
Active Learning with Explore and Exploit Equilibriums

by

Ghazal Shams

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved June 2020 by the
Graduate Supervisory Committee:

George C. Runger, Chair
Douglas C. Montgomery

Adolfo R. Escobedo
Giulia Pedrielli

ARIZONA STATE UNIVERSITY

August 2020

ABSTRACT

In conventional supervised learning tasks, information retrieval from extensive

collections of data happens automatically at low cost, whereas in many real-world

problems obtaining labeled data can be hard, time-consuming, and expensive. Con-

sider healthcare systems, for example, where unlabeled medical images are abundant

while labeling requires a considerable amount of knowledge from experienced physi-

cians. Active learning addresses this challenge with an iterative process to select

instances from the unlabeled data to annotate and improve the supervised learner.

At each step, the query of examples to be labeled can be considered as a dilemma

between exploitation of the supervised learner’s current knowledge and exploration

of the unlabeled input features.

Motivated by the need for efficient active learning strategies, this dissertation

proposes new algorithms for batch-mode, pool-based active learning. The research

considers the following questions: how can unsupervised knowledge of the input fea-

tures (exploration) improve learning when incorporated with supervised learning (ex-

ploitation)? How to characterize exploration in active learning when data is high-

dimensional? Finally, how to adaptively make a balance between exploration and

exploitation?

The first contribution proposes a new active learning algorithm, Cluster-based

Stochastic Query-by-Forest (CSQBF), which provides a batch-mode strategy that

accelerates learning with added value from exploration and improved exploitation

scores. CSQBF balances exploration and exploitation using a probabilistic scoring

criterion based on classification probabilities from a tree-based ensemble model within

each data cluster.

The second contribution introduces two more query strategies, Double Margin Ac-

tive Learning (DMAL) and Cluster Agnostic Active Learning (CAAL), that combine

i

consistent exploration and exploitation modules into a coherent and unified measure

for label query. Instead of assuming a fixed clustering structure, CAAL and DMAL

adopt a soft-clustering strategy which provides a new approach to formalize explo-

ration in active learning.

The third contribution addresses the challenge of dynamically making a balance

between exploration and exploitation criteria throughout the active learning process.

Two adaptive algorithms are proposed based on feedback-driven bandit optimiza-

tion frameworks that elegantly handle this issue by learning the relationship between

exploration-exploitation trade-off and an active learner’s performance.

ii

To Maman and Baba, who always encouraged me to go on every advanture,

especially this one.

iii

ACKNOWLEDGEMENTS

This dissertation would not exist without the help and guidance of many people,

and I am happy to take this opportunity to appreciate those who have influenced me

during my graduate career.

Professionally, I am most indebted to my advisor, Dr. George Runger. He not only

taught me a great deal on data science and machine learning, but how to look at real

problems from an insatiably curious and scientific point of view. Most importantly,

he taught me how to be a great mentor by providing the freedom to pursue my own

research interests at the same time that he was there to reign me in. Above all, he

continuously showed me how to be a great person.

I would also love to thank my Ph.D. committee members for their guidance and

feedback provided in this work. Douglas Montgomery, Adolfo Escobedo, and Giulia

Pedrielli have introduced me to a variety of ways of thinking about the applications

of my work in real-world.

I gratefully acknowledge the financial support I received towards my Ph.D. project

from the National Science Foundation (grant 1537898).

Special thanks to Maria Jose Suazo Ocares, who made a great flat-mate during

our time at ASU, sharing fabulous teas and many memorable moments. You taught

me how to grow an attitude of gratitude towards life, and I’m forever thankful for

your unconditional support when I needed it the most.

I must thank all my friends, especially Xiushuang Li, Sangdi Lin, Mona Khoddam,

Nooshin Shomal Zadeh, Maziar Kasaei, Hyunsoo Yoon, Nathan Gaw, Kun Wang,

Viswanath Potluri, and Shaohao Huang. I found a lot of love and support from you

guys, and this journey couldn’t be possible without you.

I am most personally indebted to my boyfriend, Benyamin. You taught me how

to keep my feet on the ground, how to sacrifice, how to love, and I cannot wait to see

iv

what life has for us next.

It is needless to say how my family has always been supportive of my life choices.

Graduate school and my migration have been difficult for them (and of course for

me), but it is because of them that I even did it at all. Dr. Runger was my wings,

but they were my heart to fly this far...

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 What is Active Learning? . 1

1.2 Thesis Statement and Organization . 6

2 RELATED WORK . 9

2.1 Theories Behind Queries . 9

2.1.1 Uncertainty Sampling . 11

2.1.2 Expected Error and Variance Reduction 13

2.1.3 Query-By-Committee . 14

2.1.4 Exploiting the Data Distribution . 15

2.2 Evaluation of Active Learning Algorithms . 17

2.3 Optimal Experimental Design and Bayesian Optimization 17

2.3.1 Optimal Experimental Design . 18

2.3.2 Bayesian Optimization . 21

2.4 Tree-based Ensembles . 22

2.5 Clustering . 24

3 INFORMATION DENSITY FOR ACTIVE BATCH LEARNING 26

3.1 Introduction . 26

3.2 Background . 29

3.2.1 Query Strategies . 29

3.2.2 Multi-class Scenario . 32

3.2.3 Stochastic Query-By-Forest (SQBF) . 35

vi

CHAPTER Page

3.3 Cluster-based Stochastic Query-By-Forest . 36

3.4 Experiments and Results . 40

3.4.1 Clustering . 43

3.4.2 Complexity Analysis . 49

3.4.3 Sensitivity Analysis . 50

3.5 Conclusion . 52

4 A DUAL MODEL AGNOSTIC STRATEGY TO EXPLORE REPRE-

SENTATIVENESS AND INFORMATIVENESS IN ACTIVE LEARN-

ING . 53

4.1 Abstract . 53

4.2 Introduction . 54

4.3 Background . 56

4.3.1 Active Learning . 56

4.3.2 Multi-Class Scenario . 57

4.3.3 Multi-Label Classification . 58

4.4 Methodology . 59

4.4.1 Double Margin Active Learning (DMAL) 59

4.4.2 Cluster Agnostic Active Learning (CAAL) 64

4.5 Experiments and Results . 65

4.5.1 Experimental Settings . 66

4.6 Conclusion . 73

5 ADAPTIVE ACTIVE LEARNING . 78

5.1 Abstract . 78

5.2 Introduction . 79

vii

CHAPTER Page

5.3 Background . 81

5.4 Methodology . 87

5.4.1 Active Learning Framework . 87

5.4.2 Choice of Reward Function . 88

5.4.3 Baseline Algorithm: A Feedback-driven Approach 90

5.4.4 KF-RB: A Kalman Filter Restless Bandit Approach 90

5.4.5 RAFO: Reinforced Active Forest . 94

5.5 Experiments and Results . 97

5.5.1 Experiments Setups . 97

5.5.2 Discussion of Results . 99

5.6 Conclusion . 100

6 CONCLUSION . 105

6.1 Summary of Contributions . 105

REFERENCES . 108

viii

LIST OF TABLES

Table Page

3.1 Datasets Used in This Study. 41

3.2 Mean F1-Score Values Comparison. At Each Iteration, the Best Per-

formance and Its Comparable Performances Based on Paired T-tests

at 95% Significance Level Are Highlighted in Boldface. 47

4.1 Test Datasets . 68

4.2 ALC for Average F1-Score Curves by CAAL, DMAL, CSQBF, and

MUDD IMP Algorithms. Numbers in Parentheses Are the Rankings

Based on the Other ALC Scores for the Corresponding Dataset. 75

4.3 ALC for Average F1-Scores Curve by Several Weight Parameters for

the CAAL Algorithm. Numbers in Parentheses Are the Rankings

Based on the Other ALC Scores for the Corresponding Dataset. 76

4.4 ALC for Average F1-Scores Curve by Several Weight Parameters for

the DMAL Algorithm. Numbers in Parentheses Are the Rankings

Based on the Other ALC Scores for the Corresponding Dataset. 77

5.1 Test Datasets . 98

5.2 ALC for Average F1-Scores Curve for CAAL, Baseline, KF-RB RAFO0,

and RAFO+ Algorithms. Numbers in Parentheses Are the Rankings

Compared to the Other ALC Scores for the Corresponding Dataset. . . . 102

5.3 ALC for Average F1-Scores Curve by Several σ2
ε Values for KF-RB.

Numbers in Parentheses Are the Rankings Based on the Other ALC

Scores for the Corresponding Dataset. 104

ix

LIST OF FIGURES

Figure Page

1.1 General Scheme of Supervised Learning . 2

1.2 General Scheme of Active Learning . 4

2.1 An Illustrative Example of Uncertainty Sampling Based on the Dis-

tance to the Decision Boundary in a Binary Classification Problem.

Each Color Represents One Class. The Filled Points Are Query Can-

didates by Uncertainty Sampling. Image Modified From [154]. Best

View in the Color Version. 13

3.1 An Illustrative Example of SQBF and CSQBF Performances. Figure

(a) is a Dataset of 1,050 Class 0 (Black) and 300 Class 1 (Red) In-

stances. (b) and (c) Queried Instances After Five Iterations of SQBF

and CSQBF, Respectively. Dashed Lines Are the SVM Boundaries

With a Linear Kernel Based on the Current Labeled Data, Whereas the

Solid Lines Show the SVM Boundary for the Whole Dataset. CSQBF

Achieves a Better Classification Performance by Considering Data Clus-

ters. See the Color Version for the Best View. 29

3.2 Mean Dissimilarity Between Instances and Cluster Medoids Obtained

From PAM. See Color Version for the Best View. 44

3.3 Variance (IQR) of F1-Score Over 15 Replicates (λ = 1; α = 1/3).

CSQBF Results Show Smaller Variance Than SQBF. 49

3.4 Sensitivity Analysis Based on AUC Results With λ = 1, 1
4

and 4 on

the Top, α = 2
3
, 1

3
and 1 on the Bottom. 51

4.1 Class Probabilities of Two Data Instances: X and Y Axis Indicate the

Class Label and Class Membership Probabilities Respectively. 61

x

Figure Page

4.2 F1-Score Learning Curves for CAAL(β = 1/2), DMAL, CSQBF and

MUDD IMP. Color Legend: CAAL (Solid Blue), DMAL (Dashed Pur-

ple), CSQBF (Dashed Yellow) and MUDD IMP (Dashed Orange). See

the Color Version for the Best View. 71

4.3 Distributions of F1 Scores for CAAL, DMAL, CSQBF and MUDD IMP

Algorithms. (β = 1/2 for Both CAAL and DMAL). Color Legend:

CAAL (Green), DMAL (Orange), CSQBF (Purple) and MUDD IMP

(Yellow). See Color Version for the Best View. 72

5.1 F1-Score Learning Curves for CAAL(β = 1/2), Baseline (λ = 0.5),

KF-RB, RAFO0 and RAFO+. Color Legend: CAAL (Solid Blue),

Baseline (Solid Yellow), KF-RB (Solid Purple), RAFO0(solid Orange)

and RAFO+ (Solid Green). See Color Version for the Best View. 101

5.2 Standard Deviation of F1-Scores Over 15 Replicates for CAAL(β =

1/2), Baseline (λ = 0.5), KF-RB, RAFO0 and RAFO+. Color Legend:

CAAL (Solid Blue), Baseline (Solid Yellow), KF-RB (Solid Purple),

RAFO0(solid Orange) and RAFO+ (Solid Green). See Color Version

for the Best View. 103

xi

Chapter1

INTRODUCTION

1.1 What is Active Learning?

Since the dawn of computing, businesses have struggled with the massive amount

of daily data streams. Nowadays, it is a well-understood fact that the ability to

analyze data faster and more efficiently brings them a competitive edge. Other than

advances in data infrastructures that have facilitated data collection and storage,

computers have played a significant role in conducting analysis and providing decision

support. Data mining is a generic term that includes all the advanced techniques

and processes that are used to discover the underlying credible patterns of data for

abundant application domains such as fraud and intrusion detection in financial and

network analysis, gene sequencing in bioinformatics, product lifetime prediction in

manufacturing, content recommendation in platforms such as Netflix and Amazon.

Depending on the problem domain, goals, and constraints, different data mining

techniques can be used to learn valuable insights about the data.

However, most of the current methodologies need a considerable amount of anno-

tated (labeled) data to learn the relationship between a set of system characteristics

and events. In other words, statistical learning happens under supervision and is

evaluated based on the ground truth (label) provided. Note that in this process,

1

the learning model is only a recipient of the data, and it does not participate in

data annotation, i.e., it is passive. In most of the machine learning literature, super-

vised learning refers to passive supervised learning. Figure 1.1 illustrates the general

scheme of this type of learning. In contrast to supervised learning, there is the pro-

cess of unsupervised learning, where the underlying structure of data is more of a

question or no label for the data is available. Understanding the association between

shopping basket items or simply grouping products, people, or species based on their

characteristics are examples of unsupervised learning.

Figure 1.1: General Scheme of Supervised Learning

Learning in supervised models is contingent on the existence of a significant

amount of annotated data. Automated systems might be able to provide these an-

notations at little or no cost. For example, the emotional flags that social media

users give to a content is a cheap labeling process for that platform. However, there

exist many cases where obtaining labeled data is of hard endeavor, time-consuming,

or cost-extensive. For instance, in healthcare, an experienced physician has to go

through several health records from medical images to lab tests to be able to make

a diagnosis. Another example can be in speech recognition, where labeling speech

utterances requires trained linguists and can take a significant amount of time [160].

Active learning (AL) is the study of machine learning algorithms that can query

information. They are a form of semi-supervised learning that comes in useful where

2

labeling data is an expensive and time-intensive task. The key hypothesis in AL

is that if allowed to choose the data from which it learns, a statistical learner can

perform better with less training. In other words, despite the abundance of data,

not all instances have the same value to the learning model. Therefore, if there is

any effort or cost associated with data annotation, it has to be optimized so that the

desired performance can be achieved with relatively less data. AL aims to provide a

framework to selectively choose the potentially most valuable observations to benefit

a statistical learner.

AL ultimately aims to learn a mapping function Φ : X 7→ Y where X ∈ Rn×m

represents the m-dimensional features set, and Y ∈ Rn×1 is their corresponding out-

put. While input features are abundant or easy to obtain, the active learner needs

to interact with an expert (oracle) to query output feature Y . To do so, AL usually

proceeds in rounds. Initially the learner is presented with an empty labeled set, L0,

while unlabeled dataset U0 is readily available. Data labels are provided by an oracle

in a sequential manner. At each time step, the learner trains a classifier Φ(t) using

the available labeled data Lt and selects a batch of instances to query based on their

expected benefit to the classifier. Each time the training set is augmented with new

labeled instances, the active learner re-trains and evaluates more unlabeled data for

the proceeding rounds. This process stops when the learner runs out of the query

budget, or it achieves a desired performance. Given the limited query budget T , the

goal is to fit the best classifier. Figure 1.2 demonstrates the general routine of AL.

Depending on the application domain, different label query scenarios can be con-

sidered for AL. A prevalent AL scenario is Pool-based, where an abundant amount

of unlabeled data is available, while the labeled data is limited or not available at

all. In this scenario, a learner may start with a few labeled instances and iteratively

query labels based on the leveraged knowledge from the previous iteration. Note that

3

Figure 1.2: General Scheme of Active Learning

in this case, the learner can request labels for any of the observations in the pool.

An example of pool-based AL can be the classification of those tweets that have a

cyber-bullying content, among millions of tweets that are posted everyday. In this

case, human annotators are needed to flag the tweets according to some predefined

labels (bully, aggressive, neutral, etc.).

Another common scenario is the Stream-based AL (also known as Sequential or

Selective sampling), where at each round, the learner has to decide whether to label

an instance or discard it. Unlike the pool-based scenario, in sequential AL instances

would no longer be available if discarded [122]. For instance, consider the example

of internet advertisements popping up on customers’ screens. Whether a customer

shows interest in the content of this pop-up by clicking on it, is associated with a

cost (we may lose the customer if there are too many pop-ups or they are unrelated).

The active learner only has one chance of whether to show an advert when a page is

opened. If it decides not to, the opportunity is no longer available. The goal is to

achieve maximum click-through rates by learning customer’s behavior.

Query Synthesis is another query scheme, where queries can be made for any data

point in the feature space, even if those points have not been observed. For example,

in [75], possible combinations of proteins were synthesized and labeled based on the

4

presence of a target feature. Although this scenario may fit some experimental design

applications, it is not a well-defined approach for typical classification problems where

observations cannot be created de novo. Experimental design is a related field to AL,

where credence are given for choosing a set of data instances to fulfill a specific set

of assumptions and objectives. One major difference between the majority of AL

applications and those of experimental design is the type of response variable which

indicates whether the problem is a classification or a regression one. We further

discuss the similarities and differences between these two research areas later.

Regardless of the AL scenario, the decision of whether to query an instance or

not is formulated in various ways. Informativeness is the general term used in the

literature referring to mechanisms that evaluate instances for label queries from the

supervised model point of view. The main idea behind these mechanisms is that the

decision boundary lies in the most ambiguous regions of the feature space in terms of

classification. Hence, instances from these regions are more likely to be valuable to the

learning engine. Several methodologies to evaluate the informativeness of instances

have been proposed and successfully applied to various AL problems, as we discuss

later. Nevertheless, queries by these approaches tend to be acutely biased towards

those instances that do not represent the true feature space [29]. To enhance the

informativeness-based AL approaches, representativeness concept was introduced to

the query strategies where the active learner tries to exploit the input data distribution

[122] and as a result make the labeled set a better representative of the input data.

In AL terminology, uncertainty and density, as well as exploitation and explo-

ration, are two groups of terms used interchangeably with informativeness and rep-

resentativeness, respectively.

AL methodologies are usually evaluated based on how much they speed up the

learning process.

5

1.2 Thesis Statement and Organization

This thesis proposes new methodologies for pool-based AL. We address the chal-

lenge of sampling bias introduced by query strategies merely based on instance in-

formativeness where the queries might not reflect the input data distribution. The

research questions that this thesis addresses are: how can AL improve learning with

unsupervised knowledge of the data? What if this unsupervised knowledge itself is

subject to uncertainty, i.e. how to characterize our understanding from data structure

into the query process? Finally, how to make a balance between informativeness and

representativeness adaptively throughout the course of AL?

Our introduced algorithms in the following chapters are inspired by the winner of

the 2010 AISTATS active learning challenge, the Stochastic Query-by-Forest (SQBF)

algorithm [8]. To advance the AL field, the Causality Active Learning Challenge

was conducted in 2010 where participants tried to solve six binary classification prob-

lems from different domains such as chemo-informatics, handwriting recognition, text

processing, etc. where labeling can be a challenging task [53]. SQBF introduced a

sampling procedure for which is robust to the type as well as the size of data, and

is efficient for batch-mode AL. Throughout the following chapters, we show how the

proposed query strategies significantly improve upon SQBF by offering several new

features. The key aspects of the proposed algorithms in this thesis other than an

enhanced performance are i) extendability to include various AL modules other than

uncertainty and density (such as diversity) ii) applicability to various domains due

to robustness of the utilized supervised and unsupervised models iii) scalability to

large datasets of different sizes and types (as we show through our experiments).

Furthermore, the proposed algorithms demonstrate how unsupervised knowledge of

the data and its reliability influences the learning process when aggregated (statically

6

and dynamically) with model supervised uncertainty. The rest of this dissertation is

organized as follows:

Chapter 2 provides a detailed background on AL query strategies as well as their

advantages and disadvantages, the informativeness and representativeness method-

ologies that are utilized in this work, and the intersection of AL with other similar

fields such as design of experiments and Bayesian optimization.

Chapter 3 introduces the first proposed algorithm designed to utilize a proba-

bilistic instance scoring criterion based on instance informativeness within each data

cluster. The developed methodology, which we call Cluster-based Stochastic Query

by Forest (CSQBF), provides a batch-mode strategy that accelerates learning from

the early stages by focusing on informative areas of the feature space that are also

better representatives of the data. CSQBF benefits from a stochastic sampling pro-

cess that not only is computationally efficient, but also it diversifies the instances in

each query batch.

Chapter 4 proposes two more new algorithms that bring informativeness and rep-

resentativeness criteria into a coherent and unified query strategy for AL. These algo-

rithms, namely the Double Margin Active Learning (DMAL) and the Cluster Agnostic

Active Learning (CAAL), consider the ambiguity associated with our understanding

of the high-dimensional feature space and incorporate that into the query process.

While CSQBF constructs distinct clusters with the assumption that instances within

a cluster are more likely to share labels, CAAL and DMAL allow for a soft cluster-

ing structure. As a result, instead of searching data clusters for more informative

instances, representativeness accepts a new form which is easily combined with infor-

mativeness to create a consistent utility measure for label querying.

Chapter 5 addresses the challenge of dynamically making a balance between in-

formativeness and representativeness throughout the AL process. The algorithms

7

proposed in Chapters 3–4 define new strategies to formulate informativeness and rep-

resentativeness. However, they do not combine the two criteria strategically based

on the state of the learning process. Inspired by the bandit optimization problems,

where decisions are made over time under uncertainty, two strategies are proposed

that learn how to make a trade-off between informativeness and representativeness

in any AL framework (including those introduced previously). Moreover, they can

easily extend to cases when there are more factors other than informativeness and

representativeness involved in the query process.

In order to show the robustness of our proposed methodologies, in each chapter,

we present multiple sets of experiments and statistical tests using several real-world

datasets with different characteristics from various domains.

8

Chapter2

RELATED WORK

2.1 Theories Behind Queries

The main purpose of AL is to reduce the cost of data annotation (labeling) by

choosing instances that benefit the classifier the most. However, how these instances

are selected creates several research branches. Work by [122] reviews different AL

scenarios, query strategy frameworks, and theoretical as well as empirical analysis of

AL problems. The three main AL scenarios, as described in this review, are:

• Membership Query Synthesis in which the statistical learner can request

label for any data point that lies in the feature space. It has been argued that

these approaches are more suitable for problems with non-human annotators.

• Stream-based Sampling approaches are used when a stream of unlabeled

instances are presented to the learner, and the learner has to decide whether to

query label for each instance or not.

• Pool-based Sampling is the most common scenario where a learner has to

choose instances from an existing pool of unlabeled data and query labels for

them.

Although there have been several studies on query strategies for each of these sce-

9

narios, we dedicate our discussion to the methods developed on pool-based AL for

applicability in this dissertation. Also, [123] provides further resources on different

AL scenarios.

We described that AL intends to learn a mapping function Φ : X 7→ Y between

input features X and the response feature (label) Y . Features X are readily available

at little or no cost, but the active learner has to query labels Y from an oracle. The

main challenge for the learner is how to score instances in X to find the

most useful ones and query their labels from the oracle?

There is a large body of work on AL query strategies that define the usefulness of

an instance from a prediction perspective. These strategies mainly offer two perspec-

tives to seek highly informative instances. The first one is concerned with reducing

classifier’s uncertainty in assigning labels. The central idea is that if the classifier is

not certain how to label a data point, that point is a good candidate to be labeled

by the oracle. A vast amount of theoretical works on AL has focused on formulating

this notion [59, 122] and we elaborate on it shortly.

The second perspective deals with the distribution of the data which is less ex-

plored as far as theory goes. Ideally, data is clustered into several groups that are

homogeneous in the label, and one can sample a few instances from each group to

train the best classifier. Although this might seem optimistic in general, some AL

strategies aim to harness knowledge from clusters (loosely) aligned with class labels

[27].

From a decision-theoretic perspective, approaching AL from either classification

uncertainty reduction or incorporation of the data distribution point of views, is

similar to the exploration-exploitation trade-off in reinforcement learning [121]. The

reinforcement learner either has to follow actions that have worked well in the past,

or it can try out new actions hoping for a better outcome. [73, 139]. Similarly an

10

active either learner queries labels for instances that the current classifier is uncertain

how to label, or it samples from different areas of the feature space [121]. Throughout

this dissertation we aim to make a balance between exploration and exploitation in

context of AL which translates to querying labels for instances that reduce model

uncertainty in classification while making the queries less biased toward only some

parts of the data distribution. We also elaborate more on exploration-exploitation

later in Chapter 5 in the context dynamic learning.

2.1.1 Uncertainty Sampling

One of the most prevalent AL query strategies is uncertainty sampling introduced

by [81]. During AL, revealing an expected label through a query does not have

much value for the current model, as the model has foreseen the label with high

certainty. In uncertainty-based sampling, queried instances are those that cannot be

easily classified by the current model.

One way to formulate uncertainty is through probabilistic models where class

membership probabilities obtained from a model can be interpreted as model con-

fidence in prediction [81, 122]. Variants of this strategy have been proposed which

basically differ in the probability that they consider to query the labels and can be

as simple as selecting instance x∗LC ∈ X such that

x∗LC = argmax
x∈X

1− P (ŷ|x,Φ) (2.1)

where Φ is the probability model of choice, P (ŷ|x,Φ) is the probability of the most

probable output class for x under model Φ. However, this strategy only looks at the

maximum class membership probability and does not take into account the whole

distribution and can be misleading for the active learner.

Margin sampling improves upon the most uncertain measure by incorporating the

11

probability of the second most likely class as

x∗M = argmin
x

[Max
y
{P (ŷ|x,Φ)} − SecMax

y
{P (ŷ|x,Φ)}] (2.2)

Intuitively, if the probability of the most likely class is not much greater than

the probability of the second most likely class, then the classifier is uncertain about

the label, making that instance a relatively better candidate for label query. An

illustrative example of this case is presented in Chapter 4.

Entropy [127] is the third member of the uncertainty-based strategies that is widely

used in AL literature and is appropriate when the objective is to minimize the log-loss.

x∗H = argmax
x

−
∑
i

P (yi|x,Φ) logP (yi|x,Φ) (2.3)

where index i indicates the class category.

Work by [112] conducted a comprehensive study on uncertainty measures and

concluded that margin sampling performs best on average. Therefore, throughout

this dissertation we formulate classification uncertainty using margin sampling.

Another approach to uncertainty sampling is to use the following concept. The

classifier boundary should lie somewhere in the high-dimensional feature space X

that is far from the easy-to-classify data points. In other words, closer points to this

boundary are more ambiguous for classification. Therefore, labeling them can better

clarify the position of the decision boundary. This is the main idea behind many

AL methodologies that use Support Vector Machines (SVM) as their classifier as it

creates a hyperplane boundary to classify data points which makes it easier to define

distance [25, 25, 154]. Work by [140] formalized this idea and inferred that the closest

data instance to the decision boundary can decrease model uncertainty the fastest.

