by mass), with the replacement materials being fly ash, 

microsilica, and fine limestone powder. This leads to a highly heterogeneous, multi-phase 

microstructure.  

Statistical nanoindentation is a well-accepted technique to probe microvolumes of 

cementitious materials to determine the intrinsic mechanical properties of the different 

phases present and their volume fractions [21] [59] [50], including UHPCs [51]. The use 

of micromechanics-based models on nanoindentation data coupled with colloid-based 

models for morphological arrangement of C-S-H have also been used to identify the local 

packing densities (and thus the porosities) of the different C-S-H phases [57] [104]. 

Nanoindentation coupled with chemical mapping has also been used to relate the chemical 

constitution of the phases to their mechanical properties [69] [70] [105]. The use of 

nanoindentation to determine the influence of cement replacement materials such as fly 

ash, slag, and silica fume on the nanoscale response of pastes has also been reported [58] 

[59] [60] [61] [62] [63]. In this paper, statistical nanoindentation is employed on two UHPC 
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pastes with high volume cement replacement by multiple, commonly available materials. 

The presence of multiple/mixed phases attributable to different starting materials with 

differing reactivities render the matrix highly heterogeneous and complex to analyze. Thus, 

a comprehensive  understanding of the micro-/nano-structure of such UHPCs require 

elucidation of the following aspects, which is carried out in detail in this paper: (i) the 

influence of a combination of very low w/b and high volume of cement replacement 

materials (including reactive fillers) on the nanomechanical properties of the constituent 

phases and their evolution, (ii) the presence of multiple mixed phases including an ultra-

high stiffness (UHS) phase that is observed to be dominant in low w/b systems, and (iii) 

upscaling of the elastic modulus from nanomechanical properties and the influence of 

material heterogeneity on predictive capability.  

3.2 EXPERIMENTAL PROGRAM 

3.2.1 Materials and Mixtures 

Type I/II ordinary Portland cement (OPC) conforming to ASTM C 150, Class F fly ash 

conforming to ASTM C 618, limestone powder conforming to ASTM C 568, and 

microsilica conforming to ASTM C 1240 were utilized in the preparation of ultra-high 

performance cementitious pastes. Limestone powders with two different median particle 

sizes (1.5 µm and 3.0 µm) were used to ensure efficient packing. The chemical composition 

of the source materials is shown in Table 3-1, and their particle size distributions, extracted 

from laser particle size analysis, in  

Figure 3-1. A polycarboxylate ether (PCE)-based superplasticizer with a solids content of 

43% was used to ensure workability of the very low w/b pastes.  
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Table 3-1: Chemical composition and specific gravity of the powder materials used in 

this study. 

Components of the 

binder 

Chemical composition (% by mass) Specific Gravity 

(𝑔/𝑐𝑚3) SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI 

OPC 19.60 4.09 3.39 63.21 3.37 3.17 2.54 3.15 

Fly Ash (F) 58.40 23.80 4.19 7.32 1.11 3.04 2.13 2.24 

Microsilica (M) > 90.0 - - < 1.0 - - - 2.18 [59] 

Limestone (L), 1.5 

µm 

> 97% CaCO3 
2.7 [106] 

Limestone (L), 3 

µm 

 

 

 

 

 

 

 

 

Figure 3-1: Particle size distribution (PSD) of the starting materials. The median size in 

microns is shown in parentheses. The PSD of microsilica is not shown, but the median 

size is < 0.5 𝜇𝑚 in a well-dispersed state. 

Three different paste mixtures – two UHP pastes (w/b   0.20) and a companion OPC paste 

(w/c = 0.40) were prepared. The binder contents in the UHP pastes were based on previous 

work of the authors [18] [41] that proportioned a family of UHPCs based on optimal 

particle packing, rheology, and substantial clinker factor reduction. One quaternary binder 

with 17.5% fly ash, 7.5% silica fume, and 5% limestone (all mass-based) replacing OPC 

for an overall cement replacement level of 30% (termed as F17.5M7.5L5), and a ternary 

binder with 20% microsilica and 30% limestone (mass-based) replacing cement (termed as 
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M20L30), for an overall cement replacement level of 50%, were adopted. Paste samples 

were prepared and cured under moist conditions until their respective testing durations.  

3.2.2 Sample Preparation for Nanomechanical Studies 

The cylindrical paste samples were cut into ~12.5 mm thick discs using a Bruker IsoMet 

1000 saw with a diamond wafer blade after 30  3 days or 90  5 days of moist curing. 

Isopropyl alcohol (IPA) was used as a coolant for the saw to avoid further hydrating the 

cement samples [74]. Samples were sanded and polished successively using Buehler 

CarbiMet silicon carbide abrasive paper of grit sizes 50, 18.3, 10.6, 9, 3, and 1 m to ensure 

desired smoothness for the nanoindentation testing [50] [51]. Between sanding at each grit 

size, the samples were ultrasonicated in a bath of IPA for 5 minutes to dislodge any trapped 

debris from the pores and microstructure. Samples were polished until mirror reflectivity 

was achieved. Following the final ultrasonication, the samples were stored in IPA until 

testing [74].  

3.2.3 Nanoindentation 

Nanoindentation grids were placed on the sample surface using an Ultra Nanoindentation 

Tester (UNHT3; Anton Paar) in areas that appeared to be smooth and free of visible surface 

defects when viewed under the microscope at 5x, 20x, and 50x magnifications. Each 

sample had at least 1250 indents, split among multiple grids in different locations, to ensure 

that the heterogeneous nature of the microstructure was adequately captured. The tests were 

performed in the force control mode with a maximum displacement cutoff of 250 nm (0.25 

µm). This depth corresponded to an interaction volume idealized as a hemisphere with a 

radius of about 4 to 10 times the maximum cutoff, or 1.0 μm to 2.5 μm according to the 

estimates in [69] [107]. The distance between points in the grid was chosen as 5 μm to 
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ensure that the indents minimally influenced each other [50]. The linear loading profile had 

a loading and unloading rate of 12 mN/min with a pause for 5 seconds at the peak load 

when the maximum displacement cutoff was reached. 

The hardness (H) and the effective Young’s modulus (M), were extracted from each of the 

indents according to Oliver and Pharr method [65] [66]. The effective modulus (M) is a 

function of the elastic moduli and Poisson’s ratios of the sample and the tip as shown 

below:  

1

𝑀
=

1−  𝜐2

𝐸
+

1 − 𝑣𝑖
2

𝐸𝑖
                 (7) 

𝜐 is the Poisson’s ratio of the sample, 𝜐𝑖 is the Poisson’s ratio of the diamond tip, which is 

equal to 0.07, and Ei is the Young’s Modulus of the tip, equal to 1141 GPa [65] [66]. 𝜐 of 

different phases was assigned after identifying them in statistical clustering [39]: clinker as 

0.31, HD and LD C-S-H as 0.25, UHS phase as 0.29 (the average of C-S-H and CH), and 

mixed phases as 0.27 (between reactants and products). As part of post-processing, 

abnormal load-depth curves representing surface pores or partial material collapse were 

removed from the data set as described in [59]. 

3.2.4 Pore Structure and Thermogravimetric Analysis   

The pore structure of the pastes was evaluated using Mercury Intrusion Porosimetry (MIP). 

For MIP experiments, small pieces of the paste were weighed and placed in the low-

pressure chamber of the porosimeter (Quantachrome Instruments Pore Master). The 

sample was filled with mercury starting from ambient pressure to 345 kPa (60 psi). The 

sample was then placed in the high-pressure chamber and the applied pressure increased to 
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414 MPa (60,000 psi). The pore diameter, d, as a function of the intrusion pressure was 

obtained from the Washburn equation [42] as: 

𝑑 =
−4𝜎cos (𝜃)

Δ𝑃
                  (8) 

where ΔP is the difference in the pressure between successive steps (MPa), θ is the contact 

angle between mercury and the cylindrical pore, taken as 130° in this study, and σ is the 

surface tension between mercury and the pore walls, taken as 485 mN/m [43] [44] [45]. 

The critical pore size, indicative of the percolating pore size of the material, was obtained 

from the peak of the differential pore volume curve. The porosity of the sample, φ, was 

determined from the cumulative volume of mercury intruded and bulk density of the 

samples.  

Thermogravimetric analysis was performed on the paste samples to determine the calcium 

hydroxide (CH) and calcium carbonate contents. The tests were performed in an inert N2 

environment at a gas flow rate of 20 ml/s. The samples were heated from ambient 

temperature to 900oC at a heating rate of 15oC/min. 

3.3 RESULTS AND DISCUSSIONS 

3.3.1 Pore structure and CH contents of UHP pastes 

The cumulative volume of mercury intruded and the differential pore volumes as a function 

of pore diameter are plotted in Figure 3-2(a) and (b) for the OPC and UHP pastes evaluated 

in this study. The pore volumes and critical pore sizes for the OPC and UHP pastes after 

30 days obtained from mercury intrusion porosimetry are shown in Table 3-2. The 30-day 

porosities of the UHP pastes, calculated from the total volume of mercury intruded and the 

cement paste bulk density of about 2 g/cm3, was found to be in the 14-16% range, which 
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is about half of that of the 0.40 w/c control cement paste. The critical pore sizes are also 

lower for the UHP pastes, owing to the lower w/b and significantly improved particle 

packing through the use of ultrafine materials. 

Table 3-2: Pore volume and critical pore sizes of UHP pastes after 30 days of hydration 

Mixture MIP Porosity (%) Critical pore size (m) 

OPC (w/c = 0.40) 28.22 0.026 

F17.5M7.5L5 14.36 0.019 

M20L30 15.21 0.014 

 

Figure 3-2: (a) Cumulative and (b) Differential pore volume curves after 30 days of 

hydration for the OPC, F17.5M7.5L5, and M20L30 pastes 

 

Thermogravimetric (TG) and differential thermogravimetric (DTG) traces of the OPC and 

UHP pastes after 30 days of hydration are shown in Figure 3-3. The major peak in the 100-

120oC range corresponds to the loss of evaporable water, the one in the 430-500oC range 

corresponds to the dehydration of calcium hydroxide, and the one in the 750-850oC range 

corresponds to the decarbonation of calcium carbonate [18] [36] [46]. The carbonate peaks 

accurately identify the amount of added limestone in the pastes. Even with very high 

a. b. 
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dosages of cement replacement materials (especially for the M20L30 paste), there was 

remnant CH in the pastes, once again primarily attributed to the low w/b in these systems. 

The volume fractions of CH were found to be 0.14, 0.058, and 0.047 for the OPC, 

F17.5M7.5L5, and M20L30 pastes respectively. 

Figure 3-3: TGA and DTG traces of the OPC and UHP pastes at 30 days 

3.3.2 Frequency Histogram of Elastic Properties from Nanoindentation and 

Deconvolution Methods  

A representative frequency histogram for elastic moduli of different phases in the 30-day 

cured F17.5M7.5L5 paste is shown in Figure 3-4(a). If there exists n phases in the 

microstructure with each phase occupying a volume fraction of fi (i = 1…n) such that 

∑ 𝑓𝑖
𝑛
𝑖=1 = 1, the properties of each phase can be approximated by a Gaussian distribution 

with a probability density function (PDF) given as: 

𝑃𝐷𝐹 = ∑ 𝑓𝑖
𝑛
𝑖=1 𝜓𝑖                (9) 



50 

 

Here, 𝜓𝑖 is the property of interest of the phase. It has been shown that the same statistical 

nanoindentation results can be fit using different numbers of phases and volume fractions 

[108]. In this study, a Bayesian Information Criterion (BIC) with negative log likelihood 

method was implemented for statistical deconvolution. Minimizing the BIC determines the 

best number of phases to include [109]: 

𝐵𝐼𝐶 = 2 ∗ 𝑁𝑙𝑜𝑔𝐿 + 𝑝 ∗ log(𝑛𝑢𝑚)             (10) 

Here, num is the number of indentation points, p is the number of identifying parameters 

available at each indentation point (e.g., M and H), and NlogL is the maximum negative 

log likelihood property, which is defined as: 

𝑁𝑙𝑜𝑔𝐿 = −max(log( ∏ 𝑃𝐷𝐹(𝑛𝑖)))𝑛              (11) 

Here, 𝑛𝑖 represents the distribution parameters, in the case of a Gaussian distribution the 

mean and standard deviation, that are iterated to maximize the likelihood function. The 

maximum negative log likelihood estimation was used to find the Gaussian normal 

probability distribution functions that best represent the experimental data. The smaller the 

resulting BIC, the better the data was modeled by the tested number of phases. For each 

input data set, the number of phases that resulted in the smallest BIC varied between 3 and 

5. For example, for the 30-day hydrated F17.5M7.5L5 paste, the use of five phases resulted 

in the smallest BIC. The elastic modulus histogram overlaid with the optimal five Gaussian 

distributions generated from the BIC method for the 30-day hydrated F17.5M7.5L5 paste are 

shown in Figure 3-4(b). Occasionally the clustering algorithm yielded clusters that were 

embedded inside of one another, or unreasonably split the high hardness-stiffness values 

into multiple clusters. In such cases, the clusters were manually grouped together, and the 
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new average stiffness and hardness determined. An iterative Gaussian fitting algorithm 

[110] [111] was also used to statistically deconvolute the data by pre-defining the number 

of phases, however the BIC-negative log likelihood method produced smaller errors and 

thus was chosen to analyze the indentation data in this study.  

Figure 3-4: (a) Frequency histogram of stiffness in the F17.5M7.5L5 paste after 30 days, 

and (b) fits of BIC with maximum log likelihood scheme with 5 phases on the 

experimental indentation moduli 

 

3.3.3 Modulus-hardness Clusters from Nanoindentation and Insights into 

Nanomechanical Response  

Based on the results of the previous section, M-H clusters obtained from BIC and negative 

log likelihood statistical analysis for the companion OPC paste and the different UHP 

pastes are presented here. Table 3-3 lists the mean and standard deviation for the hardness 

and stiffness of each cluster identified as well as their corresponding volume fraction. Due 

to the presence of multiple binders and fillers used in these UHP pastes and a very low w/b, 

the matrices exhibit significant heterogeneity. In general, the reaction products in the UHP 

pastes also have (M, H)  (65.0, 3.0) as reported elsewhere on cementitious systems [63] 

a. b. 
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[56] [52] even though the distribution generally tends towards higher values. This could be 

attributed to several reasons, including the increased density of reaction products and the 

presence of multiple stiffer phases that remain unreacted under conditions of low w/b. 

These attributes are is discussed in detail in the forthcoming sections.  

Figure 3-5 shows the M-H clusters for the 30-day and 90-day hydrated companion OPC 

paste (w/c = 0.40). As expected, there are four phases, corresponding to low density (LD) 

C-S-H, high density (HD) C-S-H, CH, and unhydrated clinker grains. The volume fractions 

of individual phases are also shown in the stacked bar next to the cluster plot. With 

increasing curing duration, the unhydrated cement fraction reduces in volume along with a 

slight increase in the HD C-S-H phase fraction.  

Figure 3-5: M-H cluster for companion OPC paste after: (a) 30 days, and (b) 90 days of 

curing 

 

 

  

a. b. 
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Table 3-3: Elastic properties (M, H) and volume fractions (f) of the different phases in the 

UHP pastes.  F, M, L, and CA denotes fly ash, microsilica, limestone, and 

carboaluminates respectively. 

**Could be an experimental anomaly where the load-displacement curves for a few indents predominantly on 

pores were not identified or removed by the algorithm.  

UHP 

paste 

Phase Extracted values from nanoindentation results Reference values 

M (GPa) H (GPa) f M (GPa) H (GPa) 

30d 90d 30d 90d 30d 90d 

OPC LD C-S-H 19.65±8.18 9.10±3.37** 0.40±0.27 0.39±0.18 0.03 0.03 18.2 [112] 

22.89 [53] 

0.45 [112] 

0.93 [53] 

HD C-S-H 36.85±5.05 33.37±6.54 1.80±0.33 1.55±0.38 0.68 0.72 29.1 [112] 

33.65 [62] 

1.36 [50] 

1.04 [62] 

CH 49.52±9.32 56.15±9.94 2.54±0.76 2.69±0.60 0.18 0.19 39.77-44.89 

[113] 

1.31 [112] 

Clinker 90.48±18.63 87.44±28.50 5.62±2.03 5.72±2.45 0.11 0.06 100.3 [55] 

122.2 [53] 

7.86 [55] 

6.67 [53] 

F17.5M7.5

L5 

LD C-S-H 26.32±4.78 - 1.39±0.36 - 0.22 - 18.2 [112] 

22.89 [53] 

0.45 [112] 

0.93 [53] 

HD C-S-H 37.89±5.20 - 1.66±0.28 - 0.34 - 29.1 [112] 

33.65 [62] 

1.36 [50] 

1.04 [62] 

UHS 44.47±9.01 49.79±8.69 2.15±0.59 2.60±0.59 0.25 0.17 42.8 [57] 1.43 [57] 

Mixed 

(F, M, L, 

CA) 

67.19±13.06 62.73±10.25 3.97±1.06 3.84±0.78 0.10 0.62 75.1 (F) [58] 

72.8 (M) 

[39] 

83.8 (L) 

[114] 

51-80 (CA) 

[38] 

8.47 (F) [58] 

6.0 (M) [65] 

1.98 (L) 

[115] 

Clinker/ 

Unreacted 

100.21±32.80 101.40±28.14 8.12±3.20 9.38±2.68 0.09 0.21 100.3 [55] 

122.2 [53] 

7.86 [55] 

6.67 [53] 

M20L30 UHS/C-S-
H 

44.11±5.06 40.31±6.99 1.85±0.26 1.85±0.48 0.59 0.77 42.8 [57] 1.43 [57] 

Mixed 

(M, L) 

64.10±4.97 

(M) 

66.29±8.36 

(L) 

57.82±11.08 4.48±0.37 

(M) 

3.73±0.49 

(L) 

2.75±0.79 0.14 

0.15 

0.16 72.8 (M) 

[39] 

83.8 (L) 

[114] 

6.0 (M) [65] 

1.98 (L) 

[115] 

 Clinker/ 

Unreacted 

87.42±25.13 96.29±25.46 5.83±2.81 6.21±2.62 0.12 0.07 100.3 [55] 

122.2 [53] 

7.86 [55] 

6.67 [53] 
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3.3.4 Fly ash-limestone-microsilica UHP Paste 

Figure 3-6 (a) and (b) depict the M-H cluster data obtained from the nanoindentation 

experiments for the 30- and 90-day cured quaternary blend UHP pastes containing fly ash, 

limestone, and microsilica. The 30-day cured paste demonstrates the presence of five 

distinct phases based on M and H, while there are only three phases in the 90-day cured 

paste. Most of the experimental indentation moduli of the different solid phases fall in the 

range of 20-130 GPa, as is commonly reported for cementitious materials [51] [56] [52] 

[63]. The hardness values of the constituent phases are somewhat higher than those 

reported for conventional cementitious materials, the reasons for which can be found in the 

discussions below.  

For the 30-day cured paste, at the lower end of the modulus spectrum, three different phases 

are observed, with mean values of M at 26.3 GPa, 37.9 GPa, and 44.5 GPa respectively. 

Based on published literature [50] [51] [53], these can be assigned to low-density (LD) C-

S-H, high-density (HD) C-S-H, and an ultra-high stiffness (UHS) phase respectively. In 

general, the material properties of LD and HD C-S-H are reported to be independent of the 

mixture proportions [50] [51] [53], as was noticed in this study also.  The UHS phase (M 

~ 45-48 GPa, H ~ 2.0 GPa) is reported in literature either as C-S-H with a very high packing 

density (~0.84) [57] [116] or as an intimate nanocomposite of C-S-H and nanoscale CH 

[69] especially in low w/b binders such as the ones used in this work (see a later section 

for a more detailed analysis of the UHS phase). The fact that fine limestone filler (d50 of 

1.5 m or 3 m) and microsilica (d50 < 0.5 m in a well-dispersed state) fills the interstitial 

spaces between the cement and fly ash particles in these mixtures likely enhances the 

formation of such a composite C-S-H with nanoscale CH phase due to the significant 



55 

 

reduction in available capillary spaces that would otherwise enable CH precipitation as 

microcrystals. Indeed, the lower the w/b, the lower the amount of available water to react, 

thereby lowering the C/S ratio of C-S-H gel and increasing the elastic modulus and 

hardness of C-S-H [25] [28]. Similar to the UHS phase, CH from cement hydration has an 

indentation modulus in the 40 to 45 GPa range [39] [113]. As observed from the DTG 

curves in Figure 3-3, CH was present in this UHP paste, however, the volume fraction of 

CH observed was around 0.05. This is significantly lower than the volume fraction of UHS 

phase, and thus the assumption that the UHS phase is a composite of C-S-H and CH is 

likely valid. Specific chemical information at each indentation point can help accurate 

identification of the composition of UHS phases in multi-component binder systems, which 

is the focus of an ongoing work. 

The mixed phase is a combination of multiple phases with a mean M of 67.2 ± 13.1 GPa. In 

highly packed systems with multiple blends and a variety of fine particulates that react at 

varying degrees, it is not uncommon to encounter such stiff and hard phases [69]. The 

carboaluminates formed through the reaction between carbonates from limestone and 

alumina from fly ash [117] [118] [119] [35] have a reported moduli of 51-80 GPa [38]. 

Based on previous work, about 20% of limestone reacts to form carboaluminates in the 

presence of alumina from fly ash [33]. Unreacted fly ash particles, microsilica, and 

limestone used as a filler in UHP pastes have moduli in the 75-80 GPa range [58] [39] [114]. 

It is also possible that some phase interfaces are also captured in the mixed phase. Thus, the 

mixed phase could consist of unreacted fly ash, limestone, microsilica, carboaluminates 

and/or the interfaces between them. Such a possibility, that the phases detected in the M-H 
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plots are a composite response of multiple phases, has been put forth in [21] [70] [62] [110] 

also, and is more significant for multi-component blends displaying higher heterogeneity. 

The grouping at the high end of the M and H spectrum can be attributed to unhydrated 

clinker. The mean stiffness and hardness of this phase are higher than those commonly 

reported for clinker grains, and the spread also is much larger (compared to the spread for 

the OPC pastes shown in Figure 3-5). This could be because there are several high 

hardness/modulus phases in fly ash (such as hematite and mullite; XRD spectra revealed the 

presence of mullite (M  220 GPa) in this fly ash). It has also been shown that accurate 

identification of high modulus phases in a matrix requires a modulus mismatch ratio (the 

ratio between the stiffness of the matrix (𝑀𝑚) and the modulus of the indented 

microstructure (𝑀𝑖)), 𝑀𝑚/𝑀𝑖, between 0.2 and 5 for indentation depths smaller than or 

equal to 10% of the characteristic length scale of the microstructure [21] [110] [63]. In many 

conventional cementitious pastes with “softer” matrices, this condition might not be 

satisfied, and high modulus ratio phases could be ignored [21]. A stiff UHP matrix allows 

the identification of these phases, resulting in values of mean indentation modulus and 

hardness of the unreacted phases that are higher than sometimes reported.  

After 90 days of hydration, the LD and HD C-S-H phases are not detected in this paste. 

Instead, a UHS phase is mainly observed with a mean modulus of 49.8 GPa. Enhanced 

hydration in very low w/b systems is reported to favor formation of an UHS phase [57], 

which is in line with the observation here. The pozzolanic reaction of fly ash/microsilica 

that results in C-S-H gel with a lower C/S ratio could also contribute to this observation. 

Lowering the C/S ratio of C-S-H gel, which is a result of increased silica polymerization, 

is noted to increase the elastic modulus and hardness [25] [28] [120].  
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Between the 30- and 90-day cured specimens, the number of clusters dropped from five to 

three, with a large volume fraction being occupied by the mixed phases. As reaction 

progresses in such multi-component blends through pozzolanic reaction of fly ash and 

silica fume and the preferential deposition of products closer to reacting surfaces in densely 

packed systems, this can be expected. A closer look at the M-H cluster of the 30- and 90-

day cured mixtures also suggests that for M < 65 GPa, about 10%-25% of the reaction 

products show H > 3 GPa, indicating that a multi-phase response is indeed acquired. The 

increased volume fraction of this phase at later ages can also be attributed to this reason. 

The cluster with (M, H) of (101.4, 9.38) can be attributed to unreacted clinker and other 

stiffer/harder phases. The hardness of different phases in the fly ash-based UHP matrix 

discussed above are higher than those reported for conventional cementitious pastes, which 

is contributed by the lower w/b in the UHP paste mixtures and corroborated by a stronger 

matrix [21] [63] [110], since hardness correlates directly with compressive strength. 

Figure 3-6: M-H clusters of fly ash-limestone-microsilica UHP paste after: (a) 30 days, 

and (b) 90 days of reaction. F, M, L, and CA denotes fly ash, microsilica, limestone, and 

carboaluminates. Since this is likely a mixed phase, with accurate identification difficult, 

the foregoing abbreviation is used. 

 

a b
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3.3.5 Microsilica-limestone UHP Paste 

The reaction products in microsilica-limestone UHP paste (with a 50% cement 

replacement) are fundamentally different from that of the fly ash-based system discussed 

earlier. The M-H clusters of this paste after 30 and 90 days of hydration are shown in Figure 

3-7(a) and (b) respectively. A UHS phase is noticed at both ages, with M ~ 42±6 GPa, and 

H ~ 2.0 GPa, and the LD/HD C-S-H phases are absent as independent phases. It is known 

that the incorporation of microsilica or nanosilica increases the volume fraction of high-

modulus C-S-H phases due to enhanced pozzolanic reaction and consequent reduction of 

the C/S ratio [121]. The high microsilica content and the high overall cement replacement 

level could have contributed to denser reaction products even at earlier ages, resulting in 

high M and H values, and the high volume fraction of this phase.  

In the 30-day paste an interesting observation is that there are two distinct clusters with 

similar M values (~65 GPa), but different H values. The lower hardness phase called 

Mixed (L) phase likely corresponds to the mixed phase of limestone powder (which 

constitutes 30% of the starting materials) and some hydrates, while the higher hardness 

phase called Mixed (M) can be attributed to the mixed phase of unreacted microsilica and 

some hydrates. Limestone and microsilica have similar moduli but different hardness as 

shown in  
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 3. These clusters could have been also combined without any appreciable loss of 

accuracy. The size of limestone powder (d50 of 1.5 to 3 µm) and microsilica (d50 < 1 µm) 

lends credence to the fact that the indentation measurements attributed to them are likely 

to be those of mixed phases containing these materials and the hydrated products. After 

90 days of hydration, the UHS phase has a volume fraction roughly equal to the sum of 

the volume fractions of the UHS phase and the Mixed (M) phase in the 30-day sample. 

This is an indication of the reaction of microsilica to further form low C/S C-S-H gel. 

Lowering of C/S is reported to result in a pronounced increase in modulus and hardness 

[25] [28], which can also be noticed in Figure 3-7 (b). The unhydrated cement phase 

reduces in volume fraction from 30 to 90 days of hydration as expected. The Mixed (L, 

M) phase with indentation modulus of ~60 GPa, attributed to limestone powder and some 

hydrates, is also present in this system at a similar volume fraction as Mixed (L) in the 

30-day paste. This points to further consumption of microsilica with time.  

Figure 3-7: M-H clusters of microsilica-limestone UHP paste after: (a) 30 days, and (b) 

90 days.  

a. b. 
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3.3.6 Multi-Step Homogenization for Macroscale Elastic Property Prediction from 

Nanoscale Response 

The use of nanomechanical properties of individual phases in homogenization models to 

predict the macroscale response of composites has been carried out for normal and high-

performance concretes [50] [122]. The analytical homogenization models are based on 

Eshelby’s solution of a strain localization tensor for ellipsoidal inclusions embedded in a 

matrix [123] [124]. This method has been applied regularly in homogenization schemes of 

cementitious materials [123] [124] [125] [126] [127]. The shear and bulk moduli of the 

individual phases are obtained from their elastic moduli and Poisson’s ratios [123] [126] . 

In this study the bulk and shear moduli were determined based on the nanoindentation 

cluster data, converting the indentation modulus to Young’s modulus as shown in Equation 

3 with the following Poisson’s ratios assigned to each cluster based on the major 

component [39]: clinker as 0.31, HD and LD C-S-H as 0.25, and UHS phase as 0.29 (the 

average of C-S-H and CH). For the mixed phase where every indent is a composite 

response across multiple possible phases, the Poisson’s ratio was taken as 0.27, which lies 

between the Poisson’s ratios of the reactants and hydration products. The fine and coarse 

aggregate were considered to have a Poisson’s ratio of 0.25 [128]. The homogenized bulk 

and shear moduli for two-phase materials can be quantified from the individual phase 

properties as shown in Equations 8 and 9. 

𝐾ℎ𝑜𝑚 =
∑ 𝑓𝑖𝐾𝑖(1+𝐴𝑟(

𝐾𝑖
𝐾𝑟

−1))

−1

𝑖

∑ 𝑓𝑖(1+𝐴𝑟(
𝐾𝑖
𝐾𝑟

−1))

−1

𝑖

              (12) 
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𝐺ℎ𝑜𝑚 =
∑ 𝑓𝑖𝐺𝑖(1+𝐵𝑟(

𝐺𝑖
𝐺𝑟

−1))

−1

𝑖

∑ 𝑓𝑖(1+𝐵𝑟(
𝐺𝑖
𝐺𝑟

−1))

−1

𝑖

              (13) 

where fi is the volume fraction of each inclusion phase, 𝐾𝑟 and 𝐺𝑟represent the bulk moduli 

and shear moduli of the reference medium (the matrix), 𝐾𝑖 and 𝐺𝑖 represent the bulk moduli 

and shear moduli of the inclusion phases. The coefficients Ar and Br are given as: 

𝐴𝑟 =
3𝐾𝑟

3𝐾𝑟+4𝐺𝑟
                (14) 

𝐵𝑟 =
6𝐾𝑟+12𝐺𝑟

15𝐾𝑟+20𝐺𝑟
               (15) 

The double-inclusion method [129] [130] based on Eshelby’s solution consists of an 

ellipsoidal inclusion of stiffness 𝑆̃𝐼−1 embedded in another ellipsoidal matrix of stiffness 

𝑆̃𝐼−2, which is further embedded in an infinitely extended homogeneous medium of 

stiffness 𝑆̃. The double-inclusion method is capable of accounting for the inclusion-

inclusion interactions in addition to the inclusion-matrix interactions considered in the 

Mori-Tanaka approach, and has also be implemented for cementitious materials [125] 

[131]. The average elastic moduli can be calculated as: 

𝑆̅ = [𝑆̃−1 + 𝑓1𝛼 + 𝑓2𝛽]
−1

             (16)                                                            

In the above equation, f1 and f2 are volume fractions of two inclusion phases,  and  are 

functions of f1, f2, and the Eshelby’s tensors 𝑆̃, 𝑆̃𝐼−1, and 𝑆̃𝐼−2. Detailed derivation and 

analysis procedure are described in [129] [131]. For both Mori-Tanaka and double-

inclusion methods, a multi-level nested homogenization approach is implemented as 

described below.  
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Previous studies have used a combination of techniques including MIP, X-ray tomography, 

and electron microscopy to identify the pore volumes that are of interest in predicting 

macroscale response from microscale observations [122] [125] [132]. In this work, 

considering the maximum indentation depth of 250 nm and a probed volume with a radius 

of ~1.5-2.5 m, it is assumed that the effect of pores smaller than 1 m would be accounted 

for in the deconvoluted stiffness of the phases. Hence, the pore volume corresponding to d 

> 1 m from MIP is used in the homogenization process for the standalone void phase. The 

volume fractions of phases obtained from statistical nanoindentation, which is used in the 

homogenization process, are shown in Figure 3-8.  

