
Scheduling in Wireless and Healthcare Networks

by

Yiqiu Liu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2020 by the
Graduate Supervisory Committee:

Lei Ying, Chair
Pengyi Shi

Weina Wang
Junshan Zhang
Yanchao Zhang

ARIZONA STATE UNIVERSITY

August 2020



ABSTRACT

This dissertation studies the scheduling in two stochastic networks, a co-located wire-

less network and an outpatient healthcare network, both of which have a cyclic plan-

ning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is considered. A cycle of

planning horizon is called a frame, which consists of a fixed number of time slots. The

size of the frame is determined by the upper-layer applications. Packets with deadlines

arrive at the beginning of each frame and will be discarded if missing their deadlines,

which are in the same frame. Each link of the network is associated with a quality

of service constraint and an average transmit power constraint. For this system, a

MaxWeight-type problem for which the solutions achieve the throughput optimality

is formulated. Since the computational complexity of solving the MaxWeight-type

problem with exhaustive search is exponential even for a single-link system, a greedy

algorithm with complexity O(n log(n)) is proposed, which is also throughput optimal.

The outpatient healthcare network is modeled as a discrete-time queueing net-

work, in which patients receive diagnosis and treatment planning that involves col-

laboration between multiple service stations. For each patient, only the root (first)

appointment can be scheduled as the following appointments evolve stochastically.

The cyclic planing horizon is a week. The root appointment is optimized to max-

imize the proportion of patients that can complete their care by a class-dependent

deadline. In the optimization algorithm, the sojourn time of patients in the health-

care network is approximated with a doubly-stochastic phase-type distribution. To

address the computational intractability, a mean-field model with convergence guar-

antees is proposed. A linear programming-based policy improvement framework is

developed, which can approximately solve the original large-scale stochastic optimiza-

tion in queueing networks of realistic sizes.
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Chapter 1

INTRODUCTION

Scheduling algorithms are key components in the operation of many stochastic

systems, such as the data centers, production lines and computer operating systems.

Among the various stochastic systems, a large portion of them have cyclic planning

horizons and deadline-related performance metrics (see Pinedo (2012)). For example,

a manufacturing center needs to make plans for production each year based on the

prediction of market trends, and each order needs to be fulfilled within a certain

deadline in order to acquire the revenue. For these stochastic systems, well designed

scheduling algorithms can boost the performance (e.g. revenue for companies and

average query delay for data centers) while reduce the operation cost.

1.1 Background

Decision-making in the form of scheduling algorithms plays an important role in

the operation of many stochastic systems. A one-size-fits-all solution is to first model

these stochastic systems with the Markov decision process (MDP) and then apply the

dynamic programming technique (see Bertsekas (1995)). However, this method often

suffers from the ’curse of dimensionality’ where the state space is usually huge and

the computation complexity is intractable. Recently, as deep learning (see Goodfellow

et al. (2016)) advances, traditional dynamic programming has evolved into a large

family of deep reinforcement learning algorithms (see Sutton and Barto (2018) and

Arulkumaran et al. (2017)). Nonetheless, most of the deep reinforcement learning

are data-driven and has low training efficiency, resulting in demand for huge training

samples and time. To circumvent these limitations, application-specific scheduling
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algorithms are getting constant attentions. As they are customized for the specific

stochastic system, they usually feature low computation complexities and guaranteed

performance.

In the era of Internet-of-Things, there is a booming demand for wireless networks

that support reliable real-time communications. A good solution is the frame-based

wireless network (see Hou et al. (2009)) that features a cyclic planning horizon, where

a fixed number of time slots are grouped into a frame. Meanwhile, with the prevalence

of personal wearable devices such as smart watches and smart glasses, demand for

wireless networks with lower transmit powers is also growing. In our work, we develop

a scheduling algorithm under the frame-based framework to support reliable (high

packet delivery ratio) and low transmit power communications.

As health care moves toward more consolidation, the resulting outpatient health-

care networks will serve an increasingly diverse patient population in terms of condi-

tions treated but also in terms of geography and medical urgency. A key performance

metric in assessing the service quality is the fraction of patients that are able to

complete their itineraries by a target deadline, referred as the itinerary completion

rate. In our work, we leverage the capacity allocation via patient admission schedul-

ing to improve the itinerary completion rates, which is essentially designing the root

appointment template.

1.2 Literature Review

1.2.1 Linerature Review for Scheduling in Wireless Network

Due to these emerging real-time applications of wireless networks, there has been

a great interest in the development of scheduling algorithms in wireless networks to

support packets with hard deadlines (see Tarello et al. (2008); Hou et al. (2009);
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Jaramillo et al. (2011); Kang et al. (2013); Yang et al. (2015); Kang et al. (2015);

Singh and Kumar (2016); Aditya and Rahul (2016); Liu and Ying (2016); Ewaisha

and Tepedelenlioğlu (2017); Deng and Hou (2017); Zuo et al. (2017)). In the seminal

work of Hou et al. (2009), Hou, Borkar and Kumar proposed a frame-based framework

to tackle the problem of scheduling packets with hard deadlines and proposed a deficit

counter for each data flow to measure whether the fraction of packets dropped exceeds

the maximum packet dropping rate. Assuming frame-based traffic flows such that

packets arrive at the beginning of each frame and the deadlines are at the end of the

same frame, they proved that a low complexity scheduling algorithm, called Largest-

Debt-First (LDF), is throughput optimal in co-located networks. The frame-based

framework has later been generalized in Jaramillo et al. (2011), where packets may

arrive in the middle of a frame and the deadlines may be earlier than the end of the

frame. An algorithm inspired by the MaxWeight scheduling algorithm Tassiulas and

Ephremides (1993) has been proposed in Jaramillo et al. (2011) and proved to be

throughput optimal. Besides the frame-based traffic models, a geometric approach

has been introduced in Kang et al. (2013) for general packet arrivals and deadline

distributions without the frame structure, and has been used in Kang et al. (2013,

2015); Du and de Veciana (2016) to quantify the efficiency ratio of LDF. Providing

end-to-end hard deadlines in multihop wireless networks has also been studied recently

in Liu and Ying (2016); Singh and Kumar (2016); Deng and Hou (2017), where

decentralized routing and scheduling solutions have been proposed to support end-

to-end hard deadlines.

Despite these significant advances on wireless scheduling with hard deadlines,

only a few work simultaneously addresses both hard deadlines and average power

constraints. For example, Tarello et al. (2008) considers a finite time horizon problem

of finding minimum energy to transmit all packets of each link and proposes the
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optimal policy through dynamic programming; Aditya and Rahul (2016) considers

the problem of transmitting deadline-constrained packets over a single wireless link,

and proposes an online algorithm that minimizes the transmit power; Ewaisha and

Tepedelenlioğlu (2017) considers hard deadlines and average power constraints in a

wireless network with a Bernoulli packet arrival and derives the optimal policy with

the Lyapunov optimization techniques; Zuo et al. (2017) proposes a near optimal

scheduling and power control algorithm assuming that each link has exactly one

packet to transmit in each frame, and the packet arrives at the beginning of the

frame and should be delivered before the end of the frame.