Figure 2.1 is an illustrative example of this concept.

12

Figure 2.1: An Illustrative Example of Uncertainty Sampling Based on the Distance
to the Decision Boundary in a Binary Classification Problem. Each Color Represents
One Class. The Filled Points Are Query Candidates by Uncertainty Sampling. Image
Modified From [154]. Best View in the Color Version.

2.1.2 Expected Error and Variance Reduction

The goal in expected error and variance reduction strategies for AL is to reduce

the future classification error [123]. Because the actual labels are not available until

after the query is made, the expected value of classification error over all labels is

calculated instead. Let Lt and U t be the set of labeled and unlabeled instances

available to model Φ at time t respectively. An expected error reduction strategy

queries the next data point according to

x∗EER = argmin
x

Ey|Φ,x

[∑
x′∈Ut

Ey|Φ+,x′ [y 6= ŷ]

]
= argmin

x

∑
yi∈Y

P (yi|x,Φ)

(∑
x′∈Ut

1− P (ŷ|x,Φ+)

) (2.4)

where Φ+ is the model after it is trained using L ∪ {(x, yi)}, and Ey|Φ,x is the ex-

pected outcome which we approximate using expectation over all possible class labels

under the current model. Although variants of this approach have been successful in

providing satisfactory decisions [115, 161], estimating the expected future error over

a the entire pool of unlabeled data for each query makes expected error reduction

strategies computationally intensive [29, 123]. Furthermore, these strategies are more

suitable for labeling one instance at a time other than a batch-mode query.

13

It has been noted that the classifier expected future error is proportional to its

variance [44, 143]. Therefore, instead of directly minimizing the expected general-

ization error (according to Eq. (2.4)), the variance of the classifier output can be

minimized. Work by [122] discusses how the link between expected future error and

variance for specific models. They argue that the main advantage of variance reduc-

tion strategies is that actual labels for query candidates are not needed to calculate

the expected future variance. Therefore, these methods do not suffer from high com-

putational costs as expected error reduction ones do. Moreover, unlike expected error

reduction strategies, variance reduction approaches allow for batch-mode label queries

because they are independent of the actual labels and their expected value [24, 90].

However, obtaining closed-form solutions for the variance of supervised classifiers is

not easy and can become intractable for more complex models with a higher number

of parameters [123].

2.1.3 Query-By-Committee

Proposed by [41], the Query-By-Committee (QBC) strategy involves building a

committee of classifiers, each voting for the label of unlabeled instances. Depending on

the level of label disagreement among the committee members, instances are selected

for labeling.

Entropy and Kullback-Leibler (KL) divergence (measuring the difference between

two probability distributions) [77, 78] are the two common information-theoretic mea-

sures used to characterize the degree of disagreement in QBC approaches [94, 121].

QBC strategy queries the unlabeled observation that maximizes the Entropy (or KL

divergence) between the label distributions of any one committee member and the

consensus [121].

14

2.1.4 Exploiting the Data Distribution

Uncertainty sampling methods can perform poorly, especially at early iterations,

where many instances may appear to be informative since the model is not strong

enough. Work by [161] and [115] illustrated how uncertainty and QBC based methods

might fail to select the most useful instances and instead label outliers —instances

that are in isolation and do not contain much information about the distribution of

data —simply due to the controversy that they may create for the model. Instead,

several strategies are proposed that measure if an instance well represents the overall

input patterns of the unlabeled data [94, 100, 154].

Representativeness of a data sample is characterized in various ways. Among the

strategies that explicitly formulate representativeness into the label query process,

the majority define it based on a density score [94, 154, 158]. Density score of a

sample can be evaluated based on how many samples there are similar or near to it.

Depending on the application, this score can be defined in various ways. Distance

metrics such as Cosine, Euclidean, or Gaussian kernel are examples of the standard

measures to define distance between data points [74, 141]. A data point with high

density score is less likely to be an outlier [59] as it is closer to its neighbors. Work

by [124] argues that the best samples to query are those with the highest uncertainty

and density scores, i.e.

x∗D = argmax
x

Υ(x)× ψ(x, xu) (2.5)

where Υ(x) represents the uncertainty score based on any of the aforementioned

methods and ψ(x, xu) is the average similarity of the candidate instance x with all

the unlabeled instances U t.

Although density scoring is a straightforward approach to account for represen-

tativeness of samples, other methodologies have been proposed in the AL literature

15

that implicitly take the data structure into account. For example, work by [161]

proposed a graph-based strategy where instances are the graph nodes and edges are

weighted based on the Euclidean distance between the corresponding instances. Their

AL algorithm follows by propagating any obtained label to the unlabeled neighbor

instances, and the unknown parts of the graphs are queried more. This is a well-

structured scheme to leverage network data distribution into the query process. In

another work, [28] developed a query strategy based on hierarchical clustering. They

sequentially split clusters into more homogeneous ones as labeled instances become

heterogeneous within each cluster.

Although successful performance of density-based and cluster-based approaches

depend on whether the distance metric of choice is a proper one or whether there

exists a cluster structure in the data associated with class labels, several studies have

shown that they outperform approaches merely based on uncertainty sampling or

QBC. Especially for cold-start AL, where no labeled instances are available initially

[30, 100].

On top of uncertainty and density, another element that has been considered in

AL query strategies is diversity [50, 74, 153, 157]. The main idea here is to prevent

querying instances with high similarities to the ones that are already labeled, i.e.

x∗DD = argmax
x

Υ(x)× ψ(x, xu)× ω(x, xl) (2.6)

where Υ(x) is uncertainty score, ψ(x, xu) is the average similarity to all the unlabeled

instances in U t, and ω(x, xl) is the average similarity to all the available labeled

instances in Lt. Similar to density, diversity can be characterized using different

distance metrics.

16

2.2 Evaluation of Active Learning Algorithms

Evaluation for AL methodologies is done in various ways, but usually these eval-

uations involve some sort of learning curve, where classifier’s performance is plotted

against time. Performance is measured via metrics such as accuracy, Area Under

the Receiver Operating Characteristic (ROC) curve (AUC), F1-score, etc. The ROC

curve is created by plotting the true positive rate (recall) against the false positive

rate at various threshold settings [12]. F1-score is the harmonic mean of precision and

recall. Unlike accuracy that weighs all classes equally and so it favors the majority

class, F1-score is focuses more on the minority class. Therefore, it can be a better

performance metric.

Some studies such as [128] compare AL algorithms only via visual inspections of

these curves. Work by [53, 74, 156], summarize the curves by using the area under

them (Area Under the Learning Curve (ALC)). The ALC value indicates how fast

the learning is happening.

Throughout this dissertation, we use area under the F1-score learning curve to

evaluate AL strategies. However, following [53], we normalize the ALC values accord-

ing the best possible learning curve as follows:

ALCN = yi =
ALC − ALCrand

ALCMAX − ALCrand
(2.7)

where ALCMAX is the area under the best achievable learning curve and ALCrand is

the area under the average learning curve obtained by making random predictions

[53]. The more ALCN , the better is the performance of the AL algorithm.

2.3 Optimal Experimental Design and Bayesian Optimization

There are a few research areas that overlap with active learning. We elaborate on

two of these areas, namely optimal experimental design and Bayesian optimization,

17

and their similarities as well as differences with AL.

2.3.1 Optimal Experimental Design

Experimental design has traditionally been used to optimally determine a set

of N design points before performing any experiments. The main issue is to find

approximately optimal designs for large N , as the exact problem is NP-hard [108]. In

AL, the focus is moved from planning a whole set of experiments in one shot to actively

planning the experiments one after another, while updating the learning algorithm

after each query. Although AL and experimental design approaches are often different

in their assumptions and goals, it is sometimes arbitrary whether to define a problem

as an AL or experimental design. More specifically, there is an equivalence between

expected error reduction AL frameworks and optimal experimental design which is

elaborated on shortly.

To highlight the relationship between AL and experimental design, let’s look at

how experimental design works. Consider the problem of estimating β ∈ Rm×1 from

a set of measurements (x1, y1), (x2, y2), . . . (xn, yn) where each xi ∈ R1×m is a vector

of m predictor variables and yi ∈ R is the scaler response corresponding to this

measurement:

Υ(xi) = yi = xiβ + ε , i = 1, 2, . . . ,m (2.8)

where ε is measurement error and ε ∼ N (0, 1). The maximum likelihood estimator

of β which is unbiased and also has the minimum variance [99] is given by

β̂ =

(n∑
i=1

xix
T
i

)−1 n∑
i=1

yixi (2.9)

Now, suppose that observations x1, x2, . . . , xn each can choose from p ≤ n possible

types of candidate vectors v1, v2, . . . , vp ∈ R1×m. In other words, we have a repeated

measurements setup where each xi corresponds to one experiment setup vj.

18

Given model Υ in Eq. (2.8), experimental design aims to query observations that

give the best estimate for β with minimum estimation variance [11]. In other words,

we need to minimize the variance-covariance matrix of prediction errors (E) defined

as following

E =

(n∑
i=1

xix
T
i

)−1

=

(p∑
j=1

ajvjv
T
j

)−1

(2.10)

where scaler aj is the numbers of each type of observations. Given that we only

have n observations (which is equivalent to having a query budget of n in AL) and∑p
j=1 aj = n, the experimental design problem is converted to choosing aj values, the

numbers of occurrence of each vj [11]. This problem is combinatorial, but is relaxed

by ignoring that aj values are integers [11].

Let λj = aj/n be the relative frequency of experiment j. Equation (2.10) is then

converted to

E =
1

m

(p∑
j=1

λjvjv
T
j

)−1

(2.11)

by ignoring the fact that each λj is an integer multiple of 1/m. This setup is equivalent

to an AL framework where the goal is to learn the best model by minimizing the

prediction error and we can only choose from a pool of observed instances.

Since E is a matrix, we cannot directly minimize it. Instead, several scalarizations

have been proposed to solve the relaxed problem in Eq. (2.11) such as

• A-optimal (average) design which minimizes trace
(
λjvjv

T
j

)−1

• D-optimal (determinant) design which minimizes log det
(
λjvjv

T
j

)−1

• E-optimal (extreme) design which minimizes the maximum eigenvalue of
(
λjvjv

T
j

)−1

Note that optimal experimental design schemes illustrated above with the objec-

tive function in Eq. (2.10) are equivalent to variance reduction approaches in AL

19

when we have a regression problem at hand [122]. Therefore, they suffer from the

same drawback as that of variance reduction methods. The key difference between

optimal experimental design and AL is that the former relies on a model and because

of this focuses only on the uncertainty type of measures to select instances while the

latter can potentially combine uncertainty and density measures to select instances

[107]. In other words, experimental design tends to choose extreme design points

which automatically confirm the assumed model without exploiting any knowledge

from the rest of the feature space [108].

Moreover, the optimal experimental designs above are suitable if model Υ is a lin-

ear model following the mathematical form of Eq. (2.8). Although, similar procedure

can be carried out in case that Υ(xi) = g(x, β) where g is a non-linear function of x by

utilizing Taylor expansion around the current estimate of β [4] and there are several

techniques such as sequential experimental design, Bayesian experimental design, and

Maximin experimental design to estimate β in these cases [11], only a locally optimal

design can be achieved. Furthermore, the relaxation of the combinatorial optimiza-

tion model of choosing integer aj values such that variance, E, is minimized, makes

experimental design approaches more beneficial to problems where experiment vj are

not predefined, but rather can be synthesized. Therefore, these methods mostly fit

the membership query synthesis AL scenario and not the pool-based one.

As illustrated above, one of the fundamental differences between the majority

of AL algorithms and experimental design is that experimental design frameworks

often offer theoretical criteria to select the full set of experiments in one shot using

parametric models and under a specific set of assumptions which are often in a form

of a prior belief over a continuous target [108]. Majority of AL schemes, on the other

hand, are non-parametric heuristics that run sequentially where the learning model

is updated in each round [148]. They avoid the computational burden of planning all

20

experiments by greedily planning only one step ahead. Unlike experimental design

where we are allowed to select the data points in the feature space according to the

design objective function, in most AL scenarios data instances are selected from the

training data.

2.3.2 Bayesian Optimization

Another related area of research to AL is Bayesian optimization (BO), where the

goal is to find the optimum of a complex black-box function by sequentially gathering

information. The BO agent has a prior belief of this function which is updated each

time after the evaluation of the function is made.

There is an extensive body of work on characterizing this belief, including improvement-

based (e.g., probability of improvement (PI) or expected improvement (EI) over

currently found maximum), entropy-based, and upper confidence bound (UCB) ap-

proaches [97]. The limitation of most BO algorithms is that they are either myopic

meaning that they only consider one step ahead or their performances are not theo-

retically guaranteed [86]. The sequential and stochastic sampling procedure of BO is

similar to that of AL. However, there are a few distinguishing points between the two.

The main goal of AL is to learn a model (most often a classification one), whereas BO

is only concerned with the optimum of a black-box function (usually in a regression

framework). Similar to experimental design, BO is usually concerned with continu-

ous feature domains, meaning any query instance can be synthesized, while the active

learner can only choose from a set of training instances [15]. We will discuss BO more

in Chapter 5.

21

2.4 Tree-based Ensembles

In statistics and machine learning, ensemble methods use several base learners

in order to obtain better predictive performance compared to any of the constituent

base learners alone [101]. It has been empirically and theoretically shown that the

predictive performance of an ensemble model is positively correlated with the degree

to which base learners’ errors are uncorrelated [3, 116].

To reduce the correlation between the base learners, several strategies such as

AdaBoost and Bagging can be adopted. AdaBoost [40] trains an ensemble of base

models iteratively, and each time the misclassified instances have higher chances to

be sampled while during Bagging [13], each base learner (decision tree) is trained only

on a subset of data. This approach reduces model predictive variance by averaging

the results from the base learners.

Random Forest (RF) [14] is an ensemble learning method for classification and

regression, which aims at de-correlating the trees in bagging. It is known to be a

flexible and easy to use machine learning technique that produces promising results

even without much hyper-parameter tuning. Because RF is able to handle data with

mixed features and even from different scales as well as categorical and numerical

responses, RF a convenient alternative to the majority of current classifiers. As

mentioned earlier, a RF model consists of several decision (regression) trees, each

has a vote in the model final decision. Each tree tries to come up with a rectilinear

decision boundary by splitting a bootstrap sample of instances into groups based on

a decrease in an impurity measure such as Gini or Entropy. Gini Impurity Index [46]

and Entropy [127] are both measures to assess the homogeneity of the target variable

within the subset groups when a split happens. Intuitively, the Gini index measure

how often a randomly chosen instance would be misclassified if it was randomly

22

labeled according to the label distribution of the subset group. Formally speaking,

suppose we have a set of instances associated with C, the set of class labels. Gini

index is then defined as,

IG =
∑
c∈C

pc
∑
c′ 6=c

p′c (2.12)

where pc are classification probabilities provided a classification model

Compared to bagging, Random Forest injects additional randomness to the model

by searching for the best feature among a random subset of features instead of all

features when splitting a node. This also reduces the correlation between trees as each

tree only has access to a random subset of features [14]. The splits continue until a

stopping criterion is met. In the end, The final decision on classification or prediction

is made based on the majority of the votes or the average prediction made by the

trees in the ensemble. The process makes RF intrinsically suitable for multi-class

problems without any modifications.

RF model has several by-products, which are reviewed here shortly. As men-

tioned earlier, the root node of each tree contains a bootstrap sample of original

data. Instances that are not in this sample are referred to as Out-Of-Bag (OOB)

instances, which are roughly 1/3 of the data. OOB instances can be used to estimate

the generalization error rate —measuring how accurately a model is able to predict

outcome values for previously unseen data —of the RF model. For each OOB in-

stance, predication is made from the total vote from those trees that did not include

that instance in their bootstrap sample. This can be useful, specially in cases where

data is not big enough to be partitioned into training and testing sets. Moreover,

the structure of RF allows for the calculation of several features importance measures

such as node purity-based variable importance. Another by-product of RF models is

the RF dissimilarity, which can be used for unsupervised purposes and are discussed

next [129].

23

2.5 Clustering

Clustering is organizing data instances into groups so that data points in the

same group share the same properties. There are many popular clustering algorithms

in machine learning and statistics including but not limited to k-means [91], the k-

medoids [72] and the expectation maximization (EM) [32], each suitable for different

applications.

Many clustering algorithms including but not limited to k-means [91] and the

k-medoids [72] require a dissimilarity (distance) measure to calculate closeness of

data points with each other. Euclidean, Mahalanobis, Cosine, Pearson correlation

are among the popular metrics. Notice that some of these metrics provide similarity

between data points. Dissimilarity is simply the negation of that. Please refer to [152]

for a comprehensive study on different clustering algorithms and possible distance

metrics for them.

Some supervised learning models, including RF, can be adapted for unsupervised

methods such as clustering by creating a supervised model that classifies generated

synthetic data from the actual one [14, 129]. The dissimilarity measures obtained from

these supervised models can then be input to the well-known clustering algorithms

where clusters can be identified that may or may not correspond to clusters in the

Euclidean space [14, 42].

Among the supervised models that can be converted to unsupervised methods,

RF has several substantial properties. It can naturally handle both categorical and

numerical features from different scales without any necessary attention. Moreover,

because it is invariant to the monotonic transformation of variables, it handles fea-

tures with highly skewed distributions, which makes it even more suitable for some

applications such as tumor marker expressions [129].

24

To achieve RF similarity measurements (also known as RF proximity), instances

are assigned by each tree, and if two instances fall into the same terminal node,

their similarity is increased by one. The final similarity values are divided by the

number of trees so that they lie within [0, 1] [14]. The RF dissimilarity between any

two instances is then simply defined by
√

1− PROXij where PROXij is the RF

proximity measurement of xi and xj instances. The idea is to create pseudo labels

for the actual instances, train a supervised model to distinguish them from synthetic

data, and obtain the generated similarity matrix between all instances, including both

actual and synthesized ones. This similarity measure strongly depends on how the

synthetic data is generated [129]. Although there are several options for generating the

synthetic data, we use the unsupervised RF model implemented in the randomforest

package in R, which is also used in Breiman’s FORTRAN implementation. The

main idea of this sampling is to break the dependencies between feature variables by

randomly sampling from the product of marginal distributions of the features.

Although RF has been used in various studies focusing on classification or regres-

sion tasks [9, 26, 34, 136], there is considerably less published work on using RF for

AL despite all its useful properties. Aiming at utilizing all these properties, we chose

RF to be the main classification algorithm used in this proposal. We also utilize RF

dissimilarity to characterize our AL exploration elements because, on top of all the

excellent properties that we counted for it, it is in coordination with our classification

scheme.

25

Chapter3

INFORMATION DENSITY FOR ACTIVE BATCH

LEARNING

3.1 Introduction

Traditional machine learning techniques, thanks to today’s computational power,

are able to analyze an enormous amount of data gathered at low cost in modern

systems. However, before analysis, labeling this data can be of a hard or expensive

endeavor. Active learning (AL) emerged to bridge the gap between data acquisition

and data analysis. While data collection processes can accelerate learning by actively

choosing the most informative instances to be labeled for model building, most of

the data provided to analysts is collected in advance. In other words, models act

passively [53].

Applications for AL are ubiquitous. Customer satisfaction measures are less read-

ily available in models to interlink key process indicators to customer satisfaction for

quality improvement. Similarly, in many pattern recognition tasks, large numbers

of instances are typically available for training, but it is time-consuming for human

experts to label all the instances [92, 132]. Rather than selecting images randomly,

the most useful ones for model-building can be queried with an AL strategy. For

example, many medical images can be generated for clinical diagnostics (etiology),

26

but labeling each one according to a disease state (a class label) can be difficult.

Instead, active learning can be applied to select the images based on their benefits to

a predictive classifier [56].

AL usually executes two main steps iteratively; first, building a classifier using

the available set of labeled data, and second, querying informative instances to be

added to this set. Queries for informative instances are often based on some common

strategies. Uncertainty Sampling [81] selects instances in which the labels from the

currently trained classifier are uncertain. Query by Committee [125] selects instances

with the highest disagreement among several models, trained on the current labeled

data. These query approaches define the informativeness of each instance from the

supervised learning step. Other strategies employ unsupervised methods, like clus-

tering, to take advantage of the underlying data distribution [28]. Several studies

[36, 58, 62, 154] have benefited from both instance informativeness and representa-

tiveness criteria to speed up the learning process.

Despite its prevalence, multi-class AL is less investigated due to the difficulty

of generalizing the concept of uncertainty from binary to multi-class setting. In

order to solve this issue, many approaches for multi-class problems are based on

probabilistic models. In short, uncertainty in these models is assessed based on the

class membership likelihoods that they obtain. Similar to the binary class problem, to

make the most use of labeling resources, many algorithms have utilized the underlying

structure of unlabeled data as well as uncertainty [56, 106, 142].

To advance the AL field, the AISTATS Active Learning Challenge was conducted

in 2010 [2]. Participants tried to solve six binary classification problems from different

domains of chemo-informatics, handwriting recognition, text processing, marketing,

ecology, and embryology in which labeling the data can be challenging [53]. The over-

all best results were obtained by the Stochastic Query-by-Forest (SQBF) algorithm

27

[8]. This nonparametric AL algorithm, obtained model uncertainties from a random

forest (RF) classifier. The ability to handle noisy, mixed (including both categorical

and numerical features) and large datasets as well as being able to adapt for regression

or multi-class problems are advantages of SQBF over alternatives. SQBF, however,

is only based on model uncertainty and does not utilize any information from the

underlying distribution of the input data in the instance selection process. Therefore,

the good performance can potentially be improved with this additional information.

Moreover, the uncertainty measure defined by SQBF can be unstable depending on

the data class distribution and how the trees in the RF model are grown. In this

study, we present the Cluster-Based Stochastic Query-By-Forest (CSQBF) algorithm,

which incorporates the unsupervised knowledge obtained from the unlabeled data in

the utility function by simultaneously focusing on cluster information and model un-

certainty. CSQBF introduces a more diverse batch querying strategy by searching

different areas of the input space for the most informative instances. Like SQBF, our

approach constructs a committee of base learners (trees) to obtain measurements of

model uncertainty. However, it formulates instance uncertainty within each cluster in

a more robust way by utilizing the overall committee decision uncertainty instead of

individual base learners. Furthermore, CSQBF uses RF dissimilarity measurements

for clustering, which brings the advantage of efficiently handling mixed and/or high-

dimensional data for meaningful clustering results in many domains. To evaluate

the effectiveness of our proposed AL algorithm, we apply it on several binary class

datasets of different sizes.

Figure 3.1 is an illustrative example to show the potential performance of CSQBF

over SQBF by accounting for the data distribution. Figure 3.1a shows a simulated

dataset of 1350 instances (1050 from class 0 and 300 from class1), and the line rep-

resents the decision boundary of a SVM [144] classifier with a linear kernel. Fig-

28

ures 3.1b–3.1c show the large difference between the quality of classification bound-

aries based on the queried instances only after five iterations of SQBF and CSQBF,

respectively.

(a) Training Data (b) SQBF (c) CSQBF

Figure 3.1: An Illustrative Example of SQBF and CSQBF Performances. Figure
(a) is a Dataset of 1,050 Class 0 (Black) and 300 Class 1 (Red) Instances. (b) and (c)
Queried Instances After Five Iterations of SQBF and CSQBF, Respectively. Dashed
Lines Are the SVM Boundaries With a Linear Kernel Based on the Current Labeled
Data, Whereas the Solid Lines Show the SVM Boundary for the Whole Dataset.
CSQBF Achieves a Better Classification Performance by Considering Data Clusters.
See the Color Version for the Best View.

The remainder of the paper is organized as follows. Section 3.2 provides back-

ground on different AL querying strategies and details on the SQBF algorithm. Sec-

tion 3.3 presents our proposed AL algorithm. Experimental results of our algorithm

are provided in Section 3.4, and finally Section 3.5 concludes our study.

3.2 Background

3.2.1 Query Strategies

In ”membership query synthesis” AL scenario, a model generates instances from

a predefined distribution and asks for the label of those instances. ”Stream-based

selective sampling” (sequential AL), however, queries synthesized unlabeled instances

one by one from a natural distribution, and the learner decides whether to request for

29

the labels of those instances or discard them [123]. In many domains, a large amount

of unlabeled data, compared to labeled data, is available, and instance labels are

queried based on their informativeness from the pool of unlabeled data. This ”pool-

based active learning” scenario [81] is a reasonable approach in many domains [122].

Unlike the first two approaches, pool-based AL assesses the full pool of unlabeled

data to select the best query in each iteration. Designing an appropriate criterion

for selecting the most valuable instances to query is the main component of any

AL strategy. Informativeness of an instance is associated with learner’s confidence

in labeling that instance whereas Representativeness measures whether a queried

instance is representative enough of the overall input data distribution [63]. There

are several querying methods used in the literature, of which we outline the most

commonly used ones.

Uncertainty Sampling queries instances for which the trained model is least con-

fident about their labels. For probabilistic learning models, model confidence can

be simply defined as the posterior class probability, pc(x), for data instance x where

c ∈ {0, 1} denotes the classes. The greater the pc(x) value, the more certain the model

is about the instance label. Uncertainty measures are then formulated using these

probabilities. The simplest algorithm selects instances which maximize 1−maxc pc(x),

whereas entropy-based strategies are the most common ones. See [81] and [122] for

more details. Many studies have non-probabilistic strategies such as margin-based

approaches in which unlabeled instances closest to the decision boundary are cho-

sen to be queried [100, 119]. While empirical comparisons suggest that the best

uncertainty measure is to some extent application-dependent, generally utilizing any

of these measures results in a better performance compared to the passive learning

approach when the same amount of labeled data is provided to both [122].

Query-By-Committee(QBC) [41, 125] is a query approach where the most valuable

30

instances are chosen from the pool of unlabeled data based on their utility evaluated

by an ensemble of learners. Hence, the most uncertain instances are the ones that

most committee members disagree upon their class label [122]. In other words, QBC

measures the variance of the data distribution indirectly by constructing the com-

mittee members, which together approximate the classification distribution as well as

the classification variance [94]. RF [14] is an ensemble of decision tree learners that

uses the trees votes to classify a new instance. The class with the majority of votes

would be the forest prediction for a new observation.

