
Structural Decomposition Methods for Sparse Large-Scale Optimization

by

Navid Matin Moghaddam

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2020 by the
Graduate Supervisory Committee:

Jorge A. Sefair, Chair
Pitu Mirchandani

Adolfo R. Escobedo
Anthony Grubesic

ARIZONA STATE UNIVERSITY

August 2020

ABSTRACT

This dissertation focuses on three large-scale optimization problems and devis-

ing algorithms to solve them. In addition to the societal impact of each problem’s

solution, this dissertation contributes to the optimization literature a set of decom-

position algorithms for problems whose optimal solution is sparse. These algorithms

exploit problem-specific properties and use tailored strategies based on iterative re-

finement (outer-approximations). The proposed algorithms are not rooted in duality

theory, providing an alternative to existing methods based on linear programming

relaxations. However, it is possible to embed existing decomposition methods into

the proposed framework. These general decomposition principles extend to other

combinatorial optimization problems.

The first problem is a route assignment and scheduling problem in which a set

of vehicles need to traverse a directed network while maintaining a minimum inter-

vehicle distance at any time. This problem is inspired by applications in hazmat

logistics and the coordination of autonomous agents. The proposed approach includes

realistic features such as continuous-time vehicle scheduling, heterogeneous speeds,

minimum and maximum waiting times at any node, among others.

The second problem is a fixed-charge network design, which aims to find a minimum-

cost plan to transport a target amount of a commodity between known origins and

destinations. In addition to the typical flow decisions, the model chooses the capacity

of each arc and selects sources and sinks. The proposed algorithms admit any nonde-

creasing piecewise linear cost structure. This model is applied to the Carbon Capture

and Storage (CCS) problem, which is to design a minimum-cost pipeline network

to transport CO2 between industrial sources and geologic reservoirs for long-term

storage.

The third problem extends the proposed decomposition framework to a special

i

case of joint chance constraint programming with independent random variables.

This model is applied to the probabilistic transportation problem, where demands

are assumed stochastic and independent. Using an empirical probability distribution,

this problem is formulated as an integer program with the goal of finding a minimum-

cost distribution plan that satisfies all the demands with a minimum given probability.

The proposed scalable algorithm is based on a concave envelop approximation of the

empirical probability function, which is iteratively refined as needed.

ii

DEDICATION

To my parents for their endless support.

iii

ACKNOWLEDGMENTS

My sincere thanks go first to my committee chair, Dr. Jorge Sefair, for providing

precious guidance and teaching me methodology to conduct this research. He passed

on an atmosphere of adventure in regard to research and scientific discovery. His mo-

tivation, enthusiasm and support encouraged me to carry out this work. In addition,

I am extremely thankful for the suggestions and guidance provided by my committee

members.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

2 ROUTE ASSIGNMENT AND SCHEDULING WITH TRAJECTORY

COORDINATION . 4

2.1 Introduction and Literature Review . 4

2.2 Vehicle Coordination Modeling . 11

2.2.1 Distance Between Network Elements . 12

2.2.2 Arc-node Distance . 12

2.2.3 Arc-arc Distance . 12

2.2.4 Geographic Conflict Modeling . 13

2.2.5 Arc-arc Conflict. 13

2.2.6 Arc-node Conflict . 17

2.3 Mathematical Programming Formulation . 18

2.4 Network Decomposition Approach for RASTC . 23

2.4.1 Notation and Additional Definitions . 23

2.4.2 Decomposition Algorithm . 28

2.4.3 Upper Bound . 30

2.4.4 Lower Bound . 31

2.5 Computational Results . 32

2.5.1 Berlin’s Road Network Instances . 32

2.5.2 Illustrative Example. 33

2.5.3 Random Instance Generation . 34

v

CHAPTER Page

2.5.4 Results . 36

2.5.5 Random Network Instances . 37

2.5.6 Random Instance Generation . 37

2.5.7 Results . 40

2.6 Concluding Remarks . 42

3 FIXED-CHARGE NETWORK DESIGN WITH PIECEWISE LINEAR

COST FUNCTION . 44

3.1 Introduction and Literature Review . 44

3.2 Mathematical Programming Formulation . 47

3.2.1 Constant Slope Cost Function . 48

3.2.2 Multiple Choice Formulation . 50

3.2.3 Logarithmic Formulation . 52

3.3 Cost Function Underestimation . 58

3.4 Generalized Formulation . 60

3.4.1 Multiple Choice Formulation . 60

3.4.2 Logarithmic Formulation . 62

3.5 Progressive Cost Approximation . 63

3.5.1 Lower Bound Problem. 63

3.5.2 Upper Bound Problem . 64

3.5.3 Solution Algorithm. 65

3.6 Computational Results . 68

3.6.1 Illustrative Example. 69

3.6.2 Random Network Instances . 69

3.6.3 Random Instance Generation . 70

vi

CHAPTER Page

3.6.4 Results . 73

3.7 Concluding Remarks . 78

4 PROBABILISTIC TRANSPORTATION PROBLEM WITH INDEPEN-

DENT STOCHASTIC DEMANDS . 79

4.1 Introduction and Literature Review . 79

4.2 Cumulative Distribution Function Estimation . 81

4.3 Mathematical Programming Formulation . 83

4.4 Overestimation to the Logarithm of Empirical CDF 85

4.5 Generalized Formulation . 86

4.6 Iterative Refinement Algorithm . 89

4.6.1 Lower Bound Problem. 89

4.6.2 Upper Bound Problem . 90

4.6.3 Solution Algorithm. 91

4.7 Computational Results . 94

4.7.1 Random Instance Generation . 95

4.7.2 Results . 96

4.8 Concluding Remarks . 98

REFERENCES . 100

APPENDIX

A PROBLEM COMPLEXITY . 109

B PROOFS . 114

vii

LIST OF TABLES

Table Page

2.1 Computational Performance of the Proposed Decomposition Approach

on Berlin’s Road Network Instances (T = 1, K = 2) 38

2.2 Computational Performance of the Proposed Decomposition Approach

Versus MIP on Random Layered Network Instances (T = 1, K = 2) . . . 41

3.1 Computational Performance of the Proposed Approaches on 5×10 and

10× 5 Networks . 75

3.2 Computational Performance of the Proposed Approaches on 5×15 and

10× 10 Networks . 76

3.3 Computational Performance of the Proposed Approaches on 10 × 15

Networks . 77

4.1 Computational Performance of the Proposed Approaches on Random

TIRD Problem Instances . 98

viii

LIST OF FIGURES

Figure Page

2.1 Arc-arc Conflict Analysis . 16

2.2 Special Cases in the Arc-arc Conflict Analysis . 17

2.3 Arc-node Conflict Analysis . 19

2.4 Network Structures Used to Solve RASTC . 25

2.5 Construction of Ga . 26

2.6 Origin-Destination Pairs and Waiting at Origin Nodes 33

2.7 Waiting at Intermediate Nodes and Heterogeneous Vehicle Speeds 35

2.8 Random Layered Networks of Different Sizes . 39

3.1 Example Nondecreasing Cost Functions. 51

3.2 Convex Underestimations to the Cost Function. 59

3.3 Line Segments and Convex Underestimators in the Cost Function 61

3.4 Updated Underestimations of Cost Functions . 68

3.5 Effect of Target Flow on the Solution in Alberta Pipeline Network 70

3.6 Random Networks with Different Layer Size and Number of Layers . . . 72

3.7 Effect of Target Flow on the Solution in Random Layered Networks . . . 73

4.1 Logarithm of the CDF (ln(Fb̃(y))) and Sample-based Approximation

(ln(F̂b̃(y))) of a Beta Distribution with a = 5 and b = 1 82

4.2 Example of ln F̂d̄j(d̂jk) . 84

4.3 Concave Overestimations to the Logarithm of Empirical CDF Function 86

4.4 Improved Overestimations of Piecewise Linear Functions 94

4.5 CDF of Beta Distribution with Various Shape Parameters 96

A.1 RASTC Network Construction for the SAT Instance (x)∧ (x̄∨ y∨ z)∧

(ȳ ∨ z̄) . 111

ix

Chapter 1

INTRODUCTION

Mathematical programming has been widely used to model societal problems in

transportation, logistics, health-care, and other areas. Despite their ample applica-

bility, some problems are still very difficult to solve for realistic instance sizes. In this

dissertation we consider different large-scale optimization problems and investigate

several approaches to solve each of them. We develop models and algorithms for

efficient solving these large-scale optimization problems. The first two problems have

a subjacent network structure. The third problem is about developing decomposition

methods to solve a problem that involves uncertainty.

The second chapter, describes a route assignment and scheduling problem in which

vehicles need to maintain a minimum distance between them at any time. This prob-

lem, which we refer to as RASTC (Route Assignment and Scheduling with Trajectory

Coordination), is inspired by modern applications in transportation and logistics, and

particularly by the emerging challenge of coordinating driverless vehicles. Formally, a

set V of vehicles needs to travel between known origins and destinations in a directed

network G = (N,A). Due to safety reasons (e.g. to avoid collisions or to reduce

the vulnerability to adversary attacks), the distance between any two vehicles cannot

be less than d units at any time. To avoid such geographic conflict, RASTC seeks a

route and a schedule for each vehicle, specifying the departure time from each node

along a route that also minimizes a function of the vehicles’ travel times. In addition,

RASTC includes other realistic features such as heterogeneous vehicles in terms of

speed and minimum and maximum waiting times at any node.

In Chapter 3, we study a fixed-charge pipeline network design problem with appli-

1

cation to carbon capture and storage (CCS). The CCS problem is to design a network

able to transport a target amount of CO2 -denoted by τ - from sources to reservoirs.

The network consists of a set of source nodes (S), a set of reservoir nodes (R), and

arcs representing pipes (A). Sources and reservoirs are subject to maximum capture

and storage capacities, denoted by qsi and qrj for source i and reservoir j, respectively.

Similarly, f si and vsi denote the fixed cost (i.e., land purchase, construction, and tech-

nology installation) and variable operational cost (i.e., pumping and maintenance)

for source i, whereas parameters f rj and vrj represent the fixed and variable costs for

reservoir j, respectively. The minimum and maximum capacity of arc (i, j) ∈ A —-

denoted by lijd and uijd—- depend on the chosen pipe diameter d ∈ D, where D is the

set of commercially available diameters. Using a pipe incurs a variable operational

cost (vijd) per ton of CO2 transported, and a fixed-charge construction cost (fijd).

This problem is challenging because it requires new methods to preserve scalability

of the solution approach.

In Chapter 4, we extend the discussions from previous chapters to tackle a special

case of chance constraint programming which involves independent random variables.

We focus on solving probabilistic transportation problem with independent random

demands. In order to model this problem, we first study different methods to esti-

mate empirical probability distribution of random variables. Based on the probability

distribution estimation, we formulate the problem as a chance constraint program in

which the goal is to find a minimum cost solution that satisfies the risk constraint. To

overcome the challenge of solving the mathematical model, we propose an alternative

method to efficiently approximate the empirical probability function. Our method

relies on a variant of the decomposition method developed in Chapter 2 and 3.

In addition to the societal impact of the studied problems, this dissertation con-

tributed to the optimization literature a set of efficient decomposition algorithms for

2

solving structured problems whose optimal solution is sparse. To devise such algo-

rithms, we investigate structure-based problem decomposition strategies that have a

core iterative refinement nature. In these strategies, we sequentially solve two type of

subproblems, each of smaller size compared to the original problem. The first type of

problems are the restricted problems which are same as solving the original problem

but on a smaller instance. Solving these problems provide feasible solutions for the

original problem hence a bound to the optimal value of the complete problem. The

second type of problems are relaxations of the original problem which are iteratively

refined to get closer to the feasible region of the complete problem. Solving these

problems provide bounds for the complete problem and also provides baseline for cre-

ating a problem of the first type in the next iteration. Since this iterative refinement

idea is structure dependant, we provide problem specific methods and formulations

for each of the studied optimization problems.

3

Chapter 2

ROUTE ASSIGNMENT AND SCHEDULING WITH TRAJECTORY

COORDINATION

This chapter is organized as follows. In Section 2.1 we provide a literature review

for this problem. In Section 2.2, we study the geographic conflict and derive disjunc-

tive linear constraints on the vehicles’ departure times to represent the geographic

conflict. In Section 2.3, we embed the developments from Section 2.2 into an MIP to

solve RASTC. Although exact, the MIP’s number of variables and constraints makes

it computationally challenging for solving moderate- and large-scale instances. To

overcome this problem, in Section 2.4 we devise an exact solution approach based

on a network decomposition. In Section 2.5, we demonstrate the performance of our

approach and explore its limits by solving real instances out of Berlin’s road network.

Section 2.6 presents our final remarks.

2.1 Introduction and Literature Review

In this chapter we study a route assignment and scheduling problem in which

vehicles need to keep a minimum distance from each other at any time. This prob-

lem, which we refer to as RASTC (Route Assignment and Scheduling with Trajectory

Coordination) is inspired by modern applications in transportation and logistics, and

particularly by the emerging challenge of coordinating driverless vehicles. In RASTC,

a set of vehicles travel between known origins and destinations in a directed network.

Due to safety reasons (e.g. to avoid collisions or to reduce the vulnerability to adver-

sary attacks), the euclidean distance between any two vehicles cannot be less than

a given parameter at any time. To avoid such geographic conflict, RASTC seeks a

4

route and a schedule for each vehicle, specifying the departure time from each node

along the route that also minimizes a function of the vehicles’ travel times. RASTC

includes other realistic features such as heterogeneous vehicles in terms of speed and

minimum and maximum waiting times at any node.

Route assignment and scheduling problems are common in transportation and

logistics applications. Related problems such as vehicle routing with time windows

(Bräysy and Gendreau, 2005a,b), time dependent vehicle routing (Malandraki and

Daskin, 1992), and dial-a-ride (Cordeau and Laporte, 2007), are close to RASTC as

they decide on the vehicles’ departure times and seek for optimal routes and schedules.

However, they focus on time-dependent demands or dynamic travel times rather than

enforcing a minimum distance between vehicles (see, e.g., Pillac et al. (2013) and Dixit

et al. (2019) for comprehensive reviews on dynamic routing problems). Multiple

decentralized routing models have focused on obstacle and collision avoidance. In

a single-vehicle application, Hu et al. (2018) propose a model that selects the best

path from a set of candidates to avoid static and moving obstacles while choosing the

vehicle’s speed and acceleration. For multiple vehicles, Jin et al. (2012), Kamal et al.

(2015), and Zhu and Ukkusuri (2015) propose models and algorithms for intersection

control that determine routes and departure schedules to minimize the total travel

time of all vehicles across the intersection. Rios-Torres and Malikopoulos (2017)

present a comprehensive survey on vehicle coordination approaches for intersections

and highway on-ramps. Under the assumption of discrete time, Yu and LaValle (2012)

and Ferrati and Pallottino (2013) use time-expanded networks for centralized vehicle

coordination in order to construct collision free trajectories. Yamashita et al. (2005)

propose coordination policies to dynamically adjust vehicle routes while en route,

aiming to reduce congestion in connected environments where vehicles share location

and destination data.

5

Collision avoidance is relevant in other applications beyond road traffic. In flexible

manufacturing systems, automated guided vehicles (AGVs) are used for material han-

dling and need to be safely routed across the production facility. In this area, Nishi

et al. (2011) propose a decomposition algorithm to optimally route and schedule AGVs

in discrete time that synchronizes vehicles and production schedules. The manufac-

turing layout is modeled as a network, thus route conflicts prevent two or more AGVs

from using a node or edge at the same time. This definition of conflict is also used

by Krishnamurthy et al. (1993) to optimize AGV routes for known demands and by

Adamo et al. (2018) to optimize the speed of AGVs for pickup and delivery opera-

tions with time windows. Corréa et al. (2004) combine constraint programming and

mixed-integer programming over a space-time network for dispatching and conflict-

free routing of AGVs. Fazlollahtabar and Saidi-Mehrabad (2015) present a survey on

existing methodologies for AGV scheduling and routing. Collision avoidance is also

relevant in air traffic control of airplanes or unmanned aerial vehicles (UAVs). Using

a heuristic approach, Phung et al. (2017) solve a path planning problem for a single

UAV in the context of infrastructure inspection with static obstacles. In a real-time

setting, Frazzoli et al. (2001) propose a protocol for airplane conflict resolution in

which a centralized traffic controller adjusts aircraft trajectories to minimize the de-

viation from ideal routes sent by each pilot. Richards and How (2002) investigate the

problem of finding optimal trajectories for multiple aircrafts to avoid collisions. The

proposed discrete-time problem includes aircraft turning rates and speed decisions

as well as collision avoidance constraints, which are embedded into a mixed-integer

program. Otto et al. (2018) provide a survey on optimization approaches for UAV

routing. Trajectory coordination is also relevant in the area of multi-robot path plan-

ning (Hoy et al., 2015). Given known origins, destinations, and fixed paths for a set

of robots, Abichandani et al. (2013) propose a nonlinear optimization problem to de-

6

termine velocity profiles under collision, kinematics, and communication constraints.

Ferrera et al. (2013, 2014) provide decentralized approaches for collision avoidance

via robot coordination.

Routing and scheduling with a minimum distance requirement is also in the trans-

portation of hazardous materials, where spills or explosions are uncommon but have

serious consequences to the environment and humans (Erkut and Verter, 1998). A

common approach to mitigate the impact of hazmat accidents is to design routes that

satisfy safety, equity, and operational criteria (List et al., 1991; Current and Ratick,

1995). Gopalan et al. (1990b) and Gopalan et al. (1990a) design vehicle routes un-

der equity considerations that balance the population exposure to hazmat shipments

along the path, as it is undesirable to expose the same population to the risk of

multiple hazmat shipments at the same time. Toumazis and Kwon (2016) extend

the conditional value at risk (CVaR) ideas to develop a risk metric for the design

of robust routes that minimize the worst-case consequences of a potential accident.

Esfandeh et al. (2018) study a network design problem that includes time-dependent

road closures that indirectly influence the routes chosen by hazmat vehicles, which

helps reducing the population exposure to the risky shipments in space and time. In

a closely related study to RASTC, Carotenuto et al. (2007) argue that if two haz-

mat vehicles travel too close to each other and one is involved in an accident, there

is a high probability that the other will also be affected. As a result, they enforce

a minimum distance between vehicles with a two-stage heuristic approach that first

identifies a candidate set of low-risk routes and then determines vehicle departure

times while considering that vehicles cannot wait at intermediate nodes. To mitigate

the additional risk posed by vehicles traveling too close to each other, each route is

discretized and no two vehicles are allowed inside the safety (circular) area around any

of the discrete points at the same time. In case of accident or malicious attack affect-

7

ing a vehicle, this separation gives nearby vehicles enough time to react, limiting the

negative consequences on the population. In the military context, the convoy move-

ment problem seeks conflict-free trajectories to move military assets from sources to

destinations, while satisfying spatiotemporal constraints. In this area, Thomas et al.

(2015) propose an algorithm to route convoys across a network, assuming that con-

voys move as a whole and occupy an edge for some time given their length. For

security reasons, a minimum inter-convoy distance is maintained for convoys travel-

ing in the same direction. For the same problem, Chardaire et al. (2005) propose a

discrete-time integer programming formulation that selects the best route out of a

candidate set and a starting time for each convoy, assuming that once a convoy starts

traversing the network it continuously moves until reaching its destination. Using an

integer programming approach, Kumar and Narendran (2008) determine each con-

voy’s route and departure time while enforcing a minimum inter-convoy headway on

shared network components.

The concept of geographic conflict also arises in other static problems that focus

on finding disjoint paths but ignore the flow scheduling aspect. A classic problem in

this area is the design of survivable networks, which aims to find a minimum cost net-

work such that each pair (or subset) of nodes is connected by a given number of arc-

or node-disjoint paths (Suurballe, 1974; Kerivin and Mahjoub, 2005; Omran et al.,

2013; Diarrassouba et al., 2018; Grötschel et al., 1995). Margolis et al. (2018) use

this concept to design a resilient supply network by selecting multiple node-disjoint

distribution channels, which mitigates the risk of unsatisfied demand due to disrup-

tions at intermediate stages. Other variants in communication problems aim to find

disjoint paths that guarantee some degree of information transmission. They include

finding arc-disjoint paths in the presence of resilient arcs (i.e., not subject to failure)

(Żotkiewicz et al., 2010) and bifurcated routing problems between an origin and a

8

destination with node and arc use costs (De Jongh et al., 1999). Other approaches

focus on the design of disjoint paths under spatial failures. These failures are modeled

as disks of known diameter that can be located anywhere in the continuous space. It

is assumed that components overlapping with a disk completely fail (or are destroyed)

(Neumayer et al., 2009, 2015) or lose some functionality (Sullivan and Smith, 2014).

Extending the max-flow min-cut theorem, Neumayer et al. (2009, 2015); Kobayashi

and Otsuki (2014), and Otsuki et al. (2016) study the problems of finding the max-

imum number of geographically disjoint paths between two nodes and the minimum

number of disk failures to disconnect two nodes. In these problems, two paths are

geographically disjoint if the minimum distance between them is at least a given value

(except in areas close to the origin and destination). Although close to RASTC, these

static approaches ignore the vehicle route assignment and scheduling aspects, and can

only be used when all vehicles travel between the same origin and destination. We

refer to these approaches as static as they enforce a minimum distance between paths

rather than vehicles.

Applications of RASTC include air and maritime routing, where vehicles need

to maintain a steady cruising speed as well as a safety distance to avoid collision.

Additional related problems arise in the transportation of hazardous materials, where

vehicles cannot be too close to each other given the risk posed to the population in

case of accident or malicious attack. Moreover, RASTC is related to the convoy

movement problem in the absence of congestion when the convoy can split at any

point and vehicles can travel at the speed limit (or any other constant speed) along

different routes. In this case, enforcing a minimum separation distance decreases the

risk of losing multiple vehicles at once given an airstrike or a roadside bomb. RASTC

is also related to AGV routing when the interest is to find routes and schedules

for known demands and when operations require each AGV to travel between two

9

locations only.

We focus on problems with a moderate number of vehicles and assume that cycles

are undesirable, as they may unnecessarily expose population to dangerous materials,

require additional fuel consumption, and may not be even possible given the network

used. We allow heterogeneous vehicles with different speeds, which remain constant

once in motion. Each vehicle has a designated speed for each arc, which is not

necessarily the same for all arcs. This is plausible for air and maritime routing

applications, where vehicles travel at cruising speeds. For more ambitious related

problems such as routing of autonomous vehicles, the solution from RASTC provides

a benchmark to compare the performance of other models or solution approaches. For

instance, the solution quality of a heuristic that allows variable speeds must be no

worse than that provided by RASTC. Moreover, RASTC provides a benchmark for

any decentralized coordination mechanism, as it assumes a centralized (and optimal)

coordination between the vehicles. Although RASTC is not specifically designed

to handle variable speeds while in motion, these can be approximated using our

approach. Because the goal is to avoid the geographic conflict while still moving

towards the destination, it is possible to add extra nodes along an arc where vehicles

can wait. In this way, the combination of motion (at constant speed) and waiting can

approximate a deceleration profile.

RASTC has received very little attention in the literature. There are no exact

models or algorithms available to tackle emerging RASTC problems in continuous

time. The following are our main contributions: (1) We introduce an NP-hard routing

and scheduling problem that is relevant for current and emerging related applications

and that encompasses several realistic features; (2) We develop an alternative linear

formulation to the geographic conflict that avoids the euclidean norm when calcu-

lating the distance between vehicles and propose a polynomial-time pre-processing

10

approach to characterize the conflict; (3) We embed such conflict constraints into

a mixed-integer programming (MIP) formulation, which we solve using a tailored

decomposition technique.

This chapter is organized as follows. In Section 2.2, we study the geographic

conflict and derive disjunctive linear constraints on the vehicles’ departure times to

represent the geographic conflict. In Section 2.3, we embed the developments from

Section 2.2 into an MIP to solve RASTC. Although exact, the MIP’s number of

variables and constraints makes it computationally challenging for solving moderate-

and large-scale instances. To overcome this problem, in Section 2.4 we devise an exact

solution approach based on a network decomposition. In Section 2.5, we demonstrate

the performance of our approach and explore its limits by solving real instances out

of Berlin’s road network, as well as other randomly generated instances. Section

2.6 presents our final remarks. Appendices A and B contain all the proofs of our

propositions.

2.2 Vehicle Coordination Modeling

We enforce the coordination among a set of vehicles, V , by imposing constraints

on their departure times from the nodes they traverse in a directed network, G =

(N,A). In Section 2.2.1, we characterize the distance between network elements, and

in Section 2.2.4 we describe the conditions that vehicles’ departure times must satisfy

to avoid geographic conflict. We define δ̌((i, j), k) and δ̂((i, j), (k, l)) as functions

returning the shortest euclidean distance between arc (i, j) and node k, and between

arcs (i, j) and (k, l), respectively. We assume that arcs are straight lines. Non-straight

trajectories (e.g., along a winding road) can be approximated by adding intermediate

nodes connected by straight arcs.

11

2.2.1 Distance Between Network Elements

2.2.2 Arc-node Distance

The arc-node distance is the minimum euclidean distance between arc (i, j) and

node k, which we denote by δ̌((i, j), k). To calculate δ̌((i, j), k), we use the coordinates

of node i, xi, and the unit vector in the direction of arc (i, j), u. We then obtain the

orthogonal projection of xk on the line xi + αu, which is given by xi + α∗u, where

α∗ =α∈R ‖xi + αu− xk‖. The value of α∗ is unique and can be calculated in closed

form given the convexity of the euclidean norm function. Using this projection, we

have that

δ̌((i, j), k) =


‖xi − xk‖ If α∗ ≤ 0

‖xj − xk‖ If α∗ ≥ ‖xj − xi‖

‖xi + α∗u− xk‖ If 0 < α∗ < ‖xj − xi‖.

2.2.3 Arc-arc Distance

We define the arc-arc distance as the minimum euclidean distance between arcs

(i, j) and (k, l), which we denote by δ̂((i, j), (k, l)). We also define uij and ukl as

the unit vectors in the direction of arcs (i, j) and (k, l), respectively. Following

the same intuition as in the arc-node distance, we find two points along the lines

xi + αijuij and xk + αklukl whose distance is minimum by finding α∗ =(αij ,αkl)∈R2

‖xi + αijuij − xk − αklukl‖. Using α∗ = (α∗ij, α
∗
kl), we have that

δ̂((i, j), (k, l)) =


∥∥xi + α∗ijuij − xk − α∗klukl

∥∥ , If 0 ≤ α∗ij ≤ ‖xj − xi‖ and 0 ≤ α∗kl ≤ ‖xl − xk‖

min{δ̌((i, j), k), δ̌((i, j), l), δ̌((k, l), i), δ̌((k, l), j)}, Otherwise.