1.2.2 Linerature Review for Scheduling in Healthcare Network

The analytical framework developed in scheduling in healthcare network incor-

porates a number of features, including: (1) capacity optimization in an outpatient

network; (2) a discrete-time queueing network model with multiple classes of patients,

class-specific deadlines, blocking, and fork-join structure; (3) a phase-type representa-

tion of the sojourn time; and (4) a mean-field approximation of the stochastic blocking

process. While each of these features has been studied in the literature, which we

review here, to the best of our knowledge there is no comprehensive framework that

integrates all of them.

Outpatient network. Outpatient scheduling has been well studied in single-

station systems (see the survey paper Cayirli and Veral (2003)). In recent years, a

growing amount of appointment scheduling literature has focused on multi-station

systems (e.g., Wang et al. (2018), Wang et al. (2019), and Diamant et al. (2018)).

At a high level, our context differs from the appointment scheduling research that

assumes control over the timing of each patient’s appointment. In contrast, our setting

requires that we focus on a priori appointment allocation, since (1) each followup

4



appointment is generated stochastically after the previous appointment is complete,

and (2) appointments must be scheduled as soon as possible in keeping with the

destination clinic business model. Hence, scheduling of subsequent appointments of

an itinerary cannot reasonably be optimized, but instead follow an earliest available

appointment protocol.

Wang et al. (2018) study patient scheduling in a two-station system, where patient

care is coordinated between anesthesia and internal medicine. In this paper, similar to

Huang et al. (2015), patient overflows are directly penalized in the objective, whereas

our model endogenizes this effect through network blocking. Kazemian et al. (2017)

uses a simulation approach to perform heuristic real-time advance daily scheduling

of both clinic and surgery visits to minimize provider overtime in a system with

multiple patient classes and service completion deadlines. Deglise-Hawkinson et al.

(2018) study capacity planning in an integrated care environment, but focuses on

patient scheduling to minimize time to obtain the initial appointment, whereas we

model time to complete an itinerary. In addition, a number of dynamic scheduling

papers model customers with different priorities that may consume single or multiple

resources with holding costs for delays or overtime costs (Patrick et al., 2008; Feldman

et al., 2014; Gocgun and Ghate, 2012). However, dynamic scheduling is not feasible

in our context and hence our modeling framework differs significantly.

Hospital scheduling. The literature on hospital patient flow scheduling also con-

siders networks of services like the one in our setting, where patients are routed to

different hospital units, e.g., Bretthauer et al. (2011); Dai and Shi (2019); Chow et al.

(2011); Helm and Van Oyen (2014), just to name a few. These works focus on ca-

pacity planning or scheduling to reduce workload variability, patient delay, and/or

probability of exceeding capacity, where the time to complete treatment is assumed
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to be exogenous to the scheduling policy; we endogenize this completion time to be

dependent on the network blocking in our model.

Huang et al. (2015) study the scheduling of patients to doctors in an ED with

multiple classes of patients with class-dependent deadlines, modeling the system as

a single station (doctor) with a feedback loop for in-process patients and applying

a holding cost to penalize long sojourn times. The authors leverage heavy-traffic

analysis and establish asymptotic optimality for their proposed policies. He et al.

(2019) employ a hybrid robust-stochastic approach to a similar problem setting. In

contrast, we consider a general, large-scale network and, rather than a cost-based

approach, we optimize a completion rate (probability), which requires detailed dis-

tributional modeling. Similar to our work, Baron et al. (2017) develop a queueing

network model with fork-join structure and study the impact of strategic idleness in

reducing the chance of excessively long waits (deadline of 15 - 20 minutes) at each

station. We model deadline violation for the entire itinerary and strategic idleness

is not an option. Bretthauer et al. (2011) explicitly model blocking in hospitals and

develop a queueing-based heuristic for tandem systems. They minimize the total

blocking probabilities when designing capacity strategies, which is different from our

objective.

Queueing network and phase-type service time. Queueing networks with

phase-type distributions have been extensively studied in the literature, e.g., Gómez-

Corral (2004); Liu and Whitt (2012). Phase-type models have also been widely used

in sojourn time approximation (Ozawa, 2006; Haviv and van der Wal, 2008). One of

the most relevant papers is Gue and Kim (2015), which develops a phase-type approx-

imation of the sojourn time distribution for a network of multi-server queues. The

main idea is to approximate service time and waiting time distributions by phase-type

distributions, based on previous work by Asmussen and Møller (2001). Different from
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the queueing models studied in these papers, we consider a discrete-time queue on a

daily time scale. Given our context of root appointment template design, we assume

that arrivals come in a batched manner and each appointment takes one fixed slot.

Further, we incorporate salient features including fork-join structure, time-varying

arrivals and capacities. Due to these differences, the queueing dynamics are signifi-

cantly different from those studied in the literature, requiring the development of new

methods for characterizing the blocking probabilities and sojourn time distributions.

Our numerical study (see Appendix E) shows that traditional methods can result

in a significant bias in calculating the sojourn time distribution. More importantly,

our contribution lies in connecting blocking probabilities with a phase-type model

of sojourn time that is not studied in traditional settings. To facilitate evaluating

the sojourn time distribution, we replace the blocking probability distribution with a

point mass and prove asymptotic convergence.

Mean-field approximation. The final stream of literature related to this paper is

in mean-field approximation. To establish the asymptotic convergence of the blocking

probability distribution to the equilibrium solution of the mean field model, our proof

leverages the Stein’s method framework developed in Braverman and Dai (2017), who

study steady-state diffusion approximations in M/Ph/N + M queue; also see the

tutorial (Braverman et al., 2017) on applying this framework in queueing models and

the references there for this line of work. Gurvich (2014) independently develops a

method to prove a steady-state convergence that is similar to Theorem 1 in Braverman

and Dai (2017). Ying (2018) applies this framework to characterize steady-state

convergence rates to the equilibrium solution of the mean-field model. Gast et al.

(2018) extend Ying (2018) to discrete-time Markov chains. Our discrete-time model

differs from them in two main aspects. First, traditional mean-field analysis assumes

the population size to be constant, whereas the total patient count in our setting
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is random and has an unbounded support in the steady state. This also brings the

challenge when dealing with patient counts outside a bounded set, whereas most

mean-field analysis papers work with bounded sets. Second, the generator of our

mean-field model does not have a continuous second derivative but its first derivative

can be proved to be Lipschitz. Dai and Shi (2017); Feng and Shi (2018) also apply

Stein’s framework for steady-state approximation in discrete-time queues, but they

focus on diffusion approximation; we need the point mass to facilitate calculation,

and hence, focus on the mean-field approximation.

