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ABSTRACT 

 

 

 

Additive manufacturing (AM) has been extensively investigated in recent years to 

explore its application in a wide range of engineering functionalities, such as mechanical, 

acoustic, thermal, and electrical properties. The proposed study focuses on the data-driven 

approach to predict the mechanical properties of additively manufactured metals, 

specifically Ti-6Al-4V. Extensive data for Ti-6Al-4V using three different Powder Bed 

Fusion (PBF) additive manufacturing processes: Selective Laser Melting (SLM), Electron 

Beam Melting (EBM), and Direct Metal Laser Sintering (DMLS) are collected from the 

open literature. The data is used to develop models to estimate the mechanical properties 

of Ti-6Al-4V. For this purpose, two models are developed which relate the fabrication 

process parameters to the static and fatigue properties of the AM Ti-6Al-4V. To identify 

the behavior of the relationship between the input and output parameters, each of the 

models is developed on both linear multi-regression analysis and non-linear Artificial 

Neural Network (ANN) based on Bayesian regularization. Uncertainties associated with 

the performance prediction and sensitivity with respect to processing parameters are 

investigated. Extensive sensitivity studies are performed to identify the important factors 

for future optimal design. Some conclusions and future work are drawn based on the 

proposed study with investigated material. 
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CHAPTER - 1 

 

INTRODUCTION 

 

1.1 General Background 

The ingenious innovations happening in the industrial sector and fast-growing competition 

in the global market from the past few decades have encouraged the engineering sector to 

devote extra attention to building products with high added value and exceptional 

capabilities to perform under extreme working conditions. In some cases, the required 

properties and shapes cannot be attained by conventional manufacturing techniques, such 

as turning, milling, boring, drilling, grinding, and abrasive jet machining. Each 

manufacturing process is capped by the number of resources employed and its continuity 

depends on the profit gained from its manufacturing be it in terms of money, increased 

component life, or customer satisfaction. The cost of a finished product is a total of the 

costs of metal extraction, manufacturing process, and post-manufacturing process. The 

extraction cost determines the cost for extracting the mineral from its ore, the post-

manufacturing determines the topology and morphology of the final product however the 

cost of manufacturing is depended on how the manufacturing is done, how much material 

wastage happens during that process, and how much energy is consumed for carrying out 

that process. For instance, the cost of production of titanium alloys is a factor of the cost 

involved with the extraction process of titanium mineral from its ore (Kroll’s Process) and 

the cost of the fabrication process which may require high energy consumption, protective 
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environment, and significant material wastage [1], [2]. These factors, therefore, limit the 

usage of titanium alloy to a still broader utilization [1]. To reduce these capping factors, 

research has been focused on developing efficient alternate manufacturing procedures [3].  

1.2 Manufacturing Processes 

To date, the manufacturing of metals, composites, and alloys is conducted broadly in two 

manners. One is a subtractive manufacturing method and the other is an additive 

manufacturing method. 

Subtractive Manufacturing: 

As the name suggests, subtractive manufacturing is a process where the material is 

removed from a solid block, bar, rod of plastic, metal, or other materials to shape them into 

the required dimensions by removing material using conventional machining processes like 

turning, milling, boring, drilling, grinding, and abrasive jet machining, etc. Other than these 

techniques, CAD software is also used in conjunction with non-conventional machining 

processes like Electron discharge machining (EDM), laser cutting, water jet cutting, and 

Computer numerical control (CNC) machining, etc. 

Additive Manufacturing (AM) or 3D printing: 

Unlike subtractive manufacturing where the material is removed from a large casted piece, 

the additive manufacturing process is based on adding material layers one at a time where 

each successive layer bind to the preceding, layer by layer until the part is complete. AM 

also uses CAD models which are utilized by 3D printers to deposit the material, or 

selectively melt and fuse the powder to create the part. However, some cleaning and 
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finishing processes are required after the part has been manufactured by 3D printing to 

achieve their final dimensions before they are ready to use [4].  

Subtractive manufacturing processes no doubt have their advantages but there are certain 

aspects to 3D printing which gives it the edge over the former.  First and foremost, it opens 

a platform for manufacturing a vast variety of materials like plastics, resins, ceramics, 

glass, concrete, and metals and mostly all the manufacturing involves a few basic steps [5]. 

Unlike subtractive machining, AM doesn’t have to deal with a unique process & equipment 

and tool for different materials [6].  Thirdly, 3D printers can perform the needful without 

or minimal human intervention although many still require supervision to ensure the 

printing process is accurate [6]. Fourthly, AM provides flexibility in the complexity and 

customization of the design without affecting the production cost which is far greater than 

subtractive machining where manufacturing complex shapes put a heavy toll on the 

manufacturing tool [6], [7]. Lastly, AM is found to be environmentally suitable as it results 

in a reduction of energy consumption and emission of CO2 along with minimal wastage of 

material [8]. Also, in some AM processes like Powder-Bed-Fusion (PBF) techniques, the 

Powder (manufacturing material) can be reused to obtain efficient AM in some materials 

[9], [10]. 3D printing still lacks behind the alternate on a few fronts such as initial 

expenditure, manufacturing time, and small size production [11].  

Some of the advantages of AM in varied streams are presented hereunder [12]–[19]: 

 Aerospace: 

− Improved development cycles and complex design parts 

− Consolidation of design and spares manufacturing 
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− Less material wastage and in-process quality assurance 

− Aircraft brakes, heat pipes, joints, passenger doors, engine nacelle, ailerons, 

spoilers, flaps, undercarriage doors, wingtips, rotor blades, stabilizers, fuselage skin 

are a few of many in-use 3D printed aerospace components.   

 Sports: 

− Lightweight equipment and enhanced customization 

− Better safeguard and accessories 

− Data collection with a simulating and scanning equipment 

− Footwear, golf balls, surfing and skating boards, speed boats, scuba diving tanks, 

race cars, baseball bats, hockey sticks, skis, and many more are in practice. 

 Automotive: 

− Design and concept of communication and prototyping validation 

− Preproduction sampling, tooling and customized parts 

− Driveshafts, fan blades, accelerating pedals, air filter housing, radiator end caps, 

mirror housing, brake shoes, belts, interior panels, bumper fuel tanks, bicycle, tire 

frames, and truck body are a few of in-use 3D printed automotive components. 

 Medical: 

− Heart valves, pacemakers, attachment wires, surgical instruments, wheelchairs 

− 3D printed biocompatible medical implants, prosthetics, and hearing aids 

− Dental bridges, aligners, crowns, orthodontic appliances, and stone models 

 Military: 

− Modeling, test units, and prototyping 
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− Replacement parts, tooling, and maintenance 

− Structural components for defense systems 

− Localized production and freedom of design and customization  

− Helmets, bulletproof vests, impact-resistant vehicles, engine and equipment 

foundations, rudders, hovercrafts are some of the in-use 3D printed military 

components 

1.3 Material Selection 

As mentioned earlier additive manufacturing can work with plastics, resins, ceramics, 

glass, concrete, and metals. Mechanical properties of metals or alloys to be used play a 

major role in deciding its application in industry. Ti-6Al-4V is one of the most sought far 

titanium alloys in diverse fields of engineering owing to its high strength, low density, low 

coefficient of thermal expansion, outstanding corrosion resistance, high cycle fatigue 

resistance, and biocompatibility. These characteristics of titanium alloys help in taking a 

decisive role in applications that warrant high reliability and end-use of the products such 

as in surgery and medicine, aerospace, automotive, chemical plant, power generation, oil 

and gas extraction, sports, and other major industries. 

In most of the industrial and allied engineering applications, titanium has replaced heavier 

materials. Further, titanium alloy has proved to be stronger, reliable, and more durable 

thereby giving it an edge over other available choices. The density of titanium is about 60% 

that of steel, this makes it lighter and potential material for aerospace applications [12]. 

The advantage of high strength, low density, low coefficient of thermal expansion, and 

good corrosion resistance tempts the use of titanium and its alloys in automobiles as well. 
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This may help to reduce fuel consumption, improve the efficiency of the engine, and reduce 

the noise; however, being expensive material it is not commonly used in ordinary cars, 

though it finds its application in luxury cars, special purpose cars, and sports cars [13]. 

With the advent of the latest machines and advancements in manufacturing techniques, the 

use of implants has become very common. However, these implants must be in line with 

the requirements of human beings. These must possess biomechanical properties 

comparable to those parts which need to be replaced and must be compatible without any 

side effects. The essential requirements for all medical implants include good corrosion 

resistance, good biocompatibility, bio-adhesion, and machinability [20]–[22]. To ensure 

that the implants satisfy these requirements, materials being used are checked for 

genotoxicity, carcinogenicity, reproductive toxicity, cytotoxicity, irritation, sensitivity, and 

residues of sterilization [23], [24]. Modern-day medical implants have to pass strict 

regulations, and these must ensure the safety, effectiveness, and compatibility of the 

patients. Titanium and its alloys have been widely accepted as an implant for orthopedic 

and dental applications over the last few decades [25]. Among the different types of 

titanium alloys, Ti-6Al-4V remains the most widely used material for possessing 

appropriate properties, such as higher strength, lower modulus of elasticity, better 

corrosion behavior, and superior biocompatibility compared to other metallic biomaterials 

[26], [27]. High corrosion resistance is primarily due to the spontaneous formation of the 

protective passive TiO2 film on titanium surfaces [28]. 

At times the damaged components or parts might not be readily available for replacement 

e.g. an implant for one person may not be suitable to another.  Similarly, many industrial 
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and engineering applications may require a specific type of components and parts to be 

fabricated and replaced. Such customized parts can be fabricated through Additive 

Manufacturing. The present work, therefore, focuses on various types of Additive 

Manufacturing Techniques for fabricating parts using Ti-6Al-4V powder. 

This study includes six main chapters. Followed by the Introduction, Chapter 2 discusses 

the literature review where detailed information about titanium and its alloys is discussed. 

It also covers various AM techniques and post processes utilized to manufacture Ti-6Al-

4V alloy. Chapter 3 presents the data-driven approach using multi-regression analysis and 

Artificial Neural Network (ANN) to estimate the static and fatigue properties of Ti-6Al-

4V alloy manufactured by different 3D printing processes. Chapter 4 shares the open 

literature data collection for tensile and fatigue properties of the Ti-6Al-4V alloy fabricated 

using the different AM processes. The results of the model developed in Chapter 3 are then 

presented in Chapter 5. Finally, Chapter 6 presents the conclusions drawn and future work 

associated with the study.  
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CHAPTER - 2 

LITERATURE REVIEW 

 

2.1 Titanium and its Alloys 

2.1.1 History and Properties of Titanium 

It was in 1791 when the then-unknown element was first discovered by a British chemist, 

William Gregor, who preferred to call it ‘Gregorite’. Later in 1795, a Prussian chemist, 

Martin Heinrich Klaproth, independently discovered the same element and entitled it 

‘Titanium’. However, extraction of titanium from its ore wasn’t achieved until 1910 when 

pure metallic titanium was first prepared by heating titanium tetrachloride with sodium in 

a steel bomb. It was in 1932 when Wilhelm Justin Kroll came up with a process, now 

known as Kroll’s Process, to reduce titanium from titanium tetrachloride ore using Calcium 

which brought titanium outside of the laboratory and into the commercial market. With 

further modifications to the process, he observed that using Magnesium instead of Calcium 

as a reducing agent makes the process commercially more efficient. Kroll’s process to date 

is the most widely used method for obtaining titanium from titanium tetrachloride [3],[29].  

Titanium has an atomic number of 22 and falls under the d-block transition elements 

category as per the periodic table. Titanium is the ninth most plentiful element and the 

fourth most abundant structural metals in Earth’s crust ranked just below aluminum, iron, 

and magnesium. The only downside is that it is never found in the pure state and the 

extraction process makes it expensive on top of which it is seldom found in high 
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concentrations. Titanium is a non-ferrous metal and with a density of 4.51 g/cm3, it can be 

classified as heaviest lightweight metal [29].  

Being a low-density element (approximately 60% density of steel), backed up by non-

magnetic and good heat-transfer behavior titanium in itself posts a tough competition to 

other vastly used materials like steel and aluminum. However, its coefficient of thermal 

expansion is nearly half of that of aluminum and lower than steel. To compensate for such 

shortcomings, titanium alloys are used instead of titanium element in the industry very 

variedly. Some of the physical and mechanical properties of element titanium are presented 

in Table 2.1 [30]: 

Table 2. 1 Physical and mechanical properties of pure titanium 

Property Description or value 

Atomic number 22 

Atomic weight 47.90 

Atomic volume 10.6 W/D 

Color Dark gray  
Crystal Structure  

         Alpha (≤882 °C) Close-packed hexagonal 

         Beta (≥882 °C) Body-centered cubic 

Density  4.51 g/cm3 

Melting point 1668 ± 10 °C 

Solidus/liquidus 1725 °C 

Boiling point 3260 °C 

Specific heat (at 25 °C) 0.5223 kJ/kg ⋅ K 

Thermal conductivity 11.4 W/m ⋅ K 

Heat of fusion 440 kJ/kg (estimated) 

Heat of vaporization 9.83 MJ/kg 

Specific gravity 4.5 

Hardness 70 to 74 HRB 

Tensile strength  240 MPa 

Young’s modulus 120 GPa 

Poisson’s ratio 0.361 

Coefficient of linear thermal expansion 8.41 μm/m ⋅ K 
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2.1.2 Titanium Crystal Structure and Alloying 

Pure titanium exhibits various crystallographic forms with each modification stable within 

a certain temperature ranges, thus, defining it as an allotropic element. Similar properties 

are shown by certain other elements like Ca, Fe, Co, Zr, Sn, Ce, and Hf. At room 

temperature, titanium exhibits hexagonal close packing (hcp) which is also called the α-

phase titanium or simply α-titanium. There occurs a crystallographic transformation when 

titanium is solidified from a liquid or when titanium is heated to a temperature above 882 

± 2 C. This transformed structure of titanium is a body-centered cubic (bcc) also called 

the β-phase titanium or simply β-titanium [30]. Both of these crystal structures can be seen 

in Figure 2.1 with the shaded plane representing the most densely populated plane.  

A complete transformation from one crystallographic form to the other is called allotropic 

transformation and the temperature at which this transformation takes place is referred to 

as transus temperature. Based on these two crystal structures, generally accepted stable 

classes of titanium alloys are ‘alpha’, ‘alpha+beta’, or ‘beta’.  

 

Figure 2. 1 Crystal structure of hcp α and bcc β phase titanium [29] 
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Due to the allotropic behavior of titanium, it is employed in different applications. 

However, at room temperature, the stable form of titanium is the alpha form while at a 

temperature higher than 882 ± 2 C, the stable form of titanium is the beta form and 

therefore, at lower temperatures, titanium cannot be utilized for the beta phase applications 

and similarly at high temperature, the alpha phase applications cannot be utilized. 

However, by alloying titanium metal with other elements like aluminum, tin, vanadium, 

manganese, oxygen, iron, molybdenum, or chromium, etc., alloy crystal structure can be 

stabilized at room temperature and in turn making it possible to manufacture near-alpha, 

alpha, mixed alpha-beta, near-beta, and beta structure titanium alloys at room temperature. 

Table 2.2 shows a few examples of titanium alloys for each of the stable titanium phase 

and the possible property trends that can be observed with different alloy crystal structures. 

Alloying elements are classified based on their influence on the α/β-transition temperature 

as α stabilizers, β stabilizers, and neutral. α stabilizers tend to increase the transition 

temperature and hence results in a stable alpha crystal structure alloy. Aluminum, oxygen, 

nitrogen, and carbon are examples of α stabilizers. On the other hand, elements that depress 

the transition temperature lead to a stable beta crystal structure alloy. Vanadium, iron, 

chromium, nickel, cobalt, and molybdenum are examples of β stabilizers. Neutral elements 

present no effect on the stability of any phase. Tin and zirconium are examples of such 

alloying elements. Mechanical properties of each phase alloy are somewhat representative 

of the stabilizing element involved. β-stabilizing elements introduce high density to the 

alloy resulting in a higher strength while α stabilizing elements are equipped with low 

density but moderate strengths and higher ductility. The properties of the α+β phase alloys 
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lie in between both extremes as presented by Table 2.2 [30]. However, properties like 

fracture toughness and fatigue life get affected by heat treatment and other post-

manufacturing processes, and therefore, they cannot be related directly to either stabilizing 

elements.  

Table 2. 2 Titanium alloy microstructures and consequent property trends 

Titanium Alloy Microstructures 

α Near α α+β Near β β 

 

α stabilizers: 

Al, O, N or C 

Neutral 

elements: Zr, 

Sn 

1-2% of β 

stabilizers are 

added along with 

larger amounts of 

α stabilizers 

 

Equally 

favoring α 

and β 

stabilizers 

1-2% of α 

stabilizers are 

added along 

with larger 

amounts of β 

stabilizers 

 

 

β stabilizers: 

Mo, V, Fe, 

Cr, Mn or Si 

Unalloyed Ti 

Ti-5Al-2.5Sn 

Ti-8Al-1Mo-

1V 

Ti-6Al-2Sn-4Zr-

2Mo 

Ti-8Al-1Mo-1V 

Ti-6Al-4V 

Ti-6Al-6V-

2Sn 

Ti-8Mn 

Ti-8Mo-8V-

2Fe-3Al 

Ti-3V-11Cr-

3Al 

Ti-11.5 Mo-

6Zr-4.5Sn 

Property Trends 

Density 

Heat treatment response 

Strain rate sensitivity 

Strength 

Fabricability 

Weldability 

Creep strength 

Oxidation behavior 

Corrosion behavior 
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2.1.3 Classification of Titanium Alloys 

As mentioned earlier depending on the proportion of each phase present, titanium alloys 

are classified as near-alpha, alpha, alpha-beta, near-beta, and beta phases. The near-α alloys 

have 1-2% of the β-stabilizers approximately and 5-10% β phase. α-alloys have no β 

stabilizers and consequently no β phase. α+β alloys have higher amounts of β-stabilizers 

resulting in 10-40% of the β phase. Similarly, near-β/metastable and β alloys have higher 

amounts of the β-stabilizers and constitute a predominant β-phase [31].  

Figure 2.2 illustrates the possibilities of making each titanium phased alloy based on an α-

stabilizing element, aluminum (Al), and a β-stabilizing element, vanadium (V) using a 

schematic 3D phase diagram. The alpha alloys comprise of unalloyed titanium and titanium 

alloys having aluminum or any neutral interstitial occupancy. 

 

Figure 2. 2 3D representation of titanium alloys in relation with an α-stabilizing (Al) and a β-stabilizing 

element (V) [29] 
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Minor addition of the vanadium drives the alloy to near alpha titanium alloys. Having a 

blend of aluminum equally dominant as vanadium results in an α+β alloy group where β 

volume fraction ranges from 10-40% at room temperature. This α+β alloy phase stays 

until at quenching, the alloy is no longer able to transform into martensite (Ms). As this 

volume fraction of vanadium is passed, the β-phase becomes dominant and alloy, still 

being in two phases, obtains a metastable/near beta state. Lastly, a single-phase beta alloy 

is obtained when vanadium has complete dominance over the interstitial sites of titanium. 

Each of the titanium alloys with their properties has been discussed in the following 

section in detail. 

Unalloyed titanium or Commercial Purity (CP) titanium: 

CP titanium is the weakest form of titanium yet shows the most corrosion resistance. It is 

represented in four grades specifically 1, 2, 3, and 4 based on the nitrogen, carbon, 

hydrogen, oxygen, and iron present in the interstitial sites. Since CP titanium has α-

stabilizing or neutral elements in interstitial sites backed by their stable hcp crystal structure 

at room temperature, it can be regarded as α-phase titanium. These α-stabilizing or neutral 

element additions suffice titanium utilization in various applications, for instance, oxygen, 

nitrogen, and iron as the interstitial elements greatly strengthen pure titanium. High purity 

grade-1 CP titanium equipped with lesser oxygen, nitrogen, and iron percentage depict 

lower strength and hardness and a consequent lower transformation temperature than those 

with higher amounts of interstitial elements. Following the same trend, grade-4 CP titanium 

has the lowest corrosion resistance but the highest strength and hardness. A general 

representation of the composition of CP titanium grades and their tensile properties is 
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shown in Table 2.3. CP titanium is employed in the form of a coil, bar, wire, strands, and 

cables in a variety of medical and industrial applications like pacing leads, needles, woven 

wire mesh, eye-glass frames, orthodontic appliances, ligature clips, and multiple 

orthopedic appliances.   

Table 2. 3 Composition and tensile properties of distinct grade CP titanium [32] 

 

Grade 

Max. Weight % Tensile Properties 

N C O Fe H UTS (MPa) YS (MPa) El (%) 

1 0.03 0.10 0.18 0.20 0.015 241 172 24 

2 0.03 0.10 0.25 0.30 0.015 345 276 20 

3 0.05 0.10 0.35 0.30 0.015 448 379 18 

4 0.05 0.10 0.40 0.50 0.015 552 483 15 

 

Alpha titanium alloys:  

Having neutral stabilizers or a higher concentration of alpha stabilizers, these titanium 

alloys exhibit hcp crystal structure at room temperature. Other than having low to medium 

strength, good notch toughness, oxidation resistance, and reasonable ductility they exhibit 

good resistance against creep at a higher temperature than the rest of the titanium alloy 

class. Therefore, alpha alloys developed using aluminum, tin, and zirconium as stabilizing 

elements are well suited for high temperature and cryogenic applications. However, at high 

temperatures, a reduction in ductility and toughness is observed because of an excess of 

interstitial sites getting occupied. They intrinsically exhibit good weldability which brings 

in the fact why they do not respond to heat treatment. Hence, their properties cannot be 

enhanced by modification of microstructure and to get around these hindrances, extra low 
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interstitial (ELI) alloys with reduced interstitial site occupancy are prepared. Ti-5Al-2.5Sn-

ELI is such an example of an alpha alloy used excessively in cryogenic applications 

because it can retain its ductility and toughness as a result of reduced interstitial site 

occupancy [30]. Mechanical properties of a few alpha phase Ti alloys are presented in 

Table 2.4.  

Table 2. 4 Mechanical Properties of a few α alloys [33] 

Alloy  UTS (MPa) YS (MPa) El (%) Hardness (HV) 

Ti-2Bi 360 310 25 210 

Ti-10Bi 520 425 15 300 

Ti-20Bi 585 535 3 365 

 

Near-alpha titanium alloys:  

Near alpha titanium alloys are a result of the addition of a small amount of β-stabilizers to 

an alpha alloy composition and are also called super-alpha titanium alloys. These are 

excellent for high temperature (500-550 °C) applications due to near excess α-stabilizers.  

Table 2. 5 Mechanical Properties of a few near-α alloys [29] 

Alloy  UTS (MPa) YS (MPa) El (%) Hardness (HV) 

Ti-6-2-4-2-S 1010 990 13 340 

TIMETAL 834 1010-1050 900-950 10-16 - 

TIMETAL 1100 1030 910 6-12 350 

 

Also, due to the presence of a small amount of β phase, its high temperature creep resistance 

and oxidation resistance are accompanied by a higher strength compared to the alpha 

alloys. Some microstructural grain changes can also be observed upon heat treatment. 
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Compressor discs in a gas turbine, compressor blades for jet engines, and skins for 

airframes, etc. are found to exploit the abilities of Ti–6Al–5Zr–0.5Mo–0.25Si, Ti-8A1-

1Mo-1V, and Ti-6A1-2Nb-lTa-0.8Mo near-alpha titanium alloy [30]. Mechanical 

properties of a few near-alpha titanium alloys are presented in Table 2.5. 

Alpha+beta titanium alloys: 

With a further increase of beta stabilizers, equally dominant alpha and beta phases can be 

obtained in the titanium alloy. An increase in the beta phase accounts for the reduction in 

the alpha phase and hence alpha+beta titanium alloys exhibit lower creep strength and 

weldability than near-alpha and alpha phase alloys. However, they come with a perfect 

blend of properties from alpha and beta phases and hence are very well suited for a balanced 

set of properties where high tensile strength vs fracture toughness, high tensile strength vs 

high cycle fatigue, and good creep resistance vs low cycle fatigue strength are the deciding 

criteria of material selection. They show good formability and are heat treatable hence, a 

wide variety of microstructures can be tailored by manipulating thermodynamic processing 

parameters as per the requirement.  Solution heat treatment, quenching, and age hardening 

can be used to increase the strength of alpha+beta alloys as per the end-use application. For 

example, Ti-6-2-2-2-2 finds its applications in high-temperature (400 C) conditions like 

gas turbine engines while Ti-6-2-4-6 is utilized as high strength and high toughness alloy. 