12

Although in this case vector α∗ may not be unique (e.g., when arcs are parallel),

an optimal solution α∗ can still be obtained in closed form given convexity of the

euclidean norm function.

2.2.4 Geographic Conflict Modeling

This section describes our approach to prevent geographic conflict by requiring

vehicles to maintain a distance of at least d units at any time. We introduce two

types of conflicts: arc-arc, used to avoid conflict when vehicles are moving, and arc-

node, used when one of the vehicles is waiting at a node and the other is moving.

To impose such conflict constraints only on relevant network components, we define

Ω = {((i, j), (k, l)) ⊂ A × A : δ̂((i, j), (k, l)) < d} and Ψ = {((i, j), k) ⊂ A ×

N : δ̌((i, j), k) < d}. Because arc-arc conflict is symmetric, we add ((i, j), (k, l))

or ((k, l), (i, j)) to Ω, but not both. We assume that there is no arc-node conflict

involving any vehicle’s origin or destination nodes.

2.2.5 Arc-arc Conflict

Suppose that while traversing the network, vehicles g and h use arcs (i, j)

and (k, l), respectively, with corresponding velocity vectors vgij and vhkl, where

((i, j), (k, l)) ∈ Ω. Under these conditions, the distance between g and h at time

t is given by
∥∥xi + vgijt− (xk + vhkl(t− δ))

∥∥, where δ represents the difference in the

departure time of h with respect to the departure time of g, which is the reference

time. For instance, δ < 0 indicates that h departs δ units of time before g, whereas

δ > 0 indicates that h departs δ units of time after g. If δ = 0, then g and h start

moving at the same time. We assume that each vehicle’s speed is constant while

traversing an arc, thus g spends cgij =
‖xj−xi‖
‖vgij‖

time moving from i to j, and h spends

chkl = ‖xl−xk‖
‖vhkl‖

time moving from k to l. This means that any value of δ and t satisfying

13

the following two conditions leads to a geographic conflict between g and h while they

are in motion along arcs (i, j) and (k, l), respectively.

∥∥xi + vgijt− (xk + vhkl(t− δ))
∥∥<d (2.1)

t ∈ [max{0, δ},min{cgij, chkl + δ}] (2.2)

Condition (2.1) reflects the occurrence of geographic conflict, while (2.2) narrows the

time window for conflict analysis down to values of t when vehicles are moving. The

term max{0, δ} captures the earliest time at which both vehicles are in motion and

the term min{cgij, chkl + δ} captures the time at which the first vehicle arrives at its

destination. The following proposition establishes an important property of all the

values (δ, t) satisfying (2.1) and (2.2), which we later use to derive some constraints

for our mathematical program.

Proposition 1 If the differences in departure times δ1 and δ2, where δ1 ≤ δ2, lead to

a geographic conflict, then any δ ∈ [δ1, δ2] also leads to a conflict.

Proposition 1 proves the convexity of the set of values (δ, t) satisfying

(2.1) and (2.2), and suggests that the geographic conflict interval can be

fully characterized by the minimum and maximum possible difference in the

departure times. Based on this observation, we define ˆ̀gh
ijkl = min{δ |

(δ, t) satisfies
∥∥xi + vgijt− (xk + vhkl(t− δ))

∥∥ ≤ d and (2.2)} and ûghijkl = max{δ |

(δ, t) satisfies
∥∥xi + vgijt− (xk + vhkl(t− δ))

∥∥ ≤ d and (2.2)}, thus conflict arises if the

difference between the departure times falls in the interval (ˆ̀gh
ijkl, û

gh
ijkl). That is, if we

let τ gi and τhk be the departure times of vehicles g and h from nodes i and k along

arcs (i, j) and (k, l), respectively, such that ((i, j), (k, l)) ∈ Ω, then the disjunction

(τhk − τ gi ≤ ˆ̀gh
ijkl) ∨ (τhk − τ gi ≥ ûghijkl) avoids any conflict when the vehicles are in

14

motion along these arcs. The optimization problems producing ˆ̀- and û-parameters

are convex due to Proposition 1 and that Slater’s constraint qualification holds given

that ((i, j), (k, l)) ∈ Ω. Hence, we can obtain the unique optimal values for ˆ̀ and û-

parameters in closed-form by solving the corresponding system of first-order Karush-

Kuhn-Tucker optimality conditions.

To illustrate the operation of our arc-arc conflict conditions, consider the situation

depicted in Figure 2.1a, where vehicle g travels between nodes i and j using arc (i, j),

and vehicle h travels from k to l using arc (k, l). The xy-coordinates of nodes i, j, k,

and l are (0, 0), (2, 2), (3, 3), and (2, 1), respectively. In this case, we assume d = 1

for which ((i, j), (k, l)) clearly belongs to Ω. Assuming speeds equal to one, we obtain

ˆ̀gh
ijkl = −0.82, which means that h must depart k at least 0.82 units of time before g

to avoid conflict. Figure 2.1b illustrates the situation when τhk − τ
g
i = −0.82. At the

departure time of g (which we denote by t = 0 for convenience), vehicle h is almost

halfway of its trip to l. At t = 1.41, g is halfway to j and h arrives at l, where the

distance between vehicles is exactly d. In this case, there is no conflict between g and

h, as the distance between them is no less than d at any time while in motion. Note

that any departure times such that τhk −τ
g
i < −0.82 also prevent conflict. The arc-arc

conflict analysis also produces ûghijkl = 2.38, meaning that h must depart k at least

2.38 units of time after g to avoid conflict. Figure 2.1c illustrates the situation when

τhk − τ
g
i = 2.38. At time t = 0, g departs node i while h waits at k until time t = 2.38.

At t = 2.82, g arrives at j and h is at coordinate (2.8, 2.6), whose distance to j is

exactly d. As in the previous case, this situation leads to no conflict as the vehicles

are never at a distance of less than d while in motion. Indeed, any configuration of

departure times such that τhk − τ
g
i 6∈ (−0.82, 2.38) will prevent geographic conflict.

Our arc-arc conflict conditions are general to any network topology as long as

the participant arcs belong to Ω. Figure 2.2 depicts three special cases of arc-arc

15

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

k

i

j

l

g

h

(a)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

k

i

j

d=1
g lh

t=0
g

t=0h

t=1.41
t=1.41

(b) τhk − τ
g
i = −0.82

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

k

i

j

d=1

g

l

t=0
g

t=0

h

t=2.82

h

t=2.82

t=2.38 g

t=2.38

(c) τhk − τ
g
i = 2.38

Figure 2.1: Arc-arc Conflict Analysis

conflicts, in which we assume for simplicity d = 1 and unit speeds. In the first case,

two vehicles using the same arc (i.e., (i, j) = (k, l)) synchronize their departure times

to avoid conflict while in motion. In Figure 2.2a, our conflict analysis requires the

vehicles to leave node i with a time difference of at least 1 unit, i.e., τhi −τ
g
i 6∈ (−1, 1).

Figure 2.2a illustrates that the minimum distance d is preserved when τhi − τ
g
i = −1.

In Figure 2.2b, vehicles transit two arcs that intersect (e.g., a road intersection with

no right or left turns), requiring the vehicles to leave the departure nodes with a

time difference τhk − τ
g
i 6∈ (−1.04, 1.55) to avoid conflict. Figure 2.2b illustrates the

case where τhk − τ gi = −1.04. At time t = 0, g departs i while h is almost at the

intersection, and at time t = 1.05 vehicles are at their minimum distance (d). Figure

2.2c illustrates the case where j = k, meaning that g travels towards the location of

h such that the departure times from i and j must satisfy τhj − τ
g
i 6∈ (0.59, 2). Figure

2.2c illustrates the case where τhj − τ
g
i = 0.59, in which g departs i at t = 0 and h

waits at node j until t = 0.59, achieving a minimum distance of d between vehicles

at time t = 1.30.

Figures 2.1 and 2.2 illustrate how to prevent the geographic conflict while vehicles

are moving. However, these constraints allow the distance between vehicles to be less

16

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

i

j

d=1

h

g

t=0

t=0

g

h

d=1

t=2

t=2

(a) τhi − τ
g
i = −1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

i

j

k

l

d=1
g

h
t=1.05 t=1.05

t=0g

t=0

h g t=2

h

t=2

(b) τhk − τ
g
i = −1.04

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

i

j lh

t=0

t=0

g

g t=0.59

t=0.59

t=1.30

t=1.30

d=1
g

h

(c) τhj − τ
g
i = 0.59

Figure 2.2: Special Cases in the Arc-arc Conflict Analysis

than d when one of them is waiting at a node. For instance, the distance between g

and h will be less than d if h waits at l after t = 1.41 in Figure 2.1b or when g waits

at j after t = 2.82 in Figure 2.1c. This situation may not be desirable in some related

problems (e.g., military convoy planning), requiring additional arc-node constraints

to prevent such conflict.

2.2.6 Arc-node Conflict

Suppose that vehicle g uses arc (i, j) and vehicle h visits (and possibly waits at)

node l such that ((i, j), l) ∈ Ψ. In this case, the distance between the two vehicles at

time t is given by
∥∥xi + tvgij − xl

∥∥, where we assume that the departure time of g is

the reference time. Proposition 2 establishes an analogous result to Proposition 1 for

the arc-node conflict. The proof of Proposition 2 is similar to that of Proposition 1.

Proposition 2 If the differences in departure times t1 and t2, where t1 ≤ t2, lead to

a geographic conflict, then any t ∈ [t1, t2] also leads to a conflict.

Because ((i, j), l) ∈ Ψ, we know that geographic conflict exists at some time t such

that 0 ≤ t ≤ cgij. Using Proposition 2, we can calculate a conflict interval (ˇ̀gh
ijl, ǔ

gh
ijl)

17

for the vehicles’ departure times difference by performing the following two steps.

• Step 1: Solve
∥∥xi + tvgij − xl

∥∥ = d for t and obtain the roots t1 and t2, where

t1 ≤ t2.

• Step 2: Return ˇ̀gh
ijl = max{0, t1} and ǔghijl = min{cgij, t2}.

The roots in Step 1 always exist and are real because ((i, j), l) ∈ Ψ and there are no

constraints on t. Using this two-step procedure, we establish that no conflict arises if

h leaves node l at most ˇ̀gh
ijl units of time after g departs i, or if h arrives at l at least

ǔghijl units of time after g departs i. If we let τ gi be the departure time of vehicle g from

node i along arc (i, j), τhl be the departure time of vehicle h from node l, and τhk be

the departure time of vehicle h from node k along arc (k, l), such that ((i, j), l) ∈ Ψ,

then the disjunction (τhl − τ
g
i ≤ ˇ̀gh

ijl) ∨ (τhk + chkl − τ
g
i ≥ ǔghijl) avoids any conflict while

vehicle g is moving and vehicle h is waiting after arriving into node l using arc (k, l).

Figure 2.3 illustrates the arc-node conflict conditions when g is traveling from i

to j, h is waiting at l, d = 1, and unit speeds. Clearly, ((i, j), l) ∈ Ψ, indicating that

g and h will have conflicting locations at some time t ∈ [0, ‖xj − xi‖]. We obtain

that ˇ̀gh
ijl = 1.41 and ǔghijl = 2.83. Figure 2.3a illustrates the situation when ˇ̀gh

ijl = 1.41,

which forces h to leave l (to any other node) no later than t = 1.41 to avoid conflict.

Figure 2.3b describes the situation when ǔghijl = 2.83, which implies that h must arrive

at l (from k or any other node) not earlier than t = 2.83.

2.3 Mathematical Programming Formulation

We propose an MIP formulation for RASTC that uses a directed network G =

(N,A), where N is the set of nodes and A is the set of arcs. A set of vehicles V travels

between known origin and destination nodes denoted by sg and pg, respectively, for

each vehicle g ∈ V . We partition V into sets Vst to identify those vehicles traveling

18

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

i

j

k

t=1.41
t=1.41

lhg

t=0

t=0g

d=1

(a) τhl − τ
g
i = 1.41

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

i

j

l

k

g

d=1

h

t=2.83

t=2.83

t=0
g

(b) (Arrival time of h at l)−τgi = 2.83

Figure 2.3: Arc-node Conflict Analysis

from s to t. Parameters agj and bgj denote the minimum and maximum amount of

time that vehicle g is allowed to wait at node j ∈ N , if visited. There is no maximum

waiting time constraint at nodes sg and pg, for any g ∈ V . Departure times within

the interval (ˆ̀gh
ijkl, û

gh
ijkl) result in a conflict when vehicles g and h travel on arcs (i, j)

and (k, l), respectively, such that ((i, j), (k, l)) ∈ Ω. Similarly, the interval (ˇ̀gh
ijk, ǔ

gh
ijk)

captures the arc-node conflict when vehicle g travels along arc (i, j) and vehicle h uses

node k such that ((i, j), k) ∈ Ψ. For each vehicle g, we precalculate the shortest-path

time from sg to pg, denoted by zgSP , using arc costs given by cgij +agj , for all (i, j) ∈ A.

We use big-M parameters Mg and Mgh with positive value for g, h ∈ V .

The binary variable xgij is equal to one if and only if g ∈ V uses arc (i, j) ∈ A,

and the continuous variable τ gi captures the departure time of g from node i ∈ N .

We reformulate the arc-arc and arc-node conflict disjunctive conditions using a big-

M approach. We use the binary variable f ghijkl, which is equal to one if the conflict

condition involving ûghijkl is satisfied by vehicles g and h, g 6= h, traveling on arcs (i, j)

and (k, l), respectively, such that ((i, j), (k, l)) ∈ Ω. This variable is equal to zero if

19

the departure times of g and h satisfy the disjunctive condition that uses ˆ̀gh
ijkl. The

binary variable eghijk models the arc-node conflict between vehicles g and h, g 6= h,

when g is traveling arc (i, j) and h is waiting at node k such that ((i, j), k) ∈ Ψ. If

the departure times satisfy the arc-node condition that uses ǔghijk, then eghijk is equal to

one. Otherwise, if they satisfy the condition using ˇ̀gh
ijk, then eghijk is equal to zero. The

decision variable z captures the value of the objective function, which corresponds to

the maximum relative deviation from each vehicle’s shortest-path time. We define

the sets of indices Λ = {(g, h, i, j, k, l) | g, h ∈ V, g 6= h, ((i, j), (k, l)) ∈ Ω}, Γ =

{(g, h, i, j, l) | g, h ∈ V, g 6= h, ((i, j), l) ∈ Ψ}, and Υ = {(g, h, i, j, k, l) | g, h ∈ V, g 6=

h, (i, j), (k, l) ∈ A, ((i, j), l) ∈ Ψ} to capture the possible combinations of vehicles

and network elements where conflict may occur. Constraints (2.4)–(2.20) describe

the feasible region of RASTC.

20

min z (2.3)

s.t.
∑

j:(i,j)∈A
xgij −

∑
j:(j,i)∈A

xgji =


1, If i = sg

0, If i ∈ N \ {sg , pg}, ∀g ∈ V, i ∈ N

−1, If i = pg

(2.4)

τgi + cgij + agj ≤ τ
g
j +Mg(1− xgij), ∀g ∈ V, ∀(i, j) ∈ A (2.5)

τgi + cgij + bgj ≥ τ
g
j −Mg(1− xgij), ∀g ∈ V, ∀(i, j) ∈ A : i, j 6∈ {sg , pg} (2.6)

τhk − τ
g
i ≤ ˆ̀gh

ijkl +Mgh[fghijkl + (1− xgij) + (1− xhkl)], ∀(g, h, i, j, k, l) ∈ Λ (2.7)

τhk − τ
g
i ≥ û

gh
ijkl −Mgh[(1− fghijkl) + (1− xgij) + (1− xhkl)], ∀(g, h, i, j, k, l) ∈ Λ (2.8)

τhl − τ
g
i ≤ ˇ̀gh

ijl +Mgh[eghijl + (1− xgij)], ∀(g, h, i, j, l) ∈ Γ (2.9)

τhk + chkl − τ
g
i ≥ ǔ

gh
ijk −Mgh[(1− eghijl) + (1− xgij) + (1− xhkl)], ∀(g, h, i, j, k, l) ∈ Υ (2.10)

fghijkl ≤ x
g
ij , ∀(g, h, i, j, k, l) ∈ Λ (2.11)

fghijkl ≤ x
h
kl, ∀(g, h, i, j, k, l) ∈ Λ (2.12)

eghijl ≤ x
g
ij , ∀(g, h, i, j, l) ∈ Γ (2.13)

eghijl ≤
∑

k:(k,l)∈A
xhkl, ∀(g, h, i, j, l) ∈ Γ (2.14)

τg1s ≤ · · · ≤ τ
g|Vst|
s , ∀s, t ∈ N : |Vst| > 1 (2.15)

τgpg

zgSP
≤ z, ∀g ∈ V (2.16)

τgi ≥ 0, ∀g ∈ V, i ∈ N (2.17)

xgij ∈ {0, 1}, ∀g ∈ V, (i, j) ∈ A (2.18)

fghijkl ∈ {0, 1}, ∀(g, h, i, j, k, l) ∈ Λ (2.19)

eghijl ∈ {0, 1}, ∀(g, h, i, j, l) ∈ Γ (2.20)

Constraints (2.4) impose flow-balance conditions for each node and each vehicle,

similar to the classic multicommodity flow problem (Ahuja et al., 1993). Constraints

(2.5)–(2.6) help enforcing the waiting times at each node and keep track of each

vehicle’s travel time. These constraints also help eliminating cycles, as they are

assumed to be infeasible for the problems of our interest. Constraints (2.5) guarantee

that if vehicle g ∈ V uses arc (i, j) (i.e., xgij = 1), then its departure time from node

j is at least agj units of time after its arrival time (i.e., τ gi + cgij), which enforces the

minimum waiting time. Similarly, Constraints (2.6) prevent vehicle g from waiting

21

longer than bgj at node j, enforcing the maximum waiting time conditions. Because

of the big-M parameters, these constraints are only active when g uses arc (i, j), and

are redundant otherwise. We strengthen the formulation by modifying the big-M

values as our solution algorithm progresses and more information on the problem’s

optimal solution becomes available. This is discussed in Section 2.4.2.

Constraints (2.7) and (2.8) impose the arc-arc conflict constraints. If vehicles g

and h use arcs (i, j) and (k, l), respectively (e.g., xgij = xhkl = 1), and there is an

arc-arc conflict between such arcs, then the binary variable f ghijkl forces the departure

times to satisfy either (2.7) or (2.8). If xgij = 0 or xhkl = 0, or both, then the

corresponding arc-arc constraints are relaxed. Constraints (2.9) and (2.10) impose

the arc-node conflict constraints. In this case, the binary variable eghijl forces the

departure times to satisfy exactly one constraint between (2.9) and (2.10), when g

is moving along arc (i, j) and h is waiting at l, and ((i, j), l) ∈ Ψ. Constraints

(2.11)–(2.14) strengthen the formulation by forcing the e- and f -variables to be zero

when the network elements involved in the conflict are not used by vehicles g and h

because in this case the corresponding Constraints (2.7)–(2.10) will be already relaxed.

When multiple identical vehicles travel between the same origin and destination, any

permutation of a feasible routing and scheduling plan among vehicles is also feasible.

Constraints (2.15) break such symmetry and reduce the feasible space by imposing a

nondecreasing order on the vehicles’ departure times, which will not affect the optimal

solution. In this case, imposing no more than |V |− 1 constraints suffices to eliminate

the symmetries.

In the absence of conflict, the optimal path for any vehicle is the shortest path to

the destination with arc costs given by the sum of travel and minimum waiting times.

However, conflict may force a vehicle to deviate from its shortest path or to wait longer

than required at one or more nodes, increasing the total travel time. For this reason,

22

our objective function seeks a fair route planning and scheduling that minimizes the

maximum deviation from each vehicle’s shortest-path time. Constraints (2.16) and

the objective function (2.3) model this situation. Constraints (2.17)–(2.19) enforce

the nature of the decision variables.

Regarding RASTC’s computational complexity, related static problems such as

finding the maximum number of geographically disjoint paths can be solved in poly-

nomial time (Neumayer et al., 2009, 2015; Kobayashi and Otsuki, 2014; Otsuki et al.,

2016). However, RASTC is NP-hard due to its dynamic nature (see proof in Appendix

A).

2.4 Network Decomposition Approach for RASTC

In this section, we develop a network decomposition scheme to expand the limits

of our exact model. This is motivated by the prohibitively large number of decision

variables and constraints in formulation (2.3)–(??), which makes RASTC unsolvable

in reasonable time for medium- and large-scale instances using commercial solvers.

Our approach is based on two observations: (1) Not all vehicles use all the network

components, which means that solving RASTC on a sub-network may produce an

optimal solution for the problem on the complete network, and (2) Conflict may not

occur on every pair of network components in Ω or Ψ, which means that enforcing

a subset of conflict constraints may be enough to produce a conflict-free optimal

solution for the complete problem.

2.4.1 Notation and Additional Definitions

We use the notation RASTC(G,Λ,Γ,Υ) to describe the problem in (2.3)–(??)

with parameters given by G, Λ, Γ, and Υ, where we assume that other parameters

(e.g., V) will not change. We denote the global optimal value of RASTC(G,Λ,Γ,Υ)

23

by z∗, and use z(·) to denote the optimal value of RASTC with parameters given by

(·). For instance z(G̃, Λ̃, Γ̃, Υ̃) denotes the optimal solution to RASTC(G̃, Λ̃, Γ̃, Υ̃).

We use the notation ẑi(·) to represent the optimal value of RASTC if the parameters

in (·) produce an upper bound on z∗, and ži(·) if they produce a lower bound at

iteration i.

We introduce the following network structures that are useful in our analysis. A

reduced network, Gr = (N r, Ar), is a subgraph of G (i.e., N r ⊆ N and Ar ⊆ A) that

contains at least one path from sg to pg, for all g ∈ V . The set of boundary nodes B

of Gr is the set of nodes in N r with an incoming or outgoing arc in A \ Ar. That is,

B = {i ∈ N r | (i, j) ∈ A \ Ar ∨ (j, i) ∈ A \ Ar} ⊆ N r. The network Gr induces a

complement network Gc = ((N \N r) ∪ B,A \ Ar), which contains all elements in G

but not in Gr, and also includes the boundary nodes. We use Gc to search for paths

between each pair of boundary nodes i, j ∈ B, i 6= j that can be used to augment Gr.

We denote the elements (nodes and arcs) in the k-th shortest-path of vehicle g from

i to j in Gc as Pkijg(Gc), which allows us define an augmented network

Ga =

 ⋃
i,j∈B,i 6=j

g∈V, k=1,...,K

Pkijg(Gc)

 ∪Gr,

where Gr ⊆ Ga ⊆ G, and K is the maximum number of paths allowed. Figure

2.4a shows an initial network G = (N,A) while Figure 2.4b shows a possible reduced

network Gr with boundary nodes in gray. Figure 2.4c shows the corresponding com-

plement network and Figure 2.4d shows an augmented network, which in this case

contains only one path (if any exist) for each pair of boundary nodes in Gc.

We enforce the following rules when constructing Ga. For each pair of nodes

i, j ∈ B, i 6= j and each vehicle g, we augment Gr with P1
ijg(G

c), which contains the

elements of a shortest-path between i and j in Gc with arc costs given by the sum of

24

(a) G = (N,A)

Boundary nodes

(b) Gr = (Nr, Ar)

Boundary nodes

(c) Gc = (N c, Ac)

Boundary nodes

(d) Ga = (Na, Aa)

Figure 2.4: Network Structures Used to Solve RASTC

travel and minimum waiting times for each vehicle. If such path consists of arc (i, j)

only, then we also add P2
ijg(G

c), the second shortest-path between i and j in Gc, to

Gr in order to allow vehicles to wait at a non-boundary node in Gc, which may be

optimal. Note that if P2
ijg(G

c) 6= ∅, then it must contain a non-boundary node in Gc

that can be used for waiting, which is not the case if the path has only one arc. We

illustrate the importance of this construction in the following example, which is also

relevant when discussing the correctness of our decomposition algorithm in Section

2.4.2.

This example illustrates an instance of RASTC in which waiting is optimal and

where the travel time for some vehicles increases with respect to their shortest path

due to the geographic conflict constraint. Consider the network in Figure 2.5a, with

V = {1, 2, 3}, and origin-destination pairs (s1, t1) = (1, 5), (s2, t2) = (5, 1), and

(s3, t3) = (9, 6). We assume that vehicles are not allowed to wait at nodes 2 and

6, and that the distance to enforce arc-arc and arc-node conflicts is d. Moreover,

we assume unit speeds such that the travel times displayed on each arc are equal

to the distance between nodes. The optimal solution to RASTC on G is that all

vehicles depart their origins at time 0, using paths 1 → 2 → 6 → 8 → 7 → 4 → 5,

25

5→ 4→ 3→ 2→ 1, and 9→ 2→ 6, for Vehicles 1, 2, and 3, respectively. At time

3d, Vehicle 2 is at node 4 and Vehicle 1 is at node 8, which means that Vehicle 1

must wait d
2

units of time until Vehicle 2 arrives at node 3. In this case, the optimal

value of RASTC is z∗ = 8d
6d

= 4
3

(given by Vehicle 1’s deviation from its shortest

path). Figure 2.5b shows a possible reduced network, Gr. In an optimal solution to

RASTC on Gr, Vehicle 1 has to wait 6d units of time at node 1 until Vehicle 2 finishes

its route, before traveling to node 5 using path 1 → 2 → 3 → 4 → 5. As a result,

z(Gr,Λ,Γ,Υ) = 12d
6d

= 2. Observe that Vehicle 1 cannot use nodes 2, 3, 4, 6 or 7 while

Vehicle 2 is moving because this will create a conflict. To create Ga, the shortest path

between boundary nodes for any vehicle is arc (6, 7). If only this arc is added to Gr

and RASTC is solved again on Ga, then the optimal solution will not change because

arc (6, 7) alone does not help Vehicle 1 in avoiding Vehicle 2. However, if we add the

second shortest path to Gr, which is given by 6→ 8 → 7, then the optimal solution

on Ga is optimal to RASTC on G.