On top of scalability for large data and handling noisy as well as mixed data

(including both categorical and numerical features), RF is naturally applicable to

multi-class problems, which avoids one-vs-one and one-vs-others type approaches.

Although most of the AL literature is focused on variations of SVM-based strate-

gies, several studies take advantage of RF properties in their works. Work by [30]

proposes an RF-based framework where instead of randomly selected instances, data

representatives are used to form the initial labeled set. However, data clusters are not

benefited from further throughout their algorithm. Study by [8] proposed a different

approach based on RF. In a binary class setting, class probabilities in the trees’ final

nodes are calculated for one class. Then, uncertainty is defined as the standard devi-

ation of a modified version of these probabilities across all the trees. They introduce

a cutoff parameter, α, to make a trade-off between randomness and large utility val-

ues as inspired by Cawley [16]. Cawley in [16] reckoned that uncertainty sampling

methods most likely can achieve a better performance if they explore the input data

space more. In another AL study using RF [50], they proposed a query criterion

that combines uncertainty, density, and diversity factors in a linear fashion (details

follow later). They defined density as a function of average distance to the k-nearest

neighbors. In contrast, diversity is calculated based on the distance between an unla-

31

beled data instance and its nearest labeled neighbor. Even though their method tries

to exploit the unlabeled data structure, we show that a better performance can be

achieved if randomness is incorporated with the sampling strategy.

Uncertainty sampling and QBC, despite their ease of use and popularity, may

suffer from what described as sampling bias [28]. During AL, instances are queried

based on their informativeness assessed by model confidence in labeling. However,

models built around these querying strategies are more likely to choose outliers in the

input space of predictors (because they are probable to look informative based on the

employed uncertainty measure).

Density-based methods, on the other hand, take into account the data density in

different regions of the input space by modifying the utility function to U(x) ·D(x)λ,

where U(x) is a measure accounting for uncertainty, and D(x) is a measure of the

input density. Parameter λ ∈ R+ controls the effect of the density factor [8, 53].

Previous studies have shown the contribution of the global input distribution in AL

by bringing the data density into account (e.g., [100, 137] for more information).

3.2.2 Multi-class Scenario

Multi-class active learning scenarios are less studied mostly due to the difficulty

of generalizing the concept of uncertainty from binary to multi-class problems. As

we mentioned, uncertainty can be defined as the likeliness of a data instance to be

misclassified. Distance from the classification hyperplane has been used as a notion

of uncertainty where margin-based classifiers such as support vector machines (SVM)

are utilized [122]. However, these classifiers are only directly applicable to binary class

problems. Converting multi-class problems to several pairwise comparisons between

classes or to multiple one-vs-all subproblems have been employed to overcome this

issue [66, 83, 106, 155]. Work by [106] for example, adopts a one-vs-all strategy to

32

solve a multi-class active learning problem with SVM classifier. In their algorithm,

the most uncertain samples corresponding to each binary SVM are identified using

SVM output scores and a threshold value. The first shortcoming of such approaches

is that the classifiers are not independent from each other, and uncertainty cannot be

assessed across multiple classes. For example, an uncertain instance in one pairwise

setting can be considered as certain in another one. Consequently, the model cannot

tell which classes need more data instances to be queried from the pool of unlabeled

data [157]. In other words, due to the presence of multiple hyperplanes, defining

uncertainty by the closeness to the classification boundary does not extend well to

the multi-class scheme. In order to tackle this problem, many recent studies have

developed probabilistic models to obtain instance uncertainties. Work by [66] first

used a modified version of Platt’s method to obtain class membership probabilities

from a one-vs-one SVM classifier. Later, a Best-vs-Second-Best approach was used

as their measurement of uncertainty i.e., instances with the lowest difference between

the two highest class membership probabilities, are taken as the more uncertain ones.

In order to make use of both labeled and unlabeled data to enhance the learning

performance, semi-supervised learning methods are becoming more and more popular

in AL studies [160]. Algorithms attempt to exploit the relationship between clusters

and labels by getting help from a common assumption in semi-supervised paradigm

which states that data can be grouped into several clusters and instances of a cluster

are more likely to have similar class labels [20, 150]. Among heuristic methods that

have been proposed to integrate classification uncertainty and the data distribution

elements, many of them encourage the selection of cluster centers. For example, as

we mentioned before, medoids of the clusters obtained from the Partition Around

Medoids (PAM) clustering [71] were used as the initial set of emails to label in a

spam detection problem [30]. However, no knowledge about the input data space is

33

conveyed to future iterations. The unlabeled data points lying in the margin of an

SVM classifier, trained with the current labeled data, were clustered and medoids were

selected to be labeled [154]. Work by [100] incorporated clustering with AL based

on logistic regression and SVM classifiers. Their algorithm builds a model using

cluster representatives (such as medoids), and iteratively labels instances closer to

the decision boundary and cluster representatives. At each iteration, after rebuilding

the classifier, the algorithm assigns the same label as the cluster representative to all

other cluster members. By doing so, the algorithm diversifies the samples by avoiding

querying instances from the same clusters. They also use a so-called coarse-to-fine

strategy to update the clusters. Work by [62] has designed a min-max margin-based

framework that takes into account both representativeness and informativeness. Their

method labels one instance at a time. One major limitation of such approaches is

that they can be more costly than running a batch-mode active learner once and

perform labeling in parallel. Furthermore, they would not benefit from the potential

good performance of ensemble models since it would be computationally expensive

to assess the unlabeled data pool every time after only one label is queried [122].

Research by [64] has introduced an AL strategy that uses a variant of K-Nearest

Neighbors (KNN) as a classifier along with a similarity measure suitable for multi-

class problems with large number of classes. In [157], Yang et al. have used a Markov

Chain model to develop a compound criteria based on uncertainty and diversity in a

visual concept recognition task. Their algorithm tries to avoid labeling similar data

instances simultaneously by maximizing uncertainty and diversity at the same time.

Work by [58] uses k-means clustering, which benefited from lower computational

complexity compared to the other clustering methods. However, Euclidean-based

methods, like k-means, may not be suitable for high dimensional data, and our tree-

based ensembles naturally handle attributes scales, interactions, high-dimensional,

34

and categorical attributes.

RF, which was originally developed as a supervised classifier, can also be used in

unsupervised studies, and has been shown to perform well in many domains [14, 130].

Like many other unsupervised algorithms, RF clustering needs a measure of dissimi-

larity between instances. The similarity of two instances i and j, Sij in unsupervised

RF is the proportion of trees in which those instances are assigned to the same termi-

nal nodes in the forest. Dissimilarity then is simply defined as (1−Sij) or (
√

1− Sij)

between instances i and j. When data are of a high-dimension, measures such as

Euclidean distance might be challenged by data sparsity; instances might appear

equally-distanced from each other [105]. Moreover, in the case of mixed data, prepro-

cessing or alternatives methods are needed to discover the clusters [80]. RF clustering,

on the other hand, is capable of handling high-dimensional, mixed data, and missing

values. Furthermore, several studies have shown that RF clustering results are more

meaningful in their study domain than Euclidean-based ones [14, 130].

3.2.3 Stochastic Query-By-Forest (SQBF)

In this section we re-examine the stochastic sampling process of SQBF since our

approach is derived from that. Consider a binary class classification problem. SQBF

builds an ensemble of shallow trees as committee members on an initially queried

labeled dataset. For each unlabeled instance, class probabilities are estimated based

on the class distribution in the leaf node of the tth tree to which that instance is

assigned. For xu ∈ Xunlabeled, the estimated rare class probability in the tth tree

is denoted by ptc(xu), t = 1, 2, . . . T , where T is the number of trees in the forest,

c ∈ {0, 1} is the rare class in the final node, and Xunlabeled is the pool of unlabeled

35

data. These probabilities are weighted with class priors as

p′tc(xu) =
ptc(xu)/pc∑

c

ptc(xu)/(1− pc) (3.1)

where t = 1, 2, . . . T . The standard deviation of the weighted rare class probabilities

is used to calculate the uncertainty measurement, q(xu), for unlabeled instance xu as

q(xu) = sd(p′tc(xu)) (3.2)

The higher the q(xu) is for an unlabeled instance, the more uncertain the model

is about the label, making that instance more likely to be queried [8]. Although the

standard deviation in Eq. (3.2) might not be an accurate measure of model variance,

the relative magnitudes of q(xu) values provided effective performance for the AL

strategy in [8].

However, as instances with the highest uncertainty measurements might be very

similar to each other, they may provide the same information to the model [56].

To avoid this problem, SQBF brings some randomness into the instance selection

process by introducing parameter α. Query candidates are the top α proportion of

the ranked instances based on their q(xu) values. A sampling probability distribution

p(xu) is generated consisting of the normalized q(xu) values for all query candidates.

Instances to be labeled are queried from the candidates randomly, proportional to

p(xu). Queries for labels are made in a batch, where batch sizes increase exponentially

in a way that they sum up to the unlabeled data pool size.

3.3 Cluster-based Stochastic Query-By-Forest

We propose a new batch-mode active learning algorithm which not only advances

SQBF by introducing cluster-wise utilities incorporated with instance utilities, but

also can be extended to multi-class scenarios and is scalable for large datasets. To

36

Algorithm 1 Cluster-based Stochastic Query-By-Forest (CSQBF)

1: D(X) = 1− S(X) . Transform matrix of similarities to dissimilarities

2: l = 1 . Initialize iteration

3: PAM ← {D(X), K} . Implement PAM to K clusters with dissimilarities

4: Query medoids for labels

5: while Termination condition not reached do

6: Build RF, G(l), with X
(l)
labeled . Build classifier

7: Compute Mrg(xu), where xu = {x|x ∈ X(l)
unlabeled} . Compute instance

uncertainty

8: for each cluster k do

9: Obtain |C(l)
k | and compute Mrg

(l)

k . Compute cluster uncertainty

10: Compute u
(l)
k . Compute cluster utilities

11: Compute a
(l)
k . Assign query sizes

12: Select instances by p
(l)
k (x), where x = {x|x ∈ C(l)

k }

13: end for

14: Query selected instances for labels

15: Adjust Xlabeled, Xunlabeled

16: l = l + 1 . Proceed to next iteration

17: end while

18: Return G

highlight these differences, we call our new algorithm cluster-based SQBF (CSQBF).

Initially, CSQBF performs pre-clustering to build the first query with the most rep-

resentative instances. In order to do so, we use PAM with RF dissimilarity. The

resulting medoids of PAM are then queried for labels. Alternative clustering algo-

rithms can be used, but we prefer to handle mixed data in the clustering algorithm

37

as easily as it is done in the classification as well as the instance selection process

of CSQBF. Here, stratified sampling is used to address the class imbalance. To bal-

ance classification accuracies across the classes, we downsample instances from the

majority class in the training sample for each tree, so that base learners are trained

on equal counts from both classes.

Next, to account for uncertainty, we define margin, Mrg(x), as the difference

between the two class probability estimates for instance x, i.e. for each xu ∈ Xunlabeled

Mrg(xu) = |Pr1 − Pr0| (3.3)

where Prc is the relative number of votes (predicted class probability) for class c,

c ∈ {0, 1}.

From a classification perspective, a classifier is more uncertain about the label

of those instances that have a low margin value because the two class membership

probabilities would be closer in this case. Therefore, 1 −Mrg(x) would be model

uncertainty for instance x. A similar approach is used by [30] in which instances with

their greatest class membership probability closest to 0.5 are queried for labeling.

This approach would be consistent with ours as shown by [122]. In the following

iterations of the algorithm, utility of cluster k, uk, where k = 1, 2, . . . , K, is evaluated

by cluster size and cluster uncertainty. The size of cluster k, |Ck|, is defined as the

number of unlabeled instances in the cluster. Next, for k ∈ 1, 2, . . . K,

Mrgk =
1

|Ck|
∑
x∈Ck

1−Mrg(x) (3.4)

is calculated in order to obtain cluster uncertainty (average instance uncertainty

within a cluster) as 1 −Mrgk, where instance uncertainties, Mrg(x), are computed

by Eq. (3.3). Cluster utility, uk, is then obtained as a product of normalized cluster

38

uncertainty and normalized cluster size

uk =
Mrgk∑
k

Mrgk
·
[
|Ck|∑
k |Ck|

]λ
(3.5)

where λ ∈ R+, k = 1, 2, . . . , K controls the relative importance of the two factors.

After cluster utility uk is obtained, each cluster is assigned a query size. Given

the total query size at iteration l, a(l), where l = 1, 2, . . . , L, the query size of cluster

k, a
(l)
k , is determined proportionally to its cluster utility

a
(l)
k = a(l) · u

(l)
k∑

k

u
(l)
k

(3.6)

for k = 1, 2, . . . , K. Next, the top α proportion of the instances arranged in an

ascending order based on their Mrg(x) value are taken as query candidates within

each cluster represented by QCk where k = 1, 2, . . . , K. Sampling probabilities for

x ∈ QCk are obtained using Eq. (3.7).

pk(x) =
Z(x)∑

x∈QCk
Z(x)

(3.7)

where Z(x) is the normalized version of sampling probabilities for x ∈ QCk defined

as

Z(x) =
Mrgmax −Mrg(x)

Mrgmax −Mrgmin
(3.8)

In other words, unlike SQBF that defines one sampling distribution for the pool of

unlabeled data at each iteration, CSQBF considers separate ones for each cluster

at each iteration. Instance sampling in cluster k is performed with regard to the

corresponding sampling distribution, pk(x), where x = {x|x ∈ C(l)
k }, C

(l)
k denotes the

unlabeled instances remained in cluster k at iteration l.

Instance utility, Mrg(x), cluster utility, Mrgk, cluster size |Ck|, and accordingly

pk(x) as well as uk are updated at each iteration with respect to the remaining unla-

39

beled instances. The RF model G is also rebuilt whenever new labeled instances are

added. Algorithm 1 summarizes this process.

A good strategy for AL, is to query labels for the most uncertain instances, sam-

ple from dense regions of input space, and impose diversity of query instances [153].

CSQBF addresses all these through cluster and instance utilities. Large Mrgk repre-

sents that instances remaining in the cluster have high uncertainties. Choosing more

samples from clusters that contain more uncertain instances will be more effective in

estimating decision boundaries. Cluster size is expected to be associated with density.

If each cluster covers regions of similar size in input space, the clusters with greater

counts are denser. In this sense, taking more samples from large clusters encourages

sampling from dense regions. Moreover, sampling from each cluster increases the

diversity of the selected instances.

3.4 Experiments and Results

The SQBF algorithm was compared to several other algorithms during the AIS-

TATS 2010 AL challenge [2] in which it was ranked first. Therefore, we compared

CSQBF with the following methods:

• MARGIN : Non-parametric margin-based AL approach by [140] that calculates

instance informativeness based on distance to the SVM decision boundary.

• ENTROPY : Entropy-based uncertainty sampling using SVM [109].

• SQBF : Non-parametric AL approach based on work by [8].

In all the experiments, an RBF kernel is used for SVM-based models (MARGIN

and ENTROPY). Several binary-class datasets were used to test the performance

of CSQBF. Experimental datasets were chosen from a wide range of characteristics

including domain, class imbalance ratio, number of instances, and feature dimension.

40

Table 3.1: Datasets Used in This Study.

Dataset Train Test Features Classes Min %

Banknote 686 686 4 2 23.52 %

Credit 15000 15000 23 2 22.12 %

Digit1 750 750 241 2 48.93 %

EEG 7490 7490 14 2 44.88%

Ibn Sina 10361 10361 92 2 37.84%

Letter NvsM 788 787 16 2 49.71%

Letter VvsY 788 787 16 2 49.71%

Madelon 1300 1300 500 2 50 %

MNIST35 5776 5776 784 2 46.93%

Mushroom 4062 4062 22 2 48.20%

Occupancy 10280 10280 5 2 2.53 %

Spambase 2300 2301 57 2 39.40%

Steel 970 970 27 2 34.67%

Transfusion 374 374 4 2 23.80%

Twitter 490 123 291 2 44.7%

Ibn Sina is obtained from AISTATS 2010 AL challenge [2]. Banknote, Default

Credit, EEG, Madelon, Mushroom, Letter NvsM, Letter VvsY, Occupancy, Spam-

base, Steel, and Transfusion are from the UCI Repository [84]. Letter NvsM and

Letter VvsY are subsets of the Letter dataset. Digit1 is a benchmark dataset for

semi-supervised learning [19]. MNIST35 is a subset of MNIST Handwritten Digits

database [79], which includes only images of numbers 3 and 5. The Twitter dataset is

annotated Twitter data by cyberbullying experts in work by [151]. In order to show

the severeness of cyberbullying, from the publicly available 2011 TREC Microblog

track corpus, 990 tweets were uniformly sampled for manual inspection by five anno-

tators. As it is a hard task to follow bullying traces among all the tweets, authors

41

created an enriched dataset by collecting tweets from the public Twitter streaming

API that contain at least one of the words ”bully”, ”bullied”, and ”bullying”. Re-

tweets were further removed. The same annotators who labeled the TREC corpus

labeled 1762 tweets sampled uniformly from the enriched dataset. Among them, 684

(39%) were labeled as bullying traces.

As per terms of services of Twitter, the original labeled tweets are not included

in the dataset used by [151]. So, we crawled the original tweets through Twitter API

by the tweet ids provided online at [1]. By the time we crawled the data, some of the

tweets were no longer available, most likely due to deletion by their owners (obtained

only 1092 out of 1762 original labeled tweets). After the non-English tweets were

discarded (resulting in 613 tweets), the tweets were case-folded. English stopwords

and excessive punctuations were removed, and any user mentions preceded by an ”@”

were replaced by the anonymized user name @USER. Any URLs starting with ”http”

were replaced by the token ”URL”. Hashtags were also replaced by ”#HASHTAG”.

Moreover, based on our experiments, all the single-character words could be removed

since they are used differently by users. Some of these words are used as a substitute

for English stopwords such as ”and” that appears as ”n” or ”the” that shows up as

”d”. We used unigrams and bigrams (which would automatically include the number

of hashtags as well as referred users and websites since we treated them as tokens

and did not discard them), number of words and length of the tweet as the textual

features. This process created over 6000 features. We used a frequency threshold of

5 to choose the final set of bigrams and unigrams and discarded those tokens that

did not have enough occurrences among all the tweets. This reduced the number of

features to 291.

We split all the original datasets into two halves; one used for training and the

other for testing and estimating the generalization error. For Ibn Sina dataset, only

42

the development (training) datasets of the challenge were used here. Our data par-

tition reduced the training set sizes to 50% of the challenge. For the UCI datasets,

we partitioned the whole datasets into two halves. Table 3.1 summarizes the experi-

mental datasets.

3.4.1 Clustering

We used PAM with RF dissimilarity as the distance to cluster instances of each

dataset. In order to choose the best number of clusters for CSQBF, we compared

the value of mean dissimilarity between cluster medoids and instances for different

values of K ranging from 2 to 15. Figure 3.2 presents the results. We can observe the

gradually decreasing trends on every dataset, but without any noticeable steep de-

cline (knee) or turn-over. Here, the maximum number of terminal nodes in each tree

is set to 5 (maxnodes = 5). Because pruned decision trees typically consist of 3 to 12

terminal nodes [26], we also tested maxnodes = 4, 8, and 12, but similar patterns in

dissimilarity occurred as for maxnodes = 5. Therefore, we set the number of clusters

to 7 for all datasets, and the RF dissimilarity is obtained with maxnodes = 5. Poten-

tially better performance could be achieved with the number of clusters customized

for each data set. The initial labeled set for all methods consists of a common pair of

initial positive instances (different pairs in each replicate) and K = 7 other instances,

which are cluster medoids for CSQBF and randomly selected instances for MARGIN,

ENTROPY, and SQBF. The 2 positive instances were selected to ensure that RF

models, G, at the first iteration were built with the same instances from the positive

class especially in case of imbalanced datasets.

For the next 10 iterations, after the initial query, we follow the approach used by

[8] to set the query sizes. They designed the sequence of query batch sizes such that

they exponentially increase over iterations and eventually sum to the total number of

43

instances, N . Therefore, Eq. (3.9) is solved for b as the base of an exponential query

sequence.
11∑
l=1

(K + 2) · bl−1 = N (3.9)

Alternative approaches such as a fixed query size at each iteration can be used based

on the domain, but they do not alter the nature of the problem.

Unlike SQBF that grows shallow trees based on the labeled data size at each

iteration, we use fully grown ones in the supervised RF model. This setting was

made based on our preliminary test results that showed a noteworthy performance

improvement when allowing trees to grow fully.

To account for class imbalance, stratified sampling was used for all methods. Also,

throughout the experiments, we noticed that sometimes instances within clusters were

occasionally exhausted since a query assignment for a cluster (with greater uncer-

tainty) outnumbered the cluster size, |Ck|, by a small number at later iterations. In

this case, assignment backlogs were redistributed to available clusters proportionally

to their cluster utilities. Also, for each dataset, we run the experiments 15 times to

Figure 3.2: Mean Dissimilarity Between Instances and Cluster Medoids Obtained
From PAM. See Color Version for the Best View.

44

address the inherent randomness of RF bagging procedure that would cause slightly

different dissimilarities.

In active learning classifications, prediction accuracy at early iterations plays a key

role in the algorithm performance as it tends to improve with more labeled instances.

Due to the limitation of accuracy measure for imbalanced datasets, we evaluated the

performance of CSQBF by F1-score which is the harmonic mean of precision and

recall [133] i.e. if ρi and πi are precision and recall for each class i then:

Fi =
2πiρi

ρi + πi
, F1-score =

C∑
i=1

Fi

C
(3.10)

where C is total number of classes. F1-score gives equal weight to all classes so it

is more influenced by the classifier’s performance on the rare categories [103]. Al-

though not provided here, we furthered examined CSQBF against other methods

based on accuracy. The results were compatible with F1-score results and they show

the outperformance of CSQBF.

Table 3.2 presents the mean F1-Score of 15 replicates for each method through

11 iterations. For each iteration, paired t-tests at 95% significance level were con-

ducted and the best performance and its comparable performances are highlighted

in boldface. This table illustrates how CSQBF performs significantly better than all

methods constantly throughout all iterations for most of the datasets. In particular,

CSQBF showed greater F1-scores at the early iterations on many datasets such as

Banknote, Ibn Sina, Mushroom, Letter NvsM as well as VvsY, and Transfusion.

The most substantial improvement of CSQBF at the first iteration was observed

in Letter VvsY, followed by Transfusion and Ibn Sina datasets. Overall, CSQBF

surpasses all methods, including SQBF, for almost all datasets from the first iteration

except for Madelon for which CSQBF results are similar to those of SQBF for the first

8 iterations. The 0 F1-score values in some of the final iterations of the ENTROPY

45

algorithm indicate the failure of SVM to correctly classify any of the positive class

instances. Note that in F1-score calculations, we chose the minority class to be the

positive one for all the datasets. Also, in these cases the accuracy is still more than

50%. Moreover, despite the fact that we tried to tune the parameters for the baseline

SVM-based models, poor performance (especially in the early iterations) compared

to SQBF and CSQBF might be due the natural classification difference between RF

and SVM.

46

Table 3.2: Mean F1-Score Values Comparison. At Each Iteration, the Best Performance and Its Comparable Performances
Based on Paired T-tests at 95% Significance Level Are Highlighted in Boldface.

