
Design, Optimization, and Applications of Wearable IoT Devices

by

Ganapati Manjunath Bhat

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2020 by the
Graduate Supervisory Committee:

Umit Y. Ogras, Chair
Chaitali Chakrabarti

Angelia Nedić
Radu Marculescu

ARIZONA STATE UNIVERSITY

August 2020

ABSTRACT

Movement disorders are becoming one of the leading causes of functional disability due to

aging populations and extended life expectancy. Diagnosis, treatment, and rehabilitation cur-

rently depend on the behavior observed in a clinical environment. After the patient leaves the

clinic, there is no standard approach to continuously monitor the patient and report potential

problems. Furthermore, self-recording is inconvenient and unreliable. To address these chal-

lenges, wearable health monitoring is emerging as an effective way to augment clinical care

for movement disorders.

Wearable devices are being used in many health, fitness, and activity monitoring applica-

tions. However, their widespread adoption has been hindered by several adaptation and tech-

nical challenges. First, conventional rigid devices are uncomfortable to wear for long periods.

Second, wearable devices must operate under very low-energy budgets due to their small bat-

tery capacities. Small batteries create a need for frequent recharging, which in turn leads users

to stop using them. Third, the usefulness of wearable devices must be demonstrated through

high impact applications such that users can get value out of them.

This dissertation presents solutions to solving the challenges faced by wearable devices.

First, it presents an open-source hardware/software platform for wearable health monitoring.

The proposed platform uses flexible hybrid electronics to enable devices that conform to the

shape of the user’s body. Second, it proposes an algorithm to enable recharge-free operation

of wearable devices that harvest energy from the environment. The proposed solution maxi-

mizes the performance of the wearable device under minimum energy constraints. The results

of the proposed algorithm are, on average, within 3% of the optimal solution computed of-

fline. Third, a comprehensive framework for human activity recognition (HAR), one of the

first steps towards a solution for movement disorders is presented. It starts with an online

learning framework for HAR. Experiments on a low power IoT device (TI-CC2650 MCU)

i

with twenty-two users show 95% accuracy in identifying seven activities and their transitions

with less than 12.5 mW power consumption. The online learning framework is accompanied

by a transfer learning approach for HAR that determines the number of neural network layers

to transfer among uses to enable efficient online learning. Next, a technique to co-optimize

the accuracy and active time of wearable applications by utilizing multiple design points with

different energy-accuracy trade-offs is presented. The proposed technique switches between

the design points at runtime to maximize a generalized objective function under tight harvested

energy budget constraints. Finally, we present the first ultra-low-energy hardware accelerator

that makes it practical to perform HAR on energy harvested from wearable devices. The ac-

celerator consumes 22.4 µJ per operation using a commercial 65 nm technology. In summary,

the solutions presented in this dissertation can enable the wider adoption of wearable devices.

ii

Dedicated to my parents Manjunath Bhat, Anasuya Bhat

and brother Goutam Bhat

iii

ACKNOWLEDGMENTS

This dissertation is the result of efforts over the last six years of graduate study and over

20 years of education. The last six years have been one of the most productive times of my

life and it would not have been possible without the support of faculty, post-docs, graduate

students, friends, and family. First and foremost, I would like to thank my advisor, Prof. Umit

Y. Ogras, for the guidance, patience, and advice he has offeredme over the years of my graduate

study. His insightful recommendations on writing, time management, communication, and

networking helped me grow as a researcher and person. I am also grateful for his help and

support in my academic job search. His thoughtful comments and advice on the interview

process helped me greatly in securing an academic position. Prof. Ogras did everything to

ensure his students’ success, which is something I will strive to achieve in my career.

I would like to thank Prof. Chaitali Chakrabarti, Prof. Angelia Nedić, and Prof. Radu

Marculescu for being part of my Ph.D. defense committee. Their insightful comments helped

me in improving this dissertation. I am also thankful to Prof. Partha Pratim Pande, Prof. Ja-

nardhan Rao Doppa, Prof. Prabhat Mishra, Prof. Daniel Bliss, Prof. Hyung Gyu Lee, and Dr.

Hyunseok Lee for their inputs and guidance in my research over the past few years. I am also

thankful for working with Dr. Suat Gumussoy and for his continued mentorship.

I am grateful for the interesting discussions, words of encouragement, and lighter moments

with friends and colleagues at ASU: Dr. Ujjwal Gupta, Dr. Jaehyun Park, Dr. Samet Arda,

Md. Muztoba, Sumit K. Mandal, Manoj Babu, Darshan Sathyamurthy, Ranadeep Deb, Anish

Krishnakumar, Yigit Tuncel, Sizhe An, Alper Goksoy, Toygun Basaklar, and Shruti Narayana.

I also enjoyed the numerous eLab trips that I took with other members of the group.

I am also thankful to Semiconductor Research Corporation, National Science Founda-

tion (NSF CAREER Award CNS-1651624), Defense Advanced Research Projects Agency

(DARPAYoung Faculty Award (YFA) Grant D14AP00068) for funding the research presented

iv

in this dissertation. I would also like to thank Google for funding the initial years of my grad-

uate study.

Finally, I would like to thank my parents, Manjunath Bhat and Anasuya Bhat, and brother,

GoutamBhat, for their constant love, support, and encouragement over the years. It is their love

and encouragement that motivated me to pursue graduate studies and contribute to research. I

am also deeply grateful to my partner, Catherine Spiers, for her unconditional support during

my studies and many road trips we did together. I also thank my cousins and friends back in

India, with whom I have numerous happy moments.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xii

LIST OF FIGURES . xiv

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 2

1.2 Summary of Publications . 5

2 OPENHEALTH : OPEN SOURCE PLATFORM FOR WEARABLE HEALTH

MONITORING . 8

2.1 Introduction . 8

2.2 Wearable Health: Challenges and Solutions . 10

2.3 OpenHealth Vision . 14

2.4 OpenHealth Release . 16

2.4.1 The Base Hardware . 16

2.4.2 The Base Firmware . 19

2.4.3 Public Release . 20

2.5 Example Application Domains . 21

2.5.1 Human Activity Recognition (HAR) . 21

2.5.2 Gesture Recognition . 22

2.6 Summary and Future Directions . 22

3 NEAR-OPTIMAL ENERGY ALLOCATION FOR ENERGY HARVESTING

IOT DEVICES . 24

3.1 Introduction . 24

3.2 Related Work . 28

vi

CHAPTER Page

3.3 Preliminaries and Overview . 29

3.4 Optimal Energy Management . 32

3.4.1 Problem Formulation . 32

3.4.2 Optimal Closed-Form Solution with Relaxed Constraints 34

3.4.3 Near-Optimal Runtime Solution . 35

3.4.3.1 Uncertainty in Expected Energy Values 35

3.4.3.2 Perturbation of the Allocated Energy Values 36

3.4.3.3 User Activity and Minimum Energy Constraint 38

3.4.3.4 Summary of the Proposed Algorithm . 39

3.5 Experimental Evaluation . 39

3.5.1 Experimental Setup . 39

3.5.2 Energy Allocation Over Time . 41

3.5.3 Comparison to Offline Optimization . 43

3.6 Summary . 44

4 ONLINE HUMAN ACTIVITY RECOGNITION USING LOW-POWER

WEARABLE DEVICES . 48

4.1 Introduction . 48

4.2 Related Work and Novelty . 53

4.3 Human Activity Recognition Dataset . 56

4.3.1 Wearable System Setup . 56

4.3.2 User Studies . 57

4.3.3 Dataset Description . 58

4.3.4 Flow for Using the w-HAR Dataset . 59

4.3.5 Comparisons with Existing HAR Datasets . 61

vii

CHAPTER Page

4.4 Feature Set and Classifier Design . 62

4.4.1 Goals and Problem Statement . 62

4.4.2 Sensor Data Segmentation . 63

4.4.3 Feature Generation . 67

4.5 Classifier Design . 70

4.5.1 Supervised Learning for State Classification . 70

4.5.2 Proposed NN Classifier Design. 71

4.6 Online Learning for Human Activity Recognition . 73

4.6.1 Online Learning with Policy Gradient . 74

4.6.2 Online Updates with Incremental Supervised Learning 77

4.7 Experimental Evaluation and Discussions . 78

4.7.1 Experimental Setup . 78

4.7.2 Neural Network Design Space Exploration . 79

4.7.3 Accuracy Analysis of the Neural Network . 81

4.7.3.1 Confusion Matrix . 81

4.7.3.2 Comparison with Other Classifiers . 82

4.7.3.3 Robustness of the NN Classifier . 82

4.7.4 Online Learning with new users . 83

4.7.5 Power, Performance and Energy Evaluation . 86

4.8 Summary . 88

5 TRANSFERLEARNINGFORHUMANACTIVITYRECOGNITIONUSING

REPRESENTATIONAL ANALYSIS OF NEURAL NETWORKS 89

5.1 Introduction . 89

5.2 Related Research . 92

viii

CHAPTER Page

5.3 Human Activity Recognition Framework . 94

5.3.1 Experimental Datasets . 95

5.4 Transfer Learning for Human Activity Recognition . 95

5.4.1 Flow of the Proposed Transfer Learning Approach 95

5.4.2 Clustering Users with Distinct Activity Patterns 96

5.4.3 Baseline Classifier Training for each User Cluster 98

5.4.4 Analysis of Distance Between Trained Networks 99

5.4.5 Transferring the NN and Fine-tuning . 103

5.5 Evaluations . 104

5.5.1 Accuracy Analysis . 104

5.5.2 Training Time, Loss and Convergence Analysis 106

5.6 Summary . 107

6 REAP : RUNTIME ENERGY-ACCURACY OPTIMIZATION FOR ENERGY

HARVESTING IOT DEVICES . 108

6.1 Introduction . 108

6.2 Related Work . 111

6.3 Runtime Energy-Accuracy Optimization . 112

6.3.1 Preliminaries . 112

6.3.2 Optimization Problem Formulation . 113

6.3.3 Runtime Optimization Algorithm . 114

6.4 Human Activity Recognition Case Study . 115

6.4.1 Background and Baseline Implementation . 115

6.4.2 Pareto-Optimal Design Points . 117

6.5 Experimental Evaluation . 120

ix

CHAPTER Page

6.5.1 Experimental Setup . 120

6.5.2 Expected Accuracy and Active Time Analysis 121

6.5.3 Accuracy – Active Time Trade-off Analysis . 123

6.5.4 Case Study using Real Solar Energy Data . 124

6.6 Summary . 126

7 AN ULTRA-LOW ENERGYHUMANACTIVITY RECOGNITION ACCEL-

ERATOR . 127

7.1 Introduction . 127

7.2 Related Work . 129

7.3 The Proposed Baseline HAR Engine . 131

7.3.1 Input Data . 132

7.3.2 Preprocessing the Raw Sensor Data . 132

7.3.3 Feature Generation . 134

7.3.4 Single-Level Baseline DNN Classifier . 135

7.4 Activity-Aware 2-Level HAR Engine . 137

7.4.1 Two-Class SVM Classifier . 138

7.4.2 Decision Tree (DT) Classifier for Static Activities 139

7.4.3 DNN Classifier for Dynamic Activities . 140

7.5 Low-Power Optimizations . 140

7.5.1 Clock and Data Gating . 140

7.5.2 Power Gating . 143

7.5.3 Use of Low-Power Classifiers . 144

7.6 Experimental Evaluation . 145

7.6.1 Experimental Setup . 145

x

CHAPTER Page

7.6.2 Design Area . 146

7.6.2.1 Baseline HAR Engine . 146

7.6.2.2 Activity-Aware 2-Level HAR Engine . 147

7.6.3 Accuracy Evaluation . 148

7.6.3.1 Baseline HAR Engine . 148

7.6.3.2 Activity-Aware 2-Level HAR Engine . 151

7.6.4 Power Consumption Evaluation . 153

7.6.4.1 Baseline HAR Engine . 153

7.6.4.2 Activity-Aware 2-Level HAR Engine . 154

7.6.5 Performance Evaluations . 158

7.7 Summary . 160

8 CONCLUSION AND FUTURE DIRECTIONS . 161

8.1 Future Directions . 163

REFERENCES . 165

xi

LIST OF TABLES

Table Page

3.1. Summary of the Major Parameters . 33

3.2. Parameter Values Used during Evaluations . 40

4.1. List of Activities Used in the HAR Framework . 57

4.2. Experimental Protocol for the HAR Dataset . 58

4.3. Summary of the Number of Segments in Each Activity . 59

4.4. Comparison with Existing HAR Datasets . 62

4.5. Confusion Matrix for 18 Training Users . 81

4.6. Comparison of Accuracy for Different Classifiers . 82

4.7. Comparison of Accuracy Improvement with Online Learning 86

4.8. Execution Time, Power and Energy Consumption . 87

6.1. Summary of Symbols Used in the Optimization Problem. 113

6.2. Accuracy, Execution Time, Power, and Energy Consumption of Different Human

Activity Recognition Design Points. 119

7.1. Comparison of the Proposed HAR Engine to Relevant Custom Designs Reported

in the Literature . 130

7.2. Parameters Used for Deep Neural Network Training . 149

7.3. Confusion Matrix for the Baseline Classifier . 150

7.4. Confusion Matrix for the Level 1 SVM Classifier. The Static and Dynamic Activ-

ities Are Classified with over 99% Accuracy. 151

7.5. Confusion Matrix for the Activity-Aware HAR Engine for Static Activities 152

7.6. Confusion Matrix for the Activity-Aware HAR Engine for Dynamic Activities 152

7.7. Power Consumption Summary for the Baseline HAR Engine at F = 100kHz, V =

1.0 V . 154

xii

Table Page

7.8. Power Consumption Summary for the Activity-Aware HAREngine at F = 100 kHz

and V = 1.0 V . 155

7.9. Summary of Latency of the Blocks in the Baseline HAR Engine and the Activity-

Aware HAR Engine . 159

xiii

LIST OF FIGURES

Figure Page

2.1. Challenges of Wearable Health Platforms and Proposed Strategies 11

2.2. (a) Current Practice of Healthcare for Movement Disorders, (b) Envisioned Solu-

tion with the Use of Open Source Wearable Platform . 13

2.3. Overview of the Wearable Platform . 17

2.4. (a) Wearable Device in Flexible Form Factor (b) Screenshot of the Smartphone

App Used to Control the Device . 18

3.1. The Proposed Hardware Architecture and Energy Harvesting Framework. The

Energy Harvesting Unit Channels the Generated Current between the IoT Device

and Battery. Our Proof of Concept Prototype Uses PV-Cell as the Ambient Energy

Source, but the Proposed Framework Can Work with Multiple Energy Sources. . . 25

3.2. Illustration of the Battery Level Computation for T = 24 Hr Horizon. 30

3.3. Illustration of the Application Utility Function. 32

3.4. Prototype (a) Front View, (b) Back View . 40

3.5. Energy Allocation in January without Learning the User Pattern. 42

3.6. Energy Allocation in July without Learning the User Pattern. 42

3.7. Energy Allocation in January after Learning the User Pattern. 42

3.8. Energy Allocation in July after Learning the User Pattern. 42

3.9. Comparison of the Proposed Solution to Offline Optimization for Three Users over

12 Months. 44

4.1. Wearable System Setup, Sensors, and the Low-Power IoT Device [160]. We Knit-

ted the Textile-Based Stretch Sensor to a Knee Sleeve to Accurately Capture the

Leg Movements . 50

xiv

Figure Page

4.2. Flow-Chart for Using the W-HAR Data Set to Test New Algorithms or Reproduce

the Results Presented in This Chapter . 60

4.3. Illustration of the Segmentation Algorithm . 64

4.4. Illustration of the Sensor Data Segmentation . 67

4.5. Visualization of Segmentation for All Activities in the HAR Framework 67

4.6. Design Space Exploration for Neural Network Configuration 72

4.7. The NN Used for Activity Classification and Online Learning. 73

4.8. Comparison of Accuracy with the Number of Neurons . 80

4.9. Comparison of Accuracy with Different Combinations of Users for Training 83

4.10. Comparison of Reinforcement Learning and Incremental Learning. 84

5.1. Comparison of Stretch Sensor [117] Data of Four Users for a Single Step during

Walk. There Is a Significant Change in Both the Range of Values and Data Pat-

terns. The Grey Dashed Lines Show Different Instances of the Same Activity,

While the Red Line Shows a Representative Activity Window for Each User. 90

5.2. Overview of the Transfer Learning Approach for HAR . 96

5.3. The Architecture of CNN. The Layers Annotated at the Bottom Are Used in CCA

Distance. 98

5.4. The Accuracy of the CNNs Tested with Different UCs for the W-HAR Dataset.

The Red Star Shows the Accuracy of the UC Used Training While the Triangles

Show Cross-UC Accuracy. 99

5.5. The CCA Distance between CNNs Trained with (a) UC 1, (b) UC 2, (c) UC 3, and

(d) UC 4 from theW-HAR DatasetWhen Tested on All the Four UCs. 100

5.6. The CCA Distance between CNNs Trained with (a) UC 1, (b) UC 2, (c) UC 3, and

(d) UC 4 from the UCI HAR DatasetWhen Tested on All the Four UCs. 101

xv

Figure Page

5.7. The CCA Distance between CNNs Trained with (a) UC 1 and UC 2, (b) UC 1 and

UC 3, (c) UC 1 and UC 3 from theW-HAR Dataset When Tested on All the Four

UCs. 102

5.8. The CCA Distance between CNNs Trained with (a) UC 1 and UC 2, (b) UC 1 and

UC 3, (c) UC 1 and UC 3 from the UCI HAR Dataset When Tested on All the

Four UCs. 102

5.9. The CCA Distance between CNNs Trained with (a) UC 1 and UC 2, (b) UC 1 and

UC 3, (c) UC 1 and UC 3 from the UCI HAPT Dataset When Tested on All the

Four UCs. 102

5.10. Comparison of Accuracy between Original and Fine-Tuned CNN for theW-HAR

Dataset. 103

5.11. Comparison between Original and Fine-Tuned NN for 200 UCs. 104

5.12. Transfer Learning Improvement Analysis: (a) Training Time, (b) Loss. 104

5.13. Comparison between Original and Fine-Tuned NN for 100 UCs from the UCI

HAR Dataset. 105

5.14. Transfer Learning Improvement Analysis: (a) Training Time, (b) Loss for theUCI

HAR Dataset. 105

5.15. Comparison between Original and Fine-Tuned NN for 100 UCs from the UCI

HAPT Dataset. 105

5.16. Transfer Learning Improvement Analysis: (a) Training Time, (b) Loss for theUCI

HAPT Dataset. 105

6.1. Overview of the Human Activity Recognition Application. 116

6.2. The Knobs Used to Obtain Design Points with Different Energy-Accuracy Trade-

Offs. 117

xvi

Figure Page

6.3. The Energy-Accuracy Trade-Off of Various Design Points. The Dashed Line Con-

nects the Selected 5 Design Points. 118

6.4. Energy Consumption Distribution of DP1 over One-Hour Activity Period TP . To-

tal Energy Consumption Is 9.9 J. 119

6.5. (a) Expected Accuracy of REAP and Design Points. (b) The Active Time of Each

DP Normalized to REAP. 122

6.6. The Objective Value J(T) of Static Design Points (Equation 6.1) Normalized to

J(T) of REAP with α = 2. 123

6.7. Performance (i.e., J(T)) Achieved by REAP normalized to DP1, DP3, and DP5

during theMonth of September 2015. Error Bars Represent the Range of Improve-

ment. 125

7.1. Architecture of the Baseline HAR Engine . 133

7.2. Architecture of the Activity-Aware HAR Engine . 138

7.3. A Representative Timing Diagram for the Activation of the Blocks in the Proposed

HAR Engine. The Active Times of Feature and Classifier Clocks Are Detailed in

Table 7.9. 141

7.4. Clock Gating Control Logic . 142

7.5. Power and Clock Domains in the Proposed Design . 143

7.6. Floorplan of the Baseline HAR Engine . 147

7.7. Floorplan of the Activity-Aware 2-Level HAR Engine . 147

7.8. Area of the Major Blocks Used in the Baseline HAR Engine . 147

7.9. Area of the Major Blocks Used in the Hierarchical 2-Level HAR Engine 147

7.10. Power Consumption as a Function of Voltage . 156

xvii

Figure Page

7.11. Comparison of Power Consumption of the Baseline and Activity-Aware HAR En-

gines . 157

xviii

Chapter 1

INTRODUCTION

About 15% of the world’s population lives with a disability according to the annual world

report on disability [173]. Moreover, 100 to 190 million individuals face significant difficulties

in functioning. State-of-the-art methodologies for diagnosis, treatment, and rehabilitation of

this population rely on evaluations by medical professionals in a clinical environment [53].

However, as soon as the patient leaves the clinic, it is not possible to monitor their symptoms

due to the lack of standard approaches [53]. The quality of life of this population can be

improved significantly with the help ofwearable internet-of-things (IoT) devices that combine

sensing, processing, and wireless communication [48, 75].

Wearable sensors andmobile health applications are emerging as attractive solutions to aug-

ment clinical treatment and enable telepathic diagnostics [44, 46, 53]. Wearable devices have

been recently used for monitoring of patients in a free-living home environment [98]. This

capability allows doctors to understand the progression of symptoms over time [39]. Wear-

able devices have also shown promising results in the diagnosis and management of many

movement disorders. For instance, studies in [132, 172] use wearable sensors and machine

learning algorithms to identify essential tremor in patients. Wearable technology has also been

widely used in the diagnosis and treatment of Parkinson’s disease patients [38, 178]. Despite

these promising results, widespread adoption of wearable sensors and devices has been lim-

ited [53, 107].

Recent research has focused on identifying the reasons that hinder the widespread adop-

tion of wearable devices despite their potential in improving healthcare [53, 120]. Based on

these, challenges to the widespread adoption of wearable devices can be classified into three

1

major categories. First, conventional rigid devices are uncomfortable and awkward to wear for

long periods. Therefore, users prefer not to wear them in public [120]. Second, small-form-

factor IoT devices must operate under extreme energy constraints, since large batteries are pro-

hibitive [53]. Finally, the value of wearable IoT devices must be demonstrated by high-impact

applications to expedite their adoption [53]. This dissertation addresses theses challenges by

making contributions in wearable device design, energy-neutral operation, and a comprehen-

sive human activity recognition framework, as outlined in the next section.

1.1 Contributions

Wearable IoT devices have recently attracted significant attention due to advances in sens-

ing, low-power processing, communication, and radio technologies [75, 97]. In particular,

flexible hybrid electronics (FHE) technology offers great potential for sensor-rich wearable

applications [21, 84]. FHE technology combines the performance advantages of conventional

CMOS technologies and the form-factor advantages of flexible electronics. Our first contri-

bution uses FHE technology to design a flexible wearable device for health monitoring. The

device consists of a TI-CC2650 MCU, Invensense MPU-9250 sensor, and other components

mounted on a flexible substrate. Since we target recharge-free operation, we use a flexible PV

cell and energy harvesting circuitry to harvest energy from ambient light. We envision that the

wearable prototype and its extensions can be used to create an open-source hardware/software

ecosystem for health monitoring [16].

The limited battery capacity of wearable devices has led to the study of energy harvesting.

Solar energy harvesting using PV-cells is one of the most promising techniques adopted by

many recent studies [3, 125, 137]. Ambient energy harvesting necessitates the development of

algorithms to efficiently manage the harvested energy such that device lifetime can be maxi-

2

mized. To this end, Kansal et al. [83] propose the concept of energy-neutral operation where the

energy used by the device in any given period is equal to the harvested energy. Algorithms for

energy-neutral operation are proposed in [83, 167]. However, these solutions do not consider

application requirements in their algorithms. Therefore, our second contribution proposes a

recharge-free solution for wearable devices [23]. We use a dynamic programming approach

to enable optimal allocation of the harvested energy. We first calculate the optimal energy

allocation using a closed-form formula. Then, we use a novel runtime algorithm that revises

the allocations as a function of variations in the harvested energy. This contribution aims to

address the challenge of frequent recharging of wearable devices.

Our third contribution proposes an online learning algorithm for human activity recogni-

tion (HAR). HAR aims to identify user activity, such as standing, walking, and jogging, by

processing data acquired from sensors. HAR is important for personalized health care as one

of the first steps in the treatment of movement disorders is to understand the daily activities of

patients [44]. Therefore, HAR using wearable devices has attracted significant research atten-

tion [29, 131]. Smartphones have also been used for HAR recently [153]. These approaches

use offline training and online inference that does not scale well to a large number of users.

Therefore, there is a need to enable online learning for HAR. At the same time, training from

scratch for all users can be slow and computationally intensive. To avoid this overhead, we

develop a two-step framework for HAR [15]. This framework allows us to perform efficient

online updates to a HAR classifier for new users. As part of this work, we collected activity

data from 22 users while performing seven activities. The dataset has been released to the

public as part of this dissertation.

One of the challenges in online learning for HAR is determining the appropriate informa-

tion to transfer from classifiers learned on one set of users to a different set of users. In the

context of neural networks, we need to carefully determine the number of layers to transfer

3

between users. The transfer ensures that the general features are preserved among users while

avoiding overfitting to a single user. To address this issue, we employ transfer learning to

adapt convolutional neural networks (CNN) trained offline to new users. Using representa-

tional analysis of CNNs [113], we show that the first few layers of the CNN provide features

that are general for all the users. Using this insight, we transfer the CNN weights to new users

and perform fine-tuning for only the deeper layers of the network. Evaluations using three

datasets show that our approach achieves up to 43% accuracy improvement when compared

to accuracy without using transfer learning. We also reduce the training time by 66% while

maintaining the same accuracy as training from scratch.

Next, we combine the HAR framework and the energy allocation algorithms to enable a

runtime energy-accuracy optimization method for energy harvesting IoT devices. These de-

vices need to maximize their accuracy and active time under a tight energy budget imposed by

the battery and form-factor constraints. To this end, we consider energy harvesting devices that

run on a limited energy budget to recognize user activities over a given period. We propose a

technique to co-optimize the accuracy and active time by utilizing multiple design points with

different energy-accuracy trade-offs. The proposed technique switches between these design

points at runtime to maximize a generalized objective function under tight harvested energy

budget constraints. We experimentally validate the proposed approach using a custom proto-

type based on TI Sensortag [159] IoT board and real energy harvesting data.

Finally, we present the first fully integrated custom hardware accelerator for HAR that

enables operation on harvested energy. It integrates all steps of HAR, i.e., reading the raw

sensor data, generating features, and activity classification using a deep neural network (DNN).

We synthesize the hardware engine using the commercial 65 nm low power technology node.

Extensive evaluations show that the hardware engine consumes 22.4 µJ per operation, which

is the lowest energy consumption reported in the literature.

4

In summary, this dissertation makes the following contributions:

• Wearable IoT devices using flexible hybrid electronics [16, 21, 26],

• Energy-neutral operation through optimal energy harvesting and management [23],

• Online learning framework and open-source dataset for human activity recognition [15],

• A transfer learning framework for human activity recognition,

• Runtime energy-accuracy co-optimization for energy harvesting IoT devices [14],

• An ultra-low-energy hardware accelerator for human activity recognition [25]

The rest of this dissertation describes each of these contributions in more detail. Specifi-

cally, Chapter 2 describes our open-source wearable platform for health monitoring. Chapter 3

details our algorithm for near-optimal energy allocation in wearable devices. Chapters 4 and 5

describe the online learning and transfer learning frameworks for the human activity recogni-

tion application, respectively. Chapter 6 presents our runtime energy-accuracy optimization

framework for wearable devices. The ultra-low-energy hardware accelerator for HAR is pre-

sented in Chapter 7. Finally, Chapter 8 concludes the dissertation and provides directions for

future work.

1.2 Summary of Publications

The work presented in this dissertation is based on research manuscripts written by the

author [14–16, 21, 23, 25]. In addition to the design, optimization, and applications of wearable

devices, the author has also worked on the reliability analysis of FHE devices [17, 59, 161].

Specifically, the author worked on developing models to estimate the stress experienced by

FHE devices under various bending conditions. This modeling helps in reducing the number

of test patterns that have to be performed mechanically, leading to significant savings in test

time.

5

The author has also worked extensively on thermal and resource management in mobile

platforms. Mobile devices, especially smartphones, are making a profound impact on multiple

areas of human life, including communication, education, and health. In order to meet the

increasing performance requirement of applications, mobile processors integrate multiple CPU

cores, GPUs, and specialized processors in a small form factor, which leads to an increase in the

power density. Higher power density, in turn, leads to increased junction and skin temperatures.

A high junction temperature degrades reliability while a high skin temperature deteriorates the

user experience.

Power and temperature form a positive feedback loop that can lead to a thermal runaway

in an unstable system. Therefore, there is a strong need for a formal analysis of the power

consumption-temperature dynamics in mobile devices. The author’s work in [18] presents

a theoretical analysis of the power-temperature dynamics in mobile systems. It reduces the

thermal hotspots in a mobile platform to a single-input-single-output system to provide the

region of convergence of the power-temperature dynamics in the system. It also provides an

analytical method to determine the steady-state temperature of the system at runtime.

We extend the analysis to a multiple-input-multiple-output system in [20]. Then, we use

the thermal stability models to design a control algorithm that manages the temperature of the

system without affecting the performance of the application. Experiments on the Odroid-XU3

board [72] show that the control algorithm regulates the temperature with a minimal loss in

performance when compared to the default thermal governors.

The stability analysis of mobile processors allows us to understand the steady-state dynam-

ics of the system. At the same time, we must ensure that the temperature of the system does

not violate the thermal constraints under dynamically changing workloads. To this end, the

author’s work in [19] provides a case study of the thermal behavior in two modern mobile pro-

cessors. We also propose a predictive thermal management algorithm that uses predictions of

6

future temperature to make dynamic frequency management decisions such that the thermal

limit is not violated [24]. Experiments on the Odroid-XU3 board [72] show that our algorithm

successfully regulates the maximum temperature and decreases the temperature violations by

one order of magnitude while also reducing the total power consumption on average by 7%

compared with the default solution.

Along with thermal management, modern mobile platforms must manage the number

of active cores and their frequencies optimally as per the changing requirements of applica-

tions [22, 109]. This problem is challenging because the number of possible configurations

grows exponentially, and it is infeasible to search over the large number of configurations. Ex-

isting heuristics are also not efficient because they rely on resource utilization, which does not

provide insight into workload characteristics. To address these issues, the author contributed

to approaches that enable runtime resource management with Pareto-optimal configuration se-

lection [66] and imitation learning [108, 109]. These approaches provide significant improve-

ments in performance per watt when compared to the default interactive governor.

7

Chapter 2

OPENHEALTH : OPEN SOURCE PLATFORM FOR WEARABLE HEALTH

MONITORING

2.1 Introduction

Movement disorders are becoming one of the leading causes of functional disability as a

result of an aging population and extended life expectancy [52]. For example, Parkinson’s

disease (PD), essential tremor (ET), epilepsy, and stroke affect more than 70 million people

worldwide [44]. Diagnosis and treatment of movement disorders currently rely on tests and

observations made by specialists in a medical facility, who prescribe medication and therapy

based on these observations [107]. However, clinical visits, which are typically weeks apart,

capture only a snapshot of the symptoms [54]. The low frequency of visits introduces compli-

cations in therapy decisions, since symptoms vary over time, and patients’ recall accuracy is

not reliable [120]. Moreover, access to highly-trained specialists can be challenging in many

parts of the world.

Wearable sensors and mobile health applications are emerging as attractive solutions to

augment clinical treatment and enable telepathic diagnostics [44, 53, 54, 120]. Wearable tech-

nology allows for continuous monitoring of user movement in a free-living home environment.

This capability helps in capturing the progression of symptoms that change over time. Fur-

thermore, it enables evaluating the prescribed therapy on an individual basis [74, 107, 110].

Similarly, wearable sensors and smartphones have shown promising results in the diagnosis

of ET [44] and detecting seizures in epilepsy [120]. Studies have also shown that both pa-

tients and health professionals (HPs) value the interactive information available from wearable

8

monitoring. Hence, wearable sensors coupled with telepathic diagnostics can greatly improve

health care [74, 120].

Despite the promising results demonstrated so far, widespread adoption of wearable tech-

nology is hindered by both technology and adaptation challenges. The International Parkinson

and Movement Disorders Society Task Force on Technology identifies the major challenges

as non-compatible platforms, the clinical relevance of the “big data” acquired by sensors, and

wide-spread/long-term deployment of new technologies [53]. According to the task force, open

source projects can help in addressing these challenges by providing a common platform, with

standardized hardware (HW) and software (SW) tools, driven by burning clinical needs. Sev-

eral open source solutions for medical devices have been proposed recently. The work in [116]

surveys open source devices for infusion pumps, brain-computer interfaces, CT scanners, and

physiological monitoring. Among these, the e-Health1 sensor platform is the most relevant

for movement disorders, as it provides sensors for monitoring motion. However, the e-Health

sensor platform comes in a large form factor, making it unsuitable for long-term wearable use.

The goal of this chapter is to discuss the major barriers to the widespread deployment of

wearable health technology and present the OpenHealth framework as a potential solution.

OpenHealth is an open source HW/SW platform for wearable health monitoring. Our vision

is to bridge the gap between isolated research activities, health professionals, and technol-

ogy developers by facilitating research using a common platform, standards, and data sets.

Our open source release2 includes all the HW and SW files of the OpenHealth platform, which

includes energy harvesting circuitry, a modular sensor hub, processing hardware, a wireless mo-

dem, software drivers, and application-programming interfaces (API). Our initial application

1https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-
raspberry-pi-medical

2 https://sites.google.com/view/openhealth-wearable-health/home

9

https://sites.google.com/view/openhealth-wearable-health/home

area is activity monitoring for movement disorder patients. Future versions of our open source

platform will include applications, such as fall detection and seizure detection in epilepsy. We

also provide reference implementations and data sets for human activity and gesture recogni-

tion applications. This feature aims to enable researchers who focus on applications to use

OpenHealth without dealing with hardware details. All the hardware design files, software

repository, and data sets are released under the GNU General Public License.

The rest of this chapter is organized as follows. Section 2.2 overviews the challenges

faced by wearable technologies and our solution strategies. Our vision for the operation of

OpenHealth and implementation details of our current release are discussed in Section 2.3 and

Section 2.4, respectively. Finally, Section 2.6 summarizes our future directions.

2.2 Wearable Health: Challenges and Solutions

We classify the barriers to widespread adaptation of wearable health technologies as adap-

tation and technical challenges, as detailed in Figure 2.1. The adaptation challenges include

social and user-specific barriers that prevent widespread deployment. In contrast, the technical

challenges include barriers faced by the designers of the wearable platforms.

AdaptationChallenge 1 - Comfort: A substantial number of patients who participated in previ-

ous studies have reported feeling self-conscious when using wearable devices. They anticipate

that the wearable device might be a probable cause of stigmatization [82, 120]. The users also

expressed feeling embarrassment and awkwardness when wearing the sensor in public. It was

stressful to even wear the sensor for some patients [82, 120]. To address this challenge, we pro-

pose devices based on flexible hybrid electronics, as illustrated in Figure 2.4(a) and detailed in

Section 2.4.1. This approach enables physically flexible or stretchable devices that can blend

in with clothes, such as a knee sleeve [15].

10

Adapt. Challenge 1: Comfort
Concern for performing daily
activities and feeling awkward

Adapt. Challenge 2: Compliance
Burdensome for continuous use
and maintenance

Tech. Challenge 1: Data storage
Sensor data is much larger than
the memory of wearable devices

Adapt. Challenge 3: Privacy
Concerns for transmitting and
sharing private data

Wearable form factor
Physically flexible design that
can blend in with clothes

Self-powered
Energy-efficiency, harvesting
and optimal allocation

Local processing
Processing capability and low-
power secure communication

Tech. Challenge 2: Relevance
Clinically relevant subset of sensor
data has to be identified

Modularity and scalability
Support for adding new
sensors, and a software library

Open Source Community
Common set of devices and
standard APIs to utilize them

Tech. Challenge 3: Compatibility
Different sensing/computation HW
and systems hinder repeatability

Secure communication
Limited data communication
through secure connection

Figure 2.1: Challenges of wearable health platforms and proposed strategies

Adaptation Challenge 2 - Compliance: Participants in prior studies reported difficulty in us-

ing and charging the device regularly. It is difficult for a patient to charge the device since it

may involve taking the device off and wearing it on again [120]. Larger and bulky batteries

help in increasing the lifetime of the device, but they also make the device uncomfortable to

wear. Studies have also shown that many patients find wearable devices uncomfortable or bur-

densome and stop using them after some time [44]. Thus, the device should be able to operate

autonomouslywithminimumhuman intervention. Therefore,OpenHealth includes energy har-

vesting and dynamic energy allocation, which can eliminate battery charging requirements [23].

Furthermore, theOpenHealth platform operates autonomously to facilitate use without human

intervention. More specifically, it automatically turns on, manages the power states, and com-

municates with a host device, such as a smartphone, when it senses motion, as described in

11

Section 2.4.1. The physically flexible form factor also promotes compliance, as illustrated in

Figure 2.1.

Adaptation Challenge 3 - Privacy: Prior studies have shown that data privacy and security

are among the primary concerns about using wearable devices for health monitoring [120].

Raw sensor data could be transferred to the cloud for the identification of technology-based

objective measures (TOMs). Raw data transfer can cause security pitfalls as the sensor data

contains sensitive information about the patient’s health. The first solution to this concern is

processing the user-specific data locally to the maximum extent possible. For example, motion

data from PD patients are processed locally to extract clinically relevant information. Then,

only the processed data is transmitted through a secure channel only to the health professional

in charge.

Technical Challenge 1 - Data Storage: Wearable sensors can collect a large amount of data.

For instance, a 3-axis accelerometer alone can collect more than 5MB of data in one hour,

while the local storage capacity of wearable devices is in the order of few megabytes. Hence,

long-term storage of raw data is not sustainable. Since transmitting the raw data would quickly

deplete the battery, it is not a viable option either. Therefore, the proposed solution provides

local processing capability, as well as a library of signal processing and machine learning algo-

rithms, as detailed in Sections 2.4.1 and 2.4.2. This strategy also benefits the privacy challenge.

Technical Challenge 2 - Relevance of Sensor Data: Large amounts of sensor data do not

necessarily mean that all the data are clinically relevant [53]. In fact, a high volume of data can

dilute its direct applicability [107]. Hence, sensors and algorithms should effectively extract

relevant information for individualized patient treatment [44, 107]. We address this challenge

through two mechanisms. First, the proposed platform features a modular sensor hub that al-

lows adding new sensors for specific use-cases. Furthermore, the proposed platform provides

hardware support and built-in functions, such as a variety of filtering and bio-marker gener-

12

a) Current Practice

Loose
Connection

Mobile /
Wearable

Technology

Health
Professionals

Patients

Weeks

Customer
Feedback

Health
Professionals

Patients

Hardware Software APIs

Sample Applications

Open Source Platform

Commercial \ Proprietary
Applications

Needs &
TOMs

User Preferences

Wearable
Devices

Weeks Daily

Daily

b) Open Source Platform Vision

Figure 2.2: (a) Current practice of healthcare for movement disorders, (b) Envisioned solution
with the use of open source wearable platform

ation algorithms. Second, the health professionals are principal members of the open source

community. They communicate the clinical needs and TOMs with the developers, as shown

in Figure 2.2 and detailed in Section 2.3.