1.3 Summary of Contributions

We first summarize the contributions to the scheduling in wireless networks in the

following.

� We consider a frame-based time-slotted L-link system, in which a frame consists

of T consecutive time slots. Packets arrive at the beginning of each frame, and

need to be delivered before their deadlines. We assume the packets that arrive

at the same frame and for the same link have the same deadline, but the dead-

line can vary from frame to frame. We further assume the channel conditions

are static within a frame and vary from frame to frame. Given such network

and traffic models, we formulated an optimization problem similar to that in

Jaramillo et al. (2011), which is a variation of the classical MaxWeight prob-

lem. Following the standard Lyapunov analysis, it is shown that any scheduling

algorithm that solves the optimization problem is throughput optimal.

� Using exhaustive search to solve the MaxWeight optimization problem is compu-

tationally expensive. Even for a single link system, the computational complex-

ity is proved to be exponential in the summation of the deadline and the number
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of packets. Therefore, we propose a greedy algorithm, named PDMax. PDMax

schedules packet deadlines and incremental weight gains calculated by solving

an optimal power control problem defined for a single link. We prove PDMax

is throughput optimal, and has computational complexity O(LT log(LT )). We

remark that in contrast to Hou et al. (2009); Jaramillo et al. (2011), the objec-

tive function of our MaxWeight problem is not linear in the number of sched-

uled packets because the transmit power is a nonlinear function of the number

of packets transmitted. Because of that, packet-by-packet greedy algorithms

(such as those in Hou et al. (2009); Jaramillo et al. (2011)) are no longer the

right approach. The key innovation of PDMax is to map packet scheduling to

time-slot scheduling where time slots are allocated to links in a greedy fash-

ion based on the incremental gains. The incremental gains of a link are the

increases of the objective function when more time slots are allocated to the

link. They are calculated by solving an optimal power control problem whose

objective function again is not linear (but is convex).

� Our simulation results confirm that PDMax outperforms the greedy-MaxWeight

algorithm and LDF algorithm by achieving higher throughput and lower average

transmit power with significant margins.

Next we summarize both the technical and piratical contributions to the schedul-

ing in healthcare networks.

� Analytical framework. We introduce a discrete-time queueing network for mod-

eling patient flow in Section 3.1.1 and formulate the template allocation problem

to maximize itinerary completion as a stochastic optimization program in Sec-

tion 3.1.2, with the objective function depending on the entire distribution of

the itinerary completion time. The objective is non-linear in the template al-
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location decision variables since a patient’s itinerary completion time not only

depends on those who started their itineraries earlier but also on patients who

enter the network later. These complex dynamics play out in the relationship

between the template allocations and the blocking in the network of services,

which is itself a random process.

As a building block, we first show that, in complex networks with all key features

being incorporated (time-varying arrivals and capacities, stochastic itineraries,

parallel appointments), we are able to characterize the itinerary completion time

via a doubly-stochastic phase-type distribution, which is driven by the stochastic

blocking process in the network. Different from previous works that directly

assume phase-type service times or approximate sojourn time with phase-type

approximations, our characterization is exact in such complex networks.

� Solution algorithm. Although the itinerary time characterization is exact, there

is no simple closed-form analytical expression in the appointment allocation de-

cisions. Combined with the large state space of the queueing network, it makes

traditional optimization methods intractable. To overcome this intractabil-

ity, we use a policy iteration framework to approximately solve the large-scale

stochastic optimization. In the policy evaluation step, instead of evaluating

the doubly-stochastic distribution that involves a large matrix power calcula-

tion and numerical integration over the distribution of the blocking process, we

leverage a mean-field model to replace the blocking distribution with a point

mass. This significantly reduces the computational burden. We provide a rig-

orous justification for this replacement by characterizing the convergence rate

of the blocking process in Chapter 4. Our convergence proof builds upon the

Stein’s method framework (Braverman and Dai, 2017; Ying, 2018; Gast et al.,
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2018), but requires non-trivial adaption to account for the fact that the total

patient count in our model is random and can go unbounded; the conventional

mean-field model assumes a fixed population size.

In the policy improvement step, we optimize capacity allocation in each iteration

with the itinerary time distribution calculated using blocking probabilities from

the previous iteration. This allows us to formulate the non-linear stochastic

optimization as a linear program (LP) for each iteration. We add constraints to

ensure that the blocking probabilities in each iteration do not deviate from the

previous step too much, with provable bounds. We integrate the policy evalua-

tion and policy improvement steps in a framework that iteratively updates the

template to maximize the itinerary completion rates. In addition to the math-

ematical justifications, we show via a comprehensive numerical study that (1)

the policy evaluation is remarkably accurate, and (2) the iterative optimization

generates significantly improved templates in a range of different settings. We

also show the importance of incorporating the features that make our problem

difficult (e.g. parallel appointments, evaluating the full distribution of itinerary

time) by showing that our comprehensive framework significantly outperforms

simpler optimization approaches that ignore these features.

� Value of an integrated approach. Through our case study at the Mayo Clinic,

we show that our optimization approach can significantly improve the itinerary

completion rates and is computationally efficient for realistic network sizes (e.g.,

26 stations). Furthermore, we identify the drivers of the improvement from our

optimal template compared to the current practice, showing the value of our

integrated approach. We show that template design is a multifaceted problem,

and that ignoring any of the complex drivers of itinerary completion failure
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can lead to poor performance. The necessity of simultaneously accounting for

all these complexities makes simpler optimizations and manual template design

fall well short of the optimal, which highlights the practical importance of our

comprehensive optimization algorithm.

� Broader applications. While we provide an example of how to apply our mod-

eling framework to a destination care center, the concept of managing differ-

entiated deadlines in a stochastic queueing network applies more broadly to a

number of other business settings. Examples include new product introduction

(NPI) and job shop prototyping with multiple customers. In NPI, a new product

is often started with the required steps not entirely know in advance. Different

new products will also have different deadlines. Deciding when to start NPI’s

and how much capacity to allocate to them falls squarely within our framework.

In job shop prototyping, different jobs may follow different paths and require

revisits due for rework. Further, jobs from different customers may require

different deadlines. Hence, a similar timing and capacity allocation scheme is

needed.
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Chapter 2

WIRELESS SCHEDULING UNDER DEADLINE AND POWER CONSTRAINTS

2.1 Co-Located Wireless Network

Base Station

Figure 2.1: A Co-Located Network with Three Links and Frame Size 6.