Data Algorithm
Iteration

1 2 3 4 5 6 7 8 9 10 11

Banknote MARGIN 74.12% 83.95% 93.66% 94.21% 94.95% 95.85% 97.68% 97.66% 98.24% 99.19% 99.35%
ENTROPY 74.12% 79.48% 85.28% 92.2% 95.31% 98.48% 98.37% 98.81% 99.35% 99.51% 99.51%
SQBF 77.38% 82.58% 88.72% 91.53% 95.57% 97.01% 98.06% 97.65% 97.64% 97.2% 96.05%
CSQBF 79.59% 86.95% 93.61% 96.63% 98.14% 99.09% 99.41% 99.33% 98.78% 98.64% 98.69%

Credit MARGIN 15.16% 18.54% 16.45% 27.71% 36.92% 34.46% 33.53% 34.46% 41.4% 42.78% 45.34%
ENTROPY 15.16% 11.78% 7.39% 8.98% 13.57% 20.81% 25.16% 35.57% 42.24% 44.96% 44.16%
SQBF 34.67% 35.43% 38.01% 39.35% 42.27% 43.39% 43.31% 42.19% 41.02% 39.96% 42.95%
CSQBF 33.43% 35.2% 38.92% 44.09% 46.56% 49.68% 51.45% 52.17% 52.98% 53.3% 53.81%

Digit1 MARGIN 51.12% 47.52% 56.68% 60.58% 65.98% 73.62% 85.96% 91.37% 93.52% 95.88% 96.58%
ENTROPY 51.12% 42.03% 57.55% 65.4% 78.41% 79.25% 91.98% 95.25% 96.9% 97.43% 97.2%
SQBF 72.8% 75.58% 80.34% 85.26% 89.32% 92.03% 93.24% 94.01% 94.22% 94.12% 94.03%
CSQBF 77.81% 79.47% 84.92% 87.38% 90.89% 92.56% 94.62% 95.69% 96.76% 97.23% 97.27%

EEG MARGIN 39.85% 34.49% 51.43% 57.85% 60.81% 65.34% 64.95% 66.68% 52.99% 70.61% 74.57%
ENTROPY 39.85% 33.84% 29.8% 34.8% 47.03% 58% 66.47% 68.14% 68.41% 63.86% 72.55%
SQBF 52.72% 52.82% 57.04% 59.49% 61.99% 65.56% 66.59% 67.9% 68.11% 68.01% 66.11%
CSQBF 48.45% 52.94% 56.28% 59.66% 63.36% 68.07% 73.99% 79.64% 85.43% 89.45% 92.14%

Ibn sina MARGIN 41.74% 15.56% 23.53% 43.93% 61.52% 88.25% 90.95% 93.01% 93.61% 93.66% 94.18%
ENTROPY 41.74% 34.79% 42.3% 47.37% 66.88% 62.71% 74.48% 85.9% 93.86% 93.62% 93.98%
SQBF 70.54% 77.6% 87.19% 91.27% 92.72% 91.49% 86.92% 87.73% 93.03% 91.48% 93.37%
CSQBF 76.24% 85.02% 91.69% 93.32% 94.12% 94.9% 95.76% 96.26% 96.56% 96.38% 95.92%

Letter NvsM MARGIN 68% 78.49% 84.91% 93.68% 94.48% 95.57% 96.01% 97% 97.22% 97.49% 98.43%
ENTROPY 68% 77.54% 84.04% 88.55% 92.56% 96.18% 97.68% 98.52% 98.87% 98.77% 98.89%
SQBF 81.56% 88.76% 92.65% 93.97% 94.99% 95.33% 95.19% 95.55% 95.47% 95.42% 94.7%
CSQBF 82.49% 92.01% 94.86% 95.5% 96.67% 97.44% 97.93% 98.22% 98.18% 98.1% 98.05%

Letter VvsY MARGIN 64.9% 78.38% 81.66% 90.41% 94.7% 96.75% 98.09% 98.57% 98.54% 98.88% 98.77%
ENTROPY 64.9% 75.32% 83.1% 87.51% 90.82% 94.3% 96.11% 97.44% 97.81% 98.39% 98.6%
SQBF 78.48% 87.76% 93.27% 94.92% 95.97% 96.04% 96% 96.04% 96.18% 96.18% 95.88%
CSQBF 86.98% 93.79% 95.28% 96.04% 96.55% 97.37% 98.39% 98.51% 98.35% 98.29% 98.36%

Madelon MARGIN 57.84% 41.17% 40.33% 31.22% 36.72% 41.61% 51.55% 56.02% 54.89% 55.29% 56.94%

47

ENTROPY 57.84% 54.04% 44.57% 48.98% 56.05% 54.07% 53.11% 60.36% 59.39% 58.06% 58.50%
SQBF 60.29% 52.07% 51.94% 53.91% 55.11% 56.72% 59.86% 62.21% 65.31% 67.22% 70.16%
CSQBF 51.16% 52.44% 49.85% 47.67% 49.59% 50.91% 55.28% 58.62% 61.79% 63.64% 67.29%

MNIST35 MARGIN 29.35% 29.35% 4.19% 12.6% 4.19% 0% 62.9% 62.9% 25.16% 12.58% 16.77%
ENTROPY 29.35% 29.35% 4.19% 12.6% 4.19% 0.01% 0% 0% 0% 0% 0%
SQBF 69.54% 78.7% 84.82% 89.7% 91.76% 93.8% 94.32% 94.32% 94.33% 94.5% 94.43%
CSQBF 73.44% 81.31% 87.22% 90.76% 94.15% 96.09% 97.61% 98.37% 98.79% 98.79% 98.66%

Mushroom MARGIN 64.94% 67.04% 71.24% 83.18% 92.15% 93.78% 95.13% 97.33% 99.21% 99.91% 99.99%
ENTROPY 64.94% 70.68% 74.87% 80.99% 88.29% 89.76% 94.38% 98.83% 99.75% 100% 100%
SQBF 83.66% 91.93% 94.88% 98.47% 99.2% 99.57% 99.72% 99.86% 99.88% 99.95% 99.95%
CSQBF 89.43% 93.53% 97.08% 98.92% 99.58% 99.9% 99.99% 100% 100% 100% 100%

Occupancy MARGIN 76.13% 84.84% 92.75% 92.92% 94.22% 96.92% 97.41% 97.68% 97.65% 97.68% 97.68%
ENTROPY 76.13% 84.37% 87.49% 85.63% 85.41% 95.65% 97.58% 97.64% 97.63% 97.65% 97.69%
SQBF 83.49% 86.49% 88.7% 91.37% 92.73% 92.75% 92.78% 92.76% 90.45% 91.67% 96.5%
CSQBF 84.96% 93.24% 96.78% 97.42% 97.57% 97.63% 97.74% 97.85% 98.06% 98.13% 98%

Spambase MARGIN 32.57% 13.41% 6.14% 6.3% 6.56% 77.97% 82.19% 86.54% 88.99% 89.12% 90.21%
ENTROPY 32.57% 27.04% 25.06% 11.5% 18.44% 28.01% 41.94% 70.96% 85.79% 90.44% 91.77%
SQBF 75.27% 79.88% 84.14% 86.13% 87.67% 88.52% 88.64% 88.13% 88.03% 88.05% 88.59%
CSQBF 76.17% 82.95% 85.61% 87.99% 90.53% 91.96% 92.42% 93.41% 93.94% 94.15% 93.87%

Steel MARGIN 37.75% 41.96% 41.92% 43.5% 44.27% 46% 55.4% 58.18% 57.18% 59.97% 62.68%
ENTROPY 37.75% 35.66% 37.82% 40.45% 46.66% 49.82% 53.66% 56.49% 58.7% 61.84% 63.43%
SQBF 47.19% 49.58% 51.63% 52.29% 54.19% 56% 57.98% 58.98% 60.56% 60.81% 60.68%
CSQBF 49.9% 48.44% 48.36% 52.26% 54.14% 57.91% 62.17% 64.46% 66.03% 67.4% 68.02%

Transfusion MARGIN 22.08% 10.56% 7.25% 17.03% 6.94% 6.21% 8.47% 4.17% 3.26% 2.57% 10.82%
ENTROPY 22.08% 18.91% 18.88% 12.68% 13.99% 12.14% 16.96% 18.27% 20.36% 11.19% 9.57%
SQBF 34.27% 38.09% 42.78% 43.85% 45.84% 48.04% 48.93% 48.95% 48.98% 48.54% 48.39%
CSQBF 41.89% 43.28% 45.25% 44.17% 45.33% 46.88% 48.51% 49.6% 50.53% 51.85% 52.39%

Twitter MARGIN 48.75% 41.61% 13.28% 12.66% 12.04% 11.47% 6.06% 4.57% 13.58% 7.17% 13.2%
ENTROPY 48.75% 28.43% 39.87% 29.21% 31.42% 30.51% 28.07% 26.73% 38.13% 43.75% 53.77%
SQBF 55.87% 56.18% 59.62% 59.64% 61.98% 65.42% 65.71% 66.29% 66.33% 67.52% 67.01%
CSQBF 21.12% 56.92% 64.51% 65.54% 67.72% 67.4% 67.36% 68.96% 68.29% 67.8% 68.92%

48

We further compared CSQBF and SQBF in terms of variation in their perfor-

mances to show the stability of CSQBF from early on. Figure 3.3 compares the

inter-quartile range (IQR) of F1-scores throughout the iterations for Banknote, Ibn

Sina and Letter NvsM datasets. The results for other datasets were similar. CSQBF

had smaller IQRs than SQBF, i.e., more stable results for most datasets, especially

at the early iterations. There were a few cases in which CSQBF had a wider IQR at

some iterations, but it still outperformed SQBF in terms of F1-score and accuracy.

(a) Banknote (b) Ibn Sina (c) Letter NvsM

Figure 3.3: Variance (IQR) of F1-Score Over 15 Replicates (λ = 1; α = 1/3).
CSQBF Results Show Smaller Variance Than SQBF.

3.4.2 Complexity Analysis

CSQBF is comparatively fast because it benefits from the computational efficiency

of RF. Furthermore, unlike SQBF it does not explore the detail class distribution of

the final nodes and despite its extra computation in pre-clustering phase, clustering is

performed only once at the beginning. One extra forest is the penalty which becomes

less important as more unlabeled data gets labeled. The time complexity of the

pre-clustering phase is O(tFN log (N)) + O(K(N −K)2) . The first term is due to

random forest complexity to calculate dissimilarities between instances in a dataset of

size N . t and F are number of trees and features used in each split respectively. The

second term is the computational complexity of PAM algorithm where K is number

of desired clusters.

49

The RF algorithm caps the complexity of the main part of CSQBF sampling pro-

cedure. In each iteration for data of size N it takes O(tFN logN) time to train an RF

model on labeled instances and get class probability predictions for unlabeled ones.

The total complexity of CSQBF would beO(tFN log (N)) + O(Niter ∗ tFN logN)

where Niter is the preset number of iterations. For large datasets, it is common to

constrain the maximum depth of trees, as done in CSQBF, to reduce the time com-

plexity of tree-based models. This reduces the RF complexity to O(N). Furthermore,

one can alternatively use CLARA [71], which draws multiple samples from the data

set, and applies PAM to each of them. The complexity of CLARA is reduced to

O(KS2 + K(N −K)), where S is the sample size at each iteration. CLARA makes

K-medoids clustering applicable to large data sets at the cost of cluster quality. There-

fore, the total time complexity of CSQBF would be O(N) + O(KS2 +K(N −K)) +

Niter ∗O(N). In general, when N � K,S,Niter complexity of CSQBF can be reduced

to O(N).

3.4.3 Sensitivity Analysis

We examined the influence of the model parameters λ and α on the algorithm’s

performance. A larger λ decreases the weight on the (unlabeled) cluster size, |Ck|,

in Eq. (3.5) and, thereby, increase the importance of cluster uncertainty. Values of

1/4, 1, and 4 were considered (other values were tested and results were similar).

Parameter α controls the portion of the unlabeled instances which are considered

in query instance selections. Values of 1/3, 2/3, and 1 were considered (we tested

other values and obtained similar results). Results for Banknote, Ibn sina and NvsM

datasets based on 15 random replicates are provided here and Fig. 3.4 illustrates the

results (other datasets showed similar patterns). We also compared CSQBF with

SQBF both having α = 2/3 since this was the value used in the winning SQBF

50

(a) Banknote (α) (b) Ibn Sina (α) (c) Letter NvsM (α)

(d) Banknote (λ) (e) Ibn Sina (λ) (f) Letter NvsM (λ)

Figure 3.4: Sensitivity Analysis Based on AUC Results With λ = 1, 1
4

and 4 on the

Top, α = 2
3
, 1

3
and 1 on the Bottom.

algorithm during the Active Learning Challenge [8]. Comparisons for α = 2/3 are

not provided here for the sake of conciseness. However, CSQBF performed similarly

better than SQBF. Note that iteration 1 results do not depend on the values of λ

and α because the algorithm initially selects the cluster medoids before computing

instance and cluster utilities.

The graphs on top of Fig. 3.4 use λ values of 1/4, 1, and 4, while α is set to 1/3.

F1-score degrades for λ = 4, especially for the Banknote and Letter NvsM datasets in

Fig. 3.4d and Fig. 3.4f respectively. This extreme value for λ illustrates that cluster

utility is affected by relative weights of uncertainty and size factor. Otherwise, the

results are not overly sensitive to λ values of 1/4 or 1. Therefore, the equally weighted

case with λ = 1 is used to explore the effects of α. The graphs on the bottom of

Fig. 3.4 use α values of 1/3, 2/3, and 1. From these figures, results degrade for α = 1

and 2
3
. Therefore, we chose α = 1

3
for all the datasets.

51

3.5 Conclusion

In this work, a new active batch learning algorithm, the Cluster-based Stochastic

Query-By-Forest, is proposed. CSQBF takes advantage of the stochastic procedure

used by SQBF [8], which is recognized for its good performance and improves upon it

by utilizing the unsupervised learning information throughout the learning process.

Pre-clustering enables CSQBF to further improve the learning process by explor-

ing the feature space and querying representative instances with a small extra cost.

Employing cluster utility reinforces diversity and density in the sampling procedure.

Moreover, CSQBF uses a robust measure for uncertainty compared to SQBF which

results in a more stable performance throughout the learning.

52

Chapter4

A DUAL MODEL AGNOSTIC STRATEGY TO

EXPLORE REPRESENTATIVENESS AND INFOR-

MATIVENESS IN ACTIVE LEARNING

4.1 Abstract

One of the learning obstacles in today’s information revolution is the large amount

of annotated data required for statistical learning. Active learning techniques have

shown promising results in accelerating the learning procedures while reducing the

cost of data annotation. Uncertainty and density-based active learning strategies

have been widely adopted separately and simultaneously for various application do-

mains. Most of the work to understand the high dimensional features spaces to be

incorporated as a density component is based on finding a set of instance clusters.

However, our understanding of high-dimensional space is not reliable due to the am-

biguity of distance in these spaces. In this paper, we propose two novel probabilistic

Query-By-Committee (QBC) algorithms that integrate classification and clustering

uncertainty into a unified measure for active learning. Although formulated differ-

ently, the novelty of the proposed strategies aside from counting for both classification

uncertainty and input space inherent ambiguity is taking advantage of the relation-

53

ship between data clusters and label structure. Our methods are naturally capable

of handling multi-class problems without using one-vs-all approaches. Test results

on several real-world datasets of different features dimension sizes and class ratios

show how combining class and cluster uncertainties can achieve significantly better

performances.

4.2 Introduction

A learning algorithm receives a set of pre-labeled training data in a typical classifi-

cation problem, and it does not contribute to the time-consuming and labor-intensive

task of data collection and annotation. Hence, training a model capable of dealing

with limited annotated data is crucial. Active learning has been a promising strategy

for when obtaining data is easy and cheap, while annotation is expensive [122]. The

main idea in active learning is that not all the data points are of equal value to a

classifier, so it is imperative to prioritize instances with more potential benefits to the

learner for the labor-intensive and tedious manual annotation. Instead of being a pas-

sive recipient of the data, the active learner determines the most beneficial instances

for classification and queries their label from the oracle.

Active learning (AL) has received a great amount of attention in different ap-

plication domains such as object recognition, recommender systems, video and im-

age classification and etiology [39, 66, 92, 132]. These approaches rely on different

heuristics and can be categorized roughly into two main groups. Uncertainty-based

approaches evaluate instances based on their ability to decrease a model’s uncertainty

in classification. The intuition behind these foremost used techniques is that the clas-

sifier should be reasonably confident about its predictions for those instances that are

relatively far from the decision boundary. Therefore, labeling less certain ones can

potentially offer more information. Informativeness in these approaches is modeled

54

using different strategies such as expected error reduction [115], variance reduction

[118] and query-by-committee (QBC) [125]. Although they are the most common

methods in the literature, uncertainty-based strategies are prone to selecting outliers,

especially at early stages when the model is not strong enough. Introducing a density

element to the query process can discourage the selection of outliers. Clustering-based

approaches, on the other hand, focus more on exploiting input data distribution either

explicitly by using clustering techniques [154] or implicitly through variance reduc-

tion methods. Many studies have developed balanced approaches combining the two

criteria of representativeness and informativeness either directly by selecting the most

representative instances among the most uncertain ones [87] or using density-weighted

approaches [100, 159]. Also, various studies have introduced a diversity element to

avoid sampling instances similar to the already labeled ones [50, 74, 153]. Work by

[74] investigates the effectiveness of density and diversity components based on several

distance metrics. Few studies in the literature have focused on using non-parametric

methods for multi-class problems while exploring informativeness and representative-

ness of data instances. Even fewer researches like [157] have taken the uncertainty

associated with our understanding of perplex high-dimensional feature space into

account.

In this paper, we propose two active learning approaches trying to achieve a good

classification performance while selecting the most useful data instances from early

on. The first main idea is to take the dependency between class distribution and

input data structure into account by transforming the problem to a label powerset

framework in multi-label classification. The idea is ruled by the well-known clus-

ter assumption in semi-supervised learning proposed by [113] which states that data

points tend to form clusters that are more likely to have matching labels. The second

proposed algorithm indirectly implements this idea by proposing a coherent and con-

55

sistent measure that unifies uncertainty and density elements for label querying. The

key idea behind this algorithm is to formulate measures for uncertainty and density

governed by same principles. The primary contribution of this work is threefold: i)

our active learning criteria in both proposed algorithms not only exploit classification

uncertainty and the underlying data structure synchronously, but also they consider

the reliability of clustering. ii) our algorithms inherently handle both binary and

multi-class problems as well as data with mixed features, iii) they are computation-

ally efficient, allowing applicability across sizable datasets.

The rest of this article is organized as follows. Section 4.3 provides background on

different active learning scenarios and justifies our query strategy design. Section 4.4

discusses the proposed two active learning algorithms. Section 4.5.1 provides details

of the experiments, and results and finally Section 4.6 concludes the study.

4.3 Background

4.3.1 Active Learning

Most early studies on AL were primarily focused on formulating instance infor-

mativeness, which measures the ability of an instance in reducing the uncertainty of

a statistical model. The main drawback of these approaches is twofold; First, at early

iterations, the instance selection scores are determined by a classifier trained only on

a small number of labeled instances. Thus, they run the risk of selecting outliers and

the labeling is susceptible to sampling bias. Second, the unsupervised knowledge of

the pool of unlabeled data, which can potentially boost the performance of super-

vised learning, is ignored [62]. Incorporating a measure for representativeness of the

underlying data structure can help to address this problem.

There has been an extensive amount of work on incorporating informativeness and

56

density into the label query process. Variance reduction approaches tacitly consider

the prior data distribution, but they usually come at high computational expenses

[123]. Studies such as [36, 57, 62, 65, 100] formulate density explicitly and benefit

from informativeness and density synchronously. A typical way to frame density is to

employ a specific clustering algorithm and evaluate the informativeness of instances

based on their similarity to cluster centroids. Although in many applications, such

as work by [21], cluster assumption (meaning data clusters have homogeneous labels)

[113] is a fair premise, the performance of these combined approaches is dependent

to the clustering quality. In other words, it is not determined how these approaches

perform under insufficiently accurate clustering. Therefore, incorporating clustering

uncertainty can potentially improve the sampling process.

4.3.2 Multi-Class Scenario

Recent work in the area of active learning rely mostly on a wide range of heuris-

tics that characterize instance informativeness based on a variety of criteria such

as prediction of variance directly [156] or indirectly using the disagreement among a

committee of classifiers [31, 94], version space of SVMs [22, 70] and expected informa-

tiveness [57, 65]. Most of these methods use SVMs and Gaussian Process classifiers,

so they are intrinsically applicable to binary class problems. Although most of the

literature has adapted these heuristics to multi-class problems by using pairwise com-

parisons between classes or one-vs-all strategies, this extension is not straightforward

and can be faulty due to the presence of multiple hyperplanes [157]. Another group

of the existing multi-class approaches deal with these problems directly [89, 157] by

using graph-based methods which are independent of the number of classes, but can

be computationally expensive for sizable datasets.

57

4.3.3 Multi-Label Classification

Unlike in multi-class problems where a single class label is assigned to each data

point, the goal in a multi-label classification problem is to learn a model that can

predict a set of labels associated with each data instance [145]. Many existing work

in this area can be categorized into two main groups: problem transformation and

algorithm adaptation approaches [111, 141]. In the problem transformation methods,

the multi-label problem is converted to one or several single-label problems so that

common classification algorithms can be applied, whereas in algorithm adaptation

approaches, well-known single-label methods are extended to adapt to multi-label

scenarios. Algorithm adaptation methods are inherently a problem transformation,

and most of their literature is focused on modifications of decision trees and Ad-

aBoost [117]. Problem transformation approaches can be further categorized into

three groups of Binary Methods (BM), Ranking Methods (RM), and Combination

Methods (CM) [111]. BM methods learn binary models for each label to be relevant

independently from the rest of the labels [88], whereas RM methods come up with

a probability distribution over all labels and the final label set is chosen based on

a predefined threshold. The CM methods, however, transform the problem into a

single-label one by creating an atomic label based on the label set for each data point

[111]. The main drawback of BM and RM methods is that they assume the labels to

be disjoint. In contrast, multi-labeled data, can consist of highly correlated classes

[47]. CM methods tackle this issue in a sense. Although creating a class imbalance

problem can be an issue in CM approaches, studies such as [111, 114] have tried to

overcome this problem by using an ensemble of CM classifiers trained on a subset

of randomly selected labels from all labels and ensemble of pruned sets respectively.

We use the idea behind combining the labels in one of our proposed algorithms (Sec-

58

tion 4.4.1). However, applying CM approaches proposed in [111, 114] directly is not

beneficial for our algorithms, since we are not solving a multi-label problem, but

rather creating a pseudo-label that accounts for density element of our AL tactics.

4.4 Methodology

In this work, we consider the cold-start AL, i.e., we assume that no labeled data

is available initially. One approach to start the label query procedure is to initialize

the labeled set L by labeling the most representative instances from the unlabeled

pool U. To do so, Random Forest Clustering (RFC) which consists of unsupervised

RF followed by the Partitioning Around Medoids(PAM) algorithm is applied to the

unlabeled set U to generate K initial clusters, where K is determined a priori and all

instances are assigned a cluster label. The outcome of this step is cluster medoids,

which are queried for labeling to form the initial labeled set. The effectiveness of this

approach is shown in several studies [30, 131]

4.4.1 Double Margin Active Learning (DMAL)

Initialization

Given the labeled and unlabeled data sets at iteration t denoted by L(t) and U(t)

respectively, the initial labeled set, L(0), consists of K cluster medoids (x1, c1), (x2,

c2), . . . (xK , cK) from the previous step where ci is the label for instance xi. In a

single-label classification setting, each instance x is assigned a single label c from

a previously known finite set of labels C. A single-label dataset D is then simply

constructed from n instances {(x1, c1), (x2, c2), . . . (xn, cn)}. We frame a multi-label

classification task where two labels are assigned to each instance: a class label c ∈ C

and a cluster label k ∈ K where C and K are finite sets of class labels and clusters

respectively. We combine the two labels and create a single-label problem simply by

59

treating the two labels, ci and ki, as an atomic label li. Therefore, the target feature

set is transformed to L = {l1, l2, . . . , ln} where li = ciki. Thus, L(0) would consists of

K cluster medoids (x1, l1), (x2, l2), . . . (xk, lk) where li is the new label.

Main Step

After the initial step, the algorithm is run iteratively for a fixed number of steps or

until a threshold is met. At each iteration t, using the available labeled data L(t), a

supervised RF model Φ(L(t)|Θ) is built where Θ is the parameter set for Φ. Class

membership probability estimates for each instance is provided by Φ and is calculated

as the proportion of trees that vote for each class. For each xu ∈ U we denote these

probabilities by P (c = j|Φ, xu) where j ∈ C. Works by [50, 66] provide illustrative

examples on how treating instance with the highest value for P (.|Φ, xu) as the most

certain instance can be misleading to the model. The intuition behind why this metric

is not always proper is that only the pick point of P (.|Φ, xu) is considered instead of

its distribution. Fig. 4.1 shows the distribution of the class membership probabilities

for two data instances. If a prediction is meant to be made, an RF model would

assign both of these instances to class 3 since it is the most likely one. However, the

model is much more confident for the case in Fig. 4.1a since the instance is much

more likely to be associated with class 3 compared to all the other classes whereas

for the case in Fig. 4.1b both classes 3 and 4 are almost equally likely.

Therefore, as a substitute for the majority of votes to characterize uncertainty, we

define margin as the difference between the first and second highest class membership

probabilities, i.e. for each xu ∈ U

M(xu) = Max
y
{P (y|Φ, xu)} − SecMax

y
{P (y|Φ, xu)}, (4.1)

where y ∈ Y is the target feature used by model Φ and SecMax(x) function obtains

60

(a) (b)

Figure 4.1: Class Probabilities of Two Data Instances: X and Y Axis Indicate the
Class Label and Class Membership Probabilities Respectively.

the second greatest value from the set of class probabilities. Next, for each xu ∈ U

two separate margins are calculated based on M(xu). First, margin of class, Mc(xu)

which denotes how confident model Φ(.) is in class label for the unlabeled instance

xu and it is defined as

Mc(xu) = Max
c
{
∑

P (l|Φ, xu)} − SecMax
c
{
∑

P (l|Φ, xu)}

= Max
c
{
∑
k

P (c, k|Φ, xu)} − SecMax
c
{
∑
k

P (c, k|Φ, xu)}
(4.2)

Subscript l in Eq. (4.2) indicates that margin is calculated based on the class prob-

abilities provided by model Φ(.) by using the new label set L instead of the original

class labels as the target feature. Second, we define margin of cluster, Mk(xu), to

account for model certainty in assigning cluster labels as follows:

Mk(xu) = Max
k
{
∑

P (l|Φ, xu)} − SecMax
k

{P (l|Φ, xu)}

= Max
k
{
∑
c

P (c, k|Φ, xu)} − SecMax
k

{
∑
c

P (c, k|Φ, xu)}
(4.3)

Intuitively, the lower the Mc for an unlabeled instance, the lower is the model cer-

tainty in labeling that instance, making that instance a more informative candidate

for the model. On the other hand, instances with higher values of Mk are better rep-

resentatives of their clusters and are less likely to be outliers. Therefore, we use these

61

two margins to define an uncertainty score for each unlabeled instance xu ∈ U. This

score accounts for density, informativeness and representativeness simultaneously and

is defined as:

U(x) = β
(
Mc(x)

)
+ (1− β)

(
1−Mk(x)

)
(4.4)

where β control the relative importance of the two margins. Now, when it comes

to selecting the query batch for the next iteration, a very natural way is to select

instances with the lowest value of U(x). However, in a batch-mode AL setting se-

lecting the most uncertain instances can cause selection of outliers and/or redundant

instances. It has been showed by various studies that using uncertainty alone can

obtain mediocre results and how adding an exploration element can boost the per-

formance [52]. Thus, we employ two tactics similar to [8, 16] to make a trade-off

between exploitation and exploration. First, we introduce parameter α as a second

filter for outliers and redundant samples. The top α proportion of the unlabeled in-

stances ordered by their U(x) value are the ones that form the label query candidate

set Q, i.e. Q = {x(1)
u , x

(2)
u , . . . , x

(α)
u , } where x

(i)
u ∈ U is the unlabeled instance that

corresponds to the ith smallest value of U(x) (Eq. (4.4)). Although, this is considered

as a less strategic approach to impose diversity, it is computationally efficient in the

case of relatively big feature spaces. Second, in order to diversify our search in the

feature space, we employ a weighted random sampling approach based on the nor-

malized values of uncertainty scores to obtain query sampling probabilities, i.e. for

each x ∈ Q

Unorm(x) =
U(x

(α)
u)− U(x)

U(x
(α)
u)− U(x

(1)
u)

(4.5)

where U(x) is the uncertainty score associated with the query candidate x and U(x
(α)
u)

and U(x
(1)
u) correspond to the highest and lowest values of U(x) for instances in Q

62

respectively. Sampling probabilities are then calculated as

Pr(x) =
Unorm(x)∑
x∈Q U

norm(x)
(4.6)

Next, labels are queried for a batch of size q < |Q| for the randomly selected

candidates based on Pr(x) probabilities. Newly labeled instances are then added to

the labeled set L and excluded from U. Model Φ is retrained, evaluated using test

data and again, all the steps above (Equations (4.1)–(4.6)) are repeated iteratively

until all instances are labeled (i.e. U = ∅), or a stopping criterion is met. Algorithm 2

summarizes the DMAL algorithm.