Technical Challenge 3 - Compatibility: The International Parkinson and Movement Disor-

ders Society Task Force on Technology emphasizes that the majority of technology develop-

ment efforts operates within its own “islands of expertise”, with limited compatibility among

the systems [53]. Since devices from distinct manufacturers may give non-compatible results,

it is difficult to integrate data provided by different devices. In order to bridge this gap, we

propose an open source design methodology where the wearable devices are derived from a

common base platform, as illustrated in Figure 2.2(b) and detailed in Section 2.4. The com-

patibility of the proposed solution is improved by using the same underlying hardware, prepro-

cessing software, and standard interfaces. This also facilitates comparing results from different

research groups. Finally, open source solutions can constitute the foundation for commercial

products, which add new proprietary intellectual property (IP) on top of the commonly used

solutions.

Reliability and robustness: In addition to addressing the adaptation and technical challenges,

we must ensure that wearable devices are reliable and robust. Reliable and robust design of

the device ensures that the device remains operational when subjected to stress during normal

13

use by patients. Common causes of stress for wearable devices include bending, rolling, and

folding by patients as a result of their activities [65]. We simulate different bending patterns in

a finite element simulator (COMSOL) to test the reliability of the device before the manufac-

turing process.

The device must also be able to continuously sample the sensors, generate the features,

and notify a caregiver in case emergencies. This is especially important for life-threatening

emergencies such as seizures in patients with epilepsy. In our proposed solution, we aim at

continuous energy-neutral operation by incorporating energy harvesting and a backup battery

in theOpenHealth platform [23]. Furthermore, we perform on-device processing of the sensor

data such that the latency of transferring the sensor data to a host device can be avoided.

2.3 OpenHealth Vision

Patients with movement disorders primarily interact with health professionals during of-

fice visits, which are typically weeks apart. Recently, smartphone apps and fitness trackers

have been employed to monitor patients’ symptoms during their daily life [54], as depicted in

Figure 2.2(a). Although this is a useful starting point, these devices are not designed to take

into consideration the patients’ needs. Instead, the patients and health professionals provide

feedback after using the device. Hence, they do not address the social and technical challenges,

such as comfort, compliance, and clinical relevance, as discussed in Section 2.2. Consequently,

the connection between the patients’ needs and device capabilities is loose.

OpenHealth aims to provide a comprehensive framework that enables a tighter and sys-

tematic interaction between all the stakeholders in wearable health monitoring, as illustrated

in Figure 2.2(b). Open source communities can bridge isolated research efforts, health profes-

sionals, and HW/SW developers to address the social and technical challenges [53]. In this

14

framework, health professionals provide needs and clinically relevant TOMs to the developers.

TOMs are defined as technology-based objective measures provided by device-based clinical

tests conducted in a standardized environment to have an objective assessment of specific be-

havior related to a movement disorder [53]. TOMs can also include the tests self-administered

by patients to monitor symptoms in everyday life. TOMs help the health professionals in as-

sessing patient symptoms such that the quality of care can be improved [53]. The second input

consists of the preferences of the patients, who are the end users of the wearable devices, as

shown in Figure 2.2(b). The preferences include materials used in the device, form factor, and

battery life. These inputs from HPs and patients ensure that the wearable devices developed

meet the requirements of the users from the onset, rather than relying on customer feedback.

The open source hardware and software is developedwith the inputs from health profession-

als and users to address their requirements and needs. The OpenHealth platform also includes

standard APIs, reference applications, and data sets. These APIs can be used by researchers to

develop their own applications to detect and monitor TOMs without mastering the hardware

design. An open source platform is important because it enables compatibility and standard

comparisons of data. It can also enable the generation of common data sets for movement dis-

orders, analogous to data sets such as the MNIST database3 for image recognition. This can

give a boost to research in the area of movement disorders. In addition to the base open source

platform, third parties can develop their own commercial applications as extensions to the base

platform, as illustrated in Figure 2.2(b).

The final step in the OpenHealth architecture is the real-world usage of wearable devices by

patients and clinicians for health monitoring — the wearable device supplements the existing

office visits, which could be weeks apart. In our OpenHealth vision, the wearable device

provides daily feedback of TOMs and other relevant parameters to both patients and their HPs.

3http://yann.lecun.com/exdb/mnist/

15

The daily feedback allows HPs to monitor the symptoms of their patients in real-time, allowing

them to make better therapeutic decisions. Similarly, patients can benefit by having access to

daily feedback about their symptoms from both HPs and the algorithms on the wearable device.

As a result of this daily feedback, large improvements to the quality of life of patients can be

made.

2.4 OpenHealth Release

The main components of the OpenHealth platform are shown in Figure 2.3. The hardware

stack in the base platform consists of the most commonly used sensors, a microcontroller unit

(MCU), radio, and energy harvesting circuitry. Similarly, the base software stack consists of

the real-time operating system (RTOS), sensor APIs, communication services, and reference

applications. In addition to the base platform, the wearable platform can be extended with

additional sensors, algorithms, and applications.

2.4.1 The Base Hardware

Processing Unit: Texas Instruments (TI) CC2650 MCU4 is the main processing unit in our

base hardware. It consists of an ARMCortex-M3 core with an operating frequency of 47 MHz.

The MCU includes 20 KB of SRAM and 128 KB of programmable flash. In addition to the

main Cortex-M3 core, it also includes a low power sensor controller that can run autonomously

from the rest of the system. The sensor controller can be used to monitor sensors while the rest

of the system is in a low power sleep state. The device is always on to ensure autonomous

operation, but it waits in low power mode until it detects active motion. When motion is de-

4http://www.ti.com/product/CC2650

16

Ba
se

Pl
at

fo
rm

Energy
Harvesting

Base
Sensor Hub

MCU +
Memory

BLE /
Zigbee

Sensor
API

Communication
Services

Sample
ApplicationsRTOS

HW
Stack

SW
Stack

Ex
te

nd
ed

So

lu
tio

ns

New Sensors
(e.g., stretch)

Signal
Processing

ML
Algorithms Applications

Figure 2.3: Overview of the wearable platform

tected, the device wakes up and starts collecting sensor data. Then, the MCU executes the

target application, such as human activity or gesture recognition and gesture recognition. The

outputs are transmitted to a host device, such as a smartphone, without any user intervention

after setting the connection settings with the host device, as illustrated in Figure 2.4(b). These

settings control how often the wearable device synchronizes with the host. As mentioned be-

fore, on-board processing capability allows us to perform the processing of TOMs in real-time,

thus eliminating the need to transfer the raw data.

Sensor Unit: The sensor unit in our base wearable platform consists of the Invensense MPU-

92505 motion sensor and electromyography (EMG) sensors. The MPU consists of a three-axis

accelerometer and a three-axis gyroscope. They are used to track themotion of the user wearing

the device. Similarly, the EMG sensor is used to record the electrical activity produced by the

muscles of the user. The sensors are connected to the MCU using an SPI interface, which

makes it easy to interface additional sensors in future extensions. We plan to add more sensors

such as galvanic skin response and blood oxygen sensors in future versions of the device. We

note that adding new sensors may require changes in layout and power supply architecture on

the device.

5https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/

17

(a) (b)

Figure 2.4: (a) Wearable device in flexible form factor (b) Screenshot of the smartphone app
used to control the device

Communication: We use the integrated RF core in the TI CC2650 as the main communication

module. It consists of a dedicated ARM Cortex-M0 to support communication tasks. The RF

core can support the Bluetooth Low Energy (BLE) and ZigBee protocols using a 2.4 GHz RF

transceiver. The BLE interface encrypts all the data that is sent over the air, thus ensuring

the security and privacy of the user data. Moreover, BLE and Zigbee can be used to create a

network of devices to make the platform scalable.

Energy Harvesting Unit: We use energy harvesting as the primary source of energy in our

wearable platform to enable sustainable operation. In particular, we use solar energy harvesting

with the help of a PV-cell, as shown in Figure 2.4. The PV-cell is connected to a maximum

power point tracking charger that charges the Lithium-ion battery mounted on the device. The

battery is used to store the harvested energy such that it can sustain autonomous operation when

the harvested energy is below the energy requirement of the device [125].

18

Form factor: The base hardware can be manufactured in both rigid and flexible forms. Fig-

ure 2.4(a) shows the device in a flexible form factor. The flexible form factor is easy to wear

as a patch on the body, which makes it comfortable to use for longer periods. We focus on

incorporating a flexible form factor since flexible electronics technology has the potential to

change the landscape in computing using stretchable and bendable platforms. Flexible hybrid

electronics (FHE) [65, 118] can enable powerful computing abilities in a stretchable and bend-

able form factor by taking advantage of the computing abilities of rigid processors. As a result,

FHE technology allows us to perform local processing of TOMs while maintaining a form fac-

tor that is comfortable and easy to wear as a patch. The rigid form factor is useful when a more

rugged operation is required, such as mounting the device on a shoe. Both the form factors use

PV-cells to harvest energy from the ambient light, fulfilling the energy harvesting requirement.

2.4.2 The Base Firmware

Operating System: The primary operating system consists of a thread-based, real-time oper-

ating system (RTOS) from Texas Instruments. The RTOS is responsible for scheduling and

maintaining all the software tasks running in the system. The RTOS also provides drivers such

as I2C, SPI, and UART to interface with the peripherals and sensors connected to the MCU.

We employ the SPI interface to connect the motion sensors to the MCU.

Sensor API: The sensor API functions as the intermediate interface between low-level drivers

and the application. In our software architecture, the sensor API provides functionality to

control the sensors using the I2C or SPI interfaces. Specifically, it provides standard functions

that allow the application to control the registers of the sensors and read data from each sensor.

The modular nature of the sensor API interface allows the developers to new sensors easily.

Communication services: The communication services consist of the BLE and Zigbee proto-

19

col stacks. The protocol stacks run on the RF core in theMCU, independently of the application.

Whenever the application has to send data to another device, it sends a message to the stack,

which transmits the message over the air. All the data transferred using BLE and ZigBee is

encrypted to ensure the security of the data.

Ease of development: We use the TI CC2650 MCU to ensure that tools needed for develop-

ment of software for the wearable platform are easily accessible. Hence, OpenHealth users

can use the software development kits, debugging kits, and RTOS libraries available for the TI

MCU. In addition to the software tools provided by TI, we provide standard APIs to use the

sensors in the OpenHealth platform. Finally, we plan to create a forum that will enable the

users of the platform to discuss new applications, designs, and solutions to potential issues.

2.4.3 Public Release

The design files and firmware for the base platform are available for download at theOpen-

Health web page6. In addition to HW design files, the public release also contains the base

firmware that includes the RTOS, sensor API, communication libraries. To facilitate develop-

ment effort and new research, we also include the reference applications and anonymous data

sets collected for these applications. Users of the wearable platform will also be able to upload

new data sets, thus helping in the creation of a common data repository for movement disor-

ders. We plan to maintain an OpenHealthWiki-page that will describe the steps required for

manufacturing the base platform and reference applications, as well as answering frequently

asked questions.

6https://sites.google.com/view/openhealth-wearable-health/home

20

2.5 Example Application Domains

The OpenHealth platform can be used to implement a variety of wearable applications

ranging from fitness tracking to continuous health monitoring of patients with movement dis-

orders. One of our focus application areas is the diagnosis and monitoring of patients with PD.

For example, body motion analysis, response to therapy, and motor fluctuation monitoring

of PD can be achieved with 3-axis accelerometers and gyroscopes available in the base plat-

form. This section illustrates two reference applications included with theOpenHealth release.

Adding more sensors like sweat sensors, heart rate sensors, and EEG can enable monitoring of

nonmotor symptoms and progression [53].

2.5.1 Human Activity Recognition (HAR)

One of the first steps in the treatment of movement disorders is to understand what the

patients are doing [44]. This objective is achieved through HAR algorithms, which aim to

identify the user activity, such as standing, walking, and jogging, by processing sensor data.

Since efficient HAR implementations can provide valuable insights to both health profession-

als and patients, we include it as one of the two reference applications. We provide a summary

of the application here, while the full details of the application are present in Chapter 4. To

implement our HAR application, we employ the base platform, which contains the MPU-9250

motion sensor, along with a wearable stretch sensor [15]. We use a combination of accelerom-

eter and stretch sensors since it provides 10% higher recognition accuracy than using either

sensor alone. The 3-axis accelerometer in the motion sensor is placed near the ankle to capture

the swing of one of the legs. The stretch sensor is used on a knee sleeve to capture the degree

of bending of the knee. During this work, we performed with 22 users and collected data for

21

seven activities and transitions between them. Then, the data is used to train a programmable

neural network that can recognize these activities in real-time. Our experimental evaluation

shows that we achieve accuracy greater than 90% for all the activities, as shown in Chapter 4.

The application consumes about 12.5 mW power for recognizing a single activity. The user

data, as well as the implementation of the HAR application, are included in the OpenHealth

release.

2.5.2 Gesture Recognition

Gesture recognition is another application that is very useful in the context of health mon-

itoring. Gesture recognition can be used in applications such as gesture-based control and

interaction with assistive devices. We implemented a gesture recognition application that uses

the accelerometer sensor in the base platform. The device is mounted on the wrist of the user

to record the accelerometer data when the user is performing a gesture. We then use a NN

classifier to recognize gestures, such as up, down, left, and right, which can be used to control

assistive devices. Experimental evaluations using seven users show that the wearable device

can recognize gestures with an accuracy of 98.6% while having an active power consumption

of about 10 mW. Our implementation of the gesture recognition application [122–124] and the

corresponding data set is available with the release of the wearable device.

2.6 Summary and Future Directions

This chapter presented the OpenHealth platform for open source health monitoring. It

discussed the need for wearable healthmonitoring and the challenges faced bywearable devices

before their widespread adoption. Then, it presented the hardware and software details of

22

the OpenHealth platform. Finally, we provided example applications for human activity and

gesture recognition using the proposed wearable platform.

In order to assess whether the wearable device is able to address the challenges andmeet our

vision, we will conduct extensive user studies with movement disorder patients. We also plan

to design custom SoC with reconfigurable NN accelerators to reduce the power footprint into

the µW range. Furthermore, we will integrate additional modalities of energy harvesting, such

as body heat and body motion. These will be key enablers to sustainable and maintenance-free

operation.

23

Chapter 3

NEAR-OPTIMAL ENERGY ALLOCATION FOR ENERGY HARVESTING IOT

DEVICES

3.1 Introduction

Advances in low power sensor, processor and wireless communication technologies enable

a wide range of wearable applications. For instance, small form factor and low-cost IoT devices

offer a great potential for non-invasive healthcare services that are not limited to any specific

time or place [9, 42]. Exciting, and possibly pervasive, applications include health monitor-

ing, activity tracking, and gesture-based control [126]. However, small form factor and low

cost constraints severely limit the battery capacity. Therefore, harvesting ambient energy and

optimal energy allocation are crucial for the success of wearable IoT devices.

Energy limitation is one of the major problems faced by wearable applications. Bulky bat-

teries are heavy and inflexible, while small printed batteries havemodest (3.16–29.6mWh/cm2)

capacity [92, 95, 170], which requires frequent charging. Therefore, it is imperative to exploit

ambient energy sources such as light, motion, and heat. Recent studies show that photovoltaic

(PV) cells can provide 0.1 mW/cm2 (indoor) – 100 mW/cm2 (outdoor) power [164]. Similarly,

human motion and heat can generate 0.73 mW/cm3 [61] and 0.76 mW/cm2 power at ∆T =

10 K [85], respectively. Energy harvesting can be particularly effective for wearable devices,

since they are inherently personalized. For example, the device can easily learn the expected

energy generation and consumption patterns based on daily activities. Therefore, we adopt

energy harvesting as the primary source. At the same time, the intermittent nature and current

source behavior of the energy sources necessitate an energy storage element, such as a battery

24

PV-Cell

Energy
Harvesting Unit

Battery

CPUMotion
Sensor Unit

EMG

BLE

Power measuring points

Energy
&

Activity
Profiling

Wearable
IoT Device

Runtime
Optimization

𝐸"##$%% (𝑡) 𝐸"%)*"#+

𝐸"%)*"#%

Finite Horizon (24-hr)
Optimization Battery Energy Target 𝐸)",-.)/ (𝑡)

Expected Energy
Harvesting

Initial Battery
Energy

𝐼1",2.3)

𝐼4")).,5
𝐼#$"6

Optimal Energy
Allocations 𝐸"##$%% (𝑡)

Each Day

Each Interval

Figure 3.1: The proposed hardware architecture and energy harvesting framework. The energy
harvesting unit channels the generated current between the IoT device and battery. Our proof
of concept prototype uses PV-cell as the ambient energy source, but the proposed framework
can work with multiple energy sources.

and super capacitance [137]. In this chapter, we utilize flexible rechargeable batteries as a re-

inforcement to provide a smooth quality of service and backup, in case the harvested energy

falls significantly below expectations. The batteries we employ offer 148 mWh capacity at a

12×35 mm2 footprint, have 2 mm thickness and weigh 1.7 g [130].

The primary goal of this chapter is to provide recharge-free wearable IoT devices that

maximize the quality of service (QoS). To achieve this goal, we propose a dynamic energy

optimization framework with a finite time horizon. The proposed framework channels the

generated power between the battery and the IoT device, while enforcing minimum and target

energy constraints to guarantee recharge-free operation. The fundamental components of the

proposed framework are illustrated in Figure 3.1 and described below.

Inputs and objective: The inputs to our optimization framework are the initial battery energy

and the expected energy harvested pattern. In addition, we also specify the minimum battery

level allowed at any point in time, and the battery energy target at the end of the day. The

minimum energy constraint ensures that the battery always has a reserve to perform emergency

tasks. Similarly, the energy level target ensures that the battery will have a desired level of

charge at the end of each day. Our goal is to optimize the work performed by the IoT device,

called the utility, under the battery level constraints. We measure the utility using an increasing

25

function of the energy allocated to the IoT device. This choice captures the fact that more

energy allocation would lead to a larger utility. At the same time, it is more general than simply

maximizing the allocated energy itself, since allocating more energy may have a diminishing

rate of return.

Dynamic optimization with 24-hour horizon: The first component of the proposed solution

is a finite horizon dynamic optimization formulation, as represented by the green patterned box

in Figure 3.1. We set the finite time horizon as 24 hours since the energy harvesting pattern

and user activities are repeated on a daily basis with potential day-to-day variations. The 24-

hour horizon is divided into equal intervals, e.g., one hour or one-minute epochs. We derive

a closed-form solution that gives the optimal energy allocations for each time interval during

the day by using Karush-Kuhn-Tucker (KKT) conditions [11, 31, 91]. The optimality of this

solution is guaranteed if the expected energy harvesting pattern matches with the actual gener-

ated energy. However, there are inter-day and inter-interval variations in the generated energy

due to environmental conditions. Therefore, we also need to perturb the energy allocations

computed using expected values.

Perturbation in each interval: The energy allocations computed at the beginning of each

day deviate from their optimal values due to uncertainties in the harvested energy and load

conditions. Therefore, we also perform runtime optimization by taking the differences in the

expected and actual energy values into account. For example, suppose that the one-day horizon

is divided into 24 one-hour intervals, and the energy harvested during the first hour is less than

the assumed value. We compute this difference at the end of the first hour. Then, we reflect

the difference in the energy allocations computed for the rest of the intervals on that day. In

this way, the deviations from the optimal allocation are rectified at every interval. As a result,

we continuously adapt to the changes in the environmental conditions with negligible runtime

overhead.

26

Learning the daily patterns: Throughout the day, we keep track of harvested energy in each

interval and use this data to find the expected energy harvesting pattern. Similarly, user motion

patterns reveal low and high activity periods (e.g., sleep and exercise times). Daily averages

of this data are fed to the proposed framework. Then, this data is used to guide the energy

allocations, such as allocating minimum energy during sleep, as described in Section 3.4.3.

We demonstrate the proposed framework using the hardware prototype presented in Sec-

tion 3.5.1. Our prototype employs flexible PV-cells to harvest energy from ambient light. The

effectiveness of our optimization algorithm is evaluated for different user activities and energy

harvesting patterns obtained from an online database [4, 163]. The proposed runtime algorithm

is near-optimal, since the actual harvested energy in a given interval may be different from the

expected value. Therefore, we compare our results with the maximum achievable utility com-

puted using an oracle and an offline optimization algorithm [63, 64]. We show that the utility

obtained by our runtime optimization approach is within 3% of the optimal utility, which is not

feasible since it assumes an oracle. Moreover, our results converge to the optimal solution as

the difference between the harvested energy and its expected value diminishes.

The major contributions of this chapter are as follows:

• We present a closed-loop solution for finding the optimal energy consumption of a self-

powered IoT device when the amount of harvested energy is known a priori,

• Since the actual harvested and consumed energy may differ from their expected values,

we propose a novel runtime algorithm with constant time complexity for setting the

energy consumption in a finite horizon,

• We demonstrate that our results are, on average, within 3% of the optimal solution com-

puted offline for a wide range of practical scenarios using a hardware prototype. We also

show that the proposed algorithm incurs negligible power consumption and execution

time penalty.

27

The rest of the chapter is organized as follows: We review the related work in Section 3.2.

We present the preliminaries and the proposed algorithm in Section 3.3 and Section 3.4, respec-

tively. Finally, we discuss the experimental results in Section 3.5 and summarize the conclu-

sions in Section 3.6.

3.2 Related Work

Wearable IoT devices have recently attracted significant attention due to advances in sens-

ing, low-power processing, communication protocol, and radio technologies [71, 97]. In par-

ticular, flexible hybrid electronics technology offers great potential for sensor-rich wearable

applications [21, 65, 84].

The limited battery capacity of wearable devices has led to the study of energy harvesting.

Major components of an energy harvesting system are the energy source, storage, harvesting

circuit, and harvesting-aware power management [137, 155]. Solar energy harvesting using

PV-cells is one of the most promising techniques adopted by many recent studies [3, 125, 137].

Body heat and motion can also generate energy with the help of thermoelectric [76, 157] and

piezoelectric sensors [77, 142], respectively.

Energy harvesting aware power management for wireless sensor nodes has been studied

extensively in recent years [60, 83, 167]. In particular, the work in [83] presents a general

framework for including energy harvesting in power management decisions. The authors max-

imize the duty cycle of a sensor node using a linear program formulation. To avoid solving a

linear program at runtime, the authors also present a low-complexity heuristic to solve the lin-

ear program. Similarly, a linear quadratic tracking based algorithm that adapts the duty cycle

of the sensor node is presented in [167]. The authors minimize the deviation of the battery level

28

from a specified target. However, these solutions do not consider the application requirements

when tuning the duty cycle of the nodes.

Concurrent task scheduling and dynamic voltage frequency scheduling is proposed to in-

crease the lifespan of energy harvesting systems in [102]. At the beginning of each time interval,

their algorithm refines the solar irradiance estimation and adjusts the task scheduling, but it is

unable to correct future energy allocations. A design-time capacity planning and runtime ad-

justment method to achieve long-term recharge-free operation is presented in [33]. The method

derives the battery capacity that can satisfy uninterrupted operation for a year. During runtime,

the duty ratio of the device is changed based on the daily operation history. However, this

approach only reacts to the harvested energy variations, thus leaving room for improvement.

In wearable IoT applications, energy can be optimized by considering user activity and

application characteristics. Our proposed approach learns the energy harvesting and user ac-

tivity patterns. We first calculate the optimal energy allocation using a closed-form formula,

assuming the expected harvesting pattern. Then, we propose a novel runtime algorithm that

both revises the optimal allocation dynamically and redistributes the slack from the previous

intervals.

3.3 Preliminaries and Overview

We divide the one-day horizon into T equal intervals. For example, the battery energy

illustration in Figure 3.2 assumes T = 24, i.e., each interval is one hour long. The proposed

approach does not put any constraints on the level of granularity, provided that the overhead

of the runtime energy allocation calculations is negligible7.

Energy constraints: The battery energy at the beginning of any interval t is denoted as EB
t

7 Our implementation runs with one-minute intervals without any significant overhead.

29

for 0 ≤ t ≤ T − 1. The proposed approach can work with multiple ambient sources such as

a PV-cell, thermoelectric generator, and a piezoelectric device. In our experiments, we use a

commercial PV-cell as the ambient energy source [57]. Suppose that the harvested and con-

sumed energies in interval t are given byEH
t andEc

t , respectively. As illustrated in Figure 3.2,

the battery energy dynamics can be expressed as:

EB
t+1 = EB

t + ηtE
H
t − Ec

t , 0 ≤ t ≤ T − 1 (3.1)

where ηt is used to model the losses of the battery and power management circuitry, including

the PV cell and voltage converters. The efficiency is time-varying since it is a function of

generated current. Regardless of the harvested energy, the IoT device should have enough

reserves to perform an emergency task, such as detecting a fall and sending an emergency

signal. Therefore, we set a minimum battery level constraintEmin. Similarly, we constrain the

energy level at the end of the day from below, such that there is sufficient reserve for the next

day. Hence, the constraints on the battery energy level are given as:

EB
T ≥ Etarget and EB

t ≥ Emin ∀t 0 ≤ t ≤ T − 1 (3.2)

!"#

Battery Energy (J)

Time (hr)
.

0 1 2 23 T=24

!$%&

!'#

!(#

Minimum battery energy

Battery energy target

				*+!+,−	!+.
.

.	

Figure 3.2: Illustration of the battery level computation for T = 24 hr horizon.

Driver applications and the utility function: Although the proposed framework does not de-

pend on any particular application, we consider health monitoring and activity tracking as the

30

driver applications. We monitor the user activity using a motion sensor unit that integrates an

accelerometer and a gyroscope. We also employ circuitry for real-time acquisition of physiolog-

ical signals such as electromyography (EMG) and electrocardiogram (ECG). These signals are

sampled and processed by amicrocontroller unit (MCU). The processing results are transmitted

to a personal device, such as a smartphone, using Bluetooth Low Energy (BLE) protocol.

The energy requirement of the target application is determined primarily by three factors.

The first one is the active power consumption Pact(ft) as a function of the processing speed ft

during interval t. In our driver applications, this includes sampling the sensors, processing the

data in real-time, and potentially transmitting data through BLE connection. The other factors

are the duty ratio ρt, i.e., the percentage of time the application is active, and the idle power

consumption Pidle. With these definitions, the average application power consumption in a

given interval can be written as:

Pt =
[
ρtPact(ft) + (1− ρt)Pidle

]
(3.3)

A given target application needs a minimum duty ratio ρmin and operating frequency fmin to

accomplish its performance requirements. For example, it may need to guarantee a certain

number of measurements per unit time. We use these requirements to compute the minimum

energy ME that should be allocated for each period. Allocating more energy can improve

the QoS by delivering higher throughput, while less energy allocation means lower QoS. We

define a utility function that expresses the quality of service in terms of ME to capture this

behavior. For illustration, a linear utility functionEc
t −ME is plotted in Figure 3.3. In general,

allocating more energy has a diminishing rate of return, while allocation under ME degrades

quality at a faster rate. Hence, we employ a parameterized and generalized the utility function

that captures this behavior as illustrated in Figure 3.3:

u(Ec
t) = ln

(
Ec

t

ME

)α

(3.4)

31

0 M
E

1

E
t

c

u
 (

E
tc
)

Figure 3.3: Illustration of the application utility function.

where the parameter α is used to tune the utility function for a specific user or application.

We note that the algorithm presented next works with any utility function that is concave and

increasing. The major parameters used in this chapter are summarized in Table 3.1.

3.4 Optimal Energy Management

3.4.1 Problem Formulation

Our goal is to maximize the utility over a one-day horizon under the energy constraints ex-

plained in Section 3.3. Hence, we can formulate the optimization problem using Equations 3.1–

3.4 as follows:

maximize U(Ec
0, E

c
1 . . . E

c
T) =

T−1∑
t=0

βt ln

(
Ec

t

ME

)α

subject to EB
t+1 = EB

t + ηtE
H
t − Ec

t 0 ≤ t ≤ T − 1

EB
t+1 ≥ Emin 0 ≤ t ≤ T − 1

EB
T ≥ Etarget

(3.5)

32

Table 3.1: Summary of the major parameters

Symbol Description

T Number of control intervals in the finite horizon

β > 0 Discounting factor for utility

Emin, Etarget Minimum and target battery energy constraints

Pt Power consumption of the IoT device in interval t

ρt, ft
Duty ratio and frequency of the IoT device
in interval t

ME Minimum energy required for positive utility

α
A positive parameter to control the shape
of the utility function

EH
t , Ec

t Harvested and consumed energy in interval t

EB
t Battery energy at the beginning of interval t

∆h
t ,∆

c
t

Deviation from the expected values of harvested
and consumed energy

In this formulation, we compute the total utility as the sum of the utilities in each interval. A

positive discount factor 0 < βt ≤ 1 is added to enable bias against distant intervals.

The optimal solution to the problem given in Equation 3.5 can be found offline using dy-

namic programming [12]. However, it requires solving a set of T nonlinear equations, which

is computationally expensive for a runtime algorithm. Furthermore, it relies on the knowledge

of the energy that will be harvested in the future intervals (i.e.,EH
t for 0 ≤ t ≤ T−1). In what

follows, we propose a two-step solution based on two insights that enable us to overcome these

challenges. The proposed solution leads to a near-optimal runtime algorithmwith a complexity

of O(1), i.e., the complexity does not grow with the time horizon or the number of intervals.

33

3.4.2 Optimal Closed-Form Solution with Relaxed Constraints

The proposed solution relies on two key insights:

Key insight-1: We can derive a closed-form analytical solution to this optimization problem

if we tentatively ignore the minimum energy constraint. Obviously, the revised solution is not

guaranteed to satisfy the minimum energy constraintEB
t ≥ Emin. However, we can enforce it

at runtime at the expense of loss in optimality. Therefore, we find the closed-form solution at

the beginning of each day. Then, the energy allocations are adjusted at the beginning of each

interval, as described in Section 3.4.3.

Key insight-2: We cannot rely on the knowledge of the energy that will be harvested or con-

sumed throughout the day. However, we can learn the expected patterns by profiling the gener-

ated energy during each time interval. This enables us to derive the optimal allocation for each

interval at the beginning of each day by utilizing the expected values. Similarly, the actual

energy consumption may be different from the optimal allocation, as detailed in Section 3.4.3.

Therefore, we compare the actual generated and consumed energies with their expected values.

Then, we use the difference to perturb the energy allocations for the remaining intervals, as

described in Section 3.4.3. Since we relax theEmin constraint, there may be time intervals dur-

ing which the battery level drops below the minimum threshold. Furthermore, the proposed

approach can over- or under-allocate energy due to unexpected changes in the harvested en-

ergy, unlike an Oracle-based offline optimization. However, these effects do not propagate

beyond one interval, since the proposed approach rectifies over- and under-allocations at the

beginning of the next control interval. For the continuity of the discussion, we first summarize

the closed-form solution with relaxed constraints below.

Closed-form solution: When we relax the minimum energy constraint and assume expected

values for the harvested energy, the optimal energy allocation for each interval can be found as

34

follows:

First interval : Ec
0 =

EB
0 − Etarget +

∑T−1
t=0 ηtE

H
t

1 + β + β2 + . . .+ βT−1
(3.6)

Subsequent intervals : Ec
t+1 = βEc

t 0 ≤ t ≤ T − 1

The derivation is presented in the Appendix. Note that the denominator can be computed

a priori, and the total expected energy that will be harvested is available through profiling.

Therefore, this closed-form equation enables us to compute the energy allocations with constant

time complexity. Next, we explain howwe employ this solution to design a runtime algorithm.

3.4.3 Near-Optimal Runtime Solution

This section presents our novel algorithm that builds on top of the closed-form solution

given by Equation 3.6. The proposed algorithm perturbs the optimal allocations found using

the expected energy values and enforces the minimum energy constraints at runtime.

3.4.3.1 Uncertainty in Expected Energy Values

The actual energy harvested at runtime may differ from the expected value due to factors

such as environmental conditions. Efficiency in storing the harvested energy also adds to the

uncertainty, since it varies with the load. We represent the difference between the actual energy

generation and the expected value by ∆H
t . ∆H

t > 0 (∆H
t < 0) means that actual energy

harvested during interval t is larger (smaller) than the expected value for that interval.

An IoT device uses the energy allocation target for a given interval t to compute the av-

erage power consumption allowed in that interval. Then, it finds the duty ratio and operating

frequency using Equation 3.3, as summarized in Section 3.4.3.4. However, the actual energy

consumed at the end of the interval may be different from the target. We subtract the actual

35

consumption from the allocated energy to find the difference ∆c
t . Similar to the difference in

the harvested energy, ∆c
t > 0 means a surplus, ∆c

t < 0 means that more energy than the al-

located target is consumed. Hence, the difference between the expected energy accumulation

and the actual values is:

∆t = ∆H
t +∆c

t 0 ≤ t ≤ T − 1 (3.7)

When∆t is positive, the energy surplus can be used during the remaining intervals. Otherwise,

the consumed energy is more than the allocated target. Therefore, the deficit should be reflected

in the remaining intervals.

3.4.3.2 Perturbation of the Allocated Energy Values

We need to adjust two quantities to account for the unpredictable dynamic variations. First,

the optimal solution given in Equation 3.6 needs to be corrected in light of the new data avail-

able at the end of each interval. Second, the over or under expenditure in the previous interval

should be distributed to future intervals.

Correcting the Future Allocations: Suppose that we adjust the optimal allocation at the be-

ginning of the time interval t. The difference in expected and actual energy accumulated over

earlier intervals {∆0,∆1, . . . ,∆t−1} are known at this point. Therefore, the adjusted alloca-

tion for an interval t can be found using Equation 3.6 as:

Ec
t = βtE

B
0 − Etarget +

∑T−1
k=0 ηtE

H
k +

∑t−1
k=0 ∆k

1 + β + β2 + . . .+ βT−1

Since we are interested in a computationally efficient recursive solution, we can re-arrange the

36

terms to express Ec
t in terms of Ec

t−1 and∆t−1 only:

Ec
t = β

(
βt−1E

B
0 − Etarget +

∑T−1
k=0 ηtE

H
k +

∑t−2
k=0∆k∑T−1

k=0 β
k

+
βt−1∆t−1∑T−1

k=0 β
k

)
Ec

t = β
(
Ec

t−1 +
βt−1∆t−1∑T−1

k=0 β
k

)
(3.8)

Hence, Equation 3.8 corrects the future allocations based on the most up-to-date energy gener-

ation and consumption information after each interval.

Redistributing the Surplus/Deficit: In addition to correcting the future allocations, we need

to account for deviations from the revised optimal values in the past intervals. For example,

assume that the optimal allocation for interval t − 1 was computed as 10 mAh, but the har-

vested energy in interval t − 1 turned out to be significantly lower than the expected value.

Suppose that the optimal allocation in interval t − 1 is corrected as 6 mAh in light of the

new measurements. Equation 3.8 corrects the future allocations, but it does not claim back

4 mAh overspent in the previous interval. In other words, Equation 3.8 alone does not make up

for over-consumption or reclaim the underutilized energy allocations in the previous intervals.

Therefore, we need to distribute∆t−1 to the remaining intervals [t, T − 1]. A straightforward

uniform distribution is not sufficient since any adjustment introduced at time t affects the future

allocations due to the recursive rule in Equation 3.8.

Suppose that we add a correction term to Equation 3.8 as follows:

Ec
t = β

(
Ec

t−1 +
βt−1∆t−1∑T−1

k=0 β
k

)
+ at∆t−1

where at is a normalization coefficient that will ensure that the perturbations in the remaining

intervals will add up to precisely∆t−1. By grouping the terms with∆t−1, we obtain:

Ec
t = βEc

t−1 +
(βt∑T−1

k=0 β
k
+ at

)
∆t−1 (3.9)

Since the perturbation term will be multiplied with β in each future interval (due to the βEc
t−1

term), the sum of the perturbations from the current interval through the last one can be written

37

as:
T−1∑
k=t

βk−t
(βt∑T−1

k=0 β
k
+ at

)
∆t−1 = ∆t−1

By solving this equation, we can find at as:

at =


1−β

1−βT−t − βt∑T−1
k=0 βk

0 < β < 1

1
T−t
− 1

T
β = 1

(3.10)

3.4.3.3 User Activity and Minimum Energy Constraint

Profiling the energy consumption and user activity reveal specific periods with low or high

activities. For example, it is possible to identify sleep and exercise periods. The proposed

approach enables us to easily introduce new equality constraints based on this information.

More precisely, we set Ec
t = ME for intervals t that fall during the sleep duration. Similarly,

one can allocate a certain maximum value during expected exercise periods. We note that over-

allocation does not have a significant drawback since unutilized allocations are distributed to

future periods. However, under-allocation may hurt the utility if the interval duration is long

(e.g., one hour). Therefore, low activity regions should be selected conservatively. Since these

constraints can be introduced as pre-allocation, they do not change the formulation.

The final consideration is enforcing theminimum energy constraint. Equation 3.9 can cause

the battery energy drain belowEmin, since this constraint was relaxed to find a closed-form so-

lution. Therefore, we project the remaining battery energy EB
t+1 at runtime using Equation 3.1

and compare it againstEmin before committing to a solution. If there is a violation, we allocate

the maximum energy that satisfies EB
t+1 = Emin. That is, the allocation becomes:

Ec
t =


βEc

t−1 +
(

βt∑T−1
k=0 βk

+ at
)
∆t−1 EB

t+1 ≥ Emin

EB
t + ηtE

H
t − Emin otherwise

(3.11)

where EB
t+1 and at and are given by Equations 3.1 and 3.10, respectively.

38

3.4.3.4 Summary of the Proposed Algorithm

We conclude this section with a step-by-step description of the runtime operation:

1. At the beginning of each day: Compute the allocation for the first interval Ec
0 using Equa-

tion 3.6.

2. For each interval 0 ≤ t ≤ T − 1: Divide the energy allocation Ec
t by the interval duration

to find the target power consumption Pt. Then, use Equation 3.3 to find the duty ratio

ρt. If there are multiple allowed frequency levels ft, we use the most energy-efficient ft.

However, any feasible combination is acceptable.

3. During each interval 0 ≤ t ≤ T −1: Keep track of actual harvested and consumed energy.

Compute ∆t at the end of the interval by finding the difference between the expected and

measured values.

4. Before the start of each interval 1 ≤ t ≤ T − 1: Use Equation 3.11 to find the next

allocation Ec
t . If t = T − 1 stop, otherwise increment t and go to step 2.