Titanium alloy market is captured by alpha+beta alloys and specifically Ti-6Al-4V marks 

more than half of the alpha+beta titanium alloy production. It is stronger than CP titanium 

and exhibits lower Young’s modulus than stainless steel thus acting as a straight 

competitor. Ti-6Al-4V finds its applications majorly in the aerospace, biomedical, marine, 
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and power generation industries [3]. Table 2.6 illustrates the mechanical properties of a 

few alpha+beta phase titanium alloys. 

Table 2. 6 Mechanical Properties of a few α+β alloys [29] 

Alloy  UTS (MPa) YS (MPa) El (%) Hardness (HV) 

Ti-6-2-2-2-2 1100-1300 1000-1250 8-15 - 

Ti-6-4 900-1200 800-1100 13-16 300-400 

Ti-6-2-4-6 1100-1200 1000-1100 13-16 330-400 

Ti-6-6-2 1000-1100 950-1050 10-19 300-400 

Ti-17 1100-1250 1050 8-15 400 

 

Beta and near-beta titanium alloys: 

Beta and near-beta alloys are formed when an excess of beta phase is observed in titanium 

alloy which lowers the temperature of allotropic transition. Accompanied by rich β-

stabilizers and minimal or no amounts of α-stabilizers, beta and near-beta alloys are 

characterized by high hardenability resulting in strength levels over 1300 MPa. Because of 

their attractive combination of fatigue resistance, toughness and strength, corrosion 

resistance, and creep resistance against intermediate temperatures, these alloys have gained 

attention over the past few decades. They have high density, poor oxidation resistance, 

moderate weldability, and higher formulation cost that alpha+beta alloys. Also, excess β-

phase invites more slip systems which makes them susceptible to faster crack growth rates. 

Beta and near beta alloys are seen to contribute to the aerospace industry majorly. Some 

microstructure modifications make them and effective choice in the automotive industry 

and moderate temperature gas turbine engines.  Ti–13 V–11Cr–3Al, Ti–8 V–6Cr–4Mo–

4Zr–3Al (Beta C), and Ti–15Mo–2.7Nb–3Al–0.2Si (TIMETAL 21S) are some examples 
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of beta alloys [34]. Table 2.7 illustrates the mechanical properties of a few metastable beta 

and beta phase titanium alloys. 

Table 2. 7 Mechanical properties of a few metastable β and β alloys [29] 

Alloy  UTS (MPa) YS (MPa) El (%) Hardness (HV) 

SP700 960 900 8-20 300-500 

Beta III 900-1300 800-1200 8-20 250-450 

Beta C 900-1300 800-1200 6-16 300-450 

Ti-10-2-3 1000-1400 1000-1200 6-16 300-470 

Ti-15-3 800-1100 800-100 10-20 300-450 

 

2.1.4 Ti-6Al-4V, an α+β Titanium Alloy 

Ti-6Al-4V also known as Ti64 or Grade 5 titanium is the most commonly used alpha+beta 

titanium alloy dominating more than 50% of titanium alloy manufacturing because of its 

excellent balance of properties [12]. Aluminum, the α-stabilizing element contributes 

nearly 6 wt.% while vanadium, the β-stabilizing element contributes to 4 wt.%. The 

chemical composition of cast Ti64 according to ASTM standards is shown in Table 2.8. 

Table 2. 8 The chemical composition of Ti-6Al-4V alloy [35] 

Element wt. (%) Al V Fe O N C H Ti 

Min. 5.50 3.50 0 0 0 0 0 Remainder 

Max. 6.75 4.50 0.30 0.20 0.10 0.05 0.015 Remainder 

 

Ti64 has been contributing to the aircraft and aerospace industry as a structural material 

for a long time [3]. It gives in a good balance between strength, ductility, fatigue, and 

fracture toughness properties along with low density, high corrosion resistance, and the 
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ability to alter microstructure after heat treatment. Therefore, Ti64 becomes an optimum 

choice for applications like airframes, bolts, seat rails, cabin brackets, bleed pipes, pressure 

vessels, aircraft gas turbine engines, fan blades and cases, surgical implants, prosthetics, 

suspension, racing prototypes, automotive parts, and marine equipment.  Ti64 doesn’t 

exhibit fixed mechanical properties per se. Mostly its properties are adjusted by the post-

manufacturing heat treatment like annealing, stress-relieving, solution heat treatment, and 

aging treatment, etc. to suit the purpose.  

2.1.4.1 Ti64 alloy microstructure: 

Being an alpha+beta alloy, Ti64 contains both alpha-phase (hcp) and beta-phase (bcc) 

crystal structures. In hcp crystal structure, lattice parameters are observed to be ‘a = 0.293 

nm and c = 0.467 nm’ [36] against ‘a = 0.295 nm and c = 0.468’ nm in pure titanium [3]. 

At room temperature, the measure lattice parameters for bcc crystal structure in Ti64 were 

‘a = 0.323 nm’ compared to ‘a = 0.332 nm’ measure at the β-transus temperature in pure 

titanium [29] which maybe because of the high temperature required to attain β-phase 

crystal structure.  

The size and arrangement of alpha and beta phases in the microstructure are determined by 

the rate at which the alloy is cooled from the beta phase region. Different heating conditions 

and cooling rates can give rise to different microstructures namely fully lamellar, fully 

equiaxed, and bi-modal (duplex), martensite, and widmanstätten. A brief description of 

each of these microstructures is presented in the following section. 
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1. Fully lamellar microstructure: 

As the name suggests, lamellar structures have the alpha phase distributed in plates-like 

shapes. Such a microstructure can be achieved by a series of processes that can be better 

understood in Figure 2.3. When heated enough above the beta transus temperature, the 

alloy possesses a complete beta phase dominance or a homogeneous beta phase. This 

process is called homogenization. Next, the alloy is deformed by either by rolling or 

forging at temperatures near the beta transus temperature (can be in either beta or alpha-

beta phase fields). 

 

 

 

Figure 2. 3 Processing route resulting in a fully lamellar microstructure 

Afterward, the alloy is heated back to the beta phase field and cooled down to room 

temperature at a controlled cooling rate. This cooling rate acts as the deciding factor for 

the distinguishable microstructure parameters. From Figure 2.4, the alpha lamellae width, 

alpha colony size, and width of the alpha layer at beta grain boundaries can be observed to 

have decreased with the increase in cooling rate [37]. Finally, recrystallization at 30-50 C 

above the beta transus temperature ensures that unnecessarily segregates are eliminated 

and a solid phase equilibrium between alpha and beta phases is obtained. 
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Figure 2. 4 Effect of cooling rate on the lamellar microstructures: (a) slow; (b) intermediate; (c) quenching 

[37] 

The martensitic microstructure is one of the forms of fully lamellar microstructures that 

are produced as a result of very fast cooling (water quenching) from temperatures above 

the martensite start temperature. Due to the high-temperature variations, the bcc beta 

crystals completely transform into hcp alpha crystals by a diffusionless process leaving 

no retained beta phase [29],[38]. The alpha phase is supersaturated in beta stabilizing 

elements. Figure 2.4 (c) is an example of a martensitic microstructure.  

2. Widmanstätten microstructure: 

Also known as the ‘basketweave’ microstructure, it is also an extension of the fully lamellar 

microstructure and is obtained when Ti64 alloy is cooled at critically slow rates (air 

cooling) from the beta phase region. When the temperature of alloy starts to drop below 

the beta transus temperature (about 980 C for Ti64), the hcp alpha phase starts to appear 

in the form of plates parallel to the special plane in the beta phase. Phase development 

begins with nucleation with an alpha phase nucleus. Alpha phase shows more affinity 

towards similar phase crystals and hence the plane parallel growth is more compared to 
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plane perpendicular growth resulting in a plate-like region. The growth continues until 

another beta crystal special plane comes along and hinders the plan parallel growth. Six 

non-parallel alpha phase sets are formed as a result of six potential non-parallel growth 

planes sites in the beta grains. Figure 2.5 shows the formation of the Widmanstätten 

microstructure [30], [39], [40]. 

 

Figure 2. 5 Schematic representation of the formation of Widmanstätten microstructure [30] 
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3. Bi-modal (duplex) microstructure: 

The process route schematics shown in Figure 2.6 can be used to understand the procedure 

for a duplex microstructure. Similar to the lamellar microstructure process, the duplex 

microstructure is achieved in four different stages beginning with the homogenization 

process with heating the alloy well above beta transus temperature. Stage two is conducted 

in the alpha+beta phase field generally and the plastic deformation of alpha lamellae is the 

objective of this stage.  

 

 

Figure 2. 6 processing route resulting in a duplex microstructure 

In the third stage, recrystallization is performed. This recrystallization aids the alpha phase 

to generate new equiaxed grains at the expense of the deformed lamellae ones in the 

previous stage and therefore, the final stage incorporates both equiaxed and lamellae alpha 

grains as can be seen in Figure 2.7. The critical parameter here is the cooling rate at which 

the alloy is cooled after this homogenization process which determines the width of 

lamellae alpha grains. Their deformation acts as the basis of the generation of equiaxed 

alpha grains during the recrystallization process. Figure 2.7 shows the duplex 

microstructure as a result of two different cooling rates after homogenization. 
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Figure 2. 7 Effect of cooling rate on the duplex microstructures: (a) slow; (b) fast [37] 

4. Fully equiaxed microstructure: 

When the alpha phase is existent only as equiaxed grains, see Figure 2.8, then the 

microstructure is called fully equiaxed. These can be developed following the same 

approach as of the bi-modal microstructure with small modifications. To establish all the 

alpha phase in equiaxed form, the lamellae alpha grains would have to be converted into 

equiaxed grains. This can be achieved by two methods.  

 

Figure 2. 8 Fully equiaxed microstructure obtained after slowly cooling from the bi-modal recrystallization 

annealing temperature [29] 



26 
 

One way is to perform the recrystallization process at such a low temperature that the alpha 

phase exists in high enough equilibrium volume fraction to develop the equiaxed 

microstructure at the expense of so far deformed lamellar structure. The other is to impose 

a sufficiently lower cooling rate recrystallization annealing temperature. This would allow 

only equiaxed alpha grains to grow during the cooling process and no alpha lamellae will 

be formed resulting in a fully equiaxed microstructure [3]. 

2.1.4.2 Tensile properties of different microstructure Ti64 

The following section discusses the tensile behavior of each of the above-discussed 

microstructures of Ti64 alloy. Table 2.9 represents the tensile behavior of lamellar 

microstructure Ti64 alloy with respect to the cooling rate. 

Table 2. 9 Tensile behavior of the lamellar Ti64 microstructures against the cooling rate [41] 

 

Depending on the cooling process, the mechanical properties of fully lamellar 

microstructure Ti64 alloys vary because the microstructure gets changed as a result of the 

cooling process as depicted in Table 2.9. Mechanical performance of the fully lamellar 

microstructure is strongly affected by the alpha plate thickness which is determined by the 

cooling rate after the homogenization step. Faster cooling rates develop decreased alpha 

plate thickness resulting in a proportionate decrease in the effective slip length [42]. Since, 

the yield strength is a measure of resistance to the dislocation motion upon loading, 

therefore, with a reduction in slip length, yield strength increases. Hence, faster cooling 

Lamellar 

Microstructure 

Ti-6Al-4V 

Cooling rate 

(C/min) 
UTS (MPa) YS (MPa) El. (%) 

2000 1095 1035 13 

500 1040 970 15 

50 980 910 16 
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rates produce higher strength Ti64 alloys as evident from the values for water quenched 

fully lamellar microstructure in Table 2.9. However, in the case of tensile ductility, it is 

observed to increase with the increase of cooling rate at first and then declines. This 

phenomenon is supposed to happen because of a change in the fracture mode from 

transcrystalline dimple type at lower cooling rates to intercrystalline dimple type at higher 

cooling rates [3]. Figure 2.9 can be used as an estimate for the strength and ductility 

behavior of lamellar alloys with cooling rates. 

 

Figure 2. 9 Effect of cooling rate on strength and ductility of lamellar microstructures [3] 

Another impacting parameter on the mechanical behavior of lamellar microstructure alloys 

is beta phase grain boundaries [43]. Beforehand short beta grain boundaries act as sites 

from where dislocation propagation becomes easier as least energy expense is required in 

the process thus preferred [42]–[44]. Long prior beta grain boundaries hinder dislocation 

propagation and therefore, long beta grain boundaries result in reduced ductility.   

Two important factors determining the mechanical behavior of bimolar microstructures are 

the size of beta grain and the alloy element partitioning effect. Commercially prepared 
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bimolar alloys are usually well processed generating an almost perfect recrystallized 

microstructure where the beta grain size is nearly equal to the distance between primary 

alpha grains. This implies that the volume fraction and the size of primary alpha grains can 

be used as a measure for the beta grain size in bimolar microstructures. Less the size of 

beta grains, more is the size and volume fraction of alpha grains, in turn, shorter the 

effective slip length, therefore, an increase in the yield strength and ductility are observed. 

However, the alloying element partitioning effect also plays some role in deciding this 

mechanical behavior of the alloy. An increase in the volume fraction of the primary alpha 

phase leads to an increase in the partitioning effect which is responsible for a slightly lower 

inter-lamellar strength and becomes a deciding factor unlike in the fully lamellar 

microstructure. [3]. For small primary alpha concentrations, alpha plate thickness behaves 

as the dominating factor, and the alloy strength increases while for large concentrations, 

the partitioning effect overshadows the former leading to a decrease in the alloy strength. 

Hence, to attain a high strength microstructure, there needs to be a balance between the 

partitioning effect and beta grain size consideration. Bimolar microstructures are 

accompanied by a much smaller effective slip length due to some amounts of equiaxed 

alpha grains getting built on top of the lamellar grains. The smaller slip length determines 

the increment in the ductility compared to lamellar structures [42].  

Table 2. 10 Yield strength and area reduction for an equiaxed Ti64 alloy against change in α-grain size [3] 

 

Equiaxed 

Microstructure 

Ti-6Al-4V 

α-grain size (µm) Yield Strength (MPa) Area Reduction (%) 

2 1120 50 

6 1065 40-50 

12 1030 40 
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The primary factor for determining the tensile properties of the equiaxed microstructures 

is the alpha grain size which determines the effective length, in turn, determining the tensile 

behavior of the alloy. The relationship of tensile properties to the alpha grain size in 

equiaxed microstructures behaves similar to that of the tensile properties and alpha plate 

thickness in lamellar microstructures. They present very high tensile ductility of the order 

of bimodal microstructures or even higher. Table 2.10 shows the variation of yield strength 

and area reduction with respect to α-grain size for an equiaxed Ti64 alloy. 

2.2 Additive Manufacturing (AM) or 3D Printing 

Additive Manufacturing also known as rapid prototyping, 3D printing, or Solid Freeform 

Fabrication (SFF) is a layer on layer fabrication technique wherein the material to be 

deposited is melted by a focused heat source such as laser power or electron beam. Latest 

AM techniques allow materials (say Ti-6Al-4V) to be used in the powdered form and each 

layer of powder is fused by an appropriate power source. Laser beam source is used to 

produce high precision small parts whereas electron beam AM is used for bigger and parts 

with the rougher surface [45]. 

2.2.1 History of Additive Manufacturing 

Origin of Additive manufacturing falls back to late 1970s when the first AM concept was 

introduced by Ross Housholder in 1979 which he referred to be utilizing a molding process 

for forming a three-dimensional article in layers [46]. In 1981, Hideo Kodama was the first 

scientist to actually develop a functioning model of AM with photo-hardening thermoset 

polymer which utilized a mask pattern to control the exposure of UV rays [47]. In 1982, 

Alan Herbert, following a similar approach but independently, developed, and tested a 
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prototype part [48], [49]. The first commercialized AM machine was introduced by Charles 

Hull, the stereolithography apparatus (SLA), in 1986 which is recognized as the first 3D 

printer [48], [50]. It was based on slowly pouring liquid plastic to build plastic layer by 

layer and hence made it expensive enough to be used by large companies, research groups, 

and labs only, however, this invention was a major breakthrough as it used digital data files 

to develop 3D models. In 1988, Scott Crump filed a patent for using CAD/CAM bed fused 

deposition model (FDM) following adding layers as a basic approach [51]. Soon after, in 

1990, Carl Dickard filed a patent for first-ever selective laser sintering (SLS) process which 

worked by shooting a laser at a powdered material rather than a liquid [52]. Several other 

3D printing techniques were introduced to humankind during this period however, not all 

reached the same popularity. Fewer known techniques are Laminated Object 

Manufacturing (LOM) by Michael Feygin, Ballistic Particle Manufacturing (BPM) by 

William Masters, Solid Ground Curing (SGC) by Itzchak Pomerantz, and Three-

dimensional printing (3DP) by Emanuel Sachs, etc. Some major patents related to 3D 

printing marking its history until 1990 have been listed in Table 2.11. From the late 1990s 

onward, additive manufacturing entered its adolescence stage where the general market 

wasn’t familiar with its concepts and advantages however, it had started to become a hot 

topic for research scholars. It was the period when 3D printers started becoming available 

to the market and CAD tools were being developed to use those 3D printers. In 1993, one 

of the first CAD tools, ‘solidscape’ was developed. In the early 2000s, AM was first used 

in medical applications to develop dental implants and prosthetics. 
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Table 2. 11 Patents related to 3D printing until 1990 [49] 

Name Title Filed Country 

Housholder Molding Process December 

1979 

U.S. 

Murutani Optical Molding Method May 1984 Japan  

Masters Computer automated manufacturing  

process and system 

July 1984 U.S. 

Andre et al. Apparatus for making a model in industrial part July 1984 France 

Hull Apparatus for making three-dimensional 

objects by stereolithography 

August 

1984 

U.S. 

Pomerantez 

et al. 

Three dimensional mapping and modelling 

apparatus 

June 1986 Israel  

Feygin Apparatus and method for forming an integral 

object from laminations 

June1986 U.S.  

Deckard Method and apparatus for producting parts by 

selective laser sintering 

October 

1986 

U.S. 

Fudim Method and apparatus for production of three-

dimensional objects by photosolidification; 

radiating an uncured photopolymer  

February 

1987 

U.S. 

Arcella et 

al. 

Casting shapes March 

1987 

U.S. 

Crump Apparatus and method for creating three-

dimensional objects 

October 

1989 

U.S. 

Helinski Method and means for constructing three-

dimensional articles by particle deposition 

November 

1989 

U.S. 

Marcus Gas phase selective beam deposition: three-

dimensional, computer controlled 

December 

1989 

U.S. 

Sachs et al. Three-dimensional printing December 

1989 

U.S. 

Levent et al. Method and apparatus for fabrication of three-

dimensional articles by thermal spray 

deposition 

December 

1990 

U.S. 
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Thereafter, the first-ever functional miniature kidney was developed and now AM is 

contributing to producing bones, ears, jawbones, blood vessels, vascular networks, tissues 

and organs, eyeglasses, windpipes, cell cultures, stem cells, and drug delivery devices, etc. 

and since then AM is actively used to build prototypes in industries taking a bigger leap 

towards the fabrication of functional and tailor-made parts. It exhibits tremendous potential 

in different scientific and technological areas name it tooling, manufacturing, medicine, or 

any other sophisticated material addition process. AM in today’s scenario is widely 

accepted in diverse fields such as automotive industry, aerospace applications, biomedical, 

etc., however, the end product needs to exhibit sufficient mechanical properties and possess 

good strength to enable it to become a functioning part. In most of the aforementioned 

applications, metal is used as the material of choice. Therefore, the AM processes that are 

most commonly used to produce metal components are considered in the following section. 

2.2.2 Additive Manufacturing for Metals and Metal Alloys 

Additive manufacturing requires wire or powder form of the material it needs to additively 

manufacture, therefore, only a handful of materials available are being manufactured by 

industry. A few of those plastics and metallic materials are listed in Table 2.12.  

Out of these, only DED, PBF, sheet lamination, and binder jetting are involved in metal 

processing. For fabrication of metals and their alloys, majorly DED and PBF processes are 

utilized however, there have been some studies available with sheet lamination too. Table 

2.13 illustrates the majorly employed AM techniques for 3D printing metals and their 

alloys.  
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Table 2. 12 Plastic and metallic materials currently available for AM 

Plastics Materials Metallic Materials 

ABSAcrylonitrile butadiene styrene (ABS) Stainless Steel 

Polylactic Acid (PLA) Tool steel 

Polyamide Titanium and titanium alloys 

Polycarbonate Cobalt and chromium alloys 

Nylon Plastic Aluminum alloys 

Polyaryletherketone (PAEK) Bronze alloys 

VisiJet® Inconel 

DuraForm® Silver 

PrimeCast® Gold 

Accura plastics Nickel-titanium superalloys 

 

Table 2. 13 Major Additive manufacturing techniques for metals and their alloys 

AM Process 

type 
Process Concept Technology 

PBF 

Selective sintering 
Selective Laser Sintering (SLS) 

Direct Metal Laser Sintering (DMLS) 

Selective melting 
Selective Laser Melting (SLM) 

Electron Beam Melting (EBM) 

 

DED 

Blown powder 

Laser Engineered Net Shaping (LENS) 

Direct Metal Deposition (DMD) 

Fused Deposition Modelling (FDM) 

Wire feed 
Wire and Arc Additive Manufacturing (WAAM) 

Direct Laser Fabrication (DLF) 

 

This study concerns the fabrication of Ti-6Al-4V which is a popular choice for high-density 

load-bearing applications hence EBM, SLM, and DMLS in PBF and DED which result in 

dense fabrications via melting and solidification of powder will be discussed in the 

following sections. WAAM which uses wire as a feedstock unlike PBF techniques and 
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hence counted as a DED process where an electric arc is used to heat the metal to its melting 

temperature and then directly deposit it to the substrate has also been gaining attention for 

fabricating Ti64 alloy [53]–[56]. For the comparison purpose, this study includes only 

those processes where the powder is used as feedstock material. 

2.2.2.1 Direct Energy Deposition (DED) 

DED is an additive manufacturing process where molten material is directly deposited at 

the substrate in layers that stack up to generate the whole CAD profile. Unlike PBF, it 

employs both powder form and wire form as the feedstock. Before the deposition process, 

the melt is prepared by a laser, electron beam, or electric arc. The substrate is fixed on the 

worktable and similar to PBF, the chamber is either filled with an inert gas for laser-based 

proceedings or vacuum to reduce the oxygen content in the chamber for electron beam 

based proceedings.  

 

Figure 2. 10 Schematic representation of a DED process [53] 
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The melt prepared beforehand is then poured on the substrate using a nozzle and the melt 

solidifies as soon as the nozzle moves away. The nozzle follows a predetermined path to 

ensure the CAD design to get built. Subsequent layers are then injected into the melt pool 

one layer at a time to generate the AM part as a whole. Figure 2.10 shows a schematic for 

a DED process. 

Characteristics of DED 

DED is compatible to work with a wide variety of metal-based materials like aluminum 

alloys, stainless steel, titanium alloys, nickel, copper, Inconel, and tungsten, etc. Since the 

DED systems utilize metal deposition via a nozzle, therefore, complex geometries can be 

obtained by mounting that nozzle to a multi-axis arm. High-density fabrication can be 

obtained from a DED process and the ability to control grain structure makes it an ideal fit 

for repairing in-use metal components. It is a high-speed fabrication process depositing 

metal directly from a nozzle. The amount of powder needed for depositing a layer can be 

calculated and the same volume of metal can be melted therefore leading to no material 

wastage, in turn, reducing the cost of fabrication. One demerit of DED processes is the 

surface finish and low-resolution product obtained after the fabrication which needs further 

processing and hence adds to the overall cost of the component.  