Algorithm 2 Double Margin Active Learning (DMAL)

1: D(x) = {dist(xi, xj)|xi, xj ∈ U} . Obtain RF dissimilarity matrix

2: l = 1 . Initialization

3: PAM ← {D(X), K} . Implement PAM to partition the data into K clusters

4: L(0) = QueryClusterMedoids

5: for t: 0 to T do

6: ∀x ∈ L(t) : l′i = li, ci . Create new labels based on class and cluster labels

7: Construct Φ(t)(L(t)|Θ) . Build RF classifier

8: Evaluate model Φ(t) on the test set . Calculate F1 score

9: for xu ∈ U do

10: Compute Mc(xu) . Class uncertainty (Eq. (4.2))

11: Compute Mk(xu) . Cluster uncertainty (Eq. (4.3))

12: Compute U(x) . Compute instance uncertainty score (Eq. (4.4))

13: end for

14: QueryLabels(x ∈ Q|Pr(x)) . (Eq. (4.6))

15: L(t) → L(t+1) & U(t) → U(t+1) . Adjust labeled and unlabeled sets

16: end for

63

4.4.2 Cluster Agnostic Active Learning (CAAL)

Initialization

Similar to DMAL initialization step, the data is clustered into K groups and the

initial labeled set L(0) is formed based on cluster medoids. The next step is to calcu-

late cluster margins. In order to do so, the problem is transformed to a supervised

learning model where the data features are used to predict the cluster label obtained

earlier. The cluster membership probabilities are then simply estimated by making a

prediction for unlabeled instances. We denote these probabilities by P (k = j|Ψ, xu)

for each xu ∈ U where j ∈ {1, 2, . . . K}.

Main Step

After the initial step the algorithm is run iteratively for a fixed number of steps or

until a threshold is met. Following [8], we increase the batch size exponentially until

the whole unlabeled set is labeled. Therefore, our main focus here is to accelerate

learning which is equivalent to querying fewer labels. At each iteration t, using the

available labeled data L(t), a supervised RF model, Φ, is built consisting of T trees.

Class membership probability estimates for each instance is provided by RF and is

calculated as the proportion of trees that vote for each class. For each xu ∈ U we

denote these probabilities by P (c = j|Φ, xu) for each xu ∈ U where j ∈ C. Margins

of class and clustering are then calculated by

Mc(xu) = Max
c
{P (c|Φ, xu)} − SecMax

y
{P (c|Φ, xu)} (4.7)

Mk(xu) = Max
k
{P (k|Ψ, xu)} − SecMax

y
{P (k|Ψ, xu)} (4.8)

Next, similar to DMAL the utility scores are calculated for instances of U, the can-

didate set Q is formed and labels are queried for the selected instances based on

64

selection probabilities.

Algorithm 3 Cluster Agnostic Active Learning (CAAL)

1: D(x) = {dist(xi, xj)|xi, xj ∈ U} . Obtain RF dissimilarity matrix

2: l = 1 . Initialization

3: PAM ← {D(X), K} . Partition the data into K clusters

4: Construct Ψ(L ∪ U|Θ′) and Mk(xu)∀x ∈ U

5: L(0) = QueryClusterMedoids

6: for t: 0 to T do

7: Construct Φ(t)(L(t)|Θ) . Build RF classifier

8: Evaluate model Φ(t) on the test set

9: for each xu ∈ U do

10: Compute Mc(xu) . Compute Class uncertainty (Eq. (4.7))

11: Compute Mk(xu) . Cluster uncertainty (Eq. (4.8))

12: Compute U(x) . Compute instance uncertainty score (Eq. (4.4))

13: end for

14: Construct candidate set Q

15: QueryLabels(x ∈ Q|Pr(x)) . (Eq. (4.6))

16: L(t) → L(t+1) & U(t) → U(t+1) . Adjust labeled and unlabeled sets

17: end for

4.5 Experiments and Results

In this section, we investigate the effectiveness of the CAAL algorithm on several

binary and multi-class datasets of different sizes. We also compare the performance

of CAAL and DMAL with the following baseline approaches:

• DMAL Double Margin Active Learning described in Section 4.4.1

65

• CSQBF Cluster-based Stochastic Query by Forest (CSQBF) algorithm de-

scribed in Chapter 3

• MUDD IMP Improved version of Maximizing Uncertainty, Density and Di-

versity by [50]

Similar to the proposed methods, CSQBF characterizes uncertainty based on classifi-

cation margins, and ensures sampling from all clusters. The main point of difference

between CAAL and CSQBF is that CAAL does not adhere rigidly to the clusters,

yet it still explores the features space. For fair comparisons, we modified the MUDD

approach to provide it with the same initial labeled set consisting of cluster medoids.

We call this improved version MUDD IMP.

4.5.1 Experimental Settings

Following [8], we assume that the batch sizes increase exponentially over 15 iter-

ations until all the labels are queried. This is equivalent to assuming that labeling is

more expensive at the beginning. Alternatively, a fixed batch size or budget can be

considered similar to works by [61, 128]. We chose Macro-Averaged F1-score as the

measure of comparison. The F1-score is the harmonic mean of precision and recall

[133] and is suitable substitute for AUC in multi-class AL problems [110, 128]. In

macro-averaging, first for each class the F1-score is computed against all the others

and then the average over all classes is taken, i.e., if ρi and πi are precision and recall

for each class i then:

Fi =
2πiρi

ρi + πi
, F1-score =

C∑
i=1

Fi

C
(4.9)

where C = |C| is total number of classes. Since F1-score gives equal weight to

all classes, it is more influenced by the classifier’s performance on rare categories

66

[103]. Therefore, it does not have the limitation of accuracy for imbalanced datasets.

Regardless, we provide the results based on accuracy measure as well. We split the

data randomly into two halves for those datasets that do not have a separate train

and test splits. RF classifier consisting of 700 fully grown trees was used, and to

account for class imbalance, we use stratified sampling in the RF bagging process.

Since the DMAL algorithm creates a new set of labels, L, it would initially need at

least one instance from each new class. In other words, from each cluster, at least

one instance from the original class categories should exist in the initial labeled set

L(0). Although, this is not a requirement for CAAL and CSQBF algorithms, the same

L(0) is provided to them for fair comparisons. Our experiments show that the initial

labeled set plays a great role in AL algorithms performance. Therefore, for the sake

of comparisons, it is critical to use the same L(0) for all algorithms.

Several public real-world datasets (summarized in Table 4.1) were used to com-

pare the performance of CAAL against the aforementioned algorithms. Ibn Sina is

one of the dataset used in AISTATS 2010 Active Learning Challenge [53]. MNIST35

is a subset of the well-known MNIST handwritten digit data [79] which includes only

images for numbers 3 and 5. Twitter dataset, is annotated Twitter data by cyber-

bullying experts in work by [151]. In order to show the severeness of cyberbullying,

they annotated a sample of 990 tweets from the publicly available 2011 TREC Mi-

croblog track corpus and roughly estimated that 50,000 English bullying traces are

produced daily. Since following bullying traces among millions of tweets is a hard

(and probably impossible) task, they created and enriched dataset which is obtained

by collecting tweets that contain at least one of the ”bully”, ”bullied”, and ”bullying”

keywords from the public Twitter streaming API. They further removed re-tweets by

excluding those that include the acronym ”RT”. They also note that the enrichment

process is meant to retain many first-hand bullying traces at the cost of selection

67

bias. The same annotators who labeled the TREC corpus labeled 1762 tweets sam-

pled uniformly from the enriched dataset. Among them, 684 (39%) were labeled as

bullying traces.

Table 4.1: Test Datasets

Dataset Train Test Features Classes Min %

Banknote 686 686 4 2 23.52 %

Car 864 864 62 2 44.46%

Coil2000 4911 4911 85 2 5.97 %

EEG 7490 7490 14 2 44.88%

Ibn Sina 10361 10361 92 2 37.84%

Letter 10000 10000 16 26 3.67%

Letter NvsM 788 787 16 2 49.71%

Letter OQG 1155 1154 16 3 32.61%

Letter TIL 1156 1156 16 3 32.61%

Letter VvsY 788 787 16 2 49.71%

Mamo 415 415 5 4 3.76 %

MNIST35 5776 5776 784 2 46.93%

Mushroom 4062 4062 22 2 48.20%

Nursery 6479 6479 8 2 48.55%

Occupancy 10280 10280 5 2 2.53 %

OptDigits 3823 1797 64 2 9.86%

Pen 7494 3498 16 10 9.6%

Segmentation 1155 1155 19 7 14.29%

Spambase 2300 2301 57 2 39.40%

Transfusion 374 374 4 2 23.80%

Twitter 490 123 292 2 44.7%

USPS 7291 2007 256 10 7.61%

Vehicle 423 423 18 4 32.65 %

As per terms of services of Twitter, the original labeled tweets are not included

68

in the dataset used by [151] which is publicly available at [1] so, the original tweets

were crawled through Twitter API (using ”tweepy” python package) by the tweet

ids that are available online at [1]. By the time we crawled the data, some of the

tweets were no longer available probably due to deletion by their owners (obtained

only 1092 out of 1762 original labeled tweets). After the non-English tweets were

discarded (resulting in 613 tweets), the tweets were case-folded, English stopwords

and excessive punctuations were removed, and any user mentions preceded by a ”@”

were replaced by the anonymized user name @USER. Any URLs starting with ”http”

were replaced by the token ”URL”. Hashtags were also replaced by ”#HASHTAG”.

Moreover, based on our experiments, all the single-character words were removed

since they may not carry any meaning and are used differently by users. Some of

such words are used as a substitute for English stopwords such as ”and” that appears

as ”n” or ”the” that shows up as ”d”.

We used unigrams and bigrams (which would automatically include the number

of hashtags as well as referred users and websites since we treated them as tokens),

number of words, and length of the tweet as the textual features. This process

created over 6000 features. We used the frequency threshold of 5 to choose the final

set of bigrams and unigrams and discarded those tokens that did not have enough

occurrences among all the tweets. This reduced the number of features to 291. The

rest of the test datasets were obtained from the UCI Machine Learning Repository

[33]. Note that LetterOQG, LetterTIL, Letter NvsM and Letter VvsY are subsets of

the Letter dataset that include the corresponding letters only. Figure 4.2 shows the

F1-scores learning curves over 11 iterations. Each point on the curves represents the

average of 15 F1-scores, each from one replicate. Since MUDD IMP uses Euclidean

distance to calculate diversity and density, it cannot be applied to the datasets with

categorical features. Therefore, for those datasets, we only provided the comparison

69

of CAAL, DMAL and CSQBF algorithms. As Fig. 4.2 shows CAAL and DMAL

outperform CSQBF and MUDD IMP for most cases.

In terms of consistency in performance, CAAL and DMAL show very competitive

performances with CSQBF, which had lower variances than SQBF for most of the

datasets. Figure 4.3 illustrates the distribution of F1-scores throughout the iterations.

Each box is based on 15 replicates. It is clear that CAAL and DMAL have relatively

low variances from the early iterations.

We also calculated the relative Area under the Learning Curves (ALC) as used

in the AL challenge [53] for comparisons which specifies the percentage of ALC de-

scribed by that method compared to the best learning curve possible. ALC values

were calculated based on a log 2 scaling for the x-axis (number of labeled instances) to

favor good performances at early iterations [53]. Tukey’s pair-wise test at 95% level of

significance was conducted to compare the average ALC values of CAAL and DMAL

against CSQBF and MUDD IMP. As Table 4.2 shows, CAAL and DMAL produce

significantly better results in terms of average ALC and average rank compared to

CSQBF and MUDD IMP. CAAL achieved the best average results with 0.8423 aver-

age ALC and 1.5652 average rank. The ALC values for MUDD IMP have left empty

in case of data with categorical features.

It is worth mentioning that one of the main drawback of CM-based methods in

multi-label classification problems is that they might create a large number of distinct

label combinations while each combination is only associated with a few instances,

i.e. the can create a class-imbalanced problem. Although, DMAL resembles a CM

approach, the number of possible labels does not scale exponentially with the number

of class labels because of two reasons. First, unlike a typical CM problem, during

DMAL only two labels are assigned to each instance: class and cluster. Second, in

many semi-supervised studies it is a fair assumption that the number of clusters is

70

(a) Banknote (b) Car (c) Coil2000 (d) EEG (e) Ibn Sina

(f) Letter (g) LetterNvsM (h) LetterOQG (i) LetterTIL (j) LetterV vsY

(k) Mamo (l) MNIST35 (m) Mushroom (n) Nursuery (o) Occupancy

(p) OptDigits (q) Pen (r) Segmentation (s) Spambase (t) Transfusion

(u) Twitter (v) USPS (w) V ehicle

Figure 4.2: F1-Score Learning Curves for CAAL(β = 1/2), DMAL, CSQBF and
MUDD IMP. Color Legend: CAAL (Solid Blue), DMAL (Dashed Purple), CSQBF
(Dashed Yellow) and MUDD IMP (Dashed Orange). See the Color Version for the
Best View.

71

(a) Banknote (b) Car (c) Coil2000 (d) EEG (e) Ibn Sina

(f) Letter (g) LetterOQG (h) LetterOQG (i) LetterNvsM (j) LetterV vsY

(k) Mamo (l) MNIST35 (m) Mushroom (n) Nursuery (o) Occupancy

(p) OptDigits (q) Pen (r) Segmentation (s) Spambase (t) Transfusion

(u) Twitter (v) USPS (w) V ehicle

Figure 4.3: Distributions of F1 Scores for CAAL, DMAL, CSQBF and MUDD IMP
Algorithms. (β = 1/2 for Both CAAL and DMAL). Color Legend: CAAL (Green),
DMAL (Orange), CSQBF (Purple) and MUDD IMP (Yellow). See Color Version for
the Best View.

72

not extremely high.

In order to understand the effect of β parameters, we further calculated the

ALC for both CAAL and DMAL algorithms under multiple settings of β. Since

Mc(x),Mk(x) ≤ 1, we chose β and 1 − β to control the relative importance of un-

certainty and density. Table 4.3 and Table 4.4 illustrate the average ALC for several

values of β. For each datasets, numbers in parentheses are the ranking of each β

among all the β values for that datasets. Based on Table 4.3, although β = 1/3

has the best average rank followed by β = 2/3 and β = 1, the best average ALC

is achieved by β = 1/3. Results for the DMAL presented in Table 4.4 indicate that

β = 1/2 and β = 1 have the best average ranks, but β = 1/2 wins in terms of average

ALC. One-factor ANOVA and Tukey’s tests at a 95% significance level on ALC values

showed that only ALC values corresponding to β = 0 are significantly lower than the

other ones.

4.6 Conclusion

Uncertainty and density-based approaches have been widely adopted individually

and simultaneously for active learning problems. However, understanding the high

dimensional input data structure is associated with uncertainty, and only a few studies

have developed efficient non-parametric methods to incorporate this uncertainty into

label query process explicitly. In this study, we proposed two probabilistic query-by-

committee frameworks that take both classification and clustering uncertainty into

account at the same time that they benefit from the efficiency of random forest.

Moreover, our methodologies are naturally capable of handling multi-class problems

without using one-vs-all strategies that are used in other active learning approaches.

We tested the proposed algorithms on several real-world datasets of different features

dimension sizes and class ratios. Our test results on both algorithms show that

73

considering the clustering uncertainty can improve the learning process significantly.

74

Table 4.2: ALC for Average F1-Score Curves by CAAL, DMAL, CSQBF, and
MUDD IMP Algorithms. Numbers in Parentheses Are the Rankings Based on the
Other ALC Scores for the Corresponding Dataset.

Data CAAL CSQBF DMAL MUDD IMP

Banknote 0.9518 (1) 0.9199 (4) 0.9483 (2) 0.9381 (3)

Car 0.6741 (2) 0.6533 (3) 0.677 (1) -

Coil2000 0.5425 (2) 0.5343 (3) 0.5455 (1) 0.5193 (4)

EEG 0.7177 (1) 0.7063 (4) 0.7129 (2) 0.7124 (3)

Ibn Sina 0.9413 (1) 0.927 (2) 0.8955 (4) 0.9226 (3)

Letter 0.8305 (1) 0.7877 (3) 0.8262 (2) 0.7818 (4)

Letter NvsM 0.9542 (1) 0.931 (4) 0.9513 (2) 0.9494 (3)

Letter OQG 0.8764 (1) 0.8545 (4) 0.8761 (2) 0.8585 (3)

Letter TIL 0.9602 (1) 0.9318 (4) 0.957 (2) 0.9464 (3)

Letter VvsY 0.9596 (1) 0.9454 (4) 0.9576 (2) 0.9561 (3)

Mamo 0.8312 (2) 0.8176 (3) 0.8325 (1) -

MNIST35 0.9325 (1) 0.9141 (4) 0.9312 (2) 0.9165 (3)

Mushroom 0.9857 (1) 0.9746 (3) 0.9846 (2) -

Nursery 0.7746 (2) 0.7644 (3) 0.7915 (1) -

Occupancy 0.9768 (2) 0.9738 (3) 0.9769 (1) 0.971 (4)

Optdigits 0.9334 (2) 0.9178 (4) 0.9342 (1) 0.9197 (3)

Pen 0.9187 (1) 0.8906 (3) 0.9167 (2) 0.8649 (4)

Segmentation 0.9289 (3) 0.9123 (4) 0.9358 (1) 0.9294 (2)

Spambase 0.909 (2) 0.8922 (4) 0.9085 (3) 0.909 (1)

Transfusion 0.6155 (2) 0.6011 (4) 0.6175 (1) 0.6028 (3)

Twitter 0.6331 (2) 0.6319 (3) 0.6344 (1) 0.625 (4)

USPS 0.8649 (2) 0.8471 (4) 0.8671 (1) 0.8474 (3)

Vehicle 0.6605 (2) 0.6464 (4) 0.6606 (1) 0.658 (3)

Average ALC 0.8423 0.825 0.8408 0.8331

Average Rank 1.5652 3.5217 1.6522 3.2609

Group A B A B

* Average ALC values of algorithms from the same group are not significantly different
based on Tukey’s pair-wised at 95% level of significance.

75

Table 4.3: ALC for Average F1-Scores Curve by Several Weight Parameters for the
CAAL Algorithm. Numbers in Parentheses Are the Rankings Based on the Other
ALC Scores for the Corresponding Dataset.

Data
β

1 2/3 1/2 1/3 0

Banknote 0.9538 (1) 0.9528 (2) 0.9517 (3) 0.9485 (4) 0.8971 (5)

Car 0.6848 (1) 0.6816 (2) 0.6742 (4) 0.6756 (3) 0.6527 (5)

Coil2000 0.5469 (1) 0.5441 (2) 0.5427 (3) 0.5413 (4) 0.5386 (5)

EEG 0.7173 (3) 0.72 (1) 0.7174 (2) 0.7167 (4) 0.6926 (5)

Ibn Sina 0.9437 (1) 0.9431 (2) 0.9412 (4) 0.9413 (3) 0.91 (5)

Letter 0.8328 (3) 0.8335 (2) 0.8304 (4) 0.8837 (1) 0.7865 (5)

Letter NvsM 0.9551 (1) 0.9524 (3) 0.9545 (2) 0.9519 (4) 0.9259 (5)

Letter OQG 0.8784 (1) 0.8773 (2) 0.877 (3) 0.8689 (4) 0.8296 (5)

Letter TIL 0.9628 (1) 0.9616 (2) 0.9601 (3) 0.9581 (4) 0.9288 (5)

Letter VvsY 0.9612 (1) 0.9607 (2) 0.9596 (3) 0.9577 (4) 0.9392 (5)

Mamo 0.8304 (2) 0.8292 (4) 0.8312 (1) 0.8293 (3) 0.828 (5)

MNIST35 0.9331 (1) 0.9314 (3) 0.9326 (2) 0.9286 (4) 0.9 (5)

Mushroom 0.9864 (2) 0.9864 (1) 0.9858 (3) 0.981 (4) 0.9671 (5)

Nursery 0.7709 (4) 0.7709 (3) 0.7739 (2) 0.774 (1) 0.7682 (5)

Occupancy 0.9777 (1) 0.9774 (2) 0.9773 (3) 0.9769 (4) 0.9656 (5)

Optdigits 0.9345 (1) 0.9338 (2) 0.9334 (3) 0.9254 (4) 0.89 (5)

Pen 0.9161 (3) 0.9173 (2) 0.918 (1) 0.9156 (4) 0.8467 (5)

Segmentation 0.9281 (4) 0.9284 (2) 0.9286 (1) 0.9284 (3) 0.8978 (5)

Spambase 0.909 (2) 0.9118 (1) 0.9085 (3) 0.9054 (4) 0.8807 (5)

Transfusion 0.6161 (2) 0.6116 (4) 0.6153 (3) 0.6172 (1) 0.601 (5)

Twitter 0.6195 (5) 0.6358 (3) 0.6329 (4) 0.6417 (2) 0.645 (1)

Vehicle 0.6605 (1) 0.6548 (4) 0.6583 (2) 0.6556 (3) 0.6314 (5)

USPS 0.8605 (4) 0.8632 (3) 0.865 (2) 0.8665 (1) 0.8246 (5)

Average ALC 0.8426 0.8426 0.8422 0.843 0.8151

Average Rank 2 2.3478 2.6522 3.1739 4.8261

* Tukey’s pair-wised test only shows a significance difference between average ALC values of
β = 0 and the rest of combinations at 95% level of significance.

76

Table 4.4: ALC for Average F1-Scores Curve by Several Weight Parameters for the
DMAL Algorithm. Numbers in Parentheses Are the Rankings Based on the Other
ALC Scores for the Corresponding Dataset.

Data
β

1 2/3 1/2 1/3 0

Banknote 0.9521 (1) 0.9516 (2) 0.95 (3) 0.942 (4) 0.9122 (5)

Car 0.6632 (5) 0.6681 (4) 0.6766 (2) 0.6757 (3) 0.6983 (1)

Coil2000 0.5437 (3) 0.5452 (2) 0.5464 (1) 0.5397 (4) 0.536 (5)

EEG 0.7136 (1) 0.7133 (3) 0.7107 (4) 0.7133 (2) 0.6962 (5)

Ibn Sina 0.8946 (4) 0.8916 (5) 0.8961 (3) 0.9057 (2) 0.9219 (1)

Letter 0.8324 (2) 0.8301 (3) 0.8266 (4) 0.8743 (1) 0.7515 (5)

Letter NvsM 0.9525 (1) 0.9522 (2) 0.9505 (3) 0.9452 (4) 0.9238 (5)

Letter OQG 0.8798 (1) 0.8744 (3) 0.8755 (2) 0.8625 (4) 0.8281 (5)

Letter TIL 0.9568 (2) 0.9564 (3) 0.958 (1) 0.9493 (4) 0.9194 (5)

Letter VvsY 0.9617 (1) 0.9584 (2) 0.9559 (3) 0.9525 (4) 0.9407 (5)

Mamo 0.8323 (2) 0.8309 (3) 0.833 (1) 0.8289 (4) 0.8271 (5)

MNIST35 0.9308 (1) 0.9297 (2) 0.9288 (4) 0.9294 (3) 0.9078 (5)

Mushroom 0.9852 (3) 0.9863 (1) 0.9855 (2) 0.9813 (4) 0.966 (5)

Nursery 0.7913 (2) 0.7898 (3) 0.7921 (1) 0.7891 (4) 0.7733 (5)

Occupancy 0.9779 (1) 0.9766 (3) 0.9766 (2) 0.9722 (4) 0.962 (5)

Optdigits 0.9349 (2) 0.9371 (1) 0.9349 (3) 0.9316 (4) 0.9105 (5)

Pen 0.9191 (1) 0.9178 (3) 0.9179 (2) 0.9156 (4) 0.8762 (5)

Segmentation 0.9357 (2) 0.9334 (3) 0.9358 (1) 0.9334 (4) 0.9158 (5)

Spambase 0.9106 (1) 0.9091 (3) 0.9091 (2) 0.9082 (4) 0.8901 (5)

Transfusion 0.6167 (3) 0.6196 (1) 0.6181 (2) 0.6114 (4) 0.5955 (5)

Twitter 0.6335 (4) 0.6388 (3) 0.6429 (1) 0.6412 (2) 0.6315 (5)

Vehicle 0.6541 (3) 0.6565 (2) 0.657 (1) 0.6455 (4) 0.6272 (5)

USPS 0.8675 (3) 0.8678 (2) 0.8692 (1) 0.8669 (4) 0.8383 (5)

Average ALC 0.8409 0.8406 0.8412 0.8398 0.8195

Average Rank 2.1304 2.5652 2.1304 3.5217 4.6522

* Tukey’s pair-wised test only shows a significance difference between average ALC values of
β = 0 and the rest of combinations at 95% level of significance.

77

Chapter5

ADAPTIVE ACTIVE LEARNING

5.1 Abstract

Most state-of-the-art active learning methodologies are designed to take both clas-

sification uncertainty and data density into account. However, they usually ignore the

fact that the balance between these two factors needs to be dynamically adapted as the

active learning proceeds. We address this challenge by presenting two novel methods

to adaptively make an equilibrium between uncertainty and density in active learn-

ing. Our first algorithm, KF-RB, assumes the relationship between the uncertainty-

density trade-off and active learner’s feedback follows a time-varying model. KF-RB

uses a restless multi-armed bandit framework to learn this relationship. Our second

algorithm, RAFO, extends KF-RB by assuming a smooth function over a continuous

action space instead of discretizing it in the form of bandit arms. RAFO benefits

from a Gaussian process Bayesian optimization framework with a smooth forgetting

property that allows for modeling a time-varying relationship between the learner’s

performance and the uncertainty-density trade-off. We illustrate the performance of

both proposed algorithms on real data, and argue that the dynamic balance provided

by both algorithms makes them perform favorably compared to the alternatives.

78

5.2 Introduction

Machine learning models often require a considerable amount of annotated (la-

beled) data to reach their full potential. However, obtaining annotation can be time-

consuming and expensive, notably in specialized domains where only experts can pro-

vide reliable labels [122]. Active learning (AL) aims to facilitate the data annotation

process by automatically selecting data instances that seem to benefit the learning

model the most. This is usually accomplished with a sequential process. Starting with

an initial set of labeled instances a model is trained and then, sequentially, additional

instances are queried, labeled, and the model is updated.