4321

9

6 7

8

d

d

d

d

d

d

3d

3d

2d

d d d d

d

d
d/2

1

2

3

5

10

d

d

(a) G = (N,A)

4321

9

6 7

8

d

d

d

d

d

d

3d

3d

2d

d d d d

d

d
d/2

1

2

3

5

10

d

d

𝐺𝑟

𝐵

𝐺𝑐

(b) Ga = (Na, Aa)

Figure 2.5: Construction of Ga

By construction, Gr is augmented with elements from Gc, thus the new elements

added to Ga contain at least one non-boundary node, either from P1
ijg(G

c) or P2
ijg(G

c),

for each vehicle g. The distance between these new nodes and some elements already

26

in Gr may be less than d, creating a conflict. However, if both the maximum waiting

time and the geographic conflict constraints are relaxed for these new nodes only,

then they can be used for waiting. Using these elements, we define the lower bound

problem RASTC-R as a relaxation of RASTC in which Constraints (2.6)–(2.14) are

not enforced for elements in Ga\Gr (e.g., white nodes and dotted arcs in Figure 2.4d).

That is, there is no geographical conflict or maximum waiting time constraints when

vehicles use those elements in Ga \Gr. We use zR(G,Λ,Γ,Υ) to denote the optimal

solution to RASTC-R(G,Λ,Γ,Υ) and vector (x, τ) to describe a feasible solution to

RASTC or RASTC-R, where x and τ contain the values of the x- and τ -variables,

respectively. We use (x̂, τ̂) and (x̌, τ̌) to denote optimal solutions to an upper and a

lower bound problem, respectively.

The following propositions state some useful bounds for our decomposition algo-

rithm, where we note that z∗ = z(G,Λ,Γ,Υ).

Proposition 3 The following conditions are satisfied for any network G, any reduced

network Gr, and any conflict sets Λ̄ ⊆ Λ, Γ̄ ⊆ Γ, and Ῡ ⊆ Υ.

1. z(Gr,Λ,Γ,Υ) ≥ z(G,Λ,Γ,Υ)

2. z(G,Λ,Γ,Υ) ≥ z(G, Λ̄, Γ̄, Ῡ)

Proposition 4 For a given network G and a reduced network Gr such that the opti-

mal solution to RASTC(Gr, Λ̄, Γ̄, Ῡ) is feasible to RASTC(Gr,Λ,Γ,Υ), where Λ̄ ⊆ Λ,

Γ̄ ⊆ Γ, and Ῡ ⊆ Υ, then z(Gr, Λ̄, Γ̄, Ῡ) ≥ z(G,Λ,Γ,Υ).

Proposition 5 For a given network G, a reduced network Gr ⊂ G, and conflict sets

Λ̄ ⊆ Λ, Γ̄ ⊆ Γ, and Ῡ ⊆ Υ, z(G,Λ,Γ,Υ) ≥ zR(Ga, Λ̄, Γ̄, Ῡ).

27

2.4.2 Decomposition Algorithm

Algorithm 1 describes our network decomposition approach. Line 4 initializes

conflict sets Λ̄, Γ̄, and Ῡ to empty, as they will be dynamically populated when

encountering conflicts. Line 4 also initializes the upper and lower bound values, UB0

and LB0, and a counter i to track the number of iterations. Line 2 constructs a

feasible reduced network that guarantees that at least T paths exists from sg to pg

for every vehicle g ∈ V . This step is performed using Dijkstra’s algorithm for T = 1

(Dijkstra, 1959) or Yen’s k shortest-path algorithm for T > 1 (Yen, 1971). The loop

in lines 5–14 is executed until convergence and consists of upper bound (Lines 5 and

11) and lower bound (Lines 7 and 8) routines. Using Proposition 4, Line 5 obtains

an upper bound on z∗ by solving RASTC on the reduced network using Algorithm

2 (see Section 2.4.3), where conflict constraints are added dynamically in a cutting-

plane fashion. This strategy drastically reduces the number of x-, e-, and f -variables,

as well as the number of conflict constraints. Line 5 also produces a feasible solution

for RASTC(G,Λ,Γ,Υ), whose objective value and solution are stored in an incumbent

in Line 11. In Line 7, our algorithm constructs the augmented network Ga induced

by Gr. Line 8 produces a lower bound on z∗ by following the rules from Section 2.4.1

to construct Ga. Section 2.4.4 provides a polynomial time algorithm to construct

Ga. Using Proposition 5, Line 8 constructs a lower bound on z∗ by solving problem

RASTC-R(Ga, Λ̄, Γ̄, Ῡ), whose optimal value is saved in Line 9.

Lines 10 and 11 verify a first stopping condition for our algorithm. If (x̌i, τ̌ i) is

feasible to RASTC (i.e., no conflict or maximum waiting time violations in Ga \Gr),

then such solution is optimal. Lines 13 and 14 verify an additional stopping condition

that occurs when the optimal solution to RASTC-R(Ga, Λ̄, Γ̄, Ῡ) only uses elements

in Gr or when this solution uses elements in Ga \ Gr but has the same objective

28

function value equal to the best know upper bound. In such cases, upper and lower

bound values are the same, and the incumbent (x̄, τ̄) is optimal. If none of these

conditions is satisfied, then Gr is augmented in Line 8, and the algorithm goes to

Line 5. Although in Line 8 we augment Gr, we only allow new elements to be used

by vehicles needing them, according to (x̌i, τ̌ i). This reduces the number of binary

variables in the problems solved in Lines 5 and 8. Algorithm 1 can stop at an iteration

i in which UBi > LBi as a result of Lines 10 and 11.

Algorithm 1 : Network Decomposition Algorithm for RASTC

1: Initialize Λ̄ = ∅, Γ̄ = ∅, Ῡ = ∅, UB0 =∞, LB0 = 0, and set counter i = 0

2: Initialize Gr with a set of T paths from sg to pg in G for each g ∈ V

3: while UBi > LBi do

4: Set i = i+ 1

5: Solve RASTC(Gr, Λ̄, Γ̄, Ῡ) to obtain an optimal solution (x̂i, τ̂ i), optimal value

ẑi(Gr, Λ̄, Γ̄, Ῡ), and updated sets Λ̄, Γ̄, and Ῡ (see Section 2.4.3)

6: Set UBi = ẑi(Gr, Λ̄, Γ̄, Ῡ) and update the incumbent solution (x̄, τ̄)← (x̂i, τ̂ i) and objective

z̄ = UBi

7: Calculate B and construct Ga using Gr (see Section 2.4.4)

8: Solve RASTC-R(Ga, Λ̄, Γ̄, Ῡ) to obtain an optimal solution (x̌i, τ̌ i) and optimal value

ži(Ga, Λ̄, Γ̄, Ῡ)

9: Set LBi = ži(Ga, Λ̄, Γ̄, Ῡ)

10: if (x̌i, τ̌ i) is feasible for RASTC then

11: Incumbent (x̄, τ̄)← (x̌i, τ̌ i) is optimal with objective z̄ = LBi. Go to Step 15

12: if UBi = LBi then

13: Incumbent (x̄, τ̄) is optimal with objective z̄ = UBi. Go to Step 15

14: else Augment Gr with the elements used in (x̌i, τ̌ i) that are not in Gr

15: Return (x̄, τ̄) and z̄

At each iteration i > 1 of Algorithm 1, we tighten the MIP used in Line 5

by updating the value of the big-M parameters. We use Mg = UBi−1z
g
SP and

29

Mgh = UBi−1 max{zgSP , zhSP} for vehicles g, h ∈ V . We initialize the big-M val-

ues using the same expressions, but having a specific UB-parameter for vehicle

g ∈ V given by
∑

h∈V z
h
SP/z

g
SP , and for each pair of vehicles g, h ∈ V given by

max{
∑

`∈V z
`
SP/z

g
SP ,
∑

`∈V z
`
SP/z

h
SP}. These values capture the worst-case situation

in which vehicles move one at a time. Using this strategy, the MIP becomes stronger

as Algorithm 1 progresses because the UB-values are nonincreasing. Before proving

the finite termination and correctness of Algorithm 1, we provide more details on the

upper bound (Lines 5 and 11) and lower bound (Lines 7 and 8) routines.

2.4.3 Upper Bound

We use Algorithm 2 to solve RASTC(Gr, Λ̄, Γ̄, Ῡ) in Line 5 of Algorithm 1. After

initializing i, Line 2 solves RASTC over Gr using a subset of conflicts. Line 3 stores

an optimal solution and its objective value in an incumbent. The loop in Lines 4–8

iterates until the incumbent solution has no conflict violations. Line 6 identifies such

violations using ˆ̀-, û-, ˇ̀-, and ǔ-parameters. This can be done in O(|N |2|V |2) steps

by comparing all arcs in the paths of every pair of vehicles, where |N | bounds the

number of arcs in any path. Line 7 solves RASTC using the updated conflicts sets

and Line 8 updates the incumbent with the resulting optimal objective value and

solution. Line 9 returns an optimal solution to RASTC(Gr,Λ,Γ,Υ), its objective

value, and the updated conflict sets. Algorithm 2 finishes in a finite number of

iterations because of the finite size of the conflict sets. The solution obtained upon

termination is feasible to RASTC(Gr,Λ,Γ,Υ) and also optimal given Proposition 4.

This means that z(Gr,Λ,Γ,Υ) = ẑ(Gr, Λ̄, Γ̄, Ῡ).

30

Algorithm 2 : Upper Bound Algorithm for RASTC(Gr, Λ̄, Γ̄, Ῡ)

1: Set counter i = 0

2: Solve RASTC(Gr, Λ̄, Γ̄, Ῡ) to obtain an optimal solution (xi, τ i) and optimal value

zi(Gr, Λ̄, Γ̄, Ῡ)

3: Set ẑ(Gr, Λ̄, Γ̄, Ῡ) = zi(Gr, Λ̄, Γ̄, Ῡ) and update the incumbent solution (x̂, τ̂)← (xi, τ i)

4: while (xi, τ i) induces geographic conflict do

5: Set i = i+ 1

6: Identify all the violated arc-arc and node-arc conflicts in (xi, τ i) and update Λ̄, Γ̄, and Ῡ

7: Solve RASTC(Gr, Λ̄, Γ̄, Ῡ) to obtain an optimal solution (xi, τ i) and optimal value

zi(Gr, Λ̄, Γ̄, Ῡ)

8: Set ẑ(Gr, Λ̄, Γ̄, Ῡ) = zi(Gr, Λ̄, Γ̄, Ῡ) and update the incumbent solution (x̂, τ̂)← (xi, τ i)

9: Return (x̂, τ̂), ẑ(Gr, Λ̄, Γ̄, Ῡ), Λ̄, Γ̄, and Ῡ

2.4.4 Lower Bound

We revisit the importance of the rules to construct Ga. In Figure 2.5b, the shortest

path between boundary nodes is arc (6, 7). If only this arc is added to Gr, then

Algorithm 1 erroneously stops with a suboptimal solution because the solution to

RASTC-R in Line 8 would be the same as the solution to RASTC(Gr, Λ̄, Γ̄, Ῡ). In this

case, zR(Ga, Λ̄, Γ̄, Ῡ) is not a lower bound on z∗. If Ga follows the rules from Section

2.4.1, then the optimal solution to RASTC-R(Ga, Λ̄, Γ̄, Ῡ) is optimal to RASTC-

R(G,Λ,Γ,Υ).

Using Gr as input, in Line 7 of Algorithm 1 we construct the set of bound-

ary nodes in O(|Ac|) steps and construct Ga by calculating the K (≥ 2) shortest-

path between every pair of boundary nodes for each vehicle. This can be done in

O (|V ||N r|2|N c|(|N c| log |N c|+ |Ac|)) steps using Yen’s algorithm (Yen, 1971) and

Fibonacci heaps (Fredman and Tarjan, 1987). In practice, we calculate paths be-

tween boundary nodes only for those vehicles that have used such nodes. Proposition

6 describes a filtering process that avoids adding unnecessary paths to Ga, reducing

31

the number of decision variables in the problem solved in Line 8 of Algorithm 1. We

use the function c(P) to denote the total travel and minimum wait time along path

P . Proposition 7 proves the finite termination and correctness of Algorithm 1.

Proposition 6 Consider that at any given iteration, Algorithm 1 has constructed

a reduced network Gr and its corresponding complement network Gc, and that the

current upper bound is UB. Then, a shortest-path Pijg(Gc), with i, j ∈ B, i 6= j,

and g ∈ V , will not improve UB if for every g ∈ V , c(Psg ,i,g(G)) + c(Pijg(Gc)) +

c(Pj,pg ,g(G)) ≥ zgSPUB.

Proposition 7 Algorithm 1 terminates in a finite number of iterations with an op-

timal solution to RASTC(G,Λ,Γ,Υ).

2.5 Computational Results

We illustrate the features of RASTC and examine the performance of our network

decomposition approach on real and randomly generated networks. To perform our

computations, we use C++ with CPLEX 12.7 on a desktop computer with an Intel

Core i7 2.40 GHz processor and 8.0 GB RAM. We set a solution time limit of 2 hours

in all the experiments. With no enhancements, CPLEX cannot solve to optimality any

of the proposed instances and sometimes cannot even find an integer feasible solution,

while the optimality gaps are very large for those instances where an incumbent is

available within the time limit.

2.5.1 Berlin’s Road Network Instances

We use a directed road network from the Friedrichshain district in east Berlin,

Germany (Transportation Networks for Research Core Team, 2018), with 224 nodes

and 523 arcs. The maximum euclidean distance between any two nodes is 2.25 miles,

32

which we denote by dmax. We allow vehicles to wait at nodes an unlimited amount of

time and assume a speed of 35 mph for every vehicle. Moreover, we define parameter

d̄ to limit the maximum euclidean distance that a vehicle can travel between origin

and destination. Using this network, Section 2.5.2 illustrates an optimal routing and

scheduling plan for |V | = 15. Section 2.5.3 describes a procedure to create random

instances out of this network and Section 2.5.4 summarizes the performance of our

approach on such instances.

2.5.2 Illustrative Example

In this section we describe in detail the features of a RASTC’s optimal solution

with |V | = 15, d̄ = 2dmax/3, and d = 1050 ft. Figure 2.6a shows the network and the

randomly generated origins (labeled as N) and destinations (labeled as H). The label

next to the triangles is the vehicle index.

(a) (b) t = 0 (c) t = 6

Figure 2.6: Origin-Destination Pairs and Waiting at Origin Nodes

We depict the vehicles’ position at various times t, where t = 0 is the time at

which the first vehicle starts moving. We illustrate the conflict by drawing a circle of

diameter equal to d around each vehicle such that any conflict results in overlapping

circles. Figure 2.6b shows that 10 vehicles start traveling at t = 0, indicating that

33

some have to wait to avoid conflict. Figure 2.6c shows that Vehicle #10 only starts

traveling at t = 6, when Vehicle #8 is far enough to avoid conflict. As expected, the

minimum distance requirement leads to a deterioration in the travel time for some

vehicles because some have to wait at intermediate nodes or need to deviate from a

shortest path to avoid conflict. Algorithm 1 solves this instance in 55 seconds, while

the MIP formulation could not solve it within 2 hours.

Figure 2.7 illustrates other features of RASTC. The label next to a node is the node

index. Figures 4.5a–4.5c show that waiting at a node is optimal for some vehicles.

Vehicle #3 departs from Node 93 in Figure 4.5a and because of the road (directed)

network structure, it has to make a U-turn visiting Nodes 125, 92, and 59 on the way

to its destination. From t = 50 to t = 95, Vehicle #2 waits at Node 121 to avoid

conflict with Vehicle #3 and the approaching Vehicle #9. Figures 4.4d–2.7f illustrate

the case where Vehicle #2 is not allowed to wait at Node 121 (i.e., b2
121 = 0). Vehicle

#2 visits Node 121 at t = 50 and continues to its destination while Vehicle #3 waits

at Node 93. Vehicle #3 starts moving at t = 95 when Vehicle #9 is far enough.

Figures 2.7g–2.7i illustrate the case of heterogeneous vehicle speeds. We increase

Vehicle #3’s speed on arc (93, 125) to twice the speed in other arcs. As a result,

Vehicle #3 departs Node 93 at some time t < 50 and by t = 50 is already at Node

59, which allows Vehicles #9 and #2 to freely travel without waiting.

2.5.3 Random Instance Generation

We create instances with 5, 10, 15 and 20 vehicles and with randomly gen-

erated origin and destination nodes. To induce various trip lengths, we use

d̄ ∈ {dmax/3, 2dmax/3, dmax} to represent short (S), medium (M), and long (L)

trips, respectively. For each combination of |V | and d̄, we generate five random

instances (replications). Moreover, for each trip length we solve problems with

34

2

14

59 92

125
93

3

121

(a) t = 50

2

9

59 92

93

3 125

121

(b) t = 75

2

959

93

3
92

125

121

(c) t = 95

2

959

93

92

125

121

(d) t = 50

959

93

92

125

2

121

(e) t = 75

9

59

93

92

125

2
3

121

(f) t = 95

9

59

93

92

125

2

3

121

(g) t = 50

959

93

3

92

125

2

121

(h) t = 75

9

59

93

3

92

125

2

121

(i) t = 95

Figure 2.7: Waiting at Intermediate Nodes and Heterogeneous Vehicle Speeds

d ∈ {105, 210, 420} (in feet), representing short (S), medium (M), and large (L)

distance requirements for the geographic conflict.

35

2.5.4 Results

In this section, we compare the performance of our decomposition algorithm and

the MIP in (2.3)–(??). The first three columns of Table 2.1 describe the instance

solved, including the number of vehicles (|V |) and the different levels of d̄ and d. We

vary d̄ to control the instance difficulty. Increasing d̄ leads to longer trips, making

it more likely for vehicles to encounter conflict. Longer trips also result in larger Gr

and Ga networks, increasing the difficulty of the subproblems. Likewise, increasing d

induce more conflicts, which will likely increase the number of iterations needed by

our approach.

In Table 2.1, r is the percentage of instances (out of five) solved to optimality

within a 2 hour time limit using the proposed decomposition approach. Additionally,

tmin, tavg, and tmax are the minimum, average, and maximum running times (in

seconds) across solved instances for each combination of |V |, d̄ and d. For those

instances that timed out, gmin, gavg, and gmax report the minimum, average, and

maximum optimality gap calculated as 100(UBk − LBk)/UBk, where k is the last

iteration before timing out. The optimality gap when r = 100 is zero, which we

report as “-”. We do not report the solution time when r = 0. As expected, the

solution time increases as |V |, d̄, and d increase.

Our approach can solve all instances with d̄ of type S to optimality, regardless

of the number of vehicles and value of d. Table 2.1 also reports the time to obtain

and the quality of the first optimality gap. These values are given by t1avg and g1
avg =

100(UB1 − 1)/UB1, where t1avg is the average time required to solve the first upper

bound problem. Note that the objective function value in RASTC is always at least

equal to one. We also report the average number of iterations to solve an instance to

optimality or before time-out, which is given by iavg. On average, our decomposition

36

algorithm requires few iterations and provides an initial feasible solution (UB) and

initial gap in relatively short time.

We calculate the proportion of x-variables used in the decomposition strategy with

respect to the MIP. We report the average value of this metric across vehicles and

replications (times 100) as a proxy of the average number of network components

used by each vehicle. We report these values for the upper and lower bound problems

in the last iteration, which we denote by |x|uavg and |x|`avg, respectively. We also

report the proportion of τ -variables, which we denote by |τ |uavg and |τ |`avg. The values

cavg and vavg are the proportion of constraints and variables in the last lower bound

subproblem (the largest problem solved), relative to to the MIP. These metrics show

that our approach significantly reduces the number of variables and constraints used.

For example, instances 20-S-L require on average only 0.2% of the constraints, 0.3%

of the variables, no more than 3.4% of the arc variables, and no more than 6.21 % of

the continuous variables required in the MIP.

2.5.5 Random Network Instances

Section 2.5.1 focus on analyzing the performance of our approach for several in-

stances out of the same road network. In this section, we study the performance of

our approach on randomly generated networks. Section 2.5.6 describes a procedure

to such instances and Section 2.5.7 summarizes the performance metrics.

2.5.6 Random Instance Generation

We generate layered networks in order to control the distance between nodes and

arcs, which directly affects the existence of conflict. This layered networks also pro-

vide many alternative paths for each vehicle, testing the limits of our decomposition

37

Table 2.1: Computational Performance of the Proposed Decomposition Approach on

Berlin’s Road Network Instances (T = 1, K = 2)

|V | d̄ d r tmin tavg tmax gmin gavg gmax t1avg g1avg iavg |x|uavg |x|
`
avg |τ |

u
avg |τ |

`
avg cavg vavg

5 S S 100 0.45 1.07 1.84 - - - 0.95 0.00 1.00 1.12 1.12 3.07 3.07 0.40 0.31

M 100 0.81 1.31 1.80 - - - 0.76 3.32 1.00 1.12 1.35 3.07 3.34 0.37 0.32

L 100 0.04 0.54 1.16 - - - 0.70 5.01 1.00 1.12 1.39 3.07 3.39 0.27 0.24

M S 100 0.68 4.72 18.25 - - - 1.45 4.48 1.20 2.36 3.59 5.86 7.46 0.64 0.80

M 100 0.20 7.91 34.59 - - - 1.15 5.34 1.00 2.19 3.66 5.57 7.50 0.57 0.71

L 100 0.07 9.28 42.55 - - - 1.54 7.99 1.60 2.42 3.08 5.91 6.73 0.40 0.48

L S 100 0.38 15.67 73.00 - - - 1.47 6.95 1.40 2.36 4.52 5.91 9.16 0.75 1.02

M 100 0.28 11.36 51.09 - - - 0.99 7.32 1.20 2.39 4.59 5.96 9.19 0.68 0.92

L 100 0.41 125.25 610.51 - - - 1.25 10.27 2.00 2.94 5.18 6.91 10.03 0.53 0.75

10 S S 100 2.55 18.40 36.52 - - - 2.49 20.81 2.20 1.54 2.60 3.88 5.43 0.40 0.57

M 100 12.31 29.35 70.90 - - - 2.78 23.96 2.40 1.57 2.99 3.89 5.99 0.38 0.54

L 100 24.99 42.71 85.71 - - - 4.04 28.16 3.20 1.87 3.29 4.41 6.38 0.28 0.41

M S 100 4.98 52.17 153.41 - - - 5.46 16.73 2.20 2.53 4.14 6.09 10.83 0.49 0.73

M 100 6.46 99.06 333.53 - - - 6.90 23.32 2.00 2.95 5.89 6.86 10.83 0.57 0.87

L 80 10.30 52.36 116.99 43.17 43.17 43.17 8.40 28.48 1.60 2.65 7.31 6.36 13.14 0.47 0.74

L S 100 22.37 90.43 198.98 - - - 7.29 24.85 2.20 3.10 6.21 7.27 11.33 0.59 0.91

M 100 48.05 997.42 4294.11 - - - 8.82 26.62 3.00 3.43 6.51 7.78 11.66 0.56 0.85

L 80 61.32 789.72 2846.64 31.91 31.91 31.91 10.60 28.92 3.40 3.51 7.86 7.95 13.78 0.47 0.73

15 S S 100 6.87 59.40 157.52 - - - 9.16 14.36 2.00 1.53 2.77 3.89 5.56 0.32 0.48

M 100 6.55 97.15 264.72 - - - 11.39 18.94 2.40 1.73 3.19 4.25 6.17 0.31 0.47

L 100 7.74 190.50 337.20 - - - 15.30 27.52 3.20 1.93 3.71 4.53 6.75 0.25 0.38

M S 100 11.52 324.80 800.78 - - - 19.20 24.43 2.40 2.62 5.01 6.12 9.34 0.46 0.73

M 80 15.96 209.61 369.95 32.91 32.91 32.91 24.18 27.16 2.20 2.74 6.33 6.35 11.19 0.46 0.73

L 60 24.27 1224.10 3430.73 13.96 27.04 40.12 34.82 35.17 2.00 2.67 6.86 6.27 12.03 0.34 0.55

L S 60 199.89 796.85 1933.25 4.92 23.77 42.61 40.19 30.16 2.40 3.18 7.06 7.33 12.82 0.54 0.85

M 40 269.35 1327.51 2385.67 1.51 26.58 45.82 65.45 35.53 2.60 3.27 8.31 7.55 14.35 0.52 0.80

L 20 323.40 323.40 323.40 2.63 18.75 46.68 80.13 37.58 2.60 3.56 9.76 8.12 16.61 0.42 0.63

20 S S 100 10.41 99.50 154.74 - - - 16.82 18.75 1.80 1.44 2.68 3.66 5.29 0.27 0.42

M 100 73.91 144.85 191.03 - - - 23.13 28.15 2.00 1.56 2.85 3.87 5.54 0.25 0.39

L 100 167.70 551.37 1631.14 - - - 27.98 33.62 3.60 2.08 3.41 4.65 6.21 0.20 0.31

M S 20 587.78 587.78 587.78 20.19 32.33 36.85 87.07 30.26 1.40 2.22 8.01 5.54 13.84 0.46 0.74

M 40 398.44 484.54 570.64 0.99 25.27 37.88 98.89 31.61 1.80 2.55 8.15 6.17 14.00 0.41 0.66

L 20 1349.86 1349.86 1349.86 0.31 23.43 48.11 130.25 36.35 2.00 2.65 7.52 6.33 13.08 0.29 0.45

L S 40 1151.22 1379.54 1607.86 2.62 14.78 31.71 75.13 30.61 2.40 3.21 9.44 7.48 16.14 0.47 0.75

M 40 859.81 1319.64 1779.46 1.41 28.77 45.52 224.56 41.23 2.20 3.31 9.91 7.71 16.87 0.46 0.70

L 0 - - - 7.25 31.17 45.69 333.58 47.28 1.50 3.23 10.99 7.64 18.34 0.36 0.54

38

approach as many iterations may be needed to find useful network components. We

create layered networks having n layers and n nodes per layer, resulting in |N | = n×n

nodes. Nodes are arranged in a square of dimension 200× 200 such that that layers

are evenly separated. The position of each node within a layer is chosen randomly.

The i-th node (from top to bottom) of the q-th layer (from left to right) is connected

to the i-th node of layers q + 1 and q − 1 and to nodes i − 1 and i + 1 in the same

layer, whenever these nodes exist. The resulting arrangement of nodes and arcs cre-

ates multiple conflicts when vehicles move. Figure 3.6 shows random layered networks

with |N | = 6× 6, |N | = 10× 10, and |N | = 14× 14 nodes. All vehicles are assumed

to have a unit speed.