2.2.2.2 Powder Bed Fusion (PBF) 

PBF is an additive manufacturing technique that employs high power energy sources like 

laser or electron beam for melting or sintering the metal powder. The process begins with 

fixing up the base plate on which the rest of the build has to be carried on and providing an 

inert gas atmosphere for laser-based or vacuum to reduce oxygen for electron beam based 
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manufacturing in the closed chamber. Then, a thin layer of spherical powder is optimally 

distributed, leveled to a predetermined thickness, for reducing the unwanted anomalies in 

the design. The high energy power source is used to scan the powder selectively melting 

or sintering the powder to fill in the design provided by the CAD data.  After the first layer 

has attained the required shape, the next layer of powder is spread, and the process is 

repeated. Since the penetration power of the laser/electron beam is deeper than one layer, 

each new layer gets welded to the previous layer. At the end of the process, the unused 

powder can be reused again or mixed with a new powder stack for another manufacturing 

unit. A schematic representation of a PBF process is shown in Figure 2.11. 

 

Figure 2. 11 Schematic representation of a PBF process [57] 

Microstructure and mechanical properties of the final build are dependent on the processing 

parameters and the post-fabrication heat-treatments. Figure 2.12 can be used as a reference 

to understand the various processing parameters involved in a PBF process [57]. A few of 

them are explained hereunder: 
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a) Powder layer thickness or sometimes mentioned as layer thickness is the thickness of 

a powder bed that is prepared for one round of laser or electron beam to scan and melt. 

It is varied by lowering the worktable on which the powder bed is maintained. 

b) Spot size is the diameter of the spot that laser or beam covers in contact with the powder 

bed. It can be understood as the diameter of the circle that would be formed if the power 

source is kept still at one spot. 

c) Hatch spacing is a parameter that decides the motion of the power source perpendicular 

to the scan direction. For better melting and layer formation, hatch spacing is kept less 

than half of the spot size. 

 

Figure 2. 12 Interaction of energetic beam with powder bed in a PBF process [57] 

d) Scan velocity governs the speed of the power source with which it scans and melts the 

powder prepared on the bed and the consequent direction is called scan direction or 

beam traverse direction. Build direction is perpendicular to scan direction and direct 

out of the plane of scanning direction as can be seen in Figure 2.13.  
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Figure 2. 13 Fabricated part with respect to the scan and build directions 

Table 2. 14 A set of different scan strategies employed 

 Layer n Layer n+1 

 

 

All X 

  
 

 

All Y 

  
 

All X multi-

scan each 

layer 

  
 

All Y multi-

scan each 

layer 
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e) Scan strategy determines the method according to which the power source scans on the 

powder bed, it can be continuous or discontinuous and can be arranged as per the 

researcher's requirement [58]. A set of scan strategies can be seen in Table 2.14. 

A few of most often used PBF techniques are discussed in the following section: 

1. Selective Laser Melting (SLM):  

SLM is an evolution of the Selective Laser Sintering process developed back in 1996 and 

is well known for producing complex geometries with mechanical properties comparable 

to bulk materials. The high-power energy source for this PBF process is a laser that is used 

to heat the powder layers, see Figure 2.14. After sufficient energy laser beam, the powder 

material melts forming a liquid pool that cools down and solidifies, forming the first layer.  

 

Figure 2. 14  Schematic representation of the SLM process [59] 

 

Thereafter, the build platform is lowered by a definite depth which decides the powder 

layer thickness for the next layer. General process parameters affecting the part generation 
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by an SLM process are laser power, laser spot diameter or spot size, scanning velocity, 

scanning strategy, and powder layer thickness which will be discussed in the latter part of 

this study [60]. Based on the variations of process parameters, different mechanical and 

physical properties are obtained. In summary, some attributes of the material fabricated by 

the SLM process are discussed below: 

Density: Since SLM is a melting-solidifying process developed for high-density material 

fabrication, it aims to achieve a 100% density however in the absence of any mechanical 

pressure, it can never be attained. Despite that SLM is capable of providing as-built 

densities as high as 97% to 99% of the theoretical bulk material densities. But the inevitable 

gas bubble entrapment is also observed due to the solidification process leading to inbuilt 

defects and residual porosities. To cope with this issue Laser Surface Re-Melting (LSR) is 

done where each layer after getting built is rescanned by the laser to remelt the solidified 

region so that under the effect gravity, the bubble entrapments leading to porosities can be 

removed [61]. 

Surface quality: SLM does not result in a very good surface finish and most of the SLM 

fabricated surfaces undergo post-fabrication finishing processes if surface properties are 

one of the required properties of the fabrication. LSR is also one of the methods to reduce 

the surface roughness by just re-melting the top layer of the build but it adds up extra time 

to the manufacturing of a component [62].  

Residual Stresses: SLM involves a lot of temperature variations during the process and 

therefore, distortions and residual stresses are a major concern. Each layer is solidified 

before the next layer is deposited and it generates high thermal stresses which can mess up 
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the required mechanical properties and dimensions of the fabricated part. It contributes to 

internal cavities, porosities, warpage, and early crack formation of the components [63]. 

2. Electron Beam Melting: 

EBM is also a PBF additive manufacturing process and follows a similar approach to SLM. 

But instead of using a laser, an electron beam is utilized as the high-energy power source 

aided by a vacuum chamber rather than providing an inert gas atmosphere. The electron 

beam has a better focus, fully electromagnetic control, and higher energy adsorption 

coefficient than lasers [45]. The vacuum chamber ensures that gases in the chamber 

wouldn’t interfere with the electron beam and a high work temperature can be maintained 

which in-turn gives a deeper melt-pool and lower thermal gradients. One more variation in 

EBM is that it works with two layers of scanning. One is a pre-melting scan and the other 

is the melting scan.  The pre-melting scan is generally done at high scan speeds and lower 

beam current to make sure that the powder bed gets heated up for the melting scan. After 

the pre-melting scan, scan speed and beam current is adjusted again according to the 

microstructure and mechanical properties of the resulting component. Similar to SLM, after 

each layer scanning, the worktable is lowered equal to the powder layer thickness needed 

for the component fabrication, and the process is repeated, however, the process is 

comparatively slower and expensive. Processing parameters for a typical EBM process are 

the beam current, scanning speed, hatch spacing, spot size, layer thickness, accelerating 

voltage, scanning strategy. Since EBM involves an additional pre-melt scanning as well, 

therefore, it adds up some extra processing parameters to the fabrication however, their 
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effects could be considered minimal. A schematic representation of an EBM process can 

be seen in Figure 2.16. 

 

Figure 2. 15 Schematic representation of an EBM process [64] 

Some attributes of the material fabricated by the EBM process are discussed below: 

Density: Similar to SLM, this process also leads to high-density fabrications but the issue 

with EBM is that it can only be used with a handful of materials where titanium alloys are 

set at most comfortable priority to work with EBM.  

Surface roughness: EBM works at speeds as high as 1000 m/s, which is nearly 1000 folds 

of that of SLM, and beam power of the range of 4 kW resulting in a surface generation that 

is generally twice as rough as that of SLM. But with post-processing, this surface can be 

smoothened.  



43 
 

Residual stresses: EBM process doesn’t require post-heat treatment processes because it 

generally produces fewer thermal stresses than SLM. EBM apparatus requires support 

structures that not only account for the build platform, overhanging, and anchor parts but 

also act as heat sinks for molten powder, therefore, leading to lower thermal stresses and 

prevents warpage.  

3. Direct Metal Laser Sintering: 

DMLS uses lasers as the high-power energy source and operates on similar conditions as 

SLM. In some of the cases, DMLS is also referred to as SLM because both the processes 

are similar in practice however with just a fundamental difference. DMLS utilizes the effect 

of sintering and not the melting of powder [65]. DMLS is a sintering process whereas SLM 

is a melting process [66]. Sintering is generally carried at a temperature lower than the 

melting temperature (called sintering temperature) where the grain viscosity drops with 

temperature causing an interfacial kitting of the grains without fully melting them. DMLS 

can be used for fabricating almost all metals and their alloys whereas SLM only works bet 

with pure metals added to the fact that lesser energy is required for reaching the sintering 

temperature than to reach the melting temperature. Using the laser as a heating source asks 

for an inert atmosphere and after the first layer has been developed, the worktable is pushed 

down depending on the powder layer thickness required for the fabrication process. Major 

processing parameters affecting the build of a DMLS equipment are the laser power, scan 

speed, hatching space, layer thickness, spot size, and scanning strategy. 

Some attributes of the material fabricated by the DMLS process are discussed below: 
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Density: Since complete melting is not being done in this process, the final product turns 

out to be more porous than SLM and EBM fabrications. But post-processing can be used 

to reduce the porosity and fabricated parts have comparable strengths to their counter cast 

materials.  

Surface roughness: Like SLM, the surface finish of the as-built DMLS parts is not very 

good, therefore, post-treatments have to be employed to achieve a finished surface. 

However, while compared with EBM, as-built surfaces of DMLS have less surface 

roughness. 

Residual stresses: Similar to SLM, high-temperature variations lead to high thermal 

stresses and warpage, therefore, additional structures are built around the chamber to 

transfer the heat away from the powder material. A typical comparison of the above 

mentioned PBF techniques is summarized in Table 2.15 [64],[67]. 

Table 2. 15 A typical comparison of process parameters for SLM, EBM, and DMLS processes 

Parameter 
SLM 

(ReaLizer SLM50) 

EBM 

(Arcam EBM S12) 

DMLS 

(EOS M 280) 

Heat source type Laser beam Electron beam Laser 

Source power (W) 120 3500 200-400 

Scanning speed (m/s) 0.3-1.0 > 1000 < 7.0 

Spot size (µm) small large small 

Powder layer thickness (µm) 20-100 50-200 20-100 

Build Environment Argon Vacuum Argon 

Pre-scan heating (C) 100-200 700-900 100-200 
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2.2.3 Research and Research gap 

Each of the additive manufacturing processes provides the industry with its own merits and 

demerits. Some of them can be rectified or adjusted using proper post-fabrication 

treatments but in the remaining cases, the industry has to settle by finding the best possible 

combination out of those merits and demerits. AM processes have gone through a lot of 

variations in procedure, post-fabrication treatments, and material selection, etc. However, 

we still have limited knowledge of these processes. A glimpse of the research history 

available on the above discussed AM processes is presented in the following section.  

In a comprehensive review work, Liu and Shin [53] presented a comparison on the AM of 

Ti-6Al-4V through three different fabrication processes namely DED, SLM, and EBM. 

The authors reported that the presence of α′ martensite in DED and SLM processes 

increases the ultimate tensile and yield strength considerably but decreases the ductility of 

the as-built components as compared to the EBM fabricated parts that present a similar 

strength value of Ti-6Al-4V components. The authors opined that the presence of α′ 

martensite due to the former processes also helps in lower crack thresholds and offers 

higher fatigue strength in comparison to components fabricated through the EBM process. 

Review work of Agius et al. [68] discusses the fatigue and fracture mechanical behavior of 

Ti-6Al-4V fabricated by the SLM process. The authors summarized that the stress raisers 

near the defects may influence the crack nucleation stage and subsequently the rate at which 

the slip activates in the fabricated parts. The reported work offers sufficient insight to 

utilize the fundamentals related to microstructure, build orientation, defect percentage in 

developing fatigue resistance materials. 
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Chern et al. [69] compiled uniaxial fatigue data and correlated the effects of build 

orientation, surface roughness, and hot-isostatic pressing to the fatigue properties, defects, 

and failure mechanisms in Ti-6Al-4V fabricated through EBM process. The authors 

suggested that annealing may not be advantageous for fatigue in the EBM process as the 

residual stresses are relieved in-situ, though HIP has been reported to be an effective 

method to increase fatigue resistance. The authors also observed that the parts fabricated 

in vertical orientation are more likely to exhibit crack initiation due to the rough surface 

produced.  

Izadi et al. [70] summarized the influence of build and process parameters on the metallic 

parts fabricated by LENS and stressed the need for prediction towards the influence of the 

build process for fabricating industrial parts. The authors identified laser power, powder 

feed rate, scan speed, and hatch distance to be the most influential variables that impact the 

build quality.  The authors were the view that a mathematical model that reflects the build 

process and algorithm to predict the influence of control parameters may help the research 

community in a great way.  

Guzanová [71] investigated the influence of various processing parameters on the hardness 

of Ti-6Al-4V manufactured by the DMLS process and concluded that annealing leads to a 

reduction in hardness, moreover, the ANOVA analysis reflected the significant effect of 

laser power on the hardness. The authors also observed a considerable difference in the 

hardness values of the materials build in parallel and perpendicular direction. 

Cao et al. [72] have compiled the research work related to fatigue behavior of additively 

manufactured Ti-6Al-4V and inferred that SLM based parts show better fatigue properties 
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than the EBM build components due to reduced surface roughness and less porosity. 

However, they concluded that the fatigue strength of AM-manufactured Ti-6Al-4V may 

not be sufficient for fatigue applications until subsequent post-processing such as HIP, 

surface machining, and polishing are carried out.  

Based on the literature it can be observed that the processing parameters in any additive 

manufacturing process play a significant role in deciding the mechanical properties of the 

manufactured part. Further, it is also reported that the availability of an appropriate 

mathematical model or algorithm may help the research community in deciding the process 

and its usability in manufacturing a particular component for a specific application based 

on the mechanical properties desired [73],[74].  

In this work, therefore, an attempt has been made to predict the mechanical properties of 

Ti-6Al-4V obtained through different additive manufacturing processes such as EBM, 

SLM, and DMLS. The data collected from various research papers have been compiled in 

tabular form in the fourth chapter of this study, the prediction model and the results are 

also highlighted in further chapters.  



48 
 

CHAPTER - 3 

METHODOLOGY 

 

3.1 Introduction 

This study aims to collect and analyze the data pertaining to Ti-6Al-4V alloy, available in 

the open literature, and to develop a model that assists in estimating the mechanical 

properties of the alloy manufactured by a certain AM process. The mechanical properties 

that are being taken into account here are the tensile properties (ultimate tensile strength, 

yield strength, and elongation at fracture) and the fatigue properties (S-N curve). Since the 

properties of the alloy are determined by the process parameters considered while 

additively fabricating it, therefore, to properly estimate the alloy behavior, process 

parameters associated with different manufacturing processes must be considered as the 

input parameters. It has been seen that due to high-temperature gradients involved in these 

processes, a separate stress-relieving process has to be carried out, thus, adds up the heat 

treatment parameters to the influencing factors. Once the alloy is fabricated and post-

processing is complete, it becomes accessible for lab testing. For typical tensile testing, the 

load is gradually increased, and the strain developed in the alloy is noted. Both values are 

plotted against each other to get the ultimate tensile strength (UTS), the yield strength (YS), 

and the percent elongation (El) of the material.  

In fatigue properties, an attempt to estimate the S-N curve is made. S-N curve is used to 

determine the fatigue life of the alloy for certain alternating stress values.  General factors 

affecting the fatigue life of an AM fabricated test sample are its surface roughness, process 
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parameters for fabrication, inherent defects from the fabrication, geometry of the sample, 

the test stress ratio (R), and the test frequency. A representation of what is expected from 

the model is shown in Figure 3.1 

 

Figure 3. 1 Schematic representation of the complete model 

 

3.2 Model Conceptualization 

 

Figure 3. 2 Inputs and outputs for Model-1 
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Not all the experimenters make available the processing parameters data when they are 

publishing the fatigue or tensile test results, therefore, to work with the available data, a 

different approach had to be taken. Hence, two separate estimation models are prepared 

which can later be combined to estimate the whole set of mechanical properties of Ti64 

alloy fabricated by selected AM processes. The first model, Model-1 utilizes the process 

parameters and heat treatments, if any, influencing the AM part as input parameters and 

the tensile properties (the ultimate tensile strength, the yield strength, and the elongation) 

are evaluated as outputs as can be seen from the schematic drawn in Figure 3.2.  

 

Figure 3. 3 Inputs and outputs for Model-2 

The second model, Model-2 considers the ultimate tensile strength, yield strength, 

elongation, surface characteristics, and fatigue test parameters (frequency and stress ratio) 
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as input parameters and aims to predict the SN curve as the output of the fabricated Ti64 

alloy. A schematic representation of Model-2 is shown in Figure 3.3.  

For using the S-N curve in the model, instead of using the graphical representation, the 

power law or scaling law has been employed to reduce the S-N curve into two constants A 

and B, where A determines the intercept of the S-N curve on the stress amplitude axis and 

B is the law’s exponent. One representation of such a conversion from Figure 3.4 is shown 

below. 

 

Figure 3. 4 S-N curves for Ti64 fabricated by SLM and EBM processes. [75] 

Table 3.1 represents the digitized forms of the stress amplitude and the number of cycles 

to failure values for Ti64 alloy fabricated by certain SLM and EBM processes. Using these 

digitized values, power law can be employed to generate the two constants, A and B, 

mentioned above. Figure 3.5 shows the plots generated from the power law and it can be 

observed that they look potentially identical to the S-N plots represented in Figure 3.4. All 

the available S-N curves were digitized in order to generate the power law values and the 

related data can be found in the Appendix. 
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Table 3. 1 Digitized S-N curve value and corresponding power law for Tii64 alloy fabricated by SLM and 

EBM process 

SLM Process  EBM Process 

N S (MPa)  N S (MPa) 

3007.662 599.139  
6033.797 600 

18722.03 498.906  
12873.74 498.69 

35108.18 399.385  
20324.36 399.127 

83573.39 350.478  
33358.52 349.345 

90255.36 319.728  
76926.5 299.563 

219754.5 299.754  
104977.7 249.782 

259321.1 279.846  
175681.4 231.441 

392402.7 250.874  
239743.5 200 

720878.3 249.613  
501674.4 179.913 

761632.1 230.921  
487263.3 138.865 

9964673 249.978  
711738.9 149.345 

9961421 229.482  
1625438 130.131 

9956737 199.944  
10000000 124.017 

 
 

 
  

Power law conversion  Power law conversion 

𝑆 = 1368.4 ∗ 𝑁−0.119 

  

Where, A = 1368.4; B = -0.119 

 
𝑆 = 4334.5 ∗ 𝑁−0.241 

 

Where, A = 4334.5; B = -0.241 

 

 

Figure 3. 5 S-N plots generated for above digitized SLM and EBM processes using the power law  
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It is also not always possible to attain all the data that fulfills the model requirements from 

the literature. As mentioned earlier, one of the influencing parameters is the surface 

roughness parameter in Model-2 where due to unavailability of proper numeric values of 

the surface roughness, a binary choice had to be made, therefore, the model incorporates 

for value ‘1’ if the surface is processed (machined) and ‘0’ if the surface is the same as 

obtained after fabrication (rough). Similarly, ‘1’ was assigned for the cases where the 

sample went through Hot Isostatic Pressing and ‘0’ otherwise. 

One similar case to the above-discussed situations is the case for the heat treatment 

parameter in Model-1 where some samples were heat treated as a post-process and some 

were not, however, for the data sets where except for the heat treatment, all the remaining 

Model-1 parameters were same, the output results were coming differently. Meaning, the 

binary choice here would not have been the best resort because useful information as such 

‘the impact of heating temperature and time on the tensile properties of the fabricated 

component’ would get completely lost in the collateral. The best solution to such a 

condition would be to develop a decision tree-based model where the input heat treatment 

is kept in binary information. If the sample has been heat-treated, it takes 1 and if not, it 

takes 0. Then for the heat-treated sample, separate temperature and time inputs would be 

asked, and the model would proceed further. In the cases where heat treatment is not done, 

the model ignores that option and moves on with further processing. This process calls for 

two bifurcations of the data set collected, one with heat treatment and another without heat 

treatment hence reduces the total number of data sets to efficiently predict the model. Due 

to the unavailability of required data sets, to account for this situation, four compensating 
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sets, (heating temperature, heating time) to fit an as-fabricated sample into the data along 

with the heat-treated sample, were prepared and checked with SLM process data (heaviest 

data set available) to see which one of them gives the best result in the model output. The 

heating temperature is kept at 30 C considering that the sample is kept at room temperature 

instead of an elevated temperature like heat treatment processes and heating time is varied 

from 0.5 to 4 hours depending on the general heating temperature range observed from the 

collected data. This was also an attempt to consider the ‘as-fabricated’ condition equivalent 

to a situation where it can be represented as a combination of heating temperature and time 

which could be useful for future research regarding similar studies. These compensating 

sets in the form of (heating temperature in C, heating time in hours) are (30,0.5), (30,1.5), 

(30,3), (30,4). 

3.3 Model Development 

Since it is unknown whether the input parameters behave linearly or have a complex 

relationship with the output parameters, therefore, the two model development approaches 

worked on in this study are ‘regression analysis’ for the linear relationship consideration 

and ‘Artificial Neural Network (ANN)’ for the complex relationship consideration. Both 

these models are discussed in the following section. 

3.3.1 Regression analysis 

Regression analysis is a very efficient method to identify trends in data sets. It usually 

presents with a relationship between dependent variables and independent variables 

meaning how much movement will the independent variable experience if the dependent 

variable is moved by a certain amount. There are different types of regression analysis 
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namely, linear, polynomial, logistic, stepwise, ridge, lasso, and elastic net regression. Here, 

regression analysis is aimed to understand if there exists any linear relationship between 

the input and output parameters. Also, since the model is equipped with multiple inputs, a 

multi-input regression analysis is considered. 

Multi-regression analysis: 

Simple linear regression analysis is used to relate a single dependent variable, say ‘X’, to 

a single independent variable, say ‘Y’, and in general terms, it is represented as- 

Y = β * X + Ɛ  

where, 𝛽 is a constant, scaling X to a relatable Y value and Ɛ is the additional term which 

could compensate for either error in the relationship or the intercept that the plot related to 

the above equation makes on Y-axis. 

Multi-regression analysis behaves similar to simple linear regression analysis, the only 

difference is that instead of one single dependent variable, it accounts for multiple 

dependent variables, and each of them is presented to have a linear relationship with the 

independent variable. A typical representation of a multi-regression analysis looks like- 

Y = β1 * X1 + β2 * X2 + β3 * X3 +…. + βn * Xn+ Ɛ 

Where, X1, X2, X3 … Xn are the independent variables (also known as covariates) and β1, 

β2, β3 … βn are their corresponding coefficients or weights that define how influencing each 

variable is for estimating the dependent variable. There are two ways to proceed with a 

multi-regression analysis. One is ‘forward substitution’ where the regression equation is 
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built by adding covariates influencing the dependent variable to the equation one by one 

from initially having no covariates on the right-hand side and the other is ‘backward 

selection’ where regression equation initially has all the covariates and they are removed 

from the equation one by one depending on their influence. The former is used when there 

are a smaller number of covariates (say 4) to add to the equation. Since Model-1 and 

Model-2 in this study deal with a larger number of covariates therefore, the backward 

selection is used to obtain the regression equation for different output variables. 

Understanding the multi-regression analysis output: 

The output of a regression analysis can provide a lot of information about the data served 

to it. In this study, JMP pro is used for exploring the linear relationship between the input 

parameters and output parameters for both Model-1 and Model-2. Modeling begins with 

fitting the data to the model. For that purpose, the results generated from a typical 

regression analysis are presented in Figure 3.6.  

1. RSquare and RSquare Adj:  

RSquare and RSquare Adjusted are both a measure of identifying how well the regression 

model fits the data given to it. In other terms, it represents the percentage of variance in the 

dependent variables that can be explained by the independent variables. RSquare Adj is a 

measure that compensates for the increased number of covariates assuming they in 

themselves are not independent of each other and hence add in a small amount of penalty 

to the RSquare value. RSquare Adj value is always smaller than RSquare value accounting 

for the increased covariates penalty.  



57 
 

 

Figure 3. 6 A regression analysis output generated by JMP Pro 14 

For a better fit model in case of multi-regression analysis ideally, RSquare Adj value is 1 

meaning a 100% explanation of dependent variable variance by the independent variables 

collectively. For comparing the MATLAB obtained model results, the R-value of the 

models developed by regression analysis would be considered which is merely the square-

root of the RSquare Adj value in this case.  