The majority of AL strategies are exploitative (uncertainty-based), explorative

(density-based), or a combination of both. Exploitation in this context refers to the

utilization of a trained classifier using the currently annotated data, and involves

querying instances whose label is expected to maximally reduce model’s uncertainty

of the label of other instances. Exploration, on the other hand, focuses on the selection

of instances that better represent the predictive data. Integration of the two criteria

has also been studied extensively in the AL literature. This integration is done in

various ways that are either implicit through variance reduction strategies, or explicit

by involving a clustering technique. Although many of the combined strategies are

shown to outperform the single-criterion ones, they often fail to adaptively make

a balance between exploitation and exploration criteria throughout the sequential

AL process. In this paper, we show how this adaptation benefits the AL process.

Specifically, we propose two new approaches that learn to adjust the trade-off between

uncertainty and density factors in the sequential process.

One of the tools that capture the essence of the conflict between exploitation and

exploration and the dilemma to make a balance between them is Multi-Armed Bandit

79

(MAB), originally proposed by [138], where at each round of play, a gambler chooses

among K slot machines and receives a reward. The goal in MAB is to maximize the

expected reward over a time horizon. In the first proposed approach, we construct

an MAB learning agent, separate from the active learner, to learn how to make a

balance between uncertainty and density which are the exploitation and exploration

modules in an AL schema. In this framework, each arm corresponds to a different

value for the uncertainty-density trade-off parameter. We utilize a member of the

MAB family, Restless Multi-Armed Bandits (RMAB) [149], where temporal changes

of the relationship between uncertainty-density and learner’s feedback are captured.

This choice, as opposed to a traditional MAB is more principled since a specific trade-

off value affects the active learner differently when used at different time points of the

learning process. Our developed algorithm, KF-RB, learns this RMAB using a linear

dynamical mechanism in the state-space format and follows the stochastic procedure

of Thompson sampling (TS) [138] to choose arms according to the probability that

they provide the maximum reward.

The second proposed algorithm extends KF-RB by assuming a smooth reward

function defined over a continuous action space as opposed to the discrete bandit

setting in KF-RB. We develop the Reinforced Active Forest (RAFO) by constructing

a sequential Bayesian optimization (BO) problem with bandit feedback, adopting a

formulation that allows for the reward function to vary with time. BO is a global

optimization technique used to find the maximum of an unknown function that is

costly to evaluate, or lacks gradient information [93]. To predict this function, BO

assumes a prior, usually in a form of a Gaussian process (GP), over the space of

functions and sequentially combines it with action-reward observations. GP is a

flexible and powerful approach to Bayesian optimization problems since it benefits

from a closed-form posterior in the inference process [76]. To be congruous with

80

the time-varying reward analogy of KF-RB, we model the reward function using a

variant of GP that captures the temporal changes of the reward functions by forgetting

older action-reward observations in a smooth fashion. Our experiments illustrate the

effectiveness of the two adaptive approaches on accelerating the learning process using

real-world datasets.

Note that in AL language, the exploitation and exploration terms are sometimes

used interchangeably with uncertainty and density (or informativeness and represen-

tativeness), respectively. In this paper, we use these terms in the context of dynamic

modeling as well.

The layout of the rest of the paper is as follows. Section 5.3 provides a background

on the literature of AL and the current approaches for adaptive AL. We also provide

a background on RMAB and GP bandit optimization. Section 5.4 fully explains the

two proposed methodologies. Section 5.5 explains the experiments in detail and illus-

trate the outperformance of the proposed methodologies over alternatives. Finally,

conclusions are presented in Section 5.6.

5.3 Background

The importance of integrating uncertainty and density in AL has been extensively

studied [17, 36, 57, 62, 65, 100, 154]. This integration can be done in various ways.

Variance reduction approaches, such as work by [118], explored the input data space

implicitly while querying uncertain instances, whereas [154] combined the two crite-

ria explicitly by involving a clustering technique. Among the explicit approaches, a

weighted combination of the two criteria has been used by a few studies [17, 74, 82].

Utilization of most clustering methods requires selection of a distance measure, and it

is commonly assumed that data can be clustered into several groups, where instances

share a common label. Although studies have shown the effectiveness of this cluster

81

assumption in AL [100, 113], the ambiguity of semi-supervised methods (where we

need to learn from partially labeled data sets) persists due to the lack of ground

truth about data labels and incapability of evaluating clustering quality with high

certainty. Furthermore, the notion of distance in three-dimensional world does not

necessarily apply in high-dimensional spaces [35]. Points in higher dimensions tend to

be equally-distanced from each other, since beyond some dimensionality most of them

are closer to the surface of their hypercube other than being scattered throughout a

whole volume [35]. This ambiguates our understanding of these spaces and makes the

distinction between high-dimensional data points almost meaningless, especially if we

define dissimilarity based on three-dimensional measures such as Euclidean distance.

Work by [45] proposed a new strategy to tackle this problem. Their algorithm, Cluster

Agnostic Active Learning (CAAL), characterizes density by assuming a fuzzy clus-

tering structure using unsupervised Random Forest distance [14]. They then define

cluster uncertainties to represent density, which are then combined with classification

uncertainties to score unlabeled instances for label query. More specifically, at each

time step t, a supervised model (Φ(t)) is trained using the available labeled dataset

L(t). For each instance in the current unlabeled pool, xu ∈ U (t), classification and

clustering scores are defined using Eq. (5.1) and Eq. (5.2), respectively. That is,

Mc(xu) = Max
c
{P (c|Φ(t), xu)} − SecMax

y
{P (c|Φ(t), xu)} (5.1)

Mk(xu) = Max
k
{P (k|Ψ, xu)} − SecMax

y
{P (k|Ψ, xu)} (5.2)

where SecMax(.) function finds the second greatest value, and Ψ represents a sep-

arate supervised model used to learn the association between features and cluster

assignments as defined in [45]. Mc(x) and 1 − Mk(x) represent the classification

and clustering uncertainties, respectively. These scores are then combined to form a

82

utilization score to evaluate unlabeled instances:

U(x) = β
(
Mc(x)

)
+ (1− β)

(
1−Mk(x)

)
(5.3)

Parameter 0 ≤ β ≤ 1 in Eq. (5.3) controls the relative importance of the two

factors which is held constant throughout the AL process in [45]. Therefore, it does

not reflect the dynamic nature of the uncertainty-density trade-off as more instances

get labeled. We use the AL procedure of CAAL, but instead, explore feedback-driven

approaches to select the trade-off parameter β adaptively.

The conflict between exploitation (choosing best actions based on the current

knowledge) and exploration (trying other actions to obtain more information on the

environment) and the dilemma to make a balance between them is a well-known

problem in multi-armed bandit, reinforcement learning and other areas of artificial

intelligence [48]. In AL, this dilemma is translated to balancing uncertainty and

density, since the former is concerned with the exploitation of the classifier predictions,

whereas the latter explores different areas of the feature space.

As a resource allocation model, MAB lends itself naturally to the AL problems,

and several prior works have drawn different analogies between AL and MAB. One

analogy is that MAB can help the AL algorithm to combine uncertainty and den-

sity in a dynamic fashion. Among AL query strategies that propose ways to make

a trade-off between uncertainty and density, very few have focused on the fact that

relative importance of uncertainty and density evolves as AL progresses. Work by

[82] proposed an adaptive AL framework that dynamically reweighs uncertainty and

density by selecting the trade-off parameter from a predefined set such that the ex-

pected generalization error of the classifier is minimized. Other than being compu-

tationally expensive for multi-class scenarios, the drawback of this approach is its

short-sightedness as it is affected by model fluctuations, and the fact that it does

83

not learn any stable long-run strategy. Work by [36] monitors the average expected

error and increases the weight of density once changes in uncertainty start to de-

crease. The main drawback of this approach is that the cross-over point for switching

from uncertainty to density is held constant throughout their AL process. Studies

by [23, 38, 102] used the feedback from the classifier to guide the selection of the

trade-off parameter in the subsequent rounds. Although their method benefits the

current model, it is myopic in a sense that it does not adopt a long-run strategy.

Another analogy between AL and MAB (not discussed in this work) is that AL

algorithms can show different performances across different problems. Therefore,

similar to an MAB framework, one can create a master strategy where each arm

corresponds to a different AL strategy. Although this does not immediately provide

a solution for creating the ensemble of active learners, works by [6, 43, 60] developed

AL master algorithms using known MAB approaches to blend multiple AL strategies.

The idea behind their work is that some AL strategies perform better early on, tak-

ing better advantage of the data unsupervised knowledge while some other excel at

later iterations. Therefore, one can switch between these strategies to perform well

in the long-run. For example, [6] used the adversarial MAB framework, originally

proposed by [5], to combine active learners. Each learner (arm) is assigned a weight

that is updated iteratively based on its performance. Instances are then queried ran-

domly according to the weighted combination of scores provided by the learners. In

a similar work, [38] proposed a Markov decision process (MDP) where AL strategies

are treated as states, and actions are discrete values which determine the probabil-

ities of staying in or switching between the states. Although they use a model-free

method (Q-learning) to learn their MDP, the interpretation of their approach is not

straightforward as several actions result in the same state. Moreover, their limited

experimental results (both in terms of the number of states and tested datasets) make

84

it hard to draw a conclusion on their approach.

The first contribution of this paper is an adaptive strategy to select the trade-off

parameter between uncertainty and density in a timely manner using an extension

of the traditional MAB, namely the RMAB. Introduced by [149], RMAB assumes

a decision-maker chooses an action a(t) ∈ A and receives a reward r(t) that follows

a time-varying distribution. Similar to other learning processes, reward can only be

observed by taking an action, and the goal is to learn an optimal strategy to maximize

the cumulative reward. This framework, due to its non-stationary nature, is able to

model more complex systems, and has gained more attention recently in various fields

[67, 96, 134] including AL [104]. RMAB, as opposed to traditional MAB, provides a

more realistic modeling approach for balancing uncertainty and density in AL, since

a specific trade-off value can make the active learner behave differently when used

at different iterations of the learning process. For instance, giving more weight to

density can be more advantageous at the beginning when the classifier is trained on a

limited amount of data, whereas in later iterations, uncertainty can be more beneficial

to fine-tune the classification model.

To learn the dynamics of the proposed RMAB model, we use Kalman filter [68]

which dynamically updates the rewards associated with each bandit arm. Kalman

filter has been previously used as a learning module for MAB problems in domains

other than AL [49, 54, 146]. For example, [49] proposed the Kalman Filter-Multi

Armed Normal Bandit algorithm (KF-MANB), which builds a Bayesian framework

to track better actions as changes occur over time and to update hyper-parameters

of the reward distribution in a tractable manner. At each time step, one arm is

chosen according to the probability that it provides the maximum reward. This is

known as probability matching or Thompson sampling (TS) which is often easy to

implement and is known to perform well in practice [18, 120]. We take advantage

85

of the good empirical performance of KF-MANB algorithm as a subroutine in the

CAAL algorithm to introduce our first adaptive AL algorithm, namely the KF-RB.

A natural generalization to the MAB problem is to embed the arms into a con-

tinuous domain, and define a maximization problem over this entire domain. This

immediately lifts the need for defining arms that correspond to discrete values. Math-

ematically, the continuous MAB framework translates to maximizing the unobserved

complex function z = f(θ) with respect to parameter θ, i.e.

θ? = argmax
θ∈Θ

z = f(θ) (5.4)

This problem is extensively studied in the Bayesian optimization literature [126].

We take advantage of this framework and assume the relationship between the trade-

off parameter β in utility score function Eq. (5.3) and active learner’s feedback is

characterized by an unknown function. In other words, β and learner’s feedback

(which we formulate later) correspond to θ and z in Eq. (5.4), respectively.

As mentioned earlier, specific values of β have impact active learner differently at

different stages of the AL process. Therefore, f(.) may vary with time. Optimization

of a black-box function with temporal changes has also been studied in the context of

sequential Bayesian optimization. Work by [7] proposed the TV-GP-UCB algorithm

which introduces an Upper Confidence Bound (UCB) GP-based model that seeks

sequential optimization of an unknown time-variant function f (t)(.) over the compact

and convex set Θ. Mathematically, these frameworks seek θ(t) such that

θ(t) = argmax
θ∈Θ

z(t) = f (t)(θ) (5.5)

There is a rich body of work on using GP models in sequential Bayesian opti-

mization with bandit feedback [7, 76]. These flexible non-parametric models not only

provide information on the location of the optima, but more importantly, they provide

86

the uncertainty associated with it. To manage exploration versus exploitation within

this Bayesian optimization problem, several heuristics such as expected improvement

(EI) [98], Thompson sampling (TS) [138] upper confidence bound (UCB) [5] and their

variations have been proposed and shown to be successful in practice.

In UCB sampling, the estimated reward is decomposed into two parts: the em-

pirical average gain as an estimate for the true mean and the uncertainty associated

with this estimate [95]. A rich theory also exists on UCB performance guarantees

when GP priors are assumed. Regret bounds on GP-UCB was first provided in [135],

but we use the TV-GP-UCB algorithm by [7] who extended the GP-UCB algorithm

for a time-varying problem, benefiting from a smooth forgetting kernel function. For

details of the regret bounds on TV-GP-UCB, refer to [7, 135].

5.4 Methodology

In this section we introduce our proposed methodologies, KF-RB and RAFO, for

selecting trade-off parameter β(t) in Eq. (5.3) in a dynamic fashion.

5.4.1 Active Learning Framework

Consider a pool-based AL scenario [122] with the goal of sequentially learning

function Φ : X 7→ Y , where X ∈ Rn×m represents the m-dimensional features set,

and Y ∈ Rn×1 is the response. Initially the learner is presented with an empty labeled

set, L(0), and an unlabeled pool of data, U (0). Data labels are provided by an oracle

in a sequential manner. At each round t, the learner estimates Φ (denoted by Φ̂(t))

using the available labeled set L(t), and evaluates the unlabeled pool U (t) for label

query. We utilize the CAAL algorithm proposed by [45] where unlabeled instances

are evaluated according on their utility score defined in Eq. (5.3). This score is com-

posed of uncertainty and density factors that are represented by the classification and

87

clustering uncertainties, defined by Eq. (5.1) and Eq. (5.2), respectively. Parameter

β(t) is a trade-off parameter to control the relative effect of these factors. Moreover,

superscript (t) is a time index indicating the time-varying nature of this parameter.

After the query is made for a selected batch of instances, the labeled set is aug-

mented and learner’s belief on Φ is updated (Φ̂(t) 7→ Φ̂(t+1)). Given a limited query

budget T , the goal is to fit the best classifier.

Our proposed methodologies tackle the problem of choosing β(t) as AL progresses.

Note that the proposed algorithms are only a subroutine in the whole AL process.

The focus of the following sections is on formulating this subroutine.

5.4.2 Choice of Reward Function

Before we elaborate on our proposed methodologies, we need to choose a reward

function to assess our choices of β(t) based on active learner’s feedback.

Consider this AL procedure described in Section 5.4.1 as a process to be optimized

(with respect to parameter β(t)) by learning a strategy from the classifier’s feedback.

The goal of this strategy is to guide the active learner to choose β(t) more strategically

rather than fixing it throughout the AL process. Our choice of β(t) at each time step

t is evaluated (rewarded or penalized) after a query is made.

Various reward functions have been proposed in similar dynamic learning frame-

works. In the AL context, work by [23] defined reward as the scaled Kullback–Leibler

divergence between the posterior distribution of a classifier before and after a query

is made. Studies by [38, 102] utilized the change in the overall classification en-

tropy. Also, [6] proposed Classification Entropy Maximization method (CEM), which

despite practical evidence of usefulness has never formally been connected to pre-

diction performance required in a dynamic AL scenario. Work by [60] proposed the

importance-weighted accuracy (IW-ACC), which weighs labeled instances with the

88

inverse of the probability that the instance is queried. They then calculate reward

based on the weighted accuracy. Although they show that IW-ACC is an unbiased

estimator of the prediction accuracy on the held-out data, their method allows labeled

instances to be queried again, which may not seem logical in practice.

Consider the probabilistic model of Φ : X 7→ Y . Classification entropy for this

model is defined as

H = −
c∑
i

P (yi|X,Φ) logP (yi|X,Φ) (5.6)

where P (yi|x,Φ) values are class membership probabilities, X is the features set, and

Y is the response. Inspired by [6] and [38], we define reward for choosing a specific β(t)

based on the reduction in model uncertainty, i.e. difference in the overall classification

entropy before and after a query is made according to the selected β(t). The idea is

that the classification entropy decreases as more data gets labeled, so it is expected

that better samples (chosen based on better β(t) values) result in higher entropy

reductions. We use this reward, formulated in Eq. (5.7), for both of our proposed

methodologies. Note that H(t) and H(t+1) indicate the classification entropy before

and after a query is made by the active learner.

r(β(t)) = r(t) =

|U(t)|∑
i=1

H(t)(xi)−
|U(t+1)|∑
i=1

H(t+1)(xi) (5.7)

The research into MAB algorithms is closely tied to theoretical performance guar-

antees and there is little interest in dynamic problems where the distribution of r(t) is

unbounded. In practice, however, in cases where the reward bounds is not known, all

the rewards are scaled to a bounded interval as learning progresses. We scale reward

r(t) (s : R 7→ I = [−1, 1]) using all the observed rewards until iteration t.

s(t) = s(r(t)) = (r(t) −Min(I))
Max(I)−Min(I)

Maxir(i) −Minir(i)
−Min(I) (5.8)

where 2 ≤ i ≤ t. This reward has been used previously by [38]. However, they use

this reward as a tool to switch between different AL query strategies as opposed to our

89

method, which is focused on learning the uncertainty-density trade-off for specific AL

strategy. One difference between the scaling process in [38] and ours is that we update

all previous scaled rewards after r(t) is observed if r(t) = Maxir
(i) or r(t) = Minir

(i).

This update is used to assess rewards relative to each other.

5.4.3 Baseline Algorithm: A Feedback-driven Approach

Before introducing our proposed methodologies, we briefly overview a feedback-

driven approach for updating β(t), used by [23, 38, 102], as a competing algorithm with

our proposed ones. As mentioned earlier, feedback-driven approaches have been pre-

viously used in AL to make a balance between uncertainty and density dynamically.

Works by [23, 102] propose an update schema to obtain β(t+1) from β(t) according to

the classifier’s feedback:

β(t+1) = Max
(
Min

(
β(t)λexp(s(t)), 1− βMin

)
, βMin

)
(5.9)

where βMin ensures a minimum level of exploration, λ is the learning rate to control

the effect of reward on how fast β(t) changes, and s(t) is the scaled reward from

Eq. (5.8). Although this approach is myopic, and does not have a long-run strategy,

it has been shown to perform relatively well in practice [23, 38, 102]. Therefore, we

use it as a baseline for our evaluations.

5.4.4 KF-RB: A Kalman Filter Restless Bandit Approach

We introduce the KF-RB algorithm which solves the problems of choosing β(t)

using a Kalman filter RMAB approach. Consider the AL framework described in

Section 5.4.1. Each time after a query is made, the learner updates its estimate of

model Φ from Φ̂(t) to Φ̂(t+1). At this stage the learner has the chance to evaluate

the query and adjust the selection of β(t). To formulate this evaluation we use scaled

90

reward s(t)) defined in Eq. (5.7). As mentioned earlier, H(t) and H(t+1) in this equation

are based on classification probabilities according to Φ̂(t) and Φ̂(t+1) respectively. Now

the question is how to select β(t)?

In order to answer this question, KF-RB constructs a dynamic learning frame-

work to learn the relationship between β(t) and s(t). We consider an RMAB frame-

work where a set of arms B each corresponding to a value for β(t) is given, i.e. β(t)

chooses from B. At each time step t, and before a query is made, one of the arms is

chosen to provide β(t), and utility score are calculated according to Eq. (5.3). Upon

obtaining Φ̂(t+1), reward s(t) is observed which corresponds to the selected β(t). As

AL progresses, more (β(t), s(t)) pairs are observed. Therefore, we can learn the reward

distribution for each arm.

At this stage, we take advantage of the Bayesian reasoning to define a framework

for stochastic optimal decision making. Following [49], we use a Kalman filter-based

learning process for the RMAB problem under normally distributed rewards. More

specifically, we assume the reward for each arm follows a Gaussian distribution with

a time-varying mean µ
(t)
i according to:

s
(t)
i = µ

(t)
i + ε

(t)
i ε

(t)
i ∼ N (0, σ2

ε) (5.10a)

µ
(t)
i = µ

(t−1)
i + ξ

(t)
i ξ

(t)
i ∼ N (0, σ2

ξ) (5.10b)

where 1 ≤ i ≤ |B|. Here, σε and σξ are two sources of variability introduced to

the process which represent observation and transition variances respectively [49].

Moreover, we assume that arms’ rewards are independent of the selection of the other

arms.

Equations (5.10a)–(5.10b) are also known as the general form of local level models

that are suited to dynamic time series models that involve unobserved components

[55]. It also represents a wide range of autoregressive integrated moving average

91

(ARIMA) models that are widely used in timeseries analysis and forecasting [10, 55].

To consider the similarities between the state-space model in Equations (5.10a)–

(5.10b) and ARIMA models, subtract Eq. (5.10a) from itself lagged one period. Sub-

stituting for µ
(t)
i from Eq. (5.10b) yields:

∆s
(t)
i = s

(t)
i − s

(t−1)
i = µ

(t)
i − µ

(t−1)
i + ε

(t)
i − ε

(t−1)
i (5.11)

Since Eq. (5.10b) implies that,

µ
(t)
i − µ

(t−1)
i = ξ

(t)
i (5.12)

we can rewrite Eq. (5.11) as,

∆s
(t)
i = s

(t)
i − s

(t−1)
i = ξ

(t)
i + ∆ε

(t)
i (5.13)

which is stationary and has the same autocorrelation plot as an MA(1) process. This

implies that the local level model in Equations (5.10a)–(5.10b) is an ARIMA(0,1,1). A

comprehensive overview of the equivalences between state-space and ARIMA models

is provided in [55].

The transition variance is basically the time-dependent variation in the mean

rewards. The Kalman filter procedure proposed in [49] provides Bayesian updating

rules as the AL proceeds and action/reward pairs (β(t), s
(t)
i) are observed. Next,

our hypothesis on the expected reward for the pulled arm is updated using Kalman

equations. This means that the posterior of one time step will be the prior of next

one
(
N
(
µ̃(t), σ̃2(t))→ N (µ̃(t+1), σ̃2(t+1)))

. The mean and variance of posterior reward

distribution for all arms are obtained from

µ̃
(t+1)
bi

=

µ̃

(t)
bi

+ ω
(t)
i (r

(t)
bi
− µ̃(t)

bi
) if β(t) = bi

µ̃
(t)
bi

if β(t) 6= bi

σ̃2
bi

(t+1)
= (1− ω(t)

i)(σ̃2
bi

(t)
+ σ2

ξ)

(5.14)

92

where ω
(t)
i ∈ [0, 1] is the Kalman gain defined as

ω
(t)
i =

σ̃2
i
(t)

+σ2
ξ

σ̃2
i
(t)

+σ2
ξ+σ2

ε

if β(t) = i

0 if β(t) 6= i

(5.15)

Since we only obtain information about the pulled arms, it makes sense to set

ω
(t)
i = 0 for all the unchosen arms. However, since this is an RMAB setting, the

expected reward for all the arms are equally likely to change with time.

The variance update rule in Eq. (5.14) takes care of this through increasing the

variance of expected reward so that the unchosen arms have a higher chance to be

selected in the next time step. Although [37] has shown that convergence of ω
(t)
i

to the steady state ωs = 1/2
√

σ4
ξ

σ4
ε

+ 4
σ2
ξ

σ2
ε
− σ2

ξ

σ2
ε

can happen quickly, the benefit of

utilizing Kalman filter is still valid since the quick convergence happens if reward for

a particular bandit arm is observed at all time points while in practice it takes the

algorithm some time to gather information about each arm.

Following [49], we use the probability of maximum reward, i.e., TS, to select

next β(t). The probability of achieving the maximum reward by an arm is naturally

derived from combining the expected reward and the uncertainty associated with it.

While TS might seem myopic as it is merely based on the probability of obtaining

the optimum reward for the immediate decision, it actually allows for a good balance

between exploitation and exploration in the dynamic environment. The longer an

arm has not been chosen, the higher the chance that it provides a higher reward [134,

147]. Moreover, TS has been shown to outperform other similar heuristic strategies

[49, 51, 147].

β(t) = argmax
bi∈B

ED(t) [s(t)|β(t) = bi] (5.16)

where D(t) is the prior distribution of reward at time step t (in our case D(t) =

N
(
µ̃(t), σ̃2(t))

).

93

5.4.5 RAFO: Reinforced Active Forest

One of the drawbacks of using an MAB setup, like that of KF-RB, or a Markov

decision process, similar to the work in [38], is that these approaches discretize the ac-

tion space B. Instead, inspired by [7], we propose a Bayesian optimization framework

to adaptively select β(t) from a continuous interval based on a time-varying GP.

In Bayesian optimization framework we seek to sequentially optimize the unknown

function f of the z = f(x) + e form over a compact set X where e ∼ N (0, σ2). The

BO agent assumes a prior belief over f , and samples f based on this belief where it

thinks the optimum occurs. The prior is then updated to obtain the posterior (which

acts as the prior for the next round) based on the new observation.

Let f (t) be the BO agent estimate of function f at time step t. Assuming a GP

prior over f (t), the posterior of f (t) (or the prior for f (t+1)) is a GP distribution with

mean and covariance structure of

µ(t+1)(x) = k(t)(x)
T

(K(t) + σ2IT
′
)−1z(t)

σ2(t+1)
(x, x′) = k(x, x)− k(t)(x)

T
(K(t) + σ2IT

′
)−1k(t)(x)

(5.17)

where K(t) = [k(x, x′)]x,x′∈X(t) and k(t)(x) = [k(x(i), x)]ti=1 with k(.) a kernel function,

and IT
′

is the T ′ × T ′ identity matrix where T ′ is the number of evaluations made

on function f until time point t. Also, X(t) denotes points where function f has been

evaluated on until time point t. Examples of kernel function k(.) are

kSE(x, x′) = exp
(
− ||x− x

′||2

2l2
)

kMatérn(x, x′) =
21−ν

Γ(ν)

(√2ν||x− x′||
l

)ν ×Bν

(√2ν||x− x′||
l

) (5.18)

with l, ν > 0 are hyperparameters, and Bν denotes the modified Bessel function

[7, 135].