3.5 Experimental Evaluation

3.5.1 Experimental Setup

IoT Device Parameters: We employ the prototype shown in Figure 3.4 to demonstrate the pro-

posed algorithm under realistic scenarios. It consists of an MPPT charger (TI BQ25504 [158]),

a microprocessor (TI CC2650 [160]), a motion sensor unit (InvenSense MPU-9250 [79]), and

EMG circuitry. We use a PV-cell from FlexSolarCells SP3-37 [57] as the energy-harvesting

device and a 12 mAh Li-Po battery GMB 031009 [62] as the storage element. We have probes

to measure the power consumption of different components, as illustrated in Figure 3.1. These

39

measurements are used to validate the power model given in Equation 3.3 as a function of the

duty ratio and frequency. We also determined the IoT device parameters, such as Emin and

ME , listed in Table 3.2, based on these measurements.

Table 3.2: Parameter values used during evaluations

Parameter Value Parameter Value

Emin 0.75 mAh Etarget 8 mAh

Pidle 2.2 mW ME 0.6 mAh

T 24 α 1

PV

Battery

EMG

Charger

CPU
MPU

Antenna

(a) (b)
Figure 3.4: Prototype (a) front view, (b) back view

Energy Harvesting Model: The harvested energy is determined by the PV-cell and the radi-

ation intensity, which is a function of observation time and location. I-V characteristics of

SP3-37 are measured by varying the radiance from 100 to 1000 W/m2 with the help of a

halogen lamp. Then, this empirical data is used to model the maximum generated power as a

function of radiation. This model enables us to compute the harvested energy when the radi-

ation is known. To find the radiation, we first estimate the position of the sun at a given date

and time using Sandia’s Ephemeris model [145]. Then, we convert the position information

40

to radiation using Ineichen’s model [78]. These three models are used by our algorithm to

predict the energy that will be harvested during the day. We compare our results to an optimal

offline algorithm implemented using the CVX package [64] and an oracle. The oracle uses the

actual radiation, which is measured at every minute on the NREL Solar Radiation Research

Laboratory’s baseline measurement system [4].

User ActivityModel: The energy consumption varies as a function of the user activity. To eval-

uate a wide range of scenarios, we use different user activity patterns from the American Time

Use Survey conducted by the US Department of Labor [163]. This survey contains the time

a user spends on various activities. In our evaluations, we use five activity categories {sleep,

work, exercise, leisure, others}. When the user is asleep, we allocateME to the corresponding

interval. Otherwise, we use the proposed approach to find the optimal allocation.

3.5.2 Energy Allocation Over Time

We first illustrate the operation of the proposed algorithm for a specific user and date. Fig-

ure 3.5 shows the energy-harvesting profile, battery energy, and optimal allocations on January

1st for user-1. The energy harvesting profile (blue ◦ markers) shows that there is little to none

energy generation until 8 AM. During this period, the allocated energy (red□ markers) is sup-

plied by the battery. The energy stored in the battery drops continuously (green △ markers)

due to the lack of harvested energy. Once the harvested energy exceeds the energy allocated

within an interval (around 10 AM), the battery energy starts recovering. We observe that our

results match very closely with the result of the offline optimization that uses an oracle (dotted

lines). We do not see a significant difference in the allocated energy throughout the day since

the battery capacity is sufficient to absorb the variation in the harvested energy. However, we

observe a dramatically different behavior for July, as shown in Figure 3.6. The peak harvested

41

0 4 8 12 16 20 24

Time (hr)

0

1

2

3

4
E

n
e

rg
y

 (
m

A
h

)

0

5

10

15

20

25

30

35

E
B t

 (
m

A
h

)

Ec
t

Eh
t

Oracle EB
t

U (Oracle) = 11.0

U = 10.9

Figure 3.5: Energy allocation in January with-
out learning the user pattern.

0 4 8 12 16 20 24

Time (hr)

0

2

4

6

8

10

E
n

e
rg

y
 (

m
A

h
)

0

5

10

15

20

25

30

35

E
B t

 (
m

A
h

)

Ec
t

Eh
t

Oracle EB
t

U (Oracle) = 32.5

U = 28.0

Figure 3.6: Energy allocation in July without
learning the user pattern.

0 4 8 12 16 20 24

Time (hr)

0

1

2

3

4

E
n

e
rg

y
 (

m
A

h
)

0

5

10

15

20

25

30

35

E
B t

 (
m

A
h

)
Ec

t
Eh

t
Oracle EB

t

U (Oracle) = 9.7

U = 9.6

Figure 3.7: Energy allocation in January after
learning the user pattern.

0 4 8 12 16 20 24

Time (hr)

0

2

4

6

8

10

E
n

e
rg

y
 (

m
A

h
)

0

5

10

15

20

25

30

35

E
B t

 (
m

A
h

)

Ec
t

Eh
t

Oracle EB
t

U (Oracle) = 27.1

U = 27.1

Figure 3.8: Energy allocation in July after
learning the user pattern.

energy is about 2.5× larger in July than January (∼3.5 mAh versus ∼9 mAh), and it spans a

wider range. Therefore, the proposed algorithm allocates aggressively at the beginning of the

day, relying on the energy that will be generated later. However, it hits the minimum battery

energy constraint at 4 AM, unlike the offline optimization that accounts for Emin from the be-

ginning. As soon as the battery energy drops to Emin, the proposed algorithm starts allocating

sub-optimally only the harvested energy to the IoT device. The sub-optimal allocation contin-

ues until the harvested energy becomes sufficiently large to power the IoT device and charge

42

the battery (8 AM). While the allocation during the rest of the day closely follows the optimal

allocation, the IoT device is under-powered from 3 AM to 8 AM. As a result, the loss in utility

with respect to the oracle is larger compared to that obtained for January. This demonstrates

the cost of neglecting the minimum energy constraint at the beginning of the day.

Next, we analyze the results on the same days by taking the user activity into account. We

identify the periods of low activity, primarily the intervals categorized as sleep, and constrain

the allocations in those intervals as Ec
t = ME . We add the same constraint to the offline

optimization for fairness. Comparing Figure 3.5 to Figure 3.7 shows that the algorithm starts

allocating less energy at night. As a result, more energy is reserved for higher activity intervals,

which leads to more than 30% increase in the utility during those intervals. Like before, the

results match very closely with the offline optimization results. Incorporating user activity

leads to even more savings in the results obtained for July. When we account for user activity,

the proposed algorithm does not over-allocate at the early hours since there is little activity at

night. Therefore, the battery energy does not hit to Emin, and our results coincide with the

oracle results, as shown in Figure 3.8.

3.5.3 Comparison to Offline Optimization

Improving the duty ratio is an important end goal. Therefore, this section compares the

duty ratio obtained with the proposed approach against the offline optimization results, which

employ an oracle. We performed the comparisons for three different users from the US De-

partment of Labor [163] database over 12 months. Figure 3.9 summarizes the normalized duty

ratio (our results divided by the offline optimization results). We observe that the duty ratio

provided by our approach is, on average, within 1% of the duty ratio achieved by the oracle.

Moreover, the largest loss in optimality in the duty is less than 5%. We observe a bigger loss

43

0.6

0.7

0.8

0.9

1

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1-Jan 10-Feb 14-Mar 1-Apr 2-May 2-Jun 7-Jul 7-Aug 1-Sep 1-Oct 1-Nov 5-Dec

N
or

m
al

iz
ed

 D
ut

y
R

at
io

Figure 3.9: Comparison of the proposed solution to offline optimization for three users over
12 months.

under two conditions. First, when the variation between the expected and actual energy gen-

eration is large, the results of the proposed algorithm degrade, as anticipated. Second, when

the peak-to-peak variation in the harvested energy becomes comparable to the battery capacity

(∼25% of Etarget), the proposed algorithm hits the Emin target, as shown in Figure 3.6.

3.6 Summary

Wearable IoT devices have great potential to enable health monitoring, activity tracking,

and gesture-based control applications. However, they face severe energy limitations due to

weight and cost constraints. Therefore, harvesting energy from ambient sources, such as light

and body heat, and using it optimally is critical for their success. This chapter presented a near-

optimal runtime algorithm for self-powered wearable IoT devices. The proposed approach

is based on two observations that lead to near-optimal results with constant time complexity.

First, we obtain a closed-form solution for the optimization problem by relaxing the minimum

battery energy constraint. Then, we use the expected energy that will be harvested throughout

the day to solve the relaxed finite-horizon optimization problem. Finally, we account for the

44

deviations from the expected values and enforce the minimum energy constraints at runtime.

We demonstrate that our results are, on average, within 3% of optimal values computed offline

using an oracle. The results degrade as the peak-to-peak variation in the harvested energy and

deviation from the expected values increase. However, the degradation in the utility is small

when the battery capacity can absorb the peak-to-peak variations.

Appendix: Derivation of Equation 3.6

To solve the optimization problem given in Equation 3.5, we first evaluate the Lagrangian

of the objective function as:

L =
T−1∑
t=0

βt
[
ln
(Ec

t

ME

)α − λt

(
EB

t+1 + Ec
t − EB

t − ηtE
H
t

)]
+

T−1∑
t=0

βtµt[E
B
t+1 − Emin] + βT−1µT−1[E

B
T − Etarget] (3.12)

Using the Lagrangian, we can write the first-order conditions as:

∂L

∂Ec
t

: βt

[
αME

Ec
t

− λt

]
= 0 0 ≤ t ≤ T − 1 (3.13)

∂L

∂EB
t+1

: −βtλt + βtµt + λt+1β
t+1 = 0 0 ≤ t ≤ T − 1 (3.14)

∂L

∂EB
T

: −βT−1λT−1 + βT−1µT−1 = 0 i.e., λT−1 = µT−1 (3.15)

In addition to the first-order conditions above, the Karush-Kuhn-Tucker (KKT) conditions are

µt ≥ 0, λt ≥ 0, and:

µt(E
B
t+1 − Emin) = 0 0 ≤ t ≤ T − 1 (3.16)

µT−1(E
B
T − Etarget) = 0 (3.17)

Since u(Ec
t) is concave, Equations 3.13-3.17 give the necessary and sufficient conditions for

the optimality [91]. We present a step-by-step solution below.

45

1. Boundary Condition: Lagrangian multipliers λt can be found using Equation 3.13 as :

λt =
αME

Ec
t

0 ≤ t ≤ T − 1 (3.18)

Combining this relation with Equation 3.15, we can conclude that λT−1 = µT−1 ̸= 0 . Hence,

the complementary slackness given by Equation 3.17 implies EB
T = Etarget.

2. Recursion overEc
t: We can use Equation 3.14 to derive a recursion rule for λt and combine

it with Equation 3.18 as follows:

βλt+1 = λt − µt 0 ≤ t ≤ T − 1

αβME

Ec
t+1

=
αME

Ec
t

− µt 0 ≤ t ≤ T − 1 (3.19)

We plug the boundary condition EB
T = Etarget to this recursive relation. Then, the energy

allocations in earlier intervals can be solved using Equation 3.5 and the KKT condition given

by Equation 3.16.

Solving T nonlinear equations at runtime is not efficient. However, tentatively ignoring

the minimum energy constraint (key insight 1), enables us to eliminate µt from Equation 3.19.

That is, we can set µt = 0 in equations 3.16 and 3.19. Similarly, EH
t is not known a priori, but

we use the expected values (key insight 2). The proposed algorithm presented in Section 3.4.3

enables us to make up for these choices at runtime.

3. Closed-form Solution: After setting µt = 0, 0 ≤ t ≤ T − 1, Equation 3.19 reduces to:

Ec
t+1 = βEc

t (3.20)

We can re-arrange the battery energy dynamics in Equation 3.5, and combine with this relation

as follows:

Ec
0 = EB

0 − EB
1 + η0E

H
0 , βEc

0 = EB
1 − EB

2 + η2E
H
2 , . . .

βT−1Ec
0 = EB

T−1 − Etarget + ηT−1E
H
T−1

46

Note that Etarget in the last equation comes from the boundary condition. When we summing

up these T equations, EB
1 − EB

T−1 cancel each other. Hence, we find Ec
0 as:

Ec
0 =

EB
0 − Etarget +

∑T−1
t=0 ηtE

H
t

1 + β + β2 + . . .+ βT−1
(3.21)

Combining Equation 3.20 and Equation 3.21 gives the closed-form solution summarized in

Equation 3.6. □

47

Chapter 4

ONLINE HUMAN ACTIVITY RECOGNITION USING LOW-POWER WEARABLE

DEVICES

4.1 Introduction

Advances in wearable electronics has the potential to disrupt a wide range of health appli-

cations [49, 115]. For example, diagnosis and follow-up for many health problems, such as

motion disorders, depend currently on the behavior observed in a clinical environment. Spe-

cialists analyze the gait and motor functions of patients in a clinic and prescribe therapy ac-

cordingly. As soon as the patient leaves the clinic, there is no way to continuously monitor

the patient and report potential problems [53, 128]. Another high-impact application area is

obesity-related diseases, which claim about 2.8 million lives every year [8, 174]. Automated

tracking of physical activities of overweight patients, such as walking, offers tremendous value

to health specialists since self-recording is inconvenient and unreliable.

There has been growing interest in human activity recognition with the prevalence of low-

cost motion sensors and smartphones. For example, accelerometers in smartphones are used to

recognize activities such as stand, sit, lay down, walking, and jogging [5, 67, 93]. This infor-

mation is used for rehabilitation instruction, fall detection of the elderly, and reminding users

to be active [80, 168]. Furthermore, activity tracking also facilitates physical activity, which

improves the wellness and health of its users [30, 34, 87]. The successful design of activity

recognition algorithms depends critically on the availability of sensor data that captures the ac-

tivities of interest. Research studies typically employ wearable inertial sensors or smartphones

to collect the data while the users are performing the activities of interest. The data is then used

48

to train and evaluate algorithms for activity recognition. However, the data is rarely made pub-

licly available [112]. As a result, it is difficult to reproduce the results and obtain comparisons

with existing approaches. Therefore, there is a critical need for open-source datasets that pro-

vide a common platform for HAR research. This chapter presents the wearable HAR (w-HAR)

dataset to address the need for open-source datasets.

HAR techniques can be broadly classified based on when training and inference take place.

Early work collects the sensor data before processing. Then, both classifier design and infer-

ence are performed offline [10]. Hence, they have limited applicability. Most recent work

trains a classifier offline and processes the sensor data online to infer the activity [5, 153].

However, to date, there is no technique that can perform both online training and inference.

Online training is crucial since it needs to adapt to new, and potentially large number of, users

who are not involved in the training process. To this end, this chapter presents the first HAR

technique that continues to train online to adapt to its user.

The vast majority, if not all, of recent HAR techniques employ smartphones. The ma-

jor motivations behind this choice are their widespread use and easy access to integrated ac-

celerometer and gyroscope sensors [168]. We argue that smartphones are not suitable for HAR

for three reasons. First, patients cannot always carry a phone as prescribed by the doctor. Even

when they have the phone, it is not always in the same position (e.g., at hand or in pocket),

which is typically required in these studies [35, 153]. Second, mobile operating systems are

not designed for meeting real-time constraints. For example, the Parkinson’s Disease Dream

Challenge [111] organizers shared raw motion data collected using iPhones in more than 30K

experiments. According to the official spec, the sampling frequency is 100 Hz. However, the

actual sampling rate varies from 89 Hz to 100 Hz, since the phones continue to perform many

unintended tasks during the experiments. Due to the same reason, the power consumption is

49

Figure 4.1: Wearable system setup, sensors, and the low-power IoT device [160]. We knitted
the textile-based stretch sensor to a knee sleeve to accurately capture the leg movements

in the order of watts (more than 100× of our result). Finally, researchers are limited to sensors

integrated in the phones, which are not specifically designed for human activity recognition.

This chapter first presents wearable HAR (w-HAR), an opensource dataset for HAR. Our

dataset is collected using the wearable system shown in Figure 4.1. The setup shown in Fig-

ure 4.1 integrates an IMU and textile-based wearable stretch sensors to provide two modalities

of motion data. In contrast, other HAR datasets [6, 112, 140, 179] typically use accelerom-

eters and gyroscopes as their primary sensors. However, accelerometers and gyroscopes are

notoriously noisy, leading to challenges in data segmentation and classification. The stretch

sensor provides low-noise motion data that allows us to generate non-uniform activity seg-

ments ranging from one to three seconds. Using the wearable setup, we first perform extensive

data collection with 22 user subjects. We record the IMU (accelerometer and gyroscope) and

stretch sensor data of each user while they perform activities in the set {jump, lie down, sit,

stand, stairs down, stairs up, walk}. Then, we manually label the data such that it can be used

to train machine learning algorithms. w-HAR is the first dataset in the literature that includes

both IMU and stretch sensor data. The dataset has been publicly released along with this paper

to enable further research on activity recognition algorithms.

50

We provide three versions of the dataset such that users can choose the most appropriate

version for their application. The first version includes the raw data obtained from the sensors

without any pre-processing. This version is most useful when users want to develop their

own segmentation and pre-processing algorithms for HAR, along with feature generation and

classifier design. The second version of the dataset uses the segmentation algorithm in [15]

to generate variable-length segments. This version allows users to develop their own features

and classifiers. Finally, the third version provides the set of features used in our work, such

that users can focus solely on classifier design.

In addition to the dataset, we also present a comprehensive framework for designing human

activity recognition classifiers. Our framework consists of the following steps:

Segmentation: The first step in our framework is to divide the data into segments such that

each segment contains a single activity. Most prior studies on HAR divide the sensor data fixed

length windows [8, 93] or smoothen noisy accelerometer data over long durations [35] (detailed

in Section 4.2). However, this is not ideal as a single window may contain portions of multiple

activities, leading to challenges in classification. In contrast, we develop a novel algorithm that

uses data from the stretch sensor data to generate variable length activities windows, ensuring

that each window contains a single activity.

Feature Generation: The stretch sensor accurately captures the periodicity in the motion.

Hence, its fast Fourier transform (FFT) reveals invaluable information about activity in dif-

ferent frequency bands. Therefore, we choose the leading coefficients as features in our clas-

sification algorithm. Unlike the stretch sensor, the accelerometer data is known to be noisy.

Therefore, we employ the approximation coefficients of its discrete wavelet transform (DWT)

to capture the behavior as a function of time. We note that our HAR framework only uses

acceleration data from the IMU, while both accelerometer and gyroscope data are included in

our public dataset.

51

Design Space Exploration for Offline Classifier: It is critical to choose a classifier that is

both robust and resource-efficient. Resource efficiency is important to ensure that the classi-

fier can execute on wearable devices with power and memory constraints. To this end, we

start with commonly used classifiers such as neural networks, random forest, support vector

machine (SVM) and k-nearest neighbor (k-NN). Among these, we focus on neural networks,

since they can be easily updated online using both reinforcement learning (RL) [156] and super-

vised learning techniques with low overhead. Once we choose neural networks as our classifier,

we perform a design space exploration (DSE) to determine the appropriate structure for the net-

work. The DSE helps us in ensuring that the classifier is robust to multiple sets of users while

satisfying the requirement of low resource requirements to run on the wearable device.

Online Learning: State-of-the-art approach for HAR typically train classifiers online and only

perform the activity classification online [5, 153]. This approach is not scalable when the

device is used by new users with potentially different activity characteristics. Therefore, we

also perform online training of the classifiers such that it can adapt to new users who are not

involved in the training process. We make use of two approaches to continuously update the

weights of the neural network as a function of the feedback available from users. When users

can provide the actual activity performed, we use incremental supervised learning updates.

Otherwise, we use the policy gradient algorithm [156]. Experiments with our dataset show

that these algorithms can improve the accuracy by as much as 40% of unseen users.

Finally, this chapter is the first to provide a detailed power consumption and performance

break-down of sensing, processing, and communication tasks. We implement the proposed

framework on the TI-CC2650 MCU [160] and present an extensive experimental evaluation

using data from nine users and a total of 2614 activity windows. Our approach provides 95%

overall recognition accuracy with 27.60 ms processing time, 1.13 mW sensing, and 11.24 mW

computation power consumption.

52

In summary, the major contributions of this chapter are as follows:

• An activity recognition dataset with accelerometer and stretch sensor data from 22 users

• A novel technique to segment the sensor data non-uniformly as a function of the user

motion,

• Design space exploration of neural networks to choose the structure of the offline clas-

sifier such that it is robust to input from different users

• An online learning algorithm using incremental supervised learning that provides faster

convergence when compared to reinforcement learning

• Experimental validation of the DSE and online learning algorithms on a low-power wear-

able device using the w-HAR dataset

The rest of the chapter is organized as follows. We review the related work in Section 4.2.

Then, we present the w-HAR dataset in Section 4.3. The feature generation and classifier de-

sign techniques are presented in Section 4.4 and Section 4.5, respectively. Section 4.6 presents

the two online learning algorithms. Finally, the experimental results are presented in Sec-

tion 4.7, and our conclusions are summarized in Section 4.8.

4.2 Related Work and Novelty

Human activity recognition has been an active area of research due to its applications in

health monitoring, patient rehabilitation, and promoting physical activity among the general

population [8, 29, 30]. Advances in sensor technology have enabled activity recognition to

be performed using body-mounted sensors [131]. Typical steps for activity recognition using

sensors include data collection, segmentation, feature extraction, and classification.

Several prior studies have presented datasets for HAR [6, 112, 140, 179]. Most of the

datasets presented earlier focus on acquiring data from smartphones and performing HAR on

53

them. For instance, Micucci et al. [112] present a dataset for HAR using accelerometers on

smartphones. The dataset includes data from thirty subjects and nine activities of daily living.

The authors also present a review of other publicly available datasets using smartphones. Wear-

able sensors have also been used in HAR datasets since multiple devices can be easily mounted

on different parts of the body. For instance, the Opportunity dataset presented in [140] uses

multiple inertial measurement units and accelerometers to collect data from four users. Simi-

larly, Zhang et al. [179] use a single motion sensing unit to obtain data from 14 users. While

these datasets are useful for HAR, they primarily contain data from accelerometers, which is

known to be noisy. As a result, studies using these datasets resort to fixed-length windows,

instead of creating a window for each activity. In contrast, the dataset presented in this paper

includes data from a textile-based stretch sensor and IMU, which allows us to create variable-

length segments tailored to each activity.

HAR studies typically use a fixed window length to infer the activity of a person [8, 93].

For instance, the studies in [8, 93] use 10-second windows to perform activity recognition.

Increasing the window duration improves accuracy [29] since it provides richer data about

the underlying activity. However, transitions between different activities cannot be captured

with long windows. Moreover, fixed window lengths rarely capture the beginning and end

of an activity. This leads to inaccurate classification as the window can have features of two

different activities [29]. A recent approach proposes action segmentation using a step detection

algorithm on the accelerometer data [35]. Since the accelerometer data is noisy, they need to

smoothen the data using a one-second sliding window with a 0.5-second overlap. Hence, this

approach is not practical for low-cost devices with limited memory capacity. Furthermore,

the authors state that there is a strong need for better segmentation techniques to improve the

accuracy of HAR [35]. To this end, we present a robust segmentation technique that produces

windows whose sizes vary as a function of the underlying activity.

54

Most existing studies employ statistical features such as mean, median, minimum, maxi-

mum, and kurtosis to perform HAR [8, 93, 129]. These features provide useful insight, but

there is no guarantee that they are representative of all activities. Therefore, a number of stud-

ies use all the features or choose a subset of them through feature selection [129]. Fast Fourier

transform and more recently discrete wavelet transform have been employed on accelerometer

data. For example, the work in [35] computes the 5th order DWT of the accelerometer data.

Eventually, it uses only a few of the coefficients to calculate the wavelet energy in the 0.625

- 2.5 Hz band. In contrast, we use only the approximation coefficients of a single level DWT

with O(N/2) complexity. Unlike prior work, we do not use the FFT of the accelerometer

data, since it entails significant high-frequency components without clear implications. In con-

trast, we employ leading FFT coefficients of the stretch sensor data, since it gives a very good

indication of the underlying activity.

Early work on HAR used wearable sensors to perform data collection while performing

various activities [10]. This data is then processed offline to design the classifier and perform

the inference. However, offline inference has limited applicability since users do not get any

real-time feedback. Therefore, recent work on HAR has focused on implementation on smart-

phones [5, 30, 73, 153]. Compared to wearable HAR devices, smartphones have limited choice

of sensors and high power consumption. In addition, results on smartphones are harder to repro-

duce due to the variability in different phones, operating systems, and usage patterns [34, 153].

Finally, existing studies on HAR approaches employ commonly used classifiers, such as

k-NN [58], support vector machines [58], decision trees [135], and random forest [58], which

are trained offline. In strong contrast to these methods, the proposed framework is the first

to enable online training. We first train a neural network offline to generate an initial imple-

mentation of the HAR system. Then, we use reinforcement learning or incremental supervised

learning at runtime to improve the accuracy of the system for new users. We envision that

55

these algorithms will enable personalized HAR devices that adapt continuously to the unique

activity pattern of their users.

4.3 Human Activity Recognition Dataset

The availability of datasets is crucial for human activity recognition research. Therefore,

we open source our dataset to enable further research in this area. The dataset in this chapter is

the first to integrate readings from a wearable stretch sensor and an inertial motion unit (IMU).

The presence of the stretch sensors adds an additional modality that allows us to create variable-

length segments. The variable-length segments make it easier for the classifiers to recognize

activities, as we show in the experiments. In this section, we describe the details of the data

collection setup, protocol, user demographics, and the labeling process.

4.3.1 Wearable System Setup

We use a combination of Invensense-9250 IMU and stretch sensors to collect the data, as

shown in Figure 4.1. The IMU is integrated into the TI-CC2650 Sensortag device, and the

stretch sensor is another discrete module. We mount the IMU on the right ankle of the user

since this allows for a maximum swing of the sensor [67]. The stretch sensor is sewed to a knee

sleeve, as shown in Figure 4.1. During the experiment, the user wears the sleeve on the knee

to capture the knee movements while performing the activities. Both the sensor devices are

equipped with the Bluetooth low energy (BLE) protocol for communication. Using the BLE

protocol, the sensors transmit the data to a smartphone which stores the data to a file. In our

future work, we plan to integrate the IMU and the stretch sensor into a single device such that

a single stream of data can be transmitted. To synchronize the data from the sensors, we record

56

Table 4.1: List of activities used in the HAR framework

• Jump (J) • Lie Down (L) • Sit (S)
• Stand (St) • Walk (W) • Stairs Up (SU)
• Stairs Down (SD) • Transition (T) between the activities

the wall clock time for each data sample from the sensors. Then, using the offset between the

sensors, we align the sensor readings using the approach in [154].

Wearable System Sensor Parameters: We sample the IMU at 250 Hz and the stretch sensor

at 25 Hz. These sampling frequencies are sufficient to capture the frequency of human move-

ments, which are in the order of a few Hz. We use a significantly higher frequency for the ac-

celerometer since it typically exhibits higher noise. Therefore, the higher sampling frequency

allows us to smooth and sub-sample the data using a moving average filter while preserving

the data signatures.

4.3.2 User Studies

We obtain motion data from 22 users with the wearable device setup. The users are re-

cruited using the snowball sampling technique. Each user signed a consent form as approved

by the institutional review board at Arizona State University. We experiment with a total of 22

users (consisting of 14 males and 8 females), with ages 20–45 years and heights 150–180 cm.

The set of activities performed by the users is summarized in Table 4.1. Each user performs a

series of experiments shown in Table 4.2. In addition to this protocol, we also perform exper-

iments where the users are free to perform any activities they choose. Next, we perform the

labeling of the dataset, as described below.

Data Labeling: After collecting the data from the users, we use the segmentation algorithm

to divide the data into variable-length windows. Then, the generated windows are analyzed

57

Table 4.2: Experimental protocol for the HAR dataset

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Stand 30 s
Jump 3 times
Stand 30 s

Stand 10 s
Sit 30 s
Stand 10 s
Jump 3 times
Sit 30 s

Stand 10 s
Walk 40 steps
Stand 10 s

Stand 10 s
Jump 3 times
Walk 40 steps
Sit 20 s

Experiment 5 Experiment 6 Experiment 7

Stand 10 s
Sit 10 s
Lie down 30 s
Sit 10 s

Stand 10 s
Walk down
stairs
Stand 10 s

Stand 10 s
Walk up stairs
Stand 10 s

by four human experts to assign the labels. The same labels are also assigned to each sample

in the raw data before segmentation such that we know the user’s activity in each sampling

period. Moreover, we revisit the assigned labels during the testing phase of the HAR classifier

to ensure that the errors made by the classifier are not due to mislabeling.

4.3.3 Dataset Description

After labeling the data, we generate three versions of the dataset for public release as follows.

Raw Data: This version of the contains the raw data obtained from the stretch and IMU (ac-

celerometer + gyroscope) sensors without any pre-processing. We synchronize the stretch and

IMU data such that the time indices for both sensors are aligned. Consequently, users do not

have to run any synchronization algorithms on the data. The raw data version of w-HAR is

ideal for researchers who want to design their own algorithms for all steps of HAR from seg-

mentation to classification.

Segmented Data: The segmented dataset uses the segmentation algorithm proposed in [15]

58

Table 4.3: Summary of the number of segments in each activity

Activity Segments Activity Segments

Jump 458 Walk 2007
Lie down 474 Stairs up 109
Sit 696 Stairs down 99
Stand 620 Transition 277

and summarized in Section 4.4.2 to generate variable-length activity segments. This version

is suitable for users who want to focus on feature generation and classification algorithms.

Breakdown of the total segments of each activity is summarized in Table 4.3.

Feature Data: We also release the features used [15] as part of w-HAR. The features included

in this version are summarized in Section 4.4.3. The feature data version allows users to fo-

cus on developing classifiers for HAR and obtain reproducible comparisons among different

algorithms.

In summary, w-HAR includes a total of 4740 segments with a total duration of about 3

hours. The dataset and the corresponding source code for our algorithms are available for

download at our GitHub page: https://github.com/gmbhat/human-activity-recognition.

4.3.4 Flow for Using the w-HAR Dataset

This section describes the flow for incorporating the w-HAR dataset for either developing

new algorithms or results reported in this chapter, as shown in Figure 4.2. The first step after

obtaining the dataset is to segment the raw data into windows. To this end, users can either

use the windows provided along with the dataset or develop their own segmentation algorithm,

as shown using paths 1a and 1b, respectively. The next step is to generate features for each

window generated by the segmentation algorithm. Here, the users are free to generate their

59

https://github.com/gmbhat/human-activity-recognition

Stretch Sensor

Window Boundaries

IMU

2. Feature Generation

Feature
Vectors

Online

Offline

Weights

Activity Classification

User feedback

Use Segmented Data1a

4. Online Learning Section 4.6

3. Classifier Design
Design Space

Exploration

Optimized
Classifier

Label
available?

Supervised
Learning

Weight
update

Policy
Gradient

Yes No

Custom Segmentation Algorithm
1b

Discrete Wavelet Transform

Fast Fourier Transform

2a. Use w-HAR Features 2b

Obtain Custom Features
from Segmented Data

Feature
Vectors

Section 4.5

Figure 4.2: Flow-chart for using the w-HAR data set to test new algorithms or reproduce the
results presented in this chapter

own features or use the baseline feature set provided with the dataset. The feature data and the

labels are then used to design a classifier for activity classification. The classifier design in-

volves a design space exploration for determining the optimal classifier, as shown in Figure 4.2.

We also provide a baseline neural network classifier such that it is easy to obtain reproducible

comparisons with new approaches. Finally, the last step of the design flow is to use the clas-

sifier designed offline to identify activities at runtime. In this step, user feedback is used to

update the weights of the classifier to improve the accuracy of the classifier continuously. As

shown in Figure 4.2, our implementation of the framework uses either reinforcement learning

60

or incremental supervised learning depending on the level of user feedback available. We envi-

sion that further research on HAR using our dataset will enable new online learning algorithms

for personalized activity recognition and healthcare. Next, we describe the segmentation algo-

rithm used to generate the segmented data in w-HAR. We also go over the feature set that is

released as part of w-HAR.

4.3.5 Comparisons with Existing HAR Datasets

This section presents a comparative analysis of our dataset with other publicly available

HAR datasets. We choose the datasets that focus on the activities that are common to our

dataset and use either smartphones or wearables as their data collection device. Table 4.4 sum-

marizes the major characteristics of the datasets. All the previous datasets use a single modality

of sensing, i.e., the accelerometer. In contrast, the proposed dataset is the first one to integrate

data from accelerometer and stretch sensor. Furthermore, our dataset also includes gyroscope

data for use by other researchers in their algorithms. Having data only from the accelerometer

limits previous datasets to fixed-length windows, as shown in the last column of the table. The

only exception is DU-MD dataset [143], which reports variable-length segments. However,

variable-length segments in DU-MD are obtained manually, thus making the approach unsuit-

able for runtime algorithms. The proposed dataset overcomes this problem by using the stretch

sensor data to enable variable-length segments that can be obtained at runtime. We acknowl-

edge that the number of user subjects in our dataset is lower compared to some previous studies.

We plan to resolve this by continuing to augment our dataset in the future.

61

Table 4.4: Comparison with existing HAR datasets

Dataset Device Sensors No. of
Subjects

No. of
Activities

Variable-length
Segments

DU-MD [143] Wearable Accelerometer 33 7 Yes, manually
Shoaib et al. [152] Smartphone Accelerometer 10 7 No
UCI HAR [6] Smartphone Accelerometer 30 6 No
Ugulino et al. [162] Wearable Accelerometer 5 4 No
UniMiB SHAR [112] Smartphone Accelerometer 30 9 No
USC-HAD [179] Wearable Accelerometer 14 12 No
WISDM [93] Smartphone Accelerometer 29 6 No

w-HAR Wearable Accelerometer,
Stretch sensor 22 7 Yes

4.4 Feature Set and Classifier Design

4.4.1 Goals and Problem Statement

The goal of the proposedHAR framework is to recognize the seven common daily activities

listed in Table 4.1 and the transitions between them in real-timewithmore than 90% accuracy

under mWpower range. These goals are set tomake the proposed system practical for daily use.

The power consumption target enables day-long operation using ultra-thin lithium polymer

cells [51].

The stretch sensor is knitted to a knee sleeve, and the IoT device with a built-in accelerom-

eter is attached to it, as shown in Figure 4.1. All the processing outlined in Figure 4.2 is

performed locally on the IoT device. More specifically, the streaming stretch sensor data is

processed to generate segments ranging from one to three seconds (Section 4.4.2). Then, the

raw accelerometer and stretch data in each window are processed to produce the features used

by the classifier (Section 4.4.3). Finally, these features are used for both online inference (Sec-

tion 4.5) and online learning (Section 4.6). Since communication energy is significant, only the

62

recognized activity and time stamps are transmitted to a gateway, such as a phone or PC, using

Bluetooth whenever they are nearby (within 10m). The following sections provide a theoret-

ical description of the proposed framework without tying them to specific parameter values.

These parameters are chosen to enable a low-overhead implementation using streaming data.

The actual values used in our experiments are summarized in Section 4.7.1 while describing

the experimental setup.

4.4.2 Sensor Data Segmentation

Activity windows should be sufficiently short to capture transitions and fast movements,

such as fall and jump. However, short windows can also waste computation time and power

for idle periods, such as sitting. Furthermore, a fixed window may contain portions of two

different activities, since perfect alignment is not possible. Hence, activity-based segmentation

is necessary to maintain high accuracy with minimum processing time and power consumption.

To illustrate the proposed segmentation algorithm, we start with the snapshot in Figure 4.3

from our user studies. Both the 3-axis accelerometer and stretch sensor data are preprocessed

using amoving average filter similar to prior studies. The unit of acceleration is already normal-

ized to gravitational acceleration. The stretch sensor outputs a capacitance value that changes

as a function of its state. This value ranges from around 390 pF (neutral) to close to 500 pF

when it is stretched [117]. Therefore, we normalize the stretch sensor output by subtracting its

neutral value and scaling by a constant: s(t) = [sraw(t) − min(sraw)]/Sconst. We adopted

Sconst = 8 to obtain a comparable range to accelerometer readings. First, we note that the

3-axis accelerometer data exhibits significantly larger variations compared to the normalized

stretch capacitance. Therefore, decisions based on accelerations are prone to false hits [35]. In

63

19 21 23 25 27 29 31 33
Time (s)

-2

0

2

A
cc

el
er

at
io

n
(g

)

ax ay az

19 21 23 25 27 29 31 33
Time (s)

0

2

4

6

8

N
or

m
al

iz
ed

St

re
tc

h
C

ap
ac

ita
nc

e

-2

0

2

Si
gn

 o
f D

er
iv

at
iv

e

Figure 4.3: Illustration of the segmentation algorithm

contrast, we propose a robust solution that generates the segments specified with red ∗markers

in Figure 4.3.

The boundaries between different activities can be identified by detecting the deviation of

the stretch sensor from its neutral value. For example, the first segment in Figure 4.3 corre-

sponds to a step during walk. The sensor value starts increasing from a local minimum to a

peak at the beginning of the step. The beginning of the second segment (t ≈ 21 s) exhibits sim-

ilar behavior since it is another step. Although the second step is followed by a longer neutral

period (the user stops and sits to a chair at t ≈ 23 s), the beginning of the next segment is still

marked by a rise from a local minimum. In general, we can observe a distinct minimum (fall

followed by rise as in walk) or a flat period followed by a rise (as in walk to sit) at the bound-

aries of different activity windows. Therefore, the proposed segmentation algorithm monitors

the derivative of the stretch sensor to detect the activity boundaries, as outlined in Algorithm 1.

We employ the 5-point derivative formula given below to track the trend of the sensor

64

Algorithm 1: Segmentation Algorithm
1 Input: Stretch Sensor Samples
2 Initialize: FIFO buffer S of length 5 to store the stretch samples
3 Initialize: FIFO bufferD of length 3 to store the trend of the derivative
4 Initialize: trendprev ← flat
5 Initialize: trend← flat
6 for Time index t = 1, 2, 3, . . . do
7 Append sample s(t) to buffer S
8 s′(t)← Five-point derivative using Equation 4.1
9 Append s′(t) to bufferD
10 if (D(0) > 0 and D(1) > 0 and D(2) > 0) then
11 trend← increasing
12 end
13 else if (D(0) < 0 and D(1) < 0 and D(2) < 0) then
14 trend← decreasing
15 end
16 else if (D(0) = 0 and D(1) = 0 and D(2) = 0) then
17 trend← flat
18 end
19 if One second since last segment then
20 if (trendprev = flat and trend = increasing) OR

(trendprev = decreasing and trend = increasing) then
21 Mark a new segment at time index t
22 end
23 end
24 if Three seconds since last segment then
25 Mark a new segment at time index t
26 end
27 trendprev ← trend

28 end

value:

s′(t) =
s(t− 2)− 8s(t− 1) + 8s(t+ 1)− s(t+ 2)

12
(4.1)

where s(t) and s′(t) are the stretch sensor value and its derivative time step t, respectively.

When the derivative is positive, we know that the stretch value is increasing. Similarly, a

negative value means a decrease, and s′(t) = 0 implies a flat region. Looking at a single data

point can catch sudden peaks and lead to false alarms. To improve the robustness, one can

65

look at multiple consecutive data points before determining the trend. In our implementation,

we conclude that the trend changes only if the last three derivatives consistently signal the

new trend (lines 10–18 in Algorithm 1). For example, if the current trend is flat, we require

that the derivative is positive for three consecutive data points to filter glitches in the data point.

