
Dash Database: Structured Kernel Data for the Machine Understanding of

Computation

by

Benjamin R. Willis

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2020 by the
Graduate Supervisory Committee:

John Brunhaver, Chair
Chaitali Chakrabarti
Aviral Shrivastava

ARIZONA STATE UNIVERSITY

December 2020



ABSTRACT

As device and voltage scaling cease, ever-increasing performance targets can only

be achieved through the design of parallel, heterogeneous architectures. The work-

loads targeted by these domain-specific architectures must be designed to leverage the

strengths of the platform: a task that has proven to be extremely difficult and expen-

sive. Machine learning has the potential to automate this process by understanding

the features of computation that optimize device utilization and throughput. Un-

fortunately, applications of this technique have utilized small data-sets and specific

feature extraction, limiting the impact of their contributions.

To address this problem I present Dash-Database; a repository of C and C++

programs for software-defined radio applications and its neighboring fields; a method-

ology for structuring the features of computation using kernels, and a set of evaluation

metrics to standardize computation data sets. Dash-Database contributes a general

data set that supports machine understanding of computation and standardizes the

input corpus utilized for machine learning of computation; currently only a small set

of benchmarks and features are being used. I present an evaluation of Dash-Database

using three novel metrics: breadth, depth and richness; and compare its results to a

data set largely representative of those used in prior work, indicating a 5x increase

in breadth, 40x increase in depth, and a rich set of sample features. Using Dash-

Database, the broader community can work toward a general machine understanding

of computation that can automate the design of workloads for domain-specific com-

putation.
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Chapter 1

INTRODUCTION

As Moore’s Law slows, domain-specific architectures are the only performant paths

forward for continued performance scaling [1]. Even as higher-performance technology

shows promise for the near future, Dennard Scaling has ended [2], leading computer

architects with little choice but to better exploit technology that is already available.

This is being done by utilizing fixed-function hardware called accelerators [3]. While

this appears to be an attractive method [4], the high risk of designing such hardware

is forcing chip designers towards more configurability, a characteristic that generally

hurts performance.

Building and designing domain-specific systems-on-chip (DSSOC) has proven to

be extremely difficult [5]. Specialized hardware tailored specifically for a given task

requires low-level understanding and specialization. Furthermore, designing custom

hardware designs is highly labor-intensive and carries substantial fabrication risks.

Given such a risky and complicated process, designing DSSOCs for future work-

loads will be difficult. Emerging workloads show no sign of becoming simpler, in fact

they are likely to be more complex [6], hence the challenge won’t go away by itself.

Hardware-software co-designers have attempted to meet this challenge by factoring

code from the wild into their essential parts, optimizing them, and designing an archi-

tecture tailored to their needs [7]. But only domain experts can do this factorization

[8], a characteristic that makes this design process expensive and time-consuming. If

hardware-software co-design will bring about performance gains via domain-specific

architectures, automating this process will be paramount going forward.

1



Machine learning is an obvious candidate to tackle this challenge. Using a small

corpus of computer programs, prior studies have aimed to understand the features of

their corpus that solve a computational problem about compilers, scheduling, char-

acterization, power and performance, and design space exploration. However, these

studies have lacked scalability by constraining their input corpus and feature selec-

tion. Often, these experiments have utilized a handful of benchmark programs and

hand-picked features. This limits the amount of knowledge that can be learned by

statistical modeling. For machine learning to solve the automation challenge for the

broader community, a large corpus of computer programs whose data is structured

to represent features from a broad range of computation domains is needed.

The benefits of broad data sets applied to general engineering problems have a

history of success. Neighboring fields of research have exploited large data sets to

benefit themselves as a whole [9, 10, 11]. By applying machine learning models to

a generalized input data set, contributions within these fileds have solved problems

for the broader community [12]. Their results were both reproducible and robust to

changes in the input domain, thus achieving scalability. Once these input data sets

were widely adopted, competitions and community participation fostered unprece-

dented growth in the research fields involved [13].

To provide a general data set for the machine understanding of computation, I

present Dash-Database. Dash-Database has three parts: a large corpus of computer

programs, a methodology of structuring the information within these programs, and

a data-set of structured computation data suitable for machine learning. I built

Dash-Corpus to represent the workloads found most commonly on domain-specific

processors for software-defined radio and its neighboring fields: linear algebra, sig-

nal and image processing, and cryptography. I utilize TraceAtlas [14], a toolchain

for dynamic tracing and feature extraction of computer programs using kernels, to
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structure the information in Dash-Corpus. Finally, I evaluate the utility of my data

set by proposing three novel metrics: breadth, depth and richness. I show the ad-

vantages Dash-Databases has over a corpus of benchmarks that represent those from

prior work, and improvements using the three proposed metrics.

Dash-Database contributes three things:

1. A corpus of computer programs that includes applications with parallel kernels

from a broad context.

2. A methodology for transforming a corpus of source code into a quantitative

data set suitable for machine understanding using TraceAtlas.

3. A set of evaluation metrics for the breadth, depth, richness and utility of a data

set for computation.

The rest of the paper is structured as follows: section two gives a background

of how prior contributions to computer systems have exploited machine learning for

software optimization; section three presents Dash-Corpus, a broad, deep and rich

repository of source code aimed at parallel computation; section four described a set

of techniques to turn a corpus of source code into a data set suitable for machine

learning; section five presents a set of evaluation metrics to show the breadth, depth,

richness and utility of a data set; section six presents a set of case studies to show the

utility of the data set for machine learning and present potential future work using

the
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Chapter 2

BACKGROUND

2.1 Machine Learning on Computation

Computer systems research has applied machine learning to five categories: com-

pilation, scheduling, program characterization, performance prediction and design

space exploration. These works have two things in common. They use a small cor-

pus of programs, typically from benchmarks, and they define a unique set of features

that are used to structure their corpus into a statistical form that serves as the data

set for model training and testing. Seldom do these two critical steps of machine

learning contributions have any overlap between contributions, making the results of

these studies difficult to reproduce. Figure 2.1 shows five different fields of computer

systems that exploit machine learning for design research.