Figure 3-8: Components of the 30 day old pastes used for homogenization  

Utilizing the Mori-Tanaka scheme, two different homogenization approaches were used. 

In the first case, a two-step homogenization method was used. Here, the cementitious phase 

with the highest volume fraction was used as the matrix (HD CSH for F17.5M7.5L5 and UHS 

Phase for M20L30), and the other cementitious phases and voids as inclusions. In the multi-

step Mori-Tanaka method, the order of homogenization was varied based on the modulus 

of the different phases. The phase with the highest volume fraction was chosen as the 
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matrix, and the voids were added as an inclusion. In the subsequent steps, the phase with 

the lowest modulus was homogenized with the resultant of the previous step. The 

remaining process was carried out similarly. For the double inclusion model, the 

homogenization is not capable of directly accounting for the voids. Hence, the first step in 

this process was the homogenization of voids with the reaction product with the highest 

volume fraction using the Mori-Tanaka method. Next, the other identified cementitious 

phases were used as double inclusions in the previously homogenized matrix. In the third 

step, both coarse and fine aggregates were used as inclusions. The homogenization 

approaches are schematically represented in Figure 3-9.  

Figure 3-9: Schematic representation of the homogenization schemes: (a) two-step Mori-

Tanaka scheme, (b) multi-step Mori-Tanaka scheme, and (c) double inclusion method 

 

Table 3-4 reports the stiffness results from the analytical homogenization process for both 

the paste and UHPC. The elastic modulus determined from quasi-static, radial strain 

Matrix
(product with
highest f)

Other CSH or 
mixed phases

Voids

Clinker

Homogenized 
from Step 1Fine agg.

Coarse agg.

a. 

Homogenized 
from Step 1

Matrix
(product with
highest f)

Inclusion 1 Inclusion 2

n steps until paste 
is homogenized

Homogenized 
from Step nCoarse 

agg.

Fine agg.

b. 

Matrix
(product with
highest f)

Voids Homogenized 
from Step 1 Stiffer 

phase

Less stiff 
phase Homogenized 

from Step nCoarse 
agg.

Fine agg.

n steps until paste 
is homogenized

c. 
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controlled compression tests from a recent study of 28-day cured UHPC by the authors 

[41] are also provided. The homogenized elastic modulus of the fly ash-based UHPC is 

similar to that of the experimental value from compression tests, but the microsilica-based 

mixture shows a higher predicted value. The higher predicted stiffness of the microsilica-

based paste can be attributed to the presence of large volume fractions of UHS phase as 

well as the mixed phases observed from the cluster plots. It is hypothesized that the high 

volume of microsilica used in this paste was less well-dispersed in a low w/b system, 

despite extended mixing and the use of a high volume of superplasticizer, as reported 

elsewhere [133]. The reduced dispersion of microsilica reduces its degree of reaction, and 

consequently, high stiffness mixed phases are present instead of lower density C-S-H 

phases, which results in an over-prediction of the paste modulus. When aggregates are 

incorporated into UHPC, the shearing action of aggregates on the paste de-agglomerates 

many of these larger associations. UHPC mixtures are mixed in a high-shear mixer for a 

longer duration [41], and hence more reaction products of lower stiffness are formed at the 

expense of higher stiffness agglomerated phases. Thus the experimental stiffness of the 

concrete mixture is lower than the upscaled value obtained through analytical 

homogenization. Ongoing chemical species mapping of indentation locations is expected 

to shed more light into this effect.  
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Table 3-4: Analytical homogenization results for the 30-day cured UHPC mixtures 

UHP 

Paste 
Method of homogenization 

Elastic modulus from 

homogenization 

Elastic 

modulus of 
UHPC from 

experiments 

(GPa) [41] 

E of UHP 
Paste (GPa) 

E of UHPC 
(GPa) 

F17.5M7.5L5 

Mori-Tanaka (Two step) 36.96 46.56 
47.53 Mori-Tanaka (Multi-step) 37.17 44.38 

Double inclusion 36.78 44.09 

M20L30 
Mori-Tanaka (Two step) 46.05 51.18 

43.1 Mori-Tanaka (Multi-step) 45.68 50.90 

Double inclusion 45.67 50.89 

 

3.3.7 The Nature of the UHS Phase in UHP Pastes  

Previous studies have identified the UHS phase as a very high packing density (~0.84) C-

S-H phase  [57] [116] or as a nanocomposite of HD C-S-H and nanoscale CH [69] [134]. 

In very low w/b pastes where the particles are efficiently packed through the use of ultrafine 

materials, there is deficiency of water and space for the formation of CH microcrystals 

outside the gel pores. In such highly confined reaction zones, nanosized crystals are 

preferred since there is limited space between the reactants, and the supersaturation in the 

liquid is high [69].  

Assuming that C-S-H is nanogranular in nature as described in [112] [135] [136] [137], 

and that the UHS clusters identified through nanoindentation contain no other products or 

interfaces with similar mechanical characteristics, the phase packing density () can 

determined based on its relationship with the indentation modulus and hardness described 

as follows [57] [104]:  

𝑀

𝑚𝑠
= ∏ (𝜐𝑠 , 𝜂, 𝜂0)𝑀               (17) 

𝐻

ℎ𝑠
= ∏ (𝛼𝑠 , 𝜂, 𝜂0, 𝜃)𝐻               (18) 
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where M is the indentation modulus,   is the packing density, ms is the asymptotic elastic 

modulus = 𝑀(𝜂 → 1), 𝜐𝑠 is the Poisson’s ratio of the solid, 𝜂0 is the solid percolation 

threshold, H is the indentation hardness, hs is the asymptotic hardness = 𝐻(𝜂 → 1) of the 

cohesive-friction solid that obeys the Druker-Prager criterion, 𝛼𝑠 is the solid friction 

coefficient, and 𝜃 is the indenter cone angle. 

𝑚𝑠 =
𝐸𝑠

1−𝜐𝑠
2               (19) 

ℎ𝑠 = 𝑐𝑠 × 𝐴(1 + 𝐵𝛼𝑠 + (𝐶𝛼𝑠)3 + (𝐷𝛼𝑠)10)           (20) 

where Es is the plane-stress elastic modulus and cs is the cohesion of the solid. The variables 

A, B, C, and D are the fitted parameters corresponding to a simulated indentation 

experiment on a granular, isotropic porous solid with a conical indenter with equivalent 

cone angle to a Berkovich tip [138] [139]. For a Berkovich indenter with a cone angle of 

70.32o, A = 4.76438, B = 2.5934, C = 2.1860, and D = 1.6777 [138]. The solid properties 

ms, cs, s, s, and the packing density  can be back-calculated from the experimental M 

and H values [57] [104].  

The HD C-S-H in the OPC- and fly ash-based mixtures demonstrate packing densities of 

0.760.03 and 0.720.03 respectively (note that the microsilica-based paste does not show 

a HD C-S-H phase) based on the above-mentioned granular model, which corresponds to 

FCC or HCP packing (0.74) [104] [54]. The packing densities reported are average 

values from a large number of indents. The volume fraction of C-S-H globules in HD C-

S-H is approximately equal to the packing density of HD C-S-H, ~0.75, therefore a gel 

porosity of 𝜙𝐻𝐷−𝐶𝑆𝐻 ≈ 0.25 can be used for HD C-S-H for all the pastes. If the CH 
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nanocrystals are formed within the HD C-S-H structure, they result in an effective 

reduction in the HD C-S-H porosity (HD-CSH) by an amount equal to the CH volume 

fraction (fCH). Thus, the residual gel porosity of the UHS phase (residual) can be defined as: 

𝜙𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝜙𝐻𝐷−𝐶𝑆𝐻 − 𝑓𝐶𝐻              (21) 

Note that it is being implicitly assumed here that the local constraints force the formation 

of nanoscale CH and not microcrystals as in conventional pastes. The theoretical 

maximum CH fraction that can precipitate as nanocrystals in HD C-S-H to form the UHS 

phase is equal to HD-CSH, even though it could generally be lower. The volume fraction 

of CH, fCH, in each of the indentation volumes cannot be accurately determined without 

chemical mapping of the indentation locations using energy dispersive X-ray analysis. A 

Mori-Tanaka homogenization scheme is used to determine the effective modulus of the 

UHS phase consisting of HD C-S-H and nanoscale CH. The homogenized, theoretical 

UHS phase moduli are plotted as a function of residual gel porosity in Figure 3-10, 

shown as solid lines. For a residual porosity of zero, fCH is 0.25 (i.e., the composite is 

75% HD C-S-H and 25% nano CH), whereas for a residual porosity of 0.25, fCH is zero. 

The lower and upper bounds provided in this plot correspond to indentation plane stress 

elastic modulus of the C-S-H globules of 65 GPa and 75 GPa respectively. The larger 

value is used to account for the potential enhancement in globule stiffness with 

decreasing C/S ratio of the gel [25] [28]. The indentation modulus of CH is taken as 46 

GPa [69].  

Considering the microsilica-based UHP paste after 30 days of hydration as an illustration 

(the nanoindentation stiffness is ~45 GPa, shown using the dotted line; See Table 3-3), if 
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the UHS phase is a composite of HD C-S-H and CH, the stiffness bounds  indicate that 

residual porosity of this phase should be between 0.17 and 0.24 (or fCH between 0.08 and 

0.01). The fCH determined from TGA for this mixture is 0.047, which lies in this range. 

Similar results for the other mixtures are noted and they all fall within or reasonably close 

to the bounds. Note that HD-CSH is obtained from the packing density of C-S-H, which is 

an averaged value over many indents within a representative volume. Similarly, fCH 

obtained from TGA is also averaged over a tested volume. As a confirmation, UHS 

stiffness data and fCH values from [69] are also plotted, which is also observed to fall within 

the bounds. This analysis confirms that the UHS phase can be mechanically modelled as a 

composite of HD C-S-H and nanoscale CH. 

Figure 3-10: Homogenized UHS phase modulus as a function of residual porosity of the 

UHS phase. 

 

3.4 SUMMARY  

This chapter has discussed the nanoscale mechanical characterization of UHP cementitious 

matrices containing high volumes of commonly available cement replacement materials. 

Nanoindentation experiments coupled with a Bayesian information criterion were carried 
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out to determine the average modulus and hardness of the statistical phases. The 

microstructure was found to be highly heterogeneous, attributable mainly to the low w/b 

used and multitude of cement replacement materials of differing size ranges. LD and HD 

C-S-H along with an UHS phase was identified for the fly ash-based UHP paste (w/b ~ 

0.20) after 30 days of hydration, while only the UHS phase was observed for the fly ash-

based paste after 90 days of hydration. For the microsilica-based UHP paste, the volume 

fractions of LD and HD C-S-H phases were so low that the points were clustered together 

with the UHS phase at all ages. Both the UHP pastes contained several mixed/composite 

phases as determined from the M-H response. Nanomechanical analysis reveals the 

enhanced influence of physical packing of particles in low w/b systems such as UHPC.    

Analytical homogenization models based on Eshelby’s solution for inclusions embedded 

in a matrix were used to upscale the elastic response of the individual phases in UHP 

paste to the elastic response of UHPC. For the fly ash-based UHPC, the homogenized E 

was in good agreement with that determined experimentally using strain controlled 

compression tests on UHPC specimens. However, for the microsilica-based UHPC, the 

upscaled E was found to be higher than that from experiments.  
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CHAPTER 42 

4 RELATING THE NANO-MECHANICAL RESPONSE AND QUALITATIVE 

CHEMICAL MAPS OF MULTI-COMPONENT ULTRA-HIGH PERFORMANCE 

CEMENTITIOUS BINDERS 

4.1 INTRODUCTION 

Ultra-high performance concretes (UHPC) are designed for critical infrastructural 

systems to feature a wide-range of benefits including high compressive and flexural 

strengths, improved ductility, and enhanced durability [18]. Of late, UHPCs are being 

used in bridges as deck surfaces, deck connections replacing steel, or in the repair and 

strengthening of bridge elements [140, 5]. UHPC mixtures are characterized by low 

water-to-binder ratios (w/b), incorporation of cement replacement materials such as fly 

ash, microsilica/nanosilica, metakaolin, mine tailings [22], fine fillers such as limestone 

powder or ground quartz [36], and steel fibers to meet the stringent requirements of 

strength, workability, ductility, and durability [17, 23]. The dense microstructures of 

UHPC also signify excellent freeze-thaw resistance and chloride diffusion coefficients 

30-600 times smaller than that of normal concrete [141]. While the requirement of high 

compressive strengths (in excess of 130 MPa) generally demands high volumes of 

cement, mixture proportions that maximize the use of more sustainable cement 

replacement materials have been developed and implemented [140, 21, 6]. The reduced 

degree of reaction of the cementitious materials (due to the low w/b) and the high 

 
2 This chapter is derived from the publication:  E. L. Ford, C. G. Hoover, B. Mobasher and N. Neithalath, 

"Relating the nano-mechanical response and qualitative chemical maps of multi-component ultra-high 

performance cementitious binders," Construction and Building Materials, vol. 260, p. 119959, 2020. 
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volumes of fine materials that enable efficient particle packing results in a high degree of  

physical and chemical heterogeneity in the UHPC paste microstructure [18, 23]. 

It is well-documented that heterogeneous microstructures can be probed using statistical 

nanoindentation to determine the mechanical properties (i.e., stiffness and hardness) of 

constituent phases and their corresponding volume fractions [104, 51]. In the context of 

cementitious materials, this technique has been extensively used to discern the stiffness 

and hardness of different C-S-H phases (e.g., low density and high density C-S-H), 

calcium hydroxide (CH), unhydrated clinker grains, unreacted fly ash particles etc. [110, 

64, 111] [59]. The properties of the constituent phases can be used in conjunction with 

micromechanical modeling schemes to provide upscaled properties of the composite 

(e.g., elastic modulus) [50, 122, 126]. However, when the complexity and heterogeneity 

of the system increases, such as in the case of UHPC mixtures containing components 

with differing levels of reactivity, the mechanical information in the indentation volume 

represents a composite response and needs to be supplemented by chemical data to 

identify the reaction products more succinctly. For instance, in pastes containing 

limestone filler and an alumina source, (mono- or hemi-) carboaluminates are formed, 

which are reported  to possess similar stiffness as limestone or microsilica particles [38, 

39]. Likewise is the case with the ultra-high density (UHD) reaction product [57, 69] and 

CH [113]. Reaction product identification in heterogeneous systems is accomplished 

through the use of qualitative or quantitative energy dispersive X-ray spectra (EDS) 

analysis of the probed volumes [69, 109, 70]. 

This paper demonstrates the combined use of statistical nanoindentation and chemical 

analysis on the probed volumes based on qualitative EDS mapping for two different, 
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highly heterogeneous UHPC binders. Both these binders were used in proportioning 

UHPCs that demonstrated similar 90-day compressive strengths (150-160 MPa [41]), 

albeit with different starting materials and overall cement replacement levels (30% and 

50% by mass). This study advances our understanding of the relationships between the 

micromechanical properties of different phases and the microstructural chemistry in 

UHPC binders with varying source material chemistry and properties. The intensities of 

Ca, Si, and Al, their appropriate ratios in the reaction product phases, and their 

relationships with the nanoindentation stiffnesses of the phases are uncovered for the C-

A-S-H gel which forms the major constituent of multicomponent UHPC binders.  

4.2 EXPERIMENTAL PROGRAM 

4.2.1 Materials and Mixtures 

UHP cementitious pastes were prepared using Type I/II ordinary Portland cement (OPC) 

conforming to ASTM C 150, Class F fly ash conforming to ASTM C 618, limestone 

powder of two different median sizes (1.5 µm and 3.0 µm) conforming to ASTM C 568, 

and microsilica conforming to ASTM C 1240. Particle size distributions, extracted from 

laser particle size analysis, are shown in Figure 4-1 and the chemical composition of the 

source materials is shown in Table 4-1. A polycarboxylate ether (PCE)-based 

superplasticizer with a solids content of 43% was used to ensure workability of the very 

low w/b pastes. Two UHP pastes (w/b  0.20) were prepared for the experiments in this 

study, the proportions of which are shown in Table 4-2. The binder contents in the UHP 

pastes were based on previous work of the authors [18, 41] that proportioned a family of 

UHPCs based on optimal particle packing, rheology, and substantial clinker factor 
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reduction. Paste samples were prepared by extensive mixing using high shear mixers and 

moist cured for 30 or 90 days.  

 

 

 

 

 

 

 

Figure 4-1: Particle size distribution (PSD) of the starting materials. The median size in 

microns is shown in parentheses. The PSD of microsilica is not shown, but the median 

size is < 0.5 𝜇𝑚 in a well-dispersed state. 

 

Table 4-1: Chemical composition and specific gravity of the starting materials used in 

this study. 

Components of the 

binder 

Chemical composition (% by mass) 
Specific 

gravity 
SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI 

OPC 19.60 4.09 3.39 63.21 3.37 3.17 2.54 3.15 

Fly Ash (FA) 58.40 23.80 4.19 7.32 1.11 3.04 2.13 2.24 

Microsilica (MS) > 90.0 - - < 1.0 - - - 2.18 

Limestone (L), 1.5 µm > 97% CaCO3 2.7 

Limestone (L), 3 µm 
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Table 4-2: The components of the paste mixture. FA, MS, and L indicate fly ash, 

microsilica, and limestone respectively. The subscript numbers refer to the percentage of 

the corresponding material used as a replacement of OPC by mass. These pastes are 

termed FML and ML in the remainder of the paper. 

 

4.2.2 Sample Preparation 

After the moist curing duration, the samples were cut in the form of discs of 12.5 mm 

thickness and 25 mm diameter using a Bruker IsoMet 1000 saw with a diamond wafer 

blade.  Isopropyl alcohol (IPA) was used to cool the saw and to store the samples after 

cutting to prevent further hydration [74]. Sample surface preparation to minimize 

imperfections that could interfere with the results was carried out by sanding and 

polishing the samples successively using silicon carbide abrasive paper with sizes 

ranging from 240 grit to 1200 grit, and then polishing using alumina pads with particle 

diameters of 9, 3, and 1 m [51, 76]. Figure 4-2 shows an example 10 µm x 10 µm 

atomic force microscopy (AFM) scan of a polished surface used to quantify the surface 

characteristics after preparation using the root mean square roughness (Sq), given as [50, 

76] [60]: 

Sq = √
1

MN
∑ ∑ zij

2N
j=1

M
i=1              (22) 

where M is the number of pixels in the x direction, N is the number of pixels in the y 

direction, and zij is the height of the pixel at the position (i, j) from the mean plane. AFM 

was performed using a Nanosurf FlexAFM with EasyScan2 software in dynamic 

Mixture Label 

Binder component (mass %) 
% solids content by 

mass of binder 

OPC 
Class F Fly 
Ash (FA) 

Microsilica 
(MS) 

Limestone 
(L) 

Superplasticizer 

FA17.5MS7.5L5 

(FML) 
70 17.5 7.5 5 1.25 

MS20L30 (ML) 50 0 20 30 1.45 
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(tapping) mode with a pyramidal silicon tip scanning at a rate of 1 sec/line with 512 

pixels/line. The tip was calibrated using the Sader method [79]. A vibration frequency of 

184 kHz, amplitude of 0.6V, and a spring constant of 26 N/m were obtained. Gwyddion, 

an open source software for data visualization and analysis of scanning probe microscopy 

techniques, was used to process the scan by mean plane subtraction and application of 

row alignment with a first degree polynomial, which produced an RMS roughness value 

of Sq = 39.36 nm. This roughness represents about 16% of the maximum indentation 

depth of 250 nm. This value conforms to the recommendation that a sufficiently flat and 

smooth surface for nanoindentation should have an Sq less than 20% of the maximum 

indentation depth or 50 nm [76].  

Figure 4-2: Representative 10 µm x 10 µm AFM scans over the polished surface of a 90-

day cured FML specimen with 𝑆𝑞 = 39.36 𝑛𝑚. (a) 2D View, and (b) 3D overlay 

projection. 
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4.2.3 Nanoindentation 

Nanoindentation experiments were carried out using an Ultra Nanoindentation Tester 

(UNHT3; Anton Paar). Each sample had at least 1250 indents, split among multiple grids 

in different locations, to adequately capture the heterogeneous nature of the 

microstructure and minimize any effects of spatial dependence. Indentations were 

performed in force control mode with a maximum displacement cutoff of 250 nm, which 

is in line with other studies on cement-based materials [69, 52, 142]. This depth 

corresponded to an interaction volume idealized as a hemisphere with a radius 3-to-5 

times the maximum cutoff, or 0.75 μm to 1.25 μm [69, 107] [143]. The distance between 

points in the grid was maintained at 5 μm to ensure that the influence of the indents on 

each other was minimum [50]. The loading and unloading rate used was 12 mN/min with 

a pause for 5 seconds at the peak load when the maximum displacement cutoff was 

reached. This rate and holding period are sufficiently short to avoid creep effects as 

discussed in [144]. The linear unloading portion of the force-displacement curve and the 

contact area of the tip is used to calculate the hardness (H) and the effective Young’s 

Modulus (M) of the indented phases using the Oliver and Pharr method [65, 66]. The 

effective Young’s Modulus (M) is related to the elastic moduli of the tip and the 

Poisson’s ratios of the tip and the indented material as shown below: 

1

M
=

1−  υ2

E
+

1 − vi
2

Ei
               (23) 

Here, υ is the Poisson’s ratio of the sample, and υi and Ei are the Poisson’s ratio and 

Young’s Modulus of the diamond tip (0.07 and 1141 GPa respectively) [65, 66]. υ for the 

different phases was assigned after identifying them through a clustering analysis [39]. 

As such, clinker was assigned a υ of 0.31, HD and LD C-S-H a υ of 0.25, UHS phase a υ 
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of 0.29 (approximated as the average υ of C-S-H and CH phases), and mixed phase a υ of 

0.27 (between reactants and products). As part of post-processing, abnormal load-depth 

curves representing surface pores or partial material collapse were removed from the data 

sets as described in [59] [72]. 

4.2.4 Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray 

Spectroscopy (EDS) Chemical Mapping 

A SEC Nanoimage Tabletop SNE-4500M Plus scanning electron microscope (SEM) 

equipped with a Bruker energy dispersive X-ray spectrometer (EDS) and ESPRIT 

software was used for chemical mapping of the indented regions of interest. A gold-

palladium layer, about 20 nm thick, was sputter-coated on the sample surface to improve 

electron conduction [73]. Back-scattered electron (BSE) mode imaging was performed in 

the low vacuum mode (~10−3 torr), with a beam current of 110 µA, a working distance 

of 10 mm, sample tilt of 10o
, and an accelerating voltage of 15 kV. After locating the grid 

on the sample surface, EDS was performed at about 50 kcps over a 256 x 192 pixel 

image, magnified for a pixel size of about 0.6 µm, with a dwell time of 128 µs (~6 

seconds per frame) for 5-15 minutes. The total scan time was maximized on each sample 

to achieve the best EDS image prior to the loss of image quality due to surface charging. 

The interaction volume and escape depth of the signal X-rays are dependent on the 

microscope parameters as well as the sample density and composition [69, 72]. It has 

been shown through Monte-Carlo simulations that, for both clinker and C-S-H phases, 

most of the characteristic X-rays escaping the material are generated within a depth of 2 

μm [69, 72], which is in line with the interaction depth for nanoindentation as reported 

earlier. It needs to be noted that continuous spectrum background (signal noise) is 
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inherently present in EDS mapping, leading to low elemental intensities even in spots 

where the element is not present [68]. This necessitates an understanding of the relative 

elemental intensities that can occur in cement-based materials. Moreover, electron 

microscopy and EDS are destructive processes where the electrons impinging on surface 

of the sample will damage the nanoindentation grid once scanned.  

4.2.5 Optical Alignment 

Figure 4-3 (a) shows an optical microscope image of the nanoindentation grid on a 30-

day cured FML paste, and Figure 4-3(b) shows the grayscale BSE image of the same 

microstructure. In order to relate the elemental EDS analysis corresponding to an indent 

to the nanomechanical data of the same indent, a MATLAB localization algorithm was 

implemented to align the optical image of the nanoindentation grid to the EDS chemical 

maps. This algorithm employs image enhancement, indent identification, and Hough 

transformation-based grid detection [109] to determine the coordinates of the indents 

from the optical image. With a pixel length of 0.6 µm, an averaging filter of size 2x2 

pixels was taken over the indent coordinates on the EDS maps to account for the full 1.25 

µm expected diameter of influence about each indent. A 4x4 pixel filter was also applied 

as part of a sensitivity analysis, and it was observed that the chemical intensity results 

were almost invariant. This averaging of elemental pixel intensities over the entire region 

of the indent’s influence ensures probing similar interaction volumes as those in 

nanoindentation experiments. Brightness of the qualitative EDS chemical maps is auto-

scaled by the data-collection software. The RGB color brightness ranges from 0 to 255 

with a higher intensity signifying a higher concentration of the element. Figure 4-3(c) is 

an example of the Ca EDS map. Al, Si, and Fe maps were similarly obtained. Across 
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different maps, the number of X-ray counts associated with the same brightness value 

varies, and hence EDS maps are qualitative measures of the concentration of elements in 

each indentation grid. For statistical analysis the averaged RGB intensities from the Al, 

Ca, Fe, and Si EDS maps are matched with the corresponding nanomechanical data. 

Figure 4-3(d) illustrates the translation of EDS map color intensity of Ca to the 0-255 

scale.   

Figure 4-3: (a) Optical microscope image over a nanoindentation grid for the 30-day 

cured FML paste, (b) BSE image over the same area, (c) Ca EDS map with blue dots 

added to show the location of the indentation grid after the alignment procedure, and (d) 

MATLAB graphic translating EDS map color intensity into values from 0 to 255 for Ca. 
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4.2.6 Nanomechanical and Chemical Statistical Clustering 

If there exists n phases in the microstructure with each phase occupying a volume 

fraction of fi (i = 1…n) such that ∑ fi
n
i=1 = 1, the properties of each phase can be 

approximated by a Gaussian distribution with a probability density function (PDF) given 

as: 

PDF = ∑ fi
n
i=1 ψi                        (24) 

Here, ψi is the vector of classification variables of the phase. In this study, the six 

classification variables utilized were indentation modulus M, indentation hardness H, and 

the intensities of aluminum IAl, calcium ICa, iron IFe, and silicon ISi. A Bayesian 

Information Criterion (BIC) with negative log likelihood (NlogL) method was 

implemented for statistical deconvolution [109]. The maximum negative log likelihood 

estimation was used to find the PDFs that best represented the experimental data: 

NlogL = −max(log( ∏ PDF(ni)))n              (25) 

Here, ni represents the distribution parameters, in the case of a Gaussian distribution its 

mean and standard deviation, that are iterated to maximize the likelihood function. Then, 

the BIC was minimized: 

BIC = 2 ∗ NlogL + p ∗ log(num)             (26) 

In Equation 7, num is the number of indentation points and p is the number of identifying 

parameters available at each indentation point (in this case six; chemical intensities 

corresponding to Ca, Si, Al, Fe and the mechanical properties M and H) [109]. In cases 

where similar BIC values were obtained, the lower number of phases was chosen to 
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simplify the model. Occasionally the clustering algorithm yielded clusters with small 

populations (about 10% of the available points) that were embedded inside of one 

another, or unreasonably split the high hardness-stiffness values. In such cases, these 

small clusters were manually grouped with the nearest cluster, and the new average 

stiffness and hardness values were determined. 

4.2.7 X-Ray Diffraction (XRD) 

X-Ray Diffraction (XRD) spectra of the UHPC paste samples cured for 30 and 90 days 

were obtained using a Siemens D-5000 Powder X-ray Diffractometer utilizing a Cobalt 

(Co) K radiation with 2 mm and 0.2 mm slits to identify the crystalline phases in the 

samples. Following previous studies of cement pastes, the scanning angle (2θ) range was 

from 10o to 80o with a step size of 0.02o and 1 second per step [47, 48, 49]. MDI Jade 9 

software was used for peak identification. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Crystalline Phases in the UHPC Pastes 

Figure 4-4: XRD spectra of 30-day and 90-day cured FML paste and ML paste. 

 

Figure 4-4 shows the XRD spectra for the 30- and 90-day cured FML and ML UHP 

pastes. The crystalline compounds identified in the FML paste are C3S and C2S from 

clinker, quartz from fly ash, portlandite (CH) from cement hydration, and calcite 

(limestone), while quartz is absent in the ML paste as would be expected. The intensity of 

the calcite peaks are found to reduce between 30 and 90 days, indicating its consumption 

due to the presence of reactive aluminates from fly ash [117, 119, 35]. The XRD spectra 

does not clearly show the presence of carboaluminates, but they were evident in the 

thermogravimetric and differential thermogravimetric (TG/DTG) analyses [4]. Beyond 

this, the crystalline species present in the FML mixture do not vary greatly. The presence 

of unreacted clinker and cement replacement materials even after 90 days of curing in 
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both the mixtures can be attributed to the reduced w/b and consequently, reduced 

reactivity. Notable in the ML paste spectra is a reduction in the CH content between 30 

and 90 days, attributable to the consumption of CH by its pozzolanic reaction with 

microsilica [121] [145]. The low w/b in the UHP systems and the high degree of initial 

packing hinder the diffusion-controlled reactions, thereby delaying the pozzolanic 

reaction of microsilica, which is generally rapid in conventional paste mixtures (w/b ~ 

0.4). The continued presence of CH even after 90 days in both the UHP pastes 

demonstrates the influence of low w/b on the reactivity and phase formation in such 

systems. The ML paste contains a high amount of limestone, and the lack of an 

aluminous cement replacement material in this system renders noticeable limestone 

consumption an unlikely scenario. This is evident in the 90-day XRD spectrum, but in the 

30-day spectrum, calcite peaks are rather few. This is likely a result of the strong 

cleavage planes of calcite being susceptible to a preferred orientation spike in XRD [47]. 