Whenever we detect that the trend changes from flat or decreasing to positive, we produce a new

segment. The final consideration in the segmentation algorithm is to bound the length of the

windows from above and below. In order to bound the length of a segment from below, we start

looking for new segments only after a fixed amount of time (one second in our implementation)

has passed since the last window. The minimum window length check is performed by the if

statement in line 19 of Algorithm 1. Lower bounding the window size saves computation time

and power by preventing windows that are shorter than normal activity lengths. Similarly, we

enforce a maximum window length to improve robustness in case a local minimum is missed.

We use tmax = 3 s as the upper bound since it is long enough to cover all transitions.

Figure 4.4 shows the segmented data for the complete duration of the illustrative example

given in Figure 4.3. The proposed approach clearly segments each step of walk. Moreover, it

captures the transitions from walking to sitting and sitting to standing very well. Furthermore,

the segments obtained from the algorithm for all the activities are shown in Figure 4.5 using red

asterisks. The algorithm clearly marks each step in jump, walk, and stairs up/down activities.

For sit, stand, and lie down activities, the algorithm uses a 3-second window whenever the

sensor data is static. At the same time, whenever there is a transition, such as from sit to stand

in Figure 4.5(c), the segmentation algorithm detects this and marks a new segment for the

transition. This segmentation allows us to extract meaningful features from the sensor data, as

described in the next section.

66

Jump Walk Sit Stand

3-axis accelerometer

Stretch sensor

Transition

Figure 4.4: Illustration of the sensor data segmentation

10 12 14 16 18 20
Time (s)

-5

0

5

Ac
ce

le
ra

tio
n

(g
)

10 12 14 16 18 20
Time (s)

0

2

4

6

No
rm

al
iz

ed
St

re
tc

h
Ca

pa
ci

ta
nc

e 6 8 10 12Time (s)

-2

0

2
A

cc
el

er
at

io
n

(g
)

6 8 10 12
Time (s)

0

2

4

6

N
or

m
al

iz
ed

St
re

tc
h

C
ap

ac
ita

nc
e

30 32 34 36 38 40
Time (s)

-1
0
1
2
3

A
cc

el
er

at
io

n
(g

)

30 32 34 36 38 40
Time (s)

0

5

10

15

N
or

m
al

iz
ed

St
re

tc
h

C
ap

ac
ita

nc
e

4 6 8 10 12 14
Time (s)

-2

0

2

A
cc

el
er

at
io

n
(g

)

4 6 8 10 12 14
Time (s)

0

5

10

15

N
or

m
al

iz
ed

St
re

tc
h

C
ap

ac
ita

nc
e 14 16 18 20 22

Time (s)
-2

0

2

A
cc

el
er

at
io

n
(g

)

14 16 18 20 22
Time (s)

0

5

10

N
or

m
al

iz
ed

St
re

tc
h

C
ap

ac
ita

nc
e 55 60 65

Time (s)
-2

0

2
A

cc
el

er
at

io
n

(g
)

55 60 65
Time (s)

0

5

10

N
or

m
al

iz
ed

St
re

tc
h

C
ap

ac
ita

nc
e

(a) (b) (c)

(d) (e) (f)

Jump Walk Sit and Stand

Lie downStairs downStairs up

Accelerometer axis: 𝒂𝒙 𝒂𝒚 𝒂𝒛

Figure 4.5: Visualization of segmentation for all activities in the HAR framework

4.4.3 Feature Generation

To achieve a high classification accuracy, we need to choose representative features that

capture the underlyingmovements. We note that humanmovements typically do not exceed 10-

Hz. Since statistical features, such as mean and variance, are not necessarily representative, we

67

focus on FFT and DWT coefficients, which have clear frequency interpretations. Prior studies

typically choose the largest transform coefficients [153] to preserve the maximum signal power

as in compression algorithms. However, sorting loses the frequency connotation, besides using

valuable computational resources. Instead, we focus on the coefficients in the frequency bins

of interest by preserving the number of data samples in each segment, as described next.

Stretch sensor features: The stretch sensor shows a periodic pattern for walking, and remains

mostly constant during sitting and standing, as shown in Figure 4.4. As the level of activity

changes, the segment duration varies in the (1,3] second interval. We can preserve a 10 Hz

sampling rate for the longest duration (3 s during low activity) if we maintain 25 = 32 data

samples per segment. As the level of activity intensifies, the sampling rate grows to 32 Hz,

which is sufficient to capture human movements. We choose a power of 2, since it enables

efficient FFT computation in real-time. When the segment has more than 32 samples due to

larger sensor sampling rate, we first sub-sample and smooth the input data as follows:

ss[k] =
1

2SR

SR∑
i=−SR

s(tSR + i), 0 ≤ k < 32 (4.2)

where SR = ⌊N/32⌋ is the subsampling rate, and ss[k] is the sub-sampled and smoothed data

point. When there are less than 32 samples, we simply pad the segment with zeros.

After standardizing the size, we take the FFT of the current window and the previous win-

dow. We use two windows as it allows us to capture any repetitive patterns in the data. With a

32 Hz sampling rate during high activity regions, we cover Fs/2 =16 Hz activity per Nyquist

theorem. We observe that the leading 16 FFT coefficients, which cover the [0-8] Hz frequency

range, carry most of the signal power in our experimental data. Therefore, they are used as

features in our classifiers. The level of the stretch sensor also gives useful information. For

instance, it can reliably differentiate sit from stand. Hence, we also add the minimum and

maximum value of the stretch sensor to the feature set.

68

Accelerometer features: Acceleration data contains faster changes compared to the stretch

data, even though the underlying human motion is slow. Therefore, we sub-sample and

smoothen the acceleration to 26 = 64 points following the same procedure given in Equa-

tion 4.2. Three-axis accelerometers provide acceleration ax, ay, and az along x−, y−, and

z−axes, respectively. In addition, we compute the body acceleration excluding the effect of

gravity g as bacc =
√

a2x + a2y + a2z − g, since it carries useful information.

Discrete wavelet transform is an effective method to recursively divide the input signal to

approximation Ai and detail Di coefficients. One can decompose the input signal to log2N

samples, where N is the number of data points. After one level of decomposition, A1 coeffi-

cients in our data correspond to 0-32 Hz, while D1 coefficients cover 32-64 Hz band. Since

the former is more than sufficient to capture acceleration due to human activity, we only com-

pute and preserve A1 coefficients with O(N/2) complexity. The number of features could be

further reduced by computing the lower level coefficients and preserving the largest ones. As

shown in the performance breakdown in Table 4.8, using the features in the neural network

computations takes less time than computing the DWT coefficients. Moreover, keeping more

coefficients and preserving the order maintains the shape of the underlying data.

Feature Overview: In summary, we use the following features:

Stretch sensor: We use 16 FFT coefficients, the minimum, and maximum values in each

segment resulting in 18 features.

Accelerometer: We use 32 DWT coefficients for ax, az, and bacc. In our experiments, we use

only the mean value of ay, since no activity is expected in the lateral direction, and bacc already

captures its effect given the other two directions. This results in 97 features.

General features: The length of the segment also carries important information, since the

number of data points in each segment is normalized. Similarly, the activity in the previous

69

window is useful to detect transitions. Therefore, we also add these two features to obtain a

total of 117 features.

4.5 Classifier Design

4.5.1 Supervised Learning for State Classification

In the offline phase of our framework, the feature set is assigned a label corresponding to the

user activity. Then, a supervised learning technique takes the labeled data to train a classifier

that is used at runtime. Since one of our major goals is online training using reinforcement

learning, we employ a cost-optimized neural network (NN). We also compare our solution to

the most commonly used classifiers by prior work and provide brief explanations.

Support Vector Machine (SVM): SVM [58] finds a hyperplane that can separate the feature

vectors of two output classes. If a separating hyperplane does not exist, SVMmaps the data into

higher dimensions until a separating hyperplane is found. Since SVM is a two-class classifier,

multiple classifiers need to be trained for recognizing more than two output classes. Due to

this, SVM is not suitable for reinforcement learning with multiple classes [94], which is the

case in our HAR framework.

Random Forests and Decision Trees: Random forests [58] use an ensemble of tree-structured

classifiers, where each tree independently predicts the output class as a function of the feature

vector. Then, the class which is predicted most often is selected as the final output class. C4.5

decision tree [135] is another commonly used classifier for HAR. Instead ofmultiple trees, C4.5

uses a single tree. Reinforcement learning using random forests has been recently investigated

in [127]. As part of the reinforcement learning process, additional trees are constructed and

then a subset of trees is chosen to form the new random forest. The extra trees add additional

70

processing and memory requirements on the system, making it unsuitable for implementation

on a wearable system with limited memory.

k-Nearest Neighbors (k-NN): k-Nearest Neighbors [58] is one of the most popular techniques

used by many previous HAR studies. k-NN evaluates the output class by first calculating

k nearest neighbors in the training dataset. Then, it chooses the class that is most common

among the k neighbors and assigns it as the output class. k-NN requires storing all the training

data locally. Since storing the training data on a wearable device with limited memory is not

feasible, k-NN is not suitable for online training.

4.5.2 Proposed NN Classifier Design

Design space exploration for neural network: Choosing an appropriate structure for the NN

is crucial to balance the classification accuracy with the resource requirements of the wearable

device. A larger NN achieves a higher accuracy while increasing the memory and processing

requirements of the device. Moreover, a larger neural network may also lead to overfitting to

the training data, leading to a lower accuracy on new data samples. Therefore, it is crucial to

choose the appropriate structure for the NN such that it is robust to new data while keeping the

computational complexity low.

We choose the structure of the NN classifier by performing a design space exploration with

varying number of hidden layers and neurons in each layer, as shown in Figure 4.6. Specifically,

we first set the number of hidden layers and then vary the number of layers in each layer. Then,

we train each of these configurations to obtain accuracy values. In order to ensure that the

classifier is robust, we also obtain the accuracy of data not seen during training. We repeat this

process by changing the number of hidden layers and record the classification accuracy. Finally,

we choose the configuration that optimizes the accuracy and resource requirement trade-off.

71

Input Layer

𝐗

Bias

𝜃!"
𝜋	(𝑎!|𝐡𝟐 ,𝜃)

O
ut

pu
t L

ay
er

𝜋	(𝑎#!|𝐡𝟐 ,𝜃+

H
id

de
n

La
ye

r 1

H
id

de
n

La
ye

r 2

H
id

de
n

La
ye

r N

Hidden Layers

Vary number of neurons during DSE

Figure 4.6: Design space exploration for neural network configuration

NN Classifier after DSE: At the end of the design space exploration, we choose the NN

shown in Figure 4.7 as our classifier. The NN consists of an input layer, two hidden lay-

ers, and an output layer. The input layer processes the features denoted by X and relays

them to the first hidden layer with the ReLU activation. The second hidden layer then pro-

cesses the output of the first layer and applies the ReLU activation. We denote the number

of neurons in the hidden layers with Nh1, Nh2, respectively. These are chosen after the de-

sign space exploration. However, we use the variable form here to keep the description more

general. The output layer in the proposed NN for HAR includes a neuron for each activity

ai ∈ A = {J, L, S, St,W, SU, SD, T}, 1 ≤ i ≤ NA, where NA is the number of activities

in setA, listed in Table 4.1. The output neuron of a given activity ai computes Oai(X, θin, θ)

as a function of the input featuresX, and the neural network weights {θin, θh1, θ}. To facilitate

the policy gradient approach described in Section 4.6.1, we express the output Oai in terms of

the output of the first hidden layer as:

Oai(θin, θh1, θ) = Oai(h2, θ) =

Nh2+1∑
j=1

h2,jθj,i, 1 ≤ i ≤ NA (4.3)

where h2,j is the output of the jth neuron in the first hidden layer, and θj,i is the weight from

jth neuron in the second hidden layer to output activity ai. Note that h2,j is a function of X,

72

Input Layer

𝐗

Bias

Hidden Layers

𝜃#$

ℎ&'(

Bias

Output Layer

𝜋	(𝑎-|𝐡𝟐,𝜃)

𝜃

S
o
f
t
m
a
x

𝑂4((𝐡𝟐,𝜃)

𝑂456 (𝐡𝟐, 𝜃)

𝜃&'78-,&6

ℎ-

𝜋	(𝑎&6|𝐡𝟐,𝜃9

ℎ&':(

𝜃-,-	
𝜃;-

ℎ&'7

Bias

Figure 4.7: The NN used for activity classification and online learning.

θin„ and θh1. The summation in Equation 4.3 goes to Nh2 + 1, since there are Nh2 neurons

and one bias term in the hidden layer.

Once we calculate the value of each output neuron, we apply the softmax function to com-

pute the probability of each activity as:

π(ai|h2, θ) =
eOai (h2,θ)∑NA

j=1 e
Oaj (h2,θ)

, 1 ≤ i ≤ NA (4.4)

The output probabilities π(ai|h2, θ) are expressed as a function of the second hidden layer

outputs h2 instead of the input features, since our online learning algorithm will leverage it.

Finally, the activity which has the maximum probability is chosen as the output.

Implementation cost: Our optimized classifier requires 264 multiplications for the FFT of

stretch data, 121Nh + (Nh1 + 1)(Nh2 + 1) + (Nh2 + 1)NA multiplications for the NN and

uses only 2 kB memory.

4.6 Online Learning for Human Activity Recognition

The trained NN classifier is implemented on the IoT device to recognize the human activi-

ties in real-time. In a real-world setting, the device will be used by users who are not part of the

training process. These new users may have activity patterns that may not match the patterns

73

seen by the NN during the offline training process. Moreover, the activity patterns of the same

user may change temporarily due to an injury. Therefore, there is a strong need to develop

approaches that continuously updates the weights of the NN to adapt to changes in the user or

user patterns.

We use two online learning algorithms for HAR that can be used depending on the level of

feedback available from the users, since online learning depends critically on feedback from

users. The user can give feedback upon completion of an activity, such as walking, which

contains multiple segments (i.e., non-uniform action windows). When the user can indicate

whether the inferred activity is correct or wrong, we use the policy gradient algorithm. In con-

trast, when the user can provide the actual label for the misclassified activities, we incremen-

tally update the weights of the neural network using supervised learning. When no feedback is

provided by the user, the weights of the network remain the same. In the following, we provide

details on each of the above approaches.

4.6.1 Online Learning with Policy Gradient

We use the policy gradient approach to update the weights of the network when the user can

only provide indirect feedback in terms of correct or incorrect. The policy gradient algorithm

is suitable in this scenario since it can efficiently use the feedback to update the policy, i.e.,

the activity probabilities in Equation 4.4. We use the following definitions for the state, action,

policy, and the reward.

State: Stretch sensor and accelerometer readings within a segment are used as the continuous

state space. We process them as described in Section 4.4.3 to generate the input feature vector

X (Figure 4.7).

Policy: The NN processes input features as shown in Figure 4.7 to generate the hidden layer

74

outputs h2 = {hj, 1 ≤ j ≤ Nh + 1} and the activity probabilities π(ai|h2, θ), i.e., the policy

given in Equation 4.4.

Action: The activity performed in each sensor data segment is interpreted as the action in our

RL framework. It is given by argmax π(ai|h, θ), i.e., the activity with maximum probability.

Reward: Online training requires user feedback, which is defined as the reward function.

When no feedback is provided by the user, the weights of the network remain the same. The

user can give feedback upon completion of an activity, such as walking, which contains multi-

ple segments (i.e., non-uniform action windows). If the classification in this period is correct,

a positive reward (in our implementation+1) is given. Otherwise, the reward is negative (−1).

We define the sequence of segments for which a reward is given as an epoch. The set of epochs

in a given training session is called an episode following the RL terminology [156].

Objective: The value function for a state is defined as the total reward that can be earned,

starting from that state and following the given policy until the end of an episode. Our objective

is to maximize the total reward J(θ) as a function of the classifier weights.

Proposed Policy Gradient Update: In general, all the weights in the policy network can be

updated after an epoch [156]. This is useful when we start with an untrained network with

random weights. When a policy network is trained offline, as in our case, its first few layers

generate broadly applicable intermediate features [100]. Consequently, we can update only the

weights of the output layer to take advantage of offline training and minimize the computation

cost. More precisely, we update the weights denoted by θ in Figure 4.7 to tune our optimized

NN to individual users.

Since we use the value function as the objective, the gradient of J(θ) is proportional to the

gradient of the policy [156]. Consequently, the update equation for θ is given as:

θt+1
.
= θt + αrt

∇θπ(at|h2, θt)

π(at|h2, θt)
, α : Learning rate (4.5)

where θt and θt+1 are the current and updated weight matrices, respectively. Similarly, at is the

75

current action at time t, rt is the corresponding reward, andh2 denotes the hidden layer outputs.

Hence, we need to compute the gradient of the policy to update the weights. To facilitate this

computation and partial update, we partition the weights into two disjoint sets as St and St.

The weights that connect to the output Oat corresponding to the current action are in St. The

rest of the weights belong to the complementary set St. With this definition, we summarize the

weight update rule in a theorem in order not to disrupt the flow of the chapter with derivations.

Interested readers can go through the proof.

Weight Update Theorem: Given the current policy, reward, and the learning rate α, the

weights in the output layer of the NN given in Figure 4.7 are updated online as follows:

θt+1,j,i
.
=


θt,j,i + αrt(1− π(at|h2, θt)) · hj θt,j,i ∈ St

θt,j,i − αrtπ(ai|h2, θt)) · hj θt,j,i ∈ St
(4.6)

Proof: The partial derivative of the policy π(at|h2, θ) with respect to the weights θj,i can be

expressed using the chain rule as:

∂π(at|h2, θ)

∂θj,i
=

∂π(at|h2, θ)

∂Oai(h2, θ)

∂Oai(h2, θ)

∂θj,i
(4.7)

where 1 ≤ j ≤ Nh + 1 and 1 ≤ i ≤ NA. When θt,j,i ∈ St, action at corresponds to output

Oat(h2, θ). Hence, we can express the first partial derivative using Equation 4.4 as follows:

∂π(at|h2, θ)

∂Oat(h2, θ)
=

eOat (h2,θ)∑Na

j=1 e
Oaj (h2,θ)

−
(
eOat (h2,θ)

)2(∑Na

j=1 e
Oaj (h2,θ)

)2

= π(at|h2, θ)
(
1− π(at|h2, θ)

)
(4.8)

Otherwise, i.e., θt,j,i ∈ St, the derivative is taken with respect to another output. Hence, we

can find the partial derivative as:

∂π(at|h2, θ)

∂Oai(h2, θ)
= − eOat (h2,θ)eOai (h2,θ)(∑NA

j=1 e
Oaj (h2,θ)

)2 = −π(at|h2, θ)π(ai|h2, θ) (4.9)

76

The second partial derivative in Equation 4.7, ∂Oai(h2, θ)/∂θj,i, can be easily computed as hj

using Equation 4.3. The weight update is the product of learning rate α, reward rt, hj , and the

partial derivative of the policy with respect to the output functions. For the weights θt,j,i ∈ St,

we use the partial derivative in Equation 4.8. For the remaining weights, we use Equation 4.9.

Hence, we obtain the first and second lines in Equation 4.6, respectively. Q.E.D □

4.6.2 Online Updates with Incremental Supervised Learning

Online learning using the policy gradient algorithm is most useful when the activity labels

are not available. While it can be used when activity labels are available, the convergence

rates of the policy gradient algorithm are lower when compared to supervised learning. There-

fore, we use supervised learning for performing incremental weight updates when the user can

provide activity labels at runtime, as outlined in Algorithm 2. The algorithm takes the offline

trained weights of the NN as its input. Then, the first step in the algorithm is to initialize a

buffer B of sizeM that is used to store the training data for weight updates. With this initial-

ization, we start the online phase of the algorithm. For each activity segment t, we first obtain

the feature vector Xt and use it with the weights to determine the activity probabilities (lines

4–5). Then, we assign the activity with the maximum probability as the output activity. This

activity is shown to the user who then provides the actual activity label a∗t to the algorithm.

If the actual activity label a∗t does not match the activity output of the NN, we store both the

feature vector Xt and the label a∗t in the buffer B (lines 7–10). Otherwise, we proceed to the

next activity. This process continues until the buffer is full. Once the buffer is full, we use the

training data in the buffer to update the weights of the NN using the backpropagation algorithm.

Similar to the policy gradient approach, we update only the weights in the output layer. Finally,

we reset the data in buffer B so that training data from the updated network can be collected.

77

Algorithm 2:Weight Update via Supervised Learning
1 Input: Offline trained NN weights {θin, θh2, θ}
2 Initialize the buffer B of sizeM to store new training examples
3 for each activity segment t do
4 Generate feature vectorXt

5 Evaluate activity probabilities π(at|h2, θt) using Equation 4.4
6 at ← argmax π(ai|h, θ)
7 Obtain activity label a∗t from user
8 if at != a∗t then
9 Append {Xt, a

∗
t} to B

10 end
11 if B is full then
12 Obtain θt+1 using backpropagation algorithm on current weights θt and B
13 Reset the data in B
14 end
15 end

In summary, the weights of the output layer are updated online using either of the two

algorithms after user feedback. We note that the weights of the hidden layers can be updated

similarly by computing the gradient of the hidden layers with respect to their weights. Detailed

results for the improvement in accuracy using the online learning approaches and a comparison

among them are presented in Section 4.7.4.

4.7 Experimental Evaluation and Discussions

4.7.1 Experimental Setup

We implement the proposed HAR framework on the TI-CC2650 [160] IoT device. We

place the TI-CC2650 device on the ankle while the flexible stretch sensor is worn on the knee.

The stretch sensor transmits the data to the TI-CC2650 [160] IoT device that processes the data

to preforms the activity recognition. The recognized is then transmitted to a host device, such

78

as a smartphone. We transmit only the activity classification since transmission of the raw data

incurs a higher communication overhead.

Training, cross-validation, and test data split: We first divide the users into two sets, offline

training, and online training. The offline training set includes 18 users while the online training

set includes the remaining 4 users. The users in the offline training set are used to train the

neural network classifier. Within this dataset, we reserve 60% data for training, 20% data for

cross-validation, and 20% data for test. The trained classifier is then used to perform activity

classification for the online training users and update the weights of the network. Furthermore,

in order to ensure robustness of the proposed framework, we create a total of 30 combinations

of offline training and online training sets. In each combination we ensure that number of

common users is minimal.

4.7.2 Neural Network Design Space Exploration

We use a neural network to perform online activity recognition and training. The NN has

to be implemented on the wearable device with limited memory (in our case 20 kB). Therefore,

it should have a small memory footprint, i.e., a lower number of weights, while giving a high

recognition accuracy. To choose the neural network structure for HAR, we perform a design

space exploration with a single hidden layer and two hidden layer networks. In each of the

networks, we vary the number of neurons in the hidden layers to study the effect on accuracy

and memory requirements. Figure 4.8(a) shows the change in accuracy as we increase the

number of neurons in the hidden layer for a NN with a single hidden layer. We see that the

accuracy of the network saturates at around 93% after 4 neurons in the hidden layer. The

memory requirement M for this network is given by M = 121 ∗ Nh + Nh ∗ 8, where Nh is

the number of neurons in the hidden layer. The equation shows that the addition of a single

79

2 4 6 8
Number of Neurons

60

70

80

90

100

A
cc

ur
ac

y
(%

)

4 8 12 16
Number of Neurons in Second Hidden Layer

85

90

95

100

A
cc

ur
ac

y
(%

)

4 neurons
8 neurons
12 neurons

(a) (b)

Figure 4.8: Comparison of accuracy with the number of neurons

neuron in the hidden layer leads to 120 additional weights. Therefore, addition of neurons to

the NN incurs a high memory cost while providing marginal improvements in accuracy.

Next, we analyze the accuracy obtained by NNs with two hidden layers. We first fix the

number of neurons in the first layer and then vary the number of neurons in the second layer.

We repeat this for different number of neurons in the first layer. Figure 4.8 shows the accuracy

of the NN when we fix the first layer neurons to 4, 8, and 12, respectively. The three types of

markers represent the neurons in the first layer, while the x-axis shows the number of neurons

in the second layer when the first layer is fixed. All the networks achieve similar accuracy with

4-neuron networks having a slightly lower accuracy. At the same time, the 4-neuron networks

come with a significant memory advantage. When we compare the networks with one and two

hidden layers, the two-layer networks achieve better accuracy with a slightly higher memory

cost. This is because the memory cost additional of neurons in the second layer is much lower

than in the first layer. Therefore, in our implementation, we choose a NN with 4 neurons in

the first layer and 8 neurons in the second layer. We choose this over a network with just

4 neurons in the second layer as it provides a more robust operation. The chosen network

provides a 95.32% accuracy with a 2 kB memory requirement.

80

4.7.3 Accuracy Analysis of the Neural Network

4.7.3.1 Confusion Matrix

Once we finalize the structure of the NN classifier, we move on to train the NN using

the data from 18 users reserved for offline training. Then, we analyze the accuracy of each

activity in the training set by obtaining the confusion matrix, as shown in Table 4.5. There

is one column and one row corresponding to the activities of interest. The numbers on the

diagonal show the recognition accuracy for each activity. For example, the first row in the first

column shows that jump is recognized with 94.6% accuracy. We also include the total number

of activity windows with the corresponding label at the beginning of each row to provide the

absolute numbers. For instance, a total of 392 windows were labeled “Jump” for the 18 users

chosen for training.

From the confusion matrix, we see that the NN achieves accuracy greater than 94% for

all activities except transition. The accuracy is lower for transitions as each transition window

includes features from two distinct activities. The loss in accuracy is acceptable for transitions,

as we can indirectly infer by looking at the segments before and after the transition. Finally, we

Table 4.5: Confusion matrix for 18 training users

Jump Lie
Down Sit Stand Walk Stairs

Up
Stairs
Down Transition

Jump 94.6% 0.00 0.26% 0.00 4.08% 0.00 0.26% 0.77%
Lie Down 0.00 99.8% 0.21% 0.00 0.00 0.00 0.00 0.00
Sit 0.00 0.00 96.4% 2.98% 0.00 0.00 0.00 0.63%
Stand 0.00 0.00 2.47% 95.1% 0.00 0.00 0.00 2.47%
Walk 0.75% 0.00 0.25% 1.23% 94.5% 0.19% 0.69% 2.38%
Stairs Up 0.00 0.00 0.00 0.00 0.00 96.3% 3.66% 0.00
Stairs Down 0.00 0.00 0.00 0.00 3.80% 0.00 96.2% 0.00
Transition 1.23% 0.00 2.47% 2.88% 2.88% 0.00 0.00 90.5%

81

Table 4.6: Comparison of accuracy for different classifiers

Classifier Train Acc. (%) Test Acc. (%) Overall Acc. (%)

Random Forest 100.00 95.60 99.12
C4.5 98.67 91.70 97.28
k-NN 96.76 94.39 96.29
SVM 99.01 93.53 97.91
Our NN 96.24 91.71 95.32

note that all 30 combinations of training user sets achieve similar confusion matrices. There-

fore, we do not report the confusion matrix for each combination.

4.7.3.2 Comparison with Other Classifiers

One to one comparison with existing approaches for HAR is not feasible since they use

devices, datasets, and activities that are different from our study. Therefore, we implement

commonly used supervised learning classifiers on our dataset and compare the accuracies. Ta-

ble 4.6 shows the accuracy of commonly used classifiers. We see that the proposed neural net-

work classifier achieves a competitive accuracy when compared to the other classifiers. While

the other classifiers achieve a slightly higher accuracy then the NN, they are not amenable to

online learning. In contrast, the proposed NN can be efficiently updated at runtime to enable

online learning for HAR, which is one of the focus areas of this work.

4.7.3.3 Robustness of the NN Classifier

We need to ensure that the proposed NN classifier is robust to input from different users.

Therefore, we perform an accuracy analysis with the 30 user combinations described in 4.7.1.

We first train with 60% of the data from the 18 users present in the offline training set of

82

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
50
60
70
80
90

100
 Train Accuracy Cross Validation Accuracy Test Accuracy Overall Accuracy

Ac
cu

ra
cy

 (%
)

User combination

Figure 4.9: Comparison of accuracy with different combinations of users for training

each user combination. The training phases also uses 20% of the data in each set for cross-

validation during training. After training a NN with each user combination, we test them with

the remaining 20% data and 4 unseen users (online training set). The accuracy results for

the 30 classifiers obtained in this analysis are summarized in Figure 4.9. We see that all the

user combinations achieve training accuracy higher than 95% and cross-validation accuracy

greater than 90%. Moreover, most of the combinations achieve test accuracy higher than 90%.

A few of the user combinations, such as 16, 17, and 30, have lower test accuracy. This can

be attributed to the fact that the activity signatures observed in the training set of 18 users do

not capture the activity signatures of the 4 test users. We can overcome this issue by either

including the users in the training set or applying online learning.

4.7.4 Online Learning with new users

We use the NN classifiers trained for each of the 30 user combinations to recognize the

activities of the users not included in the training set. As we see in the previous section, the

test accuracies for some of the user combinations are lower than 90%. Therefore, we use the

proposed online learning algorithms to adapt the weights of the classifiers to the new users.

83

0 20 40 60 80 100

Episode

60

80

100

A
c

c
u

ra
c

y
 (

%
)

Test User = 1

RL

IL

0 20 40 60 80 100

Episode

60

80

100

A
c

c
u

ra
c

y
 (

%
)

Test User = 2

RL

IL

0 20 40 60 80 100

Episode

60

80

100

A
c

c
u

ra
c

y
 (

%
)

Test User = 3

RL

IL

0 20 40 60 80 100

Episode

60

80

100

A
c

c
u

ra
c

y
 (

%
)

Test User = 4

RL

IL

Figure 4.10: Comparison of reinforcement learning and incremental learning

Figure 4.10 shows the improvement in accuracy obtained by the reinforcement learning and

incremental supervised learning for four users not see during training. The initial NN for these

users is obtained from user combination 25 that has greater than 95% training accuracy. How-

ever, we see that the initial accuracy for all the four users is lower than the accuracy for training

users. In particular, the accuracy for user 10 is only about 60%. Starting with this initial ac-

curacy, we apply the online learning algorithms. Each episode in the x-axis corresponds to

an iteration of RL using the data set for new users. The weights of the NN are updated after

each segment as a function of the user feedback for a total of 100 episodes. We note that the

data of a particular user are reused in each episode of online learning. As more data becomes

available for each user, we can use different subsets of data in each episode. We see that the

online learning algorithms provide a consistent improvement in accuracy for all the new users.

For instance, the policy gradient algorithm improves the accuracy of user 19 from about 83%

to 95%, while the incremental supervised learning approach improves the accuracy to almost

84

100%. Similar improvements are observed for other users as well. We also see that the incre-

mental supervised learning approach improves the accuracy much faster and to a higher level

when compared to the policy gradient approach. This is expected since it uses the actual activ-

ity labels instead of an indirect reward. Therefore, it is more beneficial to use the incremental

supervised learning algorithm when the user provides the actual activity labels. We note that

the user feedback can be obtained periodically from the user by prompting them to enter the in-

formation on a smartphone app. The frequency of the feedback can be reduced as the classifier

adapts to the user.

Table 4.7 provides a summary of the improvement obtained through online learning for all

30 user combinations. The table contains a set of three columns for each user in the online

training set. Within each set of columns, we show the initial accuracy at the beginning of on-

line training, the final accuracy obtained with reinforcement learning, and the final accuracy

obtained with incremental learning. We see that the incremental learning approach achieves

accuracy greater than 99% for all user combinations. We can attribute this to the fact that

the neural network adapts to the patterns of the user, thus providing personalized HAR. Rein-

forcement learning also achieves accuracy greater than 90% for most of the user combinations

and test users. For a few of the users, such as test user 1 in combination 16, the accuracy im-

provement with reinforcement learning saturates. This limitation can either be resolved using

incremental learning or updating all the layers in the network. In summary, the online learn-

ing algorithms proposed in this chapter improve the accuracy for users not previously seen

by the network. This ensures that the device can adapt to new users very easily and provide

personalized HAR.

85

Table 4.7: Comparison of accuracy improvement with online learning

User
comb.

Test User 1
Accuracy (%)

Test User 2
Accuracy (%)

Test User 3
Accuracy (%)

Test User 4
Accuracy (%)

Init. RL IL Init. RL IL Init. RL IL Init. RL IL
1 93.7 97.5 99.7 93.2 98.9 99.9 88.2 95.1 99.7 75.0 82.1 99.7
2 91.1 92.4 99.6 83.3 86.1 99.2 82.4 94.1 98.2 91.1 95.8 99.8
3 93.7 97.5 99.5 92.2 98.4 99.9 76.1 87.7 99.9 88.4 95.3 99.9
4 91.1 100.0 99.9 86.9 94.6 100.0 58.8 85.3 99.6 80.6 94.2 99.6
5 97.5 97.5 99.7 96.2 97.5 99.9 82.5 96.0 99.8 84.4 91.1 99.1
6 86.4 92.0 99.7 97.2 97.2 99.7 97.1 98.8 100.0 86.3 94.3 99.9
7 94.3 98.9 99.5 88.2 94.1 98.8 91.4 94.5 99.8 60.8 89.2 99.8
8 92.0 93.2 99.8 92.2 95.3 99.8 79.3 95.3 99.9 87.4 96.1 99.7
9 89.6 94.4 99.7 94.4 97.2 99.4 93.3 96.9 99.8 91.3 97.1 99.8
10 93.1 97.9 99.8 88.2 94.1 98.8 98.4 99.2 99.8 96.8 98.7 100.0
11 66.0 93.8 99.9 80.2 93.2 99.8 90.1 95.9 99.9 87.3 96.8 99.7
12 84.7 92.4 99.8 79.7 94.4 100.0 54.9 65.7 99.6 82.2 88.9 99.1
13 69.3 84.3 99.7 88.9 91.7 98.9 80.2 96.1 99.9 93.6 99.4 99.9
14 56.4 82.9 99.7 76.5 94.1 97.6 89.2 94.9 99.9 84.4 91.1 99.3
15 81.4 87.1 99.8 93.2 96.4 99.8 98.4 99.6 99.8 67.6 91.2 99.6
16 48.4 66.8 99.9 55.7 81.4 99.9 92.6 95.1 99.8 88.9 95.2 99.8
17 43.0 67.7 99.9 96.3 98.4 99.9 86.4 94.2 99.7 88.9 91.1 99.1
18 92.4 94.1 99.7 86.1 91.7 98.9 52.9 72.5 99.9 91.3 91.3 99.7
19 89.1 92.4 99.7 87.0 93.8 99.9 85.9 91.4 99.8 96.2 99.4 99.9
20 95.0 95.8 99.7 64.1 80.1 99.9 82.4 88.2 98.2 87.9 94.8 99.8
21 88.6 98.1 99.9 88.2 94.1 98.8 81.6 94.2 99.6 85.7 92.1 99.8
22 94.4 99.3 100.0 42.7 59.6 99.9 89.8 96.6 99.7 96.8 99.4 99.9
23 89.1 97.8 99.8 92.4 95.0 99.7 92.0 94.3 99.7 82.2 91.1 99.3
24 78.3 100.0 100.0 90.1 99.0 99.9 92.0 94.5 99.8 90.4 94.9 99.9
25 87.3 95.2 100.0 73.9 92.4 99.7 57.1 87.1 99.7 84.5 96.1 99.6
26 91.9 95.4 99.9 85.5 94.7 99.9 88.9 97.2 98.9 88.9 97.8 99.6
27 92.0 96.4 100.0 89.1 100.0 100.0 99.2 99.2 99.9 92.9 96.0 99.7
28 83.7 88.5 100.0 86.7 98.8 99.9 87.4 94.1 99.7 95.9 97.9 99.9
29 68.3 85.9 100.0 76.1 100.0 99.8 55.9 73.5 99.7 63.1 93.0 99.9
30 81.1 90.3 100.0 72.2 95.0 99.9 54.3 94.4 99.8 66.9 95.5 99.9

4.7.5 Power, Performance and Energy Evaluation

To fully assess the cost of the proposed HAR framework, we present a detailed breakdown

of execution time, power consumption, and energy consumption for each step. The first part

of HAR involves data acquisition from the sensors and segmentation. Since the segmentation

86

Table 4.8: Execution time, power and energy consumption

Block Exe.
Time (ms)

Average
Power (mW) Energy (µJ)

Sense Read/Segment 1500.00 1.13 1695.00

Compute

DWT 7.90 9.50 75.05
FFT 17.20 11.80 202.96
NN 2.50 12.90 32.25
Overall 27.60 11.24 310.26

Comm. BLE 8.60 5.00 43.00

algorithm runs continuously while the data is acquired, its energy consumption is included in

the sensing block. Table 4.8 shows the power and energy consumption for a typical segment

of 1.5 s. The average power consumption for data acquisition is 1.13 mW, leading to a total en-

ergy consumption of 1695 µJ. If the segments are of a longer duration, the energy consumption

for data sensing increases linearly. Following the data segmentation, we extract the features

and run the classifier. The execution time, power, and energy for these blocks are shown in the

”Compute” rows in Table 4.8. As expected, the FFT block has the largest execution time and

energy consumption. However, it is still two orders of magnitude lower than the duration of a

typical segment. Finally, the energy consumption of the BLE communication block is given in

the last row of Table 4.8. Since we transmit the inferred activity, the energy consumed by the

BLE communication is only about 43 µJ. With less than 12.5 mW average power consumption,

our approach enables close to 60-hour uninterrupted operation using a 200 mAh @ 3.7 V bat-

tery [51]. Hence, it can enable self-powered wearable devices [23] that can harvest their own

energy [125].

87

4.8 Summary

Human activity recognition has wide-ranging applications from movement disorders to

patient rehabilitation to activity promotion in the general population. Successful research in

HAR critically depends on the availability of open-source datasets. To address this need, we

presented a w-HAR, an open-source dataset for human activity recognition that, for the first

time, includes data from both wearable stretch and accelerometer sensors. We provide three

versions of the sensor data as part of w-HAR. The first version provides raw sensor data that

allows researchers to develop their own algorithms for all steps of HAR. Secondly, we provide

segmented data that gives researchers the freedom to just focus on feature generation and clas-

sification. Finally, we provide a baseline feature set for researchers who want to focus only on

classifier development.

We also presented a HAR framework on a wearable IoT device using stretch and accelerom-

eter sensors. The first step of our solution is a novel technique to segment the sensor data non-

uniformly as a function of the user motion. Then, we generate FFT and DWT features using

the segmented data. The feature data was used to perform a DSE of neural network classifiers

for HAR. After the DSE, we obtained a NN classifier that achieved 95% accuracy for user data

available at design time. Then, we introduced two online learning algorithms to continuously

improve the classifier weights for new user subjects as a function of user feedback. The online

learning algorithms improved the accuracy for new users by as much as 40% with less than

12.5 mW power consumption.