2.1.1 Machine Learning of Compilation

Compiler researchers use machine learning for optimization and code transfor-

mations, from compiler flags to compilation for heterogeneous architectures. Static

program optimization was initially done by permuting the space of legal transforma-

tions until an optimal configuration is found, like that proposed by Sharma and Aiken,

which used Markov chain Monte Carlo [15] to optimize loop-free assembly programs.

They used a benchmark of 25 programs proposed by [16]. Without a restriction on

loops in the input programs, the design space can become too large to practically

permute in a reasonable timeframe. To solve this, compiler developers utilize direct-

prediction models. Stephenson and Amarasinghe proposed a supervised model that

4



Machine Learning of Computation

Figure 2.1: Fields of Computer Systems That Have Used Machine Learning.

directly predicted the loop unrolling factors of 2,500 loops from 72 different bench-

marks [17]. Grewe, Wang and O’Boyle [18] proposed a compiler that automatically

factored OpenMP programs into data-parallel GPU applications using OpenCL and

a decision tree model. They trained their model with 47 parallel kernels extracted

from 4 different benchmarks and tested it with the NAS benchmark suite. The ARIA

compiler and runtime framework [19] optimizes the performance of parallel compute

kernels written in OpenMP on heterogeneous systems. They used an input corpus of

12 programs from the Rodinia and Parboil benchmark suites. For parallel compila-

tion, Magni, Dubach and O’Boyle developed a machine learning model that predicts

the optimal level of thread coarsening for GPU workloads [20]. They used 17 OpenCL

programs to train a cascade of neural networks that accepted a feature vector of static
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program characteristics, and showed speedups in most of the evaluations. None of

these works had any overlap in the programs constituting their input corpus.

2.1.2 Machine Learning of Scheduling

Gupta, Patil, Bhat, Mishra and Ogras contributed DyPO [21], a Pareto-optimal

dynamic scheduling model for a heterogeneous system using logistic regression and

an input corpus of 18 programs from the MI-Bench, Cortex and PARSEC benchmark

suites, structuring the data using performance monitor counts. Adams, Ma, Ander-

son, Baghdadi, Li, Gharbi, Steiner, Johnson, Fatahalian, Durand and Ragan-Kelley

created an optimal Halide scheduler [22] using a decision tree and logistic regression.

They chose their features for the model by evaluating the granularity and tilings of

each pipe stage in a typical Halide processing pipeline to create an optimal configu-

ration. They used randomly generated Halide schedules as the training set, and a set

of Halide benchmarks [23]. These two works do not overlap in their input corpus or

feature set.

2.1.3 Machine Learning of Programs

Hashimoto, Terai, Maeda and Minami trained a supervised learning classifier [24]

recognize Fortran loops as kernels using over 2000 Fortran loops with human labels

and 6 defined computation parameters. Stephenson and Amarasinghe [17] created

a regression model to predict the unroll factor of novel loops from 72 programs be-

longing to the SPEC 2000 benchmark suite and 38 features. Liu, Lin and Chen

proposed a method called the Ensemble Workload Prediction and an input feature

called the Cloud Workload Correction Rate to predict the workloads of server-based

cloud computing services at Google [25]. The study used performance data from over
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690,000 data points and 7 features about the timing and resource usage of each job.

No overlap in input corpus or feature selection.

2.1.4 Machine Learning of Performance Prediction

Many works have applied machine learning to power and performance prediction of

computer programs [26, 27, 28, 29, 30, 31]. These models generally use performance

monitor data across architectures to train a classifier. Interestingly, these works

frequently overlap in the features selected for model training and testing, but their

impact has been limited by simulations as their input data.

2.1.5 Machine Learning of Design Space Exploration

Hardware-software co-design researchers attempt to solve the complexity problem

in their design spaces through the use of supervised learning models. Azizi, Marhesri,

Stevenson, Patel and Horowitz created a machine learning model to characterize the

trade-offs between circuit and architectural design choices [32]. Their test corpus was

the SPECint2000 benchmark, using which they generated 500 architectural simula-

tions per program. Liu and Carloni presented several supervised learning algorithms

and transductive experimental design [33] to learn the design space of target pro-

grams from high-level synthesis (HLS). Ipek, Mckee, Supinski, Caruana and Schulz

used samples from architectural simulations of the SPEC2000 benchmark to train an

artificial neural network to predict an optimal memory hierarchy for a target appli-

cation [34]. Here I see another overlap in the input corpus of programs in [32, 34].

Out of all the work cited above, only four of them have any overlap in their

input corpus and feature selection. While this may seem like a general feature of

machine learning contributions, there was no clear justification for the input corpus

programs or the features used. As Wang and O’Boyle pointed out in their study
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of machine learning applied to compilation [35], the lack of abundant, high-quality

training data, and local feature optimization are the most immediate limitations

to machine learning models for compilation. While their contribution focused on

compilers, the above study shows a general proliferation of this limitation in all facets

of computer systems.

2.2 Data Sets of Neighboring Fields

Neighboring research fields have been role models for computer systems when ap-

plying machine learning to research questions. Two research fields have particularly

interesting histories: computational linguistics and image processing. After large

data sets with sufficient structure, annotations and open-source communities were

introduced, machine learning algorithms trained on their data led to massive contri-

butions in their respective fields. Participants contributed methods to structure the

input data into statistical features that became widely adopted and accepted for their

success.

WordNet [11] is an English lexical data set of over 100,000 words and 200,000 word-

sense pairs. After its introduction in 1995, Finkelstein, Gabrilovich , Matias, Rivlin,

Solan, Wolfman and Ruppin proposed IntelliZap, a novel framework for interpreting

text for search queries [36]. IntelliZap went on to become a "gold standard" [37]

in computational linguistics, and was widely adopted by internet search engines to

better interpret the searches of users. The combination of a large input data set and

a methodology for structuring its data, though they did not come at the same time,

led to contributions that benefitted the entire research field.

Imagenet [9], inspired by WordNet, is a data set of over 14 million images and

over 1,000 image classifications, about 140,000 images per category. After being

introduced in 2009, its creators started the ImageNet Image Recognition Challenge
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[38], an annual competition to see who could build the world’s best image classifier.