We consider a co-located wireless network, e.g. an uplink/downlink cellular net-

work as described in the following. The network consists of L links (also called users)

which share a single frequency band. Assume the network is time-slotted. In each

time slot, at most one link is allowed to transmit due to interference. We further as-

sume time slots are grouped into frames such that each frame consists of T consecutive

time slots. Throughout this paper, we define L = {1, 2, . . . , L} and T = {1, 2, . . . , T}.

We assume packets arrive at the beginning of each frame. Let Al(j) denote the

number of packets arrive at link l at the beginning of frame j. We assume Al(j) are

independently and identically distributed over frames and independent across links.

Furthermore, we assume Al(j) ≤ Amax for all j and l, and the Al(j) packets have

the same deadline 1 ≤ Dl(j) ≤ T which however can vary from frame to frame

and from link to link. Each link l is associated with two constraints determined by

the upper layer applications and devices: (1) the quality of service (QoS) constraint

such that the packet dropping probability should not exceed pl, i.e. the long-term

average packet delivery ratio should be at least 1 − pl; and (2) the average power
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constraint such that the long-term average transmit power of link l should not exceed

1
T
βl (Watt). 1

We further assume that the link bandwidth is Bl, and in the j-th frame, the chan-

nel gain of the link is Gl(j) and the noise level at the receiver is N l(j) throughout the

frame. Without loss of generality, we assume N l(j) = 1 and use Gl(j) to represent

the channel condition so as to simplify the notations. Under the additive white Gaus-

sian noise channel, in the t-th time slot, the relationship between the bandwidth Bl,

channel condition Gl(j) = gl, transmit power wlt, and number of packets transmitted

slt is

Bl log2 (1 + wltgl) =
sltZl
∆t

,

where Zl is the packet size and ∆t is the time slot duration. Equivalently, we have

wlt =
1

gl

(
2
slt

Zl
Bl∆t − 1

)
.

We assume Zl
Bl∆t

= 1 and define function f : R+ × Z+ → R+ as:

f(x, y) =
1

x
(2y − 1) .

It follows that wlt = f(gl, slt).

Our model can be applied to the video streaming and conferencing scenarios, where

the data arrives frame by frame. The video processing system can tolerate certain

packet loss ratio. For users with mobile devices such as cellphones and laptops,

maintaining a low average transmit power usage is critical to extending the battery

life.

1Denote the power level of link l in each time slot as f t (Watt). This constraint is equivalent to

E
[∑

t∈T f t

]
≤ βl.
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2.2 Problem Formulation

In this section, we introduce the mathematical formulation of the problem, which

is similar to Jaramillo et al. (2011).

We first define the rate-power region C(a, d, g) under given arrival A = a, deadline

D = d, channel conditions G = g, which is analogous to the capacity region. The

elements in the rate-power region are the tuples (µ, φ) = ({µl}l∈L, {φl}l∈L), where µl

and φl are long term average transmission rate and power level that can be achieved

through time sharing among elements in the set of schedule s that satisfies the fol-

lowing constraints:

∑
1≤t≤dl

slt ≤ al, ∀l ∈ L (2.1)

∑
dl<t≤T

slt = 0,∀l ∈ L (2.2)

∑
l∈L

1{slt>0} ≤ 1,∀t ∈ T , (2.3)

which is defined as S(a, d). Note that inequality (2.1) states that the number of pack-

ets link l transmits cannot exceed the total number of available packets; inequality

(2.2) states that after deadline dl, link l has no packets to transmit; and inequality

(2.3) states that at most one link can be scheduled to transmit at each time slot. In

other words, C(a, d, g) is the convex hull of S(a, d), which can be written as

C(a, d, g) =

{
(µ̄, φ̄)| there exists p(s) such that

∑
s̄∈S(a,d)

p(s̄)
∑
t∈T

s̄lt ≥ µ̄l, ∀l

∑
s̄∈S(a,d)

p(s̄)
∑
t∈T

f(gl, s̄lt) ≤ φ̄l, ∀l

}
,
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where p(s) = Pr(S = s) is a probability distribution of the feasible schedule S. The

rate-power region under given joint distribution

p(a, d, g) = Pr(A = a,D = d,G = g}

is

C =

{
(µ, φ)|µl =

∑
(a,d,g)

µ̄(a,d,g)p(a, d, g),

φl =
∑

(a,d,g)

φ̄(a,d,g)p(a, d, g),

for some
(
µ̄(a,d,g), φ̄(a,d,g)

)
∈ C(a, d, g)

}
.

After defining the rate-power region, our task can be formulated as finding a tuple

(µ, φ) in the rate-power region satisfying the QoS and average power constraints,

which can be written as

max
(µ,φ)∈C

1

s.t. µl ≥ λl(1− pl),∀l ∈ L

φl ≤ βl,∀l ∈ L,

(2.4)

where λl is the mean of the packet arrival process Al(j).

Problem (2.4) can be solved by the virtual queue techniques. Define S(j) to be

the schedule adopted in frame j where Slt(j) is the number of packets link l transmits

in time slot t of frame j. Each link maintains two counters (virtual queues): a deficit

queue δl(j) and a power queue θl(j). The two virtual queues keep track of the

progress of fulfilling the QoS constraints and the average transmit power constraints.

They are updated at the end of each frame as follows:

δl(j + 1) =

[
δl(j) +Al(j)(1− pl)−

∑
t∈T

Slt(j)

]+

(2.5)

θl(j + 1) =

[
θl(j)− βl +

∑
t∈T

f (Gl(j),Slt(j))

]+

. (2.6)
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Note that due to the omission of time slot duration in the definition of rate-power

region, for consistency, we do not need to scale θl with time slot duration.

By Theorem 1 in Jaramillo et al. (2011), when the expected values of the virtual

queue sizes are finite, both QoS and average power constraints are satisfied, which is

stated in the following lemma.

Lemma 2.2.1. If a joint power-control and scheduling algorithm selects schedule s∗

at frame j such that

s∗ ∈ arg max
s∈S(a,d)

∑
l∈L

∑
t∈T

δl(j)slt − log(θl(j) + 1)f(Gl(j), slt) (2.7)

where (A(j),D(j)) = (a, d) and update δ(j) and θ(j) with (2.5) and (2.6), then the

algorithm is throughput optimal. �

The proof follows the standard Lyapunov drift analysis (a comprehensive intro-

duction of the Lyapunov drift method can be found in Srikant and Ying (2014)), and

is presented in appendix 2.6.1 for the completeness of the paper.