TG/DTG data did indicate almost unchanged quantities of calcite [4].  

4.3.2 Modulus-Hardness Relationships and Chemical Clusters from 

Nanoindentation and EDS 

The clusters representing the indentation modulus and hardness as well as chemical 

intensities obtained from BIC and negative log likelihood statistical analysis for the 

different UHP pastes are presented here. The mean and standard deviation of the effective 

stiffness (M) and hardness (H) values of the different phases, along with their volume 

fractions are shown in Table 4-3 while the chemical clustering results for Al, Ca, and Si 

within the clusters are shown in Table 4-4. The chemical intensities are determined based  

on a qualitative map and not on quantitative spot chemical analysis [109, 72]. A holistic 
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qualitative map, where the indents were found and chemical intensities averaged over a 

grid of pixels (using the optical alignment procedure described earlier) avoids the issues 

with in-situ spot analysis where surface charging shifts the EDS maps and pixel 

placement over time [72]. However, the qualitative chemical maps only provide relative 

atomic ratios and not the exact ratios (e.g., Ca/Si). Figure 4-5 shows example composite 

SEM-EDS images with an indentation grid. The abundance of Ca and Si in the hydrated 

product phases can be noticed in these figures.  
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Table 4-3: Mechanical properties (M, H) and volume fractions (f) of the different phases 

in the UHPC pastes. FA, MS, L, and CA denotes fly ash, microsilica, limestone, and 

carboaluminates respectively 

 

 

Table 4-4: Normalized chemical intensities of Al, Ca, and Si (IAl, ICa, ISi) of the different 

phases in the UHPC pastes. FA, MS, L, and CA denotes fly ash, microsilica, limestone, 

and carboaluminates respectively 

 

UHP 

Paste 
Phase 

M (GPa) H (GPa) f 

30 d 90 d 30 d 90 d 30 d 90 d 

FML paste 

(FA17.5MS7.5

L5) 

LD CSH/Residual 
MS 

28.86 
±5.94 

- 
1.62 

±0.51 
- 0.17 - 

HD CSH 
37.75 

±7.63 

40.97 

±7.10 

1.67 

±0.36 

1.79 

±0.31 
0.38 0.40 

UHS Phase 
39.11 

±10.91 

43.24 

±7.15 

1.86 

±0.60 

1.96 

±0.44 
0.19 0.23 

Mixed (FA, L, 

MS, CA) 

70.78 

±34.73 

92.44 

±16.71 

5.32 

±3.70 

7.65 

±2.13 
0.12 0.17 

Clinker 
75.14 

±25.59 

77.99 

±26.39 

4.58 

±2.54 

4.42 

±2.48 
0.13 0.20 

ML paste 

(MS20L30) 

UHS Phase/CSH 
64.09 
±7.17 

47.19 
±8.99 

3.90 
±0.39 

2.23 
±0.55 

0.42 0.60 

Mixed (L, MS) 
59.63 

±16.48 

51.20 

±10.70 

4.26 

±1.02 

2.54 

±0.68 
0.41 0.28 

Clinker/Unreacted 
108.39 
±32.44 

86.14 
±24.54 

8.18 
±3.35 

5.08 
±2.31 

0.17 0.12 

UHP 

Paste 
Phase 

IAl ICa ISi 

30 d 90 d 30 d 90 d 30 d 90 d 

FML paste 

(FA17.5MS7.5

L5) 

LD CSH/Residual 

MS 

0.04 

±0.01 
- 

0.10 

±0.05 
- 

0.93 

±0.05 
- 

HD CSH 
0.10 

±0.04 

0.08 

±0.03 

0.68 

±0.09 

0.74 

±0.07 

0.24 

±0.12 

0.28 

±0.10 

UHS Phase 
0.18 

±0.10 

0.20 

±0.09 

0.56 

±0.15 

0.68 

±0.08 

0.34 

±0.20 

0.25 

±0.11 
Mixed (FA, L, 

MS, CA) 

0.39 

±0.21 

0.58 

±0.20 

0.47 

±0.23 

0.43 

±0.16 

0.42 

±0.25 

0.44 

±0.20 

Clinker 
0.08 

±0.03 
0.09 

±0.04 
0.77 

±0.13 
0.81 

±0.11 
0.39 

±0.15 
0.28 

±0.09 

ML paste 
(MS20L30) 

UHS Phase/CSH 
0.28 

±0.11 

0.28 

±0.10 

0.66 

±0.10 

0.67 

±0.08 

0.13 

±0.04 

0.13 

±0.04 

Mixed (L, M) 
0.21 

±0.08 
0.30 

±0.11 
0.49 

±0.15 
0.55 

±0.13 
0.47 

±0.15 
0.39 

±0.15 

Clinker/Unreacted 
0.37 

±0.19 

0.31 

±0.12 

0.75 

±0.15 

0.72 

±0.09 

0.21 

±0.11 

0.16 

±0.07 
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Figure 4-5: Example EDS composite maps with blue dots over grid locations (a) FML 30-

day and (b) FML 90-day pastes. 

 

4.3.3 Chemo-mechanical Analysis of the FML UHPC Paste 

Figure 4-6(a) shows the modulus-hardness (M-H) relationship of the 30-day cured FML 

paste. Five different phases are identified by the BIC and negative log likelihood 

analysis. The hydration product phases, viz., C-S-H phases (high density or HD, and the 

ultra-high stiffness or UHS phases) are observed at (M, H)  (65.0, 3.0) as reported 

elsewhere [53, 62]. The difference in the properties of C-S-H phases is attributed to the 

differences in the packing density of C-S-H particles [57, 116]. In low w/b mixtures, the 

LD C-S-H phase could be absent as reported in [50, 146]. In past works [50] [60], the low 

stiffness phase with a mean M of ~25 GPa has been identified as a LD C-S-H phase when 

only mechanical data was available [146]. However, the concomitant chemical intensities 

provide new insights into this phase, as will be explained later. The UHS phase has been 

shown to be a nanocomposite of HD C-S-H and CH. CH (indentation modulus in the 40 

to 45 GPa range [39, 113]) has been identified in the XRD spectra (see Figure 4-4) and 

through thermal analysis [146]. Stiff and hard mixed phases are observed, which is 
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unsurprising in a blend of multiple fine particulates as described in [69]. They are 

postulated to be constituted of carboaluminates (from fly ash-limestone reaction [117, 

119, 35]) and other partly reacted phases. The HD C-S-H phase with an effective 

modulus of 37.8 GPa is observed in the highest quantity in this mixture. 

Figure 4-6: Clustering analysis output for the 30-day cured FML paste: (a) M vs. H, (b) 

ICa vs. ISi, and (c) ICa vs. ICa/(Si+Al), excluding the unreacted clinker.  Inset in (c) is the 

volume fractions of the phases. 

 

The normalized intensities of Ca and Si species, along with the mechanical property 

description provided by nanoindentation allows further insights into the component 

phases, especially for complex, heterogeneous systems such as UHPC pastes. The 

normalized auto-scaled intensities of Ca and Si obtained from qualitative EDS analysis of 

the FML paste microstructures after 30 days of curing are shown in Figure 4-6(b).  Note 

that the normalized intensities are achieved by dividing the EDS map RGB value by 255. 

The same intensity value on different grids corresponds to a different number of X-ray 

counts owing to differences in scan time and yield rate of X-rays from the surface in each 

location. Thus, comparisons between systems with vastly different X-ray yields are 

deemed to be not totally appropriate, even though they can allow for useful qualitative 

inferences. The intensities are grouped into distinct classes which conform to their 
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nanomechanical information, as is reported for conventional cement pastes and mortars 

[109, 70], even though the scatter is larger for UHPC mixtures, in part due to the multiple 

materials used. The clinker phases, expectedly, have high Ca contents and moderate Si 

contents. The HD C-S-H and UHS phases also have similar Ca and Si intensities, even 

though the spread is larger for the UHS phase, likely due to the lower Ca/Si ratio of the 

gel. Both these phases demonstrate an elliptical spread that is common for the lower 

hardness and stiffness reactant phases [109, 70, 72]. Some CH identified in these 

mixtures using thermal analysis and XRD, shown to be included in the UHS phase [146], 

is also corroborated by the existence of compositions containing very high Ca and very 

low Si belonging to the UHS phase. The cluster with a mean stiffness of ~75 GPa is 

identified as silicate-rich clinker [70] [72], and the Ca/Si ratio of this phase as seen Table 

4-4 agrees with that of C2S and C3S identified in the XRD spectra (Figure 4-4). 

An anomaly with respect to the identifications based on mechanical properties is noticed 

at the higher Si end of the compositional map for this mixture. While nanomechanical 

signatures of M and H identified a LD C-S-H with mean (M, H) of ~ (23, 1.7) GPa, this 

phase is observed to have negligible amounts of Ca, based on the EDS analysis. Further 

evaluation (Figure 4-6(c)) also shows that this is an Al-deficient composition, indicating 

the phase to be pure silicates. As will be shown later, this phase is not present in 90-day 

cured mixtures, which likely suggests that this belongs to the microsilica added in the 

mixture, some of which could remain agglomerated in pastes (which is generally avoided 

in concretes through the shearing action provided by the aggregates) and thus 

demonstrate reduced reactivity early on.  
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The presence of fly ash containing higher amounts of aluminates results in the formation 

of C-A-S-H gel as the reaction product [71]. Figure 4-6(c), depicting the variation of Al 

with Ca/(Si+Al), which is a descriptor of C-A-S-H gel chemistry [71], shows that Al is 

present in the HD C-S-H and UHS phases, with a higher amount in the UHS phase. More 

discussions on the impact of Al are provided later in this paper. It is also possible that the 

interaction volume contains C-S-H and mono- or hemi carbonates (Mc or Hc) resulting 

from the reaction of limestone with aluminates from fly ash. It can be noted from this 

figure that Al incorporation is predominantly in C-S-H gels with low Ca/Si ratios (both 

HD and UHS phases). The mean Ca/(Si+Al) ratio of the UHS phase is lower than that of 

the HD C-S-H phase. In general, the hydrated phases exhibit a mean Ca/(Si+Al) ratio less 

than 2.0, which is in good agreement with previously reported results [31]. The mixed 

phase cluster with a M of ~70 GPa identified from the nanomechanical tests is denoted in 

this figure as belonging to the high Al, low Ca/Si region, which could be the 

carboaluminates or partly reacted fly ash phases. The regions of very high Al intensity 

could be assigned to the aluminoferrites; however, their identification in the mixed phase 

based on the nanomechanical signature, as opposed to the unreacted clinker phase, is 

another illustration of the challenges in accurately identifying chemical clusters in highly 

heterogeneous multicomponent binder systems.   

The nanomechanical and chemical signatures of different phases in the 90-day cured 

FML mixture are shown in Figure 4-7. The major hydrated phases identified through 

nanomechanical clustering are the HD C-S-H and UHS phases, as observed from Figure 

4-7(a). The auto-scaled Ca-Si intensity plots (Figure 4-7(b)) for both the 30- and 90-day 

cured mixtures have a similar shape, but it is important to note that the mean Ca/Si ratio 
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of the HD C-S-H phase dropped slightly from 30 to 90 days. This is in accordance with 

the understanding that increased pozzolanic reaction reduces the Ca/Si ratio of the C-S-H 

gel [25, 26]. This can also be related to the increased mean M and H values of this phase 

at 90 days (Table 4-3) since lowering the Ca/Si ratio of C-S-H gel, which is a result of 

increased silica polymerization, is noted to increase the elastic modulus and hardness of 

the constituent phases [25, 28, 29]. The absolute values of Ca/Si ratios are not given high 

importance here since only a qualitative estimation is carried out. The Ca and Si 

intensities of the mixed phase are quite spread out as noticed from Figure 4-7(b), as is the 

Al intensity from Figure 4-7(c). Al incorporation in the HD C-S-H and UHS phases is 

very similar to that observed for the 30-day cured paste (Table 4-4), and the mean 

Ca/(Al+Si) ratio of the hydrated phases is around 2.0. The mixed phase, a combination of 

carboaluminates and the unreacted non-OPC reactants, has a mean stiffness of ~73 GPa, 

and the volume fraction slightly increased from that at 30 days, an indication of increased 

carboaluminate formation. The carboaluminates are reported to have M values in the 42-

88 GPa range [38, 39, 114], depending on whether it is the Mc or Hc phase. 

Figure 4-7: Clustering analysis output for the 90-day cured FML paste: (a) M vs. H, (b) 

ICa vs. ISi, and (c) ICa vs. ICa/(Si+Al), excluding the unreacted clinker. Inset in (c) is the 

volume fractions of the phases.  
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4.3.4 Chemo-mechanical Analysis of the ML UHPC Paste 

The ML paste is characterized by a lower OPC content (50% instead of 70%), and the 

presence of higher amounts of limestone and microsilica (and therefore reduced Al 

content) as compared to the FML paste. Figure 4-8 shows the nanomechanical and 

chemical signatures for the different phases in the 30-day cured ML paste while Figure 

4-9 shows the same for the 90-day cured mixtures.  

Figure 4-8: Clustering analysis output for the 30-day cured ML paste: (a) M vs. H, (b) ICa 

vs. ISi, and (c) ICa vs. ICa/(Si+Al), excluding the unreacted clinker. Inset in (c) is the volume 

fractions of the phases. 

Figure 4-9: Clustering analysis output for the 90-day cured ML paste: (a) M vs. H, (b) ICa 

vs. ISi, and (c) ICa vs. ICa/(Si+Al), excluding the unreacted clinker. Inset in (c) is the volume 

fractions of the phases. 
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The nanomechanical clustering in Figure 4-8(a) and Figure 4-9(a) shows that the UHS 

phase is the only one belonging to the C-S-H family in this system, the reasons for which 

were elaborated in an earlier publication by the authors [146]. There is a mixed phase 

containing limestone, microsilica and some hydrates, along with the unhydrated clinker 

phase. The size of limestone powder (d50 of 1.5 to 3 µm) and microsilica (d50 < 1 µm) 

ensures that the indentation measurements attributed to them are of mixed phases 

containing these materials and the hydrated products. The volume of the UHS phase 

increases from 30 to 90 days as expected, at the expense of the unreacted clinker and the 

mixed phase. The UHS phases in both the 30- and 90-day cured ML paste show mean 

Ca/(Si+Al) ratios close to 2.0 (Figure 4-8(c) and Figure 4-9(c)).  

The Ca/Si ratios demonstrate an elliptical spread similar to that of the FML paste, but 

with the major axis parallel to the Ca axis, while the major axis was inclined at ~45o for 

the FML paste. In other words, the Si content of the C-S-H gels lies in a narrow range for 

the ML paste, indicating that the reaction products are chemically more homogeneous 

than those in the FML paste. The higher amounts of more reactive cement replacement 

material (microsilica in this case) and the lower OPC content results in increased amounts 

of low Ca/Si ratio reaction products. The reduced heterogeneity in this mixture (fewer 

starting materials, and both microsilica and limestone being purer chemical species, as 

opposed to fly ash in the FML paste) also restricts the spread of the Ca/Si ratios. The 

mixed phase comprising of microsilica and limestone extends from the high Ca region to 

the high Si region, as would be expected. The increased concentration of points in the 

high Ca region denotes the unreacted limestone particles whereas the lower concentration 

in the high Si zone indicates that a large fraction of microsilica has reacted. A comparison 
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of the Ca-Si concentration plots between 30 and 90 days of curing shows that the number 

of points in the high Ca concentration region remains rather unchanged, due to the 

negligible reactivity of limestone in the absence of an alumina-bearing component [35, 

33]. However, the number of points in the high Si concentration region reduced, 

indicating the consumption of microsilica to form more C-S-H gel.  

The intensities of Al in the mixed phase in Figure 4-8(c) and Figure 4-9(c) show two 

distinct trends, one with almost no Ca content, denoting microsilica, and the other with 

some Ca content, overlapping with the UHS phase. The concentration of microsilica is 

also seen to reduce from 30 to 90 days when Figure 4-8(c) and Figure 4-9(c) are 

compared. The Al content in the C-S-H gel (UHS phase) can be noticed to reduce 

exponentially with increase in Ca content (or Ca/(Si+Al) ratio), especially for the mature 

pastes. This is once again confirmation that Al incorporation is higher in low Ca/Si ratio 

gels. Similar information can be gleaned from the data for the FML paste also; however, 

it is more evident in the ML paste due to reduced chemical variability of the C-S-H gel 

for reasons explained earlier.  

4.3.5 A Closer Look at the C-A-S-H Phases in the FML and ML Mixtures and 

Their Mechanical Response 

The M-H relationship for the C-S-H phases in the FML and ML pastes are shown in 

Figure 4-10(a). The FML paste containing the HD C-S-H and UHS phases have lower 

mean M and H values as compared to the ML paste containing the UHS phase alone. As 

described earlier, the HD C-S-H and UHS phases in both these mixtures are quite similar 

in their mean Ca/(Si+Al) ratio as observed in Figure 4-10(b), but with Ca/(Si+Al) ratio 

lying in a narrower range for the ML paste. In general, the mean Ca/(Si+Al) values are 



94 

 

located in the 1.5 to 2.0 range, as reported elsewhere [71] and mentioned earlier in the 

paper. Broadly speaking, the modulus (and the hardness) does not appear to depend on 

the Ca/(Si+Al) ratios based on the data shown in Figure 4-10(b) for both the pastes, 

which is in line with published work [71]. However, it has been shown through 

experiments and atomic simulations that a reduction in Ca/Si ratio indeed enhances the 

stiffness of the solid C-S-H phases [25, 28, 29]. Combining all the data from different C-

S-H phases in this study does not capture this effect, likely because of the presence of CH 

in the UHS phase which increases the Ca concentration along with the increase in M as 

shown in Figure 4-10(c), especially for the FML paste. Moreover, the indentation 

stiffnesses also account for the nanoporosity in the hydrated phases. Increase in Ca 

concentration is shown to increase the stiffness of C-S-H gels in cement pastes [25], 

while a decrease in Ca/Si ratio is also shown to increase  the stiffness, especially when 

cement replacement materials are used  [25, 26]. 

Figure 4-10: Properties and chemical intensities of the C-S-H phases in the FML and ML 

pastes at both ages: (a) M vs. H, (b) M vs. ICa/(Si+Al), (c) M vs. ICa 
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It is instructive to examine the influence of Al on the properties of the gel, since the 

hydrates in multiple blend binder systems generally belong to the C-A-S-H family. The 

Ca/Si ratio is noted to be an important parameter that influences the incorporation of Al 

in the gel, with a reduction in Ca/Si ratio promoting the incorporation of more Al into the 

C-A-S-H gel [147, 148], which can be clearly noticed in Figure 4-11(a) from the rather 

exponential reduction in Al intensity with an increase in Ca/(Si+Al) for both the pastes. 

Also noteworthy is the fact that Al incorporation is not very different for the two pastes 

even though the ML paste has a lower Al content (see Table 4-1 and Table 4-2 for 

component chemistry and mixture proportions). For systems containing cement 

replacement materials, it has been reported that increase in Al incorporation may not 

necessarily be dependent on the amount of additional alumina present, but rather, due to 

the fact that active silica from the replacement material leads to a reduction in the Ca/Si 

ratio [147]. From Figure 4-10(b), Ca/Si depression is more prominent for the ML 

mixture, which justifies the enhanced incorporation of Al in this mixture as shown in 

Figure 4-11(b). It is also interesting to note that, for both the UHPC mixtures, the mean 

values of Ca/(Si+Al) in the hydration products remain relatively invariant with 

Al/(Si+Al), an observation reported in [71] for pastes containing aluminous replacement 

materials such as fly ash, slag, or metakaolin. When the FML and ML pastes are 

considered separately, there is no significant dependence of M on the Al/(Si+Al) values 

as shown in Figure 4-11(c) even though slightly negative correlations are sometimes 

reported [71]. However, atomistic simulations and synchrotron radiation-based high-

pressure X-ray diffraction have shown that Al incorporation increases the bulk modulus 

of C-A-S-H [149].  



96 

 

Figure 4-11: Chemical intensity ratios of the C-S-H phases of FML and ML pastes at 

both ages: (a) IAl vs. ICa/(Si+Al), (b) ICa/(Si+Al) vs. IAl/(Si+Al), (c) M vs. IAl/(Si+Al) 

 

4.4 SUMMARY 

Nanomechanical properties and analysis of the intensities of relevant chemical species at 

the indentation locations for two UHP pastes containing multiple starting materials were 

reported in this paper. Nanoindentation experiments were carried out on multiple grids at 

different ages, while the chemical analysis of the indentation points was carried out using 

qualitative EDS analysis, after performing a grid alignment procedure. Statistical 

clustering analysis of the mechanical and chemical data was performed assuming a 

Gaussian distribution by minimizing Bayes Information Criterion (BIC). The 

relationships between M, H, and the different chemical intensities were used to infer the 

fundamental nature of the reaction products in systems with high degree of heterogeneity, 

aided by the very low w/b and the presence of multiple cement replacement 

materials/fillers.   

The UHP pastes consisted mostly of HD C-S-H and an UHS phase, along with mixed 

phases comprised of partly reacted starting materials and some reaction products. The 
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relationship between M and H of the reaction product phases in both the UHP pastes 

were found to be very similar, irrespective of significant changes in mixture composition. 

The scatter in the Ca/Si intensity plots for the UHPC pastes were found to be higher than 

those reported for conventional OPC pastes. The HD C-S-H and UHS phases were 

observed to have similar Ca and Si intensities, even though the spread was larger for the 

UHS phase. For both the UHP pastes, the Ca/Si ratio for the UHS phase demonstrated an 

elliptical spread, with reduced heterogeneity being visually identifiable for the ML paste. 

The normalized chemical intensities and ratios of Ca, Si, and Al species, along with the 

mechanical property description provided by nanoindentation, allowed for further 

insights into the microstructure of complex, heterogeneous systems such as UHPC pastes.   
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CHAPTER 5 

5 MACHINE LEARNING ON MICROSTRUCTURAL CHEMICAL MAPS TO 

CLASSIFY COMPONENT PHASES IN CEMENT PASTES  

5.1 INTRODUCTION 

It is well known that the microstructure of cementitious materials dictates the properties 

and performance of the material. The microstructure in turn is a function of time, 

processing techniques, as well as the constituent material properties and their proportions. 

Cement paste microstructures are generally constituted of solid and pore phases; the 

influence of porosity on the mechanical properties and durability of concrete has been 

well-elucidated for many decades. The solid phase generally consists of cement hydration 

products and unhydrated/unreacted materials, which depend on the water-to-binder ratio 

(w/b) and the reactivity of the starting materials [150] [151] [40] [121]. While in well-

hydrated plain ordinary Portland cement (OPC) pastes, C-S-H gel, calcium hydroxide 

(CH), and unhydrated clinker are invariably the only solid phases present, multi-

component blends like ultra-high performance (UHP) cementitious pastes contain 

different types of C-S-H based on their density (e.g., low-density or LD, high-density or 

HD), ultra-high stiffness phases, mixed reaction products, and unreacted particles of 

cement, fly ash, and limestone [69] [33] [19] [36]. Thus, the microstructural complexity 

increases with the use of multiple-blend binders, requiring more sophisticated and refined 

methods for microstructural characterization and analysis.  

Typically, scanning electron microscopy (SEM) coupled with energy-dispersive X-ray 

spectroscopy (EDS) is used to extract the chemical information of the microstructure in 

cement-based materials [67] [152] [153] [30]. Grid nanoindentation on these 
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microstructures provide the nanomechanical properties (or more accurately, 

micromechanical properties since the region of influence of the indents is of the order of 

1-3 µm) [111, 146] [59]. Coupling nanoindentation data (i.e., modulus and/or hardness of 

the indented locations) with SEM-EDS-based microstructural chemical mapping (i.e., 

intensity of species such as Ca, Si, and Al) has been shown to provide much needed 

microscale chemistry-property relationships for cement-based materials [69] [154] [71]. 

Clustering algorithms such as k-means clustering or those based on Bayesian methods 

have been used in conjunction with nanoindentation and chemical maps of cement pastes 

[109] [51] [16]. The microscale properties thus obtained are upscaled using analytical or 

numerical tools to predict the bulk properties of the material such as elastic modulus, 

which are important in design [51] [124]  [126].  

Grid nanoindentation and chemical mapping produce large datasets, which when 

judiciously combined with machine learning (ML), enable the development of unbiased 

structure-property estimators. The use of ML to relate the properties of cement-based 

materials to the mixture proportions [9, 10, 11, 12, 13], or to a limited extent, to their 

constitutive phases [15, 16] has been reported. A recent work by the authors 

demonstrated the use of ML to predict the nanoindentation modulus of different phases in 

UHP cementitious pastes using the intensity of chemical species at indentation locations 

as inputs [155]. It was shown that the efficiency of predicting the modulus suffers when 

the microstructure becomes more complex. In addition, acquisition of nanoindentation 

data can be time-and-cost-prohibitive. Thus, a ML-based classification approach is 

adopted in this work. If ML models can be trained on elemental maps from SEM-EDS 

and corresponding nanoindentation data to classify locations in a SEM image as 
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belonging to the appropriate microstructural phase (e.g., LD C-S-H or unhydrated 

clinker, etc.), it facilitates real-time characterization and feedback loop to material 

processing. In this paper, the focus is on using SEM-EDS information (with or without 

nanoindentation data) to identify the constitutive phases as labeled from clustering 

analysis of nanoindentation data and chemical intensities. This allows for very quick 

first-order determinations of the effective material properties. Artificial Neural Networks 

(ANN) and hierarchical decision trees are the ML approaches adopted in this study. The 

classification models are implemented on two UHP cement pastes, whose properties have 

been extensively reported [18, 6], and validated on two other cement pastes whose 

characteristics are adopted from the literature [72] [70]. 

5.2 DATA AND ORGANIZATION 

5.2.1 UHP Cement Pastes 

Nanoindentation and SEM-EDS chemical data utilized in this study belong to two UHP 

cementitious pastes (referred to as UHP-1 and UHP-2 in Table 5-1) which have been 

studied in detail by the authors [146, 154, 18, 6]. As mentioned earlier, this dataset has 

been used in predicting the indentation modulus from chemical species intensities using 

ML [155].  Both UHPs contain multiple cement replacement materials (Class F fly ash, 

silica fume, fine limestone powder) of varying sizes and reactivity, and a low water-to-

binder ratio (w/b), as shown in Table 5-1. Further details on chemical characteristics of 

the raw materials, mixture proportions, and mixing and curing conditions can be found in 

[146, 154]. The paste mixtures were cured in moist conditions until their testing duration.  
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Table 5-1: Proportions (mass-based) of the UHP cementitious pastes employed in this 

study. 

Mixture 

Constituent mass fraction in the binder 

w/b Curing regime 
OPC Fly ash Silica fume Limestone 

UHP-1 0.70 0.175 0.075 0.05 0.20 
Moist curing, 30d, 
90d 

UHP-2 0.50 -- 0.20 0.30 0.20 Moist curing, 30d 

 

5.2.2 Nanoindentation and Chemical Mapping  

A brief description of the procedure for nanoindentation and chemical mapping of UHP-1 

and UHP-2 pastes is described here. The sample preparation included specimen cutting, 

ultrasonication in isopropyl alcohol (IPA) [74], and polishing [50, 156, 73]. 

Nanoindentation was carried out using an Ultra Nanoindentation Tester (UNHT3; Anton 

Paar). Each sample had at least 1250 indents split among several grids in different 

locations to capture the heterogeneity in the microstructure of multi-component UHP 

paste systems. Indentations were performed in force control mode with a maximum 

displacement cutoff of 250 nm (0.25 µm) with loading profile detailed in [146, 154]. This 

depth corresponded to an interaction volume idealized as a hemisphere with a radius 3 to 

5 times the maximum cutoff [69, 107, 143]. The hardness (H) and the effective Young’s 

Modulus (M) were determined following the Oliver and Pharr method [65, 66]. 

The specimen surfaces were imaged after the nanoindentation tests using a SEM (SNE-

4500M Plus) coupled with EDS (Bruker EDS with ESPRIT software). The application of 

SEM-EDS for compositional identification of cement hydration phases is discussed in 

[68, 30]. Back-scattered electron (BSE) mode imaging Figure 5-1(a)) was performed with 

a beam current of 110 µA, a working distance of ~10 mm, and an accelerating voltage of 
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15 keV [154]. A BSE image was taken over the grid before EDS was performed at 50 

kcps. It has been shown that, in cementitious materials, most of the characteristic X-rays 

escaping the material are generated within a depth of 2 μm [72, 69], which is in line with 

the interaction depth for nanoindentation. To relate the elemental EDS information to the 

nanomechanical data, a MATLAB localization algorithm was implemented to align the 

optical image of the nanoindentation grid to the EDS chemical maps, as detailed in [109] 

[154] [155]. Brightness of the EDS chemical maps was auto-scaled by the data-collection 

software. Figure 5-1(b) shows the Ca EDS map. Al, Si, and Fe maps were similarly 

obtained. Across different maps, the number of X-ray counts associated with the same 

brightness value varies, and hence EDS maps are qualitative measures of the 

concentration of elements in each indentation grid. For statistical analysis, the RGB 

intensities from the Al, Ca, Fe, and Si EDS maps (denoted as IAl, ICa , IFe, and ISi 

respectively) were matched with the corresponding nanomechanical data. Figure 5-1(c) 

illustrates the translation of EDS map color intensity of Ca to the 0-255 scale. In BSE 

imaging, the cube of the brightness (γ3) can be related to the density of the phase [67]. 

This local density information is also used as an input parameter in the ML models 

described later.  
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(a) (b) (c) 

Figure 5-1: (a) BSE image of the 30-day UHP-1 paste, (b) Ca EDS map with blue dots 

added to show the location of one of the indentation grids after the alignment procedure, 

and (c) MATLAB graphic translating EDS map color intensity into 0-255 scale for Ca. 