In 2012, Krizhevky, Sutskever and Hinton won the competition with a convolutional

neural network [12]. Their contribution revolutionized the image classification field by

structuring the input data features using convolutional filters. Just like WordNet and

IntelliZap, ImageNet and "AlexNet" introduced a large input data set and a method

for structuring the input data that became widely utilized in the entire field, leading

to a machine understanding of images that today beats even human classifiers [38].

If computer systems is to achieve the level of success brought on by data sets

and data structuring for the machine learning of computational linguistics and image

classification, a large input data set and a methodology for structuring the data is

necessary.

2.3 Kernels for Structuring Computation

Kernels are an excellent candidate for structuring computational data. Asonovic,

[39] first proposed a set of 13 kernel archetypes that describe every type of com-

putation. These kernel archetypes were supposed to formally define the challenges

that faced architects and program designers in an age of chip multiprocessors and

the power wall. Image processing pipelines and graphics processing designers have

contributed their interpretations of kernels [40, 41, 42]. TACO also uses kernels to

optimize sparse matrix operations [43]. All of these works define kernels according to

stages within a processing pipeline, commonly referred to as computation kernels.

Kernels are the most important parts of programs to optimize [14]. They represent

the parts of a program that account for a large percent of the runtime. Structuring

programs by the kernels they contain was also done by ARIA [19] for mapping parts of

an input program to the optimal module on a heterogeneous architecture. Collecting

characteristics about these kernels leads to a structuring of the computation in a

9



statistical form, allowing the characteristics of the kernel to be learned by statistical

models.
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Chapter 3

CORPUS

Dash-Corpus is a collection of programs from the application domain of software-

defined radio. Here, a computational domain refers to a field of computer systems

that focuses on applications to a specific problem, e.g. SDR, finite element analysis,

climate modeling, web browsing to name a few. The computational domain defines an

arena of algorithms that are applied to problems within an application of the domain.

These applications and their algorithms ultimately define the information that can

be learned from a corpus of source code.

3.1 Program Selection

Dash-Corpus is focused on C and C++ libraries for software-defined radio appli-

cations and its neighboring domains. Table 3.1 summarizes the libraries and projects

in Dash-Corpus. Each directory represents a library, research project or application

targeting specific kernel archetypes. Each category, image signal processing (ISP),

digital signal processing (DSP), linear algebra (LA) and cryptography (crypt) repre-

sent neighboring computational domains that each project in Dash-Corpus contains.

I felt that building the corpus using these libraries would thoroughly perturb

the parallel kernel computing space. SDR applications have ever-increasing energy

and performance metrics, forcing architects to exploit heterogeneous, parallel archi-

tectures [66]. The movement toward handsets, wearable electronic devices and au-

tonomous machines has driven the adoption of this computational domain to devices

for both consumers and industry. SDR enables these devices to be connected to the

internet and other communication networks, use global positioning systems and even

11



Table 3.1: Dash-Corpus Directory Description

Directory ISP DSP LA Crypt

Artisan x

Armadillo [44] x x x

BLAS [45] x

Benchmarks [46, 47, 48] x

CortexSuite [49] x x x

Dash-RadioCorpus x x x x

Eigen [50] x

FEC [51] x x

FFmpeg [52] x x

FFTW [53] x

GSL [54] x x

Halide [55] x x x

Kestrel x x x

LiquidSDR [56] x x x

mbed_TLS [57] x

MiBench [58] x x x

OpenCV [59] x x

PERFECT [60] x x x

SDH x

SHOC [61] x x

SigPack [62] x x x

SPUCE [63] x

Streamit [64] x x

VOLK [65] x
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radars. Libraries like SigPack [62], LiquidSDR [56], and srsLTE [67] are built for

these purposes. Also present on these devices is the need for visual and audio fea-

tures, including music, image capture and display. Architects of these devices utilize

accelerators, application-specific integrated circuits, and other dedicated hardware to

meet strict power and performance constraints for these workloads using algorithms

from libraries like OpenCV [59], Forward Error Correcting [51], FFmpeg [52] and

others.

Dash-Corpus was also designed to include programs from the input data-sets of

prior work. CortexSuite [49], Halide benchmarks [23], SHOC [68], and Streamit [64]

have all been used as the input corpus of prior applications of machine learning to

computation.

Dash-Corpus was built with a focus on C and C++ applications and libraries.

High-performance libraries for software-defined radio and its neighboring fields are

frequently available in C/C++. There is a significant portion of libraries that are

written in Fortran, but a lack of Fortran competency among the application de-

signers effectively eliminated the use of this language in the corpus. My processing

pipeline relies on code that can be compiled with LLVM [69]. While a variety of

languages including Fortran are supported by LLVM, I found the representation of

high-performance parallels in C and C++ libraries sufficient to justify utilizing only

those two languages.

3.2 Building for Depth

Applications driving libraries in Dash-Corpus often have different configurations.

These parameters can include API call parameters, data type and precision, and

data size. Changing the parameters of an API call can have a significant impact

on the implementation of the algorithm being called. Thus, I captured as many
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configurations as possible from computer programs in the corpus. Included in several

of the driver and application programs of Dash-Corpus are build flows that sweep

these parameters, both at compile-time and runtime, providing multiple flavors of

each algorithm.

3.3 Data Labels

Dash-Corpus includes a labeling mechanism for source code sections that are likely

to define a parallel kernel. Table 3.2 describes these labels. They were selected

for their prevalence to SDR applications, including kernels that can be found in

its neighboring three fields. In essence, these labels are descriptions of algorithms,

and the kernels that may contain these labels are quantitative descriptions of the

computational implementation of this algorithm.

By labeling the algorithms that are deemed important in Dash-Corpus, the result-

ing data contains user annotations. User annotations are critical parts of any data set,

and are often the most difficult aspects of large data sets, requiring crowd-sourcing

efforts in many cases [9, 10]. Labels serve to support supervised learning algorithms,

sample categorization and a representation of ground truth. The implementation and

capturing of these labels are described in section 4.