2. Prob > |t|: 

Prob > |t| represents the P-value for the two-tailed test. Each of the covariates is associated 

with a two-tailed hypothesis test linked to them where the null hypothesis is that the 

covariate is not significant to the regression model and the alternate hypothesis is that the 

covariate is significant to the regression model. For a covariate to be included in the 
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regression equation, it needs to reject the null hypothesis and become significant to the 

regression model. For a standard α level of 0.05, each of the P-values significant to the 

regression model must show a less than 0.05 value in that column. The covariates having 

a P-value of more than 0.05 are to be removed from the regression equation. For instance, 

in Figure 3.6, covariate, HIPed, Heat Time, Hatch and Speed have a P-value larger than 

0.05 and therefore they are insignificant to the regression model. However, this doesn’t 

essentially mean that each of these covariates is to be removed from the model at once and 

that is because of the interdependence of the covariates on each other. Therefore, the 

covariate with maximum P-value is removed and the model is re-run and the process is 

repeated until all the P-values come under the 0.05 threshold. All the covariates remaining 

after this analysis are a part of the regression equation for the model as can be seen in 

Figure 3.7.  

 

Figure 3. 7 Significant covariates for the regression model case in Figure 3.6 
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3. Estimates: 

After confirming all the significant variables in the regression model, now the coefficients 

or the weights of those covariates is to be decided. The ‘Estimate’ column is used for that 

purpose. The intercept estimate decides the Ɛ term while the remaining estimates decide 

the β1, β2, β3 … βn terms in the regression equation. 

So, for this typical case, the regression equation looks like: 

Output = 1237.996 + 0.418 * Power – 2.376 * Thickness – 0.271 * Heat Temp  

 Shortcomings of the multi-regression analysis 

1. Multi-regression analysis works best with more than 100-150 data sets at the least; 

however, data sets available for the study are less. 

2. Since a few of the input parameters are represented as a ‘Yes’ or ‘No’ condition 

that is in numerical terms as ‘1’ or ‘0’ therefore, they are not accounted as 

developing a linear relation with the output parameter value and therefore, get 

completely disregarded from the regression equation.  

3.3.2 Artificial Neural Network 

ANN is a black-box model, for predicting complex and nonlinear patterns, demonstrating 

point to point data covering the whole process. ANN is a machine learning approach that 

models the human brain and generates artificial neurons as replication of the working of a 

biological neuron. ANN model consists of several processing elements utilizing training 

data information to iterate input parameters and to evaluate the response of model as output, 

infer unseen relationships on unseen data and make a generalized model predict the unseen 
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data based on the relationship between output and input experimental data sets. 

Implementation of ANN is a discretized approach in which processing element is activated 

once for each sample of a vector of input values. The neural network in a person’s brain is 

a huge interconnected network of neurons where learning occurs by repeatedly activating 

neural connections, reinforcing those connections, and involving feedback based on which 

the outcome gets strengthened. ANN uses a learning algorithm to mimic the behavior of 

the brain and neurons working to train the model. An ANN is specified by:  

• An architecture: A set of neurons and links connecting neurons including activation 

and learning algorithms 

• A Neuron model: The information processing unit of the Neural Network 

3.3.2.1 ANN Architecture  

The model ANN is specified by three entities: interconnections, activation functions, and 

learning rules. 

1) Interconnections 

Interconnections can be defined as processing elements in the ANN connected to each 

other. Processing elements combine together to form layers of the network. 

• Input Layer:  This layer is also called the buffer layer which accepts input features 

from the data set.   No computation is performed at this layer and the nodes here 

just pass on the features to the hidden layer. 

• Hidden Layer:  This layer acts as the backbone of the model’s computational and 

processing power. Nodes of this layer are not exposed to outside the model, they 

are the part of the abstraction provided by any neural network. The hidden layer 
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performs all sorts of computation on the features entered through the input layer 

and transfer the result to the output layer. 

• Output Layer:  This layer results in the information learned by the network as the 

output. 

Neurons are represented as nodes in the model, and their shape and size depend on the 

requirement of the model. Each node gets multiple weighted inputs, to which activation 

function is applied for the summation of these inputs to generate an output. Within each 

node, there is a set of inputs, weights, and a bias value. Weight is a parameter of the neural 

network model which transforms input data within the network’s hidden layers. The 

inclusion of bias values in node enhances the flexibility of the node. Input layer nodes 

receive input features from the data set and pass that information without any processing 

to the hidden layer which sums up the weights of nodes and biases initialized randomly. 

The output of the hidden layer calculated is then passed over to the activation function 

which produces an output of the model [76]. 

 
Figure 3. 8 Depiction of node and input variables 

Figure 3.8 depicts a node with an input parameter leading to an output where the circle 

represents the node, taking weighted inputs, and some of this input is given to the activation 

function. The output of activation function is represented as ℎ𝑤,𝑏(𝑥). 
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Weighted input to the node in this diagram would be  

𝑥1𝑤1  + 𝑥2𝑤2 + 𝑥3𝑤3 + 𝑏 

Where wi are the weight values and b is the bias value.   

Data Preprocessing: 

 The training data set given as input to the nodes of the input layer is normalized first. An 

adequate normalization is a linear scale conversion that assigns the same absolute values 

to the data set features with the same relative variations applied to all the features. Data 

needs to be normalized before training a neural network model. Normalization ensures that 

the magnitude of the values that a feature assumes is more or less the same. It scales all the 

data set to be given to the model. Normalization assures that there are both positive and 

negative values used as input for the hidden layer which makes learning a more flexible 

and faster convergence for the model. Network performance is enhanced when input 

variable ranges are equalized by normalization. 

Z-score normalization:  

This is also known as the standard scaler approach. In this normalization, data is 

normalized using distributed mean and standard deviation calculations for each feature.  

𝑥′ =
𝑥 − 𝑥𝑚𝑒𝑎𝑛

𝑆𝐷
 

Where x’ is the normalized output, x is the original feature vector, xmean is the mean of that 

feature vector, and SD is the standard deviation. This standardization makes the values of 

each feature in the data to have zero mean and unit variance [76]. 
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2) Activation Function  

This is also called a transfer function.  The activation function of a node results in the 

output of that node whenever a set of inputs is given. It represents the rate of activation 

potential of firing for a particular node. Purpose of the activation function is to introduce 

non-linearity into the output of a neuron, thus increasing the power of multi-layered neural 

networks, enabling them to easily compute arbitrary and complex functions, Activation 

function decides whether a neuron should be activated or not by calculating weighted sum 

and further adding bias with it. Weights are updated on the basis of the error at the output 

with backpropagation 

Rectified linear unit (ReLU): 

It gives an output x, if x is positive, and 0 otherwise. ReLU is less computationally 

expensive and much faster because it involves simpler mathematical operations. The 

function and its derivative, both are monotonic. However, it doesn’t map the negative 

values appropriately.  

3) Learning Rule 

The learning rule updates the weights and bias levels of a network when the network 

simulates the given data set. The learning rule helps the network to learn from existing 

conditions and improve its performance. A learning rule accepts existing weights and 

biases of the network and compares the expected result obtained from the output layer and 

actual result of the network to give new and improved values for weights and bias, acting 

as an iterative process. Depending upon the process to develop the network, there are three 
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main models of machine learning- unsupervised learning, supervised learning, 

reinforcement learning. 

Supervised Learning: 

Supervised learning generates a function that maps inputs to desired outputs. This 

technique is designed to learn by example. The process of adjusting the weights in a neural 

network to make it approximate to a particular function is called training. When training a 

supervised learning algorithm, the training data will consist of inputs paired with the 

correct outputs.  Training data consist of input parameters affecting the fatigue properties 

and output parameters as the properties of the material as can be seen in Figure 3.9. During 

training, the algorithm will search for patterns in the data that correlate with the desired 

outputs [76]. The objective of the supervised learning model is to predict the output for the 

newly presented input data.  

 

Figure 3. 9 Supervised learning mechanism 

Delta Learning Rule: 

It is also called Widrow Hoff Rule. It depends on supervised learning. This rule states that 

the modification in the sympatric weight of a node is equal to the multiplication of error 
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and the input. If the difference is zero, no learning takes place; otherwise, adjusts its. The 

aim of applying the delta rule is to reduce the difference between the model output and 

expected output, Figure 3.10 shows the mechanism of delta learning rule. Mathematical 

formula of delta learning rule [76]:  

∆𝑤𝑖𝑗 = λ. 𝑥𝑗 . 𝐸𝑗 

Where,  ∆𝑤𝑖𝑗 = weight change for ith node of the hidden layer from jth input node; 

λ = the positive and constant learning rate; 

 xj = the input value from pre-synaptic neuron depicted as node “j”;  

Ej =   the error between the desired output (di) and the model output (oi) 

 

Figure 3. 10 Delta learning rule mechanism 

The updating of weight can be done in the following two cases:  

Case-I − when d ≠ o, then, w(new)=w(old)+ Δw 

Case-II − when d = o, then, no change in weight 

 



66 
 

Gradient descent method: 

This method uses the derivative of the loss function with respect to the weights of the 

network. It decreases the output error by adjusting the weights. 

𝐸𝑖 = 𝐿(𝑑𝑖, 𝑜𝑖) 

E is the loss(error) for the model output oi and desired value di. This learning algorithm 

minimizes sum squared error by making appropriate iterative adjustments to the weights 

wij If weights are repeatedly adjusted by small steps against the gradient, the result moves 

through weight space, descending along the gradients towards a minimum of the error 

function. If we want to change the value of weights to minimize the error function, there 

are three cases for the derivative of the loss function with respect to the weights  

Case 1:  If 
𝑑𝐸

𝑑𝑤
> 0 , E increases as w increases, hence weight should be decreased 

Case 2:  If 
𝑑𝐸

𝑑𝑤
< 0 , E decreases as w increases, hence weight should be increases 

Case 3:  If 
𝑑𝐸

𝑑𝑤
= 0 , E is at a maximum or minimum value; weight should not be changed 

Hence, the error is reduced by changing weight by the amount Δw 

Δw = w(new) − w(old) =   −η 
𝑑𝐸

𝑑𝑤
 

Where η is a positive constant specifying how much weight should be changed, and 
𝑑𝐸

𝑑𝑤
 

describes the direction to go in. Repeating this iterative algorithm, the error will keep 

decreasing towards a minimum with gradient lines flattening out, known as gradient 



67 
 

descent minimization, see Figure 3.11. The backpropagation method is used for figuring 

out the gradient of a neural network [76].  

 

Figure 3. 11 Gradient descent method 

Backpropagation 

Backpropagation is the algorithm for computing the gradient. It generalizes the gradient 

computation in the delta rule. Backpropagation is an algorithm that is widely used in the 

training of feedforward neural networks for supervised learning. Backpropagation 

efficiently computes the gradient of the loss function with respect to the weights of the 

network for a single input-output example. The backpropagation algorithm works by 

computing the gradient of the loss function concerning each weight by the chain rule called 

delta rule or gradient descent, iterating backward one layer at a time from the last layer to 

avoid redundant calculations of intermediate terms in the chain rule. The weights that 

minimize the error function is the solution to the learning problem. 

3.3.2.2 Multilayer Perceptron Model (MLP) 

This model is called Multilayer Perceptron because it contains many perceptrons that are 

organized into layers. MLP is a class of feedforward artificial neural network used for 
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function approximation. MLP consists of at least three layers of nodes explained in 

interconnections. Each node in the hidden layer and the output layer uses a nonlinear 

activation function. MLP uses a supervised learning technique for training, called 

backpropagation [76]. An MLP neuron is free to either perform classification or regression 

depending upon its activation function.  

 

Figure 3. 12 Architecture of Multilayer Perceptron Model 

In the diagram given above, input layer consist of “N” nodes and “j” represents one of the 

node input layer receiving input from pth sample of the dataset, the hidden layer consists of 

“H” nodes with “k” represented as one of its nodes, and the output layer consist of “m” 

nodes where “i” represents one of its nodes.  

The flowchart below can be used to understand the steps to train the MLP Model: 
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1. Preprocessing of data 

Input and output data are normalized first using z-score normalization, before 

giving them as input to the model. Based on these normalized input-output 

instances, the model is trained and tested to capture the non-linear system. 

2. Initialization of connection weights 

Connection weights corresponding to nodes of hidden and output layers can be 

initialized from -1 to 1 or from -0.5 to 0.5 with uniform distribution. 

3. Calculation of output of layers 

• Calculation of output at the input layer 

The output of node “j” is calculated as Opj = Xpj, the value received at input 

layer nodes is passed on as it is to the hidden layer for all values of “j” from 

I to N 

• Calculation of output at the hidden layer 

Netpk = ∑ Wkj Opj - bk 

This net value is passed on to the activation function,  

if activation function is sigmoidal, Opk = (1 + e -λ Net pk)-1 

if activation function is ReLU, Opk = Netpk for Netpk >0 else Opk = 0 

that is, Opk = f(Netpk), where f is the activation function for all values of “k” 

from 1 to H 

• Calculation of output at the output layer 

Netpi = ∑ Wik Opk – bi  

if activation function is sigmoidal, Opi = (1 + e -λ Net pi)-1 
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if activation function is ReLU, Opi = Netpi for Netpi >0 else Opi = 0 

that is, Opi = f(Netpi), for all values of “i” from I to M 

4. Calculation of error 

The output obtained from the output layer of the model is compared with the desired 

output, mentioned in the data set, and error in the result for every node is calculated.  

E = ∑
1

2
 (dpi - Opi)

2 

Initially, long steps are taken, as learning is matured, the step size is reduced which 

reduced the learning rate. 

5. Weight updation by backpropagation 

For updating the weights of the output layer, the gradient descent method is used, 

in which the gradient of the error with respect to weight to be updated is calculated 

as 

𝑑𝐸

𝑑𝑤
 = - (di – Oi ) f’(Neti)Opk 

Δw = −η 
𝑑𝐸

𝑑𝑤
 

Wik (new) = Wik (old) + Δw 

A similar procedure is used for weight updation of nodes of the hidden layer, and this 

process continues for every iteration until error obtained is less than a specified value. Once 

the error of a particular iteration is less than the specified one, weights at that iterations are 

frozen to be used in the testing phase for predicting the output.  
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3.3.2.3 Required Model 

An ANN model designed for the prediction of fatigue properties of a material is based on 

a multilayer perceptron since it is used for function approximation and implies supervised 

learning. Since data is sufficiently not available, the prediction process is divided into two 

models, first model results in predicting the values of Ultimate Tensile Strength (UTS), 

Yield Strength (YS) and elongation which is used as input for the second model to predict 

the fatigue properties with given input parameters. 

Model-1:  

 

Figure 3. 13 Architecture of the MLP model for predicting UTS, YS, and Elongation 

The model is depicted in Figure 3.14. The first layer consists of 7 nodes, with the ReLU 

activation function, giving input to the hidden layer with 16 nodes, activation as ReLU. If 

the degree of non-linearity is higher, a greater number of hidden layers or nodes are 



73 
 

required. Hence, the second hidden layer consists of 64 nodes to make network dense and 

improve the performance. The last layer, output layer consists of 3 nodes, UTS, YS, 

elongation. Input data is normalized using z-score normalization and delta learning rule is 

used for supervised learning, with backpropagation method depending on gradient descent 

rule for weight updation. This model is compiled, fitted and the output is predicted for 

unseen data, and the graph is plotted between predicted output and desired output, to 

calculate the error.  

Model-2: 

 

Figure 3. 14 Architecture of the MLP model for predicting Fatigue properties 

The model shown in Figure 3.15 consists of 7 input nodes as UTS, YS, elongation, surface, 

roughness, frequency, k, and 2 output nodes as A and B for fatigue properties. Data 

received from the input layer is given to the hidden layer consisting of 16 nodes with ReLU 

activation. The second hidden layer also consists of 64 nodes, making the network dense. 
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Input data is normalized, and normalized data is compiled by the model. With the help of 

gradient descent, the model decides whether to increase or decrease weight in the 

backpropagation process. This model is fitted and A, B outputs are predicted to obtain the 

fatigue properties of the material.  
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CHAPTER - 4 

DATA COLLECTION 

 

All the data is collected from the open literature available. Some of the data was not 

numerically available in the publications and proper plots were provided to depict the data. 

In such cases a digitizing software is used to access the numerical data. Data for tensile 

testing of Ti-6Al-4V alloy is available for three different directions namely, flat, edge, and 

vertical as shown in Figure 4.1. The build direction is the one parallel to the worktable 

movement. For instance, in Figure 4.1, the table is lowered in the Z-direction after each 

layer is developed, hence, Z-axis represents the build direction. The data collected and the 

model built consider only the vertical orientation of the alloy as they result in somewhat 

minimal tensile properties out of the three build options.  

 

Figure 4. 1 Scanning direction possibilities in an AM process  
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As mentioned earlier, sometimes SLM and DMLS processes are reported and considered 

to be the same processes and therefore, researchers use DMLS and SLM interchangeably. 

This extensive data collection is based on the fact that SLM and DMLS have a fundamental 

difference of sintering and melting of the powder and therefore, the data is separately 

collected for DMLS and SLM process. The data could be clubbed together to find out if 

they both have similar behavior or not however, this study considers them to be different 

processes and the further proceedings will be carried out based on this consideration.  

The open literature data collected is tabulated in the following section: 

4.1 Tensile test data of SLM Ti-6Al-4V   

SLM tensile data available from the literature was the best set of data out of all the 

processes discussed. It included variations with scan speed, laser power, powder layer 

thickness, heating temperature, heating time, and also if the process was HIPed or not see 

Table 4.1. Some other influencing parameters were also observed however, sufficient data 

was not presented regarding them in the literature therefore, only the data useful for Model-

1 is used from the literature. 

Table 4. 1 Data collection (used in model 1-SLM) on tensile behavior of SLM fabricated Ti-6Al-4V alloy 

Scanning 

Speed 

(mm/s) 

Laser 

Power 

(W) 

Hatch 

Spacing 

(m) 

Powder 

Layer t 

(m) 

Heat 

Temp 

(°C) 

Heat 

Time 

(hrs) 

Hiped 

or not 

UTS 

(MPa) 

YS 

(MPa) 

El 

(%) 
Ref. 

           

1250 200 80 30 820 1.5 No 1045 1010 8 [75] 

1600 250 60 30 650 4 No 1170 1124 10.1 [77] 

710 175 120 30 800 2 No NA NA NA [78] 

710 175 120 30 920 2 Yes NA NA NA [78] 

200 200 180 50 As-fabricated No 1035 910 3.3 [79] 

960 120 100 30 As-fabricated No 1237 1098 8.8 [80] 

540 120 100 30 As-fabricated No 1257 1150 8 [80] 
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400 120 100 30 As-fabricated No 1148 1066 5.4 [80] 

1260 120 100 30 As-fabricated No 1112 932 6.6 [80] 

1500 120 100 30 As-fabricated No 978 813 3.7 [80] 

1000 200 50 50 As-fabricated No 1243 1153 21.5 [80] 

1000 200 50 50 930 2 Yes 922 853 16 [81] 

1250 200 120 40 NA NA Yes 973 885 19 [81] 

1250 170 100 30 650 3 No NA NA NA [82] 

1250 200 120 40 As-fabricated No 1051 736 11.9 [82] 

1250 200 120 40 700 1 No 1115 1051 11.3 [82] 

1250 200 120 40 900 2 No 988 908 9.5 [82] 

1250 200 120 40 900 2 Yes 973 885 19 [82] 

1250 170 100 30 650 3 No NA NA NA [83] 

1250 170 100 30 650 3 No NA NA NA [83] 

1250 170 100 30 650 4 No 1219 1143 4.89 [83] 

NA NA NA 30 As-fabricated No 1314.9 1253 4 [84] 

NA NA NA 30 800 2 No 1228.1 1211 8 [85] 

NA NA NA 30 1050 2 No 986.4 892 13.8 [85] 

NA NA NA 30 920 2 No 1088.5 1075 13.8 [85] 

NA NA NA 30 1050 2 No 1006.8 892 13.5 [85] 

NA NA NA 30 800 4 No 936.9 862.4 11.4 [86] 

NA NA NA 60 800 4 No 910.1 835.4 7.2 [86] 

NA NA NA 60 900 2 No 928 862 9.6 [86] 

NA 400 50 60 740 1.5 No 1082.11 NA 14.9 [87] 

NA 400 50 60 1200 1.5 No 941.6 NA 11.9 [87] 

NA 400 50 60 900 1.5 No 1090.7 NA 17.9 [87] 

NA 500 NA 30 670 5 No 1090 1015 10 [88] 

NA 500 NA 30 920 2 No 960 850 14 [88] 

NA NA NA 60 350 2 No 1153.58 1049.7 8.91 [89] 

NA NA NA 60 420 2 No 1257.22 1159.46 11.47 [89] 

NA NA NA NA 670 5 No 1090 1015 10 [90] 

NA NA NA NA 920 5 No 950 880 11 [90] 

NA 400 32.5 60 850 2 No 912 847.5 4.5 [91] 

NA 200 NA 30 650 2 No 1140 1070 NA [92] 

1000 400 160 50 700 1 No 1052 951 3.5 [93] 

1200 280 140 30 704 1 No 1093.02 1050.51 15.27 [94] 

710 175 120 30 NA NA No 1150 1054 9 [95] 

686 375 120 90 NA NA No 1141 1135 1 [95] 

1029 375 120 60 400 2 No 1250 1168 11.4 [95] 

600 200 75 25 650 2 No 1174 1037 8.4 [96] 

600 200 75 25 920 4 Yes 998 920 15.6 [96] 

1600 250 60 30 As-fabricated No 1271 1115 7.3 [77] 

225 195 NA 50 As-fabricated No 1095 990 8.1 [97] 

1600 250 60 30 As-fabricated No 1267 1110 7.28 [98] 

1600 250 60 30 540 5 No 1223 1118 5.36 [98] 

1600 250 60 30 850 2 No 1004 955 12.84 [98] 

1600 250 60 30 850 5 No 965 909 2 [98] 

1600 250 60 30 1015 0.5 No 874 801 13.45 [98] 

1600 250 60 30 1020 2 No 840 760 14.06 [98] 
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4.2 Fatigue test data of SLM Ti-6Al-4V   

Fatigue data for SLM was much scattered compared to the tensile data as it can be seen 

from Table 4.2 that frequencies are ranging from 10 to 19000 Hz. A little information for 

high-frequency tests was available and therefore, the model would not be very effective 

in fitting to the real SLM fatigue process, however, if more data was available, a good 

prediction model could be developed.  

1600 250 60 30 705 3 No 1082 1026 9.04 [98] 

1600 250 60 30 940 1 No 948 899 13.59 [98] 

1600 250 60 30 1015 0.5 No 902 822 12.74 [98] 

225 157 100 50 730 2 No 1052 937 9.6 [99] 

225 157 100 50 As-fabricated No 1117 967 8.9 [99] 

600 100 105 30 725 8 No 959 950 9.4 [100] 

600 100 105 30 974 8 No 912 902 10.09 [100] 

600 100 105 30 827 4 No 911 906 9.51 [100] 

600 100 105 30 1025 4 No 804 775 14.1 [100] 

600 100 105 30 As-fabricated No 1170.4 1101.68 7.98 [100] 

710 175 120 30 640 4 No 1256 1152 3.9 [101] 

710 175 120 30 As-fabricated No 1321 1166 2 [101] 

375 100 130 30 As-fabricated No 1181 1037 7 [102] 

1000 150 70 30 As-fabricated No 1221 1088 6.9 [103] 

NA NA NA 30 650 4 No 1156 1132 8 [104] 

NA NA NA 30 890 2 No 998 964 6 [104] 

NA NA NA 30 As-fabricated No 1216 1125 6 [104] 

710 175 120 30 As-fabricated No NA 1096 2.5 [105] 

500 110 35 - 95 50 As-fabricated No 1246 1150 1.4 [64] 

1200 280 140 30 920 0.5 No 1079 1029 11 [106] 

1200 340 120 60 920 0.5 No 974 881 13 [106] 

1200 280 140 30 650 3 No 1237 1161 7.6 [107] 

1200 340 120 60 650 3 No 1222 1151 9.8 [107] 

1250 250 125 30 As-fabricated No 1250 1163 10.3 [108] 

1250 250 125 30 730 2 No 1134 1054 13 [108] 

1250 250 125 30 900 2 No 1046 889 19.2 [108] 

375 100 130 30 As-fabricated No 1220 1120 NA [109] 

125 90 130 30 As-fabricated No 1250 1125 6 [26] 

125 90 130 30 750 2 No 1000 920 12 [26] 

375 100 130 30 As-fabricated No 1220 1120 NA [110] 

58 42 30 50 As-fabricated No 1117 967 8.9 [111] 
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Table 4. 2 Data collection (used in Model 2-SLM) on fatigue behavior of SLM fabricated Ti-6Al-4V alloy 

UTS 

(MPa) 

YS 

(MPa) 

El 

(%) 

Surface 

characteristic 

Stress 

ratio 

(R) 

Freq 

(Hz) 
K  A B Ref. 