 

5.2.3 Statistical Cluster Analysis from SEM-EDS and Nanoindentation Data 

To generate the labels of the constitutive microstructural phases to train the ML 

classification models, a Bayesian Information Criterion (BIC) with negative log 

likelihood method was implemented for statistical deconvolution (clustering) of the 

chemical intensities and the micromechanical properties [109]. If there exists n phases in 

the microstructure with each phase occupying a volume fraction of i (i = 1…n) such that 

∑ 𝜙𝑖
𝑛
𝑖=1 = 1, the properties of each phase can be approximated by a Gaussian distribution 

with a probability density function (PDF) given as: 

𝑃𝐷𝐹 = ∑ 𝜙𝑖
𝑛
𝑖=1 𝜓𝑖              (27) 

Here, 𝜓𝑖 is the vector of classification variables of the phase. The classification variables 

utilized in cluster analysis were indentation modulus M, indentation hardness H, and the 

intensities of aluminum IAl, calcium ICa, iron IFe, and silicon ISi. While the same 

statistical nanoindentation results can be fit using different number of phases and volume 
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fractions [108], a maximum negative log likelihood estimation was used to find the PDFs 

that best represented the experimental data: 

NlogL = −max(log( ∏ PDF(ni)))n              (28) 

Here, ni represents the distribution parameters, in the case of a Gaussian distribution the 

mean and standard deviation, that are iterated to maximize the likelihood function. Then, 

the BIC was minimized such that: 

BIC = 2 NlogL + p log(m)              (29) 

In the above equation, m is the number of indentation points and p is the number of 

identifying parameters available at each indentation point (in this case six; four chemical 

intensities and two mechanical properties M and H) [109]. A summary of the constitutive 

phases identified from this clustering analysis is given in Table 5-2. They include low 

density (LD) C-S-H, high density (HD) C-S-H, an ultra-high stiffness (UHS) phase 

unique to the very low w/b cement pastes such as UHP mixtures, a mixed phase 

comprised of partially reacted starting materials such as fly ash or limestone and products 

such as carboaluminates, and residual clinker. The salient features of these phases have 

been elucidated in detail elsewhere [154] [69] [71] [39] [35]. As an example for the UHP-

1 paste cured for 90 days, the clustering of M and H is shown in Figure 5-2(a), while 

Figure 5-2(b) depicts the normalized intensities of Ca at every indentation point and the 

corresponding M, and Figure 5-2(c) showcases the normalized intensities of Ca vs. Si. 

Detailed analysis of the UHP paste clusters identified, and justification for their 

corresponding constitutive phase labels are described in [154].  
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Table 5-2: Constitutive phases identified and their volume fractions (𝜙) in the UHP 

pastes. FA, MS, L, and CA denotes fly ash, microsilica, limestone, and carboaluminates, 

respectively. The phase labels from 0-4 are the inputs to the ML classification algorithm. 

 

Figure 5-2: Clustering analysis of the 90-day cured UHP-1 paste: (a) M vs. H, (b) M vs. 

ICa, and (c) ICa vs. ISi. 

 

5.2.4 Inputs to the Machine Learning Classification Model and the Rationale 

The ML classification models described in the forthcoming section uses the intensities at 

different indentation points to determine which of the phases (shown in Table 5-2), the 

point belongs to. The datasets for both mixtures and ages shown in Table 5-1 were 

combined to create the most generalizable ML classifier possible. The details of this large 

Mixture Phase 
Phase 

Label 

Volume fraction (𝜙) 

30 d 90 d 

UHP-1 

LD CSH/Residual MS 0 0.18 - 

HD CSH 1 0.38 0.40 

UHS Phase 2 0.19 0.23 

Mixed (FA, L, MS, 

CA) 
3 0.12 0.17 

Clinker 4 0.13 0.20 

UHP-2 

UHS Phase/CSH 2 0.42 - 

Mixed (L, MS) 3 0.41 - 

Clinker/Unreacted 4 0.17 - 

   

(a) (b) (c) 
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dataset are shown in Table 5-3. The ability of ML algorithms to accurately classify the 

constitutive phases in complex microstructures belonging to multiple mixtures at 

different ages is explored. For the first set of ML models, 7 inputs were used (i.e., the 4 

chemical intensities, γ3, and M and H values from nanoindentation). In the second set, the 

ML models were trained only using 5 inputs (i.e., the 4 chemical intensities and γ3). M 

and H are used as inputs in one set of ML models since the actual nanomechanical 

information is expected to facilitate better learning of the ML models to identify the 

phases during the training stage. This is shown to be true later in this paper, especially for 

more complex microstructures such as the UHP pastes. To test the correlation between 

the predicted phase labels and the 7 inputs, Pearson correlation coefficients (or linear 

correlation coefficients) [11] [16] were determined as shown in Figure 5-3. It can be 

noticed that all the inputs are reasonably correlated to the phase label output. M and H 

have the greatest correlation with the phase labels, and all the chemical intensities are 

quite similarly related to the phase label output. The high correlation between the phase 

label output and M and H means that the efficiency of ML classification models that uses 

only chemical intensities from SEM-EDS (which is the preferred approach, since this 

data is easier to obtain than M and H) could suffer, which is evaluated in this paper. 

Generating ML models with and without nanoindentation data provides quantification of 

the tradeoff of only including SEM-EDS data as inputs. 
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Table 5-3: Details of the input dataset for the ML models, including 𝛾3, H, M, and RGB 

intensities of Al, Ca, Fe, and Si. 

Dataset 

(see Table 5-1 

for mixture 

details) 

No. of 

data 

points 

Statistic IAl ICa IFe ISi γ3 
H 

(GPa) 

M 

(GPa) 

Combined 

dataset 

belonging to 

UHP-1 @ 

30d, 90d and 

UHP-2 @ 30d 

3476 

Max 
25

2 
252 252 252 

1.47 

x 107  
23.20 235.54 

Mean 49 159 81 57 
2.18 

x 106 
3.45 56.92 

Min 4 4 4 4 
6.85 

x 103 0.43 12.87 

 

Figure 5-3: Pearson coefficient heat map for the correlation between the 7 inputs and the 

phase label output. 
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5.3 MACHINE LEARNING AND DATA PROCESSING 

The different machine learning (ML) techniques used for classification, along with the 

data pre-processing and parameter optimization methods, are summarized here. 

5.3.1 Machine Learning Techniques 

Artificial neural network (ANN) and forest ensemble methods are the ML algorithms 

used for the multi-classification (i.e., more than 2 classes or phase labels) reported in this 

paper. ANNs can learn very complex patterns of data, and thus is a preferred ML 

algorithm for many materials-related problems [9] [12] [95] [14] [157]. The ANNs used 

in this study utilize 2 to 3 hidden layers, which are appropriate for the number of unique 

data records used. The chosen activation function to relate neurons [95] is the rectified 

linear unit (ReLu) with optimization performed using RMSprop, which features an 

adaptive learning rate formula [96]. Backpropagation, using the gradient of the previous 

iteration to train the weights of the ANN, was performed automatically by the Keras 

neural network framework written in Python to build and train the ANNs [158]. To 

minimize over-fitting, a dropout rate, i.e., the probability that any neuron and its 

connections will be temporarily excluded from the network, was incorporated into the 

ANN [97].   

Machine learning forest ensemble methods are based on the structure of a decision tree 

that finds logical splits in the data leading from one branch to the next until ending at the 

leaf node [9, 87]. To reduce prediction inaccuracy and over-fitting, the predictions from a 

collection of decision trees are bagged [9] [159], termed ensembles. A basic form of 

forest ensemble is the Random Forest (RF) method in which the best split of the data is 

determined by considering all of the input features and checking a criterion, such as Gini 
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impurity, to select the most discriminative threshold [92, 87]. Each individual decision 

tree in the RF ensemble does not use the entire set of training data, but a bootstrap sample 

made from subsets of the training data with replacement [87] [159]. Another forest 

ensemble is the Extra Trees (ET) regressor in which the splits are drawn at random for 

each feature and the best split, as measured by the chosen criteria, is selected as the 

splitting rule [92, 87]. In the ET regression model, the entire dataset is incorporated into 

each individual tree [92]. The prediction results of the individual trees are averaged to 

produce the output prediction in the RF and ET regressions. In a Gradient Boosted Tree 

(GBT) ensemble, an initial tree is trained with the entire dataset. All subsequent trees in 

the forest are trained to minimize the residual between the predicted and actual values of 

the previous tree [9, 92] [93]. The final prediction is calculated as the weighted sum of 

the predictions of each tree. For each tree beyond the first, the prediction is multiplied by 

the learning rate, with typical values between 0.01 and 0.1 [9, 92]. A specialized form of 

the GBT is Extreme Gradient Boosted (XGB) tree [93]. XGB performs shrinkage and 

column subsampling techniques to prevent overfitting between boosted trees and 

additionally offers scalability through parallel tree boosting (efficient computing 

regardless of data size) [93].      

5.3.2 Preprocessing and Evaluation 

The input data points were pre-processed before separation into the testing and training 

sets to ensure that all the inputs and outputs lie in the range [0, 1] such that: 

znew =
z−zmin

zmax−zmin
               (30) 
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Here, znew is the value of the variable after transformation, z is the current value of the 

variable, and zmin and zmax  are the minimum and maximum values respectively, of that 

variable. 

The dataset mentioned in Table 5-3 was shuffled along the rows of indentation points 

(Figure 5-1(b)) such that adjacent points were separated, providing a greater chance of 

equal distribution of the various microstructural entities within the testing and training 

datasets. Training was performed by fitting the ML algorithm to the training dataset and 

allowing the algorithm to adjust its internal features to minimize the error. Model 

performance was evaluated using the testing dataset, which the ML algorithm has not yet 

seen, and measuring the resulting errors. To evaluate the accuracy of the ML predictions, 

a stratified n-fold cross-validation technique was employed [9, 87, 11]. Stratified splitting 

refers to preserving the percentage of samples in each class within each fold [92]. A 3-

fold cross-validation, deemed sufficient for the size of the datasets, was performed using 

the following steps: (i) randomizing the dataset and performing a 3-fold stratified split, 

(ii) training the model using 2 of the folds, (iii) testing the model using the remaining 

fold, (iv) repeating steps (ii) and (iii) until each fold has been used for testing once, 

acquiring 3 independent performance measures, and (v) averaging the individual metrics 

measured to obtain the cross-validation value. 

Among the several assessment methods for ML-based classification [160], the area under 

the Receiver Operator Characteristic curve (ROC-AUC) is chosen here since it is an 

important metric for checking any classification model’s performance [160] [161] [162]. 

A ROC-AUC of 1.0 indicates most accurate classification. The ROC curve is created by 

plotting the true positive rate (also called sensitivity or recall) against the false positive 
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rate (also called false alarm rate or fallout) at various threshold settings [160] [161]. The 

ROC-AUC is a measure of how well a model can discriminate between two classes (or 

microstructural phase labels, in this case), and is insensitive to the changes in the class 

distribution [160] [161]. In the case of multi-class labeling, however, ROC-AUC can be 

calculated using two different methods. The One-versus-Rest (OvR) strategy calculates 

the model’s ability to discriminate between one class vs. the rest of the classes, while the 

One-versus-One (OvO) strategy pairs each class against another such that, for n phase 

labels, 
𝑛∗(𝑛−1)

2
 calculations are made [162]. The former is sensitive to class distribution 

changes [161] while the latter is insensitive to class distribution, but computationally 

more expensive when the class number increases. In this study with 5 phase labels and 

data that is not significantly imbalanced, which requires special class distribution 

considerations [163], the more general OvR method was employed. The multi-class 

dataset was one-hot encoded (i.e., represented as binary vectors), and a ML classifier 

trained to predict the probability that a data point belonged to each phase label. The phase 

label with the highest probability is taken as the prediction for each point. In training, the 

goal of the ML models was to maximize the objective function, which was the ROC-

AUC. Other metrics tracked, but not used to train the models, were the accuracy and the 

F1 score, given as [160]:  

Accuracy =
TP+TN

TP+TN+FP+FN
              (31) 

𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
               (32) 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives, predicted by the 
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model for each class (or phase label). True positives indicate the success in identification 

of the correct phase label.  

5.3.3 Hyperparameter Optimization 

For all the models, the parameters which maximized the 3-fold cross-validation ROC-

AUC were used as the basis for the final models, with some additional fine-tuning. The 

parameters to optimize in the ANN models were the number of hidden layers, the number 

of neurons in each hidden layer, and the dropout rate. ReLu activation function with a 

learning rate of 0.001 and an RMSprop optimization scheme was used. For the RF, ET, 

and GBT models, the number of trees in the forest, the maximum depth of the trees, the 

minimum number of samples before splitting, and the minimum number of samples per 

leaf were tuned. Coarse optimization of the hyperparameters for ANN and the forest 

ensembles followed a random search pattern, found to be the most efficient method to 

optimize parameters [164], by randomly generating 20 different combinations of 

hyperparameters. The hyperparameters for random testing were chosen from the uniform 

distributions shown in Table 5-4.  

For the XGB models, there are many hyperparameters available to tune, nine of which 

were chosen for this study. The hyperparameters range from structure-based, such as the 

depth of the trees or the number of GBTs, to how splits are made via the subsample and 

colsample_bytree parameters, or even how big the leaf groups can be via 

min_child_weight. Additional parameters tuned included the learning rate, the minimum 

objective function loss required to split a leaf node called gamma, as well as the L1 and 

L2 regularization terms on the weights called alpha and lambda, respectively. Each 

hyperparameter was tested one at a time over a grid within the range of values indicated 
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in Table 5-4, where the best value was used when searching for the next parameter. The 

order of hyperparameter selection is given by the order of parameters in Table 5-4 for 

XGB. This process was continued until the end when several different learning rates and 

number of trees were tested as a final tuning effort. Detailed breakdown of the allowed 

ranges and significance of each of these hyperparameters are given in the XGB code 

documentation [93]. 

Table 5-4: Hyperparameters tuned based on a uniform distribution range of potential 

values. 

Model Hyperparameter Uniform Distribution Range 

ANN 

# hidden layers [1, 4] 

# starting neurons [20, 75] 

Drop rate [0, 0.3] 

Random Forest (RF), Extra 
Trees (ET) Forest, and 

Gradient Boosted Trees (GBT)  

# of trees [50, 400] 

Maximum depth [3, 21] 

Minimum# of samples before split [2, 25] 

Minimum # of samples on leaf [1, 10] 

XGB 

# of trees [0, 500] 

Maximum depth [1, 9] 

min_child_weight [1, 6] 

Gamma [0, 0.8] 

Subsample [0.5, 1.0] 

Colsample_bytree [0.2, 1.0] 

Alpha [1E-5, 1] 

Lambda [1E-5, 1.05] 

Learning Rate [0.05, 0.3] 

 

 



114 

 

 

5.4 ML-BASED CLASSIFICATION OF CEMENTITIOUS PHASES 

5.4.1 UHP Pastes 

The predictive efficiency of the different ML models using SEM-EDS data with and 

without nanoindentation hardness (H) and stiffness (M) as inputs, to classify the UHP 

phase at each desired location is reported in this section. Each of the five ML algorithms 

(ANN, RF, ET, GBT, XGB) discussed above were implemented on the data to examine 

the applicability of the ML classification methodology to identify the phase labels in 

complex and heterogeneous UHP pastes. Table 5-5 lists the ROC-AUC, accuracy, and F1 

values for the final ML classification models for the 7-input and 5-input cases. The 

bolded entries indicate the ML models where the OvR ROC-AUC results from 3-fold 

cross-validation were the highest. Note that the 3-fold cross-validation trials could not be 

plotted directly, instead, Figure 5-4 and Figure 5-5 were generated from a 75%/25% data 

split such that 75% of the data points were used for training and 25% were used for 

testing and displaying the plots, where the results were almost identical to the 3-fold 

cross-validation results reported in Table 5-5.  

In the case of the datasets with 7 inputs (both SEM-EDS and nanomechanical data), all 

the ML models performed very well in terms of all three metrics (ROC-AUC, Accuracy, 

and F1), with the GBT model showing a slightly better performance. The ROC-AUC 

value was around 0.99 (1.0 being the absolute best) [160] [161], indicating the efficiency 

of the classification algorithms in being able to determine the phase labels based on the 

given input data.  Even when the nanomechanical data was removed from the datasets 

and the input matrix reduced to 5 SEM-EDS input parameters, the ML classification 
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algorithms worked quite well with a ROC-AUC value of around 0.92. In this case, the 

ANN model provided the best ROC-AUC value, while the forest models also showed 

very similar performance. The high ROC-AUC values show that, in an OvR setting, the 

classification ML algorithms used are successful in distinguishing one class compared to 

all the others. However, it can be also seen from Table 5-5 that there is a sharp reduction 

in the accuracy and F1 scores, which both depend on the number of correctly identified 

data points as described using Equations 5 and 6 [160], when the nanomechanical 

information is absent. This is to be expected, since M and H had the highest correlation 

with the output phase label, as indicated in Figure 5-3. It is observed that high accuracy 

and F1 values, along with high ROC-AUC, can be achieved when additional, relevant 

input data such as M and H are available. 

Table 5-5: Efficiency metrics of the ML classification algorithms for phases in UHP 

pastes from SEM-EDS (5 inputs), and with two additional inputs, M and H, from 

nanoindentation (7 inputs). Average and standard deviation from 3-fold cross-validation 

is reported. The ML model with the greatest ROC-AUC for each number of inputs is 

shown in bold. 

# of 

inputs 
Model Type ROC-AUC Accuracy F1 

7 

ANN 0.988 ± 0.003 0.906 ± 0.009 0.912 ± 0.009 

Random Forest 0.988 ± 0.003 0.903 ± 0.010 0.911 ± 0.010 

Extra Trees Forest 0.986 ± 0.003 0.889 ± 0.015 0.898 ± 0.014 

Gradient Boosted Trees 0.989 ± 0.002 0.908 ± 0.011 0.914 ± 0.012 

XGB 0.988 ± 0.003 0.907 ± 0.017 0.914 ± 0.016 

5 

ANN 0.926 ± 0.002 0.726 ± 0.013 0.745 ± 0.014 

Random Forest 0.924 ± 0.002 0.728 ± 0.010 0.749 ± 0.012 

Extra Trees Forest 0.924 ± 0.003 0.715 ± 0.012 0.729 ± 0.013 

Gradient Boosted Trees 0.919 ± 0.004 0.719 ± 0.015 0.746 ± 0.016 

XGB 0.921 ± 0.003 0.721 ± 0.008 0.743 ± 0.010 
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Figure 5-4(a) and (b) show the ROC curves obtained from these best-performing models 

for the 7-input and 5-input cases, respectively. As expected, and shown in Table 5-5, the 

ROC curves shift downward when the nanomechanical inputs are excluded from the ML 

classification analysis. However, it is important to note that not including M and H, 

which correlated the most with the phase label output (see Figure 5-3), still produces 

reasonable identification of the microstructural phases just based on SEM-EDS 

information. This is significant in that, the use of SEM-EDS chemical maps along with a 

ML classification scheme allows for: (i) identification of potential phases present at those 

locations, which provides detailed insights into the influence of material composition on 

microstructure, and (ii) prediction of important paste properties (such as modulus) based 

on the known properties of the phases and their volume fractions.  

  

(a) (b) 

Figure 5-4: Receiver-Operator Curves (ROC) showing One-versus-Rest results for ML 

classification using 25% of data for testing: (a) GBT ML model with 7 inputs, (b) ANN 

ML model with 5 inputs. The dashed diagonal line represents the random guess of a 

class. The chosen models are the best performing ones based on Table 5-5. 
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Further information on the predictive performance of the classification models can be 

gleaned from confusion matrices presented in Figure 5-5(a) and (b) for the 7-input GBT 

ML and 5-input ANN ML classification models, respectively. For both the input types 

the LD C-S-H phase is  accurately identified in 94-100% of the points by the ML models 

as shown in Figure 5-5. Similarly, the HD C-S-H phase is correctly classified in 83-94% 

of the points, depending on whether the 5-input or 7-input models are used. Since LD C-

S-H and HD C-S-H have differences in their packing densities, which result in different 

mechanical properties [57, 116], it is only natural that a ML model that is trained using 

nanomechanical data also shows near-perfect capability in accurately identifying these 

phases. However, cluster analysis in several past work [71] [59] [165] have shown 

dissimilarities in chemical intensities between these phases, which enables the 5-input 

model also to perform satisfactorily in classifying these phases. As indicated in the 

authors’ recent work [146] [154], the remaining three hard-stiff phases, viz., UHS, mixed 

phase containing limestone, carboaluminates and fly ash, and clinker, with indentation 

moduli of ~43 GPa [57], ~75 GPa [21] [39] [114] [38], and ~100 GPa [47] respectively, 

overlap in terms of chemical intensities and stiffnesses. This is clearly noticed in the 

scatter of points corresponding to these phases in Figure 5-2(c). Reducing the number of 

inputs from 7 to 5 clearly has a significant adverse effect on the classification of these 

phases as noted from Figure 5-5. In the 7-input model, the mixed phase is correctly 

identified in ~92% of the cases, while the classification accuracy drops down to ~63% in 

the 5-input model, where the mixed phase is confused with the UHS phase in many 

instances. In both the models, clinker classification has the lowest accuracy. In the 5-

input model, the clinker classification accuracy is around 50%, with a significant number 
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of clinker locations mis-identified as HD C-S-H phases due to the absence of 

corroborating nanoindentation data. It is also notable that the EDS chemical maps were 

obtained based on qualitative measurements and not on quantitative spot chemical 

analysis [109, 72], and therefore only provide relative atomic ratios and not the exact 

ratios. As such, it is likely that cementitious phases with similar Ca/Si ratios, but different 

stiffnesses may be confused for one another in the 5-input ML model. Another 

explanation for the confusion between the clinker and HD C-S-H phases is that, in the 

UHP-2 mixture there was no HD C-S-H cluster identified, and the reaction product 

belonged to the UHS phase [154]; however, when the Ca and Si intensities were plotted 

for the clinker and UHS phases, they almost perfectly overlapped [154]. The high 

unreacted limestone content in this mixture could have resulted in excess Ca in the 

chemical map that contributed to a higher Ca/Si ratio, which is typical of clinker. This 

may have led to the confusion of the ML to differentiate between the clinker and 

UHS/HD C-S-H phases for the UHP-2 mixture. It is once again shown that, in complex 

microstructures where chemical intensities overlap between phases (as shown Figure 

5-2(c)), the use of additional inputs in the form of nanomechanical properties help 

classification significantly.  
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(a) (b) 

Figure 5-5: Confusion matrices showing results for ML classification using 25% of data 

for testing: (a) GBT ML model with 7 inputs, and (b) ANN ML model with 5 inputs. 

Percentage accuracy in each row is given based on the total number of data points in each 

phase label, as shown along the diagonal. In an ideal case, it is desirable to have a 

classification accuracy near 100% on the boxes along the diagonal, which would result in 

little to no misidentification, and thus, close to 0% on all the other boxes. 

 

5.4.2 Validation of the Classification Approach Using Other Cement Paste Data 

To validate the ML classification of microstructural phases through chemical intensities 

from SEM-EDS, two new datasets were curated from literature [72] [70] and similar ML 

models developed to classify their phases. These datasets are referred to as OPC (plain 

cement paste) [72] and NP (20% of cement by mass replaced with a natural pozzolan) 

[70]. Nanoindentation and chemical mapping data reported in [72] [70] identified several 

clusters of microstructural phases in these mixtures. The OPC data identified 5 clusters 

by BIC and negative log likelihood method in [72], however two clusters with the highest 

stiffness and hardness could be grouped together as part of the clinker phase to ensure 

that the same ML algorithms as described above can be used here. The remaining three 

clusters were labeled as LD C-S-H, HD C-S-H, and a mixed phase. For the NP data, 6 
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clusters were identified in [70], but clusters 5 and 6 were grouped as together as they 

were both identified as clinker phases [70], with LD C-S-H, HD C-S-H, UHS, and mixed 

phase labels given to the remaining clusters. The only available inputs were three 

elemental intensities, ICa, ISi, and IAl, along with M and H. Thus, ML models using all the 

5 inputs, or just the 3 chemical signature inputs, were implemented. To keep the 

discussions succinct, only three forest ensemble models (RF, ET, and GBT) are used here 

for the validation tests. Table 5-6 lists the resulting ROC-AUC, accuracy, and F1 values 

for these datasets. Similar to the UHP pastes, there was a decrease across all metrics of 

classification going from 5 inputs (which included the micromechanical M and H) to 3 

inputs. However, this decrease was to a much lesser extent owing to the greatly reduced 

complexity in these microstructures that were well hydrated. As compared to the UHP 

pastes evaluated in the previous section, these pastes demonstrate reduced heterogeneity 

with fewer starting ingredients, proportioned using a higher w/b, and having undergone 

higher degrees of reaction, as explained in detail in [155]. As shown by the results in 

Table 5-6, ML classification methods are quite successful in identifying the hydration 

phase given only the chemical intensities for less complex microstructures. 
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Table 5-6: Efficiency metrics of the ML classification algorithm for phases in OPC and 

NP pastes from SEM-EDS (3 inputs), and with two additional inputs, M and H, from 

nanoindentation (5 inputs). Average and standard deviation from 3-fold cross-validation 

is reported. The most accurate ML model for each number of inputs is shown in bold. 

 

Figure 5-6 shows the confusion matrices and ROC curves for the OPC and NP mixtures, 

for the 3-input cases. The classification accuracy is very high as noted from the confusion 

matrices for both the pastes, attributable to the relative simplicity of their microstructures 

as compared to the UHP pastes. There are very few mis-labeled indentation points even 

when the nanomechanical data is not provided. The results show the application of ML-

based classification algorithms in labeling the microstructural phases in cementitious 

systems.   

 

Dataset 
# of 

inputs 
Model Type ROC-AUC Accuracy F1 

OPC 

5 

Random Forest 0.975 ± 0.010 0.888 ± 0.018 0.893 ± 0.018 

Extra Trees Forest 0.981 ± 0.005 0.897 ± 0.011 0.899 ± 0.011 

Gradient Boosted 

Forest 
0.968 ± 0.011 0.858 ± 0.043 0.867 ± 0.037 

3 

Random Forest 0.951 ± 0.011 0.808 ± 0.062 0.801 ± 0.064 

Extra Trees Forest 0.958 ± 0.012 0.829 ± 0.040 0.837 ± 0.037 

Gradient Boosted 
Forest 

0.945 ± 0.017 0.817 ± 0.040 0.827 ± 0.031 

NP 

5 

Random Forest 0.988 ± 0.006 0.891 ± 0.023 0.891 ± 0.019 

Extra Trees Forest 0.989 ± 0.007 0.902 ± 0.038 0.897 ± 0.039 

Gradient Boosted 

Forest 
0.991 ± 0.006 0.925 ± 0.026 0.925 ± 0.022 

3 

Random Forest 0.973 ± 0.008 0.860 ± 0.019 0.859 ± 0.022 

Extra Trees Forest 0.973 ± 0.006 0.832 ± 0.041 0.826 ± 0.039 

Gradient Boosted 
Forest 

0.965 ± 0.006 0.822 ± 0.028 0.819 ± 0.032 
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(a) (b) 

  

(c) (d) 

Figure 5-6: ML classification using 25% of data for testing: (a) and (b) confusion matrix 

and ROC curves for the 3-input ET model for the OPC paste; (c) and (d) confusion 

matrix and ROC curves for the 3-input RF model for the NP paste. 

Final hyperparameter details for each data set are given in Table 5-7 for the ANN models, 

Table 5-8 for the ensemble models, and Table 5-9 for the XGB models. A reminder in 

ANN models that for each subsequent hidden layer the number of neurons is halved. For 

example, an ANN which began with 50 neurons in hidden layer 1 will have 13 neurons in 

hidden layer 3. 
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Table 5-7: Final hyperparameters of ANN models for each dataset to classify 

cementitious phases given qualitative chemical intensity and/or nanoindentation hardness 

and stiffness. 

Dataset 
# of 

inputs 

# of Hidden 
Layers 

Starting # 
Neurons 

Dropout Activation Optimization 
Learning 

Rate 
Epochs 

Run 

Time 
(sec) 

UHP 7 3 75 0.05 ReLu RMSprop 0.001 400 387 

UHP 5 2 67 0.15 ReLu RMSprop 0.001 400 375 

 

Table 5-8: Final hyperparameters of ensemble models for each dataset to classify 

cementitious phases given qualitative chemical intensity and/or nanoindentation hardness 

and stiffness. 

Dataset 
# of 

inputs 
Ensemble 

n_estimator

s 

(# of Trees) 

max_depth min_sample_split 

min_samples

_leaf 

Run 

Time 

(sec) 

UHP 

7 

RandomForestClassifier() 335 19 3 2 6.36 

ExtraTreesClassifier() 221 19 5 2 2.61 

GradientBoostingClassifier() 255 20 3 10 102.9 

5 

RandomForestClassifier() 345 10 7 3 5.78 

ExtraTreesClassifier() 60 10 7 1 0.74 

GradientBoostingClassifier() 86 3 16 6 5.50 

OPC 

5 

RandomForestClassifier() 283 13 5 1 2.70 

ExtraTreesClassifier() 285 13 3 1 1.76 

GradientBoostingClassifier() 300 25 5 8 8.36 

3 

RandomForestClassifier() 127 3 15 3 1.21 

ExtraTreesClassifier() 124 14 13 1 0.89 

GradientBoostingClassifier() 62 15 17 6 1.97 

NP 

5 

RandomForestClassifier() 110 16 6 3 1.03 

ExtraTreesClassifier() 100 16 6 3 0.75 

GradientBoostingClassifier() 345 16 20 9 11.69 

3 

RandomForestClassifier() 144 15 5 3 1.54 

ExtraTreesClassifier() 141 15 5 3 1.08 

GradientBoostingClassifier() 55 13 23 10 2.09 
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Table 5-9: Final hyperparameters of XGB models for each dataset to classify 

cementitious phases given qualitative chemical intensity and/or nanoindentation hardness 

and stiffness. 