The entries in table 3.2 represent general names that can have a broad range of

implementations. To better specify what a kernel is doing, I add modifiers to each

label. These are pieces of metadata that specify what configuration the kernel had

when it was executing. For example, if the kernel was given the label GEMM, the

user may attach the metadata to the label to include the dimensions of the matrices,

the precision of the data, and whether the data was real or complex. These pieces of

metadata can be useful later for when kernels are mapped to fixed-function hardware.
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Table 3.2: Corpus Labels
Abbr. Label Description

FFT Fast Fourier Transform.

GEMM General Matrix-Matrix Multiply

GEMV General Matrix-Vector Multiply

SPMM Sparse Matrix-Matrix Multiply

SPMV Sparse Matrix-Vector Multiply

ZIP Signal Processing Pipeline

FIR Finite Impulse Response

T transpose Matrix transpose

QL QR/LU QR/LU matrix operations

C Correlator Should be FIR

I matrixInverse Matrix inversion operation

IIR Infinite Impulse Response

RI randomInit Random input generation

FL fileLoad Load input data from a file

FE FEC_ENC Forward Error Correction Encoding

FD FEC_DEC Forward Error Correction Decoding

EVD Eigenvalue Decomposition

SVD Singular Value Decomposition

MR MapReduce Parallel Pipeline Algorithm

Map Filter and Sort

R Reduce Summary Algorithm

DP DynamicProgram Result Reuse Algorithm

GT GraphTraversal State Machine

NB NBody Finite Element Algorithm

SBS SplatBlurSlice Image processing filters

M Multi Multiple Kernel Structures

Table 3.3 shows the sample contribution of each directory to each label category.

Totals for all categories and labels are along the bottom row and right-most col-

umn, respectively, with a grand total of all structured samples of Dash-Corpus at the

bottom right corner.
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Chapter 4

TRACEATLAS

TraceAtlas is a repository of software tools that facilitate the processing of computer

programs into kernels. It was originally proposed as a dynamic tracing backend

intended as a foundation for a machine understanding of computation [70]. TraceAtlas

creates an approximation for the kernels present in a program by identifying hot-code,

or segments of the program that run many times. Its toolchain has three parts: a

compilation stage for injection of the dynamic tracing backend, a kernel parsing stage

and a data structuring stage. Dynamic tracing uses LLVM IR bitcode, a custom

annotation pass and zlib [71] to facilitate low-overhead dynamic tracing. Kernels are

approximated from the dynamic trace and the original source program bitcode using

a multi-stage parsing algorithm. Finally, the static and dynamic instruction counts

of each parsed kernel are captured. The result is a structured, statistical data sample

for each kernel, providing information about its function and implementation.

Performance 

Intrinsics

Instruction 

Counts
DynamicDynamic Dynamic

Static

DynamicDynamic Dynamic
Static

Typed Instruction 

Counts

Kernel Extraction

Hot Code 

Detection

Traced 

Kernels

Kernel 

Re�nement

Trace

Compilation and 

Tracer Injection

Compile 

Link
Annotate

C/C++ 

Code

LLVM IR 

Archive(s) Structured 

Kernel Data

Figure 4.1: TraceAtlas Processing Pipeline

4.1 Kernel Definition

TraceAtlas defines a kernel as a temporally related set of basic blocks that recur

many times and contain a semantic purpose [14]. In practice, these kernels are loops

or recursive function calls. Using the dynamic trace history, the cartographer parses
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the loops of the program that accounted for the majority of the basic blocks executed,

99.6% on average [14], into sets of basic blocks that may overlap with other sets of

blocks, thus potentially forming a hierarchy of kernels. By partitioning programs into

these cycles, the cartographer captures the computation that accounted for most of

the real-time performance of the program.

In theory, TraceAtlas supports all kernel archetypes proposed by [39], as well as

several other kernel abstractions have been proposed [39, 42, 55, 64]. In practice, it

has had limited ability to precisely capture kernels proposed by these sources because

of its dependence on hot code, as explained later. Rather, the kernels it parses are

based on loops in the LLVM IR that tend to miss, blend, or roughly approximate the

computational kernels as defined by others. For structuring the computational data

in Dash-Corpus, it is an excellent tool, as will be demonstrated in section 7.

4.2 Compilation and Tracing

TraceAtlas programs are compiled using the LLVM backend. First, the original

source code is compiled into LLVM IR bitcode. This only includes code that has

been compiled into LLVM IR. Operations used in the C and C++ libraries, like

ctors, dtors, memory operations, interrupts, containers and others are dynamically

linked at runtime, and do not show up in the trace itself. A custom annotation pass

injects software into the LLVM IR of the original program to produce a trace of

all basic block entrances and exits, and every load and store operation into a text

file. Using the compression library zlib, TraceAtlas compresses this dynamic trace at

runtime. This reduces memory overheads of dynamic tracing by 500-2000x, and trace

time reductions of 25% compared to naive implementations.
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4.3 Kernel Extraction

TraceAtlas extracts kernels from the dynamic trace with a tool called the car-

tographer, the kernel mapper. Once the dynamic trace history of the program is

available, the cartographer exploits the dynamic trace history of the program as well

as the original static bitcode program to create sets of basic blocks that are recurrent

in structure, thus forming a TraceAtlas kernel. The program has two stages, each

with two parts.

4.4 Type 1 Kernels

Kernels are built by collecting a set of temporally related basic blocks. First, the

cartographer generates two pieces of data for each basic block in the source bitcode:

a count for the number of times each basic block occurs, and a vector of affinity scores

to neighboring blocks. Next, it picks kernel "seeds", or the origins of kernels. It does

this by sorting the set of basic block counts from greatest to least and picking the

highest-count block available. The cartographer greedily sums the highest-affinity

basic blocks from the affinity vector of the seed until a threshold parameter is met

(set to 0.95 for Dash-Database). Once the set of basic blocks have been assembled,

the cartographer removes all members of this kernel from the set of possible seeds

and continues the algorithm until no seed candidates are left.