          

1045 1010 8 As-fabricated -1 100 1 1358.4 -0.119 [75] 

1170 1124 10.1 Machined 0 75 1 2040.6 -0.195 [77] 

1170 1124 10.1 Machined 0 75 1.75 193.77 -0.051 [77] 

1170 1124 10.1 Machined 0 75 2.5 124.63 -0.036 [77] 

1035 910 3.3 As-fabricated -0.2 20 1 7158 -0.346 [79] 

1035 910 3.3 Machined -0.2 20 1 243.35 -0.075 [79] 

1237 1098 8.8 As-fabricated 0.1 50 1 873.5 -0.05 [80] 

1257 1150 8 As-fabricated 0.1 50 1 1001.5 -0.05 [80] 

1148 1066 5.4 As-fabricated 0.1 50 1 669.11 -0.046 [80] 

1112 932 6.6 As-fabricated 0.1 50 1 3343.8 -0.206 [80] 

978 813 3.7 As-fabricated 0.1 50 1 2403.2 -0.198 [80] 

1243 1153 21.5 Machined 0.1 30 1 1121.9 -0.074 [81] 

922 853 16 Machined 0.1 30 1 1955 -0.079 [81] 

973 885 19 Machined -1 82 1 2676.3 -0.121 [82] 

1219 1143 4.89 As-fabricated 0.1 50 1 2542.8 -0.093 [84] 

1314.9 1253 4 As-fabricated -1 10 1 2622.3 -0.152 [85] 

1228.1 1211 8 As-fabricated -1 10 1 2043.9 -0.124 [85] 

986.4 892 13.8 As-fabricated -1 10 1 7099.3 -0.263 [85] 

1088.5 1075 13.8 As-fabricated -1 10 1 1092.4 -0.033 [85] 

1006.8 892 13.5 As-fabricated -1 10 1 1080.5 -0.046 [85] 

936.9 862.4 11.4 As-fabricated 0.1 60 1 798.16 -0.089 [85] 

910.1 835.4 7.2 As-fabricated 0.1 60 1 1237.3 -0.119 [85] 

928 862 9.6 As-fabricated 0.1 60 1 4685.4 -0.227 [85] 

1090 1015 10 As-fabricated -1 150 1 491.01 -0.045 [88] 

960 850 14 Machined -1 150 1 639.66 -0.032 [88] 

1153.58 1049.7 8.91 As-fabricated 0.1 10 1 12772 -0.345 [89] 

1257.22 1159.46 11.47 As-fabricated 0.1 10 1 2804.9 -0.139 [89] 

1090 1015 10 As-fabricated -3 150 1 964.33 -0.065 [90] 

1090 1015 10 As-fabricated -1 150 1 595.67 -0.057 [90] 

1090 1015 10 As-fabricated 0.1 150 1 249.75 -0.032 [90] 

950 880 11 As-fabricated -1 150 1 330.37 -0.031 [90] 

NA NA NA Machined -1 10 1 2097.9 -0.128 [78] 

NA NA NA Machined -1 19000 1 562.6 -0.032 [78] 

NA NA NA Machined -1 19000 1 845.1 -0.031 [78] 

NA NA NA As-fabricated 0.1 50 1 1671.6 -0.136 [83] 

NA NA NA Machined 0.1 50 1 564.49 -0.006 [83] 
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1082.11 NA 14.9 As-fabricated -1 50 1.1 671.68 -0.101 [87] 

941.6 NA 11.9 As-fabricated -1 50 1.1 806.94 -0.144 [87] 

1090.7 NA 17.9 As-fabricated -1 50 1.1 1203.1 -0.14 [87] 

912 847.5 4.5 Machined -1 NA 1 250.82 -0.018 [91] 

1140 1070 NA Machined 0.1 NA 1 1807.6 -0.142 [92] 

1140 1070 NA As-fabricated 0.1 NA 1 1061.2 -0.047 [92] 

1052 951 3.5 Machined -1 0.25-5 NA 126491 -0.551 [93] 

1093.02 1050.5 15.27 As-fabricated -1 0.4-2 NA 3170.8 -0.218 [94] 

1093.02 1050.5 15.27 Machined -1 0.4-2 NA 2603.8 -0.125 [112] 

          

 

4.3 Tensile test data of EBM Ti-6Al-4V   

As discussed earlier, EBM process is carried out in two sections, first is the pre-scanning 

where the powder is scanned at higher speed and warmed up for the actual melting process 

to be carried in the second section. Pre-scanning has its own sets of process parameters like 

beam current, scanning speed, beam voltage, and powder pre-heating temperature. These 

parameters sure affect the build of the EBM process however, very few authors have made 

available the pre-scanning process parameters. The second section comes with additional 

parameters like scan speed, scan bean current, scan beam voltage, focal offset, line offset, 

powder layer thickness, and heat treatments at the very last. All this information is 

necessary to determine the build generated by the EBM process and very less is available 

in open literature due to manufacturer confidentiality or simply because the information is 

not essential for the author’s study. The Model-1 for EBM, therefore, could not be 

developed.  

4.4 Fatigue test data of EBM Ti-6Al-4V   

Similar to SLM, the fatigue data was found in the case of EBM was limited to predict a 

good model. An attempt has been made to find a relationship of tensile properties with the 
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fatigue properties of Ti-6Al-4V alloy fabricated using the EBM process on the data 

collected so far, see Table 4.3. 

Table 4. 3 Data collection (used in model 2-EBM) on tensile behavior of EBM fabricated Ti-6Al-4V alloy 

UTS 

(MPa) 

YS 

(MPa) 

El 

(%) 

Surface 

characteristic 

Stress 

ratio (R) 

Freq 

(Hz) 
K  A B Ref. 

1036.84 894.34 19.16 As-fabricated 0.1 30 1 3526.9 -0.115 [81] 

982.54 959.7 20.56 As-fabricated 0.1 30 1 2122.6 -0.107 [81] 

1012 962 8.8 As-fabricated 0.1 50 1 701.49 -0.013 [80] 

1011 947 9 As-fabricated 0.1 50 1 812.32 -0.017 [80] 

423 420 0.4 As-fabricated 0.1 50 1 688.01 -0.153 [80] 

928 869 9.9 As-fabricated 0.1 50 1 854.15 -0.06 [96] 

953 879 13.8 As-fabricated 0.1 40 1 1715.5 -0.099 [113] 

942 868 12.9 As-fabricated 0.1 40 1 2747.9 -0.101 [113] 

953 879 13.8 As-fabricated -1 133 1 1941.6 -0.131 [113] 

942 868 12.9 As-fabricated -1 133 1 948.64 -0.042 [113] 

904 802 13.8 As-fabricated -1 133 1 1734.3 -0.124 [113] 

902 807 14.8 As-fabricated -1 133 1 870.69 -0.035 [113] 

819 771 16.1 Machined 0.1 10 1 2341.2 -0.085 [114] 

880 750 16 Machined 0.1 10 1 1546.3 -0.075 [114] 

870 788 13.8 Machined 0.1 10 1 1347 -0.066 [114] 

896 774 18 Machined 0.1 150 1 2297 -0.082 [115] 

833 718 14 As-fabricated 0.1 150 1 3124.2 -0.208 [115] 

972 868 15 As-fabricated 0.1 150 1 1937.1 -0.125 [116] 

965 869 6 As-fabricated 0.1 150 1 1574.7 -0.158 [116] 

1060.93 987.32 14.14 Machined 0.1 20 1 4112.1 -0.183 [117] 

1070.33 1026 13.05 Machined 0.1 20 1 3415.6 -0.173 [117] 

1033.33 947.32 18.8 Machined 0.1 20 1 2325.4 -0.086 [117] 

1090 976 20.1 Machined 0.1 30 1 2300.6 -0.083 [118] 

1122 1036 9.8 Machined 0.1 30 1 2006.9 -0.122 [118] 

NA NA NA Machined 0.1 <120 1 2558.9 -0.088 [119] 

1022.7 931.2 14.7 Machined 0.1 86-146 1 2075.1 -0.114 [120] 

910.4 798.4 13.76 Machined 0.1 86-146 1 1305.4 -0.063 [120] 

842 782 9.9 As-fabricated 0.1 50 1 3197.6 -0.211 [121] 

928 869 9.9 Machined 0.1 50 1 849.2 -0.06 [121] 

978.5 881.5 10.7 Machined 0.1 NA 1 1614.5 -0.093 [122] 

978 876.5 13.5 Machined 0.1 NA 1 2799.3 -0.103 [122] 

987 891 15.7 Machined -1 20000 1 1070.7 -0.061 [123] 
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1046 NA 20 As-fabricated -1 60 1 2419.3 -0.194 [124] 

986 NA 22 As-fabricated -1 60 1 1252.2 -0.129 [124] 

986 NA 22 Machined -1 60 1 966.41 -0.034 [124] 

1132 1074 7.2 As-fabricated -1 100 1 3559 -0.223 [75] 

851 812 3.6 As-fabricated -0.2 20 1 7942.7 -0.327 [125] 

1020 950 14 As-fabricated 0 15 1 6757 -0.255 [126] 

1000 931 14.3 Machined -1 20 1 6724.1 -0.303 [127] 

1000 931 14.3 Machined 0.5 20 1 2303.8 -0.14 [127] 

1000 931 14.3 Machined 0.1 20 1 4292.7 -0.226 [127] 

          

 

4.5 Tensile test data of DMLS Ti-6Al-4V   

From the looks of it, the tensile data available for DMLS process was the one with most 

sample spaces, however, it seems to cut down important parameters like the hatch spacing, 

the HIPing process, and the powder layer thickness because after a good look it can be seen 

that their data is not scattered at all and seems to roughly have the same value for all the 

data sets, see Table 4.4. In such a case, the regression model simply ignores the parameter 

because it doesn’t have a linear relationship with the output and the ANN model finds less 

information to predict the effect of these parameters if an input with a significant variation 

from these values is provided to it. However, a good variation of laser power and scanning 

speeds were available, and developing a relationship considering those as major inputs 

becomes easier. 

Table 4. 4 Data collection (used in model 1-DMLS) on tensile behavior of DMLS fabricated Ti-6Al-4V 

alloy 

Scannin

g Speed 

(mm/s) 

Laser 

Power 

(W) 

Hatch 

Spacing 

(m) 

Powder 

Layer t 

(m) 

Heat 

Temp 

(°C) 

Heat 

Time 

(hrs) 

Hiped 

or not 

UTS 

(MPa) 

YS 

(MPa) 

El 

(%) 
Ref. 

300 130 100 30 As-fabricated No 1238 1177 6.7 [128] 

500 130 100 30 As-fabricated No 1257 1211 6.2 [128] 

700 130 100 30 As-fabricated No 989 973 3.4 [128] 

900 130 100 30 As-fabricated No 960 936 2.5 [128] 
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1100 130 100 30 As-fabricated No 914 893 2.2 [128] 

1300 130 100 30 As-fabricated No 902 877 1.81 [128] 

300 170 100 30 As-fabricated No 1198 1155 5.34 [128] 

500 170 100 30 As-fabricated No 1300 1250 6.26 [128] 

700 170 100 30 As-fabricated No 1247 1206 6.07 [128] 

900 170 100 30 As-fabricated No 1004 967 3.5 [128] 

1100 170 100 30 As-fabricated No 967 1010 2.91 [128] 

1300 170 100 30 As-fabricated No 944 918 2.43 [128] 

300 210 100 30 As-fabricated No 1145 1127 4.37 [128] 

500 210 100 30 As-fabricated No 1244 1165 5.85 [128] 

700 210 100 30 As-fabricated No 1282 1241 6.18 [128] 

900 210 100 30 As-fabricated No 1250 1206 6.11 [128] 

1100 210 100 30 As-fabricated No 1010 978 3.48 [128] 

1300 210 100 30 As-fabricated No 984 957 3 [128] 

300 130 100 30 650 2 No 1197 1109 5.84 [128] 

500 130 100 30 650 2 No 1210 1147 6.13 [128] 

700 130 100 30 650 2 No 943 909 3.45 [128] 

900 130 100 30 650 2 No 914 875 2.58 [128] 

1100 130 100 30 650 2 No 868 820 2.33 [128] 

1300 130 100 30 650 2 No 847 809 1.91 [128] 

300 170 100 30 650 2 No 1151 1087 5.39 [128] 

500 170 100 30 650 2 No 1243 1180 6.21 [128] 

700 170 100 30 650 2 No 1192 1134 6.07 [128] 

900 170 100 30 650 2 No 958 912 3.48 [128] 

1100 170 100 30 650 2 No 914 880 2.97 [128] 

1300 170 100 30 650 2 No 897 860 2.49 [128] 

300 210 100 30 650 2 No 1099 1052 4.4 [128] 

500 210 100 30 650 2 No 1201 1103 5.42 [128] 

700 210 100 30 650 2 No 1233 1177 6.18 [128] 

900 210 100 30 650 2 No 1197 1136 6.12 [128] 

1100 210 100 30 650 2 No 957 924 3.58 [128] 

1300 210 100 30 650 2 No 925 897 3.02 [128] 

300 130 100 30 750 2 No 1132 1025 7.75 [128] 

500 130 100 30 750 2 No 1124 1032 8.39 [128] 

700 130 100 30 750 2 No 911 804 4.39 [128] 

900 130 100 30 750 2 No 869 767 3.51 [128] 

1100 130 100 30 750 2 No 828 724 3.26 [128] 

1300 130 100 30 750 2 No 801 712 2.97 [128] 

300 170 100 30 750 2 No 1095 1001 7.29 [128] 

500 170 100 30 750 2 No 1171 1087 8.28 [128] 

700 170 100 30 750 2 No 1113 1032 8.22 [128] 

900 170 100 30 750 2 No 930 815 4.53 [128] 

1100 170 100 30 750 2 No 904 778 4.11 [128] 

1300 170 100 30 750 2 No 875 749 3.38 [128] 

300 210 100 30 750 2 No 1048 947 6.24 [128] 

500 210 100 30 750 2 No 1145 1028 7.34 [128] 

700 210 100 30 750 2 No 1160 1069 8.17 [128] 

900 210 100 30 750 2 No 1127 1038 8.22 [128] 
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1100 210 100 30 750 2 No 931 809 4.53 [128] 

1300 210 100 30 750 2 No 903 783 3.85 [128] 

300 130 100 30 850 2 No 1038 926 10.45 [128] 

500 130 100 30 850 2 No 1030 934 11.59 [128] 

700 130 100 30 850 2 No 823 700 7 [128] 

900 130 100 30 850 2 No 784 669 6.27 [128] 

1100 130 100 30 850 2 No 742 646 5.11 [128] 

1300 130 100 30 850 2 No 719 619 5.01 [128] 

300 170 100 30 850 2 No 996 902 10.34 [128] 

500 170 100 30 850 2 No 1079 976 12.77 [128] 

700 170 100 30 850 2 No 1029 922 11.42 [128] 

900 170 100 30 850 2 No 839 732 7.05 [128] 

1100 170 100 30 850 2 No 814 699 6.49 [128] 

1300 170 100 30 850 2 No 777 674 5.82 [128] 

300 210 100 30 850 2 No 964 870 9.29 [128] 

500 210 100 30 850 2 No 1038 927 10.86 [128] 

700 210 100 30 850 2 No 1059 960 12.54 [128] 

900 210 100 30 850 2 No 1030 944 11.54 [128] 

1100 210 100 30 850 2 No 841 739 7.5 [128] 

1300 210 100 30 850 2 No 804 711 6.6 [128] 

300 130 100 30 950 2 No 927 890 9.05 [128] 

500 130 100 30 950 2 No 940 879 11.12 [128] 

700 130 100 30 950 2 No 803 691 6.31 [128] 

900 130 100 30 950 2 No 759 667 5.52 [128] 

1100 130 100 30 950 2 No 715 643 4.67 [128] 

1300 130 100 30 950 2 No 696 619 4.55 [128] 

300 170 100 30 950 2 No 908 849 8.8 [128] 

500 170 100 30 950 2 No 973 918 12.4 [128] 

700 170 100 30 950 2 No 938 856 10.8 [128] 

900 170 100 30 950 2 No 787 733 6.37 [128] 

1100 170 100 30 950 2 No 777 720 5.75 [128] 

1300 170 100 30 950 2 No 750 673 5.05 [128] 

300 210 100 30 950 2 No 892 822 8.7 [128] 

500 210 100 30 950 2 No 934 892 10.87 [128] 

700 210 100 30 950 2 No 950 907 12.09 [128] 

900 210 100 30 950 2 No 931 868 11.08 [128] 

1100 210 100 30 950 2 No 825 740 5.77 [128] 

1300 210 100 30 950 2 No 781 714 5.5 [128] 

1250 200 NA 30 As-fabricated No 1325 1213 4.5 [129] 

300 170 100 30 As-fabricated No 1199 1154 3.94 [130] 

500 170 100 30 As-fabricated No 1296 1256 3.04 [130] 

700 170 100 30 As-fabricated No 1248 1207 3.2 [130] 

900 170 100 30 As-fabricated No 1140 1087 4.65 [130] 

1100 170 100 30 As-fabricated No 1105 1052 5 [130] 

1300 170 100 30 As-fabricated No 1084 1035 5.45 [130] 

300 170 100 30 825 No No 954 843 13.3 [130] 

500 170 100 30 825 4 No 1034 915 11.85 [130] 

700 170 100 30 825 4 No 978 867 12.28 [130] 
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900 170 100 30 825 4 No 900 782 15.25 [130] 

1100 170 100 30 825 4 No 873 750 15.58 [130] 

1300 170 100 30 825 4 No 841 719 15.98 [130] 

NA 200 NA 30 As-fabricated No 1140 1070 NA [92] 

NA 200 NA 30 650 2 No 1189 1076 13.6 [92] 

NA 200 NA 30 As-fabricated Yes 1022 907 17.7 [92] 

1250 340 120 60 As-fabricated Yes 1196 1056 7 [131] 

1250 340 120 60 799 4 No 969 902 11.6 [131] 

 

4.6 Fatigue test data of DMLS Ti-6Al-4V   

Most of the work available in the open literature is related to tensile testing of DMLS 

fabricated Ti64 alloy. There is some data available suiting the input and output parameters 

this study concerns, however, most of the published work in fatigue study of DMLS 

fabricated Ti64 alloy is related to understanding the crack propagation. 

 

  



86 
 

CHAPTER – 5 

 

RESULTS AND DISCUSSION 

 

As mentioned earlier, to fit the ‘as-fabricated data’ along with the ‘heat treatment’ data, 

four compensating sets of heat temperature and heat time is randomly considered for 

building Model-1. The SLM tensile data (more promising than the rest considered in this 

study) is used with all these four variations in MATLAB using the Neural Network tool 

(nntool) to get an estimate of which compensating set would fit the best for further models. 

The ‘R’ value (correlation) obtained from a ‘Bayesian Regularization ANN’ regression 

plot is kept as the priority criterion for selection as it determines which model fits the best 

with the data sets [132], [133].  

For this selection, similar to the ANN model, 16 nodes are considered in the first hidden 

layer and 64 nodes are considered in the second hidden layer. The following section 

presents the result from each of those tests. The nntool gives correlation value based on all 

the three output parameters, however, the elongation value is quite smaller compared to the 

YS and UTS output parameters numerically, thus overall R-value provides less information 

about the efficiency of the model for estimating the elongation values even if the R-value 

≈ 1 for the whole model. Therefore, all the output data is extracted from MATLAB and the 

correlation information is separately plotted, see Table 5.1-5.4. The overall average value 

calculated from each of the three correlation is considered for choosing the compensating 

set for further working.  
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Compensating set 1: (30, 0.5) 

Table 5. 1 Correlation analysis for experimental and predicted output values for compensation set (30, 0.5) 

   

Average R-value = 0.947 

 

Compensating set 2: (30, 1.5) 

Table 5. 2 Correlation analysis for experimental and predicted output values for compensation set (30, 1.5) 

   
Average R-value = 0.911 

 

Compensating set 3: (30, 3) 

Table 5. 3 Correlation analysis for experimental and predicted output values for compensation set (30, 3) 

   

Average R-value = 0.953 
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Compensating set 4: (30,4) 

Table 5. 4 Correlation analysis for experimental and predicted output values for compensation set (30, 4) 

   

Average R-value = 0.921 

 

From the above analysis, it can be said that here, compensation set 3 (30, 3) fits the model 

the best and it gives in more than 90% response to each of the output parameters which is 

acceptable and efficient than the other cases. Therefore, further analysis of tensile data is 

based on considering the as-built condition as a replacement for a heating temperature of 

30C and a heating time of 3 hours.  

5.1 Results for Regression Analysis Model 

The following section shows the results for each of the processes with sufficient data to 

build up a multivariate regression model: 

5.1.1 Tensile SLM (Model-1) 

Ultimate Tensile Strength 

The model fit generated by multi-regression analysis for predicting the UTS can be 

summarized in Figure 5.1. 
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Figure 5. 1 UTS Actual vs UTS Predicted by multi-regression analysis model for SLM fabricated Ti64 

Alloys 

 

Figure 5. 2 Initial model fit for estimating UTS of SLM fabricated Ti64 alloys 

The initial model fit for can be seen from Figure 5.2. Here it can be seen that ‘HIPed or 

not’, ‘Heating Time’, ‘Hatch Spacing’, and ‘Scan Speed’ are insignificant in the same order 

for estimating the UTS value for Model-1 SLM fabrications.  Also, the ‘RSquade Adj’ 

value is close to 0.55 which can be considered lower for estimating a model. The 

insignificant factors are removed one at a time keeping a check at the RSquare Adj value 

and the P-values to obtain the following results, see Figure 5.3.  
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Figure 5. 3 Significant covariates for estimating UTS for SLM fabricated Ti64 alloy 

Therefore, Significant factors for determining the UTS of an SLM fabricated Ti64 alloy 

are laser power and heating temperature. careful analysis of Figure 5.3 shows that all the 

significant covariates have a P-value less than 0.05 thus rejecting the null hypothesis of 

being insignificant. The RSquare Adj value, however, is 0.543 therefore, it raises the 

question if the method of predicting UTS by the equation generated by regression any 

good? To answer that, an F-test needs to be conducted on the results generated. An F-test 

determines if the model equation is better at predicting the value or concern than taking the 

mean value of available data. It is another hypothesis test where the null hypothesis is that 

the regression equation is not better than the mean. To reject this hypothesis, the P-value 

for F statistics needs to be much lower than 0.05 which can be noted from the ‘Analysis of 

Variance’ section in Figure 5.3 at the bottom right corner [Prob>F, <0.0001]. Hence, UTS 
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predicted using the multi-regression analysis for SLM fabricated Ti64 alloy can be 

represented by the following equation:  

UTS predicted = 1199.1427 + 0.58 * Laser Power – 0.2694 * Heating Temperature  

The residuals are the deviations of UTS predicted from the UTS experimental. The farther 

the dots are from the blue line, more is the deviation, see Figure 5.4.  

 

Figure 5. 4 UTS residuals vs UTS predicted for SLM fabricated Ti64 alloy 

Yield Strength 

The model fit generated by multi-regression analysis for predicting the yield strength can 

be summarized in Figure 5.5. 

  

Figure 5. 5 YS Actual vs YS Predicted by multi-regression analysis model for SLM fabricated Ti64 alloys 
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Similar to the UTS analysis, initial results for the multi-regression analysis of SLM 

fabricated Ti64, see Figure 5.6, show that the scan speed, hatch spacing, heating 

temperature, and HIPed or not are insignificant for estimating the yield strength. 