88

Chapter 5

TRANSFER LEARNING FOR HUMAN ACTIVITY RECOGNITION USING

REPRESENTATIONAL ANALYSIS OF NEURAL NETWORKS

5.1 Introduction

Human activity recognition (HAR) is a critical component in a range of health and activity

monitoring applications [30, 74, 89, 107]. It provides valuable insight into movement disorders

by allowing health professionals to monitor their patients in a free-living environment [44,

53]. HAR is also the first step towards understanding gait parameters, such as step length

and gait velocity, which are also used in movement disorder analysis and rehabilitation [147,

175]. In addition, HAR is used for obesity management and promoting physical activity among

the public. Due to these high-impact applications of HAR, it has received increased research

attention in recent years [153, 169].

Most HAR techniques start with collecting sensor data from users available at design

time [96]. This data is used to train a classifier for the activities of interest. Then, the trained

classifier is used by new users in the field, whose data is not available for training. This ap-

proach assumes that the HAR classifiers can be transferred across different user sets. However,

this assumption may not hold in general as activity patterns can change with age, gender, and

physical condition. For instance, Figure 5.1 shows the stretch sensor data during walking for

four users in our experimental dataset. There is a significant variation both in the range of sen-

sor values and the data patterns. Furthermore, the activity patterns may vary over time, even

for a given user, due to the progression of symptoms, injury, or other physical changes. These

variations can significantly reduce the recognition accuracy for new users as we demonstrate

89

0 0.5 1

Time (s)

0

5

10

15

S
tr

e
tc

h
 V

a
lu

e

User 1

0 0.5 1

Time (s)

0

5

10

15

S
tr

e
tc

h
 V

a
lu

e

User 2

0 0.5 1

Time (s)

0

5

10

15

S
tr

e
tc

h
 V

a
lu

e

User 3

0 0.5 1

Time (s)

0

5

10

15

S
tr

e
tc

h
 V

a
lu

e

User 4

(a) (b) (c) (d)

Figure 5.1: Comparison of stretch sensor [117] data of four users for a single step during walk.
There is a significant change in both the range of values and data patterns. The grey dashed
lines show different instances of the same activity, while the red line shows a representative
activity window for each user.

in this chapter. Therefore, classifiers that are designed offline must adapt to changing data

patterns of new and existing users to achieve high classification accuracy.

Training classifiers from scratch for new users is expensive due to high data storage and

computational requirements. It is especially challenging for low-power wearable devices and

smartphones, which are the most commonly used devices for HAR [96, 153]. Moreover, clas-

sifiers trained offline have better generalization capability due to a large amount of data [113].

Although training from scratch for a particular user may increase its performance, it may re-

duce robustness due to overfitting. In contrast, transfer learning with a common feature set can

carry over the generalization capabilities from the offline stage and fine-tune for user-specific

features in the field.

This chapter first demonstrates that HAR classifiers designed offline cannot be transferred

as a whole to an arbitrary set of users. Then, it presents a systematic study to determine how to

transfer the offline knowledge and adapt classifiers to individual users. This study is performed

using convolutional neural networks (CNNs) due to their ability to produce broadly applicable

features from raw input data. Specifically, we use canonical correlation analysis (CCA) [113]

to evaluate the distance between the layers of CNNs trained with different sets of users. This

analysis reveals that the initial layers of CNNs provide representations that are general across all

the users, while the deeper layers discriminate between the features specific to each set of users.

90

Based on this insight, the proposed approach achieves high accuracy and significant savings

in training time by fine-tuning the deeper layers that differentiate users while transferring the

weights of the initial layers.

The proposed approach is validated using an in-house wearable HAR dataset (w-HAR),

which is released to the public, and two public datasets [6, 139]. We start by dividing the

users in each dataset into multiple clusters so that the effect of transfer learning for unseen user

clusters can be evaluated. In a challenging scenario, the clusters have to be as separated as

possible such that the classifier can only learn the patterns from the users in the training set.

For instance, the four users in Figure 5.1 belong to different clusters. To this end, we generate

user clusters both randomly (for average-case) and using k-means clustering [58] (for the most

challenging scenario). Next, a CNN classifier is trained for each user cluster. After analyzing

the similarity between the CNNs trained with different user clusters, the weights are transferred

between user clusters and the dissimilar layers are fine-tuned. Extensive evaluations for the

w-HAR dataset show that in the worst case, transferring weights and fine-tuning the last layer

achieves accuracy that is the same as the accuracy obtained by training from scratch while

reducing the computation during training by 66%.

In summary, the major contributions of this chapter are as follows:

• An empirical demonstration which shows that HAR classifiers designed offline cannot

be transferred to an arbitrary set of users,

• A systematic analytical studywhich reveals that deeper layers of HAR classifiers capture

user-specific information, while the initial layers provide general features,

• Extensive experimental evaluations using three datasets that show up to 43% and on

average 14% higher accuracy compared to the accuracy without using transfer learning

for new users.

91

5.2 Related Research

Transfer learning: Transfer learning aims to leverage the information learned in one do-

main to improve the accuracy in a new domain [121]. The information used for transfer in-

cludes the weights of a classifier [55, 56, 148], features [138], and instances of data [43]. The

transfer can occur between different applications or between different scenarios of a single

application [121]. A popular example of transfer learning between applications is medical

imaging [144, 151], where CNNs trained for classifying ImageNet [47] are adapted to classify

medical images. Similarly, transfer learning for new scenarios includes adaptation to a new

device [2], classes [27], or users [68].

One of the fundamentals aspects of transfer learning is identifying what information to

transfer. To this end, research has focused on parameter transfer [119], feature representation

transfer [7, 28], and data instance transfer [43]. We focus our attention on parameter transfer

since the proposed approach uses parameter transfer as well. Oquab et al. [119] design amethod

to reuse layers trained with one dataset to compute mid-level image representation for images

in another dataset. Yosinski et al. [176] empirically quantify the generality versus specificity

of neurons in each layer of a deep convolutional neural network for the ImageNet [47] dataset.

They show that the features in the initial layers are general in that they are applicable to multiple

image recognition tasks. Morcos et al. [113] directly analyze the hidden representations of each

layer in CNNs by using Canonical Correlation Analysis (CCA). CCA enables a comparison of

the learned representations between different neural network layers and architectures.

Transfer learning has been applied successfully in fields such as medical imaging classifi-

cation [144] and computer vision [134]. Salem et al. [144] presented an approach to transfer

a CNN from image classification domain to electrocardiogram (ECG) signal classification do-

main. Similarly, the authors in [136] explore properties of transfer learning from natural image

92

classification networks to medical image classification. Quattoni et al. [134] show that prior

knowledge from unlabeled data is useful in learning a new visual category from few exam-

ples [134]. The authors developed a visual-category learning algorithm called sparse proto-

type learning that can learn an efficient representation from a set of related tasks while taking

advantage of unlabeled data.

Transfer learning for HAR: Research on HAR has increased in recent years due to its

potential in applications such as movement disorders, obesity management, and remote patient

monitoring [30, 74, 107]. One of the challenges in HAR algorithms is that the data available

at design time may not be representative of the activity patterns of new users. As a result,

accuracy can degrade for new users [50]. Recent research has used transfer learning to address

this issue [40, 50, 101, 141]. The survey by Cook et al. [40] presents how different types of

transfer learning have been used for HAR.Here we present the transfer learning approaches that

are most relevant to this chapter while referring readers to the survey for a broader analysis.

Dine et al. [50] perform an empirical study to analyze the performance of transfer learning

methods for HAR and find that the maximum mean discrepancy method is most suitable for

HAR. A CNN-based method to transfer learned knowledge to new users and sensor placements

is presented in [36]. The authors empirically determine the number of layers to transfer based

on the accuracy obtained after transferring. However, this method is not scalable since the

training has to be repeated for each configuration of the transfer. Rokni et al. [141] use transfer

learning to personalize a CNN classifier to each user by retraining the classification layer with

new users. However, the authors do not provide any insight into the number of layers that can

be transferred between users and how it benefits the learning for new users. In contrast, we

perform representational analysis using CCA to determine layers that need to be fine-tuned for

new users.

Our work proposes a complete transfer learning framework for HAR using representational

93

analysis of CNNs. We start with clustering the users such that they are as separated as possible.

This clustering allows us to test the robustness of our approach. Then, we analyze the hidden

representation of different layers of a CNN by using CCA similarity. Using insights from the

CCA similarity analysis, we fine-tune specific layers of the network to adapt to new users. The

proposed approach is evaluated on w-HAR and two public datasets [6, 139] with both manually

and randomly generated clusters.

5.3 Human Activity Recognition Framework

We use the human activity recognition application described in Chatper 4. A brief summary

is provided here to maintain the flow of the chapter. Most HAR approaches start with data from

wearable inertial sensors or a smartphone to record the data when the user is performing the

activities of interest. 8 After collecting the sensor data, the next step is to pre-process and

segment the sensor data for feature generation. The most common approach in literature for

segmentation is to divide the data into one to ten-second windows with a 50% overlap between

consecutive windows [6, 93, 168]. Then, the data within each window is processed to generate

the features for the classifier. A variety of classifiers, such as neural networks, decision trees,

random forest, and k-nearest neighbors, have been used for HAR. This chapter focuses on

CNNs since the convolutional layers produce broadly applicable features, while the remaining

layers facilitate efficient online weight updates.

8Video cameras are also used for HAR, but we focus on HAR using wearable sensors and smartphones.

94

5.3.1 Experimental Datasets

Wearable HAR dataset (w-HAR):We use the w-HAR dataset described in Chapter 4 as one

of the experimental datasets in this chapter. The w-HAR dataset includes empirical data from

22 users while performing seven activities and transitions between them.

UCI HAR dataset [6]: The UCI HAR consists of data from 30 users who performed six ac-

tivities (lie down, sit, stand, stairs down, stairs up, and walk) while wearing a smartphone on

the waist. The dataset records readings from the accelerometer and gyroscope sensors in the

smartphone. The dataset provides 561 time and frequency domain features for each activity

window of 2.56 s. We use the default feature set provided by the dataset in our analysis.

UCI HAPT dataset [139]: This is an updated version of the UCI HAR dataset where the au-

thors added information about postural transitions, such as stand-to-sit and sit-to-stand. Similar

to the UCI HAR dataset, the HAPT dataset provides 561 time and frequency domain features

for each activity.

5.4 Transfer Learning for Human Activity Recognition

5.4.1 Flow of the Proposed Transfer Learning Approach

Figure 5.2 shows an overview of the proposed transfer learning framework. First, the

feature data is split into multiple clusters by using k-means clustering. The clustering ensures

that users having similar data patterns, such as walking speed, are grouped together. More

importantly, it ensures that users across different clusters are more dissimilar than random

partitioning. Next, a CNN classifier is trained with each user cluster (UC) obtained in the

previous step. To avoid overfitting, we divide each user cluster into 60% train, 20% cross-

95

Divide users
into clusters

Train with a
given UC

Transfer
weights and

finetune

Evaluate
accuracy

Evaluate accuracy
on all UCs
Calculate

CCA distance

Input
dataset

Figure 5.2: Overview of the transfer learning approach for HAR

validation, and 20% test data. The test accuracy obtained is the baseline accuracy when the

respective clusters are used for training the CNN. In the next step, a CNN trained with one UC

is tested with data of other UCs that are not used in training the CNN. 100% of the other UC

data are used for testing since none of it is used during training. For example, a CNN trained

with the training data of UC 1 is tested with all the data of UC 2. The accuracy obtained in

this step is referred to as the cross-UC accuracy. Along with the accuracy evaluation, we also

calculate the CCA distance between trained CNNs in this step. The CCA distance helps in

analyzing layers that generalize for all the UCs and the layers that differentiate UCs. Based on

the CCA distance analysis, the next step is transferring the CNNweights between UCs and fine-

tuning the layers that provide distinguishable information for each UC. This step is performed

for both k-means clustering and multiple randomly generated clusters to test the robustness of

the approach. Finally, we evaluate the accuracy after completing the fine-tuning process.

5.4.2 Clustering Users with Distinct Activity Patterns

The first step in the proposed framework is partitioning the users into clusters. Clustering

ensures that users in separate clusters have as distinct activity patterns as possible, as illustrated

in Figure 5.1. Hence, we can analyze the benefits and efficiency of transfer learning under more

challenging conditions than random partitioning. We employ the following steps to obtain the

user clusters.

96

RepresentativeWindow for Each User: Each user has multiple windows for the same activity

since the collected data is segmented before feature generation. For example, one-minute long

walking data is divided into 60 activity windows, assuming a one-second segment duration.

Furthermore, activity data may be coming from different experiments with small differences

in sensor locations. As a result, there are variations in the features across different windows,

even for a given user and activity. To bypass the variations across windows and facilitate

clustering, we identify a representative window for each activity of each user. For example,

consider our first dataset with 22 users and 8 activities. To obtain the representative windows,

we first extract all the activity windows for a given user and activity (e.g., all windows labeled

as “walk” for user-1). Then, we compute the mean Euclidean distance from each window

to all other windows for this user-activity pair. A large distance means that the corresponding

window is more likely to be an outlier. In contrast, the window with the smallest mean distance

to the rest of the windows is marked as the representative window for the corresponding user-

activity pair, as illustrated with red lines in Figure 5.1.

k-means Clustering: The previous process results in one representative window for each ac-

tivity for each user. That is, each of the 22 users has 8 representative windows (one for each

activity) in our dataset with 22 users and 8 activities. Next, we compute the mean correlation

distance [165] between the representative windows across different users for each activity. A

small distance means that the activity pattern of the user is similar to other users. Conversely,

a larger distance implies that the user’s activity pattern is separated from the other users. The

distance to other users for each activity is stored as a multidimensional vector whose length is

equal to the number of activities in the dataset. Finally, the distance vectors are used with the

k-means algorithm [58] to generate user clusters that are as separated as possible. Based on

our empirical observations of the data, we choose four clusters each for the three datasets we

use in this chapter.

97

Input layer Flatten

softmaxconv1 conv2 maxpool FC1dropout

Dropout

Figure 5.3: The architecture of CNN. The layers annotated at the bottom are used in CCA
distance.

5.4.3 Baseline Classifier Training for each User Cluster

CNN for HAR: We design a CNN for each input datasets to recognize the activities in the

respective dataset, as shown in Figure 5.3. For three different datasets, the data dimensions are

different, while the structure remains the same. The input layer of the CNN takes the feature

vectors as the input in the form of a 2-dimensional (2D) image. The input layer is followed by

two convolutional layers, maxpooling, and flatten layers. After flattening the data, we feed it

to the two fully connected (FC) layers before applying the softmax activation to classify the

activity.

We use Tensorflow 2.2.0 [1] with Keras 2.3.4 [37] to train the CNNs. Categorical

cross-entropy is employed as the loss during training. The algorithm used for training is the

Adadelta [177] optimizer with an initial learning rate of 0.001 and a decay rate of 0.95. We

train the CNNs for 100 epochs using a batch size of 128. The training is performed on Nvidia

Tesla GPU V100-SXM2 with 32 GB of memory.

CNN Accuracy Evaluation: The CNN shown in Figure 5.3 is trained for each UC obtained in

Section 5.4.2. We use 60% data of each UC for training, while 20% of data is used for cross-

validation during training. We train 10 networks with each UC with different initialization

such that we can analyze both CCA distance and accuracy on an average basis. Next, we

analyze the accuracy of the CNN for the UCs not seen during training using all the data of the

unseen UCs. Figure 5.4 shows the average accuracy of CNNs trained with each of the four UCs

98

1 2 3 4

Test User Cluster

40

60

80

100
A

c
c
u
ra

c
y
 (

%
)

Trained on UC 1

1 2 3 4

Test User Cluster

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Trained on UC 2

1 2 3 4

Test User Cluster

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Trained on UC 3

1 2 3 4

Test User Cluster

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Trained on UC 4

(a) (b) (c) (d)

Figure 5.4: The accuracy of the CNNs tested with different UCs for the w-HAR dataset. The
red star shows the accuracy of theUC used trainingwhile the triangles show cross-UC accuracy.

obtained from our dataset and tested on the other three. First, we see that the CNNs achieve

a high accuracy on 20% test data of the UC used for training. However, there is a significant

reduction in cross-UC accuracy. For example, the accuracy for UC 2 when tested on CNNs

trained with UC 1 is only about 52%. Similar behavior is observed for other UCs as well, with

the accuracy drop ranging from 10%–40%. This shows that the CNN is only able to learn the

data pattern of the current UC, and it cannot generalize other UCs with distinct activity patterns.

In the next section, we analyze the distance between networks trained with different UCs to

gain better insight into the representations learned by the CNN.

5.4.4 Analysis of Distance Between Trained Networks

Background onCCADistance: We employ CCA to analyze the distance between different net-

works and understand the representational similarity between network layers [113]. It analyzes

the representational similarity between networks by analyzing the ordered output activations

of neurons on a set of inputs, instead of working on the network weights directly. Taking the

activation vectors of neurons from two layers (trained with different UCs or with different ini-

tializations) as inputs, CCA first finds the linear combinations of the activations such that they

are as correlated as possible. Once the correlations are obtained, they are used to compute the

99

distance between the two activation vectors, i.e., between the two layers [113]. CCA has been

successfully used to analyze neural network similarities for medical imaging [136], language

models [146], and speech recognition [133]. We use the implementation proposed in [113] to

analyze the distance between the CNNs trained for HAR.

Distance Between Networks Trained with the Same UC: To analyze which layers generalize

between users, we calculate the mean CCA distance between the networks trained with the

same UC. To this end, 10 CNNs with different initializations are trained with the training data

of each UC. Next, we find the pairwise distances between the corresponding layers of the 10

CNNs trained with each UC. Finally, pairwise distances are averaged to find the mean CCA

distance. Figure 5.5 shows the mean CCA distance among NNs trained with 4 UCs with the

w-HAR dataset. Each sub-figure in Figure 5.5 shows the distance between networks trained

with a single UC when tested on all the four UCs. For example, Figure 5.5(a) shows the

mean distance for the 10 networks when they are trained on UC 1 and tested on all four user

clusters. The figure shows that for the first four layers of the CNN (two convolution layers,

one maxpooling layer, and one dropout layer), the mean CCA distance is low regardless of the

input UC. Moreover, the distances are almost equal for all the four UCs. This shows that in

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Trained with UC 1

Cluster 1 Cluster 2 Cluster 3 Cluster 4

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

Trained with UC 2

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

Trained with UC 3

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

Trained with UC 4

(b) (c) (d)(a)

Figure 5.5: The CCA distance between CNNs trained with (a) UC 1, (b) UC 2, (c) UC 3, and
(d) UC 4 from the w-HAR dataset when tested on all the four UCs.

100

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Trained with UC 1

Cluster 1 Cluster 2 Cluster 3 Cluster 4

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

Trained with UC 2

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

Trained with UC 3

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t
FC

1

so
ftm

ax
0

0.1

0.2

Trained with UC 4

(b) (c) (d)(a)

Figure 5.6: The CCA distance between CNNs trained with (a) UC 1, (b) UC 2, (c) UC 3, and
(d) UC 4 from the UCI HAR dataset when tested on all the four UCs.

the first four layers learn features that are similar for all the users in the dataset. The networks

start to diverge for different UCs from the first fully connected layer. The largest divergence

is seen at the softmax layer, where the distance is lowest for the UC used for training. This

means that the fully connected layers extract information that is specific to each UC and do not

generalize to other UCs. We observe a similar trend for the UCI dataset, where the distance

increases with layers, as shown in Figure 5.6.

In addition, we also calculate the CCA distance between networks trained with different

UCs (e.g., the distance between CNNs trained with UC 1 and UC 2). The analysis of the dis-

tance from this perspective helps in understanding the similarity between networks trained with

users that have distinct activity patterns. Figure 5.7 shows the CCA distance between CNNs

trained with UC 1 and the other three UCs from the w-HAR dataset. We see that the first

four layers are similar to each other regardless of the input data. Furthermore, the last layer

shows the highest divergence in the CCA distances when tested with the four UCs. Figures 5.8

and 5.9 show the CCA distances for CNNs trained with UCI HAR and UCI HAPT datasets,

respectively. A similar pattern is observed for the UCI HAR and UCI HAPT datasets. The

absolute distances are lower since there is a higher similarity between activity patterns of dif-

ferent UCs in the UCI datasets compared to the w-HAR dataset. In summary, this shows that

101

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 2

Cluster 1 Cluster 2 Cluster 3 Cluster 4

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 3

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 4

(b) (c)(a)

Figure 5.7: The CCA distance between CNNs trained with (a) UC 1 and UC 2, (b) UC 1 and
UC 3, (c) UC 1 and UC 3 from the w-HAR dataset when tested on all the four UCs.

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 2

Cluster 1 Cluster 2 Cluster 3 Cluster 4

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 3

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 4

(b) (c)(a)

Figure 5.8: The CCA distance between CNNs trained with (a) UC 1 and UC 2, (b) UC 1 and
UC 3, (c) UC 1 and UC 3 from the UCI HAR dataset when tested on all the four UCs.

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 2

Cluster 1 Cluster 2 Cluster 3 Cluster 4

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 3

co
nv

1

co
nv

2

m
ax

po
ol

dr
op

ou
t

FC
1

so
ftm

ax
0

0.2

0.4

M
e

a
n

 C
C

A
 D

is
ta

n
c
e Net 1 = UC 1, Net 2 = UC 4

(b) (c)(a)

Figure 5.9: The CCA distance between CNNs trained with (a) UC 1 and UC 2, (b) UC 1 and
UC 3, (c) UC 1 and UC 3 from the UCI HAPT dataset when tested on all the four UCs.

the first four layers learn general features that are applicable to all the UCs even when different

UCs are used to train the CNN.

102

5.4.5 Transferring the NN and Fine-tuning

CCA distance analysis reveals that the convolutional layers provide general features, while

the deeper layers provide the most distinguishing information. We use this insight to optimize

the transfer learning process and improve the training time for new UCs. Specifically, we

transfer the weights of the first four layers from a trained CNN to a network targeting another

UC. Then, the deeper layers are fine-tunedwith the data of the newUC. The fine-tuning process

uses 60% of the new UC’s data for training, 20% data for cross-validation, and the remaining

20% for testing. Following this process, we avoid training the convolutional layers, thus saving

a significant amount of computations. We evaluate the accuracy after fine-tuning under two

scenarios: 1) fine-tune the last FC layer and 2) fine-tune the last two FC layers. Figure 5.10

shows that the accuracy for new UCs improves significantly after fine-tuning either the last

FC layer or the last two FC layers for the w-HAR dataset. With fine-tuning of one layer, we

obtain 18% accuracy improvement on average. Specifically, the accuracy for UC 2 improves

from 52%, 64%, and 75% to 90%, 92%, and 91%, respectively. When we fine-tune the last

two layers, the accuracy improves to 95% for all UCs.

1 2 3 4

Test User Cluster

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Trained with UC 1

Baseline Finetune Last Layer Finetune Two Layers

1 2 3 4

Test User Cluster

40

60

80

100

Trained with UC 2

1 2 3 4

Test User Cluster

40

60

80

100

Trained with UC 3

1 2 3 4

Test User Cluster

40

60

80

100

Trained with UC 4

(b) (c) (d)(a)

Figure 5.10: Comparison of accuracy between original and fine-tuned CNN for the w-HAR
dataset.

103

5.5 Evaluations

5.5.1 Accuracy Analysis

The analysis performed in the previous sections showed results with user clusters that are

designed to be as distinct as possible. In this section, we validate the transfer learning approach

to randomly generated user clusters. To this end, we first generate 200 random user splits from

the w-HAR dataset. Each user split contains four user clusters, in line with previous sections.

We then train 5 CNNs for each cluster and test their cross-UC accuracy before applying transfer

learning. The first column in Figure 5.11 shows the distribution of the cross-UC accuracy.

The minimum cross-UC accuracy is 65% for all the UCs among 200 random user splits. We

also show the minimum accuracy for the k-means clustering using a red dot. The minimum

accuracy with k-means is 52%, which is lower than the minimum accuracy for all random user

splits. This experimentally shows that our k-means clustering approximates the worst-case

scenario well, where the users are as distinct as possible.

Next, we fine-tune the last one and two layers of the CNNs to capture the information spe-

cific to each user cluster, as shown in the second and third columns of Figure 5.11, respectively.

The classification accuracy improves significantly after the fine-tuning process. Specifically,

66% Time Savings

65% Lower
Initial Loss

(a) (b)

Figure 5.11: Comparison between
original and fine-tuned NN for 200
UCs.

Figure 5.12: Transfer learning improvement analysis:
(a) Training time, (b) Loss.

104

63% Time Savings

64% Lower
Initial Loss

(a) (b)

Figure 5.13: Comparison between
original and fine-tuned NN for 100
UCs from the UCI HAR dataset.

Figure 5.14: Transfer learning improvement analysis:
(a) Training time, (b) Loss for the UCI HAR dataset.

56% Time Savings

90% Lower
Initial Loss

(a) (b)

Figure 5.15: Comparison between
original and fine-tuned NN for 100
UCs from the UCI HAPT dataset.

Figure 5.16: Transfer learning improvement analy-
sis: (a) Training time, (b) Loss for the UCI HAPT
dataset.

the median accuracy after fine-tuning one layer is about 93%, while it further increases to about

95% by fine-tuning the last two layers. These median accuracies are very close to the accuracy

obtained for the k-means clustering. This shows our k-means clustering is representative of a

wide range of randomly generated user clusters. We also note that some UCs achieve a higher

accuracy after fine-tuning when compared to the k-means clustering because the users in these

clusters have similar features. Conversely, some UCs have lower accuracy after fine-tuning

because the source UC does not have all the activities present in the target UC.

We also analyze the accuracy of 100 randomly chosen UCs for the UCI HAR and UCI

HAPT datasets, respectively. Figures 5.13 and 5.15 show that the median accuracy obtained

for the 100 random clusters is similar to the accuracy obtained from the k-means clustering.

This is in line with the results from the w-HAR dataset. In summary, the proposed transfer

105

learning approach of fine-tuning the deeper layers of the network significantly improves the

classification accuracy.

5.5.2 Training Time, Loss and Convergence Analysis

Transfer learning provides benefits in training speed and convergence when compared to

training from scratch for new user clusters. Figure 5.12(a) shows the comparison of training

time between the baseline and the proposed transfer learning approach. The transfer learning

approach has both a higher starting accuracy and lower convergence time with respect to the

baseline. Specifically, fine-tuning one layer converges to 93% in about 1.6 s, which is 66%

lower than the baseline approach of training from scratch. When two layers of the CNN are fine-

tuned, the accuracy is higher than the baseline, with a small increase in the training time. The

loss also shows similar behavior in Figure 5.12(b), where the starting loss with transfer learning

is 65% lower when compared to the baseline. The loss at the end of training is also lower with

the transfer learning approach. Next, Figure 5.14(a) shows the comparison of training time

between the baseline and proposed transfer learning approach for the UCI HAR dataset. When

two layers of the CNN are fine-tuned, the accuracy is the same as the baseline with 63% lower

training time. Similar results are observed for the loss in Figure 5.14(b) where the starting loss

with transfer learning is 64% lower than the baseline. Finally, Figure 5.16(a) and Figure 5.16(b)

show the corresponding results for the UCI HAPT data set. In this case, we observe that the

training time is 56% lower, while the starting loss is 90% lower. In summary, this shows that

the general features transferred from a trained CNN aid in learning the activities of new users.

106

5.6 Summary

HAR has wide-ranging applications in movement disorders, rehabilitation, and activity

monitoring. This chapter presented a transfer learning framework to adapt HAR classifiers to

new users with distinct activity patterns. We started with a representational analysis of CNNs

trained with distinct user clusters. This analysis revealed that initial layers of the network

generalize to awide range of users while the deeper layers providing distinguishing information.

Based on this insight, we fine-tuned deeper layers of the network while transferring the other

layers. Experiments on three HAR datasets showed that our approach achieves up to 43% and

on average 14% accuracy improvement when compared to the accuracy without using transfer

learning. Fine-tuning the deeper layers also leads to 66% savings in training time and better

convergence while maintaining the same accuracy as training from scratch for new users.

107

Chapter 6

REAP : RUNTIME ENERGY-ACCURACY OPTIMIZATION FOR ENERGY

HARVESTING IOT DEVICES

6.1 Introduction

Wearable low-power internet-of-things (IoT) devices enable health monitoring, activity

tracking, and wide-area sensing applications [13, 29, 96, 103]. These devices must stay on

for as long as possible to analyze user activities. At the same time, they have to provide the

maximum quality of service. These two objectives compete with each other since higher accu-

racy comes at the cost of larger energy consumption. Since weight and form-factor constraints

prohibit large batteries, the feasibility of these devices depends critically on optimizing the

energy-accuracy trade-off optimally at runtime.

Widely used dynamic power management techniques optimize the power-performance

trade-off by switching between different power states. High-performance states are used to

execute computationally heavy workloads at the expense of power consumption, while low-

performance states are used to save power. In analogy, energy-accuracy trade-off in self-

powered devices can be optimized by utilizing multiple design points. This is a challenging

task, since the analytical characterization of the accuracy is much harder than developing power

consumption and performance models. For example, we consider an activity recognition appli-

cation where a wearable device infers the user activities, such as jogging, by processing motion

sensor data. The recognition accuracy is a strong function of the users. Hence, energy-accuracy

optimization requires user studies and optimally chosen design points, in addition to a runtime

optimization algorithm that utilizes multiple design points.

108

This chapter presents a Runtime Energy-Accuracy oPtimization (REAP) framework for

energy-constrained IoT devices. While our framework is general, we focus on health and

activity monitoring applications where a wearable device processes sensor inputs to infer user

activities. The recognized activities are sent to a gateway, such as a smartphone, for further

processing. REAP co-optimizes the accuracy and active time under a tight energy budget. This

optimization is enabled by the following three contributions.

User studies for accuracy evaluation: We perform experiments with 14 users to recognize

the following activities: sit, stand, walk, jump, lie down, and transitions among them. During

these experiments, we collect 3-axis accelerometer and stretch sensor data. We obtain a total

of 3553 activity windows from these experiments. After labeling, we utilize this data for eval-

uating the accuracy of the human activity classifiers used in this chapter. We note that the data

used in this chapter is a subset of the w-HAR dataset.

Pareto-optimal design points: A common baseline in activity monitoring applications is to

obtain a classifier with the highest recognition accuracy [15]. High accuracy is obtained by

using a sophisticated set of sensors, features, and classification algorithms, all of which imply

a larger energy consumption, hence, lower active time. Other design points can be obtained

by reducing the number of sensors and feature set to save energy. In turn, the energy savings

lead to longer active time under a given harvested energy budget, albeit with lower accuracy.

To enable this work, we implemented 24 design points (DPs) with varying energy-accuracy

trade-offs on our hardware prototype. Among them, we choose 5 Pareto-optimal DPs as our

primary designs used at runtime. We provide detailed execution time and power consumption

breakdown for sensing, feature generation, and processing steps for each of these 5 DPs.

Runtime optimization algorithm: Given an energy budget, two fundamental objectives are

to maximize the recognition accuracy and the amount of time the device is on, i.e., the active

time. We first formulate this co-optimization problem assuming that there areN design points

109

with different energy-accuracy trade-offs. We define a general objective function that enables

us to tune the importance of active time versus recognition accuracy. Then, we propose an

efficient runtime algorithm that determines how much each DP should be used to optimize the

accuracy-active time trade-off.

Experimental results using a custom prototype based on TI Sensortag [159] IoT board show

that REAP outperforms all static design points under a range of energy budget constraints.

REAP achieves both 46% higher expected accuracy and 66% longer active time compared to

the highest performance DP. REAP also achieves comparable active time to the lowest energy

design points while providing significantly higher expected accuracy. This makes REAP suit-

able for use in a wide range of energy harvesting profiles.

The major contributions of this chapter are as follows:

• A runtime technique to co-optimize the accuracy and active time of energy-harvesting

IoT devices,

• Pareto-optimal design points with varying energy-accuracy trade-offs for human activity

recognition (HAR),

• Experiments on a custom prototype with 14 user studies that show significant improve-

ments both in expected accuracy and active time compared to static design points.

The rest of this chapter is organized as follows. In the rest, Section 4.2 reviews the related

work. Section 6.3 and Section 6.4 present the accuracy-active time optimization problem and

DPs used in this chapter, respectively. Finally, Section 6.5 presents the experimental results

and Section 6.6 concludes the chapter.

110

6.2 Related Work

Energy harvesting for IoT devices has received significant attention due to their small form

factor and low capacity batteries [81, 155]. These devices can be broadly categorized into two

classes. The first class of devices rely solely on harvested energy and turn off when no energy

is harvested [150]. The second class of devices uses a small battery as a backup to extend the

active time [33, 83, 167]. These approaches manage the power consumption of the device such

that the total energy consumed over a finite horizon is equal to the harvested energy [23]. As

a result, the device has a long lifetime without battery replacement or manual charging. REAP

applies to all devices that operate under a fixed energy budget.

Using ambient energy sources necessitates the development of energy allocation and duty

cycling algorithms [33, 149, 167]. For example, the work in [83] uses linear programming to

determine the duty cycle of the application as a function of the harvested energy. Similarly, the

algorithm in [167] uses a linear quadratic controller to assign the duty cycle of the device while

maintaining a set battery level. There are also algorithms for dynamic energy management of

energy-harvesting devices for long-term energy-neutral operation [23, 33]. However, these

approaches choose between on and off power states leading to sub-optimal operation. They

also lack the notion of accuracy or any concrete application, unlike the approach in this chapter.

Human activity and health monitoring using wearable devices have significant impact po-

tential to sports, patients with movement disorders, and the elderly [53, 80, 96]. A recent work

presents a wearable system for mobile analysis of running using motion sensors [103]. The

authors selectively identify the best sampling points to maintain high accuracy while reducing

sensing and analysis energy overheads. The work in [80] presents a framework to detect falls

by using a wearable device equipped with accelerometers. Authors in [29] design a classifier

that detects physical activity using a body-worn accelerometer. It offers an accurate classi-

111

fier for human activity recognition, but it cannot sustain operation under tight energy budget

constraints. Based on this observation, we find Pareto-optimal design points for the HAR ap-

plication that offer varying levels of accuracy and energy consumption. Then, we use these

design points to maximize the expected accuracy of HAR.

In summary, we present a unique combination of (1) a runtime energy-accuracy optimiza-

tion technique, and (2) experimental evaluation with 5 concrete design points for HAR. We

released the experimental data to the public to stimulate research in this area [16].

6.3 Runtime Energy-Accuracy Optimization

6.3.1 Preliminaries

We consider human activity monitoring applications implemented on energy-constrained

IoT devices. We denote the period over which the total energy budget is provided as TP , as

summarized in Table 6.1. REAP computes the energy allocations at runtime with a period of

TP , which is set to one hour in our experiments. If the energy consumption over this period

exceeds the amount of harvested energy and remaining battery level, the device powers down

and misses user activity. Hence, our goal is to maximize the active time and the expected

accuracy over a given period TP .

Suppose that the IoT device can operate at N distinct DPs. The recognition accuracy

achieved by design point i is denoted by ai, while the corresponding power consumption is

given as Pi for 1 ≤ i ≤ N . In addition to these design points, we denote the time that the

device remains off as toff . Finally, the power consumption during the off period, which is due

to the energy harvesting and the battery charging circuitry, is denoted by Poff .

112

Table 6.1: Summary of symbols used in the optimization problem.

Symbol Description Symbol Description

TP Activity period J(t) Objective function

Eb Energy budget ti Active time ofDPi

ai
Recognition accuracy

ofDPi
α

Accuracy-active time
trade-off parameter

Poff
Power consumption
in the off state Pi

Power consumption
ofDPi

6.3.2 Optimization Problem Formulation

In a given activity period, the system may operate at different design points, resulting in

varying levels of active time and accuracy. Let ti denote the amount of time DP i is utilized

during TP . The active time of the device is simply given by the sum of the active times of each

DP:
∑N

i=1 ti. Likewise, the expected accuracy over the activity period can be expressed as

E{a} = 1
TP

∑N
i=1 aiti. The expected accuracy is a useful metric that incorporates both active

time and accuracy, but it does not allow emphasis of one over the other. Therefore, we define

a generalized cost function and solve the following optimization problem:

maximize J(t) =
1

TP

N∑
i=1

aαi ti (6.1)

subject to toff +
N∑
i=1

ti = TP (6.2)

Poff toff +
N∑
i=1

Piti ≤ Eb (6.3)

ti ≥ 0 0 ≤ i ≤ N (6.4)

Objection function J(t): The parameter α in Equation 6.1 enables a smooth trade-off between

the active time and accuracy. When α = 1, the objective function reduces to the expected

accuracy. Similarly, whenα = 0, the objective function reduces to total active time. In general,

113

the objective function gives a higher weight to the accuracy when α > 1, and to active time

when α < 1.

Constraints: The constraint given in Equation 6.2 states that the sum of the active times and

off period is equal to the activity period TP . Similarly, Equation 6.3 specifies the energy bud-

get constraint. The left-hand side gives the sum of the energy consumed in the off state and

active states. The energy budget Eb on the right-hand side is determined by energy allocation

techniques using the expected amount of harvested energy and battery capacity [83]. Finally,

Equation 6.4 ensures that all active times are non-negative.

6.3.3 Runtime Optimization Algorithm

The solution to the optimization problem formulated in Section 6.3.2 gives the active times

of each design point that maximize the objective function in Equation 6.1. We must solve this

problem at runtime because the available energy budget is not known at design time. Further-

more, the importance given to accuracy versus active time (i.e., α) may change due to user

preferences.

The optimization objective and the constraints in Equations 6.1- 6.3 are linear in the deci-

sion variables ti and toff . Thus, we use a procedure based on the simplex algorithm [41], as

outlined in Algorithm 3. The inputs are the energy budget Eb, Pareto-optimal DPs, and the

maximum number of iterations. The output is a vector with the values of decision variables

ti 1 ≤ i ≤ N and toff that maximize the objective. We start the optimization process by

constructing a tableau with the initial conditions. The first row of the tableau describes the

objective function, while the other rows describe the constraints. In each iteration of the pro-

cedure, we find the pivot column by finding the column with the largest value in the last row

of the tableau. Using the pivot column, we next find the pivot row in the tableau in Line 8 of

114

Algorithm 3: The REAP Procedure
Input :Design points, energy budget Eb, max. iterations
Output :Time allocated to each design point

1 Initialize the tableau with objective function and constraints
2 Add slack variables for inequality constraints
3 while iter ≤ max. iterations do
4 PivotCol ← findP ivotCol(tableau)
5 if PivotCol < 0 then
6 return Optimal Solution
7 end
8 PivotRow ← findP ivotRow(tableau, P ivotCol)
9 Update the tableau using the PivotCol and PivotRow

10 end

the algorithm. Then, we update the tableau using the pivot column and row. The procedure

terminates when all the entries in the last row are non-positive. In this case, the pivot column

is set as negative, and the optimal solution is returned. Our implementation takes 1.5 ms on

our prototype. Since the optimization algorithm runs every hour, it takes a negligible portion

of the activity period and energy budget.