An affinity score between two basic blocks is calculated according to equation

4.1, where α is an operator, r is a constant radius parameter (set to 5 for Dash-

Database) and k is a frequency count within that radius. A distance between two

basic blocks represents the integer number of basic blocks along a path described in

the dynamic trace between a target block A and an adjacent block B. An affinity score

is calculated for each block that appears within the radius of the target basic block,
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forming a probability mass function. Thus, the greedy sum of temporally related

blocks described above represents all blocks that occurred 95% of the time with each

kernel seed.

fr(A,B) =
1

2r + 1

2r+1∑
k=1

P (AαrBk) (4.1)

4.4.1 Type 2 Kernels

Often, basic blocks that are required for the computation to make sense are miss-

ing. The cartographer uses the dynamic trace and an estimation of each kernels’ entry

block to fill these gaps. To estimate the entry block of each kernel, the cartographer

picks the first block it sees that belongs to a kernel set, and assigns this block to be

the kernel entrance. This assignment is only done once. Next, the cartographer adds

every basic block it sees between occurrences of the kernel entrance to a temporary

set of basic blocks, one for each kernel. If the cartographer sees the entrance of a

kernel set before it sees the entrance of any other kernel index, it assumes that a

kernel has just completed a revolution, and adds the temporary set to the final set of

that kernel, clearing the temporary set afterward. By interpolating between instances

of a kernel’s entrance, the cartographer can add each basic block it may have missed

in the first step.

Since the entrance of each kernel is only an estimation, and since the entrance is

only assigned once, the entrance estimate may not be correct on the first iteration,

leading to a kernel set that is still incomplete. To fix this, the cartographer runs

this step twice. With the correct kernel entrance block marking the kernel boundary,

blocks that may have been missed are captured in the second iteration.
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4.4.2 Type 3 and 4 Kernels

In the second stage, kernels are refined. After filling any potential holes in each

kernel block set, blocks that don’t participate in the recursive routine of the kernel,

or blocks that may join two kernels together could have been erroneously added to

the kernel block set. The cartographer attempts to remove these impurities by first

finding blocks that cannot reach back to themselves after executing, and second,

splitting any kernel block set that has internal loops into multiple kernel block sets.

The final product is a set of kernel approximations that represent 99.5% of the original

application trace basic blocks on average [14].

A result of the cartographer is shown in figure 4.4.2. After the TraceAtlas pipeline

generated a dynamic trace history for the program in listing 4.1, the cartographer

parsed its control flow graph, shown in figure 4.4.2, into kernels. There were three

resulting kernels. The first kernel on the left of figure 4.4.2 is the first for loop in listing

4.1. The two kernels on the right of the graph represent a parent-child relationship,

where kernel k_1 is the parent of kernel k_2. Kernel k_1 represents the outer loop

of the sorting algorithm and kernel 2 is the inner loop.

Listing 4.1: Code Segment in the C Language Facilitating the Bubblesort Sorting
Algorithm.

#include <s t d l i b . h>

#define SIZE 1024

int main ( int argc , char∗ argv [ ] )

{

int in = ( int∗ ) mal loc ( s izeof ( int )∗SIZE ) ;

for ( int i = 0 ; i < SIZE ; i++ )
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{

in [ i ] = rand ( )

}

int swap ;

for ( int i = 0 ; i < SIZE ; i++ )

{

for ( int j = i ; j < SIZE ; j++ )

{

i f ( in [ j ] > in [ i ] )

{

swap = in [ j ] ;

in [ i ] = in [ j ] ;

in [ j ] = swap ;

}

}

}

return 0 ;

}

4.5 Kernel Labeling

TraceAtlas supports the labeling of source code segments likely to result in a

kernel. This works by calling a kernel entrance and exit function in the TraceAtlas

tracing backend. The programmer specifies kernel boundaries, an entry and an exit,

for source code segments likely to yield a TraceAtlas kernel. When the program is
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Figure 4.2: Diagram of the Kernels Extracted from the BubbleSort Program in
Figure 4.1.

traced, these label entrances and exits are injected into the dynamic trace history.

When parsing the dynamic trace for type 2 kernels, the cartographer keeps a last-in

first-out buffer of open labels. A label is added to the buffer when its entrance is

observed, and a label is removed when its exit is observed. When a kernel boundary

is encountered, all labels in the label buffer are added to the label set of that kernel.

Therefore, kernels are allowed to have multiple user-defined labels attached to them.

This mechanism has a degree of uncertainty. Since kernels are built from a dy-

namic trace history, the location of kernels, and any labels intended for those kernels,

are not directly defined in the source code. Labels that wrap kernels with hot code

are most reliably assigned the label intended for it. Labels that wrap kernels that

don’t have hot code may fall into one of two common outcomes that have been ob-

served. First, the kernel label is not assigned to a kernel at all, and does not show

up in the output of the cartographer. Second, the label is appended to a kernel that
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is a conglomeration of multiple kernels, resulting in a kernel that has many different

labels. I refer to this phenomenon as "kernel fusion" because of the lack of a hot code

segment, or "fusion" of computation, for each kernel label. As a result, kernels may

have labels that were not intended to be part of one kernel data point.

4.6 Structured Data

The final stage of the cartographer creates a structured, statistical representation

of each kernel extracted from the input trace. Using the origin source bitcode and

each kernel’s basic block set, the cartographer creates counts of all intrinsic instruction

similar to that proposed in [20]. There are two types, each with two flavors. The

first type is a static count of what is in the source program. These are just counts

of all unique LLVM IR instructions found in the original bitcode, exclusive to each

kernel. The second type is dynamic: a count of each unique LLVM IR instruction that

occurs within the trace. This is done by multiplying each basic block count with the

instructions it contains. Both the static and dynamic counts have two types of counts,

creating four different sets of instruction counts. First is the raw instruction count,

and second is the "cross-product" count, which is each raw instruction combined

with the type of the data being processed, yielding a typed instruction count. All

instruction counts are normalized by the total number of instructions relative to

that set of counts, creating a normalized breakdown of the entire program for each

instruction that was used. The result is a feature vector with 920 members.
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Chapter 5

CORPUS PROCESSING

Dash-Corpus is structured using Dash-Automate, an automation script that facili-

tates the TraceAtlas pipeline, a collection of LLVM bitcode libraries and GNU Make-

files. To store each valid data point, Dash-Automate uses a SQL database. Since

Dash-Corpus is built to produce over 2,200 dynamic traces, Dash-Automate uses

the SLURM workload manager to efficiently build the corpus across a server cluster.