(a) (|N |, |A|) = (6× 6, 120) (b) (|N |, |A|) = (10× 10, 360) (c) (|N |, |A|) = (14× 14, 728)

Figure 2.8: Random Layered Networks of Different Sizes

We create networks with sizes ranging from 4× 4 to 14× 14 nodes. For each size,

we create instances with 10, 15, 20, and 25 vehicles with randomly generated origin

and destination nodes for each vehicle and with d ∈ {2, 8}, representing short (S)

and large (L) distance requirements. We impose no restriction on the trip’s length

of any vehicle (i.e., d̄ = ∞) and assume that there are no minimum or maximum

waiting times on any node. For each combination of |N |, |V |, and d, we generate 3

random replications. Because of the number of alternative paths and the number of

39

arcs, we expect these layered networks to be more difficult than those from Berlin’s

road network.

2.5.7 Results

Table 2.2 shows the performance of our method on random layered networks. The

first three columns characterize the instance, including |N |, |A|, |V |, and d. We

compare our decomposition approach (DA) with the MIP solved with CPLEX on

the complete network but adding the conflict constraints as encountered via cutting

planes. That is, using Algorithm 2 with call RASTC(G, Λ̄ = ∅, Γ̄ = ∅, Ῡ = ∅). The

columns tDA and tMIP are the average solution times (in seconds) for our approach

and the MIP, respectively, for instances solved within the time limit, whose number

is shown in parenthesis. The column gDA is the average optimality gap for the de-

composition approach calculated as in Table 2.1. Our decomposition approach solves

instances of up to 10 vehicles on 14×14 networks, whereas the largest instance solved

with the MIP via cutting planes has 10 vehicles on the easiest setup of a 6×6 network.

These results show that the proposed decomposition approach outperforms the MIP.

The value of z∗ is the average optimal objective function value for instances solved

to optimality. If z∗ > 1, then the geographic conflict requires some vehicles to wait

at intermediate nodes or to deviate from their shortest path.

As expected, the performance of our decomposition algorithm depends on multiple

factors, including |N |, |V |, d̄, and d. For instance, in Berlin’s Friedrichshain network

(224 nodes and 523 arcs), we optimally solve some of the 20-vehicle instances with

large d̄ and medium d, while in the layered networks, we solve instances of 25 vehicles,

100 nodes, and 360 arcs but a small d. Our approach can handle more vehicles for

40

Table 2.2: Computational Performance of the Proposed Decomposition Approach

Versus MIP on Random Layered Network Instances (T = 1, K = 2)

(|N |, |A|) |V | d tMIP tDA gDA z∗ (|N |, |A|) |V | d tMIP tDA gDA z∗

(4× 4, 48) 10 S 22 (3) 16 (3) - 1.40 (6× 6, 120) 10 S 1951 (1) 21 (3) - 1.07

L 21 (3) 11 (3) - 1.42 L - 19 (3) - 1.15

15 S 26 (3) 11 (3) - 1.44 15 S - 31 (3) - 1.15

L 216 (3) 21 (3) - 1.45 L - 62 (3) - 1.19

20 S 431 (3) 23 (3) - 1.42 20 S - 59 (3) - 1.23

L 54 (1) 76 (3) - 1.42 L - 233 (3) - 1.27

25 S 1788 (1) 108 (3) - 1.46 25 S - 977 (3) - 1.35

L - 169 (3) - 1.49 L - 1878 (2) 20 1.37

(8× 8, 224) 10 S - 49 (3) - 1.08 (10× 10, 360) 10 S - 61 (3) - 1.03

L - 53 (3) - 1.19 L - 68 (3) - 1.08

15 S - 63 (3) - 1.10 15 S - 174 (2) 35 1.09

L - 250 (3) - 1.20 L - 96 (1) 40 1.16

20 S - 104 (2) 20 1.17 20 S - 1632 (2) 36 1.08

L - 252 (2) 26 1.26 L - 1550 (1) 38 1.16

25 S - 321 (1) 22 1.12 25 S - 636 (1) 39 1.14

L - 1396 (2) 45 1.26 L - - 47 -

(12× 12, 528) 10 S - 105 (3) - 1.23 (14× 14, 728) 10 S - 888 (2) 28 1.02

L - 227 (3) - 1.17 L - 509 (1) 39 1.07

15 S - 202 (2) 25 1.20 15 S - - 42 -

L - 324 (3) - 1.22 L - - 43 -

20 S - 236 (1) 35 1.08 20 S - - 47 -

L - - 34 - L - - 43 -

25 S - - 37 - 25 S - - 43 -

L - - 45 - L - - 51 -

some parameter combinations (e.g., small d or d̄) or under other problem setups such

as imposing conflict constraints only in some parts of the network, which is allowed

in our modeling.

41

2.6 Concluding Remarks

We present an approach to impose geographical conflict conditions in a route

assignment and scheduling problem. Using a polynomial-time pre-processing step,

we identify regions in the network where geographic conflict may occur and provide

conditions on the departure times from each node that avoid conflict. By using a

big-M approach to model disjunctive constraints, we reformulate this problem into

a mixed-integer program that is very challenging to solve. To improve the solution

time, we introduce a decomposition algorithm that takes advantage of the problem’s

network structure. Instead of solving the problem on the initial (complete) network,

we limit our search to the most important sub-networks for each vehicle, which we

dynamically construct as the optimization problem is solved. Solving the problem on

a reduced network provides an upper bound on the optimal objective function value,

which is helpful to eliminate network components that are not used in any optimal

solution. We obtain a lower bound by allowing vehicles to use elements outside

the reduced network, ignoring conflict or maximum waiting times. This strategy,

combined with an iterative procedure to prevent conflicts as they are encountered,

helps us maintain a small-sized problem which translates into favorable solution times.

Our algorithm is able to solve instances that the MIP formulation cannot solve.

Our approach takes advantage of the sparsity of an optimal solution to construct

a reduced network that is sufficient to identify an optimal solution for the complete

network. Our approach can be generalized to other problems, where the solution is

sparse and possibly without a network structure. The proposed decomposition ap-

proach follows the same principle of other classic methods: generate useful problem

elements as needed while keeping a “master problem” small. In RASTC, we generate

path segments aiming to improve the incumbent solution in the reduced network,

42

guaranteeing the existence of a feasible solution at any iteration. Our method can be

initialized using any set of candidate paths, for instance using the low-risk routes from

Carotenuto et al. (2007). Moreover, our approach preserves the structure of RASTC

at every iteration, which is advantageous because there is always a connection be-

tween integer and continuous variables, a known problem in other approaches such as

Benders decomposition. Our proposed decomposition approach does not rely on du-

ality theory, avoiding the challenges of potentially weak linear relaxations. However,

our approach can be coupled with other methods to solve large problems (e.g., col-

umn generation, Benders decomposition, Lagrangian relaxation), which can be used

to accelerate the solution of the problems on the reduced or augmented networks.

Although in this chapter we focus on two-dimensional problems where conflict is

prevented everywhere in the network, the vehicle coordination analysis also applies to

three-dimensional problems (e.g., aerial or underwater vehicles) and other problems

where conflict needs to be prevented only in some areas. A future research path is

to include a variable speed or a discrete speed profile that vehicles can choose when

traversing an arc. Currently, it is possible to approximate such variable speed pro-

file by adding nodes along an arc where vehicles can wait. These mechanisms help

approximate any acceleration-deceleration decisions along the route at the expense

of additional decision variables and constraints. This is motivated by the observa-

tion that geographical conflicts may be avoided not only through route selection and

scheduling but also by choosing an appropriate speed at specific times. Additionally,

our centralized approach can be used as a benchmark to determine the quality of

decentralized approaches that locally resolve the geographical conflicts.

43

Chapter 3

FIXED-CHARGE NETWORK DESIGN WITH PIECEWISE LINEAR COST

FUNCTION

This chapter is organized as follows. In Section 3.1 we provide a literature re-

view of fixed-charge network design problems. In Section 3.2, we study the current

formulations for this problem, also introducing a generalized Multiple Choice (MC)

formulation. In Section 3.2.3, we propose an alternative formulation that uses a

reduced number of variables. Although this alternative formulation is computation-

ally efficient, it reaches its limits when solving large-scale instances. To overcome

this problem, we introduce a procedure to iteratively construct simpler cost func-

tions that uses less decision variables. In Section 3.3, we introduce the proposed

general method to underestimate the cost function thus providing a relaxation to the

problem. We provide a formulation for the problem that utilizes partial convex cost

underestimations in Section 3.4. In Section 3.5, we develop an exact algorithm based

on a structural decomposition of the network problem. In Section 3.6, we investigate

the performance of our approach and explore its limits by solving a set of random

instances. Section 3.7 presents our final remarks.

3.1 Introduction and Literature Review

We study a fixed-charge network design problem. Fixed-charge network design

problems (FC-NDPs) are network optimization problems in which integer variables

represent decisions of whether or not to build —or to operate— an arc or a node.

Because they represent general network design and operation models, FC-NDPs are

useful in many application domains. These application domains include personnel

44

scheduling (Balakrishnan and Wong, 1990; Bartholdi III et al., 1980), service net-

work design (Crainic and Rousseau, 1986; Andersen et al., 2009; Crainic, 2000), and

logistic network design (Cordeau et al., 2006; Geoffrion and Graves, 1974; Santoso

et al., 2005). Solution techniques for network design problems include polyhedral

analysis and valid inequalities (Atamtürk, 2002; Atamtürk and Rajan, 2002; Bien-

stock and Günlük, 1996; Günlük, 1999; Raack et al., 2011), decomposition approaches

(Crainic et al., 2001; Cruz et al., 1998; Randazzo and Luna, 2001; Frangioni and Gen-

dron, 2009), and heuristic methods (Ghamlouche et al., 2003; Yaghini et al., 2015;

Katayama et al., 2009; Balakrishnan et al., 1989; Kim and Pardalos, 1999).

In this chapter we focus on solving the Carbon Capture and Storage (CCS) prob-

lem, which is to design a minimum-cost pipeline network to capture CO2 from sources

(e.g., power plants, oil refineries) and to transport it to geologic reservoirs (e.g., de-

pleted oil and gas fields) for its long-term storage. Despite its benefits (Eto et al.,

2013; Sathre et al., 2017; Craig et al., 2017), CCS requires large infrastructure in-

vestments, which could deter governments and national agencies from its adoption.

For this reason, developing new tools to solve large-scale instances to optimality is

critical to continue contributing to climate stabilization.

Currently, there are more than 38 large-scale CCS approved projects around the

world (Global, 2016). In CCS, we need to decide the location of reservoirs and sources

and also the necessary pipe diameters to ensure enough flow to capture a target

amount of carbon. Because of the nature of the problem, solving CCS is challenging

(Middleton and Bielicki, 2009), demonstrating the need for models and algorithms to

solve real-world instances.

Rothfarb et al. (1970) introduces an early work on gas pipeline network design

in which pipes need to be selected. This work does not consider selection of sources

or reservoirs. The selection of pipes and junction nodes for connected tree pipeline

45

networks is studied in Bhaskaran and Franz (1979). Researchers at Battelle’s Joint

Global Change Research Institute (JGCRI) present a survey of procedures that make

CCS technologies viable climate stabilization candidates to be widely deployed (Doo-

ley et al., 2006). Another CCS framework is discussed in Kobos et al. (2007), which

considers that sources are directly connected to reservoirs, reducing the CCS formula-

tion to a matching problem. A more realistic and general CCS problem is investigated

through the scalable infrastructure model CCS (SimCCS) (Middleton and Bielicki,

2009). This model considers a general network structure in which the set of sources

and reservoirs is a subset of the network nodes. A mixed-integer formulation is pre-

sented for the case that the cost function is piecewise linear with constant variable

cost for each pipe diameter. Other objective functions including elements such as

tax and temporal requirements are investigated in Kuby et al. (2011) and Middleton

et al. (2012). To overcome complexity of solving CCS, Middleton (2013) reformulate

the discrete capacity as a continuous decision, providing lower bounds for the total

network design cost in CCS.

Formally, the CCS problem is to design a network able to transport a target

amount of CO2 —denoted by τ— from capturing to storing sites. The network

consists of a set of source nodes (S), a set of reservoir nodes (R), a set of intermediate

nodes (I), and arcs representing pipes (A). Sources and reservoirs are subject to

maximum capture and storage capacities, denoted by qsi and qrj for source i ∈ S

and reservoir j ∈ R, respectively. Similarly, f si and vsi denote the fixed cost (i.e.,

land purchase, construction, and technology installation) and variable operational

cost (i.e., pumping and maintenance) for source i ∈ S, whereas parameters f rj and vrj

represent the fixed and variable costs for reservoir j ∈ R, respectively. The minimum

and maximum capacity of arc (i, j) ∈ A —denoted by lijd and uijd— depend on the

chosen pipe diameter d ∈ D, where D is the set of commercially available diameters.

46

Using a pipe of diameter d to transport flow from node i to node j incurs in a variable

operational cost vijd per ton of CO2 transported, and a fixed-charge construction cost

fijd. Solving this problem with traditional mathematical programming approaches

is challenging for realistic instances because it requires a large number of discrete

variables. Indeed, Guisewite and Pardalos (1990) prove that a generic FC-NDP is

NP-hard. As a result, we propose a new method to guarantee the scalability of the

solution approach.

In this chapter, we propose a general formulation that admits general piecewise

linear cost functions and propose methods for the efficient computation of the optimal

network design. This chapter is organized as follows. In Section 3.2, we study the

current formulations for this problem, also introducing a generalized Multiple Choice

(MC) formulation. We focus on an alternative formulation to the problem in Section

3.2.3. Although this alternative formulation is computationally efficient, it reaches

its limits when solving large-scale instances. In Section 3.3, we introduce a general

method to provide relaxations of the problem. In Section 3.5 we develop an exact

algorithm based on a structural decomposition of the problem network. In Section

3.6, we investigate the performance of our approach and explore its limits by solving

random instances. Section 3.7 presents our final remarks.

3.2 Mathematical Programming Formulation

In this section, we study different mathematical formulations to solve the network

design problem. In Section 3.2.1, we explore the formulation for the CCS network

design problem from Middleton and Bielicki (2009). In Section 3.2.2, we formulate

the generalized problem by extending the standard formulation from Section 3.2.1.

In Section 3.2.3, we explore an alternative formulation for the problem which requires

less binary variables.

47

3.2.1 Constant Slope Cost Function

In this section, we introduce the formulation for the CCS pipeline network design

problem from Middleton and Bielicki (2009). Consider a network with node set N

in which S ⊆ N denotes the set of sources and R ⊆ N denotes the set of reservoirs.

Each source i ∈ S has a capacity given by qsi . The cost of capturing flow from source

i ∈ S consists of a fixed cost f si and a variable cost vsi . Similarly, each reservoir j ∈ R
has a capacity given by qrj . In this case, the cost of storing flow in such reservoir

consists of a fixed cost f rj and a variable cost vrj . For arc (i, j) ∈ A, we can build a

pipe of diameter d ∈ Dij, where Dij is the set of commercially available pipes that are

suitable to connect nodes i and j. Each pipe d ∈ Dij has a minimum and maximum

flow capacity denoted by lijd and uijd, respectively. The maximum capacity denotes

the maximum flow per time that can traverse the pipe, whereas the minimum capacity

denotes the required flow that needs to traverse the pipe to satisfy physical design

constraints (i.e., flow-velocity). The cost of transporting flow through arc (i, j) using

pipe d consists of a fixed cost fijd and a variable cost vij. We use decision variables xij

to represent the flow on arc (i, j) ∈ A, ai to denote the flow captured at source i ∈ S,

and bj to denote the flow stored in reservoir j ∈ R. Also, we use binary variables

yijd, si, and rj to denote whether or not we build pipe d on arc (i, j), capture flow at

source i, and store flow in reservoir j, respectively. The mixed-integer programming

48

model describing CCS is shown in (3.1)–(3.14).

min
∑
i∈S

(fsi si + vsi ai) +
∑
j∈R

(frj rj + vrj bj) +
∑

(i,j)∈A

∑
d∈Dij

fijdyijd +
∑

(i,j)∈A

vijxij (3.1)

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji − ai + bi = 0, ∀i ∈ N (3.2)

xij −
∑

d∈Dij

lijdyijd ≥ 0, ∀(i, j) ∈ A (3.3)

xij −
∑

d∈Dij

uijdyijd ≤ 0, ∀(i, j) ∈ A (3.4)

ai − qsi si ≤ 0, ∀i ∈ S (3.5)

bj − qrj rj ≤ 0, ∀j ∈ R (3.6)∑
i∈S

ai ≥ τ, (3.7)

∑
d∈D

yijd ≤ 1, ∀(i, j) ∈ A (3.8)

xij ≥ 0, ∀(i, j) ∈ A (3.9)

ai ≥ 0, ∀i ∈ S (3.10)

bj ≥ 0, ∀j ∈ R (3.11)

yijd ∈ {0, 1}, ∀(i, j) ∈ A, d ∈ Dij (3.12)

si ∈ {0, 1}, ∀i ∈ S (3.13)

rj ∈ {0, 1}, ∀j ∈ R (3.14)

Constraints (3.2) impose flow-balance conditions for each node, such that the inflow

and the amount captured by the sources (if any) is consistent with the outflow and the

amount stored by the reservoirs (if any). Because the binary variable yijd equals one

when pipe d is selected for arc (i, j), Constraints (3.3) and (3.4) limit the minimum

and maximum possible flow on arc (i, j) based on the selected minimum and maximum

capacity of pipe d. Similarly, Constraints (3.5) and (3.6) limit the maximum flow that

can be captured at source i ∈ S and the maximum flow that can be stored at reservoir

j ∈ R based on their capacity. Constraint (3.7) ensures that we capture at least the

target amount (τ) of CO2 across all sources in the network. Constraints (3.8) limit

49

the number of pipes to be utilized for transportation on arc (i, j) to be at most one.

Constraints (3.9)–(3.14) enforce the nature of the decision variables. The objective

function in (3.1) seeks to minimize the total cost of network construction and flow

transportation through the network. The costs of capturing and storing flows at

sources and reservoirs consist of a fixed cost plus a variable cost based on flow. Each

pipe utilization also incurs in a fixed construction cost and a variable operation cost

based on the pipe utilization (flow). This formulation assumes that the variable cost

of operating each pipe depends only on the amount of flow but not on the selected

pipe. In other words, the cost of pushing an extra unit of flow through an arc is the

same regardless of the pipe diameter used.

3.2.2 Multiple Choice Formulation

We first investigate a more general problem than the formulation in (3.1)–(3.14).

In this problem, which we call Generalized Carbon Capture and Storage problem

(GCCS), we assume a nondecreasing cost structure as a function of the pipe selec-

tion and utilization. This generalization enables us to solve instances of the problem

that involve pipe cost functions with diameter-specific variable cost (i.e., variable

slope), which implies that the variable cost of transporting CO2 varies depending on

the chosen pipe and its level of utilization. Moreover, a general nondecreasing func-

tion admits multiple realistic cost structures, including piecewise linear discontinuous

forms or any piecewise linear approximation of a continuous cost function. Figure 3.1

shows three examples of possible nondecreasing cost functions that our models can

handle. In this figure, each piecewise linear segment corresponds to a pipe with its

corresponding fixed and variable costs. Next, we formulate the GCCS problem by

extending the standard formulation (3.1)–(3.14).

50

Flow

C
os
t

(a)

Flow

C
os
t

(b)

Flow

C
os
t

(c)

Figure 3.1: Example Nondecreasing Cost Functions

In this formulation, the flow transported through pipe d on arc (i, j) is indicated by

variable xijd, where the additional index ‘d’ allows distinct variable cost for different

pipes inDij, denoted by vijd. Constraints (3.5)–(3.8), (3.10)–(3.14), and (3.16)–(3.19),

and the objective function in (3.15) describe the GCCS problem.

51

min
∑
i∈S

(fsi si + vsi ai) +
∑
j∈R

(frj rj + vrj bj) +
∑

(i,j)∈A

∑
d∈Dij

(fijdyijd + vijdxijd) (3.15)

∑
j:(i,j)∈A

∑
d∈Dij

xijd −
∑

j:(j,i)∈A

∑
d∈Dij

xjid − ai + bi = 0, ∀i ∈ N (3.16)

xijd − lijdyijd ≥ 0, ∀(i, j) ∈ A, d ∈ Dij (3.17)

xijd − uijdyijd ≤ 0, ∀(i, j) ∈ A, d ∈ Dij (3.18)

xijd ≥ 0, ∀(i, j) ∈ A, d ∈ Dij (3.19)

Constraints (3.16) enforce the balance of flow at each node utilizing the new x-

variables. Constraints (3.17) and (3.18) impose a maximum and minimum flow al-

lowed on each pipe. In these constraints, we formulate pipe-specific conditions since

we have a pipe-based flow. Constraints (3.19) enforce the non-negativity of the new

flow variable. The objective function in (3.15) is to minimize the total network con-

struction and flow transportation costs considering different variable costs for each

pipe.

3.2.3 Logarithmic Formulation

We explore an alternative formulation to GCCS, that requires less binary variables

and potentially reduces solution times. This is based on the observation that some

minimization problems with piecewise linear convex objective function can be modeled

as linear programs. However, when such cost structure is combined with a fixed-cost

feature, like in classic network design problems, we need to use a set of binary variables

to determine whether to utilize network elements (e.g., pipes). This is because the

total cost of not using the network element must be equal to zero, whereas any positive

level of utilization incurs in a positive cost. For a non-convex piecewise linear cost

function, for instance that in Figure 3.1c, Formulation (3.1)–(3.14) uses a binary

variable for each segment of the cost function to help accounting for the total cost of

operating the chosen pipe.

52

There are different formulation strategies for non-convex piecewise linear cost

functions. Vielma et al. (2010) investigate numerous MIP models for these functions.

In particular, they propose a Disaggregated Convex Combination (DCC) model and a

Convex Combination (CC) model in addition to a Multiple Choice (MC) formulation.

The first two methods utilize the convex combination of break points of each segment

in the cost function. Formally, let D be the set of line segments in a non-convex

piecewise linear function. For a given segment d ∈ D, its endpoints in the function

domain are defined by the set P (d) and P (D) denotes the set of all break points.

Assuming that we are dealing with a single arc, the flow variable in the DCC model

is defined as in (3.20). To illustrate this structure, suppose that a break point p is

shared between line segments d3 and d4, as shown in Figure 3.1c. In this case, two

continuous variables, λd3,p and λd4,p, are related to break point p. These continuous

variables are defined between zero and one, such that the summation of these variables

for consecutive endpoints equals one for exactly one segment and the rest take the

value of zero. All of such conditions can be achieved through linear constraints.

Equation (3.21) provides the flow formulation for the CC model. In this equation,

λp is a continuous variable between zero and one related to break point p. In contrast

to the DCC model, the CC model has only one continuous variable for each break

point which leads to a formulation with less continuous variables. Similar to DCC,

only two variables representing consecutive breakpoints can be positive and their sum

must be equal to one.

x =
∑
d∈D

∑
p∈P (d)

λd,pp (3.20)

x =
∑

p∈P (D)

λpp (3.21)

The problem of minimizing a piecewise linear function has strong connections to

SOS2 variables. Extending the ideas in Vielma et al. (2010), it is possible to use a

53

logarithmic number of binary variables to model a set of disjoint conditions, when

exactly one needs to be satisfied in any problem. Now, we introduce the logarithmic

DCC model and describe the logic behind this technique. Suppose that we define

the flow variable x using (3.20). To ensure that only continuous variables related

to endpoints of exactly one line segment can take non-zero values, we define a set

of binary variables in the following fashion. Each line segment is labeled with an

integer number between 0 and |D| − 1. Each of these numbers can be written using

their binary representation, with each digit corresponding to a binary variable yk

(k ∈ 1, . . . , log2 |D|). Using this representation, a combination of zero and one values

of the y-variables will uniquely produce the integer number identifying a line segment.

We define D1
k as the set of line segments with a value of one in the k-th digit of their

binary representation. Similarly, we define D0
k as the set of line segments with a value

zero in the k-th digit of their binary representation. Constraint (3.22) defines the flow

through an arc with multiple pipe choices available, where the flow is based on the

convex combination of endpoints of the line segments (i.e., minimum and maximum

capacity of the pipe). Constraints (3.23) and (3.24) are the non-negativity and the

convexity constraints in the flow representation, respectively. The binary nature of

the y-variables is enforced by Constraints (3.27). Constraints (3.25) and (3.26) relate

the binary reformulation with the λ-values used for each pipe. Note that (3.25) and

(3.26) guarantee that the selected endpoints are selected because the solution of the

54

y-variables will uniquely identify a segment.

∑
d∈D

∑
p∈P (d)

λd,pp = x (3.22)

λd,p ≥ 0, ∀d ∈ D, p ∈ P (d) (3.23)∑
d∈D

∑
p∈P (d)

λd,pp = 1 (3.24)

∑
d∈D1

k

∑
p∈P (d)

λd,p ≤ yk, ∀k ∈ {1, . . . , log|D|} (3.25)

∑
d∈D0

k

∑
p∈P (d)

λd,p ≤ 1− yk, ∀k ∈ {1, . . . , log|D|} (3.26)

yk ∈ {0, 1}, ∀k ∈ {1, . . . , log|D|} (3.27)

We illustrate the operation of Constraints (3.25) and (3.26) using a piecewise linear

cost function with four line segments. In this case, we need two digits to represent

all the function’s segments because log2 |D| = 2. In this example, Constraints (3.25)

and (3.26) are given by

(λ31 + λ32) + (λ41 + λ42) ≤ y1

(λ21 + λ22) + (λ41 + λ42) ≤ y2

(λ11 + λ12) + (λ21 + λ22) ≤ 1− y1

(λ11 + λ12) + (λ31 + λ32) ≤ 1− y2,

55

which lead to the following cases based on the different combinations of y-values.

y1 = 0, y2 = 0 →


(λ31 + λ32) + (λ41 + λ42) ≤ 0

(λ21 + λ22) + (λ41 + λ42) ≤ 0

y1 = 0, y2 = 1 →


(λ31 + λ32) + (λ41 + λ42) ≤ 0

(λ11 + λ12) + (λ31 + λ32) ≤ 0

y1 = 1, y2 = 0 →


(λ11 + λ12) + (λ21 + λ22) ≤ 0

(λ21 + λ22) + (λ41 + λ42) ≤ 0

y1 = 1, y2 = 1 →


(λ11 + λ12) + (λ21 + λ22) ≤ 0

(λ11 + λ12) + (λ31 + λ32) ≤ 0.