Remark: An algorithm that solves (2.7) with θl(j) as the weight in the second

term is also throughput optimal, which can be proved by considering a quadratic

Lyapunov function. We use log(θl(j) + 1) in the objective function instead of θ

because f(·, ·) is an exponential function in slt, which brings the issue that the weight

θ for the virtual power queue grows too fast. With large θ, the algorithm will choose

to transmit small amount of packets, which results in slow convergence rates. This

is shown in Figure 2.2, where the parameters are chosen as described in Section 2.4

with a delivery ratio (i.e. 1− pl) target of 0.9 and an average transmit power target

of 2 Watt under arrival rate 17 packets/frame for each user.

Remark: Solving (2.7) with exhaustive search, even for a single link case, has a

computational complexity of order O(ea+T ), with the assumption that there are a

packets to transmit by the deadline of T . The proof is presented in appendix A.
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(a) Comparison of Delivery Ratio Dynamics.
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(b) Comparison of Average Transmit Power Dynamics

Figure 2.2: Comparison of the Convergence Rates with θ and log(θ + 1) in the

Objective Functions.

Remark: If we replace the objective function (2.7) by

max
∑
t∈T

δl(j)slt
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(i.e. ignore the power queue), and assume at most one packet can be transmitted in

each time slot, then the problem becomes the classical job scheduling problem (e.g.

see chapter 6.6.2 of Brassard and Bratley (1996)), which is to schedule a set of jobs

such that each job is associated with a profit and a deadline. A well-known greedy

algorithm that maximizes the total profit is to iteratively schedule the job with the

maximum profit among all remaining jobs in the idle time slot that is closest to its

deadline. For example, consider three jobs

{(10, 2), (1, 1), (2, 2)},

where the first number represents the profit and the second number represents the

deadline. The greedy job scheduling algorithm first schedules job 1 at time slot 2,

and then job 3 at time slot 1. In our setting, the profit is the virtual queue length

of the link the packet is associated with. However, due to power control, a link can

transmit multiple packets in one time slot and the “profits” of transmitting multiple

packets are not additive. To overcome this issue, we transfer packet scheduling to

time-slot scheduling and assume that link l has dl virtual jobs with the same deadline

dl. The profit of the kth virtual job of link l is set to be ∆Wl,k such that

k∑
t=1

∆Wl,t = max
sl

k∑
t=1

δl(j)slt − log(θl(j) + 1)f(Gl(j), slt)

subject to constraints (2.1) and (2.2) for link l. Therefore, ∆Wl,k is the incremental

gain when the number of time slots assigned to link l increases from k − 1 to k,

and can be calculated by solving a single link power control problem (see details in

the algorithm description). The virtual jobs are then scheduled using the greedy

algorithm mentioned earlier. However, one unique constraint we have is that to get

“profit” ∆Wl,k from virtual job k, link l should have also scheduled the virtual jobs

from 1 to k − 1 because ∆Wl,k is calculated based on the assumption that link l is
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Table 2.1: Summary of Notations

Notation Description

s = [slt]l∈L,t∈T
Schedule for number of packets

link l transmits at time slot t

δ = [δl]l∈L Deficit queue length for link l

θ = [θl]l∈L Power queue length for link l

γ = [γl]l∈L Log-scaled power queue length for link l

W = [Wl,t]L×T Weight matrix

∆W = [∆Wl,t]L×T Incremental weight gain matrix

bxc max{r : r ∈ Z, r ≤ x}

dxe bxc+ 1

[x]+ max(0, x)

given k time slots to transmit. We will show that for each l, ∆Wl,k is decreasing in

k. Therefore, under PDMax, virtual job k of link l will be scheduled only if virtual

jobs 1 to k − 1 have also been selected.

2.3 PDMax: Power-Deadline Constrained MaxWeight

In this section, we introduce our joint power-control and scheduling algorithm,

PDMax, to support both the QoS constraint and the average transmit power con-

straint. PDMax is throughput optimal for the traffic models defined in Section 2.1.

For the convenience of readers, we summarize the notations in Table 2.1. Note that

the d·e opereator is not the traditional ”ceiling” operator. In our definition, if x is an

integer, dxe = x+ 1.
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We present PDMax together with a simple example at each step to help readers

better understand the proposed algorithm. The example is a co-located network with

3 links as shown in Figure 2.1. Each frame consists of T = 6 time slots with the

following virtual queue states and parameters at the beginning of frame j:

� The deficit queue lengths δ = [45, 10, 1],

� The power queue lengths θ = [205, 1, 100],

� The channel conditions g = [501, 1566, 1099],

� Number of packet arrivals a = [20, 11, 3],

� Deadlines for each link d = [4, 6, 4],

� Packet dropping rate requirements p = [0.1, 0.2, 0.3],

� Average power constraints β = [20, 30, 40].

PDMax solves the optimization problem (2.7) for each frame. We now drop the frame

index j to simplify the notations.

Step 1: We first calculate x∗l for all links l ∈ L,

x∗l =

[
min

{
arg max

x∈Xl
δlx− γl (2x − 1)

}]+

(2.8)

where γl = 1
gl

log(θl + 1) and

Xl =

{
0, al,

⌊
log2

(
δl

γl ln 2

)⌋
,

⌈
log2

(
δl

γl ln 2

)⌉}
. (2.9)

Figure 2.3: The Process of Generating List V ∗.
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We then generate weight matrix W = {Wl,k}l∈L,k∈K and incremental weight gain

matrix ∆W = {∆Wl,k}l∈L,k∈K such that

Wl,k =


0 if x∗l = 0

k
(
δlx
∗
l − γl(2x

∗
l − 1)

)
if x∗l ≥ 1, k ≤ al

x∗l

δlal + γlk
(

1− 2b
al
k
c (1 + al

k
− bal

k
c
))

if x∗l ≥ 1, k > al
x∗l

(2.10)

and

∆Wl,k =


Wl,k −Wl,k−1 if k > 1

Wl,k if k = 1.

(2.11)

Remark: Recall that the objective of PDMax is to maximize the total weight

defined by deficit queues and power queues in (2.7). In the calculation above, Wl,k

represents the maximum weight gain of allocating k time slots to link l, and ∆Wl,k

represents the incremental weight gain when the number of time slots allocated to

link l increases from k − 1 to k.