6.4 Human Activity Recognition Case Study

REAP is broadly applicable to energy-harvesting IoT devices that operate under a fixed

energy budget. To illustrate the optimization results on a real example, we employ human

activity recognition, i.e., HAR, as a driver application [15].

6.4.1 Background and Baseline Implementation

There is a steady increase in the use of wearable and mobile devices for the treatment of

movement disorders and obesity-related diseases [53]. This technology enables data collection

115

Activity
Classification

Transmit
to phone

Feature
Generation

Sensor
Data

Figure 6.1: Overview of the human activity recognition application.

while the patients perform their daily activities. The first step in this effort is to understand

what activity the user is performing at a given time. For example, the gait quality of the patient

cannot be checked unless we know the user is walking. Therefore, HAR on mobile devices

has recently attracted significant attention [96].

We implement a HAR application on a custom prototype based on the TI-Sensortag IoT

board [159] and a passive stretch sensor, as outlined in Figure 6.1. It starts with the sampling

of the accelerometer and stretch sensors. The streaming sensor data is processed using the

TI-CC2650 MCU to generate the feature vector. This feature vector is then processed by a

parameterized neural network to infer the activity of the user. Finally, the inferred activity is

transmitted to a host device, such as a phone, using the Bluetooth Low Energy (BLE) protocol.

The energy consumption and recognition accuracy of HAR depends on the types of sensors

used, the active time of sensors, the type of features, and the complexity of the classifier. The

left side of Figure 6.2 shows the different configurations available for the sensors. For instance,

we can use all three axes of the accelerometer or turn off selected axes to lower the energy

consumption. In the extreme case, we can turn off the accelerometer to eliminate its energy

consumption. Once we choose the configuration of the sensors, we can choose the sensing

period, i.e., the time for which sensors are active, for each activity duration. By default, the

sensors are turned on during the full activity duration. Turning off the sensors early, such as

after 50% of the activity duration, provides energy savings at the cost of missed data points,

hence, accuracy. We can also control the complexity of the features to trade off accuracy and

energy consumption. Complex features, such as Fast Fourier Transform (FFT) and Discrete

Wavelet Transform (DWT), offer higher accuracy at the expense of higher energy consumption.

116

Sensors Computation
Accel.
axes Stretch Sensing

period (%) Signal features NN
structure

X, Y, Z

Yes

No

100 DWT of accel.
4×12×7

4×8×7

4×7

X, Y 75 16-FFT of stretch
X or Y 50 Statistics of accel.
None 40 Statistics of stretch

A
ccuracy

Energy

Figure 6.2: The knobs used to obtain design points with different energy-accuracy trade-offs.

In contrast, statistical features have lower energy consumption, albeit with lower accuracy.

Finally, the structure and depth of the NN classifier can be controlled to obtain further energy-

accuracy trade-off, as illustrated in Figure 6.2.

We exploit this trade-off between energy and accuracy to design 24 different DPs imple-

mented on the TI-Sensortag based prototype, as described in the following section.

6.4.2 Pareto-Optimal Design Points

We design a total of 24 DPs by exploiting the energy-accuracy trade-off illustrated in Fig-

ure 6.2. We start by using all the axes of the accelerometer, generating complex features, and

using an NN classifier with 2 hidden layers, which provide the highest recognition accuracy.

Then, we progressively reduce the number of axes of the accelerometer and sensing period to

reduce the energy consumption of the DPs. We always use the passive stretch sensor in our

DPs, since it has low energy consumption. There is a need for detailed accuracy and energy

consumption characterization of each DP to obtain the Pareto-optimal design points. To find

the accuracy of each design point, we performed experiments with 14 different users. We use a

total of 3553 activity windows from the experiments and labeled each window with the corre-

117

2 2.5 3 3.5 4 4.5
Energy/activity (mJ)

60

65

70

75

80

85

90

95

R
ec

og
ni

tio
n

A
cc

ur
ac

y
(%

)

DP1
DP2DP3DP4

DP5

Measurement points

Figure 6.3: The energy-accuracy trade-off of various design points. The dashed line connects
the selected 5 design points.

sponding activity. Each DP is designed using 60% of this data for training, 20% for validation,

and the remaining 20% for testing.

All 24 design points are implemented on our prototype to profile the execution time and

measure the power consumption using the test pads on our prototype. Figure 6.3 shows the

recognition accuracy and energy per activity for each design point. As expected, each DP of-

fers a unique energy-accuracy trade-off. For example, DP1 shows the highest accuracy with

the highest energy consumption, while DP5 shows the lowest recognition accuracy and energy

consumption. However, some design points do not offer any benefit in the energy-accuracy

trade-off. For example, the design point marked with a red rectangle is dominated by DP2,

DP3, and DP4. Hence, we consider 5 Pareto-optimal design points shown using black dia-

monds (DP1 to DP5) to validate the REAP framework. Table 6.2 summarizes the details of the

configuration, accuracy, execution time, and energy for 5 Pareto-optimal DPs.

Design Point-1 (DP1): DP1 offers the highest accuracy by utilizing all three axes of the ac-

celerometer for the entire activity window of 1.6 s. It uses 16-FFT of the stretch sensor data and

statistical features of the accelerometer, such as the mean and standard deviations. DP1 has the

118

Table 6.2: Accuracy, execution time, power, and energy consumption of different human ac-
tivity recognition design points.

Design point description MCU exec. time distribution (ms) Per activity summary

DP
no. Features Acc.

(%)
Accel.
feat.

Stretch
feat. NN Total

MCU
energy
(mJ)

Sensor
energy
(mJ)

Energy
(mJ)

Power
(mW)

1 Statistical accel.,
16-FFT stretch 94 0.83 3.83 1.05 5.71 2.38 2.10 4.48 2.76

2 Statistical y-axis accel.,
16-FFT stretch 93 0.27 3.83 1.00 5.10 2.29 1.43 3.72 2.30

3
Statistical x- and
y-axis accel. (0.8 s),
16-FFT stretch

92 0.27 3.83 0.90 5.00 2.10 0.84 2.94 1.82

4
Statistical y-axis
accel. (0.6 s),
16-FFT stretch

90 0.14 3.83 1.00 4.97 2.09 0.57 2.66 1.64

5 16-FFT stretch 76 0.00 3.83 0.88 4.71 1.85 0.08 1.93 1.20

Figure 6.4: Energy consumption distribution of DP1 over one-hour activity period TP . Total
energy consumption is 9.9 J.

highest accuracy of 94% at the cost of the highest energy consumption of 4.48 mJ per activity.

The energy breakdown in Figure 6.4 shows that about 47% of the energy consumption is due

to the sensors. Thus, reducing the sensor activity is an effective mechanism to save energy.

Design Point-2 (DP2): DP2 reduces the sensory energy by utilizing only the y-axis of the

accelerometer along with the stretch sensor. As depicted in Table 6.2, the energy consumption

of the sensor reduces from 2.10 mJ to 1.43 mJ. It achieves an accuracy of 93%, which is 1%

lower than DP1.

Design Point-3 (DP3): As shown in Figure 6.2, reducing the sensing period leads to lower

energy consumption. DP3 exploits this by sampling the x- and y-axes of the accelerometer for

119

50% of each activity window, i.e., 0.8 s. As a result, the energy consumption of the sensor

reduces to 0.84 mJ, and the total energy consumption of DP3 becomes 2.94 mJ per activity,

while the recognition accuracy drops to 92%.

Design Point-4 (DP4): DP4 is similar to DP3, except that the sensing period of the accelerom-

eter is further reduced to 40% (0.6 s). This reduces the energy consumption of DP4 to 2.66 mJ

per activity, with a recognition accuracy of 90%.

Design Point-5 (DP5): DP5 uses only the stretch sensor for data features to minimize energy

consumption. The energy consumption reduces to 1.93 mJ per activity, the lowest energy con-

sumption among all our design points. However, it also has the lowest recognition accuracy of

76%.

Offloading to a host: Finally, we note that the raw sensor data can be directly sent to a host

device, such as a smartphone or server, for processing. To assess the viability of this alternative,

we implemented and measured its energy consumption. Sending the raw sensor data over BLE

consumes 5.5 mJ per activity without any significant increase in the recognition accuracy. In

contrast, transmitting just the recognized activity consumes only about 0.38 mJ per activity.

Hence, offloading is not an energy-efficient choice.

6.5 Experimental Evaluation

6.5.1 Experimental Setup

IoT device: We use a custom prototype based on the TI-Sensortag IoT platform [159] to im-

plement the proposed design points. The prototype consists of a TI CC2650 MCU, Invensense

MPU-9250 motion sensor unit, a stretch sensor, and energy harvesting circuitry. Sensors are

120

sampled at 100 Hz and the MCU runs at 47 MHz frequency. Power measurements from the

prototype and data from 14 user subject studies are used to obtain the 24 design points.

Energy harvesting data: We use the solar radiation data measured by the NREL Solar Radia-

tion Research Laboratory to obtain the energy harvesting profile from January 2015 to October

2018 [4]. We use the profile for each hour within this data to generate the energy budget. These

energy budgets are then used to evaluate REAP and the static design points in Section 6.5.4.

6.5.2 Expected Accuracy and Active Time Analysis

We first analyze the results of the proposed optimization approach as a function of the

allocated energy over a one-hour activity period TP . In the most energy-constrained scenario,

the minimum energy required to run the energy harvesting and monitoring circuitry is 0.18 J.

In the opposite extreme, 9.9 J energy is sufficient to run DP1, the most power-hungry design

point, throughout TP . Therefore, we sweep the allocated energy starting with 0.18 J, and find

the optimal active time of each DP using the proposed approach.

Figure 6.5(a) shows the expected accuracy (α = 1) as a function of the energy budget.

The expected accuracy of all the design points approaches to zero when the energy budget is

close to 0.18 J, since the device is almost always off. As the energy budget increases (Region

1), the accuracy of all DPs starts growing since they can become active. None of the design

points can afford to stay 100% active under the energy budget in Region 1. We observe that the

design point with the lowest energy consumption (DP5) achieves significantly higher accuracy

because it can stay in the active state much longer. REAP matches or exceeds the accuracy

of DP5 under the most energy-constrained scenario. When the energy budget goes over 4.3 J,

DP5 can remain active throughout the activity period, but its recognition accuracy saturates.

The other DPs benefit from more energy in Region 2, while REAP outperforms all by utilizing

121

(a)

50

60

70

80

90

100

Ex
pe

ct
ed

 A
cc

ur
ac

y
(%

)

REAP DP1 DP2 DP3 DP4 DP5

3 4 5 6 7 8 9 10
Allocated Energy (J)

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
ct

iv
e

Ti
m

e

(b)

Region 1 Region 2

R
eg

io
n

3

2.3×
1.4×

𝜶 = 𝟏

𝜶 = 𝟏

Figure 6.5: (a) Expected accuracy of REAP and design points. (b) The active time of each DP
normalized to REAP.

them optimally. At 5 J energy budget, for example, REAP utilizes DP4 42% of the time and

DP5 for 58% of the time to optimize the expected accuracy. Finally, all design points can re-

main active throughout the activity period when the energy budget is larger than 9.9 J. Hence,

their accuracy saturates, and REAP chooses to DP1 beyond this point. In summary, REAP con-

sistently outperforms or matches the accuracy of all individual DPs by utilizing multiple DPs

optimally.

The active time of eachDP normalized to REAP is plotted in Figure 6.5(b). DP5 is expected

to have the longest active time since it has the least energy consumption. REAP successfully

matches its active time in all the regions. In Region 1, REAP also achieves 2.3× larger active

time compared to DP1 while providing significantly better accuracy. REAP consistently pro-

122

vides longer active times compared to DP1, DP2, and DP3 until the energy budget becomes

large enough to sustain them throughout the activity period TP .

6.5.3 Accuracy – Active Time Trade-off Analysis

Next, we analyze how REAP can exploit the trade-off between the accuracy and active

time using the parameter α in objective function J(t) in Equation 6.1. Since Section 6.5.2

considered the expected accuracy (α= 1), this section considers α > 1, which gives more

emphasis for higher accuracy.

As a representative example, Figure 6.6 shows the comparison of objective values of the 5

design points with REAP when α is set to 2. REAP always achieves higher performance than

the lowest energy design DP5, since accuracy is given higher weight. The difference between

REAP and DP5 increases further as alpha grows. When the energy budget is less than 6 J, DP4

outperforms all the other DPs, while REAP successfully matches it. In contrast, DP1, DP2, and

DP3 have a very low performance since they are mostly in the off state. When the energy bud-

3 4 5 6 7 8 9 10
Allocated Energy (J)

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

DP1 DP2 DP3 DP4 DP5

Figure 6.6: The objective value J(t) of static design points (Equation 6.1) normalized to J(t)
of REAP with α = 2.

123

get exceeds 6 J, there is sufficient energy to provide higher accuracy, but DP4 cannot exploit

it. Hence, the higher accuracy design points become affordable and start outperforming DP4

one by one. Notably, REAP consistently outperforms or matches the static DPs, as we have

also observed in Figure 6.5. For example, DP3 provides the same performance as REAP when

the energy budget is 6.5 J. As the energy allocation increases beyond 6.5 J, REAP starts outper-

forming DP3 by optimally switching between DP1, DP2, and DP3. This trend continues until

the energy allocation reaches 9.9 J, beyond which there is sufficient energy to support DP1

alone. Thus, REAP reduces to DP1 in this region. In summary, REAP exceeds or matches the

performance of any individual DP.

6.5.4 Case Study using Real Solar Energy Data

In this section, we evaluate REAP under real solar radiation data measured by NREL Solar

Radiation Research Laboratory at Golden, Colorado. This data is used to calculate the amount

of energy that can be harvested by a flexible solar cell [57] on our prototype. Using the har-

vested energy budget, we compare the performance of REAP against the static DPs over an

entire month. Figure 6.7 shows the performance of REAP normalized to DP1, DP3, and DP5

as a function of α. Due to space limitation, we plot the DPs with the highest performance

(DP1), lowest energy (DP5), and best trade-off (DP3). Our gains with respect to DP2 and DP4

are larger than those of DP3.

When active time is emphasized in the objection function (α = 0.5), REAP outperforms

DP1 by 1.4×–2.2× with an average improvement of 1.6× across the month. DP1 suffers the

most in this case as it has the largest energy consumption among all the DPs. Since accuracy

becomes more important with larger α, the improvement of REAP over DP1 reduces. How-

ever, we still obtain 1.1×–1.3× improvement even for α = 8. We observe a similar trend in

124

1 . 0
1 . 5
2 . 0
2 . 5

1 . 0 0

1 . 2 5

1 . 5 0

0 . 5 1 2 4 81
2
3
4
5

V a l u e o f A l p h a (α)

R E A P p e r f o r m a n c e n o r m a l i z e d t o D P 5

R E A P p e r f o r m a n c e n o r m a l i z e d t o D P 3

R E A P p e r f o r m a n c e n o r m a l i z e d t o D P 1

No
rm

aliz
ed

 Pe
rfo

rm
an

ce

Figure 6.7: Performance (i.e., J(t)) achieved by REAP normalized to DP1, DP3, and DP5
during the month of September 2015. Error bars represent the range of improvement.

improvements for REAP over DP3 as well. The improvement is 1.1×–1.4× forα = 0.5, and it

gradually decreases with larger α. The improvements over DP3 are relatively lower since DP3

offers the best trade-off between energy consumption and accuracy among our Pareto-optimal

design points.

Finally, we see that improvements over DP5 follow the opposite trend. When α = 0.5,

DP5 matches the active time of REAP due to its lower energy consumption. However, the

performance of DP5 diminishes severely with increasing α. In summary, REAP can provide

higher performance than any individual design point under any optimization objective. If the

user needs higher accuracy, REAP can successfully adapt to the new requirements and tune the

IoT device.

125

6.6 Summary

This chapter presented a runtime energy-accuracy optimization technique for energy-

constrained IoT devices. The proposed approach dynamically chooses design points with dif-

ferent energy-accuracy trade-offs to co-optimize the accuracy and active time under energy

budget constraints. To demonstrate the effectiveness in a realistic setting, we implemented

a human activity recognition application on a custom IoT prototype. We presented 5 Pareto-

optimal design points with different energy-accuracy trade-offs. We achieve 46% higher ex-

pected accuracy and 66% longer active time compared to the highest performance design point,

and 22% to 29% higher accuracy than low-power design points without sacrificing the active

time.

126

Chapter 7

AN ULTRA-LOW ENERGY HUMAN ACTIVITY RECOGNITION ACCELERATOR

7.1 Introduction

The potential of human activity recognition (HAR) has led to both academic work [153]

and commercial devices [69]. The nature of target applications requires the user to either carry

or wear the device that performs HAR. Thus, a significant number of studies during the last

decade used smartphones [153], while wearable solutions based on inertial measurement units

(IMU) gained momentum with the advances in wearable electronics [96]. A recent user survey

concludes that 27% of users give up using the device since charging is inconvenient, especially

for those coping with a health problem [45]. Similarly, a significant number of users do not

want to transmit their personal data to a different device due to privacy concerns [120]. Thus,

practical solutions must perform HAR locally under an ultra-low energy budget that practically

eliminates charging requirements.

Existing solutions on smartphones are inconvenient because the users need to carry a de-

vice. Furthermore, smartphones consume in the order of a few Watts [114] and fail to provide

real-time guarantees since activity monitoring is not their primary goal. Low-power wearable

devices can address these problems and bring the power consumption down to 10–30 mW [15].

However, this power consumption range is still significantly larger than the capacity of ambi-

ent energy harvesting sources, such as photovoltaic cells (indoor: 0.1 mW/cm2) [125, 164] and

human motion (0.73 mW/cm3) [61]. Moreover, this power envelope still leads to merely 40

hours of operation using a wearable form-factor 1 g battery with 130 mAh capacity [51].

This chapter presents the first fully-integrated ultra-low power-hardware accelerator that

127

provides an end-to-end solution, from reading the sensors all the way to classifying the activity.

The proposed HAR engine first reads in the raw sensor readings through a parameterized inter-

face that can adapt to different sensor inputs. In this chapter, we employ a 3-axis accelerometer

sensor and a capacitive stretch sensor sampled at 250 Hz and 25 Hz, respectively. Then, it pre-

processes the raw sensor data using a moving average filter. After this step, it generates the

features used for classification. Our flexible feature generation blocks allow generation of both

simple statistical features and complex features, such as 64-point fast Fourier transform (FFT)

and discrete wavelet transform (DWT) coefficients. Finally, the features are used by a deep

neural network (DNN) to classify the following locomotion activities: {jump, lie down, sit,

stand, stairs down, stairs up, walk}. To assist people with movement disorders, we focus on

identifying the locomotion activity in which they are engaged.

The novel contributions of this chapter are threefold. First, we present a baseline HAR

engine with a single-level classifier to quantify the impact of custom design over programmable

solutions. Post-layout evaluations using a 65 nm TSMC technology show that our baseline

design has a 1.353 mm2 area. It achieves 95% accuracy while consuming 51 µW active power

and 14 µW idle power. The baseline design consumes 22.4 µJ per activity, which is about

two orders of magnitude lower than the best embedded solution reported in the literature [14,

15]. Detailed power consumption breakdown of our baseline design also reveals that the FFT

feature generation and 3-layer DNN are the dominant components. Our second contribution is

a novel activity-aware low-power HAR engine that uses the insights provided by our baseline

design and the nature of human activities. This design classifies the activities first as static

and dynamic using a simple support vector machine classifier and simple statistical features.

If the output of the first level is static, then the actual activity is found using the same features

with a decision tree. This design eliminates both complex features and the DNN classifier to

reduce the dynamic power consumption to 5.56 µW. If the output of the first-level classifier

128

is dynamic, then we use a smaller single hidden layer DNN to identify the activity. Our novel

activity-aware HAR engine design achieves higher (97%) accuracy with a negligible penalty

in the area. More importantly, the total power consumption drops from 51 µW to 20 µW

and 45 µW for static and dynamic activities, respectively. Finally, the proposed designs are

evaluated extensively with both in-house data from 22 user studies and a publicly available

dataset [140].

The major contributions of this chapter are as follows:

• The first fully integrated custom HAR engine that integrates all steps from reading raw

sensor data to activity classification,

• A novel activity-aware HAR engine that consumes the lowest energy (22.4 µJ per activity)

reported in the literature,

• An extensive experimental study with HAR data from 22 users and post-layout evaluations

using 65 nm TSMC technology.

The rest of this chapter is organized as follows: Section 7.2 reviews the related work and

highlights our unique contributions. Section 7.3 gives an overview of the proposed baseline

HAR engine, while Section 7.4 presents our activity-aware 2-level HAR engine. Section 7.5

describes the power consumption optimization techniques used in the chapter. Finally, Sec-

tion 7.6 presents the experimental evaluation, and Section 7.7 summarizes our major contribu-

tions.

7.2 Related Work

Several recent studies have proposed special purpose hardware for human activity recogni-

tion [88, 105, 166]. Klinefelter et al. present a system on chip (SoC) that integrates an analog

front-end (AFE), a microcontroller, energy harvesting capability, and a wireless modem for

129

Table 7.1: Comparison of the proposed HAR engine to relevant custom designs reported in the
literature

Ref. [171] [106] [166] [104] [32] Proposed

Target App. Vital signal
monitoring

Vital signal
monitoring

Signal
acquisition

Signal
acquisition

Sensor AFE for
physical act. HAR

Technology 130 nm 130 nm 180 nm 180 nm 500 nm 65 nm

Frequency 32 kHz 1-20 MHz 1 MHz Up to 2 kHz 120 Hz 100 kHz

Voltage 1.0 V 0.9 V 1.2 V 1.1 V 2.7 V-3.3 V 1.0 V

Power 530 µW 93–322 µW 120 µW 88.6 µW 108–132 µW 45–51 µW

Area 16 mm2 6.25 mm2 49 mm2 5.45 mm2 196 mm2 1.35 mm2

biomedical applications [88]. Similarly, the work in [166] proposes a signal-acquisition SoC

for personal health applications. The main focus of these studies is to develop an AFE for

acquiring sensor data for health applications. The AFE is integrated into an ARM Cortex-M0

processor and multiply-accumulate units to provide digital processing capabilities. While this

approach provides a low power consumption for the AFE, it has to use the ARM core for op-

erations such as preprocessing and feature generation, leading to higher power consumption.

The work in [105] develops a hardware accelerator for monitoring the change in activity of

the user. Specifically, the authors implement a dynamic time warping-based decision-making

module to detect movements of interest. Whenever the module detects a movement of interest,

a sophisticated processing unit, such as a microcontroller, is activated to extract more infor-

mation about the movement. While this design can reduce the idle power consumption, it still

requires a higher-power microcontroller to classify activities. In contrast, our HAR engine pro-

vides a fully integrated low-power solution for all aspects of HAR from data preprocessing to

classification.

Custom-designed solutions attracted significant attention in health and activity monitor-

ing applications due to their power consumption advantages. For example, Wong et al. [171]

present an SoC for vital sign monitoring implemented in the 130 nm technology. The proposed

130

SoC integrates a full-custom hardware MAC, digital microprocessor core and I/O peripherals,

analog to digital converter, wireless transceiver, and custom sensor interfaces. Its power con-

sumption is 530 µW at 1 V supply voltage, as shown in Table 7.1. A more recent vital signal

monitoring SoC, also implemented in 130 nm technology, achieves 93–322 µW power con-

sumption at 0.9 V supply voltage [106]. Similarly, a signal-acquisition SoC for personal health

applications is proposed in [166]. This design achieves 120 µW power consumption at 1.2 V

supply voltage. A more specialized ASIC design for ECG signal acquisition achieves 88.6 µW

power consumption by operating at lower than 2 kHz frequency at 1.1 V supply voltage [104].

Finally, a generic sensor front-end architecture for physical activity monitoring systems is pre-

sented in [32]. This design provides a flexible way to build a complete sensor interface chip

which consumes 120 µW in ON-state.

In this chapter, we propose an ultra-low energy end-to-end hardware accelerator for HAR.

We use a commercial AFE to read sensor data and feed it to the accelerator. We demonstrate

the proposed HAR engine on the 65 nm LP commercial technology using activity data from 22

users. To the best of our knowledge, this is the first hardware implementation that accelerates

all steps of digital processing. It leads to three orders of magnitude higher energy-efficiency

compared to existing software implementations on low-power microcontrollers [15]. Further-

more, it has competitive power consumption and area compared to relevant ASIC implemen-

tations reported in the literature, as summarized in Table 7.1.

7.3 The Proposed Baseline HAR Engine

The baseline HAR engine implements the HAR application presented in Chapter 4. We

repeat brief explanations of the processing blocks for completeness of this chapter. Readers

familiar with Chapter 4 can skip the following description and jump to Section 7.4.

131

7.3.1 Input Data

The input to the proposed HAR engine is the raw sensor data. The choice of sensors af-

fects both classification accuracy and power consumption. In this work, we employ a 3-axis

accelerometer, one of themost commonly used sensors, and a stretch sensor. In our user studies,

we also collected 3-axis gyroscope data. However, experiments show that adding them does

not increase the accuracy significantly, even though it incurs a 1-10 mW power consumption

overhead.

3-Axis Accelerometer: The proposed HAR accelerator receives the streams from a 3-axis ac-

celerometer. The sampling rate of this device is set to 250 samples/s and each output sample to

the accelerator consists of three 16-bit words for x, y, z axes of the accelerometer, respectively.

Stretch Sensor: The textile-based stretch sensor [117] measures the degree of bending at the

joints of our body. In our design, the stretch sensor is attached to one knee of the user. The

output of the stretch sensor is a 16-bit capacitive value, which is normalized to have a range

similar to the accelerometer. We use a 25 Hz sampling rate and stream the data from the sensor

to the proposed HAR engine.

7.3.2 Preprocessing the Raw Sensor Data

Raw sensor data is commonly preprocessed to filter out the noise and prepare for feature

generation. The proposed design employs a moving average filter with a width of 8 samples to

smooth the input data. All four streams, i.e., 3-axis accelerometer and stretch data, flow through

the filter. Since the body acceleration provides useful information about the user movement,

we also compute it using the filtered outputs as follows:

bacc =
√

a2x + a2y + a2z (7.1)

132

Low

Pass

Filter
MEM

S

Segment
into

Windows

Statistical
Features

DWT

Body
Acceleration

𝑎"
𝑎#

4-neurons

DWT

DWT

8-neurons 8-neurons

O
ut

pu
t

A
ct

iv
it

y

Raw Data Preprocessing
(Section 3.2)

Feature Generation
(Section 3.3)

Baseline Classifier
(Section 3.4)

64-point FFT

3-axis
Accelerometer

Stretch Sensor Down-
Sample

&
Smooth𝑎$

Figure 7.1: Architecture of the baseline HAR Engine

The final preprocessing step is segmenting the data into activity windows. This is necessary

because more than one-second of data is required to identify the underlying activity. Each new

sample is first stored in a FIFO buffer to segment the data efficiently in real-time. Meanwhile,

the segmentation block computes the five-point derivative of the stretch data to identify trends

in the activity, such as flat, increasing, and decreasing regions. It marks the boundary of a

window when a new trend is detected or the maximum window duration (3 seconds in our

design) is reached, as shown in Figure 7.1.

The segmentation block also plays a key role in minimizing the energy consumption of the

proposed HAR engine, which is one of our major goals. We note that the feature generation

and activity classifier can stay mostly in a low-power mode, i.e., clock or power gated, until

the data of a whole window is populated. We utilize the output of the segmentation block to

enable the feature generation and activity classifier blocks. After completing the classification

of the current activity in those blocks, they immediately go back to the low-power mode until

the enable signal from the segmentation block is detected, as described in Section 7.5.

133

7.3.3 Feature Generation

Downsampling and Smoothing: Once the segmentation block marks the completion of an

activity window, the feature generation block in Figure 7.1 starts reading the data from the

FIFO. The DNN classifier requires a fixed-length of features at its inputs, while the duration

of the activity window in the segmentation block is variable. For example, the duration of

dynamic activities, such as walk and run, is smaller than those of static activities. Moreover,

the activity duration may show large variations across different dynamic activities and users,

even for the same activity.

The feature generation step starts with a block to produce a fixed-length feature data set

regardless of the activity duration. For this purpose, the segmentation block generates an 8-bit

output that specifies the length of the activity window. This length is then used to determine the

downsampling rate required to reduce the input data size to the feature data size. In this work,

the accelerometer is downsampled to 64-sample windows, and stretch data is downsampled to

32-sample windows since larger values do not increase the accuracy. At the same time, our pa-

rameterized design allows choosing smaller values to reduce the area and power consumption.

Once the rate is determined, the downsampling block (DS) reads input sample data from the

FIFO and selectively stores it into its output buffer.

Fast Fourier Transform Features: The stretch sensor data generally shows a periodic pattern

for dynamic activities, such as walking, stairs down, and stairs up. This means that FFT co-

efficients can be utilized to capture the periodicity. To this end, we append two consecutive

activity windows, the minimum length required to compose a periodic signal. Then, we take

the 64-point FFT of this signal to characterize the frequency spectrum. Among the 64 FFT

coefficients, we include the first 16 coefficients in the feature vector since this is sufficient

134

to capture frequencies up to 8.25 Hz, which is higher than the frequency observed in human

motion.

Discrete Wavelet Transform Features: The accelerometer data is typically noisy. Therefore,

we use the approximation coefficients of the DWT to obtain robust features from the accelerom-

eter data. Analysis on a high-level reference implementation in Python with Keras APIs and

Tensorflow-backend shows that approximation coefficients of a single-level DWT are suffi-

cient to capture the acceleration of human activity at 0 to 32 Hz. The proposed HAR engine

produces 32 DWT coefficients for ax, az, and bacc. Thus, the subsequent DNN classifier uses

a total of 96 DWT features, each represented as a 16-bit number.

Statistical Features: Statistical features of the sensor data also provide useful information for

static activities, such as sitting and standing, without requiring complex processing. We utilize

the minimum and maximum values observed in an activity window for all four streams, i.e., 3-

axis accelerometer and stretch data. In addition, we compute the mean of az and the variances

of ax, ay, az, and bacc using the accelerometer sensor data. These specific features are selected

based on our extensive analysis on the Python reference implementation. The details of this

step are omitted since feature selection is not the focus of this chapter.

7.3.4 Single-Level Baseline DNN Classifier

The last step of the proposed HAR engine is the DNN classifier, as depicted in Figure 7.1.

To determine the size of the neural network, we performed a design space exploration with one

and two hidden layers. Within each of these structures, we varied the number of neurons in the

hidden layers. Then, we trained each neural network and evaluated the accuracy. We observe

that using two hidden layers with the ReLU activation function provides the best accuracy for

the baseline classifier. The first hidden layer has 4 neurons, while the second hidden layer has

135

8 neurons. The output layer of the DNN classifier has 8 neurons, one for each activity. We

use a linear activation in the output layer and then choose the activity with the maximum value

as the output activity. The choice of max function in the output layers allows us to avoid the

use of exponents in the softmax function, which is more commonly employed to obtain the

classification output. Next, we describe the operation of the DNN and proposed optimizations

performed to improve the implementation.

Architecture andOperation: Our DNN architecture consists of two finite state machines. The

first state machine governs the state of the overall network (State-1), which also corresponds

to the state of the first layer (L1). It has four states: Init, WeightLoad, Idle, and Busy. The

second state machine (State-2) governs the remaining, i.e., second and output layers, as well

as the max function at the output. The DNN operates as follows using these states:

• Init: On power-up, State-1 enters the init state, where all registers are reset to their default

values.

• Init→WeightLoad: State-1 moves to theWeightLoad state when it receives an enable sig-

nal that indicates new DNN weights are available for loading. Then, the input weights are

loaded from an off-chip ROM to corresponding memory for each neuron. In our implemen-

tation, there are a total of 596 weights, each represented with 16 bits.

• WeightLoad→ Idle: After the weights are loaded, State-1 enters the Idle state. In this state,

the DNN classifier waits for an input valid signal that indicates the presence of new input

features.

• Idle→ Busy: When a new set of input features is available at the inputs of the DNN classi-

fier, State-1 moves to the Busy state. In this state, the classifier first registers the 120 input

features in parallel. Then, the neurons in the first layer process the registered inputs and

activate the second layer. Subsequently, the second and output layer are activated one by

136

one to produce the classifier output. Finally, the output flag is raised at completion of the

max block.

Optimizations: The DNN classifier in the proposed HAR engine is parameterized to facilitate

configurability and scalability. The basic building block is a parameterized neuron module. It

takes the number of inputs to the neuron, weights, and features as input parameters. Therefore,

this module can be instantiated in all three layers of the DNN with the appropriate parameters.

We have further parameterized the multiply-accumulate (MAC) block, the weight memories,

ReLU, and Max functions to facilitate design space exploration. Since the parameterized neu-

rons are used to construct the hidden layers and the output layer, the architecture of the DNN

can be changed easily. For example, only an hour was required to do the necessary changes

and verification in going from the two hidden layer architecture used in the baseline HAR en-

gine (Figure 7.1) to the single hidden layer architecture used in the activity-aware HAR engine

presented in Section 7.4.

7.4 Activity-Aware 2-Level HAR Engine

This section presents a novel hierarchical HAR engine using the insights gained from the

implementation of the baseline design. Analyzing the layout of the baseline classifier reveals

that the DNN classifier and FFT blocks are the two major contributors to the power consump-

tion and area, as detailed in Section 4.7. These blocks can be avoided for static activities whose

complexity is significantly lower than that of dynamic activities. Moreover, it is relatively easy

to distinguish static and dynamic activities using a simple two-class classifier. Therefore, we

first employ a support vector machine (SVM) classifier to determine if the activity is static (lie

down, sit, stand) or dynamic (jump, stair down, stair up, walk), as shown in Figure 7.2. If

the outcome is static, then we invoke a relatively simpler decision tree to further classify the

137

DNN Features

Preprocessing

MEM
S

Statistical
Features

𝑎"
𝑎#

𝑎$

Raw Data Preprocessing
(Section 3.2)

3-axis
Accelerometer

Stretch Sensor
Down-
Sample

&

Smooth

Static
vs.

Dynamic?

2-Layer
NN

Classifier

Decision
Tree

Classifier
Static

Activity

Dynamic
Activity𝑏&'' DWT

DWT

DWT

64-point FFT

Stretch

Feature Generation
(Section 3.3)

Activity-aware Classifier
(Section 4)

Figure 7.2: Architecture of the activity-aware HAR engine

activity. Otherwise, we still employ a DNN classifier, albeit a smaller one compared to the

baseline design, to maintain high accuracy and facilitate future online learning. We note that

its energy consumption overhead will be small since it will be powered down when it is not

active. Our modular and parameterized baseline design enables us to reuse the preprocessing

and most of the feature generation blocks, as shown in Figure 7.2. Therefore, we focus on the

new blocks and the overall operation in this section.

7.4.1 Two-Class SVM Classifier

The first step of the 2-level activity-aware HAR engine is to differentiate between static

and dynamic activities. We use an SVM to classify between the two types of activities since

it is easier to implement using fewer resources than a DNN classifier. Moreover, the SVM

classifier uses exclusively statistical features to avoid FFT and DWT computations. These

features include the minimum, maximum, mean, and variance of the stretch sensor, 3-axis

acceleration (ax, ay, az), as well as the body acceleration (bacc). In addition, we also include

the length of the window as the final feature. Using these features, we train the SVM with our

user data. Once we obtain the weights of the SVM, the activity type is evaluated at runtime

138

using the following equation:

y = b+
N∑
i=1

βixi (7.2)

where b is the value of the bias, xi are the features, and βi is the weight for the ith feature. The

activity is classified static if y < 0, and dynamic otherwise. Depending on the output of the

SVM classifier, we use a decision tree or a DNN to further classify the activity, as described in

the following sections.

7.4.2 Decision Tree (DT) Classifier for Static Activities

If the level-1 SVM classifier marks an activity as static, we identify the activity using a

decision tree, which can be easily implemented in hardware using comparators. Besides its

simplicity, the DT classifier provides greater than 95% accuracy for static activities, as shown

in the experimental results.

The DT classifier uses the same features as the SVM classifier, i.e., the statistical features

for the accelerometer and stretch sensor data, as shown in Figure 7.2. Reusing the features

allows us to compute them only once and optimize the power consumption. Furthermore, the

neural network, FFT, and DWT blocks remain in low-power states leading to additional power

savings. The decision tree is implemented as a series of comparators, where each node of

the tree consists of a comparator. Depending on the output of the comparator, we choose the

next branch of the tree. This process continues until we reach a leaf node and the activity is

identified.

139

7.4.3 DNN Classifier for Dynamic Activities

A DNN classifier is used to identify the activity when the output of the level-1 SVM classi-

fier indicates a dynamic activity. The DNN classifier in the activity-aware 2-level HAR engine

has to identify only four activities and the transitions between them. Therefore, the DNN used

herein is smaller compared to the one used in the baseline HAR engine. Specifically, the DNN

classifier has one hidden layer with 4 neurons and an output layer with 5 neurons. Similar to

the baseline design, we use ReLU activation in the hidden layer and softmax classification in

the output layer. The feature input to the DNN classifier is the same as the input to the baseline

DNN classifier (i.e., the same 120 features). To generate these features, we enable the DWT

and FFT blocks whenever the SVM classifier outputs a dynamic activity. Once the features

are generated, we evaluate the DNN to obtain the final activity classification.

7.5 Low-Power Optimizations

One of the most important goals of the proposed HAR engines is to operate within the

harvested energy budget of wearable devices [23]. This section presents the low-power opti-

mization techniques used in our design that will help in enabling operation under harvested

energy budget.

7.5.1 Clock and Data Gating

Human activities typically occur in the order of a few Hertz [99]. We leverage this in-

formation to deactivate the part of blocks which are not used all the time. For example, the

feature generation starts after segmentation and downsampling are completed. Similarly, there

140

252 cycles

Segment.
Stretch DS
Accel. DS

Feature
Classifier

A segment is identified here

The segment is classified here

109 cycles

Figure 7.3: A representative timing diagram for the activation of the blocks in the proposed
HAR engine. The active times of Feature and Classifier clocks are detailed in Table 7.9.

is a data dependency from feature generation to classification, as shown in Figure 7.3. In total,

there are three major dependencies:

• Stretch and accelerometer downsampling (i.e., Stretch DS and Accel. DS in Figure 7.3)

depend on the completion of segmentation

• Feature generation dependency is twofold. FFT computation and stretch statistics depend

on stretch sensor downsampling. DWT computation and accelerometer statistics depend on

accelerometer downsampling.

• Classifier depends on feature generation

We leverage these dependencies to design a custom clock gating solution for HAR applica-

tions. The clocks of the stretch and accelerometer downsampling blocks become active only

after a valid segment is identified. Since there are fewer stretch sensor data samples than the

accelerometer, stretch downsampling finishes earlier and enables the FFT feature generation

block (orange line). After downsampling the accelerometer samples, the rest of the feature

generation blocks (e.g., DWT) are enabled. Once all features are generated, the clock of the

classifier blocks is enabled (green line).