Hyperparameters 
Dataset 

UHP 

# Inputs 7 5 

n_estimators 32 34 

max_depth 10 5 

min_child_weight 1 2 

gamma 0 0.1 

subsample 1 0.8 

colsample_bytree 1 0.8 

reg_alpha 0 0.0095 

reg_lambda 1 1.05 

learning_rate 0.3 0.1 

Run Time (sec) 1.61 1.92 
 

5.5 SUMMARY 

This chapter has presented a novel approach to accurately predict cement hydration 

phases from chemical intensity maps, using machine learning (ML) methods. Chemical 

intensity data from SEM-EDS for different UHP cement paste datasets representing 

multiple cementing materials and hydration ages were combined. Micromechanical 

information from nanoindentation as well the elemental intensities from qualitative EDS 

maps were then coupled with Bayesian statistical clustering. With the phase labels (e.g., 

LD or HD C-S-H, clinker etc.) thus identified, different ML classification techniques 

based on Artificial Neural Networks (ANN) and forest ensemble methods were 

implemented on the dataset. The classification algorithms were implemented on the 5-

input dataset (chemical intensities of Ca, Si, Al, and Fe, along with the cube of the 

brightness of the BSE image (γ3)), and 7-input dataset (the above 5 inputs, and M and H 

from nanoindentation). The area under the Receiver Operator Characteristic curve (ROC-

AUC) was chosen as the indicator of model performance.  
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It was observed that, for the combined dataset of the UHP pastes, the ROC-AUC values 

were higher than 0.90 for both the 7-input and 5-input datasets. In such complex systems, 

the use of additional inputs in the form of nanomechanical properties help classification 

significantly. The same approach was also used on two less complex microstructures (i.e., 

fewer starting materials and more complete hydration), one of a plain OPC paste and the 

other a paste with 20% OPC replaced using a highly reactive natural pozzolan. Here, 

normalized intensities of just the three chemical species (Ca, Si, and Al) were deemed 

sufficient (without nanoindentation data) to generate a highly accurate classifier. It is 

shown that chemical intensity mapping of microstructures, coupled with machine 

learning, can be used to accurately (in the case of common cementitious microstructures) 

classify the microstructural phases, which can lead to apriori property (e.g., stiffness) 

predictions.  
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CHAPTER 63 

6 MACHINE LEARNING APPROACHES TO PREDICT THE MICROMECHANICAL 

PROPERTIES OF CEMENTITIOUS HYDRATION PHASES FROM 

MICROSTRUCTURAL CHEMICAL MAPS 

6.1 INTRODUCTION 

The macroscale mechanical properties of cementitious materials that are important in 

structural design possess a complex relationship to constitutive materials, hydration, and 

other microstructural effects that are not well understood, nor physically modeled [9]. 

Enhanced mixture design that not only achieves desired mechanical properties with fewer 

trial batches [10], but also optimizes the concrete mixture for cost and environmental 

factors, can only be produced through a fundamental understanding of the relationship 

between the properties of the constituent microstructural phases and the macroscale 

response. In cementitious pastes the macroscale properties differ widely depending on the 

degree of hydration, the amount of unhydrated cement, the type of hydration products (C-

(A)-S-H gels with varying local chemistry, various other crystalline phases such as 

calcium hydroxide and ettringite), and the remaining amounts of additional reactants such 

as fly ash and slag. The fundamental properties of such phases are typically determined 

using nanoindentation techniques, which are quite challenging for cement-based 

materials [78, 51, 104]. In general, a grid is applied to the area of interest in the 

microstructure, and nanoindentation tests are performed at each point in the grid. In 

combination with statistical analysis techniques, the micromechanical properties (since 

 
3 This chapter is derived from the publication:  E. L. Ford, S. Kailas, K. Maneparambil, and N. Neithalath, 

"Machine learning approaches to predict the micromechanical properties of cementitious hydration phases 

from microstructural chemcial maps," Construction and Building Materials, no. 265, pp. 120647, 2020. 
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the region of influence of the indentation is of the order of 1-3 µm, the terms 

“micromechanical properties” or “nanomechanical properties” are used interchangeably) 

of individual phases are determined [70, 72, 51]. The use of such an approach to 

determine the stiffness and hardness of the constituent phases in plain ordinary Portland 

cement (OPC) pastes as well as those containing multiple cement replacement materials, 

or high- and ultra-high performance pastes have been well-documented [111] [59] [69, 

146, 154]. The nanomechanical response of individual phases, in conjunction with 

homogenization models, have been used to predict the macroscale response of normal, 

high, and ultra-high-performance concretes [50, 122]. The limitations of statistical 

nanoindentation has resulted in its coupling with electron microscopy and chemical 

mapping (using energy dispersive X-ray spectra, for instance) to identify the different 

phases in the microstructure and give a chemical context to the nanomechanical 

properties [70, 109].  

While the challenges with nanoindentation technique are well-accepted, it has also been 

shown that there are some relationships between the chemistry of the hydration products 

in the microstructure and their micromechanical properties [25, 28, 29]. For C-S-H gels, 

recent papers have shown plots that represent the nanoindentation stiffness as a function 

of Ca and Si contents in the gel [72, 71]. However, these relationships are very complex, 

not unique, and not easily modeled using physics-based or statistical models. This 

necessitates the use of machine learning (ML) methods that model complex, multi-

dimensional relationships that cannot easily be fitted using traditional statistical and 

regression methods [8]. Large data sets can be used to relate the nanoindentation stiffness 

of phases to several chemical features of the microstructure through supervised learning. 
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ML models, when trained on high-quality data sets: (a) utilize the semi-empirical rules 

that inform the relationship between phase chemistry and phase properties, and (b) 

perform predictions on previously untrained data sets. A significant number of previous 

publications have dealt with the prediction of compressive strength of conventional, high-

performance, or geopolymer concrete from mixture proportions using a variety of ML 

models [9, 10, 11, 12, 13]. Recent work has also elucidated the use of ML methods to 

predict the elastic modulus of concretes [166].   ML has also been utilized in a multi-

objective optimization of concrete mixture proportions to satisfy desired strength, cost, 

and slump [14], and paired with nanoindentation mapping of mortar surfaces to  

reconstruct the constituent phases [15, 16].  

As discussed earlier, being able to predict the nanoindentation stiffness of phases from 

energy dispersive X-ray maps on electron micrographs that portray the distribution of 

chemical species, is efficient and expeditious. If successful, this method opens up new 

avenues to easily upscale the properties of cementitious materials through 

homogenization. Prediction of mechanical properties from ML will advance the design 

and implementation of complex, heterogeneous cementitious mixes through minimization 

of expensive and time-consuming testing as well as shifting the focus from the 

macroscopic to microscopic results of mixture design. This paper, the first of its kind, is a 

step in that direction. ML models are developed using relative concentrations of chosen 

chemical species at the indentation points in the hydrated microstructure as inputs. 

Different cementitious pastes, ranging from simple, well-hydrated OPC pastes, to 

complex, multi-component blends that are poorly hydrated, are utilized to demonstrate 

the range of applicability of the developed ML models. The relative performance of 
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different ML models (e.g., Support Vector Regression, Gaussian Process Regression, 

Artificial Neural Network, and Ensemble methods) are brought out, along with the 

complexities in the microstructure that challenge the predictive ability.  

6.2 A BRIEF INTRODUCTION TO MACHINE LEARNING TECHNIQUES 

USED IN THIS STUDY 

A concise overview of the different machine learning (ML) techniques used in this paper 

is provided in this section.  

6.2.1 Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a nonparametric technique that uses a regularization 

parameter C and kernels to transform predictor variables into higher-dimensional feature 

space, as well as threshold-based error to guide training [9, 14, 10]. SVRs have fast 

learning speed and noise-tolerating ability [14]. When the objective function is 

minimized (i.e., -insensitive loss), errors smaller than a threshold, , do not add to the 

overall error measure, while the training data outside the -tolerance will be used as 

support vectors to build the regression function [9, 10]. The regularization term C 

quantifies the penalization of data outside of the tolerance [14] (in other words, C 

controls the trade-off between achieving a low error on the training data and minimizing 

the norm of the weights). The kernel is used to quantify the Gaussian distance between 

the predicted inputs and those of the training data [9]. Each type of kernel has its own set 

of parameters which must be tuned via cross-validation to achieve the best prediction 

(See Section 6.4.2 for further details). The squared exponential kernel (also called the 

radial basis function, RBF) is used in this study [12]. 
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6.2.2 Gaussian Process Regression (GPR) 

Gaussian Process Regression (GPR) is a ML technique in which the known data y is 

fitted to a predictive Gaussian distribution 𝒩, with mean μ and variance σ2, represented 

in Equation 1 [12, 91]. The model uses a stochastic process to determine random 

variables having Gaussian distributions without any prior knowledge.   

y = 𝒩(μ, σ2) = 𝒩(𝟎, [𝐊 + σn
2𝐈])            (33) 

The distribution is assumed to have a mean of zero, with a covariance (kernel) matrix K 

generated from an assumed covariance (kernel) function k, and additive independent 

Gaussian noise with a mean of zero and a variance of σn
2 multiplied by the identify matrix 

I of size K. The distribution of known y and predictions f∗ from new inputs x∗ is a joint 

distribution written as: 

[
y
f∗

] = 𝒩([
𝟎
0

] , [
𝐊 + σn

2𝐈 𝐊∗

𝐊∗
𝐓 𝐊∗∗

])            (34) 

where 𝐊∗ = [k(x∗, x1), … , k(x∗, xM)]T for M dimensions (different types) of inputs, and 

𝐊∗∗ = k(x∗, x∗) where x∗ is input into the kernel function k. The mean μ∗ and variance σ∗
2 

of the prediction distribution f∗ are therefore given as: 

μ∗ = 𝐊∗
𝐓(𝐊 + σn

2𝐈)−1𝐲             (35) 

σ∗
2 = 𝐊∗∗ − 𝐊∗

𝐓(𝐊 + σn
2𝐈)−1𝐊∗            (36) 

The mean of the new input data represents the prediction, and the standard deviation 

gives an error range of estimation, which marks GPR as one of the few ML techniques 

that provide an error range (confidence interval) for the predictions [167, 168]. Cholesky 

decomposition is used to determine the inverse of the covariance matrix K. The assumed 

kernel function describes the structure and similarity of the data and therefore has a large 
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impact on the prediction results [12, 169]. The four types of kernels used in this study are 

the squared exponential (i.e., radial basis function; See section 6.2.1), the rational 

quadratic, the Matern 1.5, and Matern 2.5, whose formulations are given as [12]: 

Squared Exponential/Radial Basis Function (RBF): 

 k(x, x∗) = σf
2 ∗ e

−
r2

2ℓ2               (37) 

Rational Quadratic: 

 k(x, x∗) = σf
2 ∗ (1 +

r2

2αℓ2)
−α

             (38) 

Matern 1.5: 

 k(x, x∗) = σf
2 ∗ (1 +

√3∗r

ℓ
) ∗ e

−√3∗r

ℓ             (39) 

Matern 2.5: 

 k(x, x∗) = σf
2 ∗ (1 +

√5∗r

ℓ
+

√5∗r2

3ℓ2 ) ∗ e
−√5∗r

ℓ            (40) 

Here, r is the Euclidean distance between variables x and x∗, σf
2 is the variance of the 

output data y, ℓ is the characteristic length-scale, and α is the scale parameter (when α →

 ∞ the rational quadratic is identical to the squared exponential). The Matern kernels are 

generalizations of RBF and the parameter 1.5 or 2.5 controls the smoothness of the 

resulting function [92]. Each kernel has unique parameters that are automatically 

optimized via maximum likelihood estimation [91] and applied using “fit” on the scikit 

learn “GaussianProcessRegressor” command [92]. To further improve the predictive 

capabilities of the GPR models, the kernels are treated as additive in which each 

dimension (input variable) is given a base kernel to train on, and the sum of these kernels 

plus white noise is treated as the kernel to generate predictions [169]. A limitation of this 
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additive kernel technique is that, as more kernels are introduced, more parameters must 

be optimized and potentially overfit to the training data [169]. GPR is known to work 

well on sparse data sets [167] and is more effective when variables are reduced to only 

the most essential ones [170]. 

6.2.3 Artificial Neural Networks (ANN) 

An artificial neural network (ANN) mimics synaptic responses in the brain and is 

organized into an input layer, hidden layer(s), and an output layer. Each layer contains 

neurons with values of information that typically ranges between 0 and 1 [95]. Between 

layers, neurons are fully connected to every other neuron. Each connection has a unique 

weight, w, relating the two neurons. The number of input layer neurons is equal to the 

number of inputs, the number of output layer neurons is equal to the number of outputs, 

and there can be any number of neurons in the hidden layer(s). The ANN can be shallow 

with only a few hidden layers, or deep with many layers. The exact number of hidden 

layers to be considered “deep” is not well-agreed upon, but generally networks with > 10 

hidden layers are considered deep networks [83]. The ANNs presented in this study 

utilize 1 to 3 hidden layers, which are appropriate for the number of unique data records 

used, and the number of inputs are 3 or 6.  

The value within each neuron of the hidden layer(s) and output layer depends on the 

previous neurons, the weights, and the chosen activation function [95]. Although a 

sigmoidal function is commonly used as the activation function [9, 95, 171], more 

accurate results were found in this study using a rectified linear unit (ReLu). 

Optimization is performed using RMSprop, which features an adaptive learning rate 

formula [96]: 
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νt = β ∗ νt−1 + (1 − β) (
∂f

∂wt
)

2

              (41) 

Here, νt is the average of the squared gradient at time t, νt−1 is the average of the squared 

gradient of the previous iteration, β is the moving average parameter with a default value 

of 0.90, and 
∂f

∂wt
 is the gradient of the objective function f with respect to the weight at 

time t (wt). This is then used to automatically adjust the initial learning rate, η, for each 

parameter when generating the updated weight, wt+1: 

wt+1 = wt −
η

√νt
∗

∂f

∂wt
               (42) 

Utilization of the gradient of the previous iteration to train the weights of the ANN is 

known as backpropagation.  

Neural networks feature many fitting parameters that allow them to predict nonlinear 

interactions. A disadvantage of neural networks is the potential for over-fitting the data, 

or training the weights to precisely match the training data set and render the algorithm 

unable to accurately predict results of the test data set [9]. To minimize over-fitting, a 

dropout rate was incorporated into the ANN. A dropout rate is a hyperparameter 

probability that any neuron and its connections will be temporarily excluded from the 

network [97]. While testing, the entire neural network is used, but the connection weights 

are multiplied by the dropout rate to combine the effect of the thinned-out training 

networks.   

In this study, the Keras neural network framework written in Python is utilized to build 

and train the ANNs [158]. TensorFlow is used as the back-end engine. Additionally, a 

wrapper was implemented to use the scikit learn GridSearchCV and 
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RandomizedSearchCV functions [92] in order to determine and compare hyperparameter 

settings, as detailed in Section 6.4.2.   

 

6.2.4 Ensembles 

Machine learning forest ensemble methods are based on the structure of a decision tree. 

The decision tree finds logical splits in the data leading from one branch to the next until 

ending at the final leaf node. A simple operation such as multiplication is then used to 

predict the output of the partition [9, 87]. To reduce prediction inaccuracy and over-

fitting, the predictions from a collection of decision trees are accumulated [9]. A basic 

form of forest ensemble is the Random Forest (RF) method in which the best split of the 

data into branches and nodes is determined by considering all of the input features and 

checking a criterion, such as mean-squared error, to select the most discriminative 

threshold [92, 87]. Each individual decision tree in the RF ensemble does not use the 

entire set of training data, but a bootstrap sample made from subsets of the training data 

with replacement [87]. Another forest ensemble is the Extra Trees (ET) regressor in 

which the splits are drawn at random for each feature and the best split, as measured by 

the chosen criteria, is selected as the splitting rule [92, 87]. In the ET regression model, 

the entire dataset is incorporated into each individual tree [92]. The prediction results of 

the individual trees are averaged to produce the output prediction in the RF and ET 

regressions. In a Gradient Boosted Tree (GBT) ensemble, an initial tree is trained with 

the entire data set. All subsequent trees in the forest are trained to minimize the residual 

(least squares) between the predicted and actual values of the previous tree via steepest 

descent [9, 92]. Steepest descent follows the negative gradient of the residual to 
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determine the learning rate of the next tree; values between 0.01 and 0.1 are typically 

used as the learning rates [9, 92]. The final prediction is calculated as the weighted sum 

of the predictions of each tree, where for each tree beyond the first, the prediction is 

multiplied by the learning rate [9]. 

6.3 EXPERIMENTS AND DATA COLLECTION 

6.3.1 Materials and Mixtures  

In this study, experiments were performed on two ultra-high performance (UHP) 

cementitious pastes, which have been studied in detail by the authors [146, 154, 18, 6]. 

These pastes are referred to as UHP-1 with a mortar 28 day compressive strength of ~145 

MPa and UHP-2 with a mortar compressive strength of  ~128 MPa [6] [41]. Both these 

UHPs contain multiple cement replacement materials (Class F fly ash, silica fume, fine 

limestone powder) of varying sizes and reactivity, and a low water-to-binder ratio (w/b), 

thereby introducing high degrees of complexities in the microstructure. Hence, for 

comparison, nanoindentation and chemical maps corresponding to relatively less complex 

microstructures were extracted from recent literature [70, 72, 109]. These mixtures are 

referred to as OPC (plain cement paste), NP (20% of cement by mass replaced by a 

natural pozzolan), and SF (35% of oil well cement by mass replaced by silica flour). 

Table 6-1 gives the proportions and details of all the mixtures evaluated in this study. 

Further details on chemical characteristics of the raw materials, mixture proportions, and 

mixing and curing conditions can be found in [70, 72, 146, 154, 109].  
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Table 6-1: Details of cement pastes with proportions given by mass which ML models 

are used to predict nanomechanical properties. 

Mixture 

Constituent mass fraction in the binder 

w/b 
Curing 

regime 
Ref. 

OPC 
Fly 

ash 

Silica 

fume 

Limes

tone 

Natural 

pozzolan 

Silica 

flour 

UHP-1 0.70 0.175 0.075 0.05 -- -- 0.20 
Moist 
curing, 

30d, 90d 

[146, 

154] 

UHP-2 0.50 -- 0.20 0.30 -- -- 0.20 

Moist 

curing, 
30d, 90d 

[146, 

154] 

OPC 1.0 -- -- -- -- -- 0.40 

Moist 

curing, 1 
year 

[72] 

NP 0.80 -- -- -- 0.20 -- 0.35 

Moist 

curing, 
90d 

[70] 

SF 0.65* -- -- -- -- 0.35 0.44 

Hydrother

mal curing 

for 6d at 
60oC and 

20 MPa 

[109] 

*The cement used in this case alone is a Class G oil-well cement.  

6.3.2 Nanoindentation and Chemical Mapping  

The procedure for nanoindentation and chemical mapping experiments carried out for 

UHP-1 and UHP-2 mixtures are described here. For the OPC, NP, and SF mixtures, 

similar procedures have been carried out as reported in [109, 70, 72]. These experimental 

techniques have been extensively reported by the authors and many other researchers, 

and hence only a brief description is provided here. After curing for the respective 

durations, sample preparation including specimen cutting, ultrasonication in isopropyl 

alcohol (IPA) [74], and polishing with silicon carbide abrasive paper from 240 grit to 

1µm, were performed [50, 156, 73]. Nanoindentation grids were placed on regions in the 

microstructure with minimal pores or scratches and indented using an Ultra 

Nanoindentation Tester (UNHT3; Anton Paar). Each sample had at least 1250 indents 
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split among several grids in different locations to capture the heterogeneous 

microstructure of multicomponent blends. The linear loading profile had a loading and 

unloading rate of 12 mN/min with a pause for 5 seconds at the peak load when the 

maximum displacement cutoff was reached. Indentations were performed in force control 

mode with a maximum displacement cutoff of 250 nm (0.25 µm). This depth 

corresponded to an interaction volume idealized as a hemisphere with a radius 3 to 5 

times the maximum cutoff [69, 107, 143]. The linear unloading portion of the force-

displacement curve and the contact area of the tip to the sample surface was used to 

calculate the hardness (H) and the effective Young’s Modulus (M), following the Oliver 

and Pharr method [65, 66]. 

The specimen surfaces were imaged using Scanning Electron Microscopy (SEM; SEC 

Nanoimage TableTop SNE-4500M Plus) coupled with Energy Dispersive X-ray 

Spectroscopy (EDS; Bruker EDS and ESPRIT software) after the nanoindentation 

experiments. The application of SEM and EDS for compositional identification of cement 

hydration phases is discussed in [68, 30].  Back-scattered electron (BSE) mode imaging 

(Figure 6-1(a)) was performed in low vacuum (~10−3 torr), with a beam current of 110 

µA, a working distance of approximately 10 mm, sample tilt of 10o
, and an accelerating 

voltage of 15 keV. A 1280 x 960 pixel BSE image was taken over the grid at a 

magnification of 500x before EDS was performed at 50 kcps over a 256 x 192 pixel 

image using a dwell time of 128 µs (~6 seconds per frame) for 5-15 minutes. The 

interaction volume and escape depth of the signal X-rays are dependent on the 

microscope parameters as well as the sample density and composition [72, 69]. It has 

been shown that in cementitious materials, most of the characteristic X-rays escaping the 
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material are generated within a depth of 2 μm [72, 69], which is in line with the 

interaction depth for nanoindentation.  

To relate the elemental EDS analysis to the nanomechanical data, a MATLAB 

localization algorithm was implemented to align the optical image of the nanoindentation 

grid to the EDS chemical maps. This algorithm employs image enhancement, indent 

identification, and Hough transformation-based grid detection [109] to determine the 

coordinates of the indents from the optical image. With a pixel length of 0.6 µm (256 x 

192 pixels image) and 0.27 µm (1280 x 960 pixel image), an averaging filter of size 4x4 

pixels and 9x9 pixels was taken over the indent coordinates on the EDS and BSE maps, 

respectively, to account for the full 1.25-2.5 µm expected diameter of influence about 

each indent. Brightness of the qualitative EDS chemical maps was auto-scaled by the 

data-collection software. The RGB color brightness ranges from 0 to 255 with a higher 

intensity signifying a higher concentration of the element.  

Figure 6-1(b) is an example of the Ca EDS map. Al, Si, and Fe maps were similarly 

obtained. Across different maps, the number of X-ray counts associated with the same 

brightness value varies, and hence EDS maps are qualitative measures of the 

concentration of elements in each indentation grid. For statistical analysis the averaged 

auto-scaled RGB intensities from the Al, Ca, Fe, and Si EDS maps (denoted as 

IAl, ICa, IFe, and ISi respectively) are matched with the corresponding nanomechanical 

data.  

Figure 6-1(c) illustrates the translation of EDS map color intensity of Ca to the 0-255 

scale. In BSE imaging, the cube of the brightness coefficient (γ3) can be related to the 
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density of the phase as shown in [67]. This local density information is also used as an 

additional parameter in the ML models described later.  

  
 

(a) (b) (c) 

Figure 6-1: (a) BSE image of the 30-day UHP - 1 paste, (b) Ca EDS map with blue dots 

added to show the location of the indentation grid after the alignment procedure, and (c) 

MATLAB graphic translating EDS map color intensity into 0-255 scale for Ca. 

A Bayesian Information Criterion (BIC) with negative log likelihood method was 

implemented for statistical deconvolution (clustering) of the input chemistry and the 

micromechanical properties [109]. The properties of each cementitious phase were 

approximated by a Gaussian distribution and the maximum negative log likelihood 

estimation was used to find the distribution that best represented the experimental data. 

For the data obtained from other works (i.e., OPC, NP, and SF pastes in Table 6-1), the 

mechanical and chemical clustering data were not fully aligned since we do not have 

details on one-to-one mapping of the mechanical and chemical data. However, well-

known patterns in the relationship between identified clusters and their corresponding M, 

H, and chemical intensity values were followed to accomplish this objective. For 

example, in the C-S-H dominated clusters, an increasing M and H was taken to 

corresponding to a decreasing Ca and increasing Si. The values from the Al vs. Si 

intensity graphs were aligned with those from the Ca vs. Si intensity graphs by ordering 
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the extracted Si values from least to the highest. The Si values from the Ca vs. Si 

intensity graphs were ultimately used as inputs in order to preserve the relationship where 

lowering the Ca/Si ratio of C-S-H gel increases the elastic modulus and hardness of the 

constituent phases [25, 28, 29]. It is important to note the extracted data sets from [109, 

70, 72] only had three chemical intensities, ICa , ISi, and IAl available along with M, 

compared to the UHP mixtures where IFe, γ3 were also available, along with the age of 

the mixtures, which influences the phase stiffness.  

6.3.3 Details of the Input Data for ML Models, Based on Experimental Datasets 

The normalized chemical intensities of different indent points are used to predict the 

nanomechanical data (effective modulus, M) using the ML models explained in Section 

6.2. Models for all the mixtures shown in Table 6-1 were developed using these 

techniques. The details of the datasets are shown in Table 6-2. The OPC, NP, and SF 

mixtures have less complex microstructures – fewer number of ingredients, higher w/b 

ratio, longer curing durations, and/or exposure to hydrothermal conditions, all 

contributing to more homogeneous microstructure than those for the UHP pastes that 

have multiple starting materials and a very low w/b ratio. Individual predictions for the 

NP mixture, and predictions where the datasets of NP, OPC and SF mixtures are 

combined, are discussed. By combining the NP, OPC, and SF datasets, the effectiveness 

of ML algorithms to predict the performance of multi-mixture, multi-age data sets are 

explored. For the UHP pastes, the data for UHP-1 and 2 are combined for a certain age of 

hydration (30 days), and the data for UHP-1 at both 30 and 90 days of hydration are 

combined. Unlike common ML models that use mixture proportions as inputs to predict 

concrete strength, the inputs here are the relative intensities of the chemical species at the 
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indentation points. Since statistical nanoindentation accounts for the spatial distribution 

of components and their chemistry, ML models to predict nanoscale modulus from 

chemical information is deemed to be an appropriate approach. 

Table 6-2: Details of data sets used as inputs to the ML models. 

Data set (Table 6-1 for 
mixture details) 

No. of data points Input information Source 

NP 387 ICa, ISi, IAl [70] 

NP+ OPC + SF4 1177 ICa, ISi, IAl [70, 72, 109] 

UHP-1 and 2 @ 30 days 2309 ICa, ISi, IAl, IFe, γ3, Mixture type [146, 154] 

UHP-1 @30d and 90d 2416 ICa, ISi, IAl, IFe, γ3, Age [146, 154] 

 

6.4 DATA PROCESSING 

Several data preprocessing and parameter optimization methods are needed as part of 

implementing ML techniques for property prediction. They are discussed here.   

6.4.1 Preprocessing and Evaluation 

First, each data set shown in Table 6-2 was shuffled along the rows of indentation points 

(Figure 6-1(b)) such that adjacent points were separated, thus providing a greater chance 

of an equal distribution of the various microstructural entities within the testing and 

training data sets. The entire set of data was split such that 25% of the points were 

assigned to the testing set and 75% of the points were assigned to the training set. An 

artifact of the weight assignments in ML is that larger values will inherently be given a 

larger weight, which can skew the prediction significantly [87]. To address this, the input 

and output data points were pre-processed before separation into the testing and training 

 
4 The predictions for OPC and SF mixtures by themselves were also carried out. Though not as accurate as 

the NP mixture model (see Section 5.0), these mixtures were also able to bring out the influence of 

microstructural complexity on predictive efficiency, which is explained in the Discussions section.  
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sets. Equation 9, based on MinMaxScaler in scikit-learn [92], was used on the data to 

ensure that all of the inputs and outputs lie in the range [0, 1]. 

znew =
z−zmin

zmax−zmin
               (43) 

where znew is the value of the variable after transformation, z is the current value of the 

variable, zmin is the minimum value of that variable, and zmax  is the maximum value of 

that variable. After training and predicting, the normalized test data is converted back to 

the original scale using the “inversetransform” function. 

Training was performed by fitting the ML algorithm to the training data set. This allows 

the algorithm to adjust its internal features to minimize the error. Model performance was 

evaluated using the testing data set, which the ML algorithm has not seen yet, and 

measuring the resulting errors. Each instance that the entire set of data (testing and 

training) is processed through the ML algorithm is called an epoch. Selection of different 

hyperparameters (see next section for more details) is accomplished by utilizing the same 

number of epochs to train MLs and comparing their accuracy. In training, the goal of the 

ML models is to minimize the objective function, which was the mean squared error 

(MSE), given as: 

MSE =
1

n
∑ (Pi − Ai)

2n
i=1               (44) 

where n is the total number of data points, Ai is the actual value, and Pi is the predicted 

value. Other metrics tracked, but not used to train the models, were the mean absolute 

error (MAE) and the coefficient of determination (R2), given as:  

MAE =
1

n
(∑ |

Ai−Pi

Ai
|n

i=1 )              (45) 
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R2 = 1 −
∑ (Pi−Ai)2n

i=1

∑ (Ai−A̅)2n
i=1

= (
n(∑ Ai∗Pi

n
i=1 )−(∑ Ai

n
i=1 )∗(∑ Pi

n
i=1 )

√n(∑ Ai
2n

i=1 )−(∑ Ai
n
i=1 )

2
∗√n(∑ Pi

2n
i=1 )−(∑ Pi

n
i=1 )

2
)

2

        (46) 

Where A̅ is the mean of the actual values. 

6.4.2 Hyperparameter Optimization 

In SVR, the hyperparameters to be tuned were C and the length-scale for the squared 

exponential kernel. The   error threshold was held constant at 0.90 for every data set to 

equally penalize training data that fell out of the range. The three parameters to optimize 

in the ANN models were the number of hidden layers, the number of neurons in each 

hidden layer, and the dropout rate. ReLu activation function with a learning rate of 0.001 

and an RMSprop optimization scheme was used. For the RF, ET, and GBT models, the 

number of trees in the forest were tuned. Coarse optimization of the hyperparameters for 

SVR, ANN, and the forest ensembles followed a random search pattern, found to be the 

most efficient method to optimize parameters [164], by randomly generating 20 different 

combinations of hyperparameters. The hyperparameters for random testing were chosen 

from the uniform distributions shown in Table 6-3. GPR automatically searches through 

the allowed range of kernel parameter values and selects the parameters that maximize 

the likelihood estimation [91], and hence no iterative search over the hyperparameters 

was implemented. Instead, four types of kernels, i.e., the squared exponential, the rational 

quadratic, the Matern 1.5, and Matern 2.5,  a range of the variance parameter σf
2 from    

10-3 to 103, length-scales ℓ from 10-7 to 103, and an α bound of 10-5 to 102, were utilized 

to ensure the selection of optimized parameters. 
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Table 6-3: Hyperparameters tuned based on a uniform distribution range of potential 

values. 