Example for Step 1: As for the simple example and link 1, we have

γ1 =
1

G1

log(θ1 + 1) = 0.0153

X1 =

{
0, a1,

⌊
log2

(
δ1

γ1 ln 2

)⌋
,

⌈
log2

(
δ1

γ1 ln 2

)⌉}
= {0, 20, 12, 13}

x∗1 =

[
min

(
arg max
x∈X1

δ1x− γ1 (2x − 1)

)]+

= 12

Thus for link 1 and k = 1, we will have

W1,1 = k
(
δ1x
∗
1 − γ1(2x

∗
1 − 1)

)
= 477.17

∆W1,1 = W1,1 = 477.17

For link 1 and k = 2, we will have

W1,2 = δ1a1 + γ1k
(

1− 2b
a1
k c
(

1 +
a1

k
−
⌊a1

k

⌋))
= 868.61

∆W1,2 = W1,2 −W1,1 = 391.44
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Step 2: We sort the entries of the ∆W matrix, which contains the incremental

weight gains ∆Wl,k for all links l ∈ L and number of time slots k ∈ T . Each entry

∆Wl,k also represents a virtual job. PDMax assigns a subset of all virtual jobs to

the T time slots in the frame with at most one virtual job per time slot. Note that

each packet is associated with a deadline and will be dropped if missing the deadline.

Therefore ∆Wl,k can only be scheduled at a time slot no later than the dl-th time slot.

We consider ∆Wl,k in a descending order, where ties are broken according to index k.

For given ∆Wl,k, we check the time slots no later than dl. If there are multiple empty

time slots, we assign ∆Wl,k to the latest one (i.e., the one closest to dl); otherwise,

we skip ∆Wl,k. Let

V ∗ = [(l1, k1), . . . , (lT , kT )]

denote the ordered list of subscriptions associated with the incremental gains assigned

to the T time slots. The number of time slots allocated to each link can be calculated

from V ∗.

Remark: As discussed earlier, this step is motivated by the well-known greedy

scheduling algorithm for jobs with profits and deadlines Brassard and Bratley (1996),

where the idea is to schedule the most profitable job among the remaining jobs to the

latest possible remaining time slots. PDMax views ∆Wl, a T -dimensional vector, as

the profits of the T virtual jobs belonging to link l.

Example for Step 2: Continue the example in Step 1. The sorted incremental

gains are shown in Table 2.2, where we only include the first seven values. The step-

by-step generation of the ordered list is illustrated in Figure 2.3, where the process

takes 7 iterations indexed by i. Notice that ∆W3,1 was skipped because there is no

idle time slot before its deadline when it was considered.

Step 3: In this step, the algorithm decides the link and transmit power for each

time slot in a frame. For link l, the number of time slots kl assigned to link l is first
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Table 2.2: First Seven Largest Elements in ∆W

∆W1,1 ∆W1,2 ∆W2,1 ∆W1,3 ∆W1,4 ∆W3,1 ∆W2,2

477.17 391.44 108.69 26.53 2.961 2.958 1.25

calculated from the ordered list V ∗ as the following, which is to count the number of

times link l appears in V ∗:

kl =
∑

(l′ ,k′ )∈V ∗
1{l′=l}.

Then link l transmits packets as follows:

1. If 0 < kl ≤ al
x∗l

and x∗l 6= 0, then link l transmits x∗l packets with power

1
gl

(
2x
∗
l − 1

)
in each assigned time slots;

2. If kl >
al
x∗l

and x∗l 6= 0, then in each of the first klc assigned time slots, link l

transmits
⌊
al
kl

⌋
packets with power 1

gl

(
2

⌊
al
kl

⌋
− 1

)
, and in each of the remaining

time slots, link l transmits
⌈
al
kl

⌉
packets with power 1

gl

(
2

⌈
al
kl

⌉
− 1

)
, where c =

1−
(
al
kl
−
⌊
al
kl

⌋)
.

Remark: The intuition is that that x∗l is the optimal number of packets to be

transmitted if only one time slot is assigned to link l. Therefore, if link l has enough

packets to transmit (case (1)), then it always sends x∗l packets in each time slot. If

link l does not have enough number of packets to transmit (case (2)), then a water-

filling strategy that balances the number of packets transmitted in each time slot is

optimal.

Example for Step 3: In our example, we have that k = [4, 2, 0] and x∗ =

[12, 14, 8]. Therefore,

1. For link 1, k1 = 4 > a1

x∗1
and c = 1. Thus link 1 should transmit

⌊
a1

k1

⌋
= 5

packets in each of the 4 time slots assigned.
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2. For link 2, k2 = 2 > a2

x∗2
and c = 1− a2

k2
+
⌊
a2

k2

⌋
= 0.5. Thus link 2 should transmit⌊

a2

k2

⌋
= 5 packets in the first assigned time slot and

⌈
a2

k2

⌉
= 6 packets in the

second assigned time slot.

3. For link 3, since k3 = 0, it is not scheduled in the current frame.

Finally we generate the schedule for current frame as

s∗ =


5 5 5 5 0 0

0 0 0 0 5 6

0 0 0 0 0 0

 .

Step 4: At the end of the frame, we update the deficit queue and power queue

for each link according to (2.5) and (2.6).

Example for Step 4: In the example, for link 1, we have

δ1(j + 1) = [45 + 20× 0.9− 20]+ = 43

θ1(j + 1) = [1− 20 + 0.2475]+ = 0.

Theorem 2.3.1. The schedule s∗ generated by PDMax is a solution to optimization

problem (2.7). Therefore, PDMax is throughput optimal. The computational com-

plexity of PDMax is O(LT log(LT )). �

The proof of throughput optimality is presented in the appendix and consists of

two steps. In the first step, we compute the closed-form solution for a single link with

k time slots to transmit. In the second step, we prove that the greedy approach solves

the network-wide optimization problem based on the closed form solution from the

first step. We then analyze the computational complexity of PDMax to conclude the

proof of the theorem.
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2.4 Numerical Results

We simulated a co-located wireless network with L = 6 users and frame size of

T = 10 time slots. We assumed bandwidth B = 20MHz, packet size Z = 1.6Mbits,

and time slot length ∆t = 80ms. Each channel was assumed to be a Gaussian channel

with mean of 20 dB/Watt and variance of 10 dB/Watt2. We compared PDMax with

the greedy-MaxWeight algorithm and the Largest-Deficit-First (LDF) algorithm.

The greedy-MaxWeight algorithm prioritizes links according to the value of

h(δl, γl, x
∗
l ) = δlx

∗
l − γl

(
2x
∗
l − 1

)
in order to achieve a higher total weight. When a link is selected, it iteratively

allocates its packets to the available time slots before its deadline. At the rth iteration,

it allocates min{x∗l ,Al(j) − (r − 1)x∗l } packets to the last available time slot before

its deadline, where x∗l is defined in (2.8) and is the optimal number of packets to

transmit over a single time slot for link l.