 

Figure 5. 6 Initial model fit for estimating YS of SLM fabricated Ti64 alloys 

After removing the insignificant covariates, the results obtained are similar to the UTS 

results as shown in Figure 5.7, however, the RSquared Adj value drops down to 0.26 which 

is quite insignificant still the F-statistics confirm that the equation developed for identifying 

the behavior of yield strength with the considered covariates is better than using the mean 

value of the data. 

YS predicted using the multi-regression analysis for SLM fabricated Ti64 alloy can be 

represented by the following equation: 

YS predicted = 995.211 + 0.483 * Laser Power – 0.176 * Heating Temperature  
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The residuals resulted from estimating YS by a multi-regression analysis can be seen in 

Figure 5.8. 

 

Figure 5. 7 Significant covariates for estimating YS for SLM fabricated Ti64 alloy 

 

Figure 5. 8 YS residual plots vs YS predicted for SLM fabricated Ti64 alloy 

Elongation 

The model fit generated by multi-regression analysis for predicting the percent elongation 

can be summarized in Figure 5.9. 
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Figure 5. 9  El Actual vs El Predicted by multi-regression analysis model for SLM fabricated Ti64 alloys 

 

Figure 5. 10 Initial model fit for estimating the elongation of SLM fabricated Ti64 alloys 

  Initial regression analysis results can be seen in Figure 5.10 where RSquare Adj value is 

0.27 and the insignificant covariates are hatch spacing, powder layer thickness, beam 

power, and scanning speed. After removing the insignificant covariates, the final model 

that included only the significant covariates had an RSquare Adj value of 0.25 and the 

covariates to be included in the model fit equation were heating temperature, and HIPed or 

not, see Figure 5.11. 
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Figure 5. 11 Significant covariates for estimating the elongation for SLM fabricated Ti64 alloy 

Equation:  

El Predicted = 7.341 + 0.0.00388 * Heat temp + 5.967* HIPed or not 

The residuals resulted from estimating the elongation by a multi-regression analysis can be 

seen in Figure 5.12. It is evident that the residuals variation from the zero line is quite 

significant for the predicted elongation values. 

 

Figure 5. 12  El residuals vs El predicted for SLM fabricated Ti64 alloy 
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5.1.2 Fatigue SLM (Model-2) 

The available data set for Model-2 constitutes only 31 sample space therefore, any good 

prediction for Model-2 using the multi-regression analysis is next to impossible. Results of 

the regression analysis for estimating A and B are shown below: 

‘A’ 

The results of predicting ‘A’ from available data sets are not very useful when done by 

muti-regression analysis as can be seen from the fit provided by JMP for estimating ‘A’ in 

Figure 5.13. Suspected reasons for that are the unavailability of sufficient datasets and non-

linear behavior of the fatigue properties of Ti64 alloy.  

 

Figure 5. 13 A Actual vs A Predicted by multi-regression analysis model for SLM fabricated Ti64 alloys 

From the initial analysis of the regression model, it can be observed that nearly all the 

covariates, as well as the intercept, are insignificant, and the RSquare Adj value is nearly 

zero, see Figure 5.14.  

Also, the P-value for F-statistics is insignificant implying the values estimated from this 

method might not be a better estimate than the same if done by taking the mean of available 
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data sets. Figure 5.15 shows the final results of the model predicted by multi-regression 

analysis that only the frequency set by the user must be significant for the analysis 

prediction based on the available dataset. 

 

Figure 5. 14 Initial model fit for estimating A value of SLM fabricated Ti64 alloys 

 

Figure 5. 15 Significant covariates for estimating A value for SLM fabricated Ti64 alloy 
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It can also be seen by the bi-variate plots that only frequency shows a linear relationship 

(correlation = -0.44) with the A value, see Table 5.5.  

Table 5. 5 Bi-variate plots for estimating A value for SLM fabricated Ti64 alloy 

  

 

 



99 
 

   

 

 

Equation:  

A Predicted = 3649.26 - Frequency * 23.46 

The residuals obtained using this equation can be seen in Figure 5.16. The residuals seem 

closer to the zero line in the figure; however, they are mostly having deviations of more 
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than 2000 units from the zero line and therefore, the estimation is not very useful to predict 

the A value for SLM fabricated Ti64 alloy. 

 

Figure 5. 16 A residuals vs A predicted for SLM fabricated Ti64 alloy 

 ‘B’ 

Similar to the estimation of ‘A’ the results of predicting ‘B’ from available data sets are 

equally bad when done by muti-regression analysis as can be seen from the fit provided by 

JMP for estimating ‘B’ in Figure 5.17. The scatter in the predicted model can be clearly 

seen in Figure 5.17 indicating that the final model developed could not estimate the B value 

very accurately. The ‘B’ generally lies around -0.05 to -0.35 and a variation of mere 0.02 

units is enough to deviate the stress values in the S-N curve by around 200 MPa.  

 

Figure 5. 17 B Actual vs B Predicted by multi-regression analysis model for SLM fabricated Ti64 alloys 
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Figure 5. 18 Initial model fit for estimating B value of SLM fabricated Ti64 alloys 

 

Figure 5. 19 Significant covariates for estimating B value for SLM fabricated Ti64 alloy 

From the initial regression analysis, it can be seen that none of the covariates are significant 

except for Frequency and the intercept also shows insignificant results as can be seen in 
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Figure 5.18. The final regression model developed by JMP shows that only frequency 

influences the ‘B’ value and shows a linear correlation of 0.44 as can be seen from Figure 

5.19. The bivariate plots again show that there is no linear behavior of the covariates with 

‘B’ value, see Table 5.6. 

Table 5. 6 Bi-variate plots for estimating B value for SLM fabricated Ti64 alloy 
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Equation: 

B Predicted = -0.164 + 0.000793 * Frequency 

The B residuals related to the above equation can be seen from Figure 5.20. 
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Figure 5. 20 B residuals vs B predicted for SLM fabricated Ti64 alloy 

 

5.1.3 Fatigue EBM (Model-2) 

‘A’ 

The available data from EBM fatigue tests are not sufficient enough to develop a good 

regression fit to estimate A value. The results obtained from the regression model are 

discussed hereunder. 

 

Figure 5. 21 Initial and final model fit for estimating A value of EBM fabricated Ti64 alloys 
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From the initial analysis of the regression model, SFC is zeroed out and therefore, needs to 

be removed from the analysis equation, see Figure 5.21. RSquare Adj is -ve and none of 

the covariates are significant and hence, they are sequentially eliminated from the analysis 

equation and the model is built again with the left covariates. However, no significant 

covariates are observed in this case. Therefore, it can be said that no linear regression model 

can be developed for estimating the A value of EBM fabricated Ti64 alloys. 

‘B’ 

Similar to the estimation of A value, no model could be built for estimating B value. The 

initial and final fits for the estimation model of B value can be seen in Figure 5.22. 

 

Figure 5. 22 Initial and final model fit for estimating B value of EBM fabricated Ti64 alloys 

None of the covariates were found significant for a linear regression model for estimating 

the B value of EBM fabricated Ti64 alloys. The intercept becomes significant at the last 
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step, however, that just indicates that B value would stay constant for all the scenarios. 

Therefore, B value for EBM fabricated Ti64 alloys can’t be explained by linear regression.  

5.1.4 Tensile DMLS (Model-1) 

Ultimate Tensile Strength: 

The output of the tensile DMLS regression model for estimating the ultimate tensile 

strength of Ti64 alloys is shown in Figure 5.23. 

 

Figure 5. 23 UTS Actual vs UTS Predicted by multi-regression analysis model for DMLS fabricated Ti64 

alloys 

Following the same procedure as for the previous processes, the initial and the final 

regression model results are shown in Figure 5.24. It can be seen that the scanning speed, 

the laser power, and the heating temperature were observed to be significant according to 

the analysis of the available data for DMLS fabricated Ti64 alloy. 

Equation:  

UTS Predicted = 1184.1314 -0.2527 * Scanning Speed + 1.0964 * Laser Power – 0.2686 * 

Heating Temperature 
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Figure 5. 24 Initial and final model fit for estimating UTS of DMLS fabricated Ti64 alloys 

The residuals obtained from the equation mentioned above are shown in Figure 5.25 

 

Figure 5. 25 UTS residuals vs UTS predicted for DMLS fabricated Ti64 alloy 

Yield Strength 

The output of the tensile DMLS regression model for estimating the yield strength of 

Ti64 alloys is shown in Figure 5.26. After zeroing out powder layer thickness initially 

and following the same procedure only scanning speed, laser power, and heating 

temperature were found to be significant and the regression analysis results are shown in 

Figure 5.27. 
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Figure 5. 26 YS Actual vs YS Predicted by multi-regression analysis model for DMLS fabricated Ti64 alloys 

 

Figure 5. 27 Initial and final model fit for estimating YS of DMLS fabricated Ti64 alloys 

Equation:  

YS Predicted = 1151.577-0.2582 * Scanning Speed + 0.9973 * Laser Power – 0.3114 * 

Heating Temperature 

The residuals obtained after fitting the model for the above-shown equation are presented 

in Figure 5.28 
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Figure 5. 28 YS residuals vs YS predicted for DMLS fabricated Ti64 alloy 

Elongation 

The results obtained after the multi-regression model fit for the elongation in the DMLS 

process are shown in Figure 5.29.  

 

Figure 5. 29  El Actual vs El Predicted by multi-regression analysis model for DMLS fabricated Ti64 

alloys 

 

Figure 5.30 shows the initial and final model fits for the estimation of elongation in DMLS 

fabricated Ti64 alloys. The significant covariants, in this case, were scanning speed and 

heating time only. 

Equation: 

El Predicted = 6.0614 - 0.001844 * Scanning Speed + 0.00392 * Heating Temperature 
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Figure 5. 30 Initial and final model fit for estimating the El of DMLS fabricated Ti64 alloys 

 

The residuals obtained after comparing the model equation and actual experimental values 

can be seen from Figure 5.31. 

 

Figure 5. 31  El residuals vs  El predicted for DMLS fabricated Ti64 alloy 

 

5.2 Results for ANN Model 

As mentioned before, the ANN model incorporates two hidden layers accompanied by 16 

nodes in the first and 64 in the other. This section presents the results obtained by the ANN 

models for tensile and fatigue properties of the Ti64 fabricated by various AM processes.  
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5.2.1 Tensile SLM (Model-1) 

The R-curve obtained from the ANN estimation model for estimating the tensile behavior 

of SLM fabricated Ti64 alloy is presented in Figure 5.32. A total of 49 datasets from Table 

4.1 with necessary input and output values were used for building the model. As discussed 

earlier, ‘nntool’ from MATLAB was used to train the model based on Bayesian 

regularization. The individual R-values obtained from the predicted output values and the 

actual output values are presented in Table 5.7 

Table 5. 7 Individual correlation values for tensile output parameters for SLM fabricated Ti64 alloy 

 UTS YS El 

Correlation (R)  0.966231 0.967153 0.924921 

 

 

Figure 5. 32 Performance of the ANN model for tensile behavior of SLM fabricated Ti64 alloy 
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Since the model is built on 16 nodes in the first hidden layer and 64 nodes in the second, 

to develop an equation in the matrix form becomes a little tedious, however, the residuals 

obtained from the predicted output data are presented below individually for each of the 

output parameters.  

Figure 5.33 shows the residuals for UTS while Figure 5.34 presents the YS residuals 

obtained after comparing the actual output to the predicted output of the ANN model. The 

residuals for the elongation can be seen in Figure 5.35. The predicted values with a large 

deviation from the actual values resulted in large residual values. 

 

Figure 5. 33 UTS residuals for the ANN model for SLM fabricated Ti64 alloy 

 

 

Figure 5. 34 YS residuals for the ANN model for SLM fabricated Ti64 alloy 
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Figure 5. 35  Elongation residuals for the ANN model for SLM fabricated Ti64 alloy 

It can be seen from the above analysis that the prediction model for SLM fabricated Ti64 

alloy, Model-1, shows very good results and attain an overall R-value of 0.991 for testing 

the data. The deviations observed from the zero line for all the UTS, YS, and El are minimal 

and only a few anomalies are observed to get larger deviations. For the UTS, maximum 

deviation observed was around -200 MPa while most of the deviations averaged round the 

zero line. Same behavior was observed in the YS data with the largest deviation of about -

200 MPa. In the case of elongation, a few cases showed very high deviations (+9%, -6%) 

while the remaining deviations lied around ±2%.  

5.2.2 Fatigue SLM (Model-2) 

The fatigue ANN model from SLM fabricated Ti64 alloy was built using 25 datasets from 

Table 4.2. The correlation value for the experimental output values and the predicted output 

values can be seen from Figure 5.36 and the individual correlation response of A and B 

values can be found in Table 5.8. 
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Table 5. 8 Individual correlation values for fatigue output parameters for SLM fabricated Ti64 alloy 

 A B 

Correlation (R) 0.94473 0.9273 
 

Since the model is developed on a heavy architecture of layers and nodes, therefore, 

formulating and presenting an equation is not easy. The residuals obtained after comparing 

the predicted and actual experimental values for A and B are shown in Figure 5.37 and 

Figure 5.38 respectively. 

 

Figure 5. 36 Performance of the ANN model for fatigue behavior of SLM fabricated Ti64 alloy 
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Figure 5. 37 A residuals for the ANN model for SLM fabricated Ti64 alloy 

 

 

Figure 5. 38 B residuals for the ANN model for SLM fabricated Ti64 alloy 

While modeling for the fatigue behavior of SLM fabricated Ti64 alloy, it was noticed that 

the A value converged around the zero line for most of the observations (R ≈ 0.94) and 

similar to the model for tensile behavior, a few observations were deviated. The maximum 

and only deviation for A value was observed to be around -1300. In the case of B value (R-

value ≈ 0.92), the deviation curve was scattered quite evenly in the range of -0.02 to 0.02 

which still puts up a window of about -200 MPa to +200 MPa while predicting the S-N 
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curve (considering no deviation in A value). The maximum deviation for B value was 

recorded to be around +0.09. However, the results developed are far better than those 

obtained for the multi-regression analysis. 

5.2.3 Fatigue EBM (Model-2) 

From Table 4.3, 33 datasets, having all the input and output parameter information, were 

extracted and an ANN model was built on MATLAB using nntool similar to previous 

cases. The correlation plot obtained after training and testing the model is presented in 

Figure 5.39 and the individual correlation values for each of the output parameters can be 

found in Table 5.9. 

 

Figure 5. 39 Performance of the ANN model for fatigue behavior of EBM fabricated Ti64 alloy 
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Table 5. 9 Individual correlation values for fatigue output parameters for EBM fabricated Ti64 alloy 

 A B 

Correlation (R) 0.977714 0.968522 

 

The residuals value information for A and B can be seen in Figure 5.40 and Figure 5.41 

respectively. 

 

Figure 5. 40 A residuals for the ANN model for EBM fabricated Ti64 alloy 

 

 

Figure 5. 41 B residuals for the ANN model for EBM fabricated Ti64 alloy 

The estimation model of the fatigue behavior of EBM fabricated Ti64 could put up a 

deviation of ±400 MPa while plotting the S-N curve using the data developed by this model 
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which is evident by the deviation in B value ranging from -0.04 to +0.04 (R ≈0.97) which 

is better than Model-2 for SLM. The effect of deviation of A value would be close to none 

as most of the data for estimating A value converged to result in an almost zero deviation 

(R ≈ 0.98). The largest deviation observed in the estimation model for A was -1700 but 

only for one case.  

5.2.4 Tensile DMLS (Model-1) 

A set of 100 data were taken from Table 4.4 and was fed to the nntool in MATLAB. The 

individual correlation for each of the output values is shown in Table 5.10 and the R curve 

obtained for the whole model can be seen from Figure 5.42.  

 

Figure 5. 42 Performance of the ANN model for tensile behavior of DMLS fabricated Ti64 alloy 
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Table 5. 10 Individual correlation values for tensile output parameters for DMLS fabricated Ti64 alloy 

 UTS YS El 

Correlation (R)  0.96 0.984 0.781 
 

The residuals obtained for UTS, YS, and elongation from the nntool are shown in Figure 

5.43, Figure 5.44, and Figure 5.45. 

 

Figure 5. 43 UTS residuals for the ANN model for DMLS fabricated Ti64 alloy 

 

Figure 5. 44 YS residuals for the ANN model for DMLS fabricated Ti64 alloy 
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Figure 5. 45  Elongation residuals for the ANN model for DMLS fabricated Ti64 alloy 

The tensile behavior prediction model for DMLS, being developed on 100 datasets, 

resulted in a very efficient model with an overall R-value of 0.995. The individual R-values 

for the UTS and YS were also close to 0.96 and 0.98 respectively and the maximum 

deviations observed for each of these were around +120 MPa to -350 MPa and +120 MPa 

to -200 MPa respectively. However, in the case of elongation, the deviations were scattered 

evenly around ±3 % with a maximum deviation of above +9% reflected by the R-value of 

just 0.78. 

5.3 Model Analysis  

5.3.1 Sensitivity Analysis and Input Parameter Influences for Model-1 

From the above results, it is evident that the non-linear ANN model estimates the 

investigated parameters far better than the multi-regression analysis. The sensitivity 

analysis is performed to get a measure of uncertainty in the output parameters of a model 

with respect to the variation in input parameters. A derivative based localized sensitivity 

analysis is performed for each of the models where the median values of all input data are 

kept as the local point. Since the minimum to maximum range for each input parameter is 
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very different, z-score normalization is done to achieve a common comparable scale.  

Results obtained from the sensitivity analysis for Model-1, aiming to estimate the effect of 

processing parameters on Ti-6Al-4V AM fabrication, are presented in this section followed 

by the investigation of the impact individual parameters have on the tensile behavior of the 

alloy. HIPed is not included in this analysis as the data collected discusses HIPed as a 

discrete input and sensitivity analysis works for continuous parameters. 

5.3.1.1 Tensile SLM (Model-1) 

As mentioned above, the median values of the data used for making up the model are 

considered as the local point for performing the sensitivity analysis, see Table 5.11. The 

variation in the input parameters for performing the sensitivity analysis is +1% and the 

data obtained for sensitivity analysis can be seen in Table 5.12.  

Table 5. 11 Median Values of the data used for developing the SLM Model-1 

S 

Speed 

(mm/s) 

Power 

(W) 

Hatch 

S 

(m) 

Layer t 

(m) 

H 

Temp 

(ºC) 

H 

Time 

(hrs) 

UTS 

(MPa) 

YS 

(MPa) 
El (%) 

1200 200 100 30 650 3 1244.19 1142.27 4.952 

 

Table 5. 12 Median based +1% variation in each input parameter for sensitivity analysis for SLM 

 S 

Speed 

(mm/s) 

Power 

(W) 

Hatch 

S 

(m) 

Layer 

t 

(m) 

H 

Temp 

(ºC) 

H 

Time 

(hrs) 

UTS 

(MPa) 

YS 

(MPa) 

El 

(%) 

Median 1200 200 100 30 650 3 1263.1 1160.0 7.46 

S Speed 1212 200 100 30 650 3 1260.2 1159.5 7.49 

Power 1200 202 100 30 650 3 1264.6 1160.5 7.43 

Hatch S 1200 200 101 30 650 3 1263.2 1160.0 7.47 

Layer t 1200 200 100 30.3 650 3 1262.3 1159.7 7.39 

H Temp 1200 200 100 30 656.5 3 1261.4 1159.3 7.54 

H Time 1200 200 100 30 650 3.03 1263.5 1160.2 7.42 
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Table 5. 13 Normalized results for data in Table 5.12 

 S 

Speed  
Power  

Hatch 

S  

Layer 

t  

H 

Temp  

H 

Time  
UTS  YS  El  

Median -0.378 -0.378 -0.378 -0.378 -0.378 -0.378 0.325 0.274 0.044 
S Speed 2.268 -0.378 -0.378 -0.378 -0.378 -0.378 -1.674 -0.998 0.722 
Power -0.378 2.268 -0.378 -0.378 -0.378 -0.378 1.348 1.508 -0.636 

Hatch S -0.378 -0.378 2.268 -0.378 -0.378 -0.378 0.399 0.388 0.295 
Layer t -0.378 -0.378 -0.378 2.268 -0.378 -0.378 -0.173 -0.411 -1.351 
Temp -0.378 -0.378 -0.378 -0.378 2.268 -0.378 -0.840 -1.392 1.632 
Time -0.378 -0.378 -0.378 -0.378 -0.378 2.268 0.615 0.631 -0.706 

 

Table 5. 14 Results for the sensitivity analysis on the data presented for SLM Model-1 

 
S_UTS S_YS S_El 

Scan speed -0.75583 -0.48079 0.256275 

Laser power 0.386528 0.466273 -0.25674 

Hatch spacing 0.027754 0.043056 0.095059 

Layer t -0.18833 -0.25917 -0.52696 

Heat temp -0.4406 -0.62978 0.600369 

Heat time 0.10949 0.134738 -0.28334 
 

 

Figure 5. 46 Sensitivity analysis for +1% variation from median values for SLM Model-1 
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Table 5.13 shows the z-score normalized data for the data presented in Table 5.12 while 

Table 5.14 presents the results for the sensitivity calculation. The results obtained from the 

sensitivity analysis can be understood as +1% change in the input parameter is seen to be 

causing ‘x’ % variation in the output parameters where ‘x’ represents the values obtained 

in Table 5.14. These relationships are pictographically presented in Figure 5.46. 

Observations from the local sensitivity analysis at the median parameters: 

 Scan speed and laser power seem to be having an inverse relation to each other. A 

positive variation in scan speed accounts for a decrease in the strength compensated by 

an increased elongation, whereas, a positive variation in laser power results in increased 

strength on the account of decreased elongation. 

 Similarly, hatch spacing, and powder layer thickness have an inverse relationship with 

each other at the median value of the collected data. An increase in the hatch spacing 

leads to an increase in all the output parameters but this trend seemed to be reversed in 

case of powder layer thickness. However, a 1% variation in hatch spacing leads to a 

mere 0.03-0.09 % variation in the output values which accounts for the minimum 

impact out of all the parameters discussed. In the closer analysis, discussed later, it can 

be seen that this small positive trend at the median value is almost equivalent to a 

constant trend which after a few positive units seems to follow a similar trend as powder 

layer thickness shows. 

 Increasing heating temperature for the heat treatment process causes a reduction in the 

strength well compensated by an increased elongation while an advance in heat time is 

reflected as an increase in the strength at an expense of elongation. 
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These trends are localized, and the complete input parameter profile doesn't need to behave 

the same way it did at the median of the data. To understand the impact of each of the input 

parameters at an extended range, plots are developed showing the behavior of the tensile 

properties for the minimum to the maximum range of variation in individual input 

parameters whilst keeping the others at the median value. The following section discusses 

the results obtained for these individual process parameters. 

Scan speed: 

In the case of low scan speeds, the powder gets completely melted resulting in a stable 

concentrated melt pool which leads to a reduction in porosity and internal defect during the 

fabrication. At higher scan speeds, the melt pool has low concentration and is unstable 

which causes the lack of fusion defects, in turn, leading to internal cavities and the material 

becomes porous, therefore, the strength also decreases. In absence of any major 

microstructural changes, which occur in heat treatment, the loss of strength is generally 

resultant of an increased elongation.  

   

Figure 5. 47 Tensile behavior prediction vs scan speed by Model-1 for SLM  
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Similar trends can be seen in the plot generated by the ANN model for the scan speed 

parametric study of SLM fabricated Ti64 and are presented in Figure 5.47. The dips shown 

in the plots in the middle region could either be a model generated defect or an estimation 

of a sample that has an internal defect unknown without CT scan images, in either case, it 

is unexplanatory at this stage.   

Power: 

Laser power has a direct relation with the strength which is backed by the fact that an 

increase in laser power ensures proper melting which results in minimal porosity. This 

behavior can also be observed from the model output presented in Figure 5.48 where at 

lower power values, the strength of Ti64 is lower than the strength at higher power values. 

Following the general trend, elongation behaved inversely to the behavior of strength. 