Model Hyperparameter 
Uniform Distribution 

Range 

SVR Regularization Parameter, C [1, 500] 

RBF kernel length-scale, ℓ [0, 1] 

ANN No. hidden layers [1, 4] 

No. starting neurons [10, 75] 

Drop rate [0, 0.15] 

Random Forest, Extra 

Trees Forest, and Gradient 

Boosted Forest 

No. of trees [50, 400] 

 

To test the accuracy of the predictions under each set of test parameters, an n-fold cross-

validation technique was employed [9, 87, 11]. A 3-fold cross-validation, deemed 

sufficient for the size of the data sets, was performed using the following steps: (i) 

randomizing the data set and splitting into 3 folds, (ii) training the model with selected 

parameters using 2 of the folds, (iii) testing the model using the remaining fold, (iv) 

repeating steps (ii) and (iii) until each fold has been used for testing once, acquiring 3 

independent performance measures, and (v) averaging the individual accuracy measures 

to obtain the cross-validation errors. The parameters which minimized the cross-

validation error was used as a basis for the final models with some additional fine-tuning 

searches. A concise summary of the parameter selection, training, and testing procedures 

are shown in Figure 6-2. 
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Figure 6-2: A summary of steps employed in ML model generation and selection. During 

the coarse hyperparameter search, the parameters are randomly chosen from a uniform 

distribution of potential values. During the fine hyperparameter search, the parameters 

are tested in a grid around the best coarse search model. 

 

Final hyperparameter details for each data set are given in Table 6-4 for the SVR models, 

in Table 6-5 for the GPR models, in Table 6-6 for the ANN models, and Table 6-7 for the 

ensemble models. A reminder in ANN models that for each subsequent hidden layer the 

number of neurons is halved. For example, an ANN which began with 50 neurons in 

hidden layer 1 will have 13 neurons in hidden layer 3. 
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Table 6-4: Final hyperparameters of SVR models for each dataset to predict the 

nanoindentation stiffness given qualitative chemical intensity. 

Dataset # of inputs Kernel Run Time (sec) 

NP 3 rbf, C= 275, Epsilon = 0.1, Gamma = 0.2036 0.01 

NP + OPC + SF 3 rbf, C= 378, Epsilon = 0.1, Gamma =0.95 0.15 

UHP-1 and 2, 30d 6 rbf, C=38, Epsilon=0.1, Gamma = 0.25 0.10 

UHP-1 30d and 90d 6 rbf, C= 241, Epsilon = 0.1, Gamma = 0.15 0.25 

 

Table 6-5: Final hyperparameters of GPR models for each dataset to predict the 

nanoindentation stiffness given qualitative chemical intensity. 

Dataset 
# of 

inputs 
Kernel 

Run Time 

(sec) 

NP 3 

31.6**2 * Matern(length_scale=0.155, nu=1.5) + 3.2**2 * 

Matern(length_scale=0.000125, nu=1.5) + 31.6**2 * 

Matern(length_scale=710, nu=1.5) + WhiteKernel(noise_level=0.00219) 

16.96 

NP + 

OPC + 

SF 

3 

21.7**2 * RationalQuadratic(alpha=0.377, length_scale=0.0615) + 31.6**2 * 

RationalQuadratic(alpha=1e-05, length_scale=1.01e-07) + 31.6**2 * 

RationalQuadratic(alpha=100, length_scale=720) + 

WhiteKernel(noise_level=30.9) 

366.36 

UHP-1 

and 2, 

30d 

6 

0.0355**2 * RBF(length_scale=0.031) + 14.8**2 * RBF(length_scale=2.11e-

06) + 31.6**2 * RBF(length_scale=464) + 0.112**2 * 

RBF(length_scale=0.0109) + 11.7**2 * RBF(length_scale=24) + 31.6**2 * 

RBF(length_scale=83.1) + WhiteKernel(noise_level=53.9) 

938.02 

UHP-1 

30d and 

90d 

6 

18.2**2 * Matern(length_scale=0.00489, nu=2.5) + 31.6**2 * 

Matern(length_scale=300, nu=2.5) + 31.6**2 * Matern(length_scale=300, 

nu=2.5) + 0.128**2 * Matern(length_scale=0.704, nu=2.5) + 19**2 * 

Matern(length_scale=50.5, nu=2.5) + WhiteKernel(noise_level=15.8) 

1789.14 
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Table 6-6: Final hyperparameters of ANN models for each dataset to predict the 

nanoindentation stiffness given qualitative chemical intensity. 

Dataset 
# of 

inputs 

# of Hidden 

Layers 

Starting # 

Neurons 
Dropout Activation Optimization 

Learning 

Rate 
Epochs 

Run 

Time 

(sec) 

NP 3 2 30 0.067 ReLu RMSprop 0.001 800 13.52 

NP + 

OPC + 

SF 

3 3 53 0.09 ReLu RMSprop 0.001 800 32.08 

UHP-1 

and 2, 

30d 

6 1 26 0.135 ReLu RMSprop 0.001 300 17.87 

UHP-1 

30d and 

90d 

6 1 40 0.055 ReLu RMSprop 0.001 500 27.74 

 

Table 6-7: Final hyperparameters of ensemble models for each dataset to predict the 

nanoindentation stiffness given qualitative chemical intensity. 

Dataset # of inputs Ensemble 
n_estimators 

(# of Trees) 

NP 3 

RandomForestClassifier() 141 

ExtraTreesClassifier() 65 

GradientBoostingClassifier() 68 

NP + OPC + SF 3 

RandomForestClassifier() 223 

ExtraTreesClassifier() 315 

GradientBoostingClassifier() 76 

UHP-1 and 2, 30d 6 

RandomForestClassifier() 222 

ExtraTreesClassifier() 263 

GradientBoostingClassifier() 56 

UHP-1 30d and 90d 6 

RandomForestClassifier() 345 

ExtraTreesClassifier() 346 

GradientBoostingClassifier() 53 

 

6.5 RESULTS AND DISCUSSIONS 

The afore-described ML models were implemented on the four datasets culled from the 

five different mixtures shown in Table 6-1.  The predictive efficiencies of the models are 

discussed in this section, followed by the physical reasoning behind the variable 

performances of the models among different mixtures.   
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Previous works [51, 69, 146, 154, 106] have revealed the complex relationships between 

the nanoindentation stiffness of the phases and the associated chemical intensities. As 

illustrated in Figure 6-3(a) and (b) for the NP+OPC+SF and UHP-1 pastes, there is a non-

linear, complex relationship between M and the intensities of Ca and Si, which are the 

primary constituents of the product phases. It has been shown through experiments and 

atomic simulations that a reduction in Ca/Si ratio enhances the stiffness of the solid C-S-

H phases [25, 28, 29]; however this is not the lone influential factor for many hydration 

product phases, for example: (i) the ultra-high stiffness (UHS) phase in UHP pastes with 

embedded nanocrystals of CH [69], and (ii) C-A-S-H gel in systems with significant 

cement replacement levels where alumina incorporation markedly changes the response 

[154]. The following sections describe how ML models perform in predicting the 

hydration product phase stiffnesses.    

 

  

(a) (b) 

Figure 6-3: Relationship between the nanoindentation stiffness and the normalized 

intensities of Ca and Si for: (a) NP+OPC+SF combined dataset, and (b) UHP-1 30d and 

90d pastes. Note that the chemical intensities are normalized, and thus vary from 0-1. 

 



149 

 

6.5.1 Predictive Efficiency of ML Models using Microstructural Data as Inputs 

In this section, the predictive efficiency of the different ML models as applied to the 

different data sets are explained. The graphs shown in this section are representative, and 

do not include all the models explored. Table 6-8 lists all the models implemented for all 

the data sets and summarizes the prediction metrics. Note that for the first two rows in 

Table 6-2, comprising of mixtures that are less complex, only three input variables are 

available, while the UHP data sets are augmented with three more input variables.  

6.5.2 SVR 

Unlike the other ML models, SVR does not have an element of randomness in the 

hyperparameter training and testing. Thus, the same data set with a similar distribution of 

testing and training data sets will result in little to no change in consecutive runs. 

Additionally, as reported elsewhere [14], SVR has one of the fastest computing times, 

averaging at around 0.15 seconds per run on the largest two data sets (see SI). Figure 

6-4(a-c) show the predictive efficiencies of SVR model for the NP, NP+OPC+SF, and 

UHP-1 and 2 30-day datasets, respectively. As can be noticed here, the prediction of 

modulus values for the NP data set are more accurate as compared to the NP+OPC+SF or 

the UHP data sets. As a general observation, when compared to the other models 

described later, SVR is found to be less accurate, regardless of the data set used. A few 

studies have shown the use of SVR to predict the compressive strength of concrete 

mixtures from mixture proportions [10, 11, 172]. However due to the natural spread in 

the data and the  being fixed for all the data sets, the SVR model had moderate success 

in predicting modulus given chemical intensity and γ3, especially when multiple mixtures 

are combined or more complex mixtures such as the UHP ones are used. Figure 6-4 (b) 



150 

 

and (c) show that a large amount of high modulus data is underpredicted by this ML 

model (and will be shown subsequently, that this is true for other models too), the reasons 

for which are explained in detail in the section discussing ANN models.  

 

 
  

(a) (b) (c) 

Figure 6-4: SVR estimation of M from testing data sets corresponding to: (a) NP, (b) 

NP+OPC+SF combined dataset, and (c) UHP-1 and 2 30-days. The solid line represents 

the line of ideality, and the dashed lines represent a ± 20% bound. 

 

6.5.3 GPR 

GPR is a non-parametric, probability-based ML method allowing for the representation 

of error bars as the standard deviation of the estimates at each point, as shown in Figure 

6-5. GPR was most successfully able to predict the modulus of the phases from the 

smallest data set (NP), with a RMSE of 5.45 GPa and an R2 of 0.947 as shown in Figure 

6-5(a). The ability of GPR to work on sparse data sets is well documented [167], 

attributed to its non-parametric nature. With few inputs, there are few parameters that 

vary depending on the training data set and GPR is much less likely to experience 

overfitting compared to a method such as ANN. Conversely, as the data size and 

complexity in the mixtures increased, the GPR estimations became the least accurate of 
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all techniques (see Table 6-8), as evidenced from Figure 6-5(b) for the UHP paste. For 

the NP+OPC+SF data set, GPR achieved the second-highest R2, but with an elevated 

MSE and MAE compared to the best model. This large MSE and MAE error indicates 

that the residual difference between the experimental and predicted results had nearly 

tripled with the inclusion of two additional data sets. As an additive GPR kernel method 

was performed, the addition of every input indicated an increased tendency to overfit the 

data [173]. This overfitting is evident by comparing the R2 for the testing data (0.395) 

with that of the training data (0.996) for the UHP data set. The GPR model clearly is 

appropriate for smaller, more uniform data sets, and is less capable of handling large 

diversity in the data set.  

  

(a) (b) 

Figure 6-5: GPR estimation of M from testing and training data sets corresponding to: (a) 

NP, and (b) UHP-1 and 2 30-days. The solid line represents the line of ideality, and the 

dashed lines represent a ± 20% bound. Both training and testing data sets are shown for 

the GPR case alone. 
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6.5.4 ANN 

The ANN predictions of phase moduli based on the input parameters are shown in Figure 

6-6. Models for all four data sets from Table 6-2 are shown here. Once again, the best 

performance is noted for the NP mixture as seen from Figure 6-6(a). With increasing 

complexity, either through the incorporation of multiple mixtures (Figure 6-6(b)) or 

multiple starting materials (Figure 6-6(c) and (d)), the predictive ability is significantly 

lower. In Figure 6-6(c) and (d), the different microstructural phases are shown separately 

as obtained from the clustering analysis for the UHP pastes [146, 154]. In Figure 6-6(c), 

which shows the data for UHP-1 and 2 pastes at 30 days, one combined C-S-H reaction 

product cluster is shown corresponding to HD C-S-H for UHP-1 and the ultra-high 

stiffness (UHS) phase for UHP-2 [146, 154], which explains the two groupings for that 

cluster. While the indentation moduli of the major reaction product phases (C-S-H/UHS) 

are predicted quite accurately (within the 20% error band) using the chemical intensity 

information as shown in these figures, the overall prediction quality is lowered by the 

less-than-sufficient predictive quality for the mixed reaction product phases and 

unreacted phases. More discussions on the mixed product phase is provided in Section 

6.5.2.  

Further examination of Figure 6-6(b-d) also reveals that the predictions are 

underestimated for a large proportion of data with higher M (for e.g., in these figures, the 

scatter in the indentations with M > 65 GPa can be easily recognized), which belongs to 

the clinker/unreacted phases. One possible explanation for the ML models’ tendency to 

under-estimate the stiffness of phases such as clinker or the unreacted cement 

replacement materials stems from the contrasting influence of Ca. As stated earlier, a 
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reduction in Ca/Si ratio generally enhances the stiffness of the solid C-S-H phases [25, 

28, 29]; however for the UHS phase [146, 154] with nanocrystals of CH, an increase in 

Ca increases the M [69]. Also, the high stiffness clinker has a higher concentration of Ca. 

While the use of γ3 as an input did contribute to some improvement in predictive 

capability, it still leaves a lot to be desired. There also exists an inherent imbalance in the 

distribution of the nanoindentation data in complex binders, where most of the 

indentation points in hydrated systems belong to the matrix/C-S-H phases, while only a 

small fraction (~20% in the UHP pastes) belongs to the unreacted/partly reacted cement 

replacement materials, and remaining (~ 10% or less) to the clinker [146]. Abundantly 

available data for the matrix/C-S-H phases allows the ANN to adjust the weights 

according to the most prominent phases in the UHP pastes (i.e., ANN models, like many 

ML methods, are skew-sensitive, meaning they are biased towards the trends favored by 

the majority of the data [163]), such as the HD C-S-H phase with a known stiffness 

around 35 GPa [62]. To predict with accuracy the chemical intensity-mechanical property 

relationship in complex microstructures requires MLs such as ANN to adapt to a large 

data set where only a few datapoints represent phases such as clinker.  
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(a) (b) 

  

(c) (d) 

Figure 6-6: ANN estimation of M from testing data sets corresponding to: (a) NP, (b) 

NP+OPC+SF combined dataset, (c) UHP-1 and 2 30-days and (d) UHP-1 30 and 90-

days. The solid line represents the line of ideality, and the dashed lines represent a ± 20% 

bound. The different microstructural phases, according to the clustering analysis are 

shown in (c) and (d). For ease of explanation, they are grouped into just three distinct 

phases. 
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6.5.5 Ensembles 

For all the datasets considered, the forest ensembles performed similar or better than the 

other ML models. Among the three forest ensembles tested, ET and RF models 

performed better than the GBT model. Beyond changing the parameters such as the 

interaction depth (maximum number of nodes per tree) or the minimum number of 

observations per node, it is unclear how the GBT model could be further improved to 

enable better predictions [92]. Here, ET regression estimates for the NP+OPC+SF and 

UHP-1 data sets are shown in Figure 6-7(a) and (b). The metrics for all mixtures and all 

ensembles can be found in Table 6-8. The ET model was able to achieve a significant 

improvement in all accuracy measures compared to other models for the NP+OPC+SF 

and UHP-1 data sets, with the next closest in accuracy being the RF model. A previous 

work on concrete mixture optimization found that forest models outperformed ANN in 

the case of unbalanced and discrete data [14]. This improvement was credited to the 

improved generalization in the forest methods, which reduces the instability of individual 

trees through random sampling of data and random selection of input features [10, 163]. 

Like ANN, RF and ET models are also skew-sensitive. 
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(a) (b) 

Figure 6-7: ET Forest estimation of M from testing data sets corresponding to: (a) 

NP+OPC+SF combined dataset, and (b) UHP-1 30 and 90-days. 

 

6.5.6 Comparison of the ML Models 

Table 6-8 shows the metrics used to evaluate the performance of the ML models for all 

the data sets shown in Table 6-2. Figure 6-8 shows the RMSE values for all the ML 

models and data sets. All the ML methods fitted the NP data set very well, with the 

lowest R2 being 0.895 and the highest RMSE being 7.25 GPa, using SVR. The chemical-

nanomechanical relationship of the NP paste was easily handled by all algorithms and 

serves as a “best case” application of ML to predict nanoindentation moduli. When 

handling multiple-blend mixtures, or those with lower degrees of hydration and at 

different ages, the accuracy of ML predictions using the other three data sets were 

significantly lower in comparison with the NP mixture, as can be seen in Figure 6-8.  For 

these data sets, the low predictive ability was consistent among the SVR, GPR, ANN, and 

ensemble models, the reasons for which are further explored below. In addition to these 
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methods, voter methods [166] that use a combination of two or more ML models were 

found to provide some improvement in predictive capabilities depending on the ML 

model combinations used; however, they are not discussed further in this paper. 

Figure 6-8:  Comparison of RMSE of M predictions from different ML techniques for all 

data sets. Error bars shown for standard deviation are from three consecutive runs of the 

models. 
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Table 6-8: ML results for all the data sets, with the average and standard deviation values 

over three consecutive runs. The most accurate ML model for each data set is shown in 

bold. 

Data Set Model Type RMSE M (GPa) MAE M (GPa) R
2 

NP  

SVR 7.25 ± 0.00 5.53 ± 0.00 0.895 ± 0.000 
GPR 5.45 ± 0.01 3.29 ± 0.00 0.947 ± 0.000 

ANN 6.28 ± 1.27 4.08 ± 0.12 0.921 ± 0.003 

Random Forest 5.74 ± 0.92 3.26 ± 0.07 0.934 ± 0.002 

Extra Trees Forest 6.03 ± 1.82 3.34 ± 0.10 0.927 ± 0.007 
Gradient Boosted Forest 5.93 ± 0.31 3.68 ± 0.01 0.930 ± 0.000 

NP + 

OPC + 
SF  

SVR 13.97 ± 0.00 9.26 ± 0.00 0.525 ± 0.000 

GPR 14.33 ± 0.07 9.10 ± 0.01 0.663 ± 0.000 
ANN 13.01 ± 1.73 8.16 ± 0.22 0.588 ± 0.007 

Random Forest 11.85 ± 0.34 6.85 ± 0.04 0.659 ± 0.000 

Extra Trees Forest 11.30 ± 1.77 6.42 ± 0.06 0.689 ± 0.008 

Gradient Boosted Forest 13.28 ± 0.13 8.30 ± 0.00 0.571 ± 0.000 

UHP-1 

and 2, 

30d 

SVR 13.59 ± 0.00 0.00 ± 0.51 0.508 ± 0.000 

GPR 20.85 ± 2.43 14.62 ± 0.09 0.395 ± 0.008 

ANN 13.03 ± 0.92 9.20 ± 0.30 0.548 ± 0.002 
Random Forest 13.04 ± 1.05 9.08 ± 0.02 0.547 ± 0.003 

Extra Trees Forest 13.11 ± 1.20 9.12 ± 0.03 0.542 ± 0.004 

Gradient Boosted Forest 13.11 ± 0.32 8.93 ± 0.01 0.542 ± 0.000 

UHP-1 
30d and 

90d 

SVR 10.34 ± 0.00 8.38 ± 0.00 0.478 ± 0.000 
GPR 17.78 ± 1.13 12.55 ± 0.03 0.438 ± 0.002 

ANN 9.78 ± 1.05 6.97 ± 0.12 0.533 ± 0.005 

Random Forest 9.72 ± 0.65 6.88 ± 0.01 0.538 ± 0.002 
Extra Trees Forest 9.58 ± 0.86 6.79 ± 0.03 0.552 ± 0.004 

Gradient Boosted Forest 10.01 ± 0.46 7.11 ± 0.01 0.510 ± 0.001 

 

6.5.7 Implications on the Use of ML for Predictions Related to Complex 

Microstructures 

For the NP mixture reported in [70], the predictive capacity of all the ML models are 

found to be excellent. Because of the high reactivity of the natural pozzolan, a higher w/b 

used, and the longer curing duration, the microstructure is more uniform, and there are 

fewer unhydrated clinker remnants. The reaction product in this microstructure is also 

more homogeneous because of the improved reaction of natural pozzolan with calcium 

hydroxide (CH) forming more C-A-S-H gel. Thus, with three relative chemical intensities 

as inputs, all of which appear in the chemical description of C-A-S-H, ML models are 
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found to accurately predict the micromechanical response. Moreover, the dataset is from 

one mixture at one age, giving it more uniformity, and therefore certainty in predictions. 

This indeed is an ideal and desired scenario. Similar is the case when the plain OPC 

mixture was considered. However, when the data sets corresponding to NP, OPC, and SF 

are combined, the predictive capability is reduced. This could be because of differences 

in “relative intensities” of the chemical species between the different data sets acquired 

from different experimental set up, ages, and mixtures, as well as the relative 

contributions of phases such as unreacted clinker in the data sets (see Figure 6-6), the 

nanomechanical properties of which may not follow the same relationships with chemical 

intensities as the hydration phases.  

As explained in the previous sections, the UHP pastes are not well-modeled by any of the 

ML methods. The presence of multiple starting materials of varying reactivity and 

nanomechanical properties and the low w/b ratio (to achieve high strength and durability) 

result in highly heterogeneous microstructures as has been reported elsewhere [146, 154]. 

The relative paucity of data from the high stiffness phases as compared to those from 

reaction products result in its underprediction for the case of UHP pastes, as shown in 

Figure 6-6 (c) and (d). Moreover, in the < 65 GPa region in Figure 6-6 (c) and (d), the 

predictive trends are better for the C-S-H/UHS phases, as explained earlier. The mixed 

phase identified in these microstructures, that shows decent amount of scatter, is likely a 

composite of different chemical species, e.g., C-S-H phases of varying stiffness, 

unreacted/partly reacted limestone powder and fly ash, microsilica, and carboaluminates 

[169]. This is because the region of influence under the indent is larger than the 

characteristic sizes of some of the constituents in the system. It is also possible that some 
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phase interfaces are also captured in the mixed phase. This has been shown by the authors 

through a closer look at the M-H cluster of the UHP-1 paste in Figure 6-9 [146] which 

also suggests that for M < 65 GPa, about 20%-25% of the reaction products show H > 3 

GPa, indicating that a multi-phase response is indeed acquired. Also note the significant 

scatter in the clinker/unreacted phases. The chemistry-nanomechanical property 

relationships for the large number of mixed/unreacted phases present in heterogeneous 

microstructures (see Figure 6-9) could also be different from those for the majority 

hydrate phases, resulting in less than ideal predictive ability.   

These point to the need for more robust input variables for more complex 

microstructures; though the inclusion of a pseudo local density term through γ3 only 

slightly improved the predictions. The addition of physically informed variables such as 

Ca/Si ratios did not alter the predictive capabilities. In the absence of any conceivable 

means to identify and label the individual chemical species in a mixed phase, this will 

likely remain an impediment to accurate prediction of phase stiffness from chemical 

maps for highly heterogeneous systems. Accurately identifying the multiple constituents 

currently represented as clinker in Figure 6-9 and thus reducing the scatter in the > 65 

GPa region (e.g., in Figure 6-6(c) and (d)) could help improve predictive capability. 

Another potential improvement could be through data augmentation, i.e., the use of more 

data points especially from under-represented phases such as clinker. The inclusion of 

more inputs that would offer further insights into the relationship between chemistry and 

micromechanical properties, such as fineness of reactants, or the location of the 

indentation points relative to one another, is also a possible option. The location of 

hydration phases within a cementitious matrix is dependent on the proximity to clinker or 
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other starting materials [112]. For example, high density (HD) C-S-H with an effective 

nanoindentation modulus of 35 GPa [62] is found next to clinker while low density (LD) 

C-S-H of 23 GPa stiffness [53] is typically located farther from the clinker in the matrix. 

As such, an image-based ML method such as convolutional neural networks (CNNs) may 

be able to provide the needed additional inputs to expand the ability of ML in predicting 

the micromechanical properties of microstructural phases from the local chemical 

composition. Such approaches are being evaluated. Meanwhile, for plain OPC pastes, 

pastes containing smaller amounts of reactive cement replacement materials, and well-

hydrated systems, chemical intensity maps coupled with ML provide an easy and reliable 

methodology to predict the phase stiffnesses.  

Figure 6-9: M-H response for the UHP-1 paste cured for 90 days [146]. F, M, L, and CA 

denotes fly ash, microsilica, limestone, and carboaluminates, respectively. Note the 

grouping of the mixed phases with similar mean stiffness and hardness, but widely 

differing chemical compositions. 

 

6.6 SUMMARY 

This chapter has presented a novel approach to predict the nanoindentation stiffness of 

cement hydration phases from chemical intensity maps using ML methods. To 

demonstrate the methodology and application, nanoindentation modulus and normalized 
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chemical intensity data from EDS for four different data sets representing various 

cementitious mixtures with multiple cement replacement materials, w/b, hydration ages, 

and microstructural complexities were chosen. Four different classes of ML methods 

including Support Vector Regression (SVR), Gaussian Process Regression (GPR), 

Artificial Neural Networks with backpropagation (ANN), and ensemble methods (e.g., 

RF, ET, and GBT) were implemented on data sets comprising of ~400 to 2400 data 

records, each corresponding to a distinct nanoindentation point in the microstructure. The 

models were trained using 75% of the data and tested on the remaining 25% of the data. 

EDS maps were obtained for the microstructures so that the local chemistry could be used 

to predict the hydration phase modulus using ML models. The relative intensity of the 

major chemical species (Ca, Si, Al, Fe), the mixture ages, as well as the local density of 

the microstructure represented by the cube of the brightness coefficient from 

backscattered SEM were used as the inputs.  

For the NP mixture, all ML models were able to predict the phase stiffness with an R2 

value ~ 0.90 using just three chemical intensities (Ca, Si, Al) as inputs, all of which 

appear in the chemical description of C-A-S-H gel. GPR was shown to be the best model 

for this mixture in terms of the metrics (RMSE, MAE, R2), attributed to its ability to 

work on sparse data sets with fewer inputs. When data sets belonging to NP, OPC, and 

SF mixtures were combined, the relative predictive efficiency dropped irrespective of the 

ML model used. For the UHP pastes demonstrating complex microstructures from 

multiple binding materials of varying chemical constitution and reactivities, and 

incomplete reaction due to low w/b, all the ML models were found to have lower 

predictive abilities.  
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CHAPTER 7 

7 IMAGE-BASED MACHINE LEARNING TO PREDICT UNIDIRECTIONAL FIBER 

MECHANICAL PROPERTIES 

7.1 INTRODUCTION 

Composite materials are ubiquitous in nature, and artificial composites are employed for 

a large number of engineering applications. A matrix phase and one or multiple fiber or 

inclusion phases are judiciously combined to obtain desirable structural (e.g., strength, 

stiffness, toughness) and/or functional (e.g., electrical or thermal conductivity) properties. 

Most generic fiber reinforced composites are two-phase composites, consisting of a 

strong and stiff fiber phase distributed uniformly, or aligned in a particular direction, in a 

compliant matrix. The fact that fiber size is uniform and cross sections are generally 

circular, enables the microstructure of such composites to be generated easily, for 

analysis. In more complex multi-phase composites (e.g., concrete, rocks), different 

inclusion phases of random shapes and sizes are randomly distributed, rendering the 

analysis, and consequently the prediction of properties, more complex.  

The mechanical properties of composite materials are highly dependent on the type and 

properties of the constituents, and their spatial arrangement in the microstructure [174] 

[39] [175]. In addition to experimental methods to determine the relevant composite 

properties, analytical homogenization methods are in use to obtain macroscopically 

averaged properties. These micromechanical homogenization methods include Mori-

Tanaka mean field method, double inclusion method, and self-consistent approaches 

[129] [131][63]. These approaches are generally effective for simple microstructures, but 

when microstructural complexity increases, or when constitutive relations are demanded, 
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numerical methods are resorted to [176] [177]. Microstructure-based finite element 

method (FEM) is normally employed. High fidelity FE simulations are known to provide 

accurate predictions of a range of composite properties, both in the linear elastic and non-

linear regimes. They also allow for accurate relationships between the microstructural 

parameters (inclusion size, volume fraction etc.) and the measured response. The major 

drawback with FEM-based predictions is that the representative volume element (RVE) 

size needs to be large enough, especially for complex microstructures containing a 

diversity of inclusion sizes and shapes [178], for extraction of non-linear response [179], 

or for crack propagation simulations [180], which renders the entire process tedious and 

time-consuming.  

The microstructural dependence of properties of composite materials enables the use of 

properly trained machine learning (ML) methods to rapidly evaluate the properties of 

composite materials, given the material microstructure or its adequate representation 

[181] [95] [85]. ML methods are finding tremendous applications in wide and disparate 

fields such as image classification and identification, language and text processing and 

analysis, and material design and discovery [8] [182]. These methods are finding 

increased acceptance in materials science and engineering. Using large data sets of 

constituent materials and their properties, ML methods based on neural networks or 

forest ensembles are used to predict material properties. Using image-based ML methods 

(including artificial neural networks or ANN, conventional neural networks or CNN, or 

long-term recurrent convolutional networks or LRCN) coupled with FEM, several recent 

studies investigate the response of different types of composites [86] [183]. In this study, 

we use virtual microstructures of three common two-phase composite materials: (i) an 
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aerospace unidirectional fiber reinforced composite - T800 carbon fiber in F3900 matrix, 

with uniform size fibers and different fiber volume fractions, (ii) an ultra-high 

performance (UHP) mortar composed of different median size sand particles in a strong 

cementitious matrix, and (iii) a metallic particulate reinforced cement mortar. Several 

virtual microstructures belonging to each of these composites are created using a 

microstructure generation algorithm, meshed, and subjected to linear elastic FE analysis 

to determine the elastic modulus, Poisson’s ratio, and the stresses in both the phases, 

under the application of a given strain. Limited experimental data is used to validate the 

FE analyses. Two-point correlations (TPC) corresponding to the virtual microstructures 

are extracted, and the dimensionality reduced using principal component analysis (PCA). 

The principal components thus extracted are used as inputs to the ML algorithms to 

predict the composite properties from microstructural images. This high throughput, 

negligible cost, highly generalizable computing method can be used to rapidly determine 

the properties of two-phase composites from microstructure, enabling efficient design of 

such materials. 

7.2 METHODOLOGY 

7.2.1 Generation of Stochastic Microstructures 

A synthetic microstructure generation algorithm developed in MATLAB capable of 

generating non-overlapping ellipses of varying sizes, aspect ratios, and orientations was 

used to construct the two-phase microstructures [184] [185]. For the unidirectional fiber 

reinforced composite microstructure (hereinafter labeled as UD-FRC), circles with a set 

radius were consecutively added to the window space until the specified area fraction was 

obtained. For the UHP mortar microstructures, circles of differing dimensions were 
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generated based on a particle size distribution, while for the metallic particulate 

reinforced cement paste (hereinafter termed as MPR paste), elliptical particles of different 

dimensions  based on a particle size distribution were incorporated in the paste matrix. 