Figure 5 shows the processing flow of Dash-Automate.

5.1 Dash-Automate

Dash-Automate begins by building each project into LLVM IR bitcode. Using

a tree of subdirectories, where nodes are projects and edges are directory pointers,

Dash-Automate calls each project’s build flow, implemented as GNU Makefiles, that

are defined specifically for the project being built. These build flows often include

multiple compile-time configurations that will capture different algorithm settings,

precision, and assumptions (for example, a double-precision, 2-dimensional, real-to-

real fast Fourier transform).

Each Makefile uses a set of environment variables that facilitate the generation

of LLVM IR. The source code of the project is built into bitcode and any external

libraries being targeted are linked to the output bitcode via external bitcode archives.

This produces a bitcode file that contains all program elements, namely LLVM basic

blocks and memory transactions, that will be traced. Also, a separate runtime data

repository is pointed to by an environment variable and used in each program for data
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Figure 5.1: Dash-Automate Processing Diagram

input and output. Put together, this environment makes Dash-Corpus a portable and

reliable build environment that can be scaled to other machines and platforms.

After the bitcode file is generated, Dash-Automate facilitates the TraceAtlas

pipeline as described in figure 4.1. Each individual bitcode program produced in

Dash-Corpus is run through the TraceAtlas pipeline. For each bitcode, an array of

scripts are batched to SLURM, where each script has specific parameters and error

checks to ensure that the generation of data runs smoothly and without inconsistency.
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This array facilitates the building of the bitcode into executable programs with any

user-defined args, generated dynamic traces using ay user-defined runtime arguments,

and processes these traces using the TraceAtlas toolchain. If an error is encountered,

the pipeline for that bitcode is haulted, and Dash-Automate highlights the problem-

atic project in a report file. Once the generation of data is complete, Dash-Automate

structures all data generated by each bitcode into a form suitable for pushing into

the SQL database and commits the data.
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Chapter 6

EVALUATION METRICS

Data sets require an evaluation of their quality. When computational data is struc-

tured to support machine learning, there is a need to evaluate the information this

structuring contains. I propose a series of metrics to conduct this evaluation. I define

three metrics: breadth, depth and richness.

6.1 Sample Transformation

My evaluations use a custom transformation to create a discrete probability space

of 1 feature for each data sample. Let S be a set of data samples with N sample in an

input data set, M be the number of features in the feature space F, δ be a transformed

feature onto its kth quantile, and Π be a concatenation operator on a set of characters

to form a string. Then

X = {xi = δ0δ1...δM−1;∀si ∈ S}, 0 ≤ i ≤ N − 1 (6.1)

where

δm = Qm(si,m) (6.2)

is a feature quantizer function, one for each feature, whose bins are the lower, middle

and upper median values of all samples of the feature m, and

δm ∈ [0, 1, 2, 3], 0 ≤ m ≤M − 1 (6.3)

For each feature fm on the feature space F, a set of quantile boundaries is found by

finding the median values of the lower quarter, lower-middle quarter, upper-middle

quarter, and upper quarter among every sample of that feature. Then, for each
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transformed data sample, xi, each of its features are projected onto their respective

quartile, and each feature’s quartile number (0-3 where 0 is the lower quartile) is

concatenated together to form a single string. This results in a discrete data sample

of dimension 1.

I use this transformation for two reasons. First, it largely reduces the complexity of

the sample space, which makes evaluations on results easier to interpret without losing

information. Second, a discrete space of dimension 1 is required for the measurements

I use to define my data set metrics detailed below.

6.2 Breadth

Breadth measures the variety of implementations in the input corpus. When a

corpus is used for machine learning in prior work, often these corpuses only include

code that came from a handful of places - mostly benchmarks. Breadth punishes

these input corpuses with a low score for their lack of sampling from the entire com-

putational community, and rewards corpuses who include code from more varieties of

implementations.

There are two characteristics about breadth. First, it does not increase as the size

of the data base increases. The breadth of a computation space is determined by the

types of computation that is within it, therefore moving in a direction orthogonal to

depth. Second, breadth is captured by computation kernels. These kernels represent

the actual implementation of recurring operations that will be implemented on an

architecture, leaving out "scheduled kernel" archetypes, as proposed by [39]. I view

every domain-specific computer program with parallel kernels as a pipeline, and the

information contained within each pipe stage is interchangeable, thus the scheduling

of these pipe stages is orthogonal to the kernel.
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I measure breadth as the size of the event space Λas proposed in equation 6.1.

This transformation does two things. First, it represents the number of features that

were of non-zero variance in the feature space Δ. This shows how many unique in-

structions and instruction-type cross products were used in the input corpus. Second,

it represents all unique configurations of computation kernels as described by its in-

structions. This filters the noise of scheduling and platform-specific implementation.

Third, it removes outliers from the data set by projecting each data sample onto a

space generated by the distribution of the features. By ignoring the tails of the distri-

butions of each feature, the unique strings present in the data set after transformation

indicate which computational configurations were observed.

6.3 Depth

Depth is the body of the database. It represents the sheer size of the input data set.

Sufficient sampling is required to provide enough material to train machine learning

models. It also provides a sufficient amount of testing when the data set is split to

test, train and validate these models. I measure depth by raw data sample count.

6.4 Richness

Richness measures the ability of structured data to represent the source code it

came from. If a data set is rich, each data sample will contain useful information

within its features about the kernel it represents.

To evaluate the richness of a feature space, I utilize explained variance and in-

formation entropy. Both measurements are applied in a two-step process that shows

the contribution of each individual feature to both measurements using equation 6.1.

First, each dimension of the feature space is separated, evaluated, and reordered ac-

cording to its contribution to the explained variance of the entire data set. Then the
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feature space is reconstructed using that ordering and each feature’s contribution to

the two metrics is shown.

Explained variance can be thought of as the amount of information that has be

learned. By ordering the features of the data set by their contribution to explained

variance, the feature space can be evaluated for the features that are holding the most

information, or richness, about the data set.