These constraints ensure that exactly one of the line segments has non-zero λ-

coefficients. Constraint (3.24) guarantees that the corresponding continuous λ-

variables sum to one with all other continuous variables equal to zero. The following

are all possible cases for the λ-values when combining (3.24) with (3.25) and (3.26)

for this example.

y1 = 0, y2 = 0 → λ11 + λ12 = 1, λ21 = λ22 = λ31 = λ32 = λ41 = λ42 = 0

y1 = 0, y2 = 1 → λ21 + λ22 = 1, λ11 = λ12 = λ31 = λ32 = λ41 = λ42 = 0

y1 = 1, y2 = 0 → λ31 + λ32 = 1, λ11 = λ12 = λ21 = λ22 = λ41 = λ42 = 0

y1 = 1, y2 = 1 → λ41 + λ42 = 1, λ11 = λ12 = λ21 = λ22 = λ31 = λ32 = 0.

Computational results in Vielma et al. (2010) suggest that for minimizing a piecewise

linear function, the size of the problem (number of line segments) highly affects the

performance of each modeling technique. According to their results, the MC model

works slightly better than the logarithmic DCC for problems with a small number

of segments, whereas the logarithmic DCC shows the best performance for larger

instances of the problem. Based on these experiments, we choose the logarithmic

DCC modeling technique for our problem formulation. However, we will compare its

56

performance with MC. To this end, we first adapt the logarithmic DCC formulation to

the CCS problem by adding the new set of y-variables and by including an indicator

variable to represent whether an arc is used in the optimal design.

In the logarithmic DCC formulation, the summation of continuous λ-variables is

equal to one, meaning that exactly one line segment is selected. To reformulate the

GCCS using the logarithmic DCC formulation, we first need to model the possibility

of not choosing any pipe for an arc. In this case, we add a line segment at the origin

of the cost function, for each (i, j) ∈ A. This is illustrated in the piecewise linear

cost functions for arc (i, j) in Figure 3.1. This extra line segment plays the role of

an indicator variable because choosing non-zero values for the continuous λ-variables

in this segment is similar to choosing a zero flow with zero cost. Using this method,

GCCS needs less binary variables since their number depends on the logarithm of the

number of line segments (i.e., the number of pipes).

To formulate GCCS, we define variable λijdp as the continuous weight of endpoint

p for line segment d on arc (i, j). We also introduce binary variables yijk to repre-

sent each digit of the binary representation of the cost function for arc (i, j). The

formulation for GCCS using the logarithmic reformulation consists of minimizing the

objective function in (3.28) subject to Constraints (3.5)–(3.7), (3.10), (3.11), (3.13),

(3.14), and (3.29)–(3.34).

min
∑
i∈S

(f
s
i si + v

s
i ai) +

∑
j∈R

(f
r
j rj + v

r
j bj) +

∑
(i,j)∈A

∑
d∈D

∑
p∈P (d)

λ
i,j
dp

(vijdpij + fijd) (3.28)

s.t.
∑

j:(i,j)∈A

∑
d∈D

∑
p∈P (d)

λ
ij
dp
pij −

∑
j:(j,i)∈A

∑
d∈D

∑
p∈P (d)

λ
ij
dp
pij − ai + bi = 0, ∀i ∈ N (3.29)

∑
d∈D

∑
p∈P (d)

λ
ij
dp

= 1, ∀(i, j) ∈ A (3.30)

∑
d∈D1

k

∑
p∈P (d)

λ
ij
dp
≤ yijk, ∀k ∈ {1, . . . , log|D|}, (i, j) ∈ A (3.31)

∑
d∈D0

k

∑
p∈P (d)

λ
ij
dp
≤ 1− yijk, ∀k ∈ {1, . . . , log|D|}, (i, j) ∈ A (3.32)

λ
ij
dp
≥ 0, ∀d ∈ D, v ∈ V (d) (3.33)

yijk ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ {1, . . . , log|D|} (3.34)

57

Constraints (3.29) are the flow balance constraints considering that the flow is now

the convex combination of endpoints within each line segments. Constraints (3.30)-

(3.32) are the reformulation of Constraints (3.24)-(3.26) using the logarithmic DCC

formulation. The nature of continuous and binary variables is enforced in Constraints

(3.33) and (3.34).

3.3 Cost Function Underestimation

In this section, we propose an approach to construct an underestimator for a piece-

wise linear cost function that further reduces the number of binary variables needed.

This underestimator serves as a lower bound on the total cost and will be embedded

into our proposed solution algorithm. We assume that the cost function is nonde-

creasing, meaning that the total cost (fixed and variable) always increases if more

flow is pushed through the arc. We assume no other particular property of the cost

function, which implies that convex, concave, or neither functions are allowed. Solv-

ing a fixed-charge network design problem with such general cost function (nonconvex

in general) is difficult because it requires several binary variables to describe the cost

(e.g., using (3.1)–(3.14)). Figure 3.2a illustrates a special type of nondecreasing cost

function. The convexity of this function allows the total cost to be modeled using only

one binary variable, which also plays the role of indicating whether the arc is chosen

to have positive flow. However, this is not the case for general functions, which means

that producing underestimators requires some extra mathematical development. In

particular, we will discuss the formulation of convex underestimator functions for the

MC and logarithmic formulations. The goal of such analysis is to find cost approxi-

mations requiring less binary variables than the formulations describing the original

cost structure.

58

Flow

C
os
t

(a)

Flow

C
os
t

(b)

Flow

C
os
t

(c)

Figure 3.2: Convex Underestimations to the Cost Function

Our approach uses piecewise linear continuous functions to create convex under-

estimators to any nondecreasing piecewise linear function. Such underestimators are

useful because they are tractable and provide a lower bound on the total cost. For ex-

ample, the function shown as a dashed line in Figure 3.2b is a convex underestimator

to the piecewise linear function shown in solid lines. In this case, this underestimator

consists of a single line segment, which allows us to approximate the cost function

using only one binary variable. However, this cost underestimation considerably un-

59

derestimates the total cost in some parts of the flow domain due to the few number of

line segments. Now, consider the underestimation shown in Figure 3.2c, which con-

sists of three line segments. This cost function provides a tighter and more accurate

underestimation to the function in solid lines. Similarly, this convex underestimator

only requires one binary variable to approximate the cost.

3.4 Generalized Formulation

Using the results from Section 3.3, we introduce a strategy to approximate non-

decreasing piecewise linear cost functions. To motivate this strategy, consider the

function shown in Figure 3.3, which consists of five line segments. In our construc-

tion, we use the term region to denote a set of consecutive intervals in the function’s

domain. Let Rij be the set of all regions and Cij be the index set of regions in

which the cost function for arc (i, j) ∈ A is approximated by convex underestimator

functions. Similarly, let C̄ij be the set of indices of regions containing only one seg-

ment (and with an exact cost representation). The domain of the function in Figure

3.3 contains three regions (R1, R2, and R3) out of which two, R1 = {d̃1, d̃2} and

R3 = {d̃4}, are the support of a piecewise linear convex underestimator. The ele-

ments of Rij whose indices are not in Cij contain single line segments that represent

the cost function exactly (e.g., d̃3). In this example, Cij = {1, 3} and C̄ij = {2}.

3.4.1 Multiple Choice Formulation

We modify the MC formulation to include the case in which the piecewise linear

cost functions describing the arc costs include convex underestimator regions. If a

line segment does not belong to any region in C (i.e., it is not approximated by

a convex underestimator), then the formulation includes a binary variable for this

segment and the cost in this segment is modeled as in the third term of (3.15).

60

Flow
C
os
t

Figure 3.3: Line Segments and Convex Underestimators in the Cost Function

Otherwise, we use the endpoints in the convex region containing such segment in the

formulation. To model the objective function, we introduce the continuous variable

ekij that represents the total cost of any flow in region k ∈ Cij of arc (i, j). This

continuous variable is equal to the highest cost among the line segments in the convex

region for any given flow value. Because of convexity and the minimization nature

of the objective function, this value is the same as the cost of the given flow using

the convex underestimator function. Using these elements, the GCCS problem under

the MC model consists of Constraints (3.5)–(3.8), (3.10)–(3.14), (3.16)–(3.19), (3.36),

and (3.37), and objective function (3.35).

min
∑
i∈S

(fsi si + vsi ai) +
∑
j∈R

(frj rj + vrj bj) +
∑

(i,j)∈A

∑
k∈C̄ij

∑
d̃∈Rijk

(fijd̃yijk + vijd̃xijk) +
∑

(i,j)∈A

∑
k∈Cij

ekij (3.35)

s.t. ekij ≥ fijd̃yijk + vijd̃xijk, ∀(i, j) ∈ A, k ∈ Cij , d̃ ∈ Rijk (3.36)

ekij ≥ 0, ∀(i, j) ∈ A, k ∈ Cij (3.37)

The term in the objective function (3.35) related to the construction and operation

of pipes is now decomposed into two terms. The first term is the same as in (3.15) for

each pipe not in C. The second term contains the summation of the ekij variables to de-

61

fine the cost value of the regions in C across all arcs. Constraints (3.36) together with

the objective function linearize the expressions ekij = maxd̃∈Rijk{fijd̃yijk+vijd̃xijk}, for

each (i, j) ∈ A and k ∈ Cij. In other words, they define the cost function of the re-

gions in C given by the maximum cost among line segments in region Rijk for any

given flow level. Note that the x-variables are still defined for each region, but the

corresponding cost is calculated by the appropriate line segment within the region

using (3.36). Constraints (3.37) are the non-negativity constraints for the e-variables.

3.4.2 Logarithmic Formulation

We reformulate the logarithmic formulation from Section 3.2.3 using the same

ideas from Section 3.4.1 and utilizing a continuous variable ekij to define the cost in

the region Rijk of arc (i, j). The GCCS for logarithmic DCC consists of Constraints

(3.5)–(3.7), (3.10), (3.11), (3.13), (3.14), (3.29)–(3.34), (3.39), (3.40), and objective

function (3.38).

min
∑
i∈S

(fsi si + vsi ai) +
∑
j∈R

(frj rj + vrj bj) +
∑

(i,j)∈A

∑
k∈C̄ij

∑
d̃∈Rijk

∑
p∈P (k)

λi,jk,p(vijd̃pij + fijd̃) +
∑

(i,j)∈A

∑
k∈Cij

ekij

(3.38)

s.t. ekij ≥
∑

p∈P (k)

λi,jk,p(vijd̃p+ fijd̃), ∀(i, j) ∈ A,k ∈ Cij , d̃ ∈ Rijk (3.39)

ekij ≥ 0, ∀(i, j) ∈ A, k ∈ Cij (3.40)

Constraints (3.39) enforce the definition of the cost function value of the regions in

C. The non-negativity nature of e-variables is enforced by (3.40). In this case, both

λ- and y-variables are defined for each region in C and the cost of the appropriate

line segment is calculated using (3.39).

62

3.5 Progressive Cost Approximation

In this section, we propose an algorithm to solve the GCCS problem, by decom-

posing it into smaller subproblems that are iteratively solved until an optimal solution

for the whole problem is achieved. For this purpose, we define two types of subprob-

lems. The first subproblem is a relaxation of the original problem, hence providing

lower bound values to the optimal objective function. By tightening these relaxations,

we ensure that the lower bound objective value is nondecreasing through the algo-

rithm’s iterations. Similarly, we define a restricted version of the original problem

that provides upper bound values to the optimal value of the original problem.

To describe our algorithm, consider an instance of the GCCS problem with arc set

given by A. Set D is defined as the union of sets Dij, ∀(i, j) ∈ A, so it contains all the

line segments in any arc cost function. Similarly, sets R, C, and C̄ are the union of

sets Rij, Cij, and C̄ij respectively. We refer to instance of GCCS as GCCS(R,C, C̄).

The optimal value to such instance is denoted by z(R,C, C̄).

3.5.1 Lower Bound Problem

We define the problem GCCS(Ř, Č, ˇ̄C) as a lower bound subproblem with a cost

function that consists of Řij regions for any given arc (i, j). Set Čij includes indices

of regions in which the cost function for arc (i, j) ∈ A is approximated by convex

underestimator functions. Similarly, set ˇ̄Cij includes indices of regions containing

only one segment (and with an exact cost representation).

Proposition 8 Consider GCCS(R,C, C̄) as a GCCS instance with piecewise linear

cost functions (original problem) such that Rij = {d1, ..., d|Dij |}, Cij = ∅, and C̄ij =

{1, ..., |Dij|} for arc (i, j) ∈ A. Let GCCS(Ř, Č, ˇ̄C) be an underestimated problem,

then z(R,C, C̄) ≥ z(Ř, Č, ˇ̄C).

63

Proof. First, note that for any given arc (i, j) flow domain in the line segment set

Řij is the same as in the line segment set Rij. Consequently, any feasible flow for

GCCS(Ř, Č, ˇ̄C) is also feasible for GCCS(R,C, C̄) and vice versa. Second, Řij con-

sists of line segments that are exact (regions with indices in ˇ̄Cij) and underestimators

of Rij (regions with indices in Čij). Hence, for any flow in the underestimated prob-

lem the cost of construction and transportation is less than or equal to the cost of

that flow in the original problem. We conclude that z(R,C, C̄) ≥ z(Ř, Č, ˇ̄C). �

3.5.2 Upper Bound Problem

Similar to Section 3.5.1, we define the problem GCCS(R̂, Ĉ, ˆ̄C) as an upper bound

subproblem. That is, R̂ij ⊆ {d1, ..., d|Dij |}, Ĉij = ∅, and ˆ̄Cij ⊆ {1, ..., |Dij|} for arc

(i, j).

Proposition 9 Consider GCCS(R,C, C̄) as a GCCS instance with piecewise linear

cost functions (original problem) such that Rij = {d1, ..., d|Dij |}, Cij = ∅, and C̄ij =

{1, ..., |Dij|} for arc (i, j) ∈ A. Let GCCS(R̂, Ĉ, ˆ̄C) be a restricted problem with

R̂ij ⊆ {d1, ..., d|Dij |}, Ĉij = ∅, and ˆ̄Cij ⊆ {1, ..., |Dij|} for arc (i, j), then z(R̂, Ĉ, ˆ̄C) ≥

z(R,C, C̄).

Proof. First, note that for any arc (i, j), the domain of flow in the line segment

set R̂ij is a subset of the domain in the exact line segment set Rij. Consequently,

any feasible flow for GCCS(R̂, Ĉ, ˆ̄C) is also feasible for GCCS(R,C, C̄). Second, for

any arc (i, j), the line segment set R̂ij is a subset of exact line segments Rij. As a

result, for any feasible flow for in the restricted problem the cost of construction and

transportation is equal to the cost of that flow in the original problem. We conclude

that z(R̂, Ĉ, ˆ̄C) ≥ z(R,C, C̄). �

64

3.5.3 Solution Algorithm

The size of the introduced formulations to solve the GCCS problem makes them

not competitive for large-scale instances using commercial solvers. The MC formula-

tion is not computationally efficient for larger class of problems because the size of

the problem quickly grows with the number of arcs |A| and the number of pipes |D|.

On the contrary, using the logarithmic formulation for GCCS, reduces the number of

binary variables to model the pipe selection decision from |A||D| to |A|log|D|. Which

still may be quite substantial if the number of pipes and arcs is large.

In this Section, we provide a progressive cost approximation algorithm that can

further enhance the computational advantages provided by the logarithmic formu-

lation, allowing us to solve large-scale instances of the problem by using only the

relevant line segments in the cost function. We introduce two subroutines that help

initialize the cost underestimators and their update along the iterations of the pro-

gressive cost approximation algorithm. For a given arc (i, j), Algorithm 3 generates a

convex cost underestimation for a subset of the function domain. The input of Algo-

rithm 3 is an instance of GCCS(R,C, C̄) along with a set of regions in the function

domain Rijk for a given arc (i, j) (Line 1). In Algorithm 3, we iteratively generate

the tightest possible convex underestimator for the given region. In Line 3, we start

with the leftmost point of the function domain and generate a first underestimator

consisting of a line with the highest possible slope. In Lines 4 and 5, Algorithm 3 adds

such line segment to the convex region and repeats the process with the rightmost

point in the support of the current line. We continue this process until the whole

domain is covered by a convex underestimator.

Algorithm 4 updates the cost underestimations inGCCS(Ř, Č, ˇ̄C) given a solution

x̄ = (xij)(i,j)∈A. In Line 3, we find the exact cost segment db that contains the flow in

65

Algorithm 3 : Cost Underestimation

1: Consider Rijk = { dm, ..., dn} given for arc (i, j)

2: Set R̄ = ∅

3: Start with leftmost point in the flow domain of line segments in region Rijk and set this point

as xcurrent

4: At point xcurrent, find the underestimator line segment with highest slope and denote the inter-

section of this line dnew with line segments in region Rijk as updated xcurrent

5: Add dnew to R̄

6: if xcurrent 6= rightmost point in the flow domain of line segments in region Rijk then

7: Go to Step 4

8: Return Rijk ← R̄

its domain for all the arcs with positive flow. In Line 4, we redefine Rijk and in Lines

5 and 6 we run the underestimation algorithm for line segments in Rijk on the left

and right side of line segment db, when applicable this process results in an enhanced

underestimation of the exact cost function.

Algorithm 4 : Cost Underestimation Update

1: Consider Ř, Č, ˇ̄C and given solution x̄. For each arc (i, j), x̄ij is the flow on that arc which

belongs to convex region Rijk ∈ Rij

2: for (i, j) ∈ A s.t. x̄ij 6= 0 do

3: Find exact line segments {da, ..., db, ..., dc} ⊆ Dij that have the same flow domain as line

segments in Rijk. Let db be the line segment that contains flow x̄ij in its domain

4: Redefine Rijk ← {db}

5: For nonempty {da, ..., db−1} perform underestimation through Algorithm 3 to obtain Rl

6: For nonempty {db+1, ..., dc} perform underestimation through Algorithm 3 to obtain Rr

7: Add Rl and Rr to Rij and update indices sets Cij and C̄ij accordingly

Algorithm 5 describes the proposed progressive cost approximation algorithm to

solve GCCS. In Lines 1 and 2 of Algorithm 5, we initialize Ř by using the convex

underestimators of the exact cost function in each arc. In Line 7, we solve the lower

66

bound problem based on the underestimated cost function with regions set Ř. In Line

8, we update the cost function underestimators for the next lower bound subproblem.

The optimal solution makes it possible to construct an upper bound subproblem’s

cost structure in Line 10.

Algorithm 5 : Progressive Cost Approximation Algorithm for GCCS

1: For any given arc (i, j), let Řij = {Řij1, Řij2}, Č = {2}, ˇ̄C = {1}, Řij1 = {d1}, and Řij2 =

{d2, ..., d|Dij |} is constructed in Step 2

2: Perform underestimation on Řij2 for each arc (i, j) through Algorithm 3

3: Let R̂ = Ĉ = ˆ̄C = ∅

4: Set UB0 =∞, LB0 = 0, and set counter i = 0

5: while UBi > LBi do

6: Set i = i+ 1

7: Solve GCCS(Ř, Č, ˇ̄C) to obtain an optimal solution x̌i, optimal value ži. Set LBi = ži

8: Update Ř, Č, ˇ̄C with solution x̌i through Algorithm 4

9: For each arc (i, j), find the line segment dk in Dij that contains the flow given by x̌i

10: Add {dk} to R̂ij and update ˆ̄C ←− ˆ̄C ∪ {|R̂ij |}

11: Solve GCCS(R̂, Ĉ, ˆ̄C) to obtain an optimal solution x̂i and optimal value ẑi

12: Set UBi = ẑi and update the incumbent solution x̄← x̂i and objective z̄ = UBi

13: if UBi = LBi then

14: Incumbent x̄ is optimal with objective z̄. Go to Step 15

15: Return x̄ and z̄

Note that the update in the lower bound problem in Line 8 results in tighter cost

underestimators, thus LBi+1 ≥ LBi. Also, since the sets of each line segment for

upper bound problem iteration i are subsets of those sets in the next iteration, i+ 1,

we conclude that UBi ≥ UBi+1. Figure 3.4 illustrates the operation of Algorithm

5, emphasizing the progress of the underestimations across iterations. The blue lines

are the line segments in Dij, while the red lines are the current underestimator and

the green lines are the updated underestimator at each iteration.

67

C
os

t

Flow

Exact cost function

Old underestimator

New underestimator

(a)

C
os

t

Flow

Exact cost function

Old underestimator

New underestimator

(b)

C
os

t

Flow

Exact cost function

Old underestimator

New underestimator

(c)

C
os

t

Flow

Exact cost function

Old underestimator

New underestimator

(d)

Figure 3.4: Updated Underestimations of Cost Functions

3.6 Computational Results

In this section, we illustrate and examine the performance of our proposed ap-

proaches to solve GCCS on real and randomly generated networks. To perform our

computations, we use Python with CPLEX 12.7 as optimization solver on a computer

with an Intel Core i7 2.40 GHz processor and 8.0 GB RAM. We set a solution time

limit of 1 hour in all the experiments.

68

3.6.1 Illustrative Example

We use a pipeline candidate network in the region of Alberta (Canada), consisting

of 72 nodes, 200 arcs, 22 sources, and 16 reservoir candidates (Middleton and Brandt,

2013). To generate random cost structures for each arc, we discretize the domain

(flow range) of the cost function for each arc into 10 disjoint segments that are evenly

distributed. We set the fixed cost of the first segment in the range [1, 10]. The variable

cost of each cost segment is chosen using a uniform distribution in the range [0, 1]

and the step size between line segments is chosen in range [0, 0.5]. These parameters

fully determine the structure of the cost function. Also, the length of each arc scales

the fixed cost and variable cost parameters.

Figure 3.5 illustrates the optimal solution of the GCCS problem for Alberta’s

pipeline network with randomly generated pipe cost functions. In this figure, sources

and sinks that are not utilized in the optimal solution are shown with small circles.

Large circles represent sources and sinks that are chosen in the optimal solution. We

define τ̄ as the optimal value of the maximum flow problem solved for a network of

given capacities for each source, sink, and arc. As expected, increasing amount of

target flow makes the optimal solution less sparse.

3.6.2 Random Network Instances

Section 3.6.1 focuses on illustrating solutions of GCCS for some instances out

of the same candidate network. In this section, we study the performance of our

approach on randomly generated candidate networks. Section 3.6.3 describes a pro-

cess to generate such instances and Section 3.6.4 reports the results and performance

analysis.

69

Selected pipe Selected sources and sinks

(a) τ = 0.3× τ̄

Selected pipe Selected sources and sinks

(b) τ = 0.6× τ̄

Selected pipe Selected sources and sinks

(c) τ = 0.9× τ̄

Figure 3.5: Effect of Target Flow on the Solution in Alberta Pipeline Network

3.6.3 Random Instance Generation

We create layered networks to control the number of sources, sinks, intermediate

nodes and arcs. These layered networks also provide many alternative flow routes,

testing the limits of our progressive cost approximation approach as many iterations

may be needed to enhance underestimators of the cost functions. We generate layered

networks with n layers and m nodes per layer, resulting in |N | = m×n nodes. All m

nodes in the first layer are source nodes and allm nodes in the last layer are sink nodes,

remaining nodes of the network are considered as intermediate (or transshipment)

nodes. The capacities, fixed costs, and variable costs of each source and sink node

70

are generated using a uniform distribution in the range [0, 10]. We generate random

peicewise linear cost functions for each arc by discretizing the domain of the flow

for each arc into 10 disjoint segments that are evenly distributed. We pick the fixed

cost of the first segment in the range [1, 10]. The variable cost of each line segment is

chosen in the range [0, 1] and the step size between line segments is chosen in the range

[0, 0.5]. These two random parameters determine the fixed costs of other segments

in the cost function. Also, length of each arc scales the fixed cost and variable cost

parameters.

Nodes are located in a square of dimension 100 × 100 in such a way that layers

are evenly distributed. The position of each node within a layer is chosen randomly.

The i-th node (from top to bottom) of the j-th layer (from left to right) is connected

to the i-th node of layer j + 1 and to nodes i− 1 and i+ 1 in the same layer, in case

that such nodes exist. We generate networks with 5× 10, 10× 5, 5× 15, 10× 10, and

10 × 15 nodes. Figure 3.6 illustrates five random layered networks of different sizes.

The value of |D| represents the number of segments in the cost function of each arc

of the network. For the experiments, we set |D| ∈ {30, 60, 120}.

To generate the target flow to capture, we define τ̄ as the optimal value of the

maximum flow problem solved for a network of given capacities for each source, sink,

and arc. Using τ̄ , we set the value of the target flow τ ∈ {0.3 × τ̄ , 0.6 × τ̄ , 0.9 × τ̄}.

Figure 3.7 illustrates optimal configurations of GCCS problems for an instance of size

(|N |, |A|) = (10 × 10, 270) and various target flow values. As expected, increasing

the amount of target flow necessitates the construction of more arcs and utilizing

more sources and sinks in the network. Because the sparsity of the optimal solution

decreases with higher τ values, we expect such instances to be more challenging for

the Progressive Cost Approximation Algorithm (Algorithm 5). For each combination

of |N |, |D|, and τ , we create 5 random replications. These replications help averaging

71

(a) (|N |, |A|) = (5× 10, 125) (b) (|N |, |A|) = (10× 5, 130)

(c) (|N |, |A|) = (5× 15, 190) (d) (|N |, |A|) = (10× 10, 270)

(e) (|N |, |A|) = (10× 15, 410)

Figure 3.6: Random Networks with Different Layer Size and Number of Layers

the performance metrics and provide more confidence for the computational analysis.

72

Selected pipe Selected sources and sinks

(a) τ = 0.3× τ̄

Selected pipe Selected sources and sinks

(b) τ = 0.6× τ̄

Selected pipe Selected sources and sinks

(c) τ = 0.9× τ̄

Figure 3.7: Effect of Target Flow on the Solution in Random Layered Networks

3.6.4 Results

We provide computational results and performance metric values in three tables.

Table 3.1 shows results for random networks with |N | equal to 5 × 10 and 10 × 5.

Table 3.2 shows results of experiments on networks with sizes 5 × 15 and 10 × 10.

Similarly, Table 3.3 provides performance metric values for experiments on networks

with 10 × 15 nodes. The first three columns in each table characterize the instance,

including |N |, |A|, |D|, and τ .

We test the performance of four methods on each random instance. We use MC to

denote the Multiple Choice MIP formulation and LOG refer to the Logarithmic MIP

73

model. We have two choices to solve each lower bound and upper bound subproblem

using the Progressive Cost Approximation Algorithm. The first choice is to utilize

MC method to solve each subproblem, which we refer to as the iterative MC method

or MC-P. The second choice is to solve subproblems using the LOG method, which

we refer to as LOG-P. The fourth column on each table indicates the method that we

have used to solve each replication. The column ‘time’ refers to the average solution

time (in seconds) for those instances solved within the time limit, whose number is

shown in parentheses. The column ‘gap’ represents the average optimality gap for

instances that time out. In methods MC-P and LOG-P, the gap is calculated as

100(UBi − LBi)/UBi, where i is the last iteration before timing out. Note that our

algorithmic approach is able to solve larger instances to optimality and, in case of

timing out, it provides smaller gaps compared with MC and LOG methods without

the progressive approximation. Column |y| reports number of binary variables in MC

and LOG model and in the last lower bound problem in MC-P and LOG-P methods.