Consider the example in Section 2.3. Since h(δ1, γ1, x
∗
1) = 263.03, h(δ2, γ2, x

∗
2) =

129.54, and h(δ3, γ3, x
∗
3) = 2.64, link 1 has the highest priority. The greedy-MaxWeight

algorithm first figures out the available time slots for link 1 are slot 1, 2, 3, 4. Then

starting from the last available one which is the 4th time slot, link 1 allocates

x = min(x∗1, a1) = min(12, 20) = 12 packets. In the second last available time slot,

which is the 3rd time slot, it allocates x = min(x∗1, a1 − x∗1) = min(12, 20 − 12) = 8

packets. After that, the greedy-MaxWeight algorithm moves to link 2 which is second

on the priority list. The available time slots for link 2 are 1, 4, 5, 6. Link 2 allocates

min(14, 11) = 11 packets to the 6th time slot. For link 3, it schedules 3 packets in

the 2nd time slot.

In the LDF algorithm, links are prioritized according to deficit queue lengths. We

further require that the average transmit power of link l during each frame is no more
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than 1
T
βl Watt, i.e. the summation of the power level at each time slot (”energy”) is

at most βl. The number of packets to be transmitted at each time slot then depends

on the number of remaining packets and the amount of remaining energy. For link

l, starting from the last available time slot, in each time slot available to link l, it

schedules x = min(āl, log2

⌊
1 + β̄lGl

⌋
) packets, where āl is the number of packets that

have not been scheduled and β̄l is the remaining energy that has not been reserved.

The algorithm updates the two values to be āl − x and β̄l − (2x−1)
Gl

when moving to

the second last available time slot. The algorithm moves to the next link on the

priority list when one of the three events occurs: 1) the unreserved energy is zero, 2)

all packets have been scheduled, and 3) current time slot is later than the deadline

dl.

Consider the example in Section 2.3. Link 1 has the highest priority. LDF

first figures out the available time slots for link 1, which are time slots 1, 2, 3, 4.

LDF considers the 4th time slot, and schedules x = min(ā1, log2

⌊
1 + β̄1G1

⌋
) =

min(20, log2b1 + 20× 501c) = 13 packets. The algorithm then updates ā1 to be

ā1 − x = 7 and β̄1 to be β̄1 − 2x−1
Gl

= 3.65. Similarly, LDF schedules

x = min(ā1, log2

⌊
1 + β̄1G1

⌋
) = min(7, log2b1 + 3.65× 501c) = 7

packets in the 3rd time slot which is the second last available one. After that, all

packets belonging to link 1 have been scheduled, so LDF moves to link 2 which is

the second on the priority list. The available time slots for link 2 are 1,2,5,6. LDF

schedules min(ā2, log2

⌊
1 + β̄1G1

⌋
) = min(11, log2b1 + 30 ∗ 1566c) = 11 packets for

time slot 6. For link 3, LDF schedules 3 packets in the 2nd time slot.

We compared the performances of the PDMax, greedy-MaxWeight and LDF on

three performance metrics: arrival rate, delivery ratio and average transmit power

level. We conducted three sets of simulations. In each set of the simulations, we fixed
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one of the performance metrics and then plotted the tradeoff curve of the remaining

two quantities for each of the three algorithms. For each set of parameters, we

simulated 100, 000 frames and set deadlines for each link in each frame as a discrete

uniform random variable drawn from
[
T
2
, T
]
. The number of packets arrived at the

beginning of each frame and channel condition are independently and identically

distributed for all links.

1. In the first scenario, we fixed the arrival rate and plotted the delivery ratio

versus the average transmit power. In particular, we set the number of arrivals

at the beginning of each frame to be a binomial random variable with mean

20 for all the links. We varied the minimum delivery ratio, i.e. 1 − pl, from

0.65 to 0.975 with step size of 0.025 for all links. For a given delivery ratio, we

varied the average power constraint in our simulations to identify the minimum

average power level required to satisfy the minimum delivery ratio. The results

are shown in Figure 2.4, where the power level for a given delivery ratio is the

minimum average power level required by the corresponding algorithm. From

the figure, we can see that to guarantee a delivery ratio of 0.9, PDMax requires

average transmit power to be at least 5.5 Watt, while the greedy-MaxWeight

algorithm requires at least 80 Watt and the LDF algorithm requires more than

100 Watt. Therefore, PDMax only requires 5% of the average transmit power

required by the other two algorithms.

2. In the second scenario, we plotted the arrival rate versus the average transmit

power with a fixed delivery ratio. In particular, we set the average power

constraint to be 2 Watt for all links and then varied the minimum delivery

ratios from 0.65 to 0.975 with a step size of 0.025 for all links. For each delivery

ratio, we varied the arrival rate to identify the maximum arrival rate that each
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algorithm can support for given delivery ratio and average power constraint.

The results are shown in Figure 2.5. Again we can observe that PDMax can

support significantly higher arrival rates under all delivery ratios; and in most

cases, it doubles the maximum arrival rate compared to LDF.

3. In the third scenario, we plotted the arrival rate versus the average transmit

power with a fixed delivery ratio. We set the delivery ratio to be 0.9 and varied

the arrival rate from 10 to 20 with a step size of 1 for all links. For each arrival

rate, we varied the average power constraint for all links to identify the minimum

average power required to support the arrival rate with given delivery ratio. The

result is shown in Figure 2.6. We again observe that the average transmit power

required by PDMax is much smaller than the other two algorithms.
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Figure 2.4: Comparison of the Minimum Average Transmit Power Required for

Supporting a Fixed Arrival Rate.

In a summary, all three simulation results show that PDMax significantly outper-

forms the other two algorithms.
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2.5 Generalization of PDMax Algorithm

Our algorithm can be further generalized in several ways. We address two of them.

� For a general value of Zl
Bl∆t

, let αl = 2
Zl
Bl∆t , then

fl(x, y) =
1

x
(αyl − 1) .

We can substitute 2x, log2(·) and ln 2 with αxl , logαl(·) and lnαl for each link l

in the algorithm and in the proof, respectively.

� In practice, the maximum transmit power is finite, which is equivalent to that

the maximum number of packets that can be transmitted in each time slot is

finite, i.e. slt ≤ smax
l . We can add smax

l to the set Xl in step 1 of the algorithm.

2.6 Proofs

2.6.1 Proof of Lemma 2.2.1

We prove that if an algorithm solves the optimization problem defined in (2.7),

then for any µ and φ such that

(µ+ ε, φ− ε) ∈ C (2.12)

for some ε > 0, the virtual queues (δl(j),θl(j)) defined in (2.5) and (2.6) are positive

recurrent.