Information entropy is a measure of the "surprise" one should expect when ob-

serving a sample of a random variable. The more entropy a feature has, the more

difficult it will be to make an accurate prediction about that feature. High-entropy,

or "low-level", features don’t provide much information for a machine learning model

to train with. Low-entropy, or "high-level", features that have little contribution to

entropy, provide lots of information to a machine learning model to learn from.

I use two methods to separate the dimensions of the feature space. The first is

PCA, where explained variance is each eigenvalue’s contribution to the total eigen-

value sum. For PCA analysis, explained variance for each eigenvector is the amount

of the total eigenvalue sum its corresponding eigenvalue accounts for. The second is

an evaluation of the features themselves, which I will refer to as univariate analysis.

For univariate analysis, explained variance is defined as each feature’s contribution

to the sum of all feature’s population variance.

The implementation of this evaluation will now be described. An input data set

is parsed into its most significant features using principle components and univariate

features in decreasing order of explained variance. A set of trials are conducted,

starting at the top of the sorted list of features, where 1 additional sorted feature

is added for each trial. Within each trial, the input data set with only the selected

features is transformed as described in equation 6.1. A histogram of X is generated

and normalized, forming a probability mass function. The entropy of this discrete
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random variable is calculated using 6.4. The results of this experiment shows each

feature’s contribution to explained variance and information entropy.

H(X) = −
N−1∑
n=0

P (xn)log2(P (xn)) (6.4)

Mutual information is a measure of shared entropy between two random variables.

Equation 6.5 defines the mutual information score between two random variables X

and Y. When two features of a feature vector have a high mutual information score,

they share lots of entropy between each other, thus indicating a strong correlation.

Features whose mutual information is 0 are said to be independent. Thus, gauging

the richness of a sample space by the amount of information it provides to the labels

makes information relationships is straightforward.

I measure the richness of a data set by calculating, for each sample in the label

space Y, its contribution to the mutual information between a sample space X and

the label space Y. First, I transform the sample space as described by 6.1. Then three

probability mass functions are calculated separately for the transformed sample space

X, the label space Y, and the joint probability mass function of X and Y. Finally,

equation 6.5 is applied to each sample in the label space to yield a contribution score.

I(X, Y ) = −
N−1∑
n=0

N−1∑
m=0

p(X,Y )(xn, ym)log2(
p(X,Y )(xn, ym)

pX(xn)pY (ym)
) (6.5)
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Chapter 7

CASE STUDIES

I applied the metrics defined in section 6 to Dash-Database and a data set modeling

those of prior work. The results show that Dash-Database is superior to the smaller

data set in breadth and depth, and that the data structuring techniques described in

section 5 provides a rich data set.

7.1 Test Data Set

The test data set was built from a subset of Dash-Corpus. It includes Halide

"benchmarks" from the test suite of Halide’s Github repository [72], a subset of the

Scalable Heterogeneous Computing benchmark [68], and a subset of the CortexSuite

benchmark [49]. I used the same methodology described in section 5 to construct this

data set. Some programs were traced multiple times with different compile-time and

runtime arguments. Table 7.1 details each program. In total, 56 traced programs

produced 1,458 data samples.

I constructed the test corpus to represent the input corpus of prior work cited in

section 2. The Halide benchmarks were used as the test corpus in [22], the SHOC

benchmark was used in [29, 31, 73], and CortexSuite in [21].

The programs in the test corpus were modified in two ways according to the Dash-

Automate build flow described in section 5. First, all programs were evaluated with

a single thread. Second, their file input/output were adapted to the Dash-Automate

environment, but this did not make a difference to the program kernels.

33



Table 7.1: Test Corpus

Halide CortexSuite SHOC

bilateral stitch bb_gemm

blur sift bm_small x 2

camera spectral md

MaxPool x 11 lda x 2 pp_scan

harris disparity qsort x 2

hist_eq tracking stencil

interp svm ss_sort

lensblur localization triad

local_lap sphinx

unsharp mser

AveragePool x 11 liblinear

texture_synthesis

motion_estimation

kmeans

rbm

7.2 Breadth and Depth

The breadth and depth scores of each corpus are shown in table 7.2. I see a 2-

fold magnitude difference in depth, indicating how a small data set lacks ours in raw

statistical strength. For breadth, the full data set is about 5 times larger, which is

not a linear factor of depth. Even though the test corpus produced about 1.5% of

the kernels, it had about 20% of the breadth. To help explain this, each input corpus

needs to be considered. The test corpus had 3 libraries in it, while the full corpus had
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Table 7.2: Breadth
Breadth Data Samples

Dash-Database 3,387 99,481

Test Data Set 737 1,458

about 20, or about 15%. This tracks closely with the difference between the breadth

measurement. Thus, the first property of breadth is observed.

7.3 Richness

Since Dash-Automate was used to generate both Dash-Database and the test

data set, the results of the richness evaluation showed similarities between them.

Figure 7.1 shows, for both data sets, a log-linear scatter of the change in explained

variance and the change in information entropy for increasing PCA vector counts.

The explained variance curves are similar to each other for the majority of the plot,

indicating a similar eigenvalue decomposition for both Dash-Database and the Test

Data Set. Toward the right of the plot, the change in explained variance for the test

data set begins to fall below the curve of Dash-Database. This is because of the lack

of breadth in the test corpus. A lesser breadth requires fewer features to represent its

information, therefore the contributions of higher-dimension features will approach

zero more quickly than that of a more broad data set.

The information entropy scatters, while showing a high degree of variance relative

to the explained variance scatters, generally trend downward with the same shape as

the explained variance scatters. This follows with the expectation of contributions to

explained entropy: the highest entropy features contribute the most to the explained

variance of the data set. Another observation worth making is a slight tendency for

the data points to cluster together. When features cluster together in information

entropy, this means those features are related in their ability to identify a kernel
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group or type. Since TraceAtlas built both the test data set and Dash-Database, the

clusters can be seen acting together in some parts, albeit on different levels.
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Figure 7.1: Change as the Number of PCA Components Are Increased.