When comparing LOG and MC, we observe that LOG results in problems with smaller

number of variables, leading to faster solution times and smaller optimality gaps across

instances. The number of iterations for each method is reported in column ‘i’.

74

Table 3.1: Computational Performance of the Proposed Approaches on 5 × 10 and

10× 5 Networks

(|N|, |A|) |D| τ time gap |y| i (|N|, |A|) |D| τ time gap |y| i

(5× 10, 125) 30 0.3 LOG-P 3 (5) - 149 3 (10× 5, 130) 30 0.3 LOG-P 59 (5) - 180 8

MC-P 2 (5) - 164 3 MC-P 13 (5) - 228 8

LOG 37 (5) - 635 - LOG 680 (5) - 670 -

MC 21 (5) - 3760 - MC 40 (5) - 3920 -

0.6 LOG-P 2 (5) - 149 3 0.6 LOG-P 245 (5) - 190 7

MC-P 2 (5) - 153 3 MC-P 32 (5) - 244 7

LOG 11 (5) - 635 - LOG 1317 (5) - 670 -

MC 6 (5) - 3760 - MC 605 (5) - 3920 -

0.9 LOG-P 61 (5) - 178 5 0.9 LOG-P 994 (4) 0.10 201 7

MC-P 34 (5) - 215 5 MC-P 109 (5) - 266 7

LOG 2031 (3) 1.59 635 - LOG 1523 (3) 1.00 670 -

MC 1781 (5) - 3760 - MC 1857 (3) 0.60 3920 -

60 0.3 LOG-P 3 (5) - 151 4 60 0.3 LOG-P 181 (5) - 193 10

MC-P 3 (5) - 167 4 MC-P 100 (5) - 272 10

LOG 56 (5) - 760 - LOG 1129 (5) - 800 -

MC 75 (5) - 7510 - MC 378 (5) - 7820 -

0.6 LOG-P 2 (5) - 150 3 0.6 LOG-P 229 (5) - 194 8

MC-P 1 (5) - 164 3 MC-P 151 (5) - 258 8

LOG 13 (5) - 760 - LOG 504 (5) - 800 -

MC 13 (5) - 7510 - MC 420 (2) 1.45 7820 -

0.9 LOG-P 71 (5) - 185 5 0.9 LOG-P 1614 (3) 0.13 218 8

MC-P 61 (5) - 223 5 MC-P 248 (3) 0.15 306 7

LOG 1485 (4) 1.78 760 - LOG 1922 (2) 0.47 800 -

MC 297 (2) 1.36 7510 - MC - 5.85 7820 -

120 0.3 LOG-P 4 (5) - 151 4 120 0.3 LOG-P 17 (5) - 175 7

MC-P 4 (5) - 168 4 MC-P 7 (5) - 222 7

LOG 60 (5) - 885 - LOG 625 (5) - 930 -

MC 778 (5) - 15010 - MC 794 (3) 3.66 15620 -

0.6 LOG-P 2 (5) - 149 3 0.6 LOG-P 897 (5) - 210 17

MC-P 1 (5) - 163 3 MC-P 732 (5) - 363 17

LOG 44 (5) - 885 - LOG 999 (3) 0.88 930 -

MC 142 (4) 0.12 15010 - MC - 7.59 15620 -

0.9 LOG-P 204 (5) - 191 8 0.9 LOG-P 454 (4) 0.00 212 7

MC-P 192 (5) - 254 8 MC-P 255 (3) 0.04 297 7

LOG 2350 (1) 0.35 885 - LOG 569 (1) 0.36 930 -

MC - 3.14 15010 - MC - 4.26 15620 -

75

Table 3.2: Computational Performance of the Proposed Approaches on 5 × 15 and

10× 10 Networks

(|N|, |A|) |D| τ time gap |y| i (|N|, |A|) |D| τ time gap |y| i

(5× 15, 190) 30 0.3 LOG-P 22 (5) - 229 4 (10× 10, 270) 30 0.3 LOG-P 111 (5) - 328 4

MC-P 11 (5) - 259 4 MC-P 29 (5) - 364 4

LOG 439 (5) - 960 - LOG 70 (5) - 1370 -

MC 92 (5) - 5710 - MC 254 (3) 1.39 8120 -

0.6 LOG-P 1407 (1) 0.15 266 4 0.6 LOG-P 3002 (1) 0.32 354 4

MC-P 592 (4) - 386 6 MC-P 1145 (4) 0.10 445 6

LOG - 1.65 960 - LOG - 1.55 1370 -

MC - 1.56 5710 - MC - 2.38 8120 -

0.9 LOG-P 1949 (2) - 295 6 0.9 LOG-P - 0.57 356 3

MC-P 379 (5) - 379 7 MC-P 1863 (2) 0.16 485 6

LOG 2331 (1) 1.59 960 - LOG - 2.75 1370 -

MC 3403 (1) - 5710 - MC - 3.27 8120 -

60 0.3 LOG-P 40 (5) - 241 5 60 0.3 LOG-P 312 (5) - 340 7

MC-P 45 (5) - 282 4 MC-P 482 (5) - 411 7

LOG 474 (5) - 1150 - LOG 1309 (5) - 1640 -

MC 719 (5) - 11410 - MC - 1.51 16220 -

0.6 LOG-P 1089 (1) 0.66 274 5 0.6 LOG-P - 0.25 372 5

MC-P 121 (1) 0.38 424 7 MC-P 389 (1) 0.28 475 6

LOG - 10.03 1150 - LOG - 1.09 1640 -

MC - 6.94 11410 - MC - 5.37 16220 -

0.9 LOG-P 3253 (5) - 297 7 0.9 LOG-P - 0.46 379 3

MC-P - 0.06 448 6 MC-P - 0.20 488 4

LOG - 0.25 1150 - LOG - 2.83 1640 -

MC - 1.98 11410 - MC - 4.03 16220 -

120 0.3 LOG-P 21 (5) - 233 5 120 0.3 LOG-P 71 (5) - 334 6

MC-P 23 (5) - 266 4 MC-P 80 (5) - 390 6

LOG 477 (5) - 1340 - LOG 960 (2) 0.22 1910 -

MC 2319 (3) 18.62 22810 - MC - 1.65 32420 -

0.6 LOG-P - 0.15 286 6 0.6 LOG-P 632 (2) 0.05 373 7

MC-P 137 (1) 0.08 462 8 MC-P 539 (2) 0.06 407 7

LOG - 6.91 1340 - LOG - 0.82 1910 -

MC - 6.50 22810 - MC - 2.35 32420 -

0.9 LOG-P 346 (5) - 270 7 0.9 LOG-P - 0.35 397 4

MC-P 403 (5) - 342 7 MC-P - 0.20 541 4

LOG - 0.80 1340 - LOG - 3.90 1910 -

MC - 6.18 22810 - MC - - 32420 -

76

Table 3.3: Computational Performance of the Proposed Approaches on 10× 15 Net-

works

(|N|, |A|) |D| τ time gap |y| i

(10× 15, 410) 30 0.3 LOG-P - 1.81 497 3

MC-P 1483 (1) 0.81 616 4

LOG - 11.23 2070 -

MC - 25.13 12320 -

0.6 LOG-P - 2.27 499 2

MC-P - 1.29 602 3

LOG - 6.78 2070 -

MC - 6.58 12320 -

0.9 LOG-P - 1.34 515 3

MC-P - 0.85 642 3

LOG - 5.71 2070 -

MC - 40.89 12320 -

60 0.3 LOG-P - 0.96 500 3

MC-P - 0.61 615 4

LOG - 7.38 2480 -

MC - 26.16 24620 -

0.6 LOG-P - 1.87 518 2

MC-P - 1.33 613 2

LOG - 6.22 2480 -

MC - 16.13 24620 -

0.9 LOG-P - 1.05 525 3

MC-P - 0.92 626 3

LOG - 11.47 2480 -

MC - 12.49 24620 -

120 0.3 LOG-P 1861 (1) 0.98 520 5

MC-P 3044 (2) 0.74 639 5

LOG - 5.58 2890 -

MC - - 49220 -

0.6 LOG-P - 1.22 534 3

MC-P - 0.92 695 4

LOG - 9.79 2890 -

MC - - 49220 -

0.9 LOG-P - 0.73 578 4

MC-P - 0.70 718 4

LOG - 4.00 2890 -

MC - - 49220 -

77

3.7 Concluding Remarks

In this chapter we investigated methodologies to design a fixed-charge network

with generalized piecewise linear cost function. We formulate this problem using a

mixed-integer program that is very challenging to solve. To improve running time, we

proposed an alternative formulation that needs less binary variables (logarithmic in

terms of number of cost function segments) leading to computational improvements.

The logarithmic formulation is still computationally challenging for larger candidate

networks. Hence, we introduced a decomposition algorithm that is promising and

takes advantage of sparsity of the optimal solution and underestimation of the cost

function. Computational experiments suggest that this technique scales well for larger

instances based on both number of line segments in cost function and number of arcs

in the network.

78

Chapter 4

PROBABILISTIC TRANSPORTATION PROBLEM WITH INDEPENDENT

STOCHASTIC DEMANDS

In this chapter, we leverage on the discoveries from previous chapters to solve a

class of Chance Constrained Stochastic Program (CCSP) with independent random

variables. This chapter is organized as follows. In Section 4.1, we provide a literature

review and introduce the problem to solve. Section 4.2 describes a method to find the

empirical probability distribution of the stochastic parameters. In Section 4.3, we dis-

cuss the mathematical programming formulation for the probabilistic transportation

problem with independent random demands. Because of the computational challenge

of solving the resulting MIP when the number of samples is large, Section 4.6 presents

an iterative refinement algorithm that is based on similar decomposition principles

outlined in previous chapters. We present our computational study in Section 4.7

and some final remarks in Section 4.8.

4.1 Introduction and Literature Review

In general, CCSPs are challenging to solve because of the functional form behind

the probabilistic constraints. Although convex deterministic equivalent reformula-

tions exist for some cases (e.g., normal distributions), CCSPs generally result in

nonconvex feasible regions. When the first two moments of the random variables

are available, approximation methods provide a mechanism to bypass the problem

complexity. However, there is no known bound about the quality of the solution in

such cases (Ben-Tal et al., 2009).

Sampling the random variables (and consequently the problem parameters) and

79

then embedding those samples into a deterministic problem is a viable alternative

to approximate the subjacent probability distributions. In this case, it is possible

to obtain statistical bounds based on a finite scenario sampling approach (Calafiore

and Campi, 2005; Campi and Garatti, 2011). A widespread approach based on the

finite scenario sampling strategy is the sample average approximation (Luedtke and

Ahmed, 2008a; Pagnoncelli et al., 2009). The advantage of this method is that the

solution converges to the optimal value of the probabilistic problem as the number

of samples increase. Moreover, it is possible to find a confidence interval of the

problem’s optimal value using this method (Nemirovski and Shapiro, 2006). Despite

its advantages, stochastically constrained optimization problems are very challenging

to solve using the sample average approximation method. Some approaches focus on

probabilistic constraints where the randomness occurs in the constraints’ right hand

sides (Dentcheva et al., 2000; Beraldi and Ruszczyński, 2002; Saxena et al., 2010;

Dentcheva and Martinez, 2013; Lejeune, 2012), while others focus on the case in

which the constraint matrix is random (Ruszczyński, 2002; Beraldi and Bruni, 2010;

Tanner and Ntaimo, 2010; Luedtke, 2010; Beraldi et al., 2012).

We are interested in solving a special class of CCSP having a joint probability

constraint with independent random variables in the right-hand side. This is shown

in Constraint (4.1), where the random variables correspond to the b̃-variables and

a,x ∈ Rq are deterministic. The value of 1 − α ∈ (0, 1) represents the degree of

conservatism in the solution. A large value of 1− α represents a risk-averse decision

maker that wants to satisfy the constraint with a high probability.

p

(
m∧
i=1

aTi x ≤ b̃i

)
= p(aT1 x ≤ b̃1, . . . , a

T
mx ≤ b̃m) ≥ 1− α. (4.1)

Assuming that the b̃-variables are independent, Constraint (4.1) can be reformu-

lated as Constraint (4.2). After applying the natural logarithm in both sides of the

80

inequality, Constraint (4.2) is equivalent to the linear constraint (4.3). The logarithm

transformation preserves the inequality because ln(x) is a nondecreasing function.

p(aT1 x ≤ b1)p(aT2 x ≤ b2) . . . p(aTmx ≤ bm) ≥ 1− α (4.2)

ln(p(aT1 x ≤ b1)) + ln(p(aT2 x ≤ b2)) + · · ·+ ln(p(aTmx ≤ bm)) ≥ ln(1− α) (4.3)

Note that Constraint (4.2) implies Constraint (4.4), and therefore it provides a

more conservative solution. Moreover, any vector x ∈ Rq satisfying Constraint (4.2)

also satisfies Constraints (4.4). If m = 1, then Constraint (4.1) reduces to a single

probabilistic constraint of the same type of (4.4).

p(aTi x ≤ bi) ≥ 1− α, ∀i ∈ {1, ...,m} (4.4)

In order to provide a mathematical programming formulation to approximate

Constraint (4.3), we first need to characterize the cumulative distribution function

(CDF) of each random variable. Section 4.2 presents an overview of the existing

estimation approaches of our interest.

4.2 Cumulative Distribution Function Estimation

There are several approaches to estimate the CDF of a random variable. We

follow a sampling based approach to construct the empirical distribution function as

an estimation of the true CDF. To do so, we use a step piecewise linear function

that facilitates the transformation of Constraint (4.3) into a set of linear constraints.

Assuming that b̂1, . . . , b̂n are n samples of the random variable of interest, then P (b̃ ≤

y) can be approximated by

F̂b̃(y) =
1

n

n∑
i=1

I(b̂i ≤ y), (4.5)

where I(·) is an indicator function that takes the value of 1 if the condition (·) is

satisfied, and is equal to 0 otherwise. For illustration, Figure 4.1 shows the logarithm

81

of the theoretical and approximated CDF functions, ln(Fb̃(y)) and ln(F̂b̃(y)), for a

beta distribution with parameters a = 5 and b = 1 and sample sizes n = 10, n = 100,

and n = 1000. As expected, the approximation better describes the theoretical CDF

function as the number of samples increase.

Logarithm of CDF

Approximation of logarithm of CDF

(a) n = 10

Logarithm of CDF

Approximation of logarithm of CDF

(b) n = 100

Logarithm of CDF

Approximation of logarithm of CDF

(c) n = 1000

Figure 4.1: Logarithm of the CDF (ln(Fb̃(y))) and Sample-based Approximation

(ln(F̂b̃(y))) of a Beta Distribution with a = 5 and b = 1

82

4.3 Mathematical Programming Formulation

In this section, we present a mathematical formulation for the probabilistic Trans-

portation problem with Independent Random Demands (TIRD) from Luedtke and

Ahmed (2008b). Consider a set of suppliers S and a set of customers C. In this

problem, each supplier i ∈ S has a shipping capacity Qi and the cost of sending a

unit of commodity from supplier i ∈ S to customer j ∈ C is cij. The random demand

of customer j ∈ C is represented by d̄j. The formulation of TIRD is shown in (4.6)–

(4.9), where decision variables xij represent the amount of commodity transported

from supplier i ∈ S to customer j ∈ C.

min
∑
i∈S

∑
j∈C

cijxij (4.6)

∑
j∈C

xij ≤ Qi, ∀i ∈ S (4.7)

P

{∧
j∈C

(∑
i∈S

xij ≥ d̄j

)}
≥ 1− ε (4.8)

xij ≥ 0, ∀i ∈ S, j ∈ C (4.9)

The objective function (4.6) is to minimize the total shipping cost. Constraints

(4.7) limit the amount of commodity sent from each supplier to their capacity and

Constraint (4.7) enforces a joint probabilistic constraint in which the demand of all

customers must the satisfied with a probability of at least 1 − ε. Note that (4.8)

implies the simpler constraints P
(∑

i∈S xij ≥ d̄j
)
≥ 1 − ε, ∀j ∈ C. Constraints

(4.9) enforce the non-negative nature of the x-variables.

Assuming that the demands are independent random variables, we can rewrite

Constraint (4.8) as
∏

j∈C P
{∑

i∈S xij ≥ d̄j
}
≥ 1 − ε, which can be reformulated

as
∑

j∈C lnP
{∑

i∈S xij ≥ d̄j
}
≥ ln(1 − ε) because the logarithm is a nondecreasing

function, 0 < P
{∑

i∈S xij ≥ d̄j
}
≤ 1,∀j ∈ C, and 0 ≤ 1 − ε ≤ 1. Using the results

83

from Section 4.2, we approximate the CDF of random variable d̄j for each customer

j with its empirical distribution, which we obtain from a set of n random samples

Dj = {d̂j1, . . . , d̂jn}. For the k-th sample point d̂jk ∈ Dj, we define the parameter

pjk = ln F̂d̄j(d̂jk). That is, pjk is the logarithm value of the empirical CDF given by

F̂d̄j(d̂jk) = 1
n

∑n
i=1 I(d̂ji ≤ d̂jk), as shown in Figure 4.2.

Demand of
Customer

Logarithm
of
empirical
CDF

௝௞

௝௞

Figure 4.2: Example of ln F̂d̄j(d̂jk)

To formulate this problem as an MIP, we introduce the binary variables zjk, which

are related to each sample point k = 1, . . . , |Dj| for each customer j. Intuitively, zjk

determines whether sample point k is used as a reference (cutoff) value to calculate

the cumulative probability of random demand d̄j. The objective function in (4.6) and

Constraints (4.7), (4.9), and (4.10)–(4.13), describe a reformulation of TIRD when

84

the CDFs of the random demands are estimated through empirical distributions.∑
j∈C

n∑
k=1

zjkpjk ≥ ln(1− ε) (4.10)

∑
i∈S

xij ≥ zjkd̂jk, ∀j ∈ C, k = 1, . . . , n (4.11)

n∑
k=1

zjk = 1, ∀j ∈ C (4.12)

zjk ∈ {0, 1}, ∀j ∈ C, k = 1, . . . , n (4.13)

Constraints (4.10) ensure that the probability of satisfying all demands is at least

1− ε. Constraints (4.11) enforce both the consistency between the sample value used

as a reference to satisfy the probabilistic constraint and the demand satisfaction for

each customer. Constraints (4.12) establish that only one sample point can be used

as a reference for each customer. Constraints (4.13) enforce the binary nature of the

z-variables.

4.4 Overestimation to the Logarithm of Empirical CDF

The sample size required to accurately approximate the CDF may be very large,

complicating the solution of the reformulation of TIRD as the number of binary vari-

ables depends on the number of samples and customers. To overcome this challenge,

we introduce a method to overestimate the logarithm of the empirical CDF function

using a piecewise linear concave envelop. Our construction requires considerably less

binary variables, which are added as needed to iteratively tighten the overestima-

tion of the function. The overestimator function produces a lower bound on the cost

of transporting commodities from suppliers to customers given the (overestimated)

probability of satisfying all the demands. Figure 4.3a illustrates an initial concave

overestimator of the logarithm of the empirical CDF using a piecewise linear function

(dashed lines). This concavity profile allows us to initially approximate the empiri-

85

cal CDF with no binary variables. However, this overestimator is not exact in some

regions of the demand support, requiring a procedure to tighten the estimation wher-

ever is needed. This process demands the use of binary variables, but likely fewer

than the TIRD reformulation.

Demand of
Customer

Logarithm
of
empirical
CDF

(a)

Demand of
Customer

Logarithm
of
empirical
CDF

(b)

Figure 4.3: Concave Overestimations to the Logarithm of Empirical CDF Function

4.5 Generalized Formulation

Using the results from Section 4.4, we revise the MIP formulation of TIRD by

replacing the sample-point based probabilistic constraint with the piecewise linear

overestimator of the logarithm of the CDF. We use the term region to describe a set

of consecutive segments in the piecewise linear function’s domain. Let Rj be the set

of all regions and Ij be the index set of regions where the logarithm of the CDF is

approximated by a concave overestimator piecewise linear function for customer j ∈

C. Similarly, let Īj be the set of indices of regions containing only one segment (and

with exact value of logarithm of the empirical CDF function). For illustration, Figure

4.3b shows a piecewise linear function that contains two regions, R1 and R2, (i.e., Rj =

86

{R1, R2}), where R2 = {d̃2} is the support of a piecewise linear concave overestimator

covering three samples (d̂2, d̂3, and d̂4). The elements of Rj whose indices are not in

Ij are regions with a single line segment that represents the logarithm of empirical

CDF function exactly (e.g., d̃1). In this example, Ij = {2} and Īj = {1}.

We present a generalization of the MIP formulation for a problem that includes

demand regions where the logarithm of the CDF is approximated using piecewise

linear concave overestimator function. We define the binary variable zjk for each

region Rjk ∈ Rj. For each region Rjk such that k ∈ Ij, ljk and ujk are the leftmost

and rightmost points of the region in the demand domain. Also, pjl and vjl are the

intercept and slope of the line segment l that belongs to the function’s overestimator

function at region k. Note that regions whose indices are in Ī (e.g., R1 in Figure 4.3a),

can be uniquely characterized by the leftmost demand point in the region. This is

because larger demand values within the region (i.e., any demand in R1 in Figure

4.3a) are unattractive as they increase the cost but not the probability in the demand

constraint. In contrast, for each region Rjk ∈ Rj whose index is in Ij, we define a

continuous variable wjk to represent the demand of customer j within the region.

To account for the logarithm of the empirical CDF value of any region in the

objective function, we define the continuous variable ejk for region Rjk ∈ Rj and

k ∈ Ij. The ejk variable is the logarithm of the empirical CDF evaluated at any

demand point covered by a concave overestimator region Rjk for customer j. These

continuous variables take the smallest value among the line segments in the region

at any given demand value. Because of concavity and the sign of the probability

constraint, for any demand in Rjk ∈ Rj and j ∈ C, this value corresponds to the

overestimated function. Constraints (4.7), (4.9), (4.12), (4.13), and (4.14)–(4.21)

describe the feasible region of TIRD for a general empirical CDF.

87

wjk ≥ ljkzjk, ∀j ∈ C, k ∈ Ij (4.14)

wjk ≤ ujkzjk, ∀j ∈ C, k ∈ Ij (4.15)

ejk ≤ pjd̃zjk + vjd̃wjk, ∀j ∈ C, k ∈ Ij , d̃ ∈ Rjk (4.16)∑
j∈C

∑
k∈Ij

ejk +
∑
j∈C

∑
k∈Īj

pjkzjk ≥ ln(1− ε) (4.17)

∑
i∈S

xij ≥ ljkzjk, ∀j ∈ C, k ∈ Īj (4.18)

∑
i∈S

xij ≥ wjk, ∀j ∈ C, k ∈ Ij (4.19)

wjk ≥ 0, ∀j ∈ C, k ∈ Ij (4.20)

ejk ≥ 0, ∀j ∈ C, k ∈ Ij (4.21)

Constraints (4.14) and (4.15) ensure that if region k is selected, then the demand

must be within the leftmost and rightmost points in the region’s domain. Constraints

(4.16) linearize the expressions ejk = mind̃∈Rjk{pjd̃zjk + vjd̃wjk}. In other words,

they describe the overestimation of the logarithm of the empirical CDF function

for each concave region as a function of the line segments d̃ in the region. The

probability calculation in Constraints (4.17) is decomposed into two terms. The first

term contains the summation of the e-variables to define the probability contribution

from the concave regions. The second term is the same as in (4.10) for each segment

that does not belong to a concave region for which the probability contribution is the

same as in the logarithm of the empirical CDF. The demand satisfaction requirement

is enforced by Constraints (4.18) and (4.19). Finally, Constraints (4.20) and (4.21)

define the nature of the w- and e-variables.

88

4.6 Iterative Refinement Algorithm

We propose an Iterative Refinement Algorithm (IRA) to solve the TIRD problem,

which aims at decomposing the problem into simpler subproblems that are iteratively

solved until an optimal solution is found. To accomplish this, we define two subprob-

lems. We solve a relaxation of the TIRD problem, producing lower bound values to

the optimal objective function value. Refining these subproblems by strengthening

the relaxation leads to a sequence of nondecreasing lower bound values along the

algorithm iterations. We also solve restricted versions of the TIRD problem, which

provide upper bound values to the optimal value of the TIRD problem.

Consider an instance of the TIRD problem aiming to transport commodities from

a set of suppliers S to a set of customer C at the minimum cost. We define set D

as the union of sets Dj, ∀j ∈ C, each of them containing the line segments in the

logarithm of the empirical CDF function for the demand of customer j. Similarly,

sets R, I, and Ī are the unions of sets Rj, Ij, and Īj respectively. We refer to an

instance of TIRD as TIRD(R, I, Ī) and to its optimal value as z(R, I, Ī).

4.6.1 Lower Bound Problem

Consider the lower bound problem TIRD(Ř, Ǐ, ˇ̄I) with region set Řj for each cus-

tomer j ∈ C. Set Ij includes indices of regions in which the piecewise linear function

for customer j ∈ C is approximated by a piecewise linear concave overestimator func-

tion. Set Īj includes the indices of those regions containing only one segment, which

provide the exact value of the logarithm of the empirical CDF function.

Proposition 10 Consider TIRD(R, I, Ī) as a TIRD instance with logarithm of em-

pirical CDF functions (original problem) such that Rj = {d1, ..., d|Dj |}, Ij = ∅,

Īj = {1, ..., |Dj|} for customer j ∈ C. Let TIRD(Ř, Ǐ, ˇ̄I) be an overestimated prob-

89

lem, then z(R, I, Ī) ≥ z(Ř, Ǐ, ˇ̄I).

Proof. First, note that for each customer j ∈ C, the demand domain in any line

segment in Řj is the same as in the exact line segment set Rj. Second, Řj consists

of line segments that are exact (regions with indices in ˇ̄I) and overestimators of Rj

(regions with indices in Ǐj). Hence, for for any demand in the overestimated problem

the probability value is greater than or equal to the probability value of that demand

in the original problem. Consequently, any demand in the exact problem that satisfies

the probability constraint, is also feasible for the overestimated problem. Because the

feasible set of solutions in the exact problem is a subset of overestimated problem

and the objective function value is the same for both of them, then z(R, I, Ī) ≥

z(Ř, Ǐ, ˇ̄I).�

4.6.2 Upper Bound Problem

We define the problem TIRD(R̂, Î, ˆ̄I) as an upper bound subproblem. That is,

R̂j ⊆ {d1, ..., d|Dj |}, Îj = ∅, ˆ̄Ij ⊆ {1, ..., |Dj|} for customer j ∈ C.