The program created the square representative element area (REA) and inclusion radii in 

units of pixels, so that the simulations are generalized and not constrained by physical 

dimensions. To eliminate the possibility of overlapping, particles were assigned a major 

and minor radius 1 unit higher than the real values, which ensured that a gap of at least 1 

unit existed between the inclusion edges. Periodic boundary conditions were maintained 

such that if any part of the inclusion were generated at the edge of the REA, it would 

wrap around to the other side, including particles located at the corners of the REA. 

Figure 6-7 demonstrates representative images corresponding to a UD-FRC, and mortars 

with sand or iron particle as inclusions, and Table 7-1 details the dataset volume fractions, 

inclusion shapes, and size distributions. In addition to the images, the microstructural 

generation algorithm was also used to output a .txt file to reproduce the microstructures 

into Coreform Trelis™ for meshing prior to the finite element analysis (FEA). 

Given that the microstructures were studied in the linear-elastic plane strain regime with 

a small applied strain, changing the inclusion volume fraction would significantly change 

the FEA mechanical results, while altering the particle size or shape would not. As in any 

ML training regime, it was important that the output mechanical properties be sufficiently 

different that the ML would learn meaningful connections between the inputs and outputs 

- instead of trying to predict noise in the FEA simulated results. Therefore, the three size 

distributions of sand mortars at the same volume fraction (𝜙) had to be combined with 
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the MPR paste inclusions to form a dataset that would successfully train the ML 

algorithms.  

   

(a) (b) (c) 

 Figure 7-1: Examples of randomly generated 2D microstructures with a square window 

size of 200 pixels: (a) UD-FRC with a volume fraction of 0.60, (b) UHP mortar 

distribution 2, and (c) MPR paste. 

 

Table 7-1. Details of the two-phase microstructural images generated and analyzed. 

a0 is the major ellipse axis, b0 is the minor ellipse axis, μ is the mean value of the 

distribution, and σ is the standard deviation of the distribution. 

Dataset Two-Phase 

Microstructure 

Inclusion volume 

fraction (𝝓) 

Ellipse size 

(pixels) 

Particle shape distribution
 

UD-FRC UD-FRC 0.35, 0.40, 0.45, 0.50, 

0.55, and 0.60 
𝑎0 = 31 

 𝑏0 = 31 

Constant 

UHP 

mortar and 

MPR paste 

UHP mortar 

distribution 1 

0.35 𝑎0 = 10 

 𝑏0 = 10 

Lognormal: 𝜇 = 10, 𝜎 = 0.7 

UHP mortar 

distribution 2 

0.35 𝑎0 = 20 

 𝑏0 = 20 

Lognormal: 𝜇 = 10, 𝜎 = 0.7 

UHP mortar 

distribution 3 

0.35 𝑎0 = 10 

 𝑏0 = 10 

Constant 

MPR paste 0.12 𝑎0 = 20 

 𝑏0 = 5 

Gaussian Normal for 𝑎0: 

𝜇 = 20, 𝜎 = 0.25 
𝑎0

𝑏0
= 4 Constant 

 

As all the microstructures are considered truly random, for each unique microstructure 

generated an additional one was created by rotating the parent microstructure 

counterclockwise by 90o. This allowed for efficient creation of a multitude of 
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microstructures that can be expected to have unique mechanical properties under the 

chosen loading conditions because of the differences in organization of the phases. As 

machine learning algorithms require large data sets for successful training and testing 

[181], such an approach can be utilized to create large datasets. However, it also needs to 

be noted that, for such simple microstructures, generating more of them from scratch is 

not very time consuming, but the abovementioned approach is adopted here to serve as a 

trial case for more complex microstructures (e.g., concrete) that will be investigated in 

the future. Here, 125 samples belonging to each matrix-inclusion combination were 

developed for every volume fraction or particle size distribution investigated. This 

sample size proved to be sufficient to train all the ML models, as will be demonstrated 

later.  

7.2.2  Extracting the Relevant Microstructural Descriptors 

In this work, the analysis and predictions are based on 2D microstructures, which have 

been shown to be sufficient to describe the linear elastic properties of two-phase (matrix-

inclusion) composites considered here [178] [186]. In general, for a 2D microstructure, 

the volume fractions of the phases and sizes of the inclusions are considered to be the 

most important microstructural descriptors. However, for random composites, finer 

aspects of the geometry, including non-trivial information on the arrangement of the 

phases and the relative positions of the inclusions, are important in accurate property 

prediction [187] [188]. A large family of statistical descriptors are available for such 

characterization [189], among which n-point correlation functions [190] [191] [192] 

[193] are deemed to be most suitable for these types of random heterogeneous materials.  
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7.2.3 Two-point Correlation (TPC) Function 

n-point correlation functions have been implemented in microstructure-based analysis of 

heterogeneous materials, including higher-order reconstructions and property prediction 

[181] [174] [190] [188]. The one-point correlation function indicates the volume fraction 

of a certain phase in the microstructure [190]. The two-point correlation function (TPC), 

𝑆2(𝑟), quantifies the probability of finding phases   and  at the start and end of a vector 

of length r, randomly placed in the microstructure. This quantity is invariant with respect 

to translations of the periodic microstructure [188]. For periodic microstructures where 

the characteristic particle density function is positive and bounded everywhere, the TPC 

is sufficient to generate a unique solution up to translation and inversion [194] [192].  In 

this study, periodic boundary conditions and a constant particle density are maintained 

such that the TPC is sufficient to quantify and differentiate between the different 

microstructures randomly generated, for the same specimen.  The 𝑆2(𝑟) of an image of 

pixel size √𝑆 ∗ √𝑆 is given as [181] [195]: 

𝑓(𝛼, 𝛽|𝑟) = 𝑆2(𝑟) =
1

S
∑ 𝑚𝑠

𝛼 ∗ 𝑚𝑠+𝑟
𝛽𝑆

𝑠=1             (47) 

Here, S is the total number of pixels in the microstructure, s is the spatial position of the 

pixel, and r is a vector of a given length and direction. TPC is known as an 

“autocorrelation” when   and are the same phase, and cross-correlation when   and  

are different phases [181]. For a two-phase composite where the two phase labels are 1 or 

0, the four TPCs, i.e., 𝑓(0,0), 𝑓(1,0), 𝑓(0,1), and 𝑓(1,1), are related, so that only one 

needs to be calculated to find the rest [196] [181]. Figure 7-2 shows an example 

microstructure of a UD-FRC specimen with a fiber volume fraction of 0.35, and the 

resulting contours of the 𝑓(0,0) and 𝑓(1,0) TPC functions. Note that the center of the 
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autocorrelation image in Figure 7-2(b) corresponds to a TPC value of 0.35, equal to the 

volume fraction of the fibers, while the center of the cross-correlation image in Figure 

7-2(c) is equal to 0, indicating that there is no region where a combination of both the 

phases are present in any single pixel [192]. Further details on the computation of the 

TPC statistic, where the convolutional theorem is applied to use the Fast Fourier 

Transform (FFT),  can be found in [195] [192] [195] [188]. The TPC calculations for this 

study were performed using the Python-based PyMKS library [197]. 

 

  

(a) (b) (c) 

Figure 7-2: (a) Microstructure of a UD-FRC with a fiber volume fraction of 0.35, and the 

contours of corresponding  (b) two-point autocorrelation function 𝑓(0,0), and (c) two-

point cross-correlation function 𝑓(0,1). The centers of (b) and (c) correspond to the 

origin, and the total image sizes are 199 x 199 pixels. 

 

7.2.4 Principal Component Analysis for Dimensionality Reduction 

The dimensionality reduction technique of principal component analysis (PCA) has been 

utilized in other image-based machine learning efforts [181] [198] [199]. Although the 

principal components lack a precise physical meaning, research suggests that a detailed 

study of the PCs can provide new insights into comparative microstructural image 

analysis [182].  



171 

 

For the m pixel square microstructure images generated in this study, the number of 

TPCs would be equal to (m-1)2. Given the size of microstructures, e.g., 200 pixels x 200 

pixels, this would entail a large number of inputs into the machine learning algorithm, 

making the predictive effort extremely tedious and inefficient in terms of computations. 

To reduce the dimensionality of the inputs and maximize the variability, a principal 

component analysis (PCA) was performed. PCA projects the data to a set of orthogonal 

coordinates corresponding to the directions with the most variance in the input data [200] 

[201] [181]. Principal components (PCs) are found from an eigenvalue decomposition of 

the covariance matrix [201], meaning that they are a linear combination of the original 

feature variables [199]. The covariance matrix is a square symmetric matrix of size p (the 

number of TPCs) that is typically denoted as: 

𝑪 = [

𝐸[(𝑥1 − 𝐸[𝑥1]) ∗ (𝑥1 − 𝐸[𝑥1])] … 𝐸[(𝑥1 − 𝐸[𝑥1]) ∗ (𝑥𝑝 − 𝐸[𝑥𝑝])]

⋮ ⋱ ⋮
𝐸[(𝑥𝑝 − 𝐸[𝑥𝑝]) ∗ (𝑥1 − 𝐸[𝑥1])] … 𝐸[(𝑥𝑝 − 𝐸[𝑥𝑝]) ∗ (𝑥𝑝 − 𝐸[𝑥𝑝])]

]      (48) 

where 𝐸(𝑥) is the expected value (mean) of the TPCs. The eigenvectors of the covariance 

matrix 𝑪 are solved as: 

𝑽−𝟏𝑪𝑽 = 𝑫               (49) 

Where 𝑫 is the diagonal matrix of size p  p containing the eigenvalues of the covariance 

matrix 𝑪, and 𝑽 is a matrix also of size p  p containing the eigenvectors, which are 

orthogonal vectors in this case because the covariance matrix is symmetric. The 

eigenvalues and their corresponding eigenvectors are sorted in order of greatest to least to 

rank the PCs by the fraction of the variance they capture. Consider a matrix A of n data 

points (microstructures) by p number of TPCs which is centered by subtracting the mean 

from each row, represented as the column vector 𝝁 of size n x 1: 
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𝑨𝒄𝒆𝒏𝒕𝒆𝒓𝒆𝒅 = 𝑨 − 𝝁 = [

𝑓𝑛=1,𝑝=1 … 𝑓𝑛=1,𝑝=40,000

⋮ ⋱ ⋮
𝑓𝑛=750,𝑝=1 … 𝑓𝑛=750,𝑝=40,000

] − [
𝐸[𝐴]

⋮
𝐸[𝐴]

]        (50) 

To project this data into the new PC basis, take only the first r columns (r < p) of the 

sorted 𝑽 matrix and multiply by matrix 𝑨𝒄𝒆𝒏𝒕𝒆𝒓𝒆𝒅:  

𝑻 = 𝑨𝒄𝒆𝒏𝒕𝒆𝒓𝒆𝒅 ∗ 𝑽𝒓              (51) 

One representation of the principal component analysis is through singular value 

decomposition (SVD). Consider a matrix A of N data points by P number of TPCs with a 

singular value decomposition [181]: 

𝑨 = [

𝑓𝑛=1,𝑝=1 … 𝑓𝑛=1,𝑝=𝑃

⋮ ⋱ ⋮
𝑓𝑛=𝑁,𝑝=1 … 𝑓𝑛=𝑁,𝑝=𝑃

] = 𝑼𝚺𝑾𝑇                      (52) 

Where 𝑼 is a N  N matrix whose columns are orthogonal unit vectors called the left 

singular vectors,  𝚺 is a N  P diagonal matrix of the positive singular values 𝜎𝑖, which 

are the square root of the principal component variances, and 𝑾𝑇 is a P  P matrix whose 

columns are orthogonal unit vectors called the right singular vectors. The magnitude of 

the singular values represents the fraction of the input variance they capture. The 

principal component axis is ranked by sorting the singular values and their corresponding 

singular vectors in decreasing order (highest magnitude to lowest). Transferring the 

matrix 𝑨 into the PC basis using only r terms (r < P) is completed by taking only the first 

r singular value columns: 

𝑻 = 𝑼 ∗ 𝚺𝒓 = 𝑨𝒓 ∗ 𝑾𝒓                        (53) 

In this study, the PCA was also performed using the Python-based PyMKS library [197].  
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The principal components are used to quantify the geometry of the microstructure. The 

maximum number of PCs is limited to the number of features (TPCs) or the number of 

data points (microstructure images) in the dataset [200]. In the case of the UD-FRC, there 

were 750 data points, corresponding to 125 microstructures each for 6 volume fractions 

used in the analysis, while in the case of UHP mortar and MPR paste there were 500 data 

points with 125 microstructures each for the 4 distributions and particle shapes. Figure 

7-3(a) and (b) show the first and second PC feature space maps (or contours) for the 

𝑓(0,0) TPC of the UD-FRC dataset. The first PC provides information on the most 

dominant geometric feature of the microstructure, which for the UD-FRC, is the volume 

fraction of the inclusion phase [201] [181]. As shown in Figure 4(a), the highest weights 

are located about the center of the TPC image. Figure 4(b) shows the second PC that 

likely indicates the fiber size and its constant distribution [181]. It is well known that, 

while PCs of higher order are also important and represent other spatial characteristics of 

the microstructure, their interpretation is not straightforward [181]. Moreover, the 

efficiency of dimensionality reduction also drops when a larger number of PCs need to be 

included in the analysis. A plot of the percentage variance in the UD-FRC images as a 

function of the number of PCs used in analysis is shown in Figure 7-3(c) to demonstrate 

that increasing the number of PCs beyond a certain value does not add additional value to 

the predictive capacity of the model. This plot shows that 5 PCs account for ~95% of the 

variance in the UD-FRC dataset, while 7 PCs accounted for ~95% of the variance in the 

combined UHPC mortar and MPR paste dataset. 
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(a) (b) (c) 

Figure 7-3: Feature space maps for: (a) 1st PC, and (b) 2nd PC for the UD-FRC dataset. 

The centers of (a) and (b) correspond to correspond to the origin, and the total image 

sizes are 199 x 199 pixels (same as the TPC). Graph (c) is the UD-FRC dataset 

percentage variance as a function of number of PCs.  

 

7.3 FINITE ELEMENT ANALYSIS  

Following the generation of the microstructure images, the .txt files were input into the 

Coreform Trelis™ software for microstructural meshing. A two-dimensional plane strain 

finite element model was developed in ABAQUS format using CPE4 elements. These 

meshed microstructures were input into a publicly available finite element solver to 

determine the elastic modulus in the 2-2 direction (𝐸22), the Poisson’s ratio (𝜈23), and the 

average stress in the matrix (𝜎𝑚𝑎𝑡). This finite element solver was developed and 

validated from experimental results studying the elastic behavior of T800 carbon fiber 

strands in a F3900 matrix at a strand volume fraction of 0.60. As such, the 

microstructural meshing for the UD-FRC analysis assigned strand elements the T800 

elastic modulus of 2250000 psi (~15.51 GPa) and a Poisson’s ratio of 0.25 and matrix 

elements the F3900 elastic modulus of 409000 psi (~2.82 GPa) and a Poisson’s ratio of 

0.387. Table 7-2 details the properties of the matrix and inclusions assigned for finite 

element analysis of each microstructure studied. The boundary conditions and direction 
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that the unit strain was applied (tensile for UD-FRC and compressive for the UHP mortar 

and MPR paste)  is illustrated in the meshed microstructure shown in Figure 7-4(a).  

Table 7-2. Details of the two-phase microstructural images generated and analyzed. 

UHP stands for ultra-high performance, E is the Young’s modulus, and ν is the 

Poisson’s ratio. 

Two-Phase 

Microstructure 

Matrix 𝑬𝒎𝒂𝒕𝒓𝒊𝒙 

(GPa) 

𝝂𝒎𝒂𝒕𝒓𝒊𝒙 Inclusion 𝑬𝒊𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 

(GPa) 

𝝂𝒊𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏 

UD-FRC F3900 

plastic 

2.82 0.387 T800 carbon 

fiber 

15.51 0.25 

UHP mortar UHP cement 

paste 

36 0.24 Quartz Sand 72 0.24 

MPR paste Cement 
paste 

27 0.24 Steel 200 0.29 

 

  

(a) (b) 

Figure 7-4: Microstructure with a volume fraction of 0.60: (a) After meshing with 

boundary conditions, coordinate axis, and direction the unit strain shown, and (b) Color 

map of the aspect ratio of each finite element. 

A convergence analysis testing the image window size and fineness of the mesh was 

performed using a volume fraction of 0.60 to compare to the experimental results. The 

square image size was varied from 100, 200, and 300 pixels long and the auto factor 

mesh size in Trellis varied from 1 (finest) to 7 (coarsest). This convergence analysis 

found that auto factor 1 with the 200 pixel window size had the smallest difference, about 
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-4% and -17% respectively, between the experimentally determined 𝐸22 and 𝜈23 and 

those predicted by the finite element analysis. As shown in Figure 7-4(b), auto factor size 

1 produced a mesh where almost all elements had an aspect ratio of 1. Only the tight 

regions between strands produce elements with aspect ratios greater than 1. 

7.4 MACHINE LEARNING ALGORITHMS AND APPROACH 

A concise overview of the different machine learning (ML) techniques used in this paper 

is provided here.  

7.4.1 Regression Machine Learning Algorithms 

Artificial neural network (ANN) and forest ensemble methods are the ML algorithms 

used for the regression-based predictions reported in this paper. ANN is a preferred ML 

algorithm for many materials-related problems [9] [12] [95] [14] [157] due to its ability 

to model nonlinear functions. Inside each neuron of the ANN, the inputs are evaluated by 

an activation function [95] before being multiplied by the weighted connections tying 

each neuron to every subsequent neuron. The chosen activation function for this study is 

the rectified linear unit (ReLu) with weight optimization performed using RMSprop, 

which features an adaptive learning rate formula [96]. Backpropagation, using the 

gradient of the previous iteration to train the weights of the ANN, was performed 

automatically by the Keras neural network framework written in Python to build and train 

the ANNs [158]. To minimize over-fitting, a dropout rate, i.e., the probability that any 

neuron and its connections will be temporarily excluded from the network, was 

incorporated into the ANN [97]. Additional details on ANNs can be found in [89] [11] 

[198]. 
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Machine learning forest ensembles are based on decision trees that find logical splits in 

the data leading from one branch to the next until ending at the leaf node [9] [87]. To 

reduce prediction inaccuracy and over-fitting, the predictions from a collection of 

decision trees are bagged [9] [159], termed ensembles. In the Random Forest (RF) 

ensemble, the best split of the data is determined by considering all of the input features 

and checking a criterion, such as Gini impurity, to select the most discriminative 

threshold [92] [87]. Each individual decision tree in the RF ensemble does not use the 

entire set of training data, but a bootstrap sample made from subsets of the training data 

with replacement [87] [159]. In the Extra Trees (ET) ensemble, the splits are drawn at 

random for each feature and the best split, as measured by the chosen criteria, is selected 

as the splitting rule [92] [87]. In the ET regression model, the entire dataset is 

incorporated into each individual tree [92]. The prediction results of the individual trees 

are averaged to produce the output prediction in the RF and ET regressions. In a Gradient 

Boosted Tree (GBT) ensemble, an initial tree is trained with the entire dataset. All 

subsequent trees in the forest are trained to minimize the residual between the predicted 

and actual values of the previous tree [9] [92] [93]. The final prediction is calculated as 

the weighted sum of the predictions of each tree. For each tree beyond the first, the 

prediction is multiplied by the learning rate, with typical values between 0.01 and 0.1 [9] 

[92]. A specialized form of the GBT is Extreme Gradient Boosted (XGB) tree [93]. XGB 

performs shrinkage and column subsampling techniques to prevent overfitting between 

boosted trees and additionally offers scalability through parallel tree boosting (efficient 

computing regardless of data size) [93]. Additional details on ensemble methods can be 

found in [9] [87] [166].  
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7.4.2 Data Processing   

For the UD-FRC case, the sets of 125 images for each volume fraction were shuffled 

together such that the selection of images for testing and training would include every 

volume fraction. A similar process was adopted for the sand mortar and the particulate 

reinforced cement paste case. The entire set of data was split such that 75% of the images 

were assigned to the training set and 25% of the images were assigned to the testing set. 

The output data points were normalized based on MinMaxScaler in scikit-learn [92] 

(Equation 8) before separation into the testing and training sets in order to avoid the ML 

weight assignments skewing in favor of the larger values [87].  

znew =
z−zmin

zmax−zmin
               (54) 

where znew is the value of the variable after transformation, z is the current value of the 

variable, zmin is the minimum value of that variable, and zmax  is the maximum value of 

that variable. After training and predicting, the normalized test data is converted back to 

the original scale using the “inversetransform” function. 

Training was performed by fitting the ML algorithms to the training data set. Model 

performance was evaluated using the testing data set, which the ML algorithms had not 

seen yet, and measuring the resulting errors. The mean squared error (MSE), given in 

Equation 9 was used as the objective function to be minimized.  

MSE =
1

n
∑ (Pi − Ai)

2n
i=1               (55) 

where n is the total number of data points, Ai is the actual value, and Pi is the predicted 

value. Other metrics tracked, but not used to train the models, were the mean absolute 

error (MAE) and the coefficient of determination (R2), given as:  

MAE =
1

n
(∑ |

Ai−Pi

Ai
|n

i=1 )              (56) 
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R2 = 1 −
∑ (Pi−Ai)2n

i=1

∑ (Ai−A̅)2n
i=1

= (
n(∑ Ai∗Pi

n
i=1 )−(∑ Ai

n
i=1 )∗(∑ Pi

n
i=1 )

√n(∑ Ai
2n

i=1 )−(∑ Ai
n
i=1 )

2
∗√n(∑ Pi

2n
i=1 )−(∑ Pi

n
i=1 )

2
)

2

        (57) 

Where A̅ is the mean of the actual values. 

Hyperparameter optimization was accomplished by utilizing the same number of epochs 

(i.e., each instance that the data is processed through an ML algorithm) to train MLs and 

compare their accuracy. Coarse optimization of the hyperparameters followed a random 

search pattern, found to be the most efficient method to optimize parameters [164], by 

generating 20 different random combinations of hyperparameters. The hyperparameters 

for random testing were chosen from the uniform distributions shown in Table 7-3. These 

values were chosen based on our previous works, where the optimization process is 

explained in detail [155]. As discussed earlier, the number of PCA components to be 

included as inputs also had to be tuned depending on the material used and property 

predicted.  

For all the models, the parameters which minimized the 5-fold cross-validation MSE 

were used as the basis for the final models, with some additional fine-tuning. In every 

ML model the number of PCA components to include as inputs had to be tuned. For the 

linear regression model, the degree of the basis function was optimized. The parameters 

to optimize in the ANN models were the number of hidden layers, the number of neurons 

in each hidden layer, and the dropout rate. ReLu activation function with a learning rate 

of 0.001 and an RMSprop optimization scheme was used. For the RF, ET, and GBT 

models, the number of trees in the forest, the maximum depth of the trees, the minimum 

number of samples before splitting, and the minimum number of samples per leaf were 

tuned. For the XGB models, there are many hyperparameters available to tune, ranging 
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from structure-based, such as the depth of the trees or the number of GBTs, to how splits 

are made via the subsample and colsample_bytree parameters, or even how big the leaf 

groups can be via min_child_weight. Three parameters, the number of trees, the 

maximum depth, and the learning rate, were found via grid searching to be the most 

influential and were used for optimization in this study. Detailed breakdown of the 

allowed ranges and significance of each of these hyperparameters are given in the XGB 

code documentation [93]. 

Table 7-3. Hyperparameters tuned based on a uniform distribution range of potential 

values. 

Model Hyperparameter 
Uniform Distribution 

Range 

All # principal components (inputs) [6, 20] 

ANN 

# hidden layers [1, 3] 

# starting neurons [9, 50] 

Drop rate [0, 0.1] 

Random Forest (RF), 
Extra Trees (ET) Forest, 

and Gradient Boosted 

Trees (GBT)  

# of trees [50, 200] 

Maximum depth [2, 10] 

Minimum# of samples before split [2, 10] 

Minimum # of samples on leaf [2, 10] 

XGB 

# of trees [20, 100] 

Maximum depth [2, 20] 

Learning Rate [0.01, 0.3] 

 

To test the accuracy of the predictions under each set of test parameters, an n-fold cross-

validation technique was employed [9, 87, 11]. A 5-fold cross-validation, deemed 

sufficient for the size of the data sets, was performed using the following steps: (i) 

randomizing the data set and splitting into 5 folds, (ii) training the model with selected 



181 

 

parameters using 4 of the folds, (iii) testing the model using the remaining fold, (iv) 

repeating steps (ii) and (iii) until each fold has been used for testing once, acquiring 5 

independent performance measures, and (v) averaging the individual metrics to obtain the 

cross-validation errors. The parameters which minimized the cross-validation error was 

used as a basis for the final models with some additional fine-tuning searches. Final 

hyperparameters for each ML and dataset  is listed in Table 7-4. 
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Table 7-4. Final hyperparameters used for each ML model and dataset. 

Model Hyperparameter 
UD-FRC UHP mortar and MPR paste 

𝐸22 (𝐺𝑃𝑎) 𝜈23 𝐸22 (𝐺𝑃𝑎) 𝜈23  𝜎𝑚𝑎𝑡  (𝑀𝑃𝑎) 

All 
# principal 

components 

(inputs) 

15 8 10 10 10 

Linear Degree 1 1 2 1 2 

ANN 

# hidden layers 1 8 3 3 2 

# starting 

neurons 

25 3 40 28 20 

Drop rate 0.05 30 0.1 0.1 0.05 

Random 

Forest 

(RF)  

# of trees 123 145 120 181 122 

Maximum depth 9 8 2 10 5 

Min # samples 

before split 

9 7 4 7 2 

Minimum # of 
samples on leaf 

4 2 10 3 10 

Extra 

Trees 

(ET) 

Forest 

# of trees 122 75 130 181 53 

Maximum depth 8 8 2 7 9 

Min # samples 

before split 

5 7 4 4 3 

Minimum # of 

samples on leaf 

2 2 8 4 5 

Gradient 

Boosted 

Trees 

(GBT) 

# of trees 159 130 152 177 82 

Maximum depth 2 6 4 4 4 

Min # samples 
before split 

5 2 4 6 4 

Minimum # of 

samples on leaf 

10 5 4 6 6 

XGB 

# of trees 36 65 10 86 10 

Maximum depth 3 12 46 9 24 

Learning Rate 0.3 0.1 0.06 0.027 0.05 

 

The number of PCs to include as inputs was determined first as part of the 

hyperparameter optimization, and later verified with an ANOVA one-way analysis to 
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determine if changing the number of PCs for the final ML hyperparameter options would 

change the MSE results of the five-fold cross validation. Using 1 to 15 PCs for all the 

models, the average RMSE values from the 5-fold cross validation are shown in Figure 

7-5 for the UD-FRC case. Only the linear regression models were found to improve 

significantly with respect to the number of PCs included above the minimum 5 to 

represent 95% of the variance for UD-FRC. One-way ANOVA at a 5% level of 

significance revealed the first time the linear regression had a non-significant difference 

between five consecutive means was at 8 PCs for 𝑣23 and 15 for 𝐸22.  

  

(a) (b) 

Figure 7-5: The 5-fold cross validation RMSE for each ML type using the UD-FRC 

dataset as a function of the number of PCs included for: (a) 𝐸22 (GPa), and (b) 𝜈23 . 

 

For the UHP mortar and MPR paste dataset, the principal component sensitivity analysis 

did not present a clear pattern of decreasing error as the number of PCs increased, as 

indicated in Figure 7-6. ML overfitting [97] means the generalizability to predict accurate 

results on the testing data set is reduced as a result of over-training or memorizing the 
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outputs of the training data set. Overfitting can also be caused by incorporating many 

inputs such that the ML does not have enough data to accurately train the internal weights 

[90]. In the case of these microstructures, including more PCs becomes detrimental to the 

testing results, as especially seen in the linear ML for 𝐸22 analysis in Figure 7-6(a). 

Results from TPC analysis of the percentage variance as a function of the number of PCs, 

found that 7 PCs accounted for ~95% of the variance in the UHP mortar and MPR paste 

dataset. ANOVA analysis did not discern a single number of PCs where a non-significant 

difference between five consecutive means existed for all the MLs at the same time. 

Following the previous dataset in which the optimal number of PCs to include was a little 

more than the number needed to account for ~95% of the variance, the number of PCs to 

include in the UHP mortar and MPR paste dataset was chosen as 10 for all three of the 

mechanical outputs found from FEA. 

   

(a) (b) (c) 

Figure 7-6: The 5-fold cross validation RMSE for each ML type using the UHP mortar 

and MPR paste dataset as a function of the number of PCs included for: (a) 𝐸22 (GPa), 

(b) 𝜈23, and (c) 𝜎𝑚𝑎𝑡𝑟𝑖𝑥  (MPa). 
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7.5 RESULTS AND DISCUSSIONS 

The predictive efficiency of different ML models using TPC with principal component 

analysis as inputs to predict the elastic modulus, Poisson’s ratio, and/or average matrix 

stress of two-phase microstructures is reported in this section. Each of the five ML 

algorithms (ANN, RF, ET, GBT, XGB) discussed above were implemented on two 

datasets. The first 750 point dataset was comprised of 125 randomly generated images for 

each of the 6 volume fractions (0.35, 0.4, 0.45, 0.50, 0.55 and 0.60) of carbon fiber in the 

UD-FRC studied. The second data set containing 500 randomly generated images was 

comprised of 125 microstructures of UHP mortars with three different size distributions 

(but with the same volume fraction, 𝜙), as well as 125 images of the UHP mortar and 

MPR paste. A discussion of the results examines the applicability of the ML regression 

approach to analyze two-phase microstructures. 