Figure 7.4 shows the clock gating logic for the segmentation and downsampling blocks.

The control signals, called (“output_valid”), are asserted to notify the downstream block when

the preceding operation is complete. This signal is connected to the “set” input of an SR-

141

Se
gm

en
ta

tio
n

S Q

R QN St
re

tc
h

DS

clk

gclk

output_valid output_valid

Figure 7.4: Clock gating control logic

Latch. When it is asserted, the output Q of the latch becomes high. Consequently, the gated

clock “gclk” enables the operation of the downsampling block. The “output_valid” of the

downsampling block is connected to the “reset” input of the same latch. In this way, the gated

clock stops when “output_valid” becomes high, i.e., when downsampling is completed. Note

that we use a negative latch to prevent any glitches and additional delay in the gated clock.

Clock Gating Implementation Overhead: The clock gating logic uses only an SR-Latch and

an AND gate, which introduces negligible overhead. The latch introduces a half-cycle delay

before the operation of the next logic begins. To compensate for this and to not lose any data,

the outputs of the left-hand logic are registered before they are passed on to the next logic.

The proposed clock gating logic is implemented for all dependencies in the design pre-

sented earlier. As a result, we end up with one global clock and four gated clocks for both the

baseline and activity-aware HAR engines. Figure 7.5 illustrates which blocks run on different

clocks with different colors. Note that these clocks are gated versions of the same global clock,

so their frequencies are the same.

142

7.5.2 Power Gating

Clock gating is useful for reducing the dynamic power consumption, while power gating

can reduce both leakage and dynamic power consumption. Since the feature generation and

classification blocks stay mostly idle, power gating is a promising power optimization tech-

nique. To this end, we divide the proposed HAR engine into two power domains, as illustrated

in Figure 7.5. The first power domain (PD1) contains the preprocessing and segmentation

blocks, which are always on. The second power domain (PD2) integrates the feature genera-

tion and classification blocks, which become active intermittently. In this way, these blocks

can turn on only after a segment is identified and turned off once the activity is classified.

The power gating functionality is implemented using a power control unit (PCU). Since

the PCU must be always on, it operates on PD1 and the global clock. The PCU works on the

same basic principles as the clock gating logic shown in Figure 7.4. By default, the second

power domain is turned off during preprocessing and segmentation. The “output_valid” signal

of the segmentation block is the first input to the PCU. It is asserted when a valid segment is

ready. When this input is received, the SR-latch inside the PCU turns on PD2 by driving the

sleep transistor, as shown in Figure 7.5. Then, PD2 stays active until the classifier block output

becomes valid.

1
2
3
4

5 : gated clk 4

Filtering

SegmentationFIFO

Stretch DS

& Stats
Features

Classifier
Accel. DS

& Stats

PCU

Power Domain 1 Power Domain 2

sleep
VDD

: global clk
: gated clk 1

: gated clk 2

: gated clk 3

Figure 7.5: Power and clock domains in the proposed design

143

Power Gating Implementation Overhead: Multiple power domains introduce three distinct

overheads. First, the sleep transistor introduces additional leakage current, which can offset

the potential power savings, if it is significant. To minimize the leakage of the sleep transistor,

we employ high-threshold-voltage low-leakage PMOS header transistors. The high threshold

voltage transistors typically have leakage power in the order of nanowatts9. Since the leakage

power of the proposed HAR accelerator is in the order of microwatts, power gating can achieve

significant power savings by lowering the leakage current. The second overhead is the wake-

up time, which is typically less than one microsecond. The proposed HAR accelerator receives

new sensor samples every few milliseconds when operating at 100–250 Hz sampling frequen-

cies. Therefore, the wake-up time is negligible for the proposed HAR engine. Finally, the PCU

and the sleep transistor increase the total area of the design. In our implementation, the logic

required for controlling the sleep transistor is a single SR-Latch, which represents a negligible

area overhead. Furthermore, the sleep transistor also incurs less than 5% area overhead, which

is small when compared to the potential savings in the leakage power. In summary, using two

power domains enables significant power savings with a small overhead.

7.5.3 Use of Low-Power Classifiers

In the course of daily life, static activities occur more frequently than dynamic activities.

To estimate the average distribution of activities, we performed an analysis of human activities

using the American Time Use Survey (ATUS) [163], which is conducted by the United States

Census Bureau to record how people spend their time during a day. According to this survey,

people spend almost 84% of the time in static activities, such as lie down, sit, and stand. Dy-

9https://blogs.synopsys.com/magicbluesmoke/files/2007/10/sleep_transistor_sizing.pdf

144

namic activities, such as walking, running, and stairs up/down, constitute only about 16% of

the total time.

Our activity-aware 2-level classifier exploits the distribution of activities to enable addi-

tional power and energy savings. First, the DNN, DWT, and FFT blocks are activated only for

dynamic activities. For example, if the SVM block classifies an activity as static, these blocks

remain clock gated. Consequently, they are activated less frequently compared to the base-

line classifier. Furthermore, the DNN block uses fewer resources as detailed in Section 7.6.2

because it does not need to classify static activities. The benefits of using the activity-aware

classifier in terms of power and energy consumption are evaluated in Section 4.7.

7.6 Experimental Evaluation

7.6.1 Experimental Setup

Design Tools and Hardware Technology: We first design the proposed HAR engine using

Verilog Hardware Description Language (HDL). Then, we synthesize it with TSMC 65 nm

low power (LP) technology using Synopsys Design Compiler (DC). To obtain the layout and

the area of the design, we perform automatic placement and routing using Cadence Innovus.

Finally, we use Synopsys PrimeTime to obtain the timing and power consumption of each block

and the entire design. In addition to the low-power optimizations presented in Section 7.5,

we also utilize the power optimization options available in the Synopsys Design Compiler to

optimize the power consumption of the proposed HAR engine. The same optimization options

are used for all designs for a fair comparison.

User Studies: We use the w-HAR dataset described in Chapter 4 to evaluate the accuracy of the

designed HAR engines. The labeled data from w-HAR is used to extract the features and train

145

the DNN classifiers. After training the classifiers, the raw sensor data from the w-HAR dataset

are fed to the HAR engine to segment the windows and perform the activity classification.

Training, Cross-validation, and Test data: Data samples from 4 randomly selected users are

reserved exclusively for testing. Then, samples from the remaining 18 users are divided into

60% training, 20% cross-validation, and 20% additional test data. Overall, 37% of the test data

comes from 4 unknown users.

7.6.2 Design Area

7.6.2.1 Baseline HAR Engine

Figure 7.6 shows the layout of the baseline HAR engine, which has a total area of

1.353 mm2. While optimizing the floorplan, the order of the blocks is matched to the logic

flow described in Figure 7.1. The area breakdown in Figure 7.8 shows that the FFT block has

the largest area. This is expected as the FFT block is the most compute-intensive block in the

design. Among other blocks, most of the area is occupied by blocks that have registers to store

their input or output data. For example, the FIFO block occupies 21% of the total area. This is

also expected since it has to store the filtered data until a new activity window is detected by the

segmentation block. Similarly, the DNN block incurs the overhead of storing the weights and

performing MAC operations. In contrast, the low pass filter and segmentation blocks take up a

smaller area since they do not have to store a significant amount of data for their computations.

146

FFT

BA_DS

B
A

Segmentation
STR_
FIFO AX_FIFO AY_FIFO AZ_FIFO

BA_FIFO

BA_
DWT STR_DS

AX_DS

AX_DWT

AY_DS

AY_DWT

AZ_
DS

FFT
Feature

Gen.

F
e
a
t
u
r
e

G
e
n
.

DNN

Figure 7.6: Floorplan of the baseline HAR en-
gine

FFT

BASegmentation
STR_
FIFO

AX_FIFO
AY_FIFO AZ_FIFO BA_FIFO

BA_
DWT

STR
_DS

AX_
DS

AX_DWT

AY_
DS

AY_DW
T

AZ_DS

FFT
Feature

Gen.
(120)

F
e
a
t
u
r
e

G
e
n
.(

1
2
0)

DNN

BA_
DS

S
V
MFeature

Gen. (21)

DT

Figure 7.7: Floorplan of the activity-aware 2-
level HAR engine

 Segmentation
 Low pass filter

Figure 7.8: Area of the major blocks used in
the baseline HAR engine

 Decision tree

Figure 7.9: Area of the major blocks used in
the hierarchical 2-level HAR engine

7.6.2.2 Activity-Aware 2-Level HAR Engine

Figure 7.7 shows the layout of the 2-level HAR engine, which shows a total cell area of

1.357 mm2. We observe that the layout closely resembles the baseline classifier except for

the feature generation and neural network blocks. This is because both classifiers share the

blocks for filtering, segmentation, and downsampling. The activity-aware 2-level design has

additional blocks for the support vector machine classifier and decision tree for static activities.

However, the total area of the 2-level classifier is only 0.3% more than the baseline classifier

because it uses a smaller DNNwith fewer neurons for dynamic activities. The 2-level classifier

with a slightly larger area allows us to significantly improve the accuracy and lower the power

consumption, as we show in the following sections.

147

Figure 7.9 shows the area breakdown of the activity-aware 2-level HAR engine. Similar to

the baseline design, the FFT block consumes the largest area while the neural network block

has a smaller area in the 2-level classifier due to its smaller size. Furthermore, the SVM and

DT blocks consume a negligible portion of the total area despite their significant power and

accuracy benefits.

7.6.3 Accuracy Evaluation

7.6.3.1 Baseline HAR Engine

We start the accuracy analysis of the baseline HAR engine by generating the feature vec-

tors for each activity window in our dataset. To maintain compatibility with the hardware

implementation, the features are stored in a 16-bit integer format. This feature data is then

supplied to a neural network training algorithm implemented in Python with Keras APIs [37]

and Tensorflow backend [1] using the parameters summarized in Table 7.2. These parameters

are determined by sweeping them and evaluating the accuracy. For example, the batch size is

incremented from 25 to 100 in steps of 25. Of these, a batch size of 50 gives the best accuracy

for our dataset. Similarly, we sweep the number of training epochs from 100 to 500. 200 train-

ing epochs are used in the experiments since this is sufficient to achieve good accuracy while

avoiding overfitting.

At the end of the training, we obtain the weights of the network in the floating-point format.

Since our hardware implementation uses 16-bit integer precision, we uniformly quantize the

weights and activations to 16 bits using the approach in [90]. For each layer of the neural

network, we first find the weight with the maximum magnitudeWmax. Then, the quantization

148

Table 7.2: Parameters used for deep neural network training

Optimizer Adam [86]

Loss function Categorical cross-entropy

Initial learning rate 0.001

Epochs 200

Batch size 50

factor∆q is obtained as:

∆q =
2Wmax

216
(7.3)

The uniform quantization ensures that zero in floating-point precision is mapped to zero in

integer precision as well. We use the quantization factor of each layer to obtain the quantized

weights of the neural network. After quantizing the weights, we use the 16-bit integer features

to quantize the activations in the neural network. Finally, we evaluate the accuracy of the

quantized neural network for all the activity windows in our dataset.

Table 7.3 shows the confusion matrix for the baseline HAR engine. It contains one row

and a column for each activity classified in this chapter. The rows represent the true activity,

whereas the columns represent the activity classified by the proposed baseline HAR engine.

The diagonal entries of the confusion matrix show the number of instances that are classified

correctly. The baseline DNN classifier is able to recognize all the activities with few or no

misclassifications. For example, the walk activity is classified correctly 1913 times out of 2007

activitywindows, leading to 95% classification accuracy. We also observe that thewalk activity

is misclassified as either jump, stairs down, or transition. This happens since the jump and

stairs down pattern of some users are similar to that of walk. All the instances of the lie down

activity are classified correctly, leading to a 100% recognition accuracy. The lowest accuracy

of classification is observed for transitions between the various activities. This is expected

since the transitions typically contain features of two different activities, such as in stand to

149

Table 7.3: Confusion matrix for the baseline classifier

Jump Lie Down Sit Stand Walk Stairs Up Stairs Down Transition

Jump 442 0 0 0 5 0 5 6
Lie Down 0 474 0 0 0 0 0 0
Sit 0 0 665 26 0 0 0 5
Stand 0 0 16 576 1 0 0 27
Walk 31 0 1 10 1913 0 10 42
Stairs Up 0 0 0 0 1 101 6 1
Stairs Down 0 0 0 0 1 1 97 1
Transition 7 2 7 14 14 4 0 229

sit transition, which makes it harder for the classifier to identify them with high accuracy. In

summary, the baseline DNN classifier achieves an accuracy greater than or equal to 93% for

all the activities used in this chapter. Note that additional activities could degrade the accuracy,

especially if they are close to the existing activities. More complex classifiers and features may

be needed with increasing number and complexity of target activities.

Evaluation with the Opportunity Dataset [140]: In addition to our in-house data, the ac-

curacy of the proposed HAR engine is also evaluated using the publicly available Opportu-

nity dataset [140], which includes data from 4 users for a range of daily activities. Since our

work focuses on ambulatory activities, we extract the corresponding data from the Opportunity

dataset. Furthermore, we use only the accelerometers mounted on the right knee and the shoe

since these setups are closest to the sensors used in our experiments. The data is divided into

windows of approximately two seconds to compute the DWT and statistical features for each

window. Finally, the DNN is trained with the same structure as our baseline neural network

classifier using the extracted features. The proposed DNN classifier achieves an overall accu-

racy of 95% for the locomotion activities in the Opportunity dataset. This result shows that the

proposed features and DNN classifier can classify activities from multiple datasets accurately.

150

7.6.3.2 Activity-Aware 2-Level HAR Engine

First-Level SVM Classifier: The activity-aware 2-level HAR engine recognizes the activities

in two phases, as described in Section 7.4. The SVM classifier employs only the statistical

features to determine if an activity is static or dynamic to minimize power consumption. The

SVM parameters are determined by using the Statistical and Machine Learning Toolbox in

MATLAB. We perform 10-fold cross-validation during training to ensure that the classifier is

robust. After finding the weights of the SVM classifier, they are converted to 16-bit integer

precision using Equation 7.3. Then, we obtain the confusion matrix for the SVM classifier

using the integer weights, as shown in Table 7.4.

Our SVM implementation classifies only 38 windows out of 4740 activity windows incor-

rectly. More specifically, it misclassifies only 9 static and 29 dynamic windows, as shown in

Table 7.4. Hence, it achieves more than 98% overall accuracy.

Table 7.4: Confusion matrix for the level 1 SVM classifier. The static and dynamic activities
are classified with over 99% accuracy.

Static Dynamic

Static 1781 9
Dynamic 29 2921

Second-Level Decision Tree for Static Activities: Static activities are classified using a deci-

sion tree, as described in Section 7.4.2. We train the DT classifier in Weka [70] using 16-bit

integer features for all the activity windows in the static class. Table 7.5 shows the confusion

matrix for the three static activities in our data set. The DT classifier achieves high accuracy

for all three activities. Overall, it classifies only 13 out of 1790 activities incorrectly. Further-

more, it has better accuracy than the DNN classifier used in the baseline HAR engine. For

151

Table 7.5: Confusion matrix for the activity-aware HAR engine for static activities

Lie Down Sit Stand

Lie Down 473 0 1
Sit 0 691 4
Stand 8 0 612

instance, the number of misclassifications for the stand activity reduces from 44 to 8, which

translates to an accuracy improvement from 93% to 99%. As a result, the two-level design has

both accuracy and power consumption benefits.

Second-Level Neural Network for Dynamic Activities: The activity-aware HAR engine uses

a neural network with a single hidden layer to classify individual dynamic activities, as ex-

plained in Section 7.4.3. The neural network uses the same features and training settings as

the baseline DNN classifier. Similar to the baseline DNN, we quantize the weights and the

activations using Equation 7.3.

The confusion matrix for the dynamic activities is shown in Table 7.6. We observe that

the number of misclassifications for all the activities is similar to or fewer than the baseline

DNN classifier. The largest improvement is seen for transitions where the number of mistakes

decreases from 48 to 25, which is a drop of about 48%. The overall accuracy of the proposed

second-level neural network classifier is 96%. In contrast, a decision tree classifier for dynamic

Table 7.6: Confusion matrix for the activity-aware HAR engine for dynamic activities

Jump Walk Stairs Up Stairs Down Transition

Jump 445 8 0 1 4
Walk 19 1937 2 9 40
Stairs Up 1 1 105 1 1
Stairs Down 0 0 0 99 0
Transition 5 14 1 5 252

152

activities could achieve only 90% accuracy. In summary, the activity-aware 2-level HAR en-

gine improves the classification accuracy while also reducing the average power consumption.

7.6.4 Power Consumption Evaluation

Power and energy consumption are among the most important evaluation metrics for the

HAR engine. Therefore, we perform a detailed analysis of the power consumption of each

major component in the proposed design. Our analysis assumes 100 kHz operating frequency,

which provides sufficient performance (4.19 ms operation per activity in the baseline HAR

engine), as described in Section 7.6.5. To analyze the power consumption, we first generate

the switching activity data of the design using sensor data from our user studies. The switching

activity file is then used to calculate the power consumption of the major blocks in the design.

The power consumption values reported in this section include savings achieved by the clock

gating described in Section 7.5. We estimate up to 30% additional savings by power gating the

feature generation and DNN blocks using two power domains until a new activity window is

detected.

7.6.4.1 Baseline HAR Engine

Table 7.7 summarizes the average power consumption of the major blocks of the baseline

HAR engine. Power consumption is divided into two distinct parts based on the operatingmode

of each block. The first row shows the power consumption of the always-on preprocessing and

FIFO blocks. The majority of the power in the preprocessing block is attributed to active

power. Since this is mainly due to the FIFO memories in the preprocessing block, this power

consumption can be further reduced by optimizing the memory design. The remaining rows

153

Table 7.7: Power consumption summary for the baseline HAR engine at f = 100kHz, V = 1.0 V

Operation Mode Block Dynamic
Power (µW)

Leakage
Power (µW)

Total
Power (µW)

Data Collection &
Preprocessing
(always ON)

Filtering 0.49 0.05 0.54
Segmentation 0.43 0.05 0.48
FIFO 12.10 1.16 13.26

Classification
(once per activity)

Downsample 4.39 0.75 5.14
DWT 2.49 0.42 2.91
FFT 11.90 2.61 14.51
DNN Feature Merge 1.77 0.75 2.52
DNN 10.14 1.16 11.30

Total Data Collection 13.02 1.26 14.28
Classification 30.69 5.69 36.38

Overall 43.71 6.95 50.66

of the table show the power consumption of blocks that are executed only once per activity.

Of these blocks, the FFT block has the highest power consumption as expected. This aligns

with our earlier observation that the FFT block has the highest area among all the blocks. The

DNN block has a higher active power consumption due to the multiplications involved in each

neuron. The total power consumption for classifying the activity after the prepossessing blocks

complete is about 36.4 µW. This represents about 325× reduction in processing power when

compared to implementations on a programmable microcontroller.

7.6.4.2 Activity-Aware 2-Level HAR Engine

This section analyzes the power consumption of the activity-aware 2-level HAR engine.

The power values for the always-on blocks remain unchanged since they are reused. The power

consumption breakdown of the remaining blocks is summarized in Table 7.8.

As described in Section 7.4, the power consumption of this design depends on the activity,

154

Table 7.8: Power consumption summary for the activity-aware HAR engine at f = 100 kHz and
V = 1.0 V

Operation Mode Block Dynamic Power
(µW)

Leakage Power
(µW)

Total Power
(µW)

Classification
(once per activity)

Common
Downsample 3.33 0.84 4.17
SVM Feature Input 0.47 0.04 0.51
SVM 0.47 0.15 0.62

Static Decision Tree 0.24 0.02 0.26

Dynamic
DWT 1.96 0.43 2.39
FFT 9.64 2.66 12.3
DNN Feature Input 1.42 0.75 2.17
DNN 7.60 0.85 8.45

Total
Static
(Data Collection + Classification)

17.24
(12.73+4.51)

2.29
(1.24+1.05)

19.53
(13.97+5.56)

Dynamic
(Data Collection + Classification)

37.62
(12.73+24.89)

6.96
(1.24+5.72)

44.58
(13.97+30.61)

i.e., whether the activity is static or dynamic. The first part of the table shows the power con-

sumption of the blocks that are common to both static and dynamic activities. These blocks

include Downsample and the SVM classifier. We observe that the SVM classifier has a neg-

ligible power consumption of 0.62 µW, while the Downsample block has similar power con-

sumption as the baseline HAR engine. The “Static” part of the table shows the blocks that are

used when a static activity is detected by the SVM classifier. Since the decision tree for static

activities employs the same features as the SVM classifier, it is the only component contribut-

ing to the power consumption, i.e., there is no need to generate other features. As we can see

in Table 7.8, the DT consumes only 0.26 µW of power. Finally, the “Dynamic” part of the

table shows the power consumption of the engine when a dynamic activity is identified by the

SVM classifier. The dynamic part includes computation of the detailed features required for

the neural network and the neural network execution itself. As expected, the total power for

dynamic activities is higher than the power consumption for static activities.

Several blocks, such as Downsample, have lower power consumption when used in the

155

activity-aware 2-level HAR engine compared to the baseline design. This difference stems

from two reasons. First, these two designs are synthesized separately as a whole, as opposed

to integrating blocks as black boxes. Hence, the synthesized block, their output ports, and

lengths of the buses they drive have differences. For example, the output of the Downsample

block connects to the SVM block in the 2-level HAR engine. In contrast, it connects to all

the feature generation blocks, including FFT and DWT, in the baseline design. Second, the

power consumption is found using the VCD files in Primetime tool. Since most of the blocks

in the 2-level activity-aware design are activated less frequently, they end up having a smaller

switching factor, hence, lower power consumption.

In summary, the activity-aware classifier consumes 5.56 µW for static activities and 30.61

µW for dynamic activities once a segment is identified. Including the power consumption of

the sensor and data communication, this leads to 1.3 mW, which is 10 times lower than the

embedded system solutions.

Voltage Scaling: Once an activity window is detected, the proposed HAR engine takes 421

cycles to generate the features and classify the activity. Hence, operating at as low as 42 kHz

provides around 10 ms processing window, which is comparable to the sampling time of the

sensors. This slack enables us to lower the supply voltage without a noticeable difference in

0.8 0.9 1 1.1 1.2

Voltage (V)

0

20

40

60

80

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Dynamic Power

Leakage Power

Total Power

Figure 7.10: Power consumption as a function of voltage

156

20

40

60

80

Po
w

er
 c

on
su

m
pt

io
n

(
W

)

20

40

60

80

Po
w

er
 c

on
su

m
pt

io
n

(
W

)

Static

Dynamic

376.5 377 377.5 378 378.5 379 379.5 380 380.5
Time (s)

10

20

30

40

50

Po
w

er
 c

on
su

m
pt

io
n

(
W

)

Baseline Activity-aware

10

20

30

40

50

Po
w

er
 c

on
su

m
pt

io
n

(
W

)

10

20

30

40

50

Po
w

er
 c

on
su

m
pt

io
n

(
W

)

Static Activity

Dynamic Activity

Figure 7.11: Comparison of power consumption of the baseline and activity-aware HAR En-
gines

performance. We exploited this observation by sweeping the supply voltage and measuring

the resulting power consumption. The power consumption at 1.2 V is 75 µW, as shown in

Figure 7.10. Operating at 1.0 V and 0.8 V decrease the power consumption to 45 µW and

30 µW, respectively.

Peak Power Consumption Evaluation: Our goal is to operate the HAR engine using ambient

energy harvesting. Therefore, it is also important to evaluate the peak power consumption of

the design to ensure that the power consumption is within the capabilities of energy-harvesting

technologies. Figure 7.11 compares the total power consumption of the two classifiers for

the two types of activity windows, static and dynamic. Specifically, the figure shows a static

activity at t = 376.9 s and a dynamic activity at t = 379.8 s. The black line shows the power

consumption of the single-level baseline HAR engine. It has the same instantaneous power

consumption for both activity types. Furthermore, it has a peak power consumption of almost

51 µW. This can be limiting for energy-harvesting devices since they have to support a peak

power of 51 µW for each activity window. In contrast to this, the activity-aware classifier,

shown with a red line, has a peak power consumption of only 19.5 µW for static activities,

157

as seen in the zoomed-in portion inside Figure 7.11. Therefore, the peak power that energy-

harvesting devices need to provide is reduced significantly, especially for static activities.

7.6.5 Performance Evaluations

This section presents the execution time of each block in the proposed HAR engines. The

time scales of human activities and sampling data rates are much smaller than the maximum op-

erating frequency we can achieve with the commercial TSMC 65 nm technology. In contrast,

power consumption is of extreme importance. Both the baseline and activity-aware 2-level

HAR engines can operate comfortably at 1 MHz, which is much higher than required. There-

fore, we summarize the number of cycles taken by each major block in the rest of this section.

The always-on preprocessing and segmentation blocks take one cycle for processing each

incoming sample. Once the segmentation block marks a segment, the corresponding blocks

for each classifier are activated. The latencies for these blocks are summarized in Table 7.9.

We divide the table into three parts. The first part, denoted by “Common” includes the blocks

that are common to both baseline and activity-aware engines. The second part, denoted by

“Baseline Classifier” includes the blocks used only in the baseline classifier. Finally, the third

part of the table lists the latencies for blocks that are exclusive to the 2-level classifier.

The Downsample block for the accelerometer data has the highest latency while the DWT

block has the lowest latency. The Downsample block incurs a higher latency because it has to

go through all the samples in a segment serially before generating its output. Moreover, the

calculation of statistical features is integrated into the Downsample block, which adds a few

cycles of additional execution. We also observe that the Downsample block for the stretch

sensor takes fewer cycles to execute. This can be attributed to the fact that the sampling rate

of the stretch sensor is lower than that of the accelerometer. Once the Downsample blocks

158

Table 7.9: Summary of latency of the blocks in the baseline HAR engine and the activity-aware
HAR engine

Usage Block Latency (cycles)

Common

Acc. Downsample 252
Stretch Downsample 109
FFT 21
DWT 4

Baseline HAR engine 3 Layer DNN 163

Activity-aware
HAR engine

SVM 3
Decision Tree 2
2 Layer DNN 145

complete their execution, the DWT and FFT blocks execute in parallel leading to their low

execution latency of 4 and 21 cycles, respectively. The FFT and DWT blocks are executed for

the baseline HAR engine independent of the class of activity, whereas for the activity-aware

engine, they are executed for dynamic activities only.

The last step in the baseline HAR engine is to evaluate the activity classification using the

three-layer DNN, which takes 163 cycles. For the activity-aware engine, we first evaluate the

SVM classifier to distinguish between static and dynamic activities. If the activity is static, we

execute the decision tree with a latency of 2 cycles. Otherwise, we execute the FFT, DWT, and

the 2-layer DNN, which take 166 cycles in total.

The total latency is not simply summing every block up since there are some overlaps. In

summary, including data collection blocks, the total latency for the baseline HAR engine is 419

cycles, which results in 4.19 ms for the classifying the activity at 100 kHz operating frequency.

Total latencies for dynamic activity and static activity in the activity-aware HAR engine are 421

cycles (4.21 ms @100 kHz) and 257 cycles (2.57 ms @100 kHz), respectively. Consequently,

the time taken for activity recognition is negligible compared to the time required for data

collection (in the order of a few seconds).

159

7.7 Summary

This chapter presented the first hardware accelerator that integrates all aspects of human

activity recognition. We first designed a baseline HAR engine following the most commonly

used single classifier for all the activities. Then, we exploited the nature of human activities

to design an activity-aware 2-level HAR engine that identifies activities in two steps. This

approach improves the classification accuracy while reducing the power consumption of the

HAR engine. We implemented both HAR engines using a commercial 65 nm process technol-

ogy. Our extensive post-layout simulations show that the proposed HAR engines are able to

reduce the power consumption by about two orders of magnitude compared with conventional

programmable solutions.

Further optimization in power consumption and area can be obtained by using an 8-bit

quantization for the DNN. Our preliminary results show that it can achieve up to 7% savings in

power consumption and a 6% reduction in area. However, 8-bit quantization also reduces the

robustness of classification accuracy. Therefore, our future work will consider quantization-

aware training approaches to achieve lower power and smaller area.

160

Chapter 8

CONCLUSION AND FUTURE DIRECTIONS

Wearable devices offer great potential to change the landscape of health and activity mon-

itoring. However, their widespread adoption has been hindered by various adaptation and

technical challenges. This dissertation presented potential solutions to these challenges.

First, we presented an open-source hardware/software platform for health monitoring. As

part of this, we designed a wearable device using flexible hybrid electronics. We released the

hardware files, software libraries, and applications as part of the open-source release. The pro-

posed platform will help in creating a common community of researchers in health monitoring.

Our second contribution presented an algorithm for near-optimal energy allocation in en-

ergy harvesting wearable devices. The proposed algorithm used dynamic programming to

enable recharge-free operations. Experiments with real solar energy harvesting data on our

wearable device showed that the proposed algorithm achieves results that are within 3% of the

optimal result obtained offline.

Third, we presented a comprehensive framework for HAR. We started with the w-HAR

dataset that includes data of seven activities and transitions for 22 users. w-HAR is the first

dataset that includes data fromwearable stretch sensors and accelerometers. Then, we proposed

an online learning approach for HAR. Most of the approaches for HAR use offline learning on

smartphones or wearable devices. However, offline learning does not scale well when the

models are used on new users. Our approach addressed the limitation by using feedback from

users to update the classifier weights. Experimental evaluations with 22 users showed that the

proposed approach improves the accuracy for new users by as much as 40% while consuming

about 12.5 mW power. One of the critical aspects of online learning is determining the number

161

of layers to reuse for new users. To this end, we proposed a transfer learning framework to

determine the number of neural network layers to transfer such that learning for new users is

optimized. We used representational analysis to show that the initial layers of a CNN provide

general features while deeper layers provide user-specific information. Using this insight, we

transferred the initial layers of CNNs to new users and fine-tuned only the deeper layers of the

network. Evaluations using three datasets showed that transfer learning achieves up to 43%

accuracy improvement when compared to accuracy without using transfer learning.

Our next contribution integrated the energy allocation and HAR applications in a runtime

energy-accuracy optimization framework for energy harvesting IoT devices. This is important

since a single operating point of an application may not be suitable for every energy budget in

energy harvesting IoT devices. Therefore, we designed a total of 22 design points for HAR,

which is the driver application for the algorithm. Among these, we chose five Pareto-optimal

design points with varying energy-accuracy trade-off. The runtime algorithm dynamically

chooses among the Pareto-optimal points design points to co-optimize the accuracy and ac-

tive time under energy budget constraints. Experiments using our wearable device showed

that the proposed algorithm achieves 46% higher expected accuracy and 66% longer active

time compared to a static design point with the highest accuracy. This algorithm will aid in

achieving recharge-free operation without sacrificing the quality of service to users.

Finally, user surveys have shown that the charging requirement of wearable devices is one

of the leading reasons for abandoning them. Hence, practical solutions must offer ultra-low

power capabilities that enable operation on harvested energy. To address this need for HAR,

we presented the first fully integrated custom hardware accelerator (HAR engine) that con-

sumes 22.4 µJ per operation using a commercial 65 nm technology. We presented a complete

solution that integrates all steps of HAR, i.e., reading the raw sensor data, generating features,

and activity classification using a deep neural network (DNN). It achieves 95% accuracy in

162

recognizing seven activities and transitions while providing three orders of magnitude higher

energy efficiency compared to embedded solutions.

In summary, this dissertation made the following contributions towards the wider adoption

of wearable devices for health monitoring.

• Wearable IoT devices using flexible hybrid electronics [16, 21, 26],

• Energy-neutral operation through optimal energy harvesting and management [23],

• Online learning framework and open-source dataset for human activity recognition [15],

• A transfer learning framework for human activity recognition,

• Runtime energy-accuracy co-optimization for energy harvesting IoT devices [14],

• An ultra-low-energy hardware accelerator for human activity recognition [25]

8.1 Future Directions

This section provides some future directions for research presented in this dissertation.

Healthcare Applications for Movement Disorders: We presented an extensive HAR frame-

work, which is one of the first steps in the treatment of movement disorders. Next, we need

to extend the framework to movement disorder applications such as evaluating the effective-

ness of drug therapies, freezing of gait prediction, and tremor analysis in movement disorder

patients. The OpenHealth framework can enable these applications by adding sensors and

processors needed for movement disorders.

System-on-a-Chip forWearable Applications: The HAR engine presented in this framework

is one of the components of a complete System-on-a-Chip (SoC) for wearable applications. The

SoC will integrate general-purpose cores and other commonly used input/output interfaces. It

will also integrate special-purpose engines for blocks such as pre-processing of sensor data,

feature generation, reconfigurable neural network, and other classifiers.

163

Improved Energy-Allocation Algorithm Using Approximate Dynamic Programming: The

results of the algorithm proposed in [23] degrade as the peak-to-peak variation in the harvested

energy and deviation from the expected values increase. Furthermore, the algorithm in [23]

does not take into account the expected energy harvest in the next few control intervals when

performing the energy allocation. Instead, it uses an aggregate over a finite horizon to make

the decisions. Due to this, it experiences large deviations from the optimal allocation when the

expected energy harvest in far in the future, as seen in Figure 3.6. Our future work plans to

address this limitation by performing a finite look-ahead while making the energy allocation in

a given interval. We will use rollout, Monte Carlo search, and approximate dynamic program-

ming to improve the energy allocation. Moreover, we plan to develop stochastic models for the

expected energy harvest to ensure that short-term variations in the ambient sources of energy

are taken into account. The proposed enhancements will allow us to achieve energy-neutral

operation of wearable devices with minimal impact on the quality of service to the users.

Skin TemperatureManagement forWearable Devices: Skin temperature issues will become

more prominent in wearable devices as wemove towards in-body and implantable devices. It is

critical to effectively manage the skin temperature of these devices since they are in direct con-

tact with the user. Therefore, one direction of future work can leverage state-of-the-art thermal

management in mobile systems to develop novel algorithms for skin temperature management

in in-body and implantable devices.

164

REFERENCES

[1] Abadi, M. et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems”, [Online] http://tensorflow.org/, accessed 31 July 2019 (2015).

[2] Akbari, A. and R. Jafari, “Transferring Activity Recognition Models for NewWearable
Sensors With Deep Generative Domain Adaptation”, in “Proceedings of the 18th Inter-
national Conference on Information Processing in Sensor Networks”, pp. 85–96 (2019).

[3] Alippi, C. and C. Galperti, “An Adaptive System for Optimal Solar Energy Harvesting
in Wireless Sensor Network Nodes”, IEEE Trans. Circuits Syst. I, Reg. Papers 55, 6,
1742–1750 (2008).

[4] Andreas, A. and T. Stoffel, “NREL Solar Radiation Research Laboratory (SRRL): Base-
line Measurement System (BMS); Golden, Colorado (Data); NREL Report No. DA-
5500-56488”, http://dx.doi.org/10.5439/1052221, accessed 5 August 2017 (1981).

[5] Anguita, D., A. Ghio, L. Oneto, F. X. Llanas Parra and J. L. Reyes Ortiz, “Energy Ef-
ficient Smartphone-Based Activity Recognition Using Fixed-Point Arithmetic”, J. of
Universal Comput. Sci. 19, 9, 1295–1314 (2013).

[6] Anguita, D., A. Ghio, L. Oneto, X. Parra and J. L. Reyes-Ortiz, “A Public Domain
Dataset for Human Activity Recognition using Smartphones”, in “ESANN”, (2013).

[7] Argyriou, A., T. Evgeniou and M. Pontil, “Multi-Task Feature Learning”, in “Advances
in neural information processing systems”, pp. 41–48 (2007).

[8] Arif, M., M. Bilal, A. Kattan and S. I. Ahamed, “Better Physical Activity Classification
Using Smartphone Acceleration Sensor”, J. of Med. Syst. 38, 9, 95 (2014).

[9] Banaee, H., M. U. Ahmed and A. Loutfi, “Data Mining for Wearable Sensors in Health
Monitoring Systems: A Review of Recent Trends and Challenges”, Sensors 13, 12,
17472–17500 (2013).

[10] Bao, L. and S. S. Intille, “Activity Recognition From User-Annotated Acceleration
Data”, in “Int. Conf. on Pervasive Comput.”, pp. 1–17 (2004).

[11] Bertsekas, D., A. Nedic and A. Ozdaglar, Convex Analysis and Optimization (Athena
Scientific Belmont, MA, 2003).

[12] Bertsekas, D. P.,Dynamic Programming and Optimal Control, vol. 1 (Athena Scientific
Belmont, MA, 1995).

[13] Bhardwaj, K., N. Suda and R. Marculescu, “EdgeAI: A Vision for Deep Learning in IoT
Era”, IEEE Design & Test (2019).

165

http://tensorflow.org/
http://dx.doi.org/10.5439/1052221

[14] Bhat, G., K. Bagewadi, H. G. Lee and U. Y. Ogras, “REAP: Runtime Energy-Accuracy
Optimization for Energy Harvesting IoT Devices”, in “Proc. of Annual Design Autom.
Conf.”, pp. 171:1–171:6 (2019), DOI:https://doi.org/10.1145/3316781.3317892.

[15] Bhat, G., R. Deb, V. V. Chaurasia, H. Shill and U. Y. Ogras, “Online Human Activity
Recognition using Low-Power Wearable Devices”, in “Proc. of Int. Conf. on Comput.
Aided Design”, pp. 72:1–72:8 (2018), DOI:https://doi.org/10.1145/3240765.3240833.

[16] Bhat, G., R. Deb and U. Y. Ogras, “OpenHealth: Open Source Platform for Wearable
Health Monitoring”, IEEE Design & Test 36, 5, 27–34, © 2019 IEEE. Reprinted with
permission from authors. (2019).

[17] Bhat, G., H. Gao, S. K. Mandal, U. Y. Ogras and S. Ozev, “Determining Mechanical
Stress Testing Parameters for FHE Designs with Low Computational Overhead”, IEEE
Design & Test (2020).

[18] Bhat, G., S. Gumussoy and U. Y. Ogras, “Power-Temperature Stability and Safety Anal-
ysis for Multiprocessor Systems”, ACM Trans. Embed. Comput. Syst. 16, 5s, 145:1–
145:19 (2017).

[19] Bhat, G., S. Gumussoy and U. Y. Ogras, “Power and Thermal Analysis of Commercial
Mobile Platforms: Experiments and Case Studies”, in “2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE)”, pp. 144–149 (2019).

[20] Bhat, G., S. Gumussoy and U. Y. Ogras, “Analysis and Control of Power-Temperature
Dynamics in Heterogeneous Multiprocessors”, IEEE Transactions on Control Systems
Technology (2020).

[21] Bhat, G., U. Gupta, N. Tran, J. Park, S. Ozev and U. Y. Ogras, “Multi-Objective Design
Optimization for Flexible Hybrid Electronics”, in “Proc. of Int. Conf. on Comput.-Aided
Design”, pp. 1–6 (2016).