   

Figure 5. 48 Tensile behavior prediction vs laser power by Model-1 for SLM  
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spot diameter because an efficient overlap between consecutive scans leads to a strong and 

stable melt pool. An increase in the hatch spacing beyond a certain value leads to an 

improper fusion of the powder in consecutive scans and generates the lack of fusion defects 

within the fabrication, therefore, leading to increased porosity causing a reduction in the 

strength. A higher value of hatch spacing demands more energy expenditure as the number 

of scans per layer increase however, this ensures proper melting of powder and leads to a 

high strength alloy. Figure 5.49 shows the predicted behavior of hatch spacing with the 

strength of alloy which can be comfortably backed up by the physics of hatch spacing 

explained above. The elongation was observed to dip in the region of a slight positive 

gradient for the strength behavior but as soon as the negative gradient was reached for 

strength, the elongation started increasing.  

   

Figure 5. 49 Tensile behavior prediction vs hatch spacing by Model-1 for SLM 

Powder layer thickness: 

Powder layer thickness plays an inverse relation to the overall energy being imparted to 
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thickness would cause improper melting of the powder leading to a porous fabrication after 

solidification which would have a lower strength. On the other hand, if the layer thickness 

is low enough for the laser power to cause excessive penetration, keyhole pores would be 

generated again leading to a reduction in strength. A similar trend can also be seen in the 

strength vs layer thickness plot presented in Figure 5.50 where an increased powder layer 

thickness resulted in a decreased strength value compensating the increase in the elongation 

when the remaining process parameters were kept constant. 

   

Figure 5. 50 Tensile behavior prediction vs powder layer thickness by Model-1 for SLM 
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like the medium of heating, the medium of cooling (air-quenched, water-quenched, furnace 

cooling), and in a few cases, if reheating or step heating/cooling is done then the additional 

parameters related to those processes. This model only utilized heat temperature and heat 

time as the input parameters, restricted by the data available in the open literature. Also, 

the application of the compensating set used in this study could have developed a piece of 

additional information for the model which cannot replicate an actual condition for the as-

fabricated alloy. Proper heat treatment leads to increased elongation and generally, this 

happens after heating the alloy to a certain temperature where the microstructure starts 

getting altered (alpha+beta phase field) and then cooled in a controlled environment. Plots 

presented in Figure 5.51 show similar behavior for the strength and elongation as supported 

by the general heat treatment procedures. 

   

Figure 5. 51 Tensile behavior prediction vs heat temperature by Model-1 for SLM 
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is operated. The relationship presented above cannot be explained at this stage as it could 

either be because of a microstructural variation or an internal unknown defect generated in 

the sample or a model generated anomaly because of the compensation sets which are given 

as 3-hour compensating time to fit the as-fabricated samples in the same bracket as heat-

treated samples. 

   

Figure 5. 52 Tensile behavior prediction vs heat time by Model-1 for SLM 

5.3.1.2 Tensile DMLS (Model-1) 

Similar to the analysis presented for SLM based Model-1, sensitivity analysis is performed 

for the Model-1 data for DMLS. The median values for the DMLS data used to build the 

model can be seen in Table 5.15 while Table 5.16 shows the input parameters with +1% 

variation to the median values which are used as the database for sensitivity analysis.  

Table 5. 15 Median Values of the data used for developing the DMLS Model-1 

S 

Speed 

(mm/s) 

Power 

(W) 

Hatch 

S 

(m) 

Layer t 

(m) 

H 

Temp 

(ºC) 

H 

Time 

(hrs) 

UTS 

(MPa) 

YS 

(MPa) 

El 

(%) 

900 170 100 30 750 2 923.645 812.177 5.369 
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Similar to SLM, the +1% variated parameters presented in Table 5.16 are converted to the 

normalized data before performing the sensitivity calculations. The normalized data can be 

seen in Table 5.17 and the results of sensitivity analysis are available at Table 5.18 

Table 5. 16 Median based +1% variation in each input parameter for sensitivity analysis for DMLS 

 S 

Speed 

(mm/s) 

Power 

(W) 

Hatch 

S 

(m) 

Layer 

t 

(m) 

H 

Temp 

(ºC) 

H 

Time 

(hrs) 

UTS 

(MPa) 

YS 

(MPa) 

El 

(%) 

Median 900 170 100 30 750 2 925.4 810.9 5.06 

S Speed 909 170 100 30 750 2 924.1 808.6 5.02 

Power 900 171.7 100 30 750 2 929.1 815.2 5.12 

Hatch S 900 170 101 30 750 2 917.8 799.3 5.09 

Layer t 900 170 100 30.3 750 2 924.0 808.5 5.07 

H Temp 900 170 100 30 757.5 2 918.4 801.7 5.16 

H Time 900 170 100 30 750 2.02 925.3 810.4 5.06 

 

Table 5. 17 Normalized results for data in Table 5.16 

 S 

Speed  
Power  

Hatch 

S  

Layer 

t  

H 

Temp  

H 

Time  
UTS  YS  El  

Median -0.378 -0.378 -0.378 -0.378 -0.378 -0.378 0.496 0.560 -0.449 
S Speed 2.268 -0.378 -0.378 -0.378 -0.378 -0.378 0.160 0.137 -1.414 
Power -0.378 2.268 -0.378 -0.378 -0.378 -0.378 1.399 1.348 0.768 

Hatch S -0.378 -0.378 2.268 -0.378 -0.378 -0.378 -1.403 -1.543 0.165 
Layer t -0.378 -0.378 -0.378 2.268 -0.378 -0.378 0.130 0.137 -0.330 
Temp -0.378 -0.378 -0.378 -0.378 2.268 -0.378 -1.252 -1.109 1.698 
Time -0.378 -0.378 -0.378 -0.378 -0.378 2.268 0.469 0.470 -0.437 

 

Table 5. 18 Results for the sensitivity analysis on the data presented for DMLS Model-1 

 
S_UTS S_YS S_El 

Scan speed -0.12719 -0.15974 -0.36472 

Laser power 0.341355 0.297998 0.459948 

Hatch spacing -0.71766 -0.79486 0.23215 

Layer t -0.13835 -0.15999 0.045066 

Heat temp -0.66055 -0.63061 0.811413 

Heat time -0.01029 -0.03394 0.004587 
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Summary of the localized sensitivity analysis for +1% variation at the median value for 

DMLS Model-1, pictographically presented in Figure 5.53, can be understood as follows: 

 

Figure 5. 53 Sensitivity analysis for +1% variation from median values for DMLS Model-1 

 Laser power follows a direct relation to all the material properties whereas, the scan 

speed shows completely inverse trends to the laser power indicating a strong 

dependence on the ratio of scan speed and laser power for a DMLS fabricated Ti64 

alloy 

 The hatch spacing behaves closely similar to the powder layer thickness showing a 

positive result for the elongation and a negative result for the strength, however, the 

impact of hatch variation is more significant than the layer thickness.  

 Heat temperature and heat time also follow similar trends to the hatch spacing and layer 

thickness leading to a decline in strength and an increase in elongation for +1% 
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variation from the median values. The effect of heat temperature is more prominent on 

both the strength and elongation, whereas, heat time seems to have almost negligible 

variation in the output parameters. 

To understand the extent of the behavior of tensile properties predicted by the model, an 

extended analysis of each of the input parameters is done with the strength and elongation 

keeping the remaining parameters constant at the median values. The results obtained from 

the analysis are discussed in the section below: 

Scan Speed: 

Figure 5.54 presents the results obtained from the ANN tensile model for the behavior of 

scan speed with the tensile properties of DMLS fabricated Ti64 for the remaining constant 

median values. The strength attains a maximum value for medium-range scan speeds from 

500 mm/s to 600 mm/s. At very low scan speeds for DMLS, the strength is somewhat 

smaller which could be explained by the formation of keyhole defects due to excess melting 

of powder. For higher scan speeds, the strength drops below 900 MPa as a suspected result 

of the lack of fusion defects.  

The elongation plot presented in Figure 5.54 behaves differently than the usual elongation 

trend of generating a positive variation in elongation for a decline in strength. Reasons for 

this behavior is not clear. One hypothesis is that the increased speed will introduce lack of 

fusion defect and both strength and ductility will reduce due to increased defect density. 

This hypothesis cannot be validated using the collected data and need detailed 

microstructure imaging observations. 
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Figure 5. 54 Tensile behavior prediction vs scan speed by Model-1 for DMLS 

Power: 

As explained in section 5.3.1.1, the power trends shown in Figure 5.55 can be completely 

backed by the physics of power influence on laser fabrication. The maximum strength was 

obtained in the power range of 210 W to 240 W when the remaining median parameters 

were kept constant. This behavior is supported by the general physics for melting using the 

laser. At very low power values, the powder material gets insufficient heat input and is 

unable to completely melt the material which leads to a high porosity fabrication, in turn, 

resulting in a decline in the strength. However, increasing the power too much also leads 

to a decline in the strength of the alloy which is caused by the development of extra internal 

stress concentration sites in the form of keyhole pores due to excessive energy being 

imparted to melt the powder.   

The behavior of elongation with power variation presented in Figure 5.55 also suggests 

that the defect mechanism is dominating in the strength and ductility trend. It is well known 

that the strength increase will usually accompany with ductility loss. This is in general 

agreement with the grain structure characteristics. For example, increased grain size during 
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the heat treatment will cause the grain size increases and the strength will decrease with 

increased ductility. If both strength and ductility show the same trend, it indicates the major 

mechanism is the defect. If defect density increases/decreases, both strength and ductility 

will decrease/increases.  

   

Figure 5. 55 Tensile behavior prediction vs laser power by Model-1 for DMLS 

Hatch Spacing: 

The results obtained for variation in hatch spacing from the ANN model are shown in 

Figure 5.56 where the strength almost showed a linearly inverse relationship to the hatch 

spacing for the range in which model could have best predicted the trend keeping the 

remaining parameters constant. The elongation showed an inverse relation to the strength 

as a drop in the strength was compensated with an increase in the elongation and vice versa. 

This plot behavior cannot be considered as the ideal behavior of the strength and elongation 

for DMLS process with the hatch spacing because the model is built on 90 % hatch spacing 

values of 100 m and a few 120 m values but it can essentially be said that the increment 

in hatch spacing results in an increment in elongation and a decrement of the strength. 
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Figure 5. 56 Tensile behavior prediction vs hatch spacing by Model-1 for DMLS 

Powder layer thickness: 

Similar to the trend shown by the hatch spacing, the powder layer thickness was almost 

linearly inverse to the strength of the alloy, and the elongation was again compensated 

positively for a negative variation in the strength, see Figure 5.57.  

   

Figure 5. 57 Tensile behavior prediction vs powder layer thickness by Model-1 for DMLS 

Again, similar to the case for the hatch spacing, the model is mostly built on a powder 

layer thickness of 30 m and a few cases of 60 m, therefore, valuable information for 

the trend of powder layer thickness with the strength and elongation is still missing but an 

increase in the layer thickness reduces the strength and increases the elongation of the 

fabrication. 
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Heat Temperature and Heat Time: 

The results obtained from the heat temperature variation against the tensile behavior of 

DMLS fabricated Ti64 are shown in Figure 5.58 where it can be seen that the trends for 

strength and elongation are quite similar to those observed for SLM heat temperature 

variation. A decline in strength was obtained above and around the alpha+beta phase field 

heating which was naturally compensated by an increase in the elongation. Heat time 

showed an inverse relationship with the strength and direct relation with the elongation 

which is quite different than SLM heat time behavior.  

   

Figure 5. 58 Tensile behavior prediction vs heat temperature by Model-1 for DMLS 

Figure 5.59 shows the variation occurred in the tensile properties for the minimum to the 

maximum range of heat time when the remaining process parameters were kept constant 

at the median values. A decline in the strength was compensated by an increment in the 

elongation however, the trend observed for these variations is quite different than the ones 

obtained for heat time variation with the SLM process.  
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Figure 5. 59 Tensile behavior prediction vs heat time by Model-1 for DMLS 

5.3.2 Fatigue Life Factor Analysis for Model-2  

As mentioned earlier, the sensitivity analysis is performed to understand the impact of a 

continuous parameter on the output parameters of a model. In the case of the fatigue 

models, the absence of sufficient data makes up the input parameters close to discrete 

data sets, and therefore to analyze the fatigue model efficiency, instead of a sensitivity 

analysis, a fatigue life factor analysis is carried out. Fatigue life factor is the ratio of the 

predicted number of cycles to the actual number of cycles. A fatigue life factor of 2 is 

detrimental to an excellent prediction while a factor of 3 accounts for a good prediction. 

In the following section, logarithmic values of the actual vs predicted number of cycles 

are plotted. 

5.3.2.1 Fatigue SLM (Model-2) 

Figure 5.60 shows the predicted fatigue life values obtained from the estimated model in 

regard to the actual fatigue life of SLM fabricated Ti64. The blue dotted line represents a 

100% accurate prediction while the yellow band declares the fatigue life factor of 2 
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expressing an excellent prediction up to a 50% variation in estimating failure cycles. The 

orange and red bands are life factors of 5 and 15.  

Table 5. 19 Percentage allocation of the prediction cycles in fatigue life factor bands for SLM 

Life factor band Predicted values (%) 

2 18.7 

5 58.9 

15 75.9 

Outside 24.1 

 

 

Figure 5. 60 Actual vs predicted life cycles for fatigue model of SLM 

Table 5.19 shows the percentage of the prediction cycles in each of the fatigue life factor 

band. Only 18.7% of the predicted fatigue cycle values fall under the excellent prediction 

band and ever for a fatigue life factor of 15, only 75.9% predicted cycle values come under 
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the umbrella. The trained model individual R-values, in this case, were 0.94 and 0.92 for 

A and B respectively. Possible explanations to the scattered trends in Figure 5.60 are 

explained at the end of this section. 

5.3.2.2 Fatigue EBM (Model-2) 

Fatigue life factor analysis is also performed for EBM based model. The results of each of 

the S-N datasets available are plotted in Figure 5.61. The life factor bands of 2, 5, and 15 

are shown in yellow, orange, and red colors similar to the ones in SLM fatigue life analysis 

plots. Table 5.20 shows the percentage of the predicted cycles in each of the fatigue life 

factor bands. 

Table 5. 20 Percentage allocation of the prediction cycles in fatigue life factor bands for DMLS 

Life factor band Predicted values (%) 

2 32.7 

5 60.2 

15 76.3 

Outside 23.7 

 

It can be seen that for EBM fatigue estimations, the predicted number of cycles fall fairly 

away from the excellent prediction regime. A 32.7% population was recorded to be under 

the excellent prediction regime which is certainly higher than the same for the SLM based 

Model-2. Nearly 60% of the predictions fall under the fatigue life factor of 5 while almost 

24% datasets were a part of outside a life factor of 15 band. The recorded R-value for the 

EBM based Model-2 was nearly 0.97 for both the A and B values even so the scatter in the 

predicted values and actual values are easily noticeable. 
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Figure 5. 61 Actual vs predicted life cycles for fatigue model of DMLS 

Possible explanations of the scattered behavior of the fatigue analysis plots:  

Supported by the high R-values is the fact that the model predicted somewhat accurate 

values to what was fed as a target parameter to it. However, the target parameters are 

determined by a power-law estimation of the fatigue S-N curves. This estimation does not 

necessarily follow through each of the S-N points but is an estimation such that the 

deviation from each of the points is minimum. Now the fatigue estimation models are 

developed after considering the A and B values as the target value. The predictions made 

by the model result in a very close estimation of these A and B values, but the target values 

are not the accurate data values for the S-N curve and therefore an R value of 1 would also 

lead to major deviations in the fatigue life factor analysis. To get a better estimation from 

the model, a target value that satisfies the actual experimental outputs is required.  
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As mentioned earlier a variation as minimum as 0.02 units in the B value is an equivalent 

of creating a variation of 200 MPa in the corresponding ‘stress’ value considering the A 

value is same and this, in turn, leads to huge deviations for a ‘cycle’ value and that adds up 

to another reason for the deviations.   
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CHAPTER – 6 

 

CONCLUSIONS AND FUTURE WORKS 

 

6.1 Conclusion 

The work reported in this thesis focuses on the estimation of mechanical properties of 

additively manufactured Ti-6Al-4V through different AM processes such as SLM, EBM, 

and DMLS. Due to constraints of availability of data in the open domain, two models have 

been proposed for the estimation of output parameters. Model-1 estimates the Ultimate 

Tensile Strength (UTS), Yield Strength (YS), and Elongation (El) from the identified 

process parameters for a specific AM process, whereas Model-2 determines Fatigue 

strength from input variables viz. UTS, YS, and El, etc.  

Due to the insufficiency of data satisfying the input and output parameters considered in 

this study, Model-1 for the EBM process and Model-2 for the DMLS process could not be 

developed.   

The prediction has subsequently been carried out through two different models. One is 

based on linear multi regression analysis and the other is based on non-linear Artificial 

Neural Network (ANN). The multi-regression analysis was tried, however, the correlations 

obtained for those fits weren’t accurate enough to declare a definite linear relationship of 

process parameters and tensile behavior of Ti64 alloy. ANN-based model, on the other 

hand, shows better performance in the current study. From the correlation obtained after 

analyzing the data with linear regression and ANN model, it is confirmed that the tensile 
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behavior of Ti64 behaves non-linearly with the processing parameters selected in this 

study, see Table 6.1. 

In the case of Model-2 for the SLM process, although, regression analysis developed an R-

value of 0.4 for both the output parameters A and B with frequency as the significant 

covariate, the F-test results rejected the usefulness of the model and therefore rejecting the 

possibility of explaining the model linearly. No significant covariates were found in Model-

2 fit for the EBM process. Model-2 developed by the ANN procedure showed R-value 

results close to 1 for each of the considered cases, see Table 6.2. The A values for both 

SLM and EBM presented minimal deviations from actual values, however, the B values, 

sensitive to the estimation of the S-N curve still showed a deviation of ±0.06 and ±0.04 in 

SLM and EBM which accounts for approximately, a ±600 MPa and ±400 MPa variation 

respectively in y-axis while plotting the estimated S-N curve. 

Table 6. 1 R-values from Model-1 estimations for varied AM processes 

AM 

Process 

R-value  

Multi-regression Artificial Neural Network 

UTS YS El Model UTS YS El Model 

SLM 0.737 0.508 0.501 NA 0.9662 0.9671 0.9249 0.9912 

EBM NA NA NA NA NA NA NA NA 

DMLS 0.8056 0.8402 0.4111 NA 0.96 0.984 0.781 0.9951 

 

Table 6. 2 R-values from Model-2 estimations for varied AM processes 

AM 

Process 

R-value 

Multi-regression Artificial Neural Network 

A B Model A B Model 

SLM 0.4074* 0.4111* NA 0.9447 0.9273 0.9681 

EBM - - - 0.9777 0.9685 0.9823 

DMLS NA NA NA NA NA NA 
* F-Test rejected the usefulness of the model 
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Due to the non-linearity and the involvement of each of the datasets in model building for 

ANN models, the model fit equations work with complex matrices making it difficult to 

develop a relationship of the individual input with individual output. Therefore, to better 

understand the model behaviors localized sensitivity analysis was performed for Model-1, 

and fatigue life factor analysis was performed for Model-2. Both SLM and DMLS based 

Model-1 came up with almost similar results for the sensitivity analysis at the median 

values. However, the important finding was that in both cases, power and scan speed 

showed inverse relations to each other, almost canceling out each other’s effect which 

enlightens the fact that the ratio of scan speed to the laser power could be a very important 

factor in laser-based AM. Effect of powder layer thickness and hatch spacing also agreed 

with the general physics, however, in the case of DMLS, hatch space and powder layer 

thickness behavior could not be explored efficiently due to the lack of sufficient variations 

in the data. The fatigue life factor analysis gave almost 75% predictions under a life factor 

of 15 and only 30% and 18% population were recorded in fatigue factor of 2 for EBM and 

SLM based Model-2 respectively. It cannot be denied that the ANN based models 

developed are worked on a very preliminary concept of Bayesian regularization provided 

by MATLAB. However, a custom-built model on python could result in a potential output. 

6.2 Future Works 

From this study, the mechanical properties of Ti-6Al-4V alloy can be estimated efficiently 

using the ANN modeling method. No doubt, the error margins still exist but an increase in 

the database could lead to more efficient models. An ANN model estimating the fatigue 

properties from taking in inputs from the tensile properties opens up a vast horizon of future 
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development in this stream. For enabling it to reach that level, a few assurances need to be 

done. Some of the necessary upgrades related to this study are discussed hereunder. 

6.2.1 Predicting Model-2 using Model-1 

It was observed that Model-1 predictions done by ANN in the case of SLM and DMLS 

fabricated Ti-6Al-4V alloy resulted in high correlation values with the outputs: UTS, YS, 

and elongation. Fatigue testing of a sample takes long experiment time and therefore a 

model that could predict the fatigue properties of a material would certainly be a useful 

entity. A high-efficiency Model-1 can be used to develop inputs for Model-2 and this 

way, the dataset for developing Model-2 can be increased. Since there is not enough 

published data on the fatigue properties of a material that fits in all the input parameters 

needed for a model building, such an approach can be used to successfully utilize all the 

potential published data.   

6.2.2 Missing Data Imputation 

This is also a method to increase the potential database for building the ANN model. Such 

an approach can be directly used to get a prediction value for any missing modeling 

parameters based on the data collected itself. Hierarchical Bayesian data Augmentation 

(HBDA) has been observed to result in a good performance when concerned about small 

sample size therefore, it fits in perfectly to work with small sample size fatigue data [134]. 

Another way that this imputation can be used is by finding the missing parameters from 

the Model-1 database. This ensures an efficient Model-1, in turn, more database for 

developing Model-2. Thus, Model-2 performance can be increased either by using an 

imputed database directly or by imputing the Model-1 database and then using that to find 
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input parameters for Model-2 as mentioned in section 6.2.1. One such example of imputed 

data (in red) is shown in Table 6.3 in which, missing data from Table 4.1 has been imputed. 