Although we learn function f sequentially, Bayesian updating rules of Eq. (5.17)

are based on the assumption that function f does not change with time. Instead,

94

assume f follows a time-varying GP. Therefore, the estimation of f between time

point t and t + 1 (i.e. f (t) and f (t+1)) should consider that f has changed between

these time points.

In order to adjust the GP posterior updating rules in Eq. (5.17) under the assump-

tion that f varies with time, we follow the time-varying GP model, TV-GP-UCB,

proposed by [7] where the early observations receive less weight as time proceeds.

Updating rules for the posterior reward distribution are provided as

µ̃(t+1)(x) = k̃(t)(x)
T

(K̃(t) + σ2IT
′
)−1s(t)

σ̃2
(t+1)

(x, x′) = k(x, x)− k̃(t)(x)
T

(K̃(t) + σ2IT
′
)−1k̃(t)(x)

(5.19)

where K̃(t) = K(t) ◦ D(t) with D(t) = [1− ε|i− j|/2]T ′i,j=1, k̃(t) = k(t) ◦ d(t) with

d(t) = [1− εT ′ + 1− i/2]T
′

i=1, ◦ is the Hadamard product. The older a sample is, the

smaller the corresponding entries of d(t) and D(t) would be making the contribution

of the sample smaller in Eq. (5.19).

Each time we have a new prior with updated parameters obtained from updating

rules in Eq. (5.19), the TV-GP-UCB algorithm constructs an upper confidence bound

using a linear combination of the average expected value of f (t) and the variance

associated with it, i.e. µ̃(t) and σ̃2
(t)

. x(t+1) is the argument that maximizes this

bound and is the next point to evaluate f (t).

Algorithm 4 summarizes the TV-GP-UCB method by [7]. Note that parameter

γ(t) in the UCB (Line 2 of Algorithm 4) is a multiplier to adjust µ̃(t)(x) against

σ(t)(x). In other words, γ(t) makes the trade-off between exploitation of the available

knowledge on where the optimum happens (µ̃(t)) and exploration of the action space

X (σ(t)(x)).

We utilize the TV-GP-UCB framework and introduce our second adaptive AL

algorithm, the Reinforced Active Forest (RAFO). In order to select β(t), RAFO as-

sumes s(t) = f (t)(β(t)) + e(t) where s(t) is the active learner’s feedback as defined in

95

Algorithm 4 Time-Varying GP-UCB (TV-GP-UCB) by [7]

Input: Domain X , prior GP ∼ (µ̃(0), σ̃(0)), and ε

1: for t: 0 to T-1 do

2: Choose x(t+1) = argmaxx∈X µ̃
(t)(x) +

√
γ(t)σ(t)(x)

3: Sample s(t+1) = f (t+1)(x(t+1)) + e(t+1)

4: Obtain µ̃(t+1) and σ̃(t+1) based on updating rules in Eq. (5.19)

5: end for

Eq. (5.10), and e(t) ∼ N (0, σ2) is noise. Note that we drop index i in s
(t)
i because we

no longer have discrete arms, but rather a single reward for the whole model.

RAFO starts with a few warp-up iterations to accumulate initial observations

based on random actions and their corresponding rewards. This is required to start

the GP process. In other words, RAFO begins similar to CAAL and KF-RB with the

only difference of selecting β(t) at random. After this initial phase, the learner starts

the Bayesian updates. Each time a query is made, the learner updates its estimate

of the classification model Φ from Φ̂(t) to Φ̂(t+1), and adjusts the previous selection

of β(t) according to the observed reward Eq. (5.8) and the TV-GP-UCB module in

Algorithm 4. The output of this module is β(t+1) which is used for the next label

query.

As a final note, theoretical bounds on TV-GP-UCB performance (in terms of

regret) as well as selection conditions for γ(t) are provided in [7]. Suffice it to say that

although more conservative bounds for γ(t) have been driven by several studies, e.g.

[7, 69], they indicate that γ(t) ∈ O(log(t)) provides a good empirical performance.

Therefore, we set γ(t) = log(t) for RAFO.

96

5.5 Experiments and Results

5.5.1 Experiments Setups

We evaluated the performance of CAAL, the baseline algorithm (described in

Section 5.4.3), KF-RB, and two versions of RAFO denoted as RAFO0 with ε = 0 and

RAFO+ with ε > 0. All algorithms are evaluated on benchmark datasets used in [45]

and summarized in Table 5.1. Evaluations were made in terms of the Area Under the

Learning Curve (ALC) [53]. The learning curves are based on average F1-scores over

15 replicates to account for randomness at multiple stages of the algorithms including

the clustering and supervised modeling steps. Moreover, for all experiments the query

size was set to one.

For the baseline algorithm, we tested various values for the learning rate λ. Best

results were obtained by λ = 0.5 (similar to work by [23, 38]). Since the other

methods have the option to set β(t) to both 0 and 1, we set βMin = 0. Therefore,

all the algorithms can explore the [0, 1] interval. For CAAL, we followed the setup

in [45], where ∀t ∈ T , β(t) = β is fixed throughout the AL iterations and β = 0.5

achieved the best results in terms of average ALC. For the rest of the algorithms,

KF-RB, RAFO0, and RAFO+ we follow the same AL procedure as CAAL. The only

difference is the selection of β(t).

For KF-RB, we considered 11 equidistant points on the [0, 1] interval, each corre-

sponding to one arm. In the absence of initial state and covariance structure for the

Kalman filter, it is a common practice to set the average arm rewards to 0 (µ̃(0)=0)

and their variance σ̃2(0)
to a high number in order to attenuate the influence of this

initial guess [49, 85]. Therefore, we set µ̃(0) = 0 and σ̃2
(0)

= 0.5 for all arms given

that reward s(t) ∈ [0, 1] .

As mentioned earlier, the Kalman gain steady state is proportional to
σξ
σε

, and not

97

Table 5.1: Test Datasets

Dataset Train Test Features Classes Min %

Banknote 686 686 4 2 23.52 %

Car 864 864 62 2 44.46%

Coil2000 4911 4911 85 2 5.97 %

EEG 7490 7490 14 2 44.88%

Ibn Sina 10361 10361 92 2 37.84%

Letter 10000 10000 16 26 3.67%

Letter NvsM 788 787 16 2 49.71%

Letter OQG 1155 1154 16 3 32.61%

Letter TIL 1156 1156 16 3 32.61%

Letter VvsY 788 787 16 2 49.71%

Mamo 415 415 5 4 3.76 %

MNIST35 5776 5776 784 2 46.93%

Mushroom 4062 4062 22 2 48.20%

Nursery 6479 6479 8 2 48.55%

Occupancy 10280 10280 5 2 2.53 %

OptDigits 3823 1797 64 2 9.86%

Pen 7494 3498 16 10 9.6%

Segmentation 1155 1155 19 7 14.29%

Spambase 2300 2301 57 2 39.40%

Transfusion 374 374 4 2 23.80%

Twitter 490 123 292 2 44.7%

USPS 7291 2007 256 10 7.61%

Vehicle 423 423 18 4 32.65 %

necessarily the absolute values of σ2
ξ and σ2

ε . For a fixed value of σ2
ξ), we conducted

a sensitivity analysis using different values of σ2
ε . Results are provided in Table 5.3,

which is discussed shortly. However, based on this analysis, we set the observation

and transition perturbations (σ2
ξ , σ

2
ε) to 0.05 and 0.2 respectively.

98

We used Matérn52 kernel for RAFO to achieve the regret bounds shown in

[7] for TV-GP-UCB. In order to learn the best value for ε in Eq. (5.19), [7] has

used a marginal likelihood maximization approach based on a considerable amount

of training data. Since we are in a cold start AL setup, we could not use this

approach. Instead, we did a sensitivity analysis on multiple reasonable values of

ε ∈ {0, 0.001, 0.01, 0.03}. Best results were obtained by ε = 0.001. Note that ε quan-

tifies how much the function changes at each time step. If ε = 0 we will have RAFO0

which is the time-invariant version of RAFO, whereas if ε = 1 then the reward func-

tions are independent between time steps. Therefore, the higher the value of ε, the

less the dependency between the function values at two consecutive time steps.

We considered 5 warm-up iterations for RAFO where β(t) was sampled uniformly

from the [0, 1] interval. To make a fair comparison, all the other algorithms followed

the same rule.

5.5.2 Discussion of Results

Figure 5.1 presents the F1-score learning curves for CAAL, baseline, KF-RB

RAFO0, and RAFO+ algorithms over 300 iterations. Table 5.2 illustrates the ALC

scores and ranks based on the corresponding learning curves. The best average ALC

was obtained by RAFO+ followed by KF-RB and the baseline. This means that

all the adaptive algorithms performed better on average. In terms of the average

rank, RAFO+ and KF-RB came in first and second place respectively. However, the

baseline algorithm was outperformed by CAAL.

Although for the majority of cases RAFO+ performs well from the early iterations,

an interesting observation is the behavior of RAFO+ towards the last iterations such

as in Fig. 5.2d, Fig. 5.2o, Fig. 5.2q, and Fig. 5.2t where the learning accelerates

quickly. This might be due to the improved selection of β(t) by GP toward the end.

99

The analysis of RAFO0 learning curves indicates the importance of capturing the

underlying time-varying nature of expected reward with respect to β(t). Although in

a few cases, e.g. Fig. 5.2d, Fig. 5.2o, and Fig. 5.2p, RAFO0 performs quite well, for

majority of the cases it falls behind after a few iterations.

To show the stability of the proposed approaches, we compared the variability

in performance of KF-RB and RAFO+ and those of the alternatives. Figure 5.2

shows the standard deviation of F1-scores for 15 replicates of each algorithm. Both

KF-RB and RAFO+ clearly have lower variations throughout the learning process,

which indicates that the mean performance of these algorithms show consistently

better results. Especially for EEG, Nursery, MNIST35, Mushroom, and Segmentation

datasets where KF-RB and RAFO+ clearly have more stable performances. The only

dataset that KF-RB shows slightly higher variation is USPS.

Table 5.3 presents the average ALC results for various values of σ2
ε when σ2

ξ = 0.05.

We see that σ2
ε = 0.5 achieves the first rank in terms of average ALC, but the best

average rank is obtained by σ2
ε = 0.2. If we compare these results with those of

Table 5.2, we see that although σ2
ε = 0.5 obtains a slightly better average ALC, the

overall ranking among other algorithms does not change.

5.6 Conclusion

In this work, we developed two new algorithms,KF-RB and RAFO, that dynam-

ically adjust the trade-off between uncertainty and density elements in AL using a

bandit optimization setup with dynamic rewards. KF-RB and RAFO, in contrast to

their alternatives, accelerate classification learning while balancing uncertainty ver-

sus density in a more strategic manner. Both KF-RB and RAFO are the first AL

algorithms that take advantage of restless bandits and GP-UCB to balance uncer-

tainty and density adaptively. Our experiments on real-world data sets show the

100

(a) Banknote (b) Car (c) Coil2000 (d) EEG (e) Ibn Sina

(f) LetterNvsM (g) LetterOQG (h) LetterTIL (i) LetterV vsY (j) Mamo

(k) MNIST35 (l) Mushroom (m) Nursery (n) Occupancy (o) OptDigits

(p) Pen (q) Segmentation (r) Spambase (s) Transfusion (t) Twitter

(u) USPS (v) V ehicle

Figure 5.1: F1-Score Learning Curves for CAAL(β = 1/2), Baseline (λ = 0.5),
KF-RB, RAFO0 and RAFO+. Color Legend: CAAL (Solid Blue), Baseline (Solid
Yellow), KF-RB (Solid Purple), RAFO0(solid Orange) and RAFO+ (Solid Green).
See Color Version for the Best View.

101

Table 5.2: ALC for Average F1-Scores Curve for CAAL, Baseline, KF-RB RAFO0,
and RAFO+ Algorithms. Numbers in Parentheses Are the Rankings Compared to
the Other ALC Scores for the Corresponding Dataset.

Dataset CAAL Baseline KF-RB RAFO0 RAFO+

Banknote 0.9824 (2) 0.9816 (4) 0.9829 (1) 0.9432 (5) 0.9824 (3)

Car 0.4971 (3) 0.4773 (5) 0.5327 (1) 0.4815 (4) 0.5141 (2)

Coil2000 0.5431 (4) 0.5492 (1) 0.5439 (2) 0.5357 (5) 0.5437 (3)

EEG 0.5972 (4) 0.5948 (5) 0.6021 (3) 0.6116 (2) 0.618 (1)

Ibn Sina 0.9448 (3) 0.943 (4) 0.9448 (2) 0.8985 (5) 0.9477 (1)

Letter OQG 0.8581 (3) 0.8488 (4) 0.8596 (2) 0.8162 (5) 0.8606 (1)

Letter TIL 0.9632 (4) 0.9641 (2) 0.9632 (3) 0.9487 (5) 0.9663 (1)

Letter VvsY 0.9624 (3) 0.9623 (4) 0.9627 (2) 0.9587 (5) 0.9641 (1)

Letter NvsM 0.9626 (2) 0.9616 (4) 0.9618 (3) 0.9456 (5) 0.9627 (1)

Mamo 0.8468 (4) 0.8469 (3) 0.8474 (2) 0.8452 (5) 0.8474 (1)

MNIST35 0.9443 (1) 0.9375 (3) 0.9359 (4) 0.8745 (5) 0.9442 (2)

Mushroom 0.9948 (3) 0.9938 (4) 0.9951 (2) 0.9909 (5) 0.9964 (1)

Nursery 0.6331 (2) 0.6216 (4) 0.6283 (3) 0.617 (5) 0.6348 (1)

Occupancy 0.9828 (1) 0.9825 (4) 0.9826 (3) 0.9806 (5) 0.9826 (2)

Optdigits 0.7596 (5) 0.7803 (2) 0.7769 (3) 0.7694 (4) 0.7877 (1)

Pen 0.6257 (5) 0.6456 (2) 0.6445 (3) 0.6477 (1) 0.6435 (4)

Segmentation 0.8216 (4) 0.8436 (3) 0.8993 (1) 0.8181 (5) 0.8464 (2)

Spambase 0.9233 (1) 0.9134 (4) 0.9183 (3) 0.8885 (5) 0.9207 (2)

Transfusion 0.6398 (2) 0.6396 (3) 0.6383 (4) 0.6359 (5) 0.6421 (1)

Twitter 0.6758 (4) 0.7005 (3) 0.7023 (1) 0.6681 (5) 0.7011 (2)

USPS 0.5775 (4) 0.6024 (3) 0.6167 (2) 0.5754 (5) 0.6389 (1)

Vehicle 0.628 (1) 0.624 (2) 0.6211 (4) 0.615 (5) 0.6217 (3)

Mean ALC 0.7649 0.7673 0.7734 0.7517 0.7737

Mean Rank 2.9565 3.2174 2.4348 4.6087 1.7826

clear improvements over multiple alternatives.

102

(a) Banknote (b) Car (c) Coil2000 (d) EEG (e) Ibn Sina

(f) LetterNvsM (g) LetterOQG (h) LetterTIL (i) LetterV vsY (j) Mamo

(k) MNIST35 (l) Mushroom (m) Nursery (n) Occupancy (o) OptDigits

(p) Pen (q) Segmentation (r) Spambase (s) Transfusion (t) Twitter

(u) USPS (v) V ehicle

Figure 5.2: Standard Deviation of F1-Scores Over 15 Replicates for CAAL(β = 1/2),
Baseline (λ = 0.5), KF-RB, RAFO0 and RAFO+. Color Legend: CAAL (Solid Blue),
Baseline (Solid Yellow), KF-RB (Solid Purple), RAFO0(solid Orange) and RAFO+

(Solid Green). See Color Version for the Best View.

103

Table 5.3: ALC for Average F1-Scores Curve by Several σ2
ε Values for KF-RB.

Numbers in Parentheses Are the Rankings Based on the Other ALC Scores for the
Corresponding Dataset.

Dataset
σ2
ε

0.5 0.2 0.1 0.05

Banknote 0.9827 (1) 0.9829 (1) 0.9828 (1) 0.983 (1)

Car 0.5236 (1) 0.5327 (1) 0.5126 (3) 0.5058 (2)

Coil2000 0.5431 (3) 0.5439 (2) 0.5446 (2) 0.5491 (2)

EEG 0.6029 (3) 0.6021 (3) 0.5912 (5) 0.5988 (3)

Ibn Sina 0.9432 (3) 0.9448 (2) 0.9446 (3) 0.9439 (3)

Letter OQG 0.856 (3) 0.8596 (2) 0.8562 (3) 0.858 (3)

Letter TIL 0.962 (4) 0.9632 (3) 0.9628 (4) 0.9621 (4)

Letter VvsY 0.9631 (2) 0.9627 (2) 0.9631 (2) 0.9629 (2)

Letter NvsM 0.9615 (4) 0.9618 (3) 0.9617 (3) 0.9616 (3)

Mamo 0.8472 (2) 0.8474 (2) 0.8469 (3) 0.8462 (4)

MNIST35 0.9369 (4) 0.9359 (4) 0.9376 (3) 0.9362 (4)

Mushroom 0.9955 (2) 0.9951 (2) 0.9954 (2) 0.9953 (2)

Nursery 0.6297 (3) 0.6283 (3) 0.6298 (4) 0.6377 (1)

Occupancy 0.9825 (4) 0.9826 (3) 0.9825 (3) 0.9825 (3)

Optdigits 0.7747 (3) 0.7769 (3) 0.782 (3) 0.7791 (3)

Pen 0.6455 (3) 0.6445 (3) 0.6468 (2) 0.6403 (4)

Segmentation 0.8999 (1) 0.8993 (1) 0.9016 (1) 0.8991 (1)

Spambase 0.9179 (3) 0.9183 (3) 0.9185 (3) 0.9179 (3)

Transfusion 0.6368 (4) 0.6383 (4) 0.6371 (4) 0.6366 (4)

Twitter 0.7019 (1) 0.7023 (1) 0.7053 (1) 0.7036 (1)

USPS 0.6514 (1) 0.6167 (2) 0.6335 (3) 0.6262 (2)

Vehicle 0.6263 (2) 0.6211 (4) 0.6223 (3) 0.6252 (2)

Mean ALC 0.7741 0.7734 0.7728 0.7729

Mean Rank 2.6957 2.4348 2.8261 2.6522

104

Chapter6

CONCLUSION

In today’s information-rich digital world, supervised learning approaches are used

extensively to mine credible patterns of the data and solve real-world challenges.

However, these algorithms have a non-trivial limitation: they require labeled training

data which is often time-consuming or expensive to obtain.

This dissertation has focused on the development of new efficient pool-based batch-

mode active learning approaches that aim to reduce the overall cost of acquiring

labeled data by allowing the learner to effectively choose the instances on which it is

trained. In this final chapter, I summarize the specific contributions and limitations

of this work.

6.1 Summary of Contributions

This thesis has made several contributions to the state of the art in AL. Specifi-

cally,

• A new approach for incorporating data density into uncertainty sampling for

efficient batch-mode AL. The proposed algorithm in Chapter 3, CSQBF, pro-

vides a stochastic sampling procedure that facilitates balancing exploration and

exploitation in AL. CSQBF benefits from advantages of Random forest classifi-

cation model including robustness to noise and handling mixed type data. This

105

algorithm can be used to reduce overall annotation costs by actively querying

the most uncertain instances from different areas of the data. The results have

implications for many real-world learning applications.

• Two new AL frameworks with new formulations for density. Two novel algo-

rithms, DMAL and CAAL, with new strategies for characterizing classification

uncertainty and data density were introduced. Instead of defining distinct clus-

ters, both algorithms take advantage of a soft clustering approach which enables

them to define density as a separate source of uncertainty that is consistent with

classification uncertainty. Both methods combine uncertainty and density into

unified and coherent scoring measures for AL label query. DMAL algorithm

is especially useful for multi-label data as it aggregates class and cluster labels

into a single pseudo label. Uncertainty and density in DMAL are calculated

based on classification probabilities provided by a supervised model that uses

the pseudo label. CAAL on the other hand, formulates density by constructing

a separate supervised model, other than the active learner, using cluster assign-

ments as labels to obtain cluster membership probabilities. These probabilities

are then used to define a density score which provides an improved overall score

for label query. To show the outperformance of DMAL and CAAL, we compared

them with CSQBF and other alternatives. Future work in this area includes

exploring multi-label datasets. Details of the DMAL and CAAL are discussed

in Chapter 4.

• Two new feedback-driven strategies to balance uncertainty and density in AL.

In Chapter 5, I presented two approaches to adaptively learn how to make a

trade-off between uncertainty and density sampling in AL. These approaches

are extensions to the CAAL algorithm in Chapter 4 by using the overall AL

106

procedure of CAAL, but instead learning how to different elements of CAAL

impact it differently at different stages of the AL process. The KF-RB algorithm

proposes a restless multi-armed bandit approach where each arm represents a

specific trade-off value for combining uncertainty and density scores. RAFO

extends KF-RB by embedding separate arms into a continuous action domain.

It proposes a time-varying Gaussian process model to learn the relationship be-

tween uncertainty-density trade-off and active learner’s feedback. The proposed

are state of the art for dynamically balancing exploration and exploitation in

AL. The proposed methodologies are not suitable for the suggested settings,

they can also be applied to other AL algorithms where exploration and ex-

ploitation are modeled explicitly using separate modules.

107

REFERENCES

[1] “Understanding and fighting bullying with machine learning”, URL http://
research.cs.wisc.edu/bullying/data.html (2014).

[2] AISTATS, “AISTATS 2010 active learning challenge”, URL http://www.
causality.inf.ethz.ch/activelearning.php (2010).

[3] Ali, K. M. and M. J. Pazzani, On the link between error correlation and error
reduction in decision tree ensembles (Citeseer, 1995).

[4] Atkinson, A. C. and L. M. Haines, “14 designs for nonlinear and generalized
linear models”, Handbook of statistics 13, 437–475 (1996).

[5] Auer, P., “Using confidence bounds for exploitation-exploration trade-offs”,
Journal of Machine Learning Research 3, Nov, 397–422 (2002).

[6] Baram, Y., R. E. Yaniv and K. Luz, “Online choice of active learning algo-
rithms”, Journal of Machine Learning Research 5, Mar, 255–291 (2004).

[7] Bogunovic, I., J. Scarlett and V. Cevher, “Time-varying gaussian process bandit
optimization”, in “Artificial Intelligence and Statistics”, pp. 314–323 (2016).

[8] Borisov, A., E. Tuv and G. Runger, “Active batch learning with stochastic
query-by-forest (SQBF)”, in “JMLR Workshop on Active Learning and Exper-
imental Design”, pp. 59–69 (2011).

[9] Bosch, A., A. Zisserman and X. Munoz, “Image classification using random
forests and ferns”, in “2007 IEEE 11th international conference on computer
vision”, pp. 1–8 (Ieee, 2007).

[10] Box, G. E., G. M. Jenkins and G. C. Reinsel, Time series analysis: forecasting
and control, vol. 734 (John Wiley & Sons, 2011).

[11] Boyd, S. and L. Vandenberghe, Convex optimization (Cambridge university
press, 2004).

[12] Bradley, A. P., “The use of the area under the roc curve in the evaluation of
machine learning algorithms”, Pattern recognition 30, 7, 1145–1159 (1997).

[13] Breiman, L., “Bagging predictors”, Machine learning 24, 2, 123–140 (1996).

[14] Breiman, L. and A. Cutler, “Random Forests”, URL https://www.stat.
berkeley.edu/~breiman/RandomForests/ (2003).

[15] Brochu, E., V. M. Cora and N. De Freitas, “A tutorial on bayesian optimiza-
tion of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning”, arXiv preprint arXiv:1012.2599 (2010).

108

http://research.cs.wisc.edu/bullying/data.html
http://research.cs.wisc.edu/bullying/data.html
http://www.causality.inf.ethz.ch/activelearning.php
http://www.causality.inf.ethz.ch/activelearning.php
https://www.stat.berkeley.edu/~breiman/RandomForests/
https://www.stat.berkeley.edu/~breiman/RandomForests/

[16] Cawley, G., “Some baseline methods for the active learning challenge”, in “Thir-
teenth International Conference on Artificial Intelligence and Statistics. Work-
shop and Active Learning Competition”, (2010).

[17] Cebron, N. and M. R. Berthold, “Active learning for object classification: from
exploration to exploitation”, Data Mining and Knowledge Discovery 18, 2, 283–
299 (2009).

[18] Chapelle, O. and L. Li, “An empirical evaluation of thompson sampling”, in
“Advances in neural information processing systems”, pp. 2249–2257 (2011).

[19] Chapelle, O., B. Scholkopf and A. Zien, “Semi-supervised learning (chapelle, o.
et al., eds.; 2006)[book reviews]”, IEEE Transactions on Neural Networks 20,
3, 542–542 (2009).

[20] Chapelle, O., J. Weston and B. Schölkopf, “Cluster kernels for semi-supervised
learning”, in “Advances in Neural Information Processing Systems”, pp. 585–
592 (2002).

[21] Chapelle, O., J. Weston and B. Schölkopf, “Cluster kernels for semi-supervised
learning”, in “Advances in neural information processing systems”, pp. 601–608
(2003).

[22] Chattopadhyay, R., Z. Wang, W. Fan, I. Davidson, S. Panchanathan and J. Ye,
“Batch mode active sampling based on marginal probability distribution match-
ing”, ACM Transactions on Knowledge Discovery from Data (TKDD) 7, 3, 13
(2013).

[23] Cheng, Y., Z. Chen, L. Liu, J. Wang, A. Agrawal and A. Choudhary, “Feedback-
driven multiclass active learning for data streams”, in “Proceedings of the 22nd
ACM international conference on Conference on information & knowledge man-
agement”, pp. 1311–1320 (ACM, 2013).

[24] Cohn, D., L. Atlas and R. Ladner, “Improving generalization with active learn-
ing”, Machine learning 15, 2, 201–221 (1994).

[25] Cortes, C. and V. Vapnik, “Support-vector networks”, Machine learning 20, 3,
273–297 (1995).