Proposition 11 Consider TIRD(R, I, Ī) as a TIRD instance with the logarithm of

the empirical CDF functions (original problem) defined such that Rj = {d1, ..., d|Dj |},

Ij = ∅, Īj = {1, ..., |Dj|} for each customer j ∈ C. Let TIRD(R̂, Î, ˆ̄I) be a restricted

problem, then z(R̂, Î, ˆ̄I) ≥ z(R, I, Ī).

Proof. By definition, the demand domain in set R̂j is a subset of the domain in

set Rj for each customer j. Also, the line segment set R̂j is a subset of exact line

segments Rj. As a result, for any demand in the restricted problem the probability

value is the same as the probability value of that demand in the original problem.

Hence, any feasible demand for TIRD(R̂, Î, ˆ̄I) is also feasible for TIRD(R, I, Ī).

90

Considering that objective function values are the same for both problems for any

feasible demand, we conclude that z(R̂, Î, ˆ̄I) ≥ z(R, I, Ī).�

4.6.3 Solution Algorithm

The mixed integer programming formulation can be used to solve TIRD using

commercial solvers. For an instance with demand sample size |D| and number of

customers |C|, this formulation requires |C||D| binary variables, which makes it com-

putationally inefficient for large-scale problems. In this section, we introduce an

Iterative Refinement Algorithm (IRA) to enhance the performance of the MIP for-

mulation when solving large-scale instances of the TIRD problem.

We introduce two algorithms that are utilized to construct the overestimation

functions for the lower bound problem and then update the overestimations in a

progressive fashion. Algorithm 6 produces a concave overestimation to the logarithm

of the empirical CDF for a subset of the function domain of any given customer. In

this algorithm, line segments are iteratively generated to form a concave region that

is an overestimator of the logarithm of the empirical CDF.

In Line 3, we consider the leftmost point in the domain of the given region and

find the line with lowest slope intersecting with the given exact line segments. In Line

5 the generated line will be added to the concave region. We continue this process

until the whole domain of the given region is covered by the concave overestimator.

Algorithm 7 enhances the concave overestimations. The input of the algorithm

is an instance of the problem, TIRD(Ř, Ǐ, ˇ̄I), along with a solution w̄. For each

customer j ∈ C, Line 3 finds the exact line segment db that contains the solution in

its domain. We redefine Rjk as {db} in Line 4. Next, we run Algorithm 6 for the left

and right intervals in the domain of the region Rjk (Lines 5 and 6), if exist.

Algorithm 8 defines the Iterative Refinement Algorithm to solve TIRD. In Line

91

Algorithm 6 : Function Overestimation

1: Consider Rjk = {dm, ..., dn} given for customer j

2: Let R̄ = ∅

3: Start with leftmost point in the domain of line segments in Rjk and let this point be xcurrent

4: At point xcurrent, find the overestimator line segment with lowest slope and denote the inter-

section of this line dnew with line segments in Rjk as updated xcurrent

5: Add dnew to R̄

6: if xcurrent 6= rightmost point in the domain of line segments in Rjk then

7: Go to Step 4

8: Redefine Rjk ←− R̄

Algorithm 7 : Function Overestimation Update

1: Consider Ř, Ǐ, ˇ̄I and given solution w̄. For each customer j, w̄j is the demand of that customer

which belongs to concave region Rjk ∈ Rj

2: for j ∈ C do

3: Find exact line segments {da, ..., db, ..., dc} ⊆ Dj that have the same demand domain as line

segments in Rjk. Let db be the line segment that contains demand w̄j in its domain

4: Redefine Rjk ← {db}

5: For nonempty {da, ..., db−1} perform overestimation through Algorithm 6 to obtain Rl

6: For nonempty {db+1, ..., dc} perform underestimation through Algorithm 6 to obtain Rr

7: Add Rl and Rr to Rj and update indices sets Ij and Īj accordingly

2, we generate an overestimation of the exact function to produce the initial lower

bound problem. While the optimal solution is not found, we iteratively solve the

lower bound and upper bound subproblems. In Line 7, we solve the lower bound

problem and in Line 8, we strengthen the function overestimations to produce lower

bound problem that is solved in the next iteration. Utilizing the optimal solution

of each lower bound problem, we produce the upper bound subproblem’s function in

Line 10.

Since the function overestimation is improved to make the lower bound of next

92

Algorithm 8 : Iterative Refinement Algorithm for TIRD

1: For any given customer j ∈ C, let Řj = {Řj1}, Ǐ = {1}, ˇ̄I = ∅, and Řj1 = {d1, ..., d|Dj |} is

constructed in Step 2

2: Perform overestimation on Řj1 for each customer j through Algorithm 6

3: Let R̂ = Î = ˆ̄I = ∅

4: Set UB0 =∞, LB0 = 0, and set counter i = 0

5: while UBi > LBi do

6: Set i = i+ 1

7: Solve TIRD(Ř, Ǐ, ˇ̄I) to obtain an optimal solution w̌i, optimal value ži. Set LBi = ži

8: Update Ř, Ǐ, ˇ̄I with solution w̌i through Algorithm 7

9: For each customer j, find the line segment dk in Dj that contains the flow given by w̌i

10: Add {dk} to R̂j and update ˆ̄I ←− ˆ̄I ∪ {|R̂j |}

11: Solve TIRD(R̂, Î, ˆ̄I) to obtain an optimal solution ŵi and optimal value ẑi

12: Set UBi = ẑi and update the incumbent solution w̄← ŵi and objective z̄ = UBi

13: if UBi = LBi then

14: Incumbent w̄ is optimal with objective z̄. Go to Step 15

15: Return w̄ and z̄

iteration, we observe that LBi+1 ≥ LBi. In addition, the sets of line segments for the

upper bound problem in iteration i are subsets of sets of line segments in iteration i+1,

resulting in UBi ≥ UBi+1. Figure 4.4 illustrates examples of overestimated functions

that are enhanced to make the next lower bound problem. The blue lines indicate

the line segments in the logarithm of the empirical CDF Dj, whereas the red lines

indicate the current overestimators. The green lines are the improved overestimators.

93

Logarithm of empirical CDF

Old overestimator

New overestimator

Logarithm
of
empirical
CDF

Demand of
Customer

(a)

Logarithm of empirical CDF

Old overestimator

New overestimator

Logarithm
of
empirical
CDF

Demand of
Customer

(b)

Logarithm of empirical CDF

Old overestimator

New overestimator

Logarithm
of
empirical
CDF

Demand of
Customer

(c)

Logarithm of empirical CDF

Old overestimator

New overestimator

Logarithm
of
empirical
CDF

Demand of
Customer

(d)

Figure 4.4: Improved Overestimations of Piecewise Linear Functions

4.7 Computational Results

To evaluate the performance of our proposed approach, we solve the TIRD problem

on randomly generated instances. We execute computations utilizing Python with

CPLEX 12.7 as optimization solver on a desktop computer with an Intel Core i7

2.40 GHz processor and 8.0 GB RAM. In all computations, a time limit of one hour

is enforced. The procedure to generate random instances of the TIRD problem is

presented in Section 4.7.1. In Section 4.7.2, we present the computational results and

analyze the performance of proposed solution approach.

94

4.7.1 Random Instance Generation

We create random instances varying the number of suppliers |S|, number of cus-

tomers |C|, and number of sample points |D|. We expect the performance of the

proposed approaches to be majorly affected by |C| and |D| since these values deter-

mine the number of binary variables in the MIP model. The cost of transporting a

unit of commodity from supplier i to customer j, denoted by cij, is generated using

a uniform distribution in the range [1, 100]. For an instance with |S| suppliers, the

capacity of supplier i ∈ S, denoted by Qi, is generated using a uniform distribu-

tion in the range [1000/|S|, 1000]. In addition, demand sample points for customer

j are generated from beta distribution with parameters a = j and b = |C| + 1 − j

and are multiplied by 1000. This procedure ensures that the demand distributions

come from distributions of various shapes. As seen in Figure 4.5, such shape pa-

rameters lead to a variety of CDF functions. For the experiments, we select values

of (|S|, |C|) from the set {(3, 4), (6, 8), (9, 12), (12, 16), (15, 20)} and |D| from the set

{50, 100, 200, 300, 400, 500, 1000, 2000}.

95

C
D
F

(a) a = 1, b = 9

C
D
F

(b) a = 5, b = 5

C
D
F

(c) a = 9, b = 1

Figure 4.5: CDF of Beta Distribution with Various Shape Parameters

4.7.2 Results

In this section, we compare the computational efficiency of the Iterative Refine-

ment Algorithm (IRA) with the MIP formulation. The first two columns of Table 4.1

define the instance solved for specific |S|, |C| and |D| values. In general, we expect

instances to be more difficult as |C| and |D| increase. In Table 4.1, tIRA is the run-

ning time (in seconds) to solve an instance for each combination of (|S|, |C|) and |D|

utilizing the IRA approach. Similarly, tMIP is the running time (in seconds) to solve

an instance utilizing the MIP formulation. When an instance times out, we report

96

the running time as “-”. For such instances, gIRA and gMIP are the optimality gaps

obtained using IRA and MIP approaches, respectively. The optimality gap of the IRA

method is determined as 100(UBk − LBk)/UBk, where k is the last iteration before

timing out. Note that for all values of (|S|, |C|), the IRA method is able to solve

instances to optimality for sample sizes 50 and 100. When timing out, the optimality

gap obtaned from the IRA method is always below 1% compared to large optimality

gaps obtained with the MIP formulation.

We use |z|MIP , vMIP , and cMIP to report the number of binary variables, total

number of variables, and number of constraints in the MIP model. Similarly, |z|IRA,

vIRA, and cIRA report the number of binary variables, total number of variables and

number of constraints in the last lower bound problem in the IRA method. These met-

rics indicate that the IRA method significantly reduces the number of variables and

constraints used. Also, |Ď|avg and |Ď|max report the average and maximum number

of segments/regions used in last iteration of the lower bound problem. When com-

pared to the number of samples, these values show that the IRA maintains tractable

approximations in most of the function domain, requiring only some binaries to re-

trieve the true value (non-approximated) of the empirical CDF. Parameter i reports

number of iterations in the IRA method.

97

Table 4.1: Computational Performance of the Proposed Approaches on Random

TIRD Problem Instances

(|S|, |C|) |D| tIRA tMIP gIRA gMIP |z|IRA |z|MIP vIRA vMIP cIRA cMIP |Ď|avg |Ď|max i

(3,4) 50 11 1 - - 18 104 42 116 71 112 4.50 6 10

100 9 3 - - 15 204 45 216 86 212 3.75 7 7

200 11 115 - - 17 404 47 416 108 412 4.25 5 8

300 14 1133 - - 23 604 53 616 115 612 5.75 7 12

400 15 955 - - 23 804 59 816 141 812 5.75 8 11

500 32 2572 - - 43 1004 91 1016 211 1012 10.75 17 23

1000 15 - - 66 22 2004 60 2016 171 2012 5.50 7 10

2000 12 - - 38 19 4004 47 4016 172 4012 4.75 6 9

(6,8) 50 15 198 - - 26 208 104 256 132 223 3.25 5 10

100 17 - - 12 28 408 106 456 158 423 3.50 4 13

200 166 - - 47 57 808 153 856 253 823 7.13 14 27

300 33 - - 53 36 1208 116 1256 216 1223 4.50 5 19

400 38 - - 63 38 1608 120 1656 234 1623 4.75 7 17

500 33 - - 59 37 2008 119 2056 241 2023 4.63 7 16

1000 56 - - 88 37 4008 117 4056 299 4023 4.63 6 16

(9,12) 50 68 - - 5 51 312 199 420 204 334 4.25 5 24

100 95 - - 28 51 612 203 720 242 634 4.25 7 22

200 710 - - 54 59 1212 227 1320 335 1234 4.92 9 26

300 - - 0.0014 67 59 1812 227 1920 362 1834 4.92 9 26

400 - - 0.0077 75 59 2412 231 2520 396 2434 4.92 9 26

(12,16) 50 89 - - 14 56 416 298 608 262 445 3.50 5 23

100 525 - - 35 60 816 310 1008 327 845 3.75 7 25

200 - - 0.0003 58 60 1616 314 1808 389 1645 3.75 7 26

300 - - 0.0035 72 63 2416 323 2608 458 2445 3.94 5 26

400 2793 - - 79 57 3216 309 3408 455 3245 3.56 5 23

(15,20) 50 889 - - 19 67 520 429 820 319 556 3.35 5 27

100 398 - - 41 65 1020 431 1320 389 1056 3.25 5 25

200 - - 0.0763 64 58 2020 432 2320 471 2056 2.90 5 20

300 - - 0.0137 76 63 3020 441 3320 560 3056 3.15 7 23

400 - - 0.0033 82 54 4020 426 4320 544 4056 2.70 5 18

4.8 Concluding Remarks

Utilizing the empirical CDF function, we transformed a chance constraint program

into a mixed inreger program with binary variables related to each segment of the

98

function domain. This binary variable activates the corresponding segment in the

CDF and recovers the value of the empirical cumulative distribution function. Due

to computational challenges of solving this MIP model, we introduced an iterative

refinement technique to approximate the logarithm of empirical CDF function by

concave overestimations. These overestimations are tractable in the sense that they

can be represented using a reduced number of binary variables compared to the MIP

formulation. Indeed, the computational results show that we only need a small subset

of exact line segments to find the optimal solution. The proposed algorithm consists

of lower bound and upper bound subproblems that provide very small optimality gaps

in case of a time out compared with the large gaps that we obtain from MIP model.

This technique makes it possible to solve large instances with reasonable sample size

(50 and 100) to optimality within one hour time limit.

99

REFERENCES

Abichandani, P., K. Mallory and M.-Y. Hsieh, “Experimental multi-vehicle path
coordination under communication connectivity constraints”, in “Experimental
Robotics”, pp. 183–197 (Springer, 2013).

Adamo, T., T. Bektaş, G. Ghiani, E. Guerriero and E. Manni, “Path and speed opti-
mization for conflict-free pickup and delivery under time windows”, Transportation
Science 52, 4, 739–755 (2018).

Ahuja, R., T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms, and Ap-
plications (Prentice Hall, Upper Saddle River, NJ, 1993).

Andersen, J., T. G. Crainic and M. Christiansen, “Service network design with man-
agement and coordination of multiple fleets”, European Journal of Operational
Research 193, 2, 377–389 (2009).

Atamtürk, A., “On capacitated network design cut–set polyhedra”, Mathematical
Programming 92, 3, 425–437 (2002).

Atamtürk, A. and D. Rajan, “On splittable and unsplittable flow capacitated network
design arc–set polyhedra”, Mathematical Programming 92, 2, 315–333 (2002).

Balakrishnan, A., T. L. Magnanti and R. T. Wong, “A dual-ascent procedure for
large-scale uncapacitated network design”, Operations Research 37, 5, 716–740
(1989).

Balakrishnan, N. and R. T. Wong, “A network model for the rotating workforce
scheduling problem”, Networks 20, 1, 25–42 (1990).

Bartholdi III, J. J., J. B. Orlin and H. D. Ratliff, “Cyclic scheduling via integer
programs with circular ones”, Operations Research 28, 5, 1074–1085 (1980).

Ben-Tal, A., L. El Ghaoui and A. Nemirovski, Robust optimization, vol. 28 (Princeton
University Press, 2009).

Beraldi, P. and M. E. Bruni, “An exact approach for solving integer problems under
probabilistic constraints with random technology matrix”, Annals of operations
research 177, 1, 127–137 (2010).

Beraldi, P., M. E. Bruni and A. Violi, “Capital rationing problems under uncertainty
and risk”, Computational Optimization and Applications 51, 3, 1375–1396 (2012).

Beraldi, P. and A. Ruszczyński, “The probabilistic set-covering problem”, Operations
Research 50, 6, 956–967 (2002).

Bhaskaran, S. and J. Franz, “Optimal design of gas pipeline networks”, journal of the
Operational Research Society 30, 12, 1047–1060 (1979).

100

Bienstock, D. and O. Günlük, “Capacitated network design—polyhedral structure
and computation”, Informs journal on Computing 8, 3, 243–259 (1996).

Bräysy, O. and M. Gendreau, “Vehicle routing problem with time windows, part i:
Route construction and local search algorithms”, Transportation Science 39, 1,
104–118 (2005a).

Bräysy, O. and M. Gendreau, “Vehicle routing problem with time windows, part ii:
Metaheuristics”, Transportation Science 39, 1, 119–139 (2005b).

Calafiore, G. and M. C. Campi, “Uncertain convex programs: randomized solutions
and confidence levels”, Mathematical Programming 102, 1, 25–46 (2005).

Campi, M. C. and S. Garatti, “A sampling-and-discarding approach to chance-
constrained optimization: feasibility and optimality”, Journal of Optimization The-
ory and Applications 148, 2, 257–280 (2011).

Carotenuto, P., S. Giordani, S. Ricciardelli and S. Rismondo, “A tabu search approach
for scheduling hazmat shipments”, Computers and Operations Research 34, 5,
1328–1350 (2007).

Chardaire, P., G. McKeown, S. Verity-Harrison and S. Richardson, “Solving a time-
space network formulation for the convoy movement problem”, Operations Re-
search 53, 2, 219–230 (2005).

Cordeau, J. and G. Laporte, “The dial-a-ride problem: models and algorithms”,
Annals of Operations Research 153, 1, 29–46 (2007).

Cordeau, J.-F., F. Pasin and M. M. Solomon, “An integrated model for logistics
network design”, Annals of operations research 144, 1, 59–82 (2006).

Corréa, A., A. Langevin and L. Rousseau, “Dispatching and conflict-free routing of
automated guided vehicles: A hybrid approach combining constraint programming
and mixed integer programming”, in “International Conference on Integration of
Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint
Programming”, pp. 370–379 (Springer, 2004).

Craig, M. T., P. Jaramillo, H. Zhai and K. Klima, “The economic merits of flexible
carbon capture and sequestration as a compliance strategy with the clean power
plan”, Environmental science & technology 51, 3, 1102–1109 (2017).

Crainic, T. G., “Service network design in freight transportation”, European journal
of operational research 122, 2, 272–288 (2000).

Crainic, T. G., A. Frangioni and B. Gendron, “Bundle-based relaxation methods
for multicommodity capacitated fixed charge network design”, Discrete Applied
Mathematics 112, 1-3, 73–99 (2001).

Crainic, T. G. and J.-M. Rousseau, “Multicommodity, multimode freight transporta-
tion: A general modeling and algorithmic framework for the service network design
problem”, Transportation Research Part B: Methodological 20, 3, 225–242 (1986).

101

Cruz, F. R., J. M. Smith and G. R. Mateus, “Solving to optimality the uncapacitated
fixed-charge network flow problem”, Computers & Operations Research 25, 1, 67–
81 (1998).

Current, J. and S. Ratick, “A model to assess risk, equity and efficiency in facility
location and transportation of hazardous materials”, Location Science 3, 3, 187–201
(1995).

De Jongh, A., M. Gendreau and M. Labbe, “Finding disjoint routes in telecommuni-
cations networks with two technologies”, Operations Research 47, 1, 81–92 (1999).

Dentcheva, D. and G. Martinez, “Regularization methods for optimization prob-
lems with probabilistic constraints”, Mathematical Programming 138, 1-2, 223–251
(2013).

Dentcheva, D., A. Prékopa and A. Ruszczynski, “Concavity and efficient points of
discrete distributions in probabilistic programming”, Mathematical Programming
89, 1, 55–77 (2000).

Diarrassouba, I., M. Mahjoub, A. Mahjoub and H. Yaman, “Finding failure-disjoint
paths for path diversity protection in communication networks”, Annals of Telecom-
munications 73, 1–2, 5–28 (2018).

Dijkstra, E., “A note on two problems in connexion with graphs”, Numerische Math-
ematik 1, 1, 269–271 (1959).

Dixit, A., A. Mishra and A. Shukla, “Vehicle routing problem with time windows using
meta-heuristic algorithms: a survey”, in “Harmony Search and Nature Inspired
Optimization Algorithms”, edited by N. Yadav, A. Yadav, J. Bansal, K. Deep and
J. Kim, vol. 741, pp. 539–546 (Springer, Singapore, 2019).

Dooley, J. J., R. T. Dahowski, C. L. Davidson, M. A. Wise, N. Gupta, S. H. Kim
and E. L. Malone, “Carbon dioxide capture and geologic storage: a core element of
a global energy technology strategy to address climate change”, PNNL, Richland,
WA (2006).

Erkut, E. and V. Verter, “Modeling of transport risk for hazardous materials”, Op-
erations Research 46, 5, 625–642 (1998).

Esfandeh, T., R. Batta and C. Kwon, “Time-dependent hazardous-materials network
design problem”, Transportation Science 52, 2, 454–473 (2018).

Eto, R., A. Murata, Y. Uchiyama and K. Okajima, “Co-benefits of including ccs
projects in the cdm in india’s power sector”, Energy policy 58, 260–268 (2013).

Fazlollahtabar, H. and M. Saidi-Mehrabad, “Methodologies to optimize automated
guided vehicle scheduling and routing problems: a review study”, Journal of Intel-
ligent & Robotic Systems 77, 3-4, 525–545 (2015).

102

Ferrati, M. and L. Pallottino, “A time expanded network based algorithm for safe
and efficient distributed multi-agent coordination”, in “52nd IEEE Conference on
Decision and Control”, pp. 2805–2810 (IEEE, 2013).

Ferrera, E., A. Castaño, J. Capitán, P. Marrón and A. Ollero, “Multi-robot oper-
ation system with conflict resolution”, in “ROBOT2013: First Iberian Robotics
Conference”, pp. 407–419 (Springer, 2014).

Ferrera, E., A. Castaño, J. Capitán, A. Ollero and P. Marrón, “Decentralized col-
lision avoidance for large teams of robots”, in “16th International Conference on
Advanced Robotics (ICAR)”, pp. 1–6 (IEEE, 2013).

Frangioni, A. and B. Gendron, “0–1 reformulations of the multicommodity capaci-
tated network design problem”, Discrete Applied Mathematics 157, 6, 1229–1241
(2009).

Frazzoli, E., Z.-H. Mao, J.-H. Oh and E. Feron, “Resolution of conflicts involving
many aircraft via semidefinite programming”, Journal of Guidance, Control, and
Dynamics 24, 1, 79–86 (2001).

Fredman, M. and R. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms”, Journal of the ACM 34, 3, 596–615 (1987).

Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness (W. H. Freeman & Co., Princeton, NJ, 1979).

Geoffrion, A. M. and G. W. Graves, “Multicommodity distribution system design by
benders decomposition”, Management science 20, 5, 822–844 (1974).

Ghamlouche, I., T. G. Crainic and M. Gendreau, “Cycle-based neighbourhoods for
fixed-charge capacitated multicommodity network design”, Operations research 51,
4, 655–667 (2003).

Global, C., “Institute. 2016 the global status of ccs 2016—summary report”, Global
CCS Institute. See https://www. globalccsinstitute. com (accessed February 2017)
(2016).

Gopalan, R., K. Kolluri, R. Batta and M. Karwan, “Modeling equity of risk in
the transportation of hazardous materials”, Operations Research 38, 6, 961–973
(1990a).

Gopalan, R., R. R. Batta and M. Karwan, “The equity constrained shortest path
problem”, Computers and Operations Research 17, 3, 297–307 (1990b).

Grötschel, M., C. L. Monma and M. Stoer, “Design of survivable networks”, in “Hand-
books on Operations Research and Management Science”, vol. 7, chap. 10, pp.
617–672 (Elsevier Science, North-Holland, Amsterdam, 1995).

Guisewite, G. M. and P. M. Pardalos, “Minimum concave-cost network flow problems:
Applications, complexity, and algorithms”, Annals of Operations Research 25, 1,
75–99 (1990).

103

Günlük, O., “A branch-and-cut algorithm for capacitated network design problems”,
Mathematical programming 86, 1, 17–39 (1999).

Hoy, M., A. Matveev and A. Savkin, “Algorithms for collision-free navigation of
mobile robots in complex cluttered environments: a survey”, Robotica 33, 3, 463–
497 (2015).

Hu, X., L. Chen, B. Tang, D. Cao and H. He, “Dynamic path planning for autonomous
driving on various roads with avoidance of static and moving obstacles”, Mechanical
Systems and Signal Processing 100, 482–500 (2018).

Jin, Q., G. Wu, K. Boriboonsomsin and M. Barth, “Multi-agent intersection manage-
ment for connected vehicles using an optimal scheduling approach”, in “Interna-
tional Conference on Connected Vehicles and Expo (ICCVE)”, pp. 185–190 (IEEE,
2012).

Kamal, M., J. Imura, T. Hayakawa, A. Ohata and K. Aihara, “A vehicle-intersection
coordination scheme for smooth flows of traffic without using traffic lights”, IEEE
Transactions on Intelligent Transportation Systems 16, 3, 1136–1147 (2015).

Katayama, N., M. Chen and M. Kubo, “A capacity scaling heuristic for the mul-
ticommodity capacitated network design problem”, Journal of computational and
applied mathematics 232, 1, 90–101 (2009).

Kerivin, H. and A. Mahjoub, “Design of survivable networks: A survey”, Networks
46, 1, 1–21 (2005).

Kim, D. and P. M. Pardalos, “A solution approach to the fixed charge network flow
problem using a dynamic slope scaling procedure”, Operations Research Letters
24, 4, 195–203 (1999).

Kobayashi, Y. and K. Otsuki, “Max-flow min-cut theorem and faster algorithms in
a circular disk failure model”, in “Proceedings of the 2014 IEEE Conference on
Computer Communications INFOCOM”, pp. 1635–1643 (IEEE, 2014).

Kobos, P., L. Malczynski, D. Borns and B. McPherson, “The ‘string of pearls’: the
integrated assessment cost and source-sink model”, in “Conference Proceedings of
the 6th Annual Carbon Capture & Sequestration Conference”, (2007).

Krishnamurthy, N., R. Batta and M. Karwan, “Developing conflict-free routes for
automated guided vehicles”, Operations Research 41, 6, 1077–1090 (1993).

Kuby, M. J., J. M. Bielicki and R. S. Middleton, “Optimal spatial deployment of
co2 capture and storage given a price on carbon”, International Regional Science
Review 34, 3, 285–305 (2011).