Table 6. 3 Missing data imputation from Table 4.1 

S Speed 

(mm/s) 

Laser P 

(W) 

Hatch S 

(m) 

t 

(m) 

H 

Temp 

(°C) 

H 

Time 

(hrs) 

UTS 

(MPa) 
YS (MPa) El (%) 

         

1250 200 80 30 820 1.5 1045 1010 8 

1600 250 60 30 650 4 1170 1124 10.1 

710 175 120 30 800 2 1032.946 964.6178 11.03882 

200 200 180 50 As-fabricated 1035 910 3.3 

960 120 100 30 As-fabricated 1237 1098 8.8 

540 120 100 30 As-fabricated 1257 1150 8 

400 120 100 30 As-fabricated 1148 1066 5.4 

1260 120 100 30 As-fabricated 1112 932 6.6 

1500 120 100 30 As-fabricated 978 813 3.7 

1000 200 50 50 As-fabricated 1243 1153 21.5 

1000 200 50 50 930 2 922 853 16 

1250 200 120 40 845.53 1.914 973 885 19 

1250 170 100 30 650 3 1059.336 978.5825 10.23914 

1250 200 120 40 As-fabricated 1051 736 11.9 

1250 200 120 40 700 1 1115 1051 11.3 

1250 200 120 40 900 2 988 908 9.5 

1250 200 120 40 900 2 973 885 19 

1250 170 100 30 650 3 1057.378 975.6595 10.27161 

1250 170 100 30 650 3 1058.226 973.8105 10.24577 

1250 170 100 30 650 4 1219 1143 4.89 

800.0837 172.5901 114.7444 30 As-fabricated 1314.9 1253 4 

1290.65 262.4317 100.8487 30 800 2 1228.1 1211 8 

1436.215 257.0825 91.08253 30 1050 2 986.4 892 13.8 

1369.607 257.8571 93.2493 30 920 2 1088.5 1075 13.8 

1450.244 260.1483 90.0301 30 1050 2 1006.8 892 13.5 

1137.544 187.1853 90.10967 30 800 4 936.9 862.4 11.4 

1037.889 285.9793 92.012 60 800 4 910.1 835.4 7.2 

1177.792 320.8649 94.43266 60 900 2 928 862 9.6 

1775.986 400 50 60 740 1.5 1082.11 984.3119 14.9 

1767.992 400 50 60 1200 1.5 941.6 888.3029 11.9 

1794.057 400 50 60 900 1.5 1090.7 992.5457 17.9 

2667.078 500 64.93681 30 670 5 1090 1015 10 

2665.572 500 70.19402 30 920 2 960 850 14 

908.6497 275.0513 99.37406 60 350 2 1153.58 1049.7 8.91 

1044.419 305.6927 96.87061 60 420 2 1257.22 1159.46 11.47 
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1092.732 196.2666 90.02537 31.98 670 5 1090 1015 10 

1150.238 206.001 89.115 32.73 670 5 1090 1015 10 

1111.392 196.3042 89.32966 31.96 670 5 1090 1015 10 

1193.011 211.097 86.10534 32.85 920 5 950 880 11 

1841.853 400 32.5 60 850 2 912 847.5 4.5 

1060.98 200 100.6331 30 650 2 1140 1070 10.29709 

1067.983 200 99.68976 30 650 2 1140 1070 10.57116 

1000 400 160 50 700 1 1052 951 3.5 

1200 280 140 30 704 1 1093.02 1050.51 15.27 

710 175 120 30 447.66 2.133 1150 1054 9 

686 375 120 90 191.51 0.969 1141 1135 1 

1029 375 120 60 400 2 1250 1168 11.4 

600 200 75 25 650 2 1174 1037 8.4 

600 200 75 25 920 4 998 920 15.6 

1600 250 60 30 As-fabricated 1271 1115 7.3 

225 195 132.879 50 As-fabricated 1095 990 8.1 

1600 250 60 30 As-fabricated 1267 1110 7.28 

1600 250 60 30 540 5 1223 1118 5.36 

1600 250 60 30 850 2 1004 955 12.84 

1600 250 60 30 850 5 965 909 2 

1600 250 60 30 1015 0.5 874 801 13.45 

1600 250 60 30 1020 2 840 760 14.06 

1600 250 60 30 705 3 1082 1026 9.04 

1600 250 60 30 940 1 948 899 13.59 

1600 250 60 30 1015 0.5 902 822 12.74 

225 157 100 50 730 2 1052 937 9.6 

225 157 100 50 As-fabricated 1117 967 8.9 

600 100 105 30 725 8 959 950 9.4 

600 100 105 30 974 8 912 902 10.09 

600 100 105 30 827 4 911 906 9.51 

600 100 105 30 1025 4 804 775 14.1 

600 100 105 30 As-fabricated 1170.4 1101.68 7.98 

710 175 120 30 640 4 1256 1152 3.9 

710 175 120 30 As-fabricated 1321 1166 2 

375 100 130 30 As-fabricated 1181 1037 7 

1000 150 70 30 As-fabricated 1221 1088 6.9 

1124.724 213.2761 95.98979 30 650 4 1156 1132 8 

1216.953 235.0701 101.2743 30 890 2 998 964 6 

745.4036 145.5085 111.9272 30 As-fabricated 1216 1125 6 

710 175 120 30 As-fabricated 1213.3 1096 2.5 

500 110 103.0716 50 As-fabricated 1246 1150 1.4 

1200 280 140 30 920 0.5 1079 1029 11 

1200 340 120 60 920 0.5 974 881 13 

1200 280 140 30 650 3 1237 1161 7.6 

1200 340 120 60 650 3 1222 1151 9.8 

1250 250 125 30 As-fabricated 1250 1163 10.3 

1250 250 125 30 730 2 1134 1054 13 
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6.2.3 Ideal Black Box Modeling 

The results from sensitivity analysis agrees quite well with the general physics and this 

raises a possibility of an ideal black box which could be developed following the same 

approach where outputs can be used as inputs and the processing parameters can be 

estimated from the desired mechanical properties. Developing such a model would be a 

little tedious because, for the model working in the reverse direction, it would have to find 

more output variables when less inputs are given to the model. On top of this, less data 

availability toughens the procedure for developing the model. So, imputation and 

prediction from Model-1 mentioned in section 6.2.1 and 6.2.2 could be proven quite useful 

for building this black box. 

6.2.4 Other areas of exposure 

Another additive manufacturing process employed to work with metals and alloys is Direct 

Energy Deposition (DED). A Successful model development for Powder Bed Fusion 

technologies opens up a door for developing models for DED processes like Laser 

Engineered Net Shaping (LENS), Direct Metal Deposition (DMD), Fused Deposition 

Modeling (FDM), and Direct Laser Fabrication (DLF), see section 2.2.2.1. Depending 

upon the data available for the AM material, this method could be used to develop 

prediction models for mostly used additive manufacturing materials and that could 

1250 250 125 30 900 2 1046 889 19.2 

375 100 130 30 As-fabricated 1220 1120 6.799 

125 90 130 30 As-fabricated 1250 1125 6 

125 90 130 30 750 2 1000 920 12 

375 100 130 30 As-fabricated 1220 1120 6.603 

58 42 30 50 As-fabricated 1117 967 8.9 
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potentially be used to develop a simulation software for additive manufacturing processes 

specifically. The ideal black box modeling mentioned in section 6.2.3 could be utilized for 

the development of such a software.  
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1313532 530.544  67800.71 452.721 

5391464 618.221  846821.3 403.741 

11805402 560.113  

7099.3 -0.263 

15479.49 598.98 

[85] 

1.35E+08 500.783  19597.08 550.68 

1.85E+08 472.727  18350.34 501.02 

3.01E+08 436.659  28736.79 452.041 

17600767 422.422  61079.32 403.741 

4.72E+08 471.455  
1092.4 -0.033 

30452.8 798.98 
[85] 

5.43E+08 442.717  40540.82 773.129 
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5.27E+08 399.26  57415.09 748.639 

1.01E+09 423.373  171497.2 720.748 

6.73E+08 472.816  1336425 696.939 

7158 -0.346 

3471.587 402.963 

[79] 

 

1080.5 -0.046 

30452.8 798.98 

[85] 

13317.7 263.704  40540.82 773.129 

50417.27 202.963  57415.09 748.639 

93302.17 128.889  171497.2 720.748 

218246.7 94.815  1336425 696.939 

993635.2 59.259  17860.32 649.32 

243.35 -0.075 

83861.6 94.815 

[79] 

 24429.2 598.98 

105244.5 128.889  31288.31 550.68 

116998 94.815  301598.4 501.02 

140660.1 93.333  765827.5 452.041 

302338.8 96.296  

798.16 -0.089 

27139.27 401.199 

[86] 

322233.7 93.333  29377.11 401.212 

873.5 -0.05 

19370.33 652.153 

[80] 

 87857.53 300.942 

38409.08 551.797  95759.59 299.859 

37821.32 401.136  198091.6 241.246 

90251.71 452.247  198091.6 228.621 

110776.8 551.927  197410.3 218.191 

130300.3 500.158  273843.5 220.99 

118268.9 351.056  318663.4 229.248 

183197.3 600.639  9884971 224.325 

1420374 401.581  9884971 211.7 

2366425 501.298  

1237.3 -0.119 

14348.74 499.348 

[86] 

2317287 451.076  16468.69 499.371 

5263339 352.307  33833.78 400.137 

1001.5 -0.05 

24867.96 549.187 

[80] 

 30722.66 350.171 

60235.65 597.899  101885.6 300.967 

148906 449.894  117342.1 280.681 

174850.8 399.621  123140.2 249.95 

338369.4 550.151  218151.3 250.044 

510021.4 598.232  243575.7 239.633 

467504.9 698.52  297447 231.981 

665128.1 648.954  342571.3 239.689 

1019410 650.859  9987661 233.658 

5553333 348.756  9884971 200.722 

10094615 398.994  
4685.4 -0.227 

24986.06 496.622 
[86] 

669.11 -0.046 26964.45 494.472 [80]  42731.72 397.297 
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21367.27 346.923  52280.17 398.48 

43293.37 346.225  56387.61 398.48 

44816.31 397.234  179982.8 296.791 

89745.07 547.193  144353.7 296.791 

278564.1 446.108  287009.8 268.412 

191401.3 296.188  257784.9 295.608 

1940990 396.911  413715.7 256.588 

10169031 349.249  463461.5 245.946 

10093634 295.889  525858.9 217.568 

10159673 273.919  567119.1 228.209 

3343.8 -0.206 

10943.32 597.939 

[80] 

 716018 235.304 

19866.06 497.573  1414234 241.216 

45122.51 398.804  9978942 235.304 

106025.6 298.469  

671.68 -0.101 

23904.49 249.546 

[87] 

127358.7 298.492  66515.67 249.546 

283618.4 250.724  219012 198.881 

335673.8 149.521  597228.3 173.891 

507919.7 149.572  685617.5 174.233 

3448408 198.457  1009742 148.901 

3616265 198.463  645306.6 124.253 

2603.8 -0.125 

13514.78 845.231 

[112] 

 380394.2 198.881 

8646.641 824.554  5833194 174.576 

15079.41 831.69  7897423 148.901 

85560.41 601.489  9895519 149.585 

223600.7 597.686  9995961 108.505 

473349.9 599.028  

639.66 -0.032 

52183.95 498.718 

[88] 

123964.6 478.289  67827.46 498.718 

630391.6 484.21  64281.4 448.077 

765213.2 468.739  108588.8 448.718 

832489.9 478.423  105130.3 424.419 

806.94 -0.144 

25655.55 173.549 

[87] 

 221725.5 424.419 

70196.55 198.881  188039.4 398.837 

97303.54 174.233  252784.2 399.419 

87956.72 124.937  52240885 398.256 

647482.6 124.253  6890184 374.257 

1492111 98.92  48086863 374.257 

1203.1 -0.14 

25499.19 249.366 

[87] 

 48253594 348.515 

159731.1 299.423  
964.33 -0.065 

230271 447.761 
[90] 

215900 249.395  348546.9 447.697 
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352294 173.832  589633 399.729 

593716.3 199.054  938766.6 399.658 

1981671 149.026  1184529 349.706 

3286206 98.998  16578261 349.391 

9849417 198.976  35746885 324.574 

9902557 224.081  35746885 299.299 

9955984 123.699  

595.67 -0.057 

155238.3 349.948 

[90] 

9955984 100.76  199879.6 349.918 

9902557 73.88  144631.7 300.506 

491.01 -0.045 

53974.96 350 

[88] 

 249669.5 300.441 

74031.85 350  266627.9 300.433 

46830.69 300.373  381749.3 276.5 

92969.56 300.373  549346.5 275.996 

101460.5 300.373  583701.8 276.457 

160787.9 276.119  433174.6 250.319 

252274.8 276.119  583701.8 250.289 

275315.1 276.119  12617925 249.977 

227093.3 226.347  494018.4 226.61 

192571.9 250  35566638 226.638 

280594.4 249.701  35746885 199.118 

13575335 249.701  

249.75 -0.032 

174378.5 200 

[90] 

50203030 226.347  280452.6 176.627 

50025495 200  297991.7 176.627 

1807.6 -0.142 

25044.75 500.347 

[92] 

 316627.7 176.923 

28788.02 500.318  319845 150 

61543.79 400.519  782570.7 150 

73017.68 399.767  35746885 150 

152195.4 299.973  420233.5 144.937 

148389.2 299.261  474438.6 144.937 

369291.6 248.893  35566638 144.937 

516543.9 250.257  35566638 139.451 

760051.9 217.202  

330.37 -0.031 

38355.97 249.669 

[90] 

760051.9 214.334  77171 249.669 

9874167 220.97  73782.86 249.669 

9936884 208.783  48336.76 226.159 

9936884 193.729  63682.16 225.828 

1061.2 -0.047 

24358 800.854 

[92] 

 79709.64 225.828 

28284.74 750.208  157832.3 213.576 

66693.39 599.83  950830.9 213.245 
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71635.29 599.837  911676.2 199.338 

43715.93 575.587  6086297 199.338 

105108.3 501.581  50853615 199.007 

2571342 576.033  49775813 188.265 

3847126 550.368  

3170.8 -0.218 

3589.729 619.975 

[94] 
4555265 530.727  18409.9 373.744 

3400279 515.572  525118.7 120.477 

10000000 484.688  9767633 123.116 

250.82 -0.018 

601730.6 172.061 

[91] 

 

12772 -0.345 

9736.304 515.257 

[89] 646939.2 209.49  13105.8 514.866 

994024.2 181.772  34797.53 342.491 

1215496 191.726  

12649

1 
-0.551 

43713.61 347.771 

[93] 
2269768 238.779  84798.17 267.177 

2241279 195.483  96458.77 203.383 

4563441 180.327  122534.6 203.364 

2.73E+08 184.608  

2804.9 -0.139 

129040.7 514.286 

[89] 

1.03E+09 201.122  179846.5 514.286 

1.03E+09 181.328  305902.1 515.966 

1.02E+09 159.211  240866.4 515.966 

1.02E+09 146.75  2847348 344.538 

2.17E+08 170.707  3664493 344.538 

3.8E+08 171.68    
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APPENDIX B 

DATA COLLECTED DECEMBER-JUNE 2020 
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RAW DATA FOR FATIGUE EBM 

A B 
Raw Data 

Ref  A B 
Raw Data 

Ref 
N S  N S 

3526.9 -0.115 

505714.5 800.903 

[81] 

 

2297 -0.082 

1923075 702.364 

[115] 

2804229 600.546  3908809 676.339 

9862757 574.271  5177899 652.339 

1251437 700.544  6517200 627.287 

2122.6 -0.107 

18039.58 800.215 

[81] 

 10524505 602.273 

87732.46 600.346  25097472 577.317 

193314.3 500.951  

3124.2 -0.208 

19092.45 450.482 

[115] 

1606878 450.759  27315.3 400.643 

9864674 400.497  38094.68 350 

46728.81 700.544  52102.91 325.08 

701.49 -0.013 

18611.31 751.865 

[80] 

 83062.15 300.161 

27296.41 702.324  130778.8 250.322 

68182.26 701.332  171051.3 225.402 

75560.73 652.859  423627.7 199.678 

30534.23 602.062  1694025 150.643 

75560.73 552.584  9996716 124.92 

50095.32 501.846  

1937.1 -0.125 

13764.5 625.31 

[116] 

92799.5 452.333  13676.82 576.18 

152249.5 501.979  21667.07 576.249 

155120.6 552.67  25747.25 601.363 

125130.5 652.919  37778.38 550.201 

201492.8 651.874  47550.03 526.194 

653756.2 702.704  59089.17 450.966 

752086.4 653.134  94814.17 375.776 

1558468 552.946  148298.9 426.018 

986086 477.96  10000000 276.132 

3512683 602.63  

1574.7 -0.158 

29321.48 350 

[116] 

3750045 602.637  42205.09 325.08 

4605598 602.662  61923.73 300.965 

812.32 -0.017 

25158.04 626.586 

[80] 

 67735.57 275.241 

46810.56 701.867  96260.99 250.322 

104331.1 702.061  129987.8 225.402 

382342.8 677.32  215284.6 212.54 

428604 652.646  296286.5 200.482 
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2473673 602.642  543564.6 175.563 

688.01 -0.153 

1009.385 300.828 

[80] 

 633667.6 163.505 

1719.072 200.616  9993433 150.643 

15154 149.086  

4112.1 -0.183 

7537.543 708.935 

[117] 

85316.79 99.706  11421.22 801.573 

227508.7 99.823  12580.13 800.772 

2941439 74.785  12825.66 704.929 

3646415 75.912  46378.52 707.195 

854.15 -0.06 

19515.12 500.054 

[96] 

 56268.11 700.842 

89677.62 375.075  93008.03 598.62 

887814.5 400.638  193871.1 603.309 

2241740 348.341  28330.62 506.841 

9970269 300.525  42106.02 507.599 

9983086 340.587  65677.81 410.927 

9982747 320.154  95744.16 408.519 

1715.5 -0.099 

20417.89 799.565 

[113] 

 259078.4 505.859 

34340.98 749.525  385052 303.844 

41287.84 699.453  10195172 201.384 

59274.21 599.352  

3415.6 -0.173 

7910.723 806.357 

[117] 

71808 598.913  11644.13 704.145 

159279.1 499.927  13591.37 798.389 

211495.5 448.378  24985.7 689.822 

214272 404.263  24745.39 606.655 

250843 404.806  14402.8 598.781 

301250.4 432.987  32435.29 512.374 

305907.6 389.879  45932.45 503.631 

9472175 421.865  120738.8 412.459 

9869602 390.977  120738.8 404.538 

9918245 375.219  244482.4 297.547 

2747.9 -0.101 

27803.19 898.925 

[113] 

 661556 299.045 

415553.4 799.601  589114 504.996 

561748.9 799.573  10097114 249.702 

1153550 700.222  10000000 197.426 

2071913 596.915  

2325.4 -0.086 

237495.7 706.262 

[117] 

4200251 559.303  271905.3 795.756 

4318286 580.066  293762.1 793.373 

7675544 559.757  529699.3 793.322 

2325732 600.192  936846.5 803.57 

9980707 520.841  1392376 706.11 
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9983732 541.111  2109790 708.451 

1941.6 -0.131 

17952.62 633.663 

[113] 

 3196848 601.484 

28596.51 570.016  3420604 610.191 

45223.66 506.576  10000000 609.307 

51111.64 485.575  10000000 545.149 

69765.84 464.117  

2300.6 -0.083 

38159.71 882.926 

[118] 

78724.24 442.602  91269.28 883.051 

93357.56 401.523  973369.5 829.727 

104656.8 400.655  1233312 829.761 

124399 421.934  1288276 779.084 

136930.7 382.255  1715716 779.125 

161203.7 386.03  2284977 622.148 

325882.7 338.253  2720356 619.192 

397402.2 305.541  2968231 622.186 

526760.1 315.978  3081262 622.191 

9950185 295.165  3622949 620.227 

948.64 -0.042 

26842.09 687.506 

[113] 

 3139381 569.523 

30383.09 676.584  4367334 569.57 

39191.5 613.292  3062129 675.855 

35460.59 666.256  3341146 726.55 

38261.39 633.42  4422081 669.945 

45223.66 581.328  7508680 622.319 

59499.72 591.576  8244051 622.332 

79675.71 559.901  8939382 622.344 

94172.54 538.708  10125355 623.356 

82193.29 571.095  10000000 569.689 

126196.7 549.216  12829378 569.725 

193144.6 569.86  

2006.9 -0.122 

16459.29 622.432 

[118] 

535987.8 527.921  29193.36 622.514 

704069.7 559.53  37220.7 623.543 

83315.01 548.642  95336.81 412.995 

10080383 517.359  117092.8 415.012 

1734.3 -0.124 

36293.83 526.849 

[113] 

 163910.9 519.409 

60556.05 462.167  184503.8 518.432 

97103.47 420.151  669837.3 311.909 

203615.3 357.186  1943338 313.056 

220570 377.944  3178735 414.494 

272864.2 345.78  3197.6 -0.211 
4084.239 600 

[121] 
352219 325.947  13335.21 500.901 
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544225 314.043  23337.57 401.802 

571848.7 303.584  49878.88 299.099 

673766 366.259  368105.4 200 

1695910 293.449  316227.8 174.775 

2521774 279.484  594710.4 159.459 

10030168 255.116  9920368 150.45 

156823.2 399.547  9920368 99.099 

327566.2 335.65  

849.2 -0.06 

19548.13 500.345 

[121] 

870.69 -0.035 

25996.1 687.495 

[113] 

 89986.61 374.812 

27365.7 633.558  883266.3 400.398 

36204.09 613.435  2240806 349.321 

46687.23 602.016  9938128 339.86 

55455.47 569.098  10000000 319.267 

65968.7 590.833  9938128 300.078 

66567.54 570.775  

3559 -0.223 

6033.797 600 

[75] 

71948.96 550.04  12873.74 498.69 

126607.5 548.275  20324.36 399.127 

10038122 538.974  33358.52 349.345 

10038122 518.279  76926.5 299.563 

10038122 491.071  104977.7 249.782 

10038122 432.102  175681.4 231.441 

73886.9 568.61  239743.5 200 

70987.55 563.285  501674.4 179.913 

10080383 506.709  487263.3 138.865 

2341.2 -0.085 

18544.01 1002.557 

[114] 

 711738.9 149.345 

70104.78 901.238  1625438 130.131 

655174.1 802.805  10000000 124.017 

1498081 701.387  10000000 118.777 

8801745 600.154  9903315 99.563 

10514558 583.936  

7942.7 -0.327 

2195.565 621.955 

[75] 

1546.3 -0.075 

59978.19 699.402 

[114] 

 3531.859 552.316 

357890 599.526  6389.069 482.676 

510670.7 548.128  12921.11 340.995 

3370096 474.006  72981.29 204.117 

7832424 499.905  

6757 -0.255 

17454.01 600.408 

[126] 

11176812 459.343  70855.58 397.018 

1347 -0.066 

7260.476 736.911 

[114] 

 92807.07 348.267 

20624.85 700.547  204984.3 298.072 

547662.1 596.901  339759.9 246.512 
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4153627 502.49  450159.7 215.858 

10185304 448.49  2026437 187.864 

2075.1 -0.114 

16483.68 699.874 

[120] 

 

6724.1 -0.303 

1945.453 689.094 

[127] 

37615.43 651.327  4093.122 551.388 

85159.39 600.759  8479.274 412.572 

224160.9 550.19  41834.6 275.658 

188262.2 499.621  82727.52 206.092 

262703.6 400.506  414530.8 136.843 

10019852 348.925  

2303.8 -0.14 

19411.8 688.372 

[127] 

1614.5 -0.093 

20373.23 798.491 

[122] 

 40265.98 550 

33191.41 752.153  55571.99 481.395 

40093.77 701.818  110985.8 412.791 

60374.66 598.793  239111.7 344.186 

70115.17 600.398  1068579 309.302 

170662 500.619  10095207 275.581 

211078.7 451.076  

4292.7 -0.226 

3840.273 689.535 

[127] 

298450.1 431.47  10386.3 551.163 

211078.7 400.702  15759.08 481.395 

250991 400.738  26039.81 411.628 

303186.2 381.099  126730.4 275.581 

9913781 421.956  1000000 189.535 

10071100 392.837  926996.7 205.814 

10071100 375.521  

2558.9 -0.088 

349884.1 823.226 

[119] 

10071100 383.392  1029040 799.274 

2799.3 -0.103 

28205.14 900.348 

[122] 

 1626380 749.472 

413081.5 801.067  2601621 698.588 

570962.2 800.91  3452374 648.814 

1054746 698.899  3966542 674.738 

2074577 599.73  6120906 650.887 

4063658 552.479  6739313 624.926 

4100007 581.481  16442518 599.921 

7989598 550.462  22225661 598.793 

10047956 520.673  

1252.2 -0.129 

25822.41 398.599 

[124] 

9992131 540.809  43027.4 361.746 

1070.7 -0.061 

19981.99 549.723 

[123] 

 56235.84 318.103 

29690.86 549.74  103786 278.341 

35641.79 600.697  166476.3 259.914 

59623.96 550.625  184341 239.547 

93218.78 500.185  256909.7 219.181 
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88325.23 600.29  319334.4 239.547 

140031.2 549.676  362655.7 199.784 

149240.4 449.714  439334.3 209.483 

279704.4 500.114  9670222 159.052 

308453.8 449.745  9673019 179.418 

15656538 449.799  9925730 195.905 

17266213 400.481  9666627 132.866 

30726408 351.133  

966.41 -0.034 

27991.75 718.203 

[124] 

42088168 400.441  41008.61 719.153 

95932631 351.275  43347.41 678.392 

5.38E+08 301.534  60670.67 659.207 

9974776 451.114  93423.55 638.008 

78796.37 500.088  84866.81 598.414 

6.41E+08 300.8  177955.1 598.414 

2.16E+09 249.705  9963551 558.514 

2419.3 -0.194 

19002.79 399.569 

[124] 

 9998239 519.093 

23004.2 358.836  57251.53 678.879 

38823.33 320.043  83949.4 638.147 

64687.93 280.28  9853016 578.017 

107783.8 240.517  9981099 587.716 

154100.8 219.181  

1305.4 -0.063 

318817.5 599.43 

[120] 

538773.2 180.388  874561.5 524.249 

1020338 159.052  2274205 550.357 

1267739 150.323  7062754 474.946 

2033889 145.474  20058431 449.725 

10042721 121.228  7237754 499.621 

 

 

 