[22] Bhat, G., S. K. Mandal, U. Gupta and U. Y. Ogras, “Online Learning for Adaptive Opti-
mization of Heterogeneous SoCs”, in “Proceedings of the International Conference on
Computer-Aided Design”, pp. 1–6 (2018).

[23] Bhat, G., J. Park and U. Y. Ogras, “Near-Optimal Energy Allocation for Self-Powered
Wearable Systems”, in “Proc. Int. Conf. on Comput.-Aided Design”, pp. 368–375
(2017), © 2017 IEEE. Reprinted with permission from authors.

[24] Bhat, G., G. Singla, A. K. Unver andU.Y.Ogras, “AlgorithmicOptimization of Thermal
and Power Management for Heterogeneous Mobile Platforms”, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 26, 3, 544–557 (2018).

166

https://doi.org/10.1145/3316781.3317892
https://doi.org/10.1145/3240765.3240833

[25] Bhat, G., Y. Tuncel, S. An, H. G. Lee and U. Y. Ogras, “An Ultra-Low Energy Human
Activity Recognition Accelerator for Wearable Health Applications”, ACM Transac-
tions on Embedded Computing Systems (TECS) 18, 5s, 1–22, DOI:https://doi.org/10.
1145/3358175 (2019).

[26] Bhat, G., Y. Tuncel, S. An and U. Y. Ogras, “Wearable IoT Devices for Health Moni-
toring”, in “TechConnect Briefs 2019”, pp. 357–360 (2019).

[27] Blanke, U. and B. Schiele, “Remember and Transfer What You Have Learned-
Recognizing Composite Activities Based on Activity Spotting”, in “International Sym-
posium on Wearable Computers (ISWC) 2010”, pp. 1–8 (2010).

[28] Blitzer, J., R. McDonald and F. Pereira, “Domain Adaptation With Structural Corre-
spondence Learning”, in “Proceedings of the 2006 conference on empirical methods in
natural language processing”, pp. 120–128 (2006).

[29] Bonomi, A. G., A. H. Goris, B. Yin and K. R. Westerterp, “Detection of Type, Duration,
and Intensity of Physical Activity Using an Accelerometer”, Medicine & Science in
Sports & Exercise 41, 9, 1770–1777 (2009).

[30] Bort-Roig, J., N. D. Gilson, A. Puig-Ribera, R. S. Contreras and S. G. Trost, “Mea-
suring and Influencing Physical Activity With Smartphone Technology: A Systematic
Review”, Sports Medicine 44, 5, 671–686 (2014).

[31] Boyd, S. and L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, 2004).

[32] Bracke, W., P. Merken, R. Puers and C. Van Hoof, “A 1 cm3 Modular Autonomous
Sensor Node For Physical Activity Monitoring”, in “2006 Ph.D. Research in Microelec-
tronics and Electronics”, pp. 429–432 (2006).

[33] Buchli, B., F. Sutton, J. Beutel and L. Thiele, “Dynamic Power Management for Long-
Term Energy Neutral Operation of Solar Energy Harvesting Systems”, in “Proc. Conf.
on Embedd. Network Sensor Syst.”, pp. 31–45 (2014).

[34] Case, M. A., H. A. Burwick, K. G. Volpp and M. S. Patel, “Accuracy of Smartphone
Applications and Wearable Devices for Tracking Physical Activity Data”, Jama 313, 6,
625–626 (2015).

[35] Chen, Y. and C. Shen, “Performance Analysis of Smartphone-Sensor Behavior for Hu-
man Activity Recognition”, IEEE Access 5, 3095–3110 (2017).

[36] Chikhaoui, B., F. Gouineau and M. Sotir, “A CNN Based Transfer Learning Model
for Automatic Activity Recognition From Accelerometer Sensors”, in “International
Conference on Machine Learning and Data Mining in Pattern Recognition”, pp. 302–
315 (2018).

167

https://doi.org/10.1145/3358175
https://doi.org/10.1145/3358175

[37] Chollet, F. et al., “Keras”, [Online] https://keras.io, accessed 31 July 2019 (2015).

[38] Chomiak, T., A. Watts, N. Meyer, F. V. Pereira and B. Hu, “A Training Approach to
Improve Stepping AutomaticityWhile Dual-Tasking in Parkinson’s Disease: A Prospec-
tive Pilot Study”, Medicine 96, 5 (2017).

[39] Contreras, R., M. Huerta, G. Sagbay, C. LLumiguano, M. Bravo, A. Bermeo, R. Clotet
and A. Soto, “Tremors Quantification in Parkinson Patients Using Smartwatches”, in
“Proc. IEEE Ecuador Technical Chapters Meeting (ETCM)”, pp. 1–6 (2016).

[40] Cook, D., K. D. Feuz and N. C. Krishnan, “Transfer Learning for Activity Recognition:
A Survey”, Knowledge and Information Systems 36, 3, 537–556 (2013).

[41] Cormen, T. H., C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms
(MIT press, 2009).

[42] Custodio, V., F. J. Herrera, G. López and J. I. Moreno, “A Review on Architectures and
Communications Technologies for Wearable Health-Monitoring Systems”, Sensors 12,
10, 13907–13946 (2012).

[43] Dai, W., Q. Yang, G.-R. Xue and Y. Yu, “Boosting for Transfer Learning”, in “Pro-
ceedings of the 24th International Conference on Machine Learning”, ICML ’07, pp.
193–200 (2007).

[44] Daneault, J.-F., “Could Wearable and Mobile Technology Improve the Management of
Essential Tremor?”, Frontiers in neurology 9, 257:1–257:8 (2018).

[45] de Lima, A. L. S. et al., “Feasibility of Large-Scale Deployment of Multiple Wearable
Sensors in Parkinson’s Disease”, PLOS One 12, 12, e0189161 (2017).

[46] Deb, R., How Does Technology Development Influence the Assessment of Parkinson’s
Disease? A Systematic Review, Master’s thesis, Arizona State University (2019).

[47] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A Large-Scale
Hierarchical Image Database”, in “2009 IEEE conference on computer vision and pat-
tern recognition”, pp. 248–255 (2009).

[48] Dimitrov, D. V., “Medical Internet of Things and Big Data in Healthcare”, Healthcare
Informatics Research 22, 3, 156–163 (2016).

[49] Dinesh, K., M. Xiong, J. Adams, R. Dorsey and G. Sharma, “Signal Analysis for Detect-
ing Motor Symptoms in Parkinson’s and Huntington’s Disease Using Multiple Body-
Affixed Sensors: A Pilot Study”, in “Image and Signal Process. Workshop”, pp. 1–5
(2016).

168

https://keras.io

[50] Ding, R., X. Li, L. Nie, J. Li, X. Si, D. Chu, G. Liu and D. Zhan, “Empirical Study and
Improvement on Deep Transfer Learning for Human Activity Recognition”, Sensors 19,
1, 57 (2019).

[51] DMI International Distribution Ltd, “Curved Lithium Thin Cells”, [Online] http://
www.dmi-international.com/data%20sheets/Curved%20Li%20Polymer.pdf Accessed
04/18/2018 (2018).

[52] Dorsey, E. R., F. P. Vlaanderen, L. J. Engelen, K. Kieburtz, W. Zhu, K. M. Biglan, M. J.
Faber and B. R. Bloem, “Moving Parkinson Care to the Home”, Movement Disorders
31, 9, 1258–1262 (2016).

[53] Espay, A. J. et al., “Technology in Parkinson’s Disease: Challenges and Opportunities”,
Movement Disorders 31, 9, 1272–1282 (2016).

[54] Estrin, D. and I. Sim, “Open mHealth Architecture: An Engine for Health Care Innova-
tion”, Science 330, 6005, 759–760 (2010).

[55] Evgeniou, T. and M. Pontil, “Regularized Multi–Task Learning”, in “Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining”, pp. 109–117 (2004).

[56] Feng, S. and M. F. Duarte, “Few-Shot Learning-Based Human Activity Recognition”,
arXiv preprint arXiv:1903.10416 (2019).

[57] FlexSolarCells, “SP3-37 Datasheet”, http://www.flexsolarcells.com/index_files/OEM_
Components/Flex_Cells/specification_sheets/01_FlexSolarCells.com_PowerFilm_
Solar_SP3-37_Specification_Sheet.pdf, accessed 5 August 2017 (2013).

[58] Friedman, J., T. Hastie and R. Tibshirani, The Elements of Statistical Learning, vol. 1
(Springer, 2001).

[59] Gao, H., G. Bhat, U. Y. Ogras and S. Ozev, “Optimized Stress Testing for Flexible
Hybrid Electronics Designs”, in “2019 IEEE 37th VLSI Test Symposium (VTS)”, pp.
1–6 (2019).

[60] Gaudette, B., V. Hanumaiah, S. Vrudhula andM. Krunz, “Optimal Range Assignment in
Solar Powered Active Wireless Sensor Networks”, in “Proc. IEEE Infocom”, pp. 2354–
2362 (2012).

[61] Geisler, M., S. Boisseau, M. PEREZ, P. Gasnier, J. Willemin, I. Ait-Ali and S. Perraud,
“Human-Motion Energy Harvester for Autonomous Body Area Sensors”, Smart Mate-
rials and Structures 557, 1, 012024 (2017).

[62] GMB, “031009 datasheet”, http://www.gmbattery.com/Datasheet/LIPO/LIPO-031009-
12mAh.pdf, accessed 5 August 2017 (2009).

169

http://www.dmi-international.com/data%20sheets/Curved%20Li%20Polymer.pdf
http://www.dmi-international.com/data%20sheets/Curved%20Li%20Polymer.pdf
http://www.flexsolarcells.com/index_files/OEM_Components/Flex_Cells/specification_sheets/01_FlexSolarCells.com_PowerFilm_Solar_SP3-37_Specification_Sheet.pdf
http://www.flexsolarcells.com/index_files/OEM_Components/Flex_Cells/specification_sheets/01_FlexSolarCells.com_PowerFilm_Solar_SP3-37_Specification_Sheet.pdf
http://www.flexsolarcells.com/index_files/OEM_Components/Flex_Cells/specification_sheets/01_FlexSolarCells.com_PowerFilm_Solar_SP3-37_Specification_Sheet.pdf
http://www.gmbattery.com/Datasheet/LIPO/LIPO-031009-12mAh.pdf
http://www.gmbattery.com/Datasheet/LIPO/LIPO-031009-12mAh.pdf

[63] Grant, M. and S. Boyd, “Graph Implementations for Nonsmooth Convex Programs”, in
“Recent Advances in Learning and Control”, Lecture Notes in Control and Information
Sciences, pp. 95–110 (Springer, London, 2008).

[64] Grant, M. and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming,
Version 2.1”, http://cvxr.com/cvx, accessed 5 August 2017 (2014).

[65] Gupta, U., J. Park, H. Joshi and U. Y. Ogras, “Flexibility-Aware System-on-Polymer
(SoP): Concept to Prototype”, IEEE Trans. Multi-Scale Comput. Syst. 3, 1, 36–49
(2017).

[66] Gupta, U., C. A. Patil, G. Bhat, P. Mishra and U. Y. Ogras, “Dypo: Dynamic Pareto-
Optimal Configuration Selection for Heterogeneous MpSoCs”, ACM Transactions on
Embedded Computing Systems (TECS) 16, 5s, 1–20 (2017).

[67] Győrbíró, N., Á. Fábián and G. Hományi, “An Activity Recognition System for Mobile
Phones”, Mobile Networks and Appl. 14, 1, 82–91 (2009).

[68] Hachiya, H., M. Sugiyama and N. Ueda, “Importance-Weighted Least-Squares Proba-
bilistic Classifier for Covariate Shift Adaptation With Application to Human Activity
Recognition”, Neurocomputing 80, 93–101 (2012).

[69] Haghi, M., K. Thurow and R. Stoll, “Wearable Devices in Medical Internet of Things:
Scientific Research and Commercially Available Devices”, Healthcare Informatics Re-
search 23, 1, 4–15 (2017).

[70] Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, “The
WEKA Data Mining Software: An Update”, ACM SIGKDD Explorations Newsletter
11, 1, 10–18 (2009).

[71] Hanson, M. A., H. C. Powell Jr, A. T. Barth, K. Ringgenberg, B. H. Calhoun, J. H. Aylor
and J. Lach, “Body Area Sensor Networks: Challenges And Opportunities”, Computer
42, 1, 58 (2009).

[72] Hardkernel, “ODROID-XU3”, https://wiki.odroid.com/old_product/odroid-
xu3/odroid-xu3 Accessed 24 Nov. 2018 (2014).

[73] He, Y. and Y. Li, “Physical Activity Recognition Utilizing the Built-in Kinematic Sen-
sors of a Smartphone”, Int. J. of Distrib. Sensor Networks 9, 4, 481–580 (2013).

[74] Heldman, D. A., D. A. Harris, T. Felong, K. L. Andrzejewski, E. R. Dorsey, J. P. Giuf-
frida, B. Goldberg and M. A. Burack, “Telehealth Management of Parkinson’s Disease
Using Wearable Sensors: an Exploratory Study”, Digital biomarkers 1, 1, 43–51 (2017).

[75] Hiremath, S., G. Yang and K. Mankodiya, “Wearable Internet of Things: Concept, Ar-
chitectural Components and Promises for Person-Centered Healthcare”, in “Proc. MO-
BIHEALTH”, pp. 304–307 (2014).

170

http://cvxr.com/cvx
https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3
https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3

[76] Hoang, D. C., Y. K. Tan, H. B. Chng and S. K. Panda, “Thermal Energy Harvesting
From HumanWarmth for Wireless Body Area Network in Medical Healthcare System”,
in “Int. Conf. on Power Electron. and Drive Syst.”, pp. 1277–1282 (2009).

[77] Hwang, G.-T. et al., “Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crys-
talline PMN-PT Piezoelectric Energy Harvester”, Advanced materials 26, 28, 4880–
4887 (2014).

[78] Ineichen, P. and R. Perez, “A New Airmass Independent Formulation for the Linke
Turbidity Coefficient”, Solar Energy 73, 3, 151–157 (2002).

[79] InvenSense, “Motion Processing Unit”, https://www.invensense.com/products/motion-
tracking/9-axis/mpu-9250, accessed 5 August 2017 (2016).

[80] Jafari, R., W. Li, R. Bajcsy, S. Glaser and S. Sastry, “Physical Activity Monitoring for
Assisted Living at Home”, in “Int. Workshop onWearable and Implantable Body Sensor
Network”, pp. 213–219 (2007).

[81] Jayakumar, H., K. Lee, W. S. Lee, A. Raha, Y. Kim and V. Raghunathan, “Powering the
Internet of Things”, in “Proc. of ISLPED”, pp. 375–380 (2014).

[82] Johansson, D., K. Malmgren and M. Murphy, “Wearable Sensors for Clinical Appli-
cations in Epilepsy, Parkinson’s Disease, and Stroke: A Mixed-Methods Systematic
Review”, Jrnl. of neurology pp. 1–13 (2018).

[83] Kansal, A., J. Hsu, S. Zahedi and M. B. Srivastava, “Power Management in Energy
Harvesting Sensor Networks”, ACM Trans. Embedd. Comput. Syst. 6, 4, 32 (2007).

[84] Khan, Y. et al., “Flexible Hybrid Electronics: Direct Interfacing of Soft and Hard Elec-
tronics for Wearable Health Monitoring”, Advanced Functional Materials 26, 47, 8764–
8775 (2016).

[85] Kim, S. J., J. H. We and B. J. Cho, “A Wearable Thermoelectric Generator Fabricated
on a Glass Fabric”, Energy & Environmental Science 7, 6, 1959–1965 (2014).

[86] Kingma, D. P. and J. Ba, “Adam: A Method for Stochastic Optimization”, in “Proc. Int.
Conf. on Learning Representations”, pp. 1–13 (2014).

[87] Kirwan, M., M. J. Duncan, C. Vandelanotte and W. K. Mummery, “Using Smartphone
Technology toMonitor Physical Activity in the 10,000 Steps Program: AMatchedCase–
Control Trial”, J. of Med. Internet Research 14, 2 (2012).

[88] Klinefelter, A. et al., “21.3 A 6.45 µW Self-Powered IoT SoC with Integrated Energy-
Harvesting Power Management and ULP Asymmetric Radios”, in “Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. of Techn. Papers”, pp. 384–385 (2015).

171

https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250

[89] Krishnakumar, A., G. Bhat, J. Park, H. G. Lee and U. Y. Ogras, “Sensor-classifier co-
optimization for wearable human activity recognition applications”, in “2019 IEEE In-
ternational Conference on Embedded Software and Systems (ICESS)”, pp. 1–4 (2019).

[90] Krishnamoorthi, R., “Quantizing Deep Convolutional Networks for Efficient Inference:
A Whitepaper”, arXiv preprint arXiv:1806.08342 (2018).

[91] Kuhn, H. W. and A. W. Tucker, “Nonlinear Programming”, in “Proc. of the Second
Berkeley Symp. on Mathematical Statistics and Probability”, pp. 481–492 (University
of California Press, 1951).

[92] Kumar, R., J. Shin, L. Yin, J.-M. You, Y. S. Meng and J. Wang, “All-Printed, Stretchable
Zn-Ag2O Rechargeable Battery via Hyperelastic Binder for Self-Powering Wearable
Electronics”, Advanced Energy Materials (2016).

[93] Kwapisz, J. R., G. M. Weiss and S. A. Moore, “Activity Recognition Using Cell Phone
Accelerometers”, ACM SigKDD Explorations Newsletter 12, 2, 74–82 (2011).

[94] Lagoudakis, M. G. and R. Parr, “Reinforcement Learning as Classification: Leveraging
Modern Classifiers”, in “Proc. Int. Conf. Mach. Learn.”, pp. 424–431 (2003).

[95] Lao-atiman, W., T. Julaphatachote, P. Boonmongkolras and S. Kheawhom, “Printed
Transparent Thin Film Zn-MnO2 Battery”, J. of the Electrochemical Soc. 164, 4, A859–
A863 (2017).

[96] Lara, O. D. andM. A. Labrador, “A Survey on Human Activity Recognition usingWear-
able Sensors”, IEEE Commun. Surveys & Tut. 15, 3, 1192–1209 (2013).

[97] Latré, B., B. Braem, I. Moerman, C. Blondia and P. Demeester, “A Survey On Wireless
Body Area Networks”, Wireless Networks 17, 1, 1–18 (2011).

[98] Lee, S. I., M. Y. Ozsecen, L. Della Toffola, J.-F. Daneault, A. Puiatti, S. Patel and
P. Bonato, “Activity Detection in Uncontrolled Free-Living Conditions Using a Sin-
gle Accelerometer”, in “2015 IEEE 12th International Conference on Wearable and Im-
plantable Body Sensor Networks (BSN)”, pp. 1–6 (2015).

[99] Li, B. andH.Holstein, “Perception of Human PeriodicMotion inMoving Light Displays
– AMotion-Based Frequency Domain Approach”, Interdisciplinary J. of Artificial Intell.
and the Simulation of Behaviour (AISBJ) 1, 5, 403–416 (2004).

[100] Liang, N.-Y., G.-B. Huang, P. Saratchandran and N. Sundararajan, “A Fast and Accurate
Online Sequential Learning Algorithm for Feedforward Networks”, IEEE Trans. Neural
Netw. 17, 6, 1411–1423 (2006).

[101] Lin, C.-Y. and R. Marculescu, “Model Personalization for Human Activity Recogni-
tion”, in “The Fourth International Workshop on Smart Edge Computing and Network-
ing (SmartEdge’20)”, pp. 1–4 (2020).

172

[102] Lin, X., Y. Wang, N. Chang and M. Pedram, “Concurrent Task Scheduling and Dy-
namic Voltage and Frequency Scaling in a Real-Time Embedded System With Energy
Harvesting”, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 35, 11, 1890–
1902 (2016).

[103] Liu, Q., J. Williamson, K. Li, W. Mohrman, Q. Lv, R. P. Dick and L. Shang, “Gazelle:
Energy-Efficient Wearable Analysis for Running”, IEEE Trans. Mobile Comput. 16, 9,
2531–2544 (2017).

[104] Liu, X., Y. Zheng, M. W. Phyu, F. Endru, V. Navaneethan and B. Zhao, “An Ultra-
Low Power ECG Acquisition AndMonitoring ASIC System For WBANApplications”,
IEEE J. on Emerg. and Sel. Topics in Circuits Syst. 2, 1, 60–70 (2012).

[105] Lotfian, R. and R. Jafari, “An Ultra-Low Power Hardware Accelerator Architecture for
Wearable Computers using Dynamic TimeWarping”, in “Proc. Conf. on Design, Autom.
and Test in Europe”, pp. 913–916 (2013).

[106] Luo, Y., K.-H. Teng, Y. Li, W. Mao, C.-H. Heng and Y. Lian, “A 93µW 11Mbps Wire-
less Vital Signs Monitoring Soc With 3-Lead ECG, Bio-Impedance, And Body Temper-
ature”, in “Proc. IEEE Asian Solid-State Circuits Conf.”, pp. 29–32 (2017).

[107] Maetzler, W., J. Klucken and M. Horne, “A Clinical View on the Development of
Technology-Based Tools in Managing Parkinson’s Disease”, Movement Disorders 31,
9, 1263–1271 (2016).

[108] Mandal, S. K., G. Bhat, J. R. Doppa, P. P. Pande and U. Y. Ogras, “An Energy-Aware
Online Learning Framework for Resource Management in Heterogeneous Platforms”,
ACMTransactions onDesignAutomation of Electronic Systems (TODAES) 25, 3, 1–26
(2020).

[109] Mandal, S. K., G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande and U. Y. Ogras, “Dy-
namic Resource Management of Heterogeneous Mobile Platforms via Imitation Learn-
ing”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, 12, 2842–
2854 (2019).

[110] Matias, R., V. Paixão, R. Bouça and J. J. Ferreira, “A Perspective on Wearable Sensor
Measurements and Data Science for Parkinson’s Disease”, Frontiers in neurology 8, 677
(2017).

[111] Michael J. Fox Foundation, “Parkinsons Disease Digital Biomarker DREAM
Challenge”, [Online] https://www.synapse.org/#!Synapse:syn8717496/wiki/. Accessed
04/15/2018 (2018).

[112] Micucci, D., M. Mobilio and P. Napoletano, “UniMiB SHAR: A Dataset for Human
Activity Recognition Using Acceleration Data from Smartphones”, Applied Sciences 7,
10, 1101 (2017).

173

https://www.synapse.org/#!Synapse:syn8717496/wiki/.

[113] Morcos, A., M. Raghu and S. Bengio, “Insights on Representational Similarity in Neural
NetworksWith Canonical Correlation”, in “Advances in Neural Information Processing
Systems”, pp. 5732–5741 (2018).

[114] Morillo, L., L. Gonzalez-Abril, J. Ramirez and M. de La Concepcion, “Low Energy
Physical Activity Recognition System on Smartphones”, Sensors 15, 3, 5163–5196
(2015).

[115] Mosenia, A., S. Sur-Kolay, A. Raghunathan and N. K. Jha, “Wearable Medical Sensor-
Based SystemDesign: A Survey”, IEEETrans.Multi-Scale Comput. Syst. 3, 2, 124–138
(2017).

[116] Niezen, G., P. Eslambolchilar and H. Thimbleby, “Open-Source Hardware for Medical
Devices”, BMJ Innovations 2, 2, 78–83 (2016).

[117] O’Brien, B., T. Gisby and I. A. Anderson, “Stretch Sensors for Human Body Motion”,
in “Proc. Electroactive Polymer Actuators and Devices”, vol. 9056, p. 905618 (2014).

[118] Ogras, U., U. Gupta, J. Park and G. Bhat, “Designing Wearable Systems-on-Polymer
using Flexible Hybrid Electronics”, in “Printed Electronics: Technologies, Applications
and Challenges”, pp. 127–154 (Nova Science Publishers, Inc., 2017).

[119] Oquab, M., L. Bottou, I. Laptev and J. Sivic, “Learning and Transferring Mid-Level
Image Representations Using Convolutional Neural Networks”, in “Proceedings of the
IEEE conference on computer vision and pattern recognition”, pp. 1717–1724 (2014).

[120] Ozanne, A., D. Johansson, U. Hällgren Graneheim, K. Malmgren, F. Bergquist and
M. Alt Murphy, “Wearables in Epilepsy and Parkinson’s disease—A Focus Group
Study”, Acta Neurologica Scandinavica 137, 2, 188–194 (2018).

[121] Pan, S. J. and Q. Yang, “A Survey on Transfer Learning”, IEEE Trans. Knowl. Data
Eng. 22, 10, 1345–1359 (2010).

[122] Park, J., G. Bhat, C. S. Geyik, H. G. Lee and U. Y. Ogras, “Optimizing Operations per
Joule for Energy Harvesting IoT Devices”, Technical Report pp. 1–7 (2018).

[123] Park, J., G. Bhat, C. S. Geyik, U. Y. Ogras and H. G. Lee, “Energy-Optimal Gesture
Recognition Using Self-Powered Wearable Devices”, in “2018 IEEE Biomedical Cir-
cuits and Systems Conference (BioCAS)”, pp. 1–4 (2018).

[124] Park, J., G. Bhat, A. Krishnakumar, C. S. Geyik, U. Y. Ogras and H. G. Lee, “Energy
per Operation Optimization for Energy-Harvesting Wearable IoT Devices”, Sensors 20,
3, 764 (2020).

[125] Park, J., H. Joshi, H. G. Lee, S. Kiaei and U. Y. Ogras, “Flexible PV-cell Modeling for
Energy Harvesting in Wearable IoT Applications”, ACM Trans. Embed. Comput. Syst.
16, 5s, 156 (2017).

174

[126] Patel, M. and J. Wang, “Applications, Challenges, and Prospective in Emerging Body
Area Networking Technologies”, IEEE Wireless Commun. 17, 1 (2010).

[127] Paul, A. and D. P. Mukherjee, “Reinforced Random Forest”, in “Proc. Indian Conf. on
Comput. Vision, Graphics and Image Processing”, pp. 1:1–1:8 (2016).

[128] Pérez-López et al., “Dopaminergic-Induced Dyskinesia Assessment Based on a Single
Belt-Worn Accelerometer”, Artificial Intell. in Medicine 67, 47–56 (2016).

[129] Pirttikangas, S., K. Fujinami and T. Nakajima, “Feature Selection and Activity Recog-
nition From Wearable Sensors”, in “Int. Symp. on Ubiquitious Comput. Systems”, pp.
516–527 (2006).

[130] PowerStream, “PGEB021235 40 mAH - Rechargeable Lithium Polymer Cells”, http:
//www.powerstream.com/thin-lithium-ion.htm, accessed 16 July 2016. (2016).

[131] Preece, S. J., J. Y. Goulermas, L. P. Kenney, D. Howard, K. Meijer and R. Cromp-
ton, “Activity Identification Using Body-Mounted Sensors–A Review of Classification
Techniques”, Physiological Measurement 30, 4, R1 (2009).

[132] Pulliam, C., S. Eichenseer, C. Goetz, O. Waln, C. Hunter, J. Jankovic, D. Vaillancourt,
J. Giuffrida and D. Heldman, “Continuous In-Home Monitoring of Essential Tremor”,
Parkinsonism & Related Disorders 20, 1, 37–40 (2014).

[133] Qin, C.-X. and D. Qu, “Towards Understanding Attention-Based Speech Recognition
Models”, IEEE Access 8, 24358–24369 (2020).

[134] Quattoni, A., M. Collins and T. Darrell, “Transfer Learning for Image Classification
With Sparse Prototype Representations”, in “2008 IEEE Conference on Computer Vi-
sion and Pattern Recognition”, pp. 1–8 (2008).

[135] Quinlan, J. R., C4. 5: Programs for Machine Learning (Elsevier, 2014).

[136] Raghu, M., C. Zhang, J. Kleinberg and S. Bengio, “Transfusion: Understanding Trans-
fer Learning for Medical Imaging”, in “Advances in Neural Information Processing Sys-
tems”, pp. 3342–3352 (2019).

[137] Raghunathan, V., A. Kansal, J. Hsu, J. Friedman and M. Srivastava, “Design Considera-
tions for Solar Energy Harvesting Wireless Embedded Systems”, in “Proc. of Int. Symp.
on Information Processing in Sensor Networks”, p. 64 (2005).

[138] Raina, R., A. Battle, H. Lee, B. Packer and A. Y. Ng, “Self-Taught Learning: Transfer
Learning From Unlabeled Data”, in “Proceedings of the 24th international conference
on Machine learning”, pp. 759–766 (2007).

[139] Reyes-Ortiz, J.-L., L. Oneto, A. Samà, X. Parra and D. Anguita, “Transition-Aware Hu-
man Activity Recognition Using Smartphones”, Neurocomputing 171, 754–767 (2016).

175

http://www.powerstream.com/thin-lithium-ion.htm
http://www.powerstream.com/thin-lithium-ion.htm

[140] Roggen, D. et al., “Collecting Complex Activity Datasets in Highly Rich Networked
Sensor Environments”, in “Proc. Int. Conf. on Networked Sensing Syst. (INSS)”, pp.
233–240 (2010).

[141] Rokni, S. A., M. Nourollahi and H. Ghasemzadeh, “Personalized Human Activity
Recognition Using Convolutional Neural Networks”, in “Thirty-Second AAAI Confer-
ence on Artificial Intelligence”, (2018).

[142] Saadon, S. and O. Sidek, “Micro-Electro-Mechanical System (MEMS)-Based Piezo-
electric Energy Harvester for Ambient Vibrations”, Procedia-Social and Behavioral Sci.
195, 2353–2362 (2015).

[143] Saha, S. S., S. Rahman, M. J. Rasna, A. M. Islam and M. A. R. Ahad, “DU-MD: An
Open-Source Human Action Dataset for Ubiquitous Wearable Sensors”, in “2018 Joint
7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018
2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR)”, pp.
567–572 (2018).

[144] Salem, M., S. Taheri and J.-S. Yuan, “ECG Arrhythmia Classification Using Transfer
Learning from 2-Dimensional Deep CNNFeatures”, in “2018 IEEEBiomedical Circuits
and Systems Conference (BioCAS)”, pp. 1–4 (2018).

[145] Sandia National Laboratories, “Sandia’s Ephemeris Model”, https://pvpmc.sandia.gov/
modeling-steps/1-weather-design-inputs/sun-position/sandias-code/, accessed 5 Au-
gust 2017 (2017).

[146] Saphra, N. and A. Lopez, “Understanding Learning Dynamics Of Language Models
with SVCCA”, in “Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers)”, pp. 3257–3267 (2019).

[147] Schlachetzki, J. C. et al., “Wearable Sensors Objectively Measure Gait Parameters in
Parkinson’s Disease”, PloS one 12, 10 (2017).

[148] Schwaighofer, A., V. Tresp and K. Yu, “Learning Gaussian Process Kernels via Hierar-
chical Bayes”, in “Advances in neural information processing systems”, pp. 1209–1216
(2005).

[149] Shaikh, F. K. and S. Zeadally, “Energy Harvesting in Wireless Sensor Networks: A
Comprehensive Review”, Renew. Sust. Energ. Rev. 55, 1041–1054 (2016).

[150] Shenck, N. S. and J. A. Paradiso, “Energy Scavenging With Shoe-Mounted Piezo-
electrics”, IEEE Micro 21, 3, 30–42 (2001).

176

https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/sun-position/sandias-code/
https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/sun-position/sandias-code/

[151] Shin, H.-C., H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura and
R. M. Summers, “Deep Convolutional Neural Networks for Computer-Aided Detection:
CNN Architectures, Dataset Characteristics and Transfer Learning”, IEEE transactions
on medical imaging 35, 5, 1285–1298 (2016).

[152] Shoaib, M., S. Bosch, O. D. Incel, H. Scholten and P. J. Havinga, “Fusion of Smartphone
Motion Sensors for Physical Activity Recognition”, Sensors 14, 6, 10146–10176 (2014).

[153] Shoaib, M., S. Bosch, O. D. Incel, H. Scholten and P. J. Havinga, “A Survey of Online
Activity Recognition Using Mobile Phones”, Sensors 15, 1, 2059–2085 (2015).

[154] Sridhar, S., P. Misra, G. S. Gill and J. Warrior, “Cheepsync: A Time Synchronization
Service for Resource Constrained Bluetooth LE Advertisers”, IEEE Commun. Mag. 54,
1, 136–143 (2016).

[155] Sudevalayam, S. and P. Kulkarni, “Energy Harvesting Sensor Nodes: Survey and Im-
plications”, IEEE Commun. Surveys & Tutorials 13, 3, 443–461 (2011).

[156] Sutton, R. S. and A. G. Barto, Introduction to Reinforcement Learning (MIT Press,
2018), 2nd edn.

[157] Tan, Y. K. and S. K. Panda, “Energy Harvesting FromHybrid Indoor Ambient Light and
Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes”, IEEE
Trans. on Ind. Electron. 58, 9, 4424–4435 (2011).

[158] Texas Instruments, “BQ25504”, http://www.ti.com/lit/ds/symlink/bq25504.pdf, ac-
cessed 5 August 2017 (2015).

[159] Texas Instruments, “TI SensorTag”, https://store.ti.com/cc2650stk.aspx accessed 24
Nov. 2018 (2016).

[160] Texas Instruments Inc., “CC-2650 Microcontroller”, [Online] http://www.ti.com/
product/CC2650 Accessed 04/18/2018 (2016).

[161] Tuncel, Y., G. Bhat and U. Y. Ogras, “Special Session: Physically Flexible Devices for
Health and Activity Monitoring: Challenges from Design to Test”, in “2020 IEEE 38th
VLSI Test Symposium (VTS)”, pp. 1–5 (2020).

[162] Ugulino, W., D. Cardador, K. Vega, E. Velloso, R. Milidiú and H. Fuks, “Wearable
Computing: Accelerometers’ Data Classification of Body Postures and Movements”,
in “Brazilian Symposium on Artificial Intelligence”, pp. 52–61 (2012).

[163] US Department of Labor, “American Time Use Survey”, [Online] https://www.bls.gov/
tus/, accessed 13 July 2019 (2017).

177

http://www.ti.com/lit/ds/symlink/bq25504.pdf
https://store.ti.com/cc2650stk.aspx
http://www.ti.com/product/CC2650
http://www.ti.com/product/CC2650
https://www.bls.gov/tus/
https://www.bls.gov/tus/

[164] Valenzuela, A., “Energy Harvesting for No-Power Embedded Systems”, [Online]
http://focus.ti.com/graphics/mcu/ulp/energy_harvesting_embedded_systems_using_
msp430.pdf, accessed 31 July 2019 (2008).

[165] Van Dongen, S. and A. J. Enright, “Metric Distances Derived From Cosine Similarity
and Pearson and Spearman Correlations”, arXiv preprint arXiv:1208.3145 (2012).

[166] Van Helleputte, N. et al., “18.3 A Multi-Parameter Signal-Acquisition Soc For
Connected Personal Health Applications”, in “Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. of Techn. Papers”, pp. 314–315 (2014).

[167] Vigorito, C. M., D. Ganesan and A. G. Barto, “Adaptive Control of Duty Cycling in
Energy-HarvestingWireless Sensor Networks”, in “Proc. of IEEE Comm. Society Conf.
on Sensor, Mesh and Ad Hoc Comm. and Networks”, pp. 21–30 (2007).

[168] Wang, A., G. Chen, J. Yang, S. Zhao and C.-Y. Chang, “AComparative Study on Human
Activity Recognition Using Inertial Sensors in a Smartphone”, IEEE Sensors J. 16, 11,
4566–4578 (2016).

[169] Wang, J., Y. Chen, S. Hao, X. Peng and L. Hu, “Deep Learning for Sensor-Based Ac-
tivity Recognition: A Survey”, Pattern Recognition Letters 119, 3–11 (2019).

[170] Wendler, M., G. Hübner and I. M. Krebs, “Development of Printed Thin and Flexible
Batteries”, Int. Circ. Graphic Ed. Res. 4, 32–41 (2011).

[171] Wong, A. C., D. McDonagh, G. Kathiresan, O. C. Omeni, O. El-Jamaly, T. C. Chan,
P. Paddan and A. J. Burdett, “A 1 V, Micropower System-On-Chip For Vital-Sign Mon-
itoring In Wireless Body Sensor Networks”, in “Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. of Techn. Papers”, pp. 138–602 (2008).

[172] Woods, A. M., M. Nowostawski, E. A. Franz and M. Purvis, “Parkinson’s Disease and
Essential Tremor Classification on Mobile Device”, Pervasive and Mobile Computing
13, 1–12 (2014).

[173] World Health Organization, “World Report on Disability”, [Online] http://www.who.
int/disabilities/world_report/2011/report/en/. (2011).

[174] World Health Organization, “Obesity andOverweight. Fact Sheets, 2013”, [Online] http:
//www.who.int/mediacentre/factsheets/fs311/en/. Accessed 03/22/2018 (2013).

[175] Yang, G., W. Tan, H. Jin, T. Zhao and L. Tu, “ReviewWearable Sensing System for Gait
Recognition”, Cluster Computing 22, 2, 3021–3029 (2019).

[176] Yosinski, J., J. Clune, Y. Bengio and H. Lipson, “How Transferable Are Features in
Deep Neural Networks?”, in “Advances in neural information processing systems”, pp.
3320–3328 (2014).

178

http://focus.ti.com/graphics/mcu/ulp/energy_harvesting_embedded_systems_using_msp430.pdf
http://focus.ti.com/graphics/mcu/ulp/energy_harvesting_embedded_systems_using_msp430.pdf
http://www.who.int/disabilities/world_report/2011/report/en/.
http://www.who.int/disabilities/world_report/2011/report/en/.
http://www.who.int/mediacentre/factsheets/fs311/en/.
http://www.who.int/mediacentre/factsheets/fs311/en/.

[177] Zeiler, M. D., “Adadelta: An Adaptive Learning Rate Method”, arXiv preprint
arXiv:1212.5701 (2012).

[178] Zhang, B., F. Huang, J. Liu and D. Zhang, “A Novel Posture for Better Differentia-
tion Between Parkinson’s Tremor and Essential Tremor”, Frontiers in Neuroscience 12
(2018).

[179] Zhang, M. and A. A. Sawchuk, “USC-HAD: A Daily Activity Dataset for Ubiquitous
Activity Recognition using Wearable Sensors”, in “Proc. of the Conf. on Ubiquitous
Comput.”, pp. 1036–1043 (2012).

179

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 OpenHealth: Open Source Platform for Wearable Health Monitoring
	3 Near-Optimal Energy Allocation for Energy Harvesting IoT Devices
	4 Online Human Activity Recognition Using Low-Power Wearable Devices
	5 Transfer Learning for Human Activity Recognition using Representational Analysis of Neural Networks
	6 REAP : Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices
	7 An Ultra-Low Energy Human Activity Recognition Accelerator
	8 Conclusion and Future Directions

	References