Kumar, P. and T. Narendran, “Integer programming formulation for convoy move-
ment problem”, International Journal of Intelligent Defence Support Systems 1, 3,
177–188 (2008).

104

Lejeune, M. A., “Pattern-based modeling and solution of probabilistically constrained
optimization problems”, Operations Research 60, 6, 1356–1372 (2012).

List, G., P. Mirchandani, M. Turnquist and K. Zografos, “Modeling and analysis for
hazardous materials transportation: Risk analysis, routing/scheduling, and facility
location”, Transportation Science 25, 2, 100–114 (1991).

Luedtke, J., “An integer programming and decomposition approach to general chance-
constrained mathematical programs”, in “International Conference on Integer Pro-
gramming and Combinatorial Optimization”, pp. 271–284 (Springer, 2010).

Luedtke, J. and S. Ahmed, “A sample approximation approach for optimization with
probabilistic constraints”, SIAM Journal on Optimization 19, 2, 674–699 (2008a).

Luedtke, J. and S. Ahmed, “A sample approximation approach for optimization with
probabilistic constraints”, SIAM Journal on Optimization 19, 2, 674–699 (2008b).

Malandraki, C. and M. Daskin, “Time dependent vehicle routing problems: formula-
tions, properties and heuristic algorithms”, Transportation Science 26, 3, 185–200
(1992).

Margolis, J., K. Sullivan, S. Mason and M. Magagnotti, “A multi-objective optimiza-
tion model for designing resilient supply chain networks”, International Journal of
Production Economics 204, 174–185 (2018).

Middleton, R. S., “A new optimization approach to energy network modeling: an-
thropogenic co2 capture coupled with enhanced oil recovery”, International Journal
of Energy Research 37, 14, 1794–1810 (2013).

Middleton, R. S. and J. M. Bielicki, “A scalable infrastructure model for carbon
capture and storage: Simccs”, Energy Policy 37, 3, 1052–1060 (2009).

Middleton, R. S. and A. R. Brandt, “Using infrastructure optimization to reduce
greenhouse gas emissions from oil sands extraction and processing”, Environmental
science & technology 47, 3, 1735–1744 (2013).

Middleton, R. S., M. J. Kuby, R. Wei, G. N. Keating and R. J. Pawar, “A dynamic
model for optimally phasing in co2 capture and storage infrastructure”, Environ-
mental Modelling & Software 37, 193–205 (2012).

Nemirovski, A. and A. Shapiro, “Convex approximations of chance constrained pro-
grams”, SIAM Journal on Optimization 17, 4, 969–996 (2006).

Neumayer, S., A. Efrat and E. Modiano, “Geographic max-flow and min-cut under a
circular disk failure model”, Computer Networks 77, 117–127 (2015).

Neumayer, S., G. Zussman, R. Cohen and E. Modiano, “Assessing the vulnerability
of the fiber infrastructure to disasters”, in “INFOCOM, 2009 Proceedings IEEE”,
pp. 1566–1574 (2009).

105

Nishi, T., Y. Hiranaka and I. Grossmann, “A bilevel decomposition algorithm for
simultaneous production scheduling and conflict-free routing for automated guided
vehicles”, Computers & Operations Research 38, 5, 876–888 (2011).

Omran, M. T., J.-R. Sack and H. Zarrabi-Zadeh, “Finding paths with minimum
shared edges”, Journal of Combinatorial Optimization 26, 4, 709–722 (2013).

Otsuki, K., Y. Kobayashi and K. Murota, “Improved max-flow min-cut algorithms in
a circular disk failure model with application to a road network”, European Journal
of Operational Research 248, 2, 396–403 (2016).

Otto, A., N. Agatz, J. Campbell, B. Golden and E. Pesch, “Optimization approaches
for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A sur-
vey”, Networks 72, 4, 411–458 (2018).

Pagnoncelli, B. K., S. Ahmed and A. Shapiro, “Sample average approximation method
for chance constrained programming: theory and applications”, Journal of opti-
mization theory and applications 142, 2, 399–416 (2009).

Phung, M., C. Quach, T. Dinh and Q. Ha, “Enhanced discrete particle swarm op-
timization path planning for uav vision-based surface inspection”, Automation in
Construction 81, 25–33 (2017).

Pillac, V., M. Gendreau, C. Guéret and A. Medaglia, “A review of dynamic vehicle
routing problems”, European Journal of Operational Research 225, 1, 1–11 (2013).

Raack, C., A. M. Koster, S. Orlowski and R. Wessäly, “On cut-based inequalities for
capacitated network design polyhedra”, Networks 57, 2, 141–156 (2011).

Randazzo, C. and H. P. L. Luna, “A comparison of optimal methods for local access
uncapacitated network design”, Annals of Operations Research 106, 1-4, 263–286
(2001).

Richards, A. and J. How, “Aircraft trajectory planning with collision avoidance using
mixed integer linear programming”, in “Proceedings of the 2002 American Control
Conference”, vol. 3, pp. 1936–1941 (IEEE, 2002).

Rios-Torres, J. and A. Malikopoulos, “A survey on the coordination of connected
and automated vehicles at intersections and merging at highway on-ramps”, IEEE
Transactions on Intelligent Transportation Systems 18, 5, 1066–1077 (2017).

Rothfarb, B., H. Frank, D. Rosenbaum, K. Steiglitz and D. J. Kleitman, “Optimal
design of offshore natural-gas pipeline systems”, Operations research 18, 6, 992–
1020 (1970).

Ruszczyński, A., “Probabilistic programming with discrete distributions and prece-
dence constrained knapsack polyhedra”, Mathematical Programming 93, 2, 195–
215 (2002).

106

Santoso, T., S. Ahmed, M. Goetschalckx and A. Shapiro, “A stochastic programming
approach for supply chain network design under uncertainty”, European Journal
of Operational Research 167, 1, 96–115 (2005).

Sathre, R., L. Gustavsson and N. Le Truong, “Climate effects of electricity production
fuelled by coal, forest slash and municipal solid waste with and without carbon
capture”, Energy 122, 711–723 (2017).

Saxena, A., V. Goyal and M. A. Lejeune, “Mip reformulations of the probabilistic set
covering problem”, Mathematical programming 121, 1, 1–31 (2010).

Sullivan, K. and J. Smith, “Exact algorithms for solving a euclidean maximum flow
network interdiction problem”, Networks 64, 2, 109–124 (2014).

Suurballe, J., “Disjoint paths in a network”, Networks 4, 2, 125–145 (1974).

Tanner, M. W. and L. Ntaimo, “Iis branch-and-cut for joint chance-constrained
stochastic programs and application to optimal vaccine allocation”, European Jour-
nal of Operational Research 207, 1, 290–296 (2010).

Thomas, S., D. Deodhare and M. Murty, “Extended conflict-based search for the
convoy movement problem”, IEEE Intelligent Systems 30, 6, 60–70 (2015).

Toumazis, I. and C. Kwon, “Worst-case conditional value-at-risk minimization for
hazardous materials transportation”, Transportation Science 50, 4, 1174–1187
(2016).

Transportation Networks for Research Core Team,
https://github.com/bstabler/TransportationNetworks (2018).

Vielma, J. P., S. Ahmed and G. Nemhauser, “Mixed-integer models for nonsepara-
ble piecewise-linear optimization: Unifying framework and extensions”, Operations
research 58, 2, 303–315 (2010).

Yaghini, M., M. Karimi, M. Rahbar and M. H. Sharifitabar, “A cutting-plane neigh-
borhood structure for fixed-charge capacitated multicommodity network design
problem”, INFORMS Journal on Computing 27, 1, 48–58 (2015).

Yamashita, T., K. Izumi, K. Kurumatani and H. Nakashima, “Smooth traffic flow
with a cooperative car navigation system”, in “Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems”, pp.
478–485 (ACM, 2005).

Yen, J., “Finding the k shortest loopless paths in a network”, Management Science
17, 11, 712–716 (1971).

Yu, J. and S. LaValle, “Time optimal multi-agent path planning on graphs”, in “Work-
shops at the Twenty-Sixth AAAI Conference on Artificial Intelligence”, (2012).

107

Zhu, F. and S. Ukkusuri, “A linear programming formulation for autonomous in-
tersection control within a dynamic traffic assignment and connected vehicle en-
vironment”, Transportation Research Part C: Emerging Technologies 55, 363–378
(2015).

Żotkiewicz, M., W. Ben-Ameur and M. Pióro, “Finding failure-disjoint paths for path
diversity protection in communication networks”, IEEE Communications Letters
14, 8, 776–778 (2010).

108

APPENDIX A

PROBLEM COMPLEXITY

109

We define the decision version of RASTC as Drastc, which seeks to ascertain
whether or not there is a feasible path and schedule for every vehicle with maximum
deviation from each vehicle’s shortest-path time of no more than B. For any given
candidate solution, we can verify in O(|V ||N |) steps if the path and schedule for each
vehicle is feasible in terms of flow balance and travel time consistency, meaning that
departure times are consistent with arrival, waiting, and travel times. Moreover, we
can verify in O(|V |2(|A|2 + |A||N |)) steps whether the candidate solution is feasible in
terms of conflict conditions (arc-arc and arc-node) by examining each pair of vehicles
and their departure times from each node. Hence, Drastc belongs to NP.

We transform any arbitrary instance of the Boolean satisfiability (sat) prob-
lem, which is known to be NP-complete (Garey and Johnson, 1979), to Drastc.
Suppose that in such sat instance there are m variables, n clauses, and li literals
in clause i ∈ {1, . . . , n}. First, we construct a network with a single origin and des-
tination, and 2(n + 2) node-disjoint layers denoted by L0, L̄0, L1, L̄1, . . . , Ln+1, L̄n+1.
We use three types of nodes: literal, consolidation, and truth assignment. Layers Li
and L̄i, for i = 0, . . . , n+ 1, contain 2m literal nodes each, representing each variable
and its negation. Layers L̄0, L̄n+1, and L0, . . . , Ln+1 have one consolidation node
each, and L0 and L̄n+1 contain the origin and destination nodes, respectively. Each
intermediate layer Li and L̄i contains li truth assigner nodes, for i = 1, . . . , n.

For each variable and its negation, we build a literal path from origin to destination
that uses exactly one literal node in each layer. A literal path consist of an arc from
origin to a literal node in L0, arcs from a literal node in Li to a literal node in L̄i,
for i = 0, . . . , n + 1, and arcs from a literal node in L̄i to a literal node in Li+1,
for i = 0, . . . , n. The last arc in any literal path connects a literal node in L̄n+1

to the destination node. These 2m literal paths are node disjoint (except for the
origin and destination nodes) and have identical travel times. We also construct a
set of truth assigner paths between origin and destination based on the sat instance
clauses. We add an arc between the consolidation node in Li and all truth assigner
nodes in the same layer, and from each truth assigner node in Li to a unique truth
assigner node in L̄i, for i = 1, . . . , n. We also add an arc between the truth assigner
nodes in L̄i and the consolidation node in Li+1, for i = 1, . . . , n. The construction
is completed by adding an arc between the origin and the consolidation node in L0,
between consolidation nodes in Li and L̄i, for i = 0, n + 1, between consolidation
nodes in L̄0 and L1, and between the consolidation node in L̄n+1 and the destination
node. Note that under this construction, a truth assigner path visits exactly one
truth assigner arc corresponding to a literal in each clause.

To complete the instance construction, we use |V | = 2m+ 1 vehicles with unitary
speed and assume Γ = ∅ and Υ = ∅ (i.e., no arc-node conflicts). We also assume that
vehicles are allowed to wait any time at any node. Arc costs are such that the travel
time on arcs connecting nodes in Li and L̄i is δ ∈ (0, 1), for i = 0, . . . , n+ 1, whereas
the travel time on literal arcs between layers L̄i and Li+1 is one, for i = 0, . . . , n.
The travel time along a truth assigner path between a node in L̄i and the last visited
node in Li+1 is also one, for i = 0, . . . , n. Additionally, the travel time from the
origin to any node in L0 and from nodes in L̄n+1 to the destination is one, except
for the arc from the consolidation node in L̄n+1 to the destination, whose travel time
is δ. With this construction, literal and truth assigner paths have travel times of
z` = (n + 2)(δ + 1) + 1 and zt = (n + 2)(δ + 1) + δ, respectively. Note that in the

110

absence of conflict, the arrival time at any literal or truth assigner node in any layer
is the same regardless of the path taken.

We impose arc-arc conflict constraints on those arcs connecting layers Lq and L̄q
that belong to the literal paths of a variable and its negation, for each q ∈ {0, n+ 1}.
For instance, if (i, j) and (k, l) are arcs that connect layers Lq and L̄q such that (i, j)
belongs to the literal path of a variable and (k, l) belongs to the literal path of its
negation, then (g, h, i, j, k, l) ∈ Λ, for each pair of distinct vehicles g and h. We
also add a conflict constraint on those arcs between layers Lq and L̄q that belong
to the literal path of a variable (or its negation) and those in the truth assigner
path corresponding to such variable (or its negation) if it belongs to the q-th clause.
For instance, suppose that arcs (i, j) and (k, l) connect layers Lq and L̄q, for some
q ∈ {1, . . . , n}. If (i, j) belongs to the literal path of a variable that is in the q-th
clause and (k, l) belongs to the truth assigner path corresponding to the same variable,
then (g, h, i, j, k, l) ∈ Λ for each pair of distinct vehicles g and h. Moreover, there
is a conflict constraint on every arc (i, j) connecting the origin and L0 and Lq and
L̄q, for q = 0, . . . , n, such that (g, h, i, j, i, j) ∈ Λ, for each pair of distinct vehicles g
and h. In general, if there is a conflict constraint involving arcs (i, j) and (k, l), then
a vehicle cannot start traveling an arc before another vehicle finishes its trip on the
other arc. An example of the Drastc instance corresponding to the sat instance
(x) ∧ (x̄ ∨ y ∨ z) ∧ (ȳ ∨ z̄) is shown in Figure A.1.

ത𝐿0

𝑥

ҧ𝑥
𝑦

ത𝑦

𝑧

ҧ𝑧

𝐿0 𝐿1 𝐿2 𝐿3 𝐿4ത𝐿1 ത𝐿2 ത𝐿3 ത𝐿4

o

Origin and destination nodes

Literal nodes

Truth assigner nodes

Arc in a literal path

Arc in a truth assigner path

Consolidation nodes

Arcs subject to conflict

Figure A.1: RASTC Network Construction for the SAT Instance (x)∧(x̄∨y∨z)∧(ȳ∨z̄)

Before continuing with the proof, we present the following two remarks that help
clarify the instance construction. A vehicle traveling a truth assigner path visits
exactly one truth assigner arc connecting layers Lq and L̄q, for each q = 1, . . . , n.
Because each of the truth assigner arcs between layers Lq and L̄q is related to a literal
in the q-th clause, this is equivalent to selecting the literal to satisfy in such clause.
This is the reason behind the name truth assignment path.

Sending more than one vehicle on any path results in a travel time deviation of

111

more than 1 + δ/z`. To see this, we examine two cases. If the vehicles are traveling
along a truth assigner path, the conflict in the arc connecting the origin and the
consolidation node in L0 forces the second vehicle to wait 1 unit of time at the origin.
This means that the earliest arrival time for the second vehicle is zt+1, which implies
a deviation from the shortest-path time of 1 + 1/zt > 1 + δ/z`. If the vehicles are
traveling on a literal path, then the same delay makes the earliest arrival time of the
second vehicle equal to z`+1, which corresponds to a deviation of 1+1/z` > 1+δ/z`.

Now, we complete the proof by proving the following propositions, where the
target objective for Drastc is B = 1 + δ/z` .

Proposition 12 If the answer to sat is “YES”, then the answer to Drastc is
“YES”.

Proof. Using the truth assignments in the sat instance solution, construct a feasible
solution to Drastc by assigning 2m vehicles to the same number of distinct literal
paths and one vehicle to a truth assigner path. For each clause, select only one true
literal, which exists since the answer to sat is “YES”. Vehicles traveling literal paths
corresponding to the selected true literals wait δ units of time at the origin and arrive
at the destination at time zt with a deviation from their shortest-path times given
by 1 + δ/z`. To avoid conflict, the remaining vehicles traveling literal paths depart
the origin at time 0 and arrive at the destination at time z` with no delay. As noted
in Remark A, the vehicle assigned to a truth assigner path uses the truth assigner
arcs connecting layers Lq and L̄q corresponding to the selected true literal in the
q-th clause, for each q = 1, . . . , n. Because vehicles traveling literal paths conflicting
with truth assigner arcs are delayed at the origin, the vehicle traveling the truth
assigner path arrives at the destination at time zt with no delay. As a result, this
solution is feasible and the maximum deviation from each vehicle’s shortest-path time
is B = 1 + δ/z`, which means that the answer to Drastc is “YES”. �

Proposition 13 If answer to sat is “NO”, then the answer to Dmrss-c is “NO”.

Proof. Because the answer to sat is “NO”, then any choice of literals to satisfy
(one per clause) contains both a variable and its negation. Using Remark A, this
implies that any truth assigner path conflicts with literal arcs on both the path of a
variable as well as its negation. Select any truth assigner path and suppose without
loss of generality that such path conflicts with both literal paths of variable x and
x̄ (negation of x). Also, suppose that the conflict with the literal path of variable x
occurs at Layer Lq, for some q ∈ {1, . . . , n}. Due to Remark A, exactly one vehicle
must be assigned to each literal path and one more to a truth assigner path. That is,
the vehicle traveling along the truth assigner path conflicts with two different vehicles
in two different truth assigner arcs. We examine two cases, based on which vehicle
waits at the origin to avoid the conflict in literal arcs connecting layers L0 and L̄0.

• Case 1: the vehicle traveling the literal path of variable x does not wait at the
origin. In this case, this vehicle and that traveling the truth assigner path will
arrive at the same time at the literal and truth assigner nodes in Lq. Due to
conflict, one vehicle must wait δ units of time while the other reaches layer L̄q.
If the vehicle on the truth assigner path waits, the earliest it arrives at the

112

destination is zt + δ, which implies a deviation of 1 + δ/zt > B. Thus, the only
choice is that the vehicle on the literal path waits δ units of time to avoid the
conflict.

• Case 2: the vehicle traveling the literal path of variable x waits δ units of time
at the origin. In this case, this vehicle arrives at the literal node in Lq δ units
of time after the vehicle on the truth assigner path, avoiding the conflict in this
layer.

Combining both cases and using the same analysis for the vehicle traveling the
literal path of x̄, we obtain that both vehicles traveling on literal paths must wait; one
of them to avoid the conflict in layers L0 and L̄0 and the other to avoid the conflict
with the truth assigner path. As a result, both vehicles will arrive at the same time
at the literal nodes in layer Ln+1. To avoid conflict, one of them must wait additional
δ units of time. This means that the earliest arrival time at the destination for one
of the vehicles is z` + 2δ, which results in a deviation of 1 + 2δ/z` > B. This means
that the answer to Dmrss-c is “NO’. �

Because the instance transformation is polynomial and due to the results in Propo-
sitions 12 and 13, we conclude that Dmrss-c is NP-complete.

113

APPENDIX B

PROOFS

114

Proof of Proposition 1. Suppose that vehicles g and h use arcs (i, j)
and (k, l), respectively, with corresponding velocity vectors vgij and vhkl, where
((i, j), (k, l)) ∈ Ω. Because δ1 and δ2 lead to a geographic conflict, then
there exist values t1 and t2 such that (δ1, t1) and (δ2, t2) satisfy (2.1) and
(2.2). Define λ ∈ [0, 1], so that λδ1 + (1 − λ)δ2 ∈ [δ1, δ2]. We claim that
(λδ1 + (1 − λ)δ2, λt1 + (1 − λ)t2) also leads to a conflict. To see this, observe
that

∥∥xi + vgij(λt1 + (1− λ)t2)− (xk + vhkl(λt1 + (1− λ)t2 − λδ1 − (1− λ)δ2))
∥∥ ≤

λ
∥∥xi + vgijt1 − (xk + vhkl(t1 − δ1))

∥∥ + (1 − λ)
∥∥xi + vgijt2 − (xk + vhkl(t2 − δ2))

∥∥<d,
where the first inequality follows from the triangle inequality and the second one
from (2.1). Using (2.2), we have that max{0, λδ1 + (1 − λ)δ2} ≤ λmax{0, δ1} +
(1 − λ) max{0, δ2} ≤ λt1 + (1 − λ)t2, and that min{cgij, chkl + λδ1 + (1 − λ)δ2} ≥
λmin{cgij, chkl + δ1} + (1 − λ) min{cgij, chkl + δ2} ≥ λt1 + (1 − λ)t2, proving that any
difference in the departure times within the interval [δ1, δ2] leads to a conflict. �

Proof of Proposition 3. Because Gr contains at least one path from sg to
pg, for all g ∈ V , any feasible solution to RASTC(Gr,Λ,Γ,Υ) is also feasible
to RASTC(G,Λ,Γ,Υ). This means that the objective value of any solution to
RASTC(Gr,Λ,Γ,Υ) is an upper bound to the optimal value of RASTC(G,Λ,Γ,Υ),
proving Condition 1. Similarly, any feasible solution to RASTC(G,Λ,Γ,Υ) is
also feasible to RASTC(G, Λ̄, Γ̄, Ῡ), and therefore provides an upper bound to
RASTC(G, Λ̄, Γ̄, Ῡ), proving Condition 2. �

Proof of Proposition 4. From Proposition 3 we have that z(Gr,Λ,Γ,Υ) ≥
z(Gr, Λ̄, Γ̄, Ῡ), and because the optimal solution to RASTC(Gr, Λ̄, Γ̄, Ῡ) is feasible
to RASTC(Gr,Λ,Γ,Υ), we have that z(Gr,Λ,Γ,Υ) ≤ z(Gr, Λ̄, Γ̄, Ῡ). This means
that z(Gr, Λ̄, Γ̄, Ῡ) = z(Gr,Λ,Γ,Υ) ≥ z(G,Λ,Γ,Υ), where the inequality follows
from Condition 1 in Proposition 3. �

Proof of Proposition 5. From Proposition 3 we have that z(G,Λ,Γ,Υ) ≥
z(G, Λ̄, Γ̄, Ῡ). We now prove that z(G, Λ̄, Γ̄, Ῡ) ≥ zR(Ga, Λ̄, Γ̄, Ῡ). Let (x∗, τ ∗)
be an optimal solution to RASTC(G, Λ̄, Γ̄, Ῡ). If all paths used in (x∗, τ ∗) be-
long to Gr, then (x∗, τ ∗) is feasible to RASTC-R(Ga, Λ̄, Γ̄, Ῡ) because both prob-
lems are subject to the same conflict constraints and Gr ⊆ Ga. This means that
z(G, Λ̄, Γ̄, Ῡ) ≥ zR(Ga, Λ̄, Γ̄, Ῡ). Now, suppose that some paths in (x∗, τ ∗) use arcs
from Gc (and possibly additional nodes to those in B). This means that at some
point, any of such paths must leave and return to Gr at least once using boundary
nodes. Without loss of generality, suppose that vehicle g leaves Gr at node i and
returns at node j, with i, j ∈ B, i 6= j, and let P∗ijg(Gc) be the path used in (x∗, τ ∗).
Consider the following two cases.

• Case 1: P∗ijg(Gc) is a shortest-path between i and j with no waiting time at
any non-boundary node.

• Case 2: P∗ijg(Gc) is not a shortest-path between i and j or it is optimal to wait
at any non-boundary node along the path.

Using these cases, we construct a feasible solution to RASTC-R(Ga, Λ̄, Γ̄, Ῡ) based on
(x∗, τ ∗). In this solution, each vehicle uses the same path and schedules in (x∗, τ ∗)
for travel segments in Gr. For each pair of boundary nodes i and j used to leave
and return to Gr, vehicle g uses P1

ijg(G
a) if the condition in Case 1 is satisfied.

115

This is feasible because Ga either contains P∗ijg(Gc) or an alternative path with the

same travel time. If conditions in Case 2 are satisfied, vehicle g uses P2
ijg(G

a) with
waiting time at a non-boundary node equal to the difference between the travel time
in P∗ijg(Gc) and the travel time in P2

ijg(G
a). The analysis for every vehicle using

arcs in Gc is equivalent and the resulting solution is feasible because the maximum
waiting time and conflict constraints are relaxed in RASTC-R for network elements in
Ga \Gr. This solution has an objective function equal to z(G, Λ̄, Γ̄, Ῡ), which implies
that z(G, Λ̄, Γ̄, Ῡ) ≥ zR(Ga, Λ̄, Γ̄, Ῡ). �

Proof of Proposition 6. For each vehicle g ∈ V , c(Psg ,i,g(G)) + c(Pijg(Gc)) +
c(Pj,pg ,g(G)) represents the travel time on a path from sg to pg. Using Constraint
(2.16) and Proposition 4, we have that in any optimal solution τ gpg ≤ zgSP z

∗ ≤
zgSPUB ≤ c(Psg ,i,g(G)) + c(Pijg(Gc)) + c(Pj,pg ,g(G)), for all g ∈ V , where τ gpg is the
arrival time of g at its destination node pg. This means that the travel time along
path Psg ,i,g(G)∪Pijg(Gc)∪Pj,pg ,g(G) is not shorter than in the current feasible paths
for any vehicle. �

Proof of Proposition 7. To prove correctness, suppose for a contradiction that an
optimal solution (x∗, τ ∗) exists with objective function value z∗, and that Algorithm
1 stops after k iterations with a solution (x̄, τ̄) and objective z̄ > z∗. We examine two
cases. If (x∗, τ ∗) only uses elements in Gr, then it is feasible for RASTC(Gr, Λ̄, Γ̄, Ῡ),
the last upper bound problem solved in Line 5. This, however, implies that z∗ ≥
z(Gr, Λ̄, Γ̄, Ῡ) = UBk ≥ z̄, which contradicts z̄ > z∗. If (x∗, τ ∗) uses some elements
that are not in Gr, then some vehicle paths leave and return Gr using boundary
nodes. By construction of Ga, either (x∗, τ ∗) is feasible to RASTC-R(Ga, Λ̄, Γ̄, Ῡ),
the last lower bound problem solved in Line 8, or there is an equivalent solution with
the same objective function value. This implies that z∗ ≥ zR(Ga, Λ̄, Γ̄, Ῡ) = LBk = z̄,
which also contradicts z̄ > z∗. To prove finite termination, note that if Gr is not
augmented in Line 8 or if Gr is continuously augmented in Line 8 until Ga = Gr = G,
then the stopping condition in Line 13 is satisfied. �

116