Figure 7.2 shows the analysis for univariate features. The results are notably

different than that of the PCA results. First, the explained variance of Dash-Database

continues making about the same levels of contributions after about 30 features,

whereas the test data set starts to fall further lower. This indicates that the test data

set contains slightly less information than Dash-Database, which is most likely due

to the increased breadth of Dash-Database that allowed it to capture rich features

not in the test corpus. Also notable in this plot is the higher presence of clustering

in both the information entropy and explained variance curves. These features likely
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point to the same types of kernels, indicating that although differences exist in the

richness of the test data set and Dash-Database, the same feature clusters are still

present in each one.
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Figure 7.2: Change as the Number of Univariate Features Increases.

7.4 Mutual Information and Supervised Learning

I conducted a supervised learning evaluation of Dash-Database coupled with the

mutual information experiment presented in section 6. These evaluations required

the presence of labels for kernel data points, which the test corpus did not have. As

a result, the following evaluations were only conducted on Dash-Corpus.
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I evaluated the contribution of each label to the mutual information between trans-

formed data samples and the label space. Then I trained four regression classifiers to

predict this label space: linear regression using ordinary least-squares, logistic regres-

sion using a sigmoid function, a gaussian naive Bayes classifier and a support vector

machine. The input data for training and testing these classifiers included 20 uni-

variate features that has the highest population variances. Ten trials were conducted

on a random 80/20 split, where all four models saw the same data for each trial. The

results were averaged over these trials and are presented in Table 7.3. Three metrics

were used to evaluate the performance of each classifier: precision, which is a measure

of the ratio between the amount of correct predictions for the target label divided

by the total number of predictions for that label; recall, a ratio between the number

of correct predictions for the target label and the number of total samples that were

present for that label; and F1, the harmonic mean of precision and recall.

The results show a relationship between the mutual information contribution, the

number of samples, and the F1 score for each label. Generally, the F1 score of each

label was highest when both its mutual information and sample count was high. This

is a striking result, as the mutual information was almost perfectly predicting which

labels the learning models understood the most. The richness measurement therefore

indicates how learnable each kernel is in an input data set. It is notable to point

out that the "Multi" label was one of the most represented labels, yet had lackluster

scores. This was because of the types of kernels this label was supposed to represent,

as explained in section 3. Any kernel represented in source code that was deemed

likely to be a kernel, but did not fit easily into the labels enumerated in table 3.2

were given the label Multi. Thus, predicting data samples that did not have a clear

definition hurt the results of this label.
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Table 7.3: Linear Regression | Logistic Regression | Naive Bayes | SVM
Label Samples MI Precision Recall F1 Score

C 20 0.007 0.0 0.0 0.006 0.0 0.0 0.0 0.345 0.0 0.0 0.0 0.012 0.0

DP 4 0.002 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0

FD 75 0.022 0.0 0.0 0.0 0.233 0.0 0.0 0.0 0.036 0.0 0.0 0.0 0.058

FE 85 0.022 0.0 0.0 0.081 0.0 0.0 0.0 0.029 0.0 0.0 0.0 0.041 0.0

FFT 3249 0.359 0.214 0.756 0.937 0.834 0.027 0.923 0.217 0.971 0.048 0.831 0.337 0.897

FIR 5035 0.302 0.069 0.289 0.16 0.527 0.023 0.128 0.002 0.673 0.034 0.177 0.003 0.571

FL 7982 0.515 0.346 0.666 0.379 0.81 0.118 0.844 0.842 0.983 0.176 0.744 0.523 0.888

GEMM 605 0.116 0.056 0.745 0.884 0.903 0.293 0.396 0.591 0.756 0.095 0.516 0.708 0.823

GEMV 34 0.011 0.001 0.0 0.012 0.0 0.065 0.0 0.894 0.0 0.001 0.0 0.024 0.0

GT 168 0.032 0.0 0.0 0.0 0.06 0.007 0.0 0.0 0.002 0.001 0.0 0.0 0.004

I 12 0.004 0.0 0.0 0.185 0.0 0.0 0.0 0.491 0.0 0.0 0.0 0.234 0.0

IIR 142 0.039 0.0 0.851 0.944 0.942 0.003 0.791 0.957 0.877 0.0 0.819 0.95 0.908

M 5782 0.313 0.425 0.396 0.395 0.637 0.042 0.636 0.037 0.483 0.076 0.488 0.068 0.539

MR 37 0.01 0.0 0.0 0.014 1.0 0.0 0.0 0.044 0.266 0.0 0.0 0.021 0.418

NB 9 0.004 0.0 0.0 1.0 0.5 0.0 0.0 1.0 0.5 0.0 0.0 1.0 0.5

QL 4 0.002 0.0 0.0 0.002 0.0 0.0 0.0 0.125 0.0 0.0 0.0 0.005 0.0

RI 412 0.088 0.0 0.629 0.0 0.741 0.0 0.427 0.0 0.797 0.0 0.508 0.0 0.768

SBS 2161 0.179 0.0 0.726 0.557 0.934 0.0 0.247 0.238 0.378 0.0 0.369 0.334 0.538

SVD 11 0.004 0.0 0.0 0.055 0.0 0.0 0.0 0.433 0.0 0.0 0.0 0.093 0.0

T 15 0.005 0.0 0.0 0.033 0.0 0.0 0.0 0.837 0.0 0.0 0.0 0.062 0.0

ZIP 1264 0.139 0.0 0.061 0.208 0.91 0.0 0.007 0.178 0.335 0.0 0.013 0.191 0.489
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Chapter 8

CONCLUSION

Dash-Database can support statistical inference on problems in the field of computer

systems. Using the example set by neighboring fields on applying machine learning to

research questions, Dash-Database proposes a unifying framework. Researchers can

use Dash-Database to build upon the contributions of prior work, a feat that cannot

be achieved using current approaches.

I invite collaboration from other computer architects to fill any gaps left open

by the current version of Dash-Corpus. Collection computer programs from domains

outside of those proposed in this work can go a long way toward increasing the utility

of Dash-Corpus. Thus, by harnessing the contributions of peers, Dash-Database can

create a foundation for researchers to create a general understanding of computation:

a feat that can solve decades-old challenges like automatic parallelization, optimal

architecture configurations, and generalized dynamic scheduling.
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