7.5.1 Unidirectional Fiber Reinforced Composites (UD-FRC) 

The ML regression results for predicting the elastic modulus (E22) of the microstructures 

is given in Table 7-5. From Table 7-5, it is clear that all of the ML methods performed 

well, where all 5-fold cross-validation average R2 values exceeded 0.95, and the RMSE 

were all below 0.15 GPa. Example plots of the experimental vs. predicted E22 values are 

shown in Figure 7-7(a) for linear regression, the ML with the lowest MSE, and in Figure 

7-7(b) for random forest, the ML producting the highest MSE. In these figures with ± 5% 

bounds shown, the prediction accuracy is best for the low and high extremes of volume 

fractions with 0.35, 0.55, and 0.60. Volume fractions near the middle of the range studied 

between 0.40 and 0.50 appear to have the highest errors which tend to underpredict in the 

linear model Figure 7-7(a), but equally under- and over-predict in the random forest 
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model Figure 7-7(b). Fundamentally, the weighting system of machine learners will favor 

the extreme values [97] [89] because these values are the most sensitive to changes in the 

weights and splits and are reflected in the MSE used to update the models. 

Table 7-5. ML 5-fold cross-validation average and standard deviation values for 

predicting E22 for the UD-FRC dataset using 15 PCs. The most accurate ML model is 

shown in bold. 

Model Type RMSE 𝐄𝟐𝟐 (GPa) MAE 𝐄𝟐𝟐 (GPa) R
2 

Linear 9.38E-02 ±3.24E-02 7.40E-02 ±4.77E-03 0.990 ± 0.001 
Artificial Neural 

Network (ANN) 1.12E-01 ±4.36E-02 8.78E-02 ±8.06E-03 0.986 ± 0.003 

Random Forest (RF) 1.26E-01 ±4.81E-02 1.00E-01 ±7.66E-03 0.982 ± 0.003 

Extra Trees Forest (ET) 1.20E-01 ±4.78E-02 9.61E-02 ±8.02E-03 0.984 ± 0.003 

Gradient Boosted Forest 

(GBT) 1.12E-01 ±2.43E-02 8.90E-02 ±3.16E-03 0.986 ± 0.001 
Extreme Gradient 

Boosting (XGB) 1.13E-01 ±3.66E-02 9.10E-02 ±4.86E-03 0.986 ± 0.002 

 

  

(a) (b) 

Figure 7-7: Test results for 1 fold (150 images) to predict the 𝐸22 (GPa) value for UD-

FRC dataset using the machine learning techniques of: (a) Linear regression, and (b) 

Random Forest. The solid line represents the line of ideality, and the dashed lines 

represent a ± 5% bound. Note from Table 7-5 that linear regression had the lowest 5-fold 

average MSE of all MLs and Random Forest had the highest MSE. 
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Although these are complex and random two-phase microstructures, the fact that the 

linear regression model was the most accurate is not surprising as the experimental and 

finite element study of the T800 carbon fiber strands in a F3900 matrix found the 

approximate equation relating the elastic modulus in the 1-1 direction to the volume 

fraction (𝑣𝑓) to be:  

𝐸11(𝑣𝑓) = 8 ∗ 107 ∗ 𝑣𝑓
2 + 4 ∗ 1011 ∗ 𝑣𝑓 + 3 ∗ 109          (58) 

This is in the transverse direction to the 𝐸22 studied, but the equation offers insight into 

how the volume fraction of carbon fibers has the highest influence on the elastic 

properties. 

The results of ML regression of microstructural images to predict the Poisson’s ratio ν23 

are shown in Table 7-6. The continued results of 𝑅2 over 0.90 and a RMSE less than 8E-3 

suggest that once again, all the machine learners were well-suited to relating the PCs of 

TPC to the mechanical properties. Figure 7-8(a) plots the experimental vs. predicted 𝜈23 

values generated from for linear regression, while the Figure 7-8(b) results were 

generated from the extreme gradient boosting ML. In unidirectional fibers the major 

Poisson’s ratio (𝜈12 = 𝜈13) obeys the rule of mixtures, and is therefore bounded between 

the Poisson’s ratios of the matrix and inclusion, while the transverse Poisson’s ratio (𝜈23) 

studied here is instead estimated as a function of the ratio of the transverse elastic 

modulus and transverse shear modulus [202] [203]. Therefore, it is not surprising that the 

finite element and ML estimation of 𝜈23 ranged from 0.45 to 0.57. The linear regression 

and extreme gradient boosting MLs were the best and worst, respectively, in terms of the 

5-fold cross-validation average RMSE and 𝑅2 values. One difference between the two 

models is that the linear regression evenly over and under predicts across all volume 
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fractions with an emphasis on under predicting the 0.60 volume fraction, while the 

extreme gradient boosting features more extreme errors, almost cyclically under and 

over-predicting beginning from 0.60 down to 0.35 volume fraction. Regardless, as shown 

by the ± 5% bounds in Figure 7-8, these errors are within a reasonable tolerance for every 

ML method studied.  

Table 7-6. ML 5-fold cross-validation average and standard deviation values for 

predicting ν23 for the UD-FRC composite dataset using 8 PCs. The most accurate ML 

model is shown in bold. 

Model Type RMSE 𝝂𝟐𝟑 MAE 𝝂𝟐𝟑 R
2 

Linear 6.67E-03 ±2.33E-03 5.28E-03 ±2.91E-04 0.946 ± 0.006 

Artificial Neural 

Network (ANN) 7.38E-03 ±2.50E-03 5.96E-03 ±3.76E-04 0.934 ± 0.005 

Random Forest (RF) 7.46E-03 ±2.58E-03 5.89E-03 ±4.12E-04 0.933 ± 0.005 

Extra Trees Forest (ET) 7.40E-03 ±2.00E-03 5.84E-03 ±3.02E-04 0.934 ± 0.006 

Gradient Boosted 

Forest (GBT) 7.48E-03 ±2.00E-03 5.93E-03 ±2.46E-04 0.932 ± 0.005 

Extreme Gradient 

Boosting (XGB) 7.91E-03 ±2.42E-03 6.29E-03 ±2.85E-04 0.924 ± 0.007 
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(a) (b) 

Figure 7-8: Test results for 1 fold (150 images) to predict the 𝜈23 value of the UD-FRC  

dataset using the machine learning techniques of: (a) Linear regression, and (b) Extreme 

Gradient Boosting. The solid line represents the line of ideality, and the dashed lines 

represent a ± 5% bound. Note from Table 7-6 that linear regression had the lowest 5-fold 

average MSE of all MLs and Extreme Gradient Boosting had the highest MSE. 

 

Compared to the 𝐸22 results, the 𝜈23 results had lowered 𝑅2 values, but a reduction in the 

variance from the mean cross-validated results. The Poisson’s ratio in composites 

systems is affected by the clustering of the strands [174]. In image statistical descriptors, 

the lineal clustering or connectedness between features is best modelled by the lineal-path 

function, not the TPC [204]. Instead, the TPC function focuses on the short-range 

information about different clusters as well as morphological information larger than the 

maximum cluster size [93]. The TPC function provides an overall description of the 

strand locations that generated quite accurate predictions of the 𝜈23, as shown by the ML 

results, but TPC alone may not be the best image descriptor for the 𝑣23 mechanical 

property.  
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7.5.2 Ultra High Performance (UHP) Mortar and Metallic Particulate Reinforced 

Cement (MPR) Paste 

The second dataset consisting of UHP mortar and MPR paste with inclusions of different 

sizes, shapes, and volume fractions, tests the ML algorithms’ ability to learn from two-

phase systems with multiple microstructural differences. Table 7-7 and Table 7-8 display 

the consistently accurate results of all the ML classifiers to predict the Young’s modulus 

(E22) and average stress in the matrix (𝜎𝑚𝑎𝑡) values, respectively. Unlike the UD-FRC 

microstructures where the simple linear ML was sufficient to link the TPC and PCA to 

the microstructural properties, these UHP mortar and MPR paste microstructures with 

diverse particle sizes and shapes were best represented by ensemble ML methods.  

As shown in Figure 7-9, the E22 (Figure 7-9 (a)) and σmat (Figure 7-9 (b)) ML prediction 

results were close to the plane strain linear-elastic FEA values across all of the given 

input microstructures. It is known that the particle size distribution of the inclusions in 

two-phase composites such as mortars have a significant effect on the average 

microstructural stress and the stress-path within the material [4]. Yet as seen in Figure 

7-9, there was not a significant difference in the FEA simulation values, and therefore in 

the ML predictions, between the three sand-mortar distributions. This similarity in FEA 

output values are an effect of the small compressive strain applied to the microstructure. 

Future work will address ML prediction of the non-linear microstructural response, where 

the effects of particle size distribution, orientation, and shape produces significant 

mechanical differences among the microstructures. 
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Table 7-7. ML 5-fold cross-validation average and standard deviation values for 

predicting E22 for the UHP mortar and MPR paste dataset using 10 PCs. The most 

accurate ML model is shown in bold. 

Model Type RMSE 𝐄𝟐𝟐 (GPa) MAE 𝐄𝟐𝟐 (GPa) R
2 

Linear 2.09E-01 ±1.11E-01 1.49E-01 ±1.90E-02 0.999 ±3.931E-04 
Artificial Neural 

Network (ANN) 5.89E-01 ±3.61E-01 3.88E-01 ±9.79E-02 0.990 ±3.654E-03 

Random Forest (RF) 2.10E-01 ±9.32E-02 1.48E-01 ±1.56E-02 0.999 ±2.993E-04 

Extra Trees Forest (ET) 2.08E-01 ±9.98E-02 1.48E-01 ±1.69E-02 0.999 ±3.118E-04 

Gradient Boosted Forest 

(GBT) 2.28E-01 ±1.02E-01 1.55E-01 ±1.51E-02 0.998 ±3.911E-04 
Extreme Gradient 

Boosting (XGB) 4.66E-01 ±1.19E-01 4.19E-01 ±1.63E-02 0.993 ±1.042E-03 

 

Table 7-8. ML 5-fold cross-validation average and standard deviation values for 

predicting σmat for the UHP mortar and MPR paste dataset using 10 PCs. The most 

accurate ML model is shown in bold. 

Model Type RMSE 𝛔𝐦𝐚𝐭 (MPa) MAE 𝛔𝐦𝐚𝐭 (MPa) R
2 

Linear 6.56E-02 ±2.72E-02 4.73E-02 ±4.76E-03 0.999 ± 0.000 

Artificial Neural 
Network (ANN) 

1.40E-01 ±6.55E-02 1.10E-01 ±1.07E-02 0.994 ± 0.001 

Random Forest (RF) 6.26E-02 ±3.33E-02 4.45E-02 ±5.24E-03 0.999 ± 0.000 

Extra Trees Forest (ET) 6.31E-02 ±3.46E-02 4.45E-02 ±6.21E-03 0.999 ± 0.000 

Gradient Boosted 

Forest (GBT) 
6.67E-02 ±3.92E-02 4.74E-02 ±7.35E-03 0.999 ± 0.001 

Extreme Gradient 

Boosting (XGB) 
6.00E-01 ±6.72E-02 5.95E-01 ±3.42E-03 0.888 ± 0.009 
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Figure 7-9: Bar charts of the UHP mortar and MPR paste dataset results from one fold of 

cross-validation testing comparing the FEA simulation results to the ML predictions for 

the outputs of: (a) 𝐸22 (GPa) predicted using ET ML, and (b) 𝜎𝑚𝑎𝑡 (MPa) predicted using 

RF ML. 

The analysis of these microstructures suggests that TPC with PCA inputs were able to 

distinguish between the microstructures and the ML was accurately able to learn and 

predict the resulting mechanical properties. This general applicability of the TPC with 

PCA means if a similar strain is applied to any two-phase composite system, the MLs can 

produce initial insights into the microstructural properties without extensive laboratory 

testing and imaging. An important caveat to any ML algorithm is that the model can only 

predict within the domain which it was trained on, such as the applied displacement or 

the mechanical properties of the matrix and inclusions. 

Table 7-9 demonstrates the effects of non-significantly different output values being used 

to train the ML algorithms, where the results of the ML algorithms on the Poisson’s ratio 

values are shown. For the entire 500 point UHP mortar and MPR paste dataset, the 

average ν23 was 0.316± 0.003. As a result, the ML algorithm was training to predict only 

the noise in the FEA results, not directly related to the differences in the microstructures. 

The average 5-fold RMSE results are 3 times smaller than those of Table 7-6 for the UD-

  

(a) (b) 
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FRC dataset, however the coefficient of determination is reduced to around ~0.65. Such 

small errors combined with such a low 𝑅2 value suggest that the ML was overfitting 

instead of learning meaningful results from the TPC and PCA. 

Table 7-9: ML 5-fold cross-validation average and standard deviation values for 

predicting ν23 for the UHP mortar and MPR paste dataset using 10 PCs. The most 

accurate ML model is shown in bold. 

Model Type RMSE 𝝂𝟐𝟑 MAE 𝝂𝟐𝟑 R
2 

Linear 1.96E-03 ±1.11E-03 1.33E-03 ±1.92E-04 0.667 ± 0.125 

Artificial Neural 

Network (ANN) 
2.08E-03 ±9.95E-04 1.39E-03 ±1.17E-04 0.632 ± 0.088 

Random Forest (RF) 2.03E-03 ±1.18E-03 1.37E-03 ±2.30E-04 0.644 ± 0.137 

Extra Trees Forest (ET) 1.99E-03 ±1.14E-03 1.34E-03 ±2.08E-04 0.659 ± 0.127 

Gradient Boosted 

Forest (GBT) 
2.15E-03 ±1.16E-03 1.46E-03 ±2.36E-04 0.602 ± 0.138 

Extreme Gradient 
Boosting (XGB) 

2.26E-03 ±1.18E-03 1.58E-03 ±1.65E-04 0.557 ± 0.144 

 

7.5.3 Patterns of PCs for Microstructural Analysis 

Principal component analysis alone does not have physical meaning because it is a 

transformation of the input data into a new basis [181] [182]. However, when comparing 

and contrasting the PCs for each of the microstructure types addressed in this study, 

patterns in the feature maps emerge, that can be used as a basis for understanding the 

most significant differences between microstructural features. 

Figure 7-10 shows a grid of the first three principal components of each microstructure 

type described in Table 7-1. When developing an ML with TPC and PCA to learn all the 

two-phase microstructures, only 5 PCs are needed to explain 95% of the variance. The 

most prominent explanation of the variance between all the microstructures, represented 

in PC 1 of group (a), stems from the particle shape since 125/1250 of the images are 
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ellipses and the remaining images are circular. In this regard, the PC patterns for group 

(c) result from the changes in both the particle size and, unique to any of the other 

microstructures, the ellipse-shaped inclusion orientation. Note how the boundaries 

between areas of light and dark are blurred and less well-defined in group (c) as 

compared to the other groups. This signifies that there are more possible variations in the 

particle location and distance relationship to other particles as compared to circular 

systems in which orientation does not matter.  

PC 2 in group (a) for all 1250 of the microstructures is approximately the sum of PC 1 of 

group (b) for the UD-FRC and PC 1 of group (c) for the sand mortars. This means that 

PC 2 for (a), PC 1 for (b) and PC 1 for (c) occur along the same principal component 

axis. The microstructures of group (b) only vary in volume fraction, while the 

microstructures in (c) vary only in their particle size distributions, therefore this PC with 

a brighter (more positive) circle surrounded by a dark ring may represent the center to 

center distance between the particles. The likelihood of the autocorrelation to meet an 

inclusion phase beyond a certain distance (radius) from the center of the circular particles 

is a direct result of the packing (𝜙) and the available sizes of the inclusions.  

Finally, the PC 3 of the 1250 full dataset (a) is identical in shape and magnitude to the PC 

2 of the UD-FRC (b). This PC results from the fact that most of the dataset (700/1250) is 

the UD-FRC with varying 𝜙. After establishing the shape of the particles, and the center 

to center distribution of the particles, the next axis of greatest variance is one unique to 

the problem of purely varying the volume fraction. Alone, the feature map 

representations of the PCs are not easily related to their original datasets, but when 

comparing datasets, as the ML algorithms inherently do when training, the PCs are an 
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excellent visual reference and source for meaningful comparison between the axis of 

greatest variance. 
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Figure 7-10: Feature maps of the first 3 principal components of: (a) all 1250 microstructural images 

examined in this study, (b) 700 UD-FRC images, (c) 375 cement paste with UHP mortar images, and (d) 

125 MPR paste images. 
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7.6 SUMMARY 

Although extensive finite element (FE) work has been dedicated to predicting the 

macroscale response of composite systems, it requires computationally intensive analysis. 

To speed up the process of evaluating the mechanical properties of a composite system 

given the properties of the individual components and a microstructure describing the 

phase morphology and distribution, image-based machine learning techniques can be 

applied. This work generated multiple machine learning techniques to analyze synthetic 

two-phase composite microstructural images to predict the mechanical properties. The 

“ground truth” homogenized mechanical property values for each image was determined 

using finite element analysis on FE models verified using available experimental results 

from previous studies. Two-point correlation functions (TPC) of the microstructures were 

determined, followed by dimensionality reduction using principal component analysis 

(PCA). These pre-processed images were used as inputs into the artificial neural network 

and ensemble machine learning algorithms. A sensitivity analysis using ANOVA one-

way testing at a 5% level of significance was performed to determine the least number of 

PCs required as inputs to produce efficient and accurate ML results.   

The linear regression models for the UD-FRC were more sensitive to the number of PCs 

beyond the 95% variance level, requiring 3-8 more PCs before the change in mean MSE 

became insignificant. For datasets containing microstructures with multiple variations, 

i.e. change in particle shape and change in particle size distribution, the number of PCs to 

achieve sufficient precision in prediction was not as evident. All the ML models 

produced highly accurate regressions of the 𝐸22, 𝜈23, and 𝜎𝑚𝑎𝑡  mechanical properties.  
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CHAPTER 8 

8 CONCLUSIONS AND FUTURE WORK 

8.1 OVERALL CONCLUSIONS 

This study discussed the microscale mechanical and chemical characterization of UHP 

binders containing high volumes of commonly available cement replacement materials. 

Focus was placed on relating the constituent components to the resulting microstructural 

behavior, then predicting the behavior of cementitious systems through machine learning 

techniques. Machine learners to classify the cementitious phases and predict of the 

nanoindentation stiffness were developed. Finally, a visual machine learning 

methodology was established for two-phase composites as a first step to utilizing images 

to predict the microstructural behavior of cementitious systems. It was shown that 

coupling the nanomechanical properties to chemical intensities provides fundamental 

insights into novel, ultra-high performance binder systems, guiding their synthesis and 

offering a preview of the microstructural features that are key towards material 

performance. Conclusions for each chapter are presented in the following sections. 

8.2 CONCLUSIONS FROM NANOMECHANICAL STUDIES 

Chapter 3 discussed the nanoscale mechanical characterization of UHP cementitious 

matrices containing high volumes of commonly available cement replacement materials. 

Nanoindentation experiments coupled with a Bayesian information criterion were carried 

out to determine the average modulus and hardness of the statistical phases. The 

microstructure was found to be highly heterogeneous, attributable mainly to the low w/b 

used and multitude of cement replacement materials of differing size ranges. This study 



 

 199   

 

explored how nanomechanical analysis reveals the enhanced influence of physical 

packing of particles in low w/b systems such as UHPC.    

Key findings included: 

• LD and HD C-S-H along with an UHS phase was identified for the fly ash-based 

UHP paste (w/b ~ 0.20) after 30 days of hydration, while only the UHS phase was 

observed for the fly ash-based paste after 90 days of hydration.  

• For the microsilica-based UHP paste, the volume fractions of LD and HD C-S-H 

phases were so low that the points were clustered together with the UHS phase at 

all ages.  

• The UHS phase was shown to be a nanocomposite of HD C-S-H phase and 

nanoscale CH. The reduced w/b in UHP pastes as well as the presence of several 

fine materials such as limestone powder and microsilica was postulated to 

enhance the formation of such a product through the absence of capillary spaces 

that would likely favor CH nanocrystal formation. The formation of such a 

product was supported using thermogravimetric analysis and nanogranular C-S-H 

packing density calculations.  

• Both the UHP pastes contained several mixed/composite phases as determined 

from the M-H response, which is not uncommon in packed systems with multiple 

blends of fine, incompletely reacted particles. This renders the indentation-based 

analysis of such heterogeneous systems more cumbersome; however, the presence 

of phases stiffer than the hydrates function as micro-inclusions that enhance the 

properties of the UHPC.  
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• Analytical homogenization models based on Eshelby’s solution for inclusions 

embedded in a matrix were used to upscale the elastic response of the individual 

phases in UHP paste to the elastic response of UHPC. For the fly ash-based 

UHPC, the homogenized E was in good agreement with that determined 

experimentally using strain controlled compression tests on UHPC specimens.  

• For the microsilica-based UHPC, the upscaled E was found to be higher than that 

from experiments, likely due to potential agglomeration of microsilica in the UHP 

paste. In the presence of coarse aggregates, these agglomerates would be broken 

down by the shearing action of aggregates, reducing the volume of what were 

identified as mixed phases. The local heterogeneity in the microstructure in such 

cases are more likely to be significant in upscale property prediction. While 

increasing the number of grids and indents might appear to be a straightforward 

solution, it is unlikely to account for effects that are fundamentally different in 

pastes and concrete – e.g., ultra-fine particle agglomeration.  

Nanomechanical properties and analysis of the intensities of relevant chemical species at 

the indentation locations for two UHP pastes containing multiple starting materials were 

reported in Chapter 4. Nanoindentation experiments were carried out on multiple grids at 

different ages, while the chemical analysis of the indentation points was carried out using 

qualitative EDS analysis, after performing a grid alignment procedure. Statistical 

clustering analysis of the mechanical and chemical data was performed assuming a 

Gaussian distribution by minimizing Bayes Information Criterion (BIC). The 

relationships between M, H, and the different chemical intensities were used to infer the 

fundamental nature of the reaction products in systems with high degree of heterogeneity, 
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aided by the very low w/b and the presence of multiple cement replacement 

materials/fillers. It is shown that coupling the nanomechanical properties to chemical 

intensities provides fundamental insights into novel, ultra-high performance binder 

systems, guiding their synthesis and offering a preview of the microstructural features 

that are key towards material performance. 

Key findings included: 

• The UHP pastes consisted mostly of HD C-S-H and an UHS phase, along with 

mixed phases comprising of partly reacted starting materials and some reaction 

products. The normalized chemical intensities and ratios of Ca, Si, and Al species, 

along with the mechanical property description provided by nanoindentation, 

allowed for further insights into the microstructure of complex, heterogeneous 

systems such as UHPC pastes.  

• The scatter in the Ca/Si intensity plots for the UHPC pastes were found to be 

higher than those reported for conventional OPC pastes. The HD C-S-H and UHS 

phases were observed to have similar Ca and Si intensities, even though the 

spread was larger for the UHS phase, attributable to its lower Ca/Si ratio. 

However, the Al incorporation was higher in the UHS phase.  

• For both the UHP pastes, the Ca/Si ratio for the UHS phase demonstrated an 

elliptical spread, with reduced heterogeneity being visually identifiable for the 

ML paste. The reduced heterogeneity in this mixture (fewer starting materials, 

and the presence purer chemical species) also restricted the spread of the Ca/Si 

ratio.  
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• The relationship between M and H of the reaction product phases in both the UHP 

pastes were found to be very similar, irrespective of significant changes in 

mixture composition. In general, M and H were found to be not highly dependent 

on the Ca/(Si+Al) ratio for the considered mixtures.  

• The Ca/Si ratio was found to be an important parameter influencing the 

incorporation of Al in the gel, with its reduction promoting the incorporation of 

more Al into the C-A-S-H gel. In fact, Al incorporation is less dependent on the 

total amount of aluminates in the system, and more on the reduction in Ca/Si 

ratio.  

8.3 CONCLUSIONS FROM ML FOR MICROSTRUCTURAL CLASSIFICATION 

AND REGRESSION 

Chapter 5 presented a novel approach to accurately predict cement hydration phases from 

chemical intensity maps, using ML methods. Chemical intensity data from SEM-EDS for 

different UHP cement paste datasets representing multiple cementing materials and 

hydration ages were combined. Micromechanical information from nanoindentation as 

well the elemental intensities from qualitative EDS maps were then coupled with 

Bayesian statistical clustering. With the phase labels (e.g., LD or HD C-S-H, clinker etc.) 

thus identified, different ML classification techniques based on Artificial Neural 

Networks (ANN) and forest ensemble methods were implemented on the dataset. The 

classification algorithms were implemented on the 5-input dataset (chemical intensities of 

Ca, Si, Al, and Fe, along with the cube of the brightness of the BSE image (γ3)), and 7-

input dataset (the above 5 inputs, and M and H from nanoindentation). The area under the 

Receiver Operator Characteristic curve (ROC-AUC) was chosen as the indicator of 
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model performance. It is shown that chemical intensity mapping of microstructures, 

coupled with machine learning, can be used to accurately (in the case of common 

cementitious microstructures) classify the microstructural phases, which can lead to 

apriori property (e.g., stiffness) predictions. ML models can thus classify the 

cementitious component phase at locations in a microstructure to facilitate real-time 

characterization and first-order estimation of bulk properties. 

Key findings included: 

• For the combined dataset of the UHP pastes, the ROC-AUC values were higher 

than 0.90 for both the 7-input and 5-input datasets. The removal of 

nanoindentation information from the dataset did impact the efficiency of 

classification, as noted from the accuracy and F1 values.  

• Confusion matrices demonstrated that the removal of nanoindentation information 

resulted in misidentification of some of the microstructural labels, especially 

where the chemical intensity data overlapped between multiple phases due to the 

unique composition of the UHP pastes. It was shown that, in such complex 

systems, the use of additional inputs in the form of nanomechanical properties 

help classification significantly.  

• The same approach was also used on two less complex microstructures (i.e., 

fewer starting materials and more complete hydration), one of a plain OPC paste 

and the other a paste with 20% OPC replaced using a highly reactive natural 

pozzolan. Here, normalized intensities of just the three chemical species (Ca, Si, 

and Al) were deemed sufficient (without nanoindentation data) to generate a 

highly accurate classifier. 
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Chapter 6 presented a novel approach to predict the nanoindentation stiffness of cement 

hydration phases from chemical intensity maps, using ML methods, for the first time. To 

demonstrate the methodology and application, nanoindentation modulus and normalized 

chemical intensity data from EDS for four different data sets representing various 

cementitious mixtures with multiple cement replacement materials, w/b, hydration ages, 

and microstructural complexities were chosen. Four different classes of ML methods 

including Support Vector Regression (SVR), Gaussian Process Regression (GPR), 

Artificial Neural Networks with backpropagation (ANN), and ensemble methods (e.g., 

RF, ET, and GBT) were implemented on data sets comprising of ~400 to 2400 data 

records, each corresponding to a distinct nanoindentation point in the microstructure. The 

models were trained using 75% of the data and tested on the remaining 25% of the data. 

Established procedures for data analysis, including hyperparameter optimization, were 

implemented. EDS maps were obtained for the microstructures so that the local 

chemistry, which is easier to obtain than nanoindentation modulus, could be used to 

predict the hydration phase modulus using ML models. The relative intensity of the major 

chemical species (Ca, Si, Al, Fe), the mixture ages, as well as the local density of the 

microstructure represented by the cube of the brightness coefficient from backscattered 

SEM were used as the inputs. Estimating the mechanical properties of complex, 

heterogeneous cementitious mixes from ML will minimize the expensive and time 

required for testing as well as shift the focus of mix design from the macroscopic to the 

fundamental microscopic properties. 
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Key findings included: 

• For the NP mixture, all ML models were able to predict the phase stiffness with 

an R2 value ~ 0.90 using just three chemical intensities (Ca, Si, Al) as inputs, all 

of which appear in the chemical description of C-A-S-H gel. This was shown to 

be a result of the more homogeneous microstructure in this mixture, owing to a 

highly reactive cement replacement material, higher w/b, and a longer curing 

duration. GPR was shown to be the best model for this mixture in terms of the 

metrics (RMSE, MAE, R2), attributed to its ability to work on sparse data sets 

with fewer inputs.  

• When data sets belonging to NP, OPC, and SF mixtures were combined, the 

relative predictive efficiency dropped irrespective of the ML model used. The 

ensemble models showed better predictive ability in this case, attributable to the 

randomness of the bagging and input feature selection, generating ensembles with 

greater generalization.  

• For the UHP pastes demonstrating complex microstructures as a result of multiple 

binding materials of varying chemical constitution and reactivities, and 

incomplete reaction due to low w/b, all the ML models were found to have lower 

predictive abilities. Specifically, it was noticed that the prediction quality was 

better for the C-S-H phases, but the large scatter in the data for the high modulus 

phases and the mixed reactant/product phases reduced the overall predictive 

ability.  

• Potential options to tide over such inaccuracies include: increased representation 

of the mixed/unreacted clinker phases in the data sets to reduce skew-sensitivity, 
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more precise identification of the constituents of the mixed phase, additional 

inputs such as information from neighboring indents, improved ML models that 

account for imbalanced data, and/or image-based ML models.  

Finally, Chapter 7 generated multiple machine learning techniques to analyze synthetic 

two-phase composite microstructural images to predict the mechanical properties. The 

“ground truth” homogenized mechanical property values for each image was determined 

using finite element analysis on FE models verified using available experimental results 

from previous studies. Two-point correlation functions (TPC) of the microstructures were 

determined, followed by dimensionality reduction using principal component analysis 

(PCA). These pre-processed images were used as inputs into the artificial neural network 

and ensemble machine learning algorithms. A sensitivity analysis using ANOVA one-

way testing at a 5% level of significance was performed to determine the least number of 

PCs required as inputs to produce efficient and accurate ML results. This work 

demonstrated that ML can accurately predict mechanical properties for any two-phase 

composite system, regardless of the inclusion volume fraction, shape, or size distribution. 

Such TPC with PCA analysis is a first step to developing ML algorithms capable of 

evaluating the mechanical properties of complex, multi-phase microstructural 

composites, such as ultra-high performance binders, based on microstructural images. 

Key findings included: 

• Changing only the volume fraction, the ANN and ensembles models had a 

significant reduction in MSE as more principal components (PCs) were included, 

but only up to the number of principal components required to explain 95% of the 

variance. On the other hand, the linear regression models were more sensitive to 
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the number of PCs beyond the 95% variance level, requiring 3-8 more PCs before 

the change in mean MSE became insignificant.  

• For datasets containing microstructures with multiple variations, i.e. change in 

particle shape and change in particle size distribution, the number of PCs to 

achieve sufficient precision in prediction was not as evident.  

• All the ML models produced highly accurate regressions of the 𝐸22 , 𝜈23, and 

𝜎𝑚𝑎𝑡 mechanical properties.  

• Comparing the PCs of each microstructural group studied, visual patterns emerge 

that can be used as references when determining the most importance influences 

of microstructures on the outputs.  
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