[26] Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson
and J. J. Lawler, “Random forests for classification in ecology”, Ecology 88,
11, 2783–2792 (2007).

[27] Dasgupta, S., “Two faces of active learning”, Theoretical computer science 412,
19, 1767–1781 (2011).

[28] Dasgupta, S. and D. Hsu, “Hierarchical sampling for active learning”, in “Pro-
ceedings of the 25th International Conference on Machine Learning”, pp. 208–
215 (ACM, 2008).

109

[29] de Mello, C. E. R., Active Learning: an unbiased approach, Ph.D. thesis, Ecole
Centrale Paris (2013).

[30] DeBarr, D. and H. Wechsler, “Spam detection using clustering, random forests,
and active learning”, in “Sixth Conference on Email and Anti-Spam.”, (Citeseer,
2009).

[31] Delbos, F. and J. C. Gilbert, Global linear convergence of an augmented La-
grangian algorithm for solving convex quadratic optimization problems, Ph.D.
thesis, INRIA (2003).

[32] Dempster, A. P., N. M. Laird and D. B. Rubin, “Maximum likelihood from
incomplete data via the em algorithm”, Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1, 1–22 (1977).

[33] Dheeru, D. and E. Karra Taniskidou, “UCI machine learning repository”, URL
http://archive.ics.uci.edu/ml (2017).

[34] Dı́az-Uriarte, R. and S. A. De Andres, “Gene selection and classification of
microarray data using random forest”, BMC bioinformatics 7, 1, 3 (2006).

[35] Domingos, P., “A few useful things to know about machine learning”, Commu-
nications of the ACM 55, 10, 78–87 (2012).

[36] Donmez, P., J. G. Carbonell and P. N. Bennett, “Dual strategy active learning”,
in “European Conference on Machine Learning”, pp. 116–127 (Springer, 2007).

[37] Durbin, J. and S. J. Koopman, Time series analysis by state space methods
(Oxford university press, 2012).

[38] Ebert, S., M. Fritz and B. Schiele, “Ralf: A reinforced active learning formu-
lation for object class recognition”, in “2012 IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 3626–3633 (IEEE, 2012).

[39] Elahi, M., F. Ricci and N. Rubens, “A survey of active learning in collaborative
filtering recommender systems”, Computer Science Review 20, 29–50 (2016).

[40] Freund, Y. and R. E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting”, Journal of computer and system sci-
ences 55, 1, 119–139 (1997).

[41] Freund, Y., H. S. Seung, E. Shamir and N. Tishby, “Selective sampling using
the query by committee algorithm”, Machine Learning 28, 2-3, 133–168 (1997).

[42] Friedman, J., T. Hastie and R. Tibshirani, The elements of statistical learning,
vol. 1 (Springer series in statistics New York, 2001).

[43] Ganti, R. and A. G. Gray, “Building bridges: Viewing active learning from the
multi-armed bandit lens”, arXiv preprint arXiv:1309.6830 (2013).

110

http://archive.ics.uci.edu/ml

[44] Geman, S., E. Bienenstock and R. Doursat, “Neural networks and the
bias/variance dilemma”, Neural computation 4, 1, 1–58 (1992).

[45] Ghazal Shams, E. d. C. and G. Runger, “A dual model agnostic strategy to
explore representativeness and informativeness in active learning”, Manuscript
submitted for publication (2020).

[46] Gini, C., “Variabilità e mutabilità”, Reprinted in Memorie di metodologica
statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi
(1912).

[47] Godbole, S. and S. Sarawagi, “Discriminative methods for multi-labeled classi-
fication”, in “Pacific-Asia conference on knowledge discovery and data mining”,
pp. 22–30 (Springer, 2004).

[48] Granmo, O.-C., “The bayesian learning automaton—empirical evaluation with
two-armed bernoulli bandit problems”, in “International Conference on In-
novative Techniques and Applications of Artificial Intelligence”, pp. 235–248
(Springer, 2008).

[49] Granmo, O.-C. and S. Berg, “Solving non-stationary bandit problems by ran-
dom sampling from sibling kalman filters”, in “International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent Systems”,
pp. 199–208 (Springer, 2010).

[50] Gu, Y., D. Zydek and Z. Jin, “Active learning based on random forest and its
application to terrain classification”, in “Progress in Systems Engineering”, pp.
273–278 (Springer, 2015).

[51] Gupta, N., O.-C. Granmo and A. Agrawala, “Thompson sampling for dy-
namic multi-armed bandits”, in “2011 10th International Conference on Ma-
chine Learning and Applications and Workshops”, vol. 1, pp. 484–489 (IEEE,
2011).

[52] Guyon, I., G. Cawley, G. Dror, V. Lemaire and A. Statnikov, Active Learning
Challenge: Challenges in Machine Learning, Volumen 6 (Microtome publishing,
2012).

[53] Guyon, I., G. C. Cawley, G. Dror and V. Lemaire, “Results of the active learn-
ing challenge.”, in “JMLR Workshop on Active Learning and Experimental
Design”, pp. 19–45 (2011).

[54] Hartland, C., N. Baskiotis, S. Gelly, M. Sebag and O. Teytaud, “Change
point detection and meta-bandits for online learning in dynamic environments”,
(2007).

[55] Harvey, A. C., Forecasting, structural time series models and the Kalman filter
(Cambridge university press, 1990).

111

[56] Hoi, S. C., R. Jin, J. Zhu and M. R. Lyu, “Batch mode active learning and
its application to medical image classification”, in “Proceedings of the 23rd
International Conference on Machine Learning”, pp. 417–424 (ACM, 2006).

[57] Hoi, S. C., R. Jin, J. Zhu and M. R. Lyu, “Semisupervised svm batch mode
active learning with applications to image retrieval”, ACM Transactions on
Information Systems (TOIS) 27, 3, 16 (2009).

[58] Hossain, H. M. S., N. Roy and M. A. A. H. Khan, “Active learning enabled ac-
tivity recognition”, in “2016 IEEE International Conference on Pervasive Com-
puting and Communications (PerCom)”, pp. 1–9 (2016).

[59] Hsu, D. J., Algorithms for active learning, Ph.D. thesis, UC San Diego (2010).

[60] Hsu, W.-N. and H.-T. Lin, “Active learning by learning”, in “Twenty-Ninth
AAAI conference on artificial intelligence”, (2015).

[61] Hu, L., S. Lu and X. Wang, “A new and informative active learning approach
for support vector machine”, Information Sciences 244, 142–160 (2013).

[62] Huang, S.-J., R. Jin and Z.-H. Zhou, “Active learning by querying informative
and representative examples”, in “Advances in neural information processing
systems”, pp. 892–900 (2010).

[63] Huang, S. J., R. Jin and Z. H. Zhou, “Active learning by querying informa-
tive and representative examples”, IEEE Transactions on Pattern Analysis and
Machine Intelligence 36, 10, 1936–1949 (2014).

[64] Jain, P. and A. Kapoor, “Active learning for large multi-class problems”, in
“Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer-
ence on”, pp. 762–769 (IEEE, 2009).

[65] Jegelka, S., A. Kapoor and E. Horvitz, “An interactive approach to solving
correspondence problems”, International journal of computer vision 108, 1-2,
49–58 (2014).

[66] Joshi, A. J., F. Porikli and N. Papanikolopoulos, “Multi-class active learning
for image classification”, in “Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on”, pp. 2372–2379 (IEEE, 2009).

[67] Jung, Y. H., M. Abeille and A. Tewari, “Thompson sampling in non-episodic
restless bandits”, arXiv preprint arXiv:1910.05654 (2019).

[68] Kalman, R. E., “A new approach to linear filtering and prediction problems”,
Journal of basic Engineering 82, 1, 35–45 (1960).

[69] Kandasamy, K., J. Schneider and B. Póczos, “High dimensional bayesian op-
timisation and bandits via additive models”, in “International Conference on
Machine Learning”, pp. 295–304 (2015).

112

[70] Kapoor, A., K. Grauman, R. Urtasun and T. Darrell, “Gaussian processes for
object categorization”, International journal of computer vision 88, 2, 169–188
(2010).

[71] Kaufman, L. and P. J. Rousseeuw, “Partitioning around medoids (program
pam)”, Finding Groups in Data: an Introduction to Cluster Analysis pp. 68–
125 (1990).

[72] Kaufman, L. and P. J. Rousseeuw, Finding groups in data: an introduction to
cluster analysis, vol. 344 (John Wiley & Sons, 2009).

[73] Kearns, M. and D. Koller, “Efficient reinforcement learning in factored mdps”,
in “IJCAI”, vol. 16, pp. 740–747 (1999).

[74] Kee, S., E. del Castillo and G. Runger, “Query-by-committee improvement
with diversity and density in batch active learning”, Information Sciences 454,
401–418 (2018).

[75] King, R. D., K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant, S. H. Mug-
gleton, D. B. Kell and S. G. Oliver, “Functional genomic hypothesis generation
and experimentation by a robot scientist”, Nature 427, 6971, 247 (2004).

[76] Krause, A. and C. S. Ong, “Contextual gaussian process bandit optimization”,
in “Advances in neural information processing systems”, pp. 2447–2455 (2011).

[77] Kullback, S., Information theory and statistics (Courier Corporation, 1997).

[78] Kullback, S. and R. A. Leibler, “On information and sufficiency”, The annals
of mathematical statistics 22, 1, 79–86 (1951).

[79] LeCun, Y., “The mnist database of handwritten digits”, http://yann. lecun.
com/exdb/mnist/ (1998).

[80] Leskovec, J., A. Rajaraman and J. D. Ullman, Mining of massive datasets
(Cambridge University Press, 2014).

[81] Lewis, D. D. and W. A. Gale, “A sequential algorithm for training text classi-
fiers”, in “Proceedings of the 17th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval”, pp. 3–12 (Springer-
Verlag New York, Inc., 1994).

[82] Li, X. and Y. Guo, “Adaptive active learning for image classification”, in “Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition”,
pp. 859–866 (2013).

[83] Li, X., L. Wang and E. Sung, “Multilabel svm active learning for image classi-
fication”, in “Image Processing, 2004. ICIP’04. 2004 International Conference
on”, vol. 4, pp. 2207–2210 (IEEE, 2004).

[84] Lichman, M., “UCI machine learning repository”, URL http://archive.ics.
uci.edu/ml (2013).

113

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[85] Linderoth, M., K. Soltesz, A. Robertsson and R. Johansson, “Initialization of
the kalman filter without assumptions on the initial state”, in “2011 IEEE
International Conference on Robotics and Automation”, pp. 4992–4997 (IEEE,
2011).

[86] Ling, C. K., K. H. Low and P. Jaillet, “Gaussian process planning with lip-
schitz continuous reward functions: Towards unifying bayesian optimization,
active learning, and beyond”, in “Thirtieth AAAI Conference on Artificial In-
telligence”, (2016).

[87] Liu, R., Y. Wang, T. Baba, D. Masumoto and S. Nagata, “Svm-based ac-
tive feedback in image retrieval using clustering and unlabeled data”, Pattern
Recognition 41, 8, 2645–2655 (2008).

[88] Luaces, O., J. Dı́ez, J. Barranquero, J. J. del Coz and A. Bahamonde, “Binary
relevance efficacy for multilabel classification”, Progress in Artificial Intelligence
1, 4, 303–313 (2012).

[89] Mac Aodha, O., N. D. Campbell, J. Kautz and G. J. Brostow, “Hierarchical
subquery evaluation for active learning on a graph”, in “Proceedings of the
IEEE conference on computer vision and pattern recognition”, pp. 564–571
(2014).

[90] MacKay, D. J., “Information-based objective functions for active data selec-
tion”, Neural computation 4, 4, 590–604 (1992).

[91] MacQueen, J. et al., “Some methods for classification and analysis of multivari-
ate observations”, in “Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability”, vol. 1, pp. 281–297 (Oakland, CA, USA,
1967).

[92] Mantripragada, K., J. A. Quintanilha and M. A. Giannotti, “Active learning
classification and change detection on multispectral images”, in “2014 12th
IEEE International Conference on Industrial Informatics (INDIN)”, pp. 26–30
(2014).

[93] Marchant, R., F. Ramos, S. Sanner et al., “Sequential bayesian optimisation
for spatial-temporal monitoring.”, in “UAI”, pp. 553–562 (2014).

[94] McCallumzy, A. K. and K. Nigamy, “Employing em and pool-based active
learning for text classification”, in “Proc. International Conference on Machine
Learning (ICML)”, pp. 359–367 (Citeseer, 1998).

[95] Mellor, J., Decision Making Using Thompson Sampling, Ph.D. thesis, The Uni-
versity of Manchester (United Kingdom) (2014).

[96] Meshram, R., A. Gopalan and D. Manjunath, “Restless bandits that hide their
hand and recommendation systems”, in “2017 9th International Conference on
Communication Systems and Networks (COMSNETS)”, pp. 206–213 (IEEE,
2017).

114

[97] Mockus, J., Bayesian approach to global optimization: theory and applications,
vol. 37 (Springer Science & Business Media, 2012).

[98] Mockus, J., V. Tiesis and A. Zilinskas, “Toward global optimization, volume 2,
chapter bayesian methods for seeking the extremum”, (1978).

[99] Montgomery, D. C., E. A. Peck and G. G. Vining, Introduction to linear regres-
sion analysis, vol. 821 (John Wiley & Sons, 2012).

[100] Nguyen, H. T. and A. Smeulders, “Active learning using pre-clustering”, in
“Proceedings of the twenty-first international conference on Machine learning”,
p. 79 (ACM, 2004).

[101] Opitz, D. and R. Maclin, “Popular ensemble methods: An empirical study”,
Journal of artificial intelligence research 11, 169–198 (1999).

[102] Osugi, T., D. Kim and S. Scott, “Balancing exploration and exploitation: A new
algorithm for active machine learning”, in “Fifth IEEE International Conference
on Data Mining (ICDM’05)”, pp. 8–pp (IEEE, 2005).

[103] Özgür, A., L. Özgür and T. Güngör, “Text categorization with class-based and
corpus-based keyword selection”, in “International Symposium on Computer
and Information Sciences”, pp. 606–615 (Springer, 2005).

[104] Pang, K., M. Dong, Y. Wu and T. M. Hospedales, “Dynamic ensemble active
learning: A non-stationary bandit with expert advice”, in “2018 24th Inter-
national Conference on Pattern Recognition (ICPR)”, pp. 2269–2276 (IEEE,
2018).

[105] Parsons, L., E. Haque and H. Liu, “Subspace clustering for high dimensional
data: a review”, ACM SIGKDD Explorations Newsletter 6, 1, 90–105 (2004).

[106] Patra, S. and L. Bruzzone, “A cluster-assumption based batch mode active
learning technique”, Pattern Recognition Letters 33, 9, 1042–1048 (2012).

[107] Pauwels, E., C. Lajaunie and J.-P. Vert, “A bayesian active learning strategy
for sequential experimental design in systems biology”, BMC Systems Biology
8, 1, 102 (2014).

[108] Pfingsten, T., “Bayesian active learning for sensitivity analysis”, in “European
Conference on Machine Learning”, pp. 353–364 (Springer, 2006).

[109] Platt, J. et al., “Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods”, Advances in large margin classifiers
10, 3, 61–74 (1999).

[110] Raghavan, H., O. Madani and R. Jones, “Active learning with feedback on
features and instances”, Journal of Machine Learning Research 7, Aug, 1655–
1686 (2006).

115

[111] Read, J., B. Pfahringer and G. Holmes, “Multi-label classification using ensem-
bles of pruned sets”, in “Data Mining, 2008. ICDM’08. Eighth IEEE Interna-
tional Conference on”, pp. 995–1000 (IEEE, 2008).

[112] Reyes, O., A. H. Altalhi and S. Ventura, “Statistical comparisons of active learn-
ing strategies over multiple datasets”, Knowledge-Based Systems 145, 274–288
(2018).

[113] Rigollet, P., “Generalization error bounds in semi-supervised classification un-
der the cluster assumption”, Journal of Machine Learning Research 8, Jul,
1369–1392 (2007).

[114] Rokach, L., A. Schclar and E. Itach, “Ensemble methods for multi-label classi-
fication”, Expert Systems with Applications 41, 16, 7507–7523 (2014).

[115] Roy, N. and A. McCallum, “Toward optimal active learning through monte
carlo estimation of error reduction”, ICML, Williamstown pp. 441–448 (2001).

[116] Sagi, O. and L. Rokach, “Ensemble learning: A survey”, Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8, 4, e1249 (2018).

[117] Schapire, R. E. and Y. Singer, “Boostexter: A boosting-based system for text
categorization”, Machine learning 39, 2-3, 135–168 (2000).

[118] Schein, A. I. and L. H. Ungar, “Active learning for logistic regression: an eval-
uation”, Machine Learning 68, 3, 235–265 (2007).

[119] Schohn, G. and D. Cohn, “Less is more: Active learning with support vector
machines”, in “Proceedings of the 17th International Conference on Machine
Learning”, pp. 839–846 (2000).

[120] Scott, S. L., “A modern bayesian look at the multi-armed bandit”, Applied
Stochastic Models in Business and Industry 26, 6, 639–658 (2010).

[121] Settles, B., Curious machines: Active learning with structured instances, Ph.D.
thesis, University of Wisconsin–Madison (2008).

[122] Settles, B., “Active learning literature survey”, Tech. Rep. 1648, Department
of Computer Sciences, University of Wisconsin–Madison (2009).

[123] Settles, B., “Active learning”, Synthesis Lectures on Artificial Intelligence and
Machine Learning 6, 1, 1–114 (2012).

[124] Settles, B. and M. Craven, “An analysis of active learning strategies for se-
quence labeling tasks”, in “Proceedings of the conference on empirical methods
in natural language processing”, pp. 1070–1079 (Association for Computational
Linguistics, 2008).

[125] Seung, H. S., M. Opper and H. Sompolinsky, “Query by committee”, in “Pro-
ceedings of the fifth annual workshop on Computational learning theory”, pp.
287–294 (ACM, 1992).

116

[126] Shahriari, B., K. Swersky, Z. Wang, R. P. Adams and N. De Freitas, “Taking
the human out of the loop: A review of bayesian optimization”, Proceedings of
the IEEE 104, 1, 148–175 (2015).

[127] Shannon, C. E., “A mathematical theory of communication”, Bell system tech-
nical journal 27, 3, 379–423 (1948).

[128] Sharma, M. and M. Bilgic, “Evidence-based uncertainty sampling for active
learning”, Data Mining and Knowledge Discovery 31, 1, 164–202 (2017).

[129] Shi, T. and S. Horvath, “Unsupervised learning with random forest predictors”,
Journal of Computational and Graphical Statistics 15, 1, 118–138 (2006).

[130] Shi, T. and S. Horvath, “Unsupervised learning with random forest predictors”,
Journal of Computational and Graphical Statistics 15, 1, 118–138 (2006).

[131] Shuyang, Z., T. Heittola and T. Virtanen, “Active learning for sound event
classification by clustering unlabeled data”, in “Acoustics, Speech and Signal
Processing (ICASSP), 2017 IEEE International Conference on”, pp. 751–755
(IEEE, 2017).

[132] Sivaraman, S. and M. M. Trivedi, “A general active-learning framework for
on-road vehicle recognition and tracking”, IEEE Transactions on Intelligent
Transportation Systems 11, 2, 267–276 (2010).

[133] Sokolova, M. and G. Lapalme, “A systematic analysis of performance measures
for classification tasks”, Information Processing & Management 45, 4, 427–437
(2009).

[134] Speekenbrink, M. and E. Konstantinidis, “Uncertainty and exploration in a
restless bandit problem”, Topics in cognitive science 7, 2, 351–367 (2015).

[135] Srinivas, N., A. Krause, S. M. Kakade and M. W. Seeger, “Information-theoretic
regret bounds for gaussian process optimization in the bandit setting”, IEEE
Transactions on Information Theory 58, 5, 3250–3265 (2012).

[136] Svetnik, V., A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan and B. P.
Feuston, “Random forest: a classification and regression tool for compound
classification and qsar modeling”, Journal of chemical information and com-
puter sciences 43, 6, 1947–1958 (2003).

[137] Tang, M., X. Luo and S. Roukos, “Active learning for statistical natural lan-
guage parsing”, in “Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics”, pp. 120–127 (Association for Computational
Linguistics, 2002).

[138] Thompson, W. R., “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples”, Biometrika 25, 3/4, 285–294
(1933).

117

[139] Tong, S., Active learning: theory and applications, vol. 1 (Stanford University
USA, 2001).

[140] Tong, S. and D. Koller, “Support vector machine active learning with applica-
tions to text classification”, Journal of machine learning research 2, Nov, 45–66
(2001).

[141] Tsoumakas, G. and I. Katakis, “Multi-label classification: An overview”, Inter-
national Journal of Data Warehousing and Mining (IJDWM) 3, 3, 1–13 (2007).

[142] Tuia, D., F. Ratle, F. Pacifici, M. F. Kanevski and W. J. Emery, “Active
learning methods for remote sensing image classification”, IEEE Transactions
on Geoscience and Remote Sensing 47, 7, 2218–2232 (2009).

[143] Tumer, K. and J. Ghosh, “Error correlation and error reduction in ensemble
classifiers”, Connection science 8, 3-4, 385–404 (1996).

[144] Vapnik, V. N. and V. Vapnik, Statistical learning theory (Wiley New York,
1998).

[145] Vasisht, D., A. Damianou, M. Varma and A. Kapoor, “Active learning for sparse
bayesian multilabel classification”, in “Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining”, pp. 472–481
(ACM, 2014).

[146] Velentzas, G., C. Tzafestas and M. Khamassi, “Bio-inspired meta-learning for
active exploration during non-stationary multi-armed bandit tasks”, in “2017
Intelligent Systems Conference (IntelliSys)”, pp. 661–669 (IEEE, 2017).

[147] Viappiani, P., “Thompson sampling for bayesian bandits with resets”, in “In-
ternational Conference on Algorithmic DecisionTheory”, pp. 399–410 (Springer,
2013).

[148] Wang, J., E. Park and Y.-c. I. Chang, “Active learning procedure via sequential
experimental design and uncertainty sampling”, arXiv preprint arXiv:1406.4676
(2014).

[149] Whittle, P., “Restless bandits: Activity allocation in a changing world”, Journal
of applied probability 25, A, 287–298 (1988).

[150] Xiong, S., Y. Pei, R. Rosales and X. Z. Fern, “Active learning from relative
comparisons”, IEEE Transactions on Knowledge and Data Engineering 27, 12,
3166–3175 (2015).

[151] Xu, J.-M., K.-S. Jun, X. Zhu and A. Bellmore, “Learning from bullying traces
in social media”, in “Proceedings of the 2012 conference of the North Ameri-
can chapter of the association for computational linguistics: Human language
technologies”, pp. 656–666 (Association for Computational Linguistics, 2012).

[152] Xu, R. and D. Wunsch, “Survey of clustering algorithms”, IEEE Transactions
on neural networks 16, 3, 645–678 (2005).

118

[153] Xu, Z., R. Akella and Y. Zhang, “Incorporating diversity and density in ac-
tive learning for relevance feedback”, in “European Conference on Information
Retrieval”, pp. 246–257 (Springer, 2007).

[154] Xu, Z., K. Yu, V. Tresp, X. Xu and J. Wang, “Representative sampling for
text classification using support vector machines”, in “European Conference on
Information Retrieval”, pp. 393–407 (Springer, 2003).

[155] Yang, J. et al., “Automatically labeling video data using multi-class active
learning”, in “Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on”, pp. 516–523 (IEEE, 2003).

[156] Yang, Y. and M. Loog, “A variance maximization criterion for active learning”,
Pattern Recognition 78, 358–370 (2018).

[157] Yang, Y., Z. Ma, F. Nie, X. Chang and A. G. Hauptmann, “Multi-class active
learning by uncertainty sampling with diversity maximization”, International
Journal of Computer Vision 113, 2, 113–127 (2015).

[158] Zhu, J., H. Wang, B. K. Tsou and M. Ma, “Active learning with sampling by
uncertainty and density for data annotations”, IEEE Transactions on audio,
speech, and language processing 18, 6, 1323–1331 (2009).

[159] Zhu, J., H. Wang, B. K. Tsou and M. Y. Ma, “Active learning with sampling
by uncertainty and density for data annotations.”, IEEE Trans. Audio, Speech
& Language Processing 18, 6, 1323–1331 (2010).

[160] Zhu, X., “Semi-supervised learning literature survey”, (2005).

[161] Zhu, X., J. Lafferty and Z. Ghahramani, “Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions”, in “ICML
2003 workshop on the continuum from labeled to unlabeled data in machine
learning and data mining”, vol. 3 (2003).

119

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	What is Active Learning?
	Thesis Statement and Organization

	RELATED WORK
	Theories Behind Queries
	Uncertainty Sampling
	Expected Error and Variance Reduction
	Query-By-Committee
	Exploiting the Data Distribution

	Evaluation of Active Learning Algorithms
	Optimal Experimental Design and Bayesian Optimization
	Optimal Experimental Design
	Bayesian Optimization

	Tree-based Ensembles
	Clustering

	INFORMATION DENSITY FOR ACTIVE BATCH LEARNING
	Introduction
	Background
	Query Strategies
	Multi-class Scenario
	Stochastic Query-By-Forest (SQBF)

	Cluster-based Stochastic Query-By-Forest
	Experiments and Results
	Clustering
	Complexity Analysis
	Sensitivity Analysis

	Conclusion

	A DUAL MODEL AGNOSTIC STRATEGY TO EXPLORE REPRESENTATIVENESS AND INFORMATIVENESS IN ACTIVE LEARNING
	Abstract
	Introduction
	Background
	Active Learning
	Multi-Class Scenario
	Multi-Label Classification

	Methodology
	Double Margin Active Learning (DMAL)
	Cluster Agnostic Active Learning (CAAL)

	Experiments and Results
	Experimental Settings

	Conclusion

	ADAPTIVE ACTIVE LEARNING
	Abstract
	Introduction
	Background
	Methodology
	Active Learning Framework
	Choice of Reward Function
	Baseline Algorithm: A Feedback-driven Approach
	KF-RB: A Kalman Filter Restless Bandit Approach
	RAFO: Reinforced Active Forest

	Experiments and Results
	Experiments Setups
	Discussion of Results

	Conclusion

	CONCLUSION
	Summary of Contributions

	REFERENCES