We consider the following Lyapunov function V : RL
+ × RL

+ → R+

V (δ, θ) =
∑
l∈L

(
1

2
δ2
l +

∫ θl

0

log(x+ 1)dx

)
.
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Define θ̃l = θl +
∑

t∈T f (gl, s
∗
lt(j)) − βl and Ãl(j) = Al(j)(1− pl), then we have the

following:

E

V (δ(j + 1),θ(j + 1))− V (δ(j),θ(j))

∣∣∣∣∣∣∣
δ(j) = δ

θ(j) = θ




≤
∑
a,d,g

∑
l∈L

1

2

(
δl + ãl −

∑
t∈T

s∗lt(j)

)2

− 1

2
δ2
l

+

∫ [θ̃l]
+

θl

log(x+ 1)dx

)
p(a, d, g)

≤
∑
a,d,g

∑
l∈L

1

2
ã2
l +

1

2

(∑
t∈T

s∗lt(j)

)2

+ δl

(
ãl −

∑
t∈T

s∗lt(j)

)

+

∫ [θ̃l]
+

θl

log(x+ 1)dx

)
p(a, d, g).

For θl > βl, we have that
[
θ̃l

]+

= θ̃l. Assuming θl > βl, by the extreme value

theorem, we have ∫ [θ̃l]
+

θl

log(x+ 1)dx

≤
(
θ̃l − θl

)
log
(
θ̃l + 1

)
=
(
θ̃l − θl

)
log (θl + 1) +

(
θ̃l − θl

)
log

(
θ̃l + 1

θl + 1

)
,

where (
θ̃l − θl

)
log

(
θ̃l + 1

θl + 1

)

≤

(∑
t∈T

f(gl, al)− βl

)
log

(
1 +

∑
t∈T f(gl, al)− βl

βl + 1

)
:= C1(a, d, g)

and C1(a, d, g) is independent of the lengths of the virtual queues. can be bounded

by a constant independent of δl and θl because θl > βl and θ̃l − θl is bounded.
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For the case θl ≤ βl, by adding and subtracting the term
(
θ̃l − θl

)
log (θl + 1), we

can have∫ [θ̃l]
+

θl

log(x+ 1)dx =
(
θ̃l − θl

)
log (θl + 1)

+

∫ [θ̃l]
+

θl

log(x+ 1)dx−
(
θ̃l − θl

)
log (θl + 1) ,

where ∫ [θ̃l]
+

θl

log(x+ 1)dx−
(
θ̃l − θl

)
log (θl + 1)

≤

(∑
t∈T

f(gl, al)

)
log

(
1 +

∑
t∈T

f(gl, al)

)

+

∣∣∣∣∣∑
t∈T

f(gl, al)− βl

∣∣∣∣∣ log(βl + 1) := C2(a, d, g)

and C2(a, d, g) is independent of the lengths of the virtual queues. Therefore, we have

E

V (δ(j + 1),θ(j + 1))− V (δ(j),θ(j))

∣∣∣∣∣∣∣
δ(j) = δ

θ(j) = θ




≤
∑
a,d,g

∑
l∈L

p(a, d, g)

(
δl

(
ãl −

∑
t∈T

s∗lt

)

+ log(θl + 1)

(∑
t∈T

f (gl, s
∗
lt(j))− βl

)

+

1

2
ã2
l +

1

2

(∑
t∈T

s∗lt(j)

)2

+ C1(a, d, g) + C2(a, d, g)

 .

Following the definition of the rate-power region C and condition (2.12), we get

E

V (δ(j + 1),θ(j + 1))− V (δ(j),θ(j))

∣∣∣∣∣∣∣
δ(j) = δ

θ(j) = θ




≤− ε
∑
l∈L

(δl + log(θl + 1)) + C ′,

where C ′ is a constant independent of δ and θ. From Theorem 3.3.7 in Srikant and

Ying (2014), we can conclude that the process is positive recurrent.
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2.6.2 Proof of Theorem 2.3.1

To prove the main theorem, we first prove following lemmas concerning the power

control of a single link with k time slots for transmitting packets.

Lemma 2.6.1. Consider a link with kx > 0 packets to transmit over k time slots,

and define set

Y(k)
(kx) =

{
y : y = [y1, . . . , yk],

k∑
t=1

yt = kx, yt ∈ Z+

}
,

and

y
(k)∗
(kx) = [x, . . . , x].

Then

y
(k)∗
(kx) ∈ arg max

y∈Y(k)
(kx)

H(y),

where

H(y) =
k∑
t=1

δyt − γ(2yt − 1).

Proof. Let us consider a general solution

y = [x+ ε1, . . . , x+ εk].

Since
k∑
t=1

yt = kx,

it follows that
k∑
t=1

εt = 0.
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Then maximizing H(y) is equivalent to solving the following optimization problem,

which is convex:

max
ε=[ε1,...,εk]

k∑
t=1

(
δ(x+ εt)− γ(2x+εt − 1)

)
subject to

k∑
t=1

εt = 0.

The Lagrangian of this optimization problem is

L(ε, ξ) = δkx+ γk − γ2x
k∑
t=1

2εt + ξ

k∑
t=1

εt.

From the KKT conditions Srikant and Ying (2014), we have

∂L

∂εt
= ξ − γ2x+εt ln 2 = 0,

ξ
k∑
t=1

εt = 0.

(2.13)

It is easy to see that the only solution to (2.13) is

ε = [0, . . . , 0].

Due to the convexity of the objective function, we conclude that ε∗ = [0, . . . , 0] is the

global maximum, and the lemma holds.

Lemma 2.6.2. Consider a single link with kx + m packets to be transmitted over k

time slots, where 0 ≤ m < k and x > 0. Define

Y(k)
(kx+m) =

{
y : y = [y1, . . . , yk],

k∑
t=1

yt = kx+m, yt ∈ Z+

}
,

and

y
(k)∗
(kx+m) =

x+ 1, . . . , x+ 1︸ ︷︷ ︸
m

, x, . . . , x︸ ︷︷ ︸
k−m

 .
We have

y
(k)∗
(kx+m) ∈ arg max

y∈Y(k)
(kx+m)

H(y).
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Proof. When m = 0, Lemma 2.6.2 is equivalent to Lemma 2.6.1. Let’s consider the

case that m ≥ 1 and use induction. Define

h(x) = δx− γ(2x − 1).

For m = 1, let y = [y1, . . . , yk] be an arbitrary element in Y(k)
(kx+1) and we construct

ŷ by ordering elements in y from the maximum to the minimum such that ŷ1 ≥ · · · ≥

ŷk. It is easy to verify that ŷ ∈ Y(k)
(kx+1) and H(y) = H(ŷ).

For ŷ1, the first element of ŷ, it must satisfy that ŷ1 ≥ x+ 1 other wise
∑k

i=1 ŷi ≤

kx. If ŷ1 = x+ 1, then

H(ŷ) = h(x+ 1) +H (ŷ−1) ,

where ŷ−1 = [ŷ2, . . . , ŷk] and ŷ−1 ∈ Y(k−1)
((k−1)x). From Lemma 2.6.1 we have H

(
ŷ{1}
)
≤

H
(
y

(k−1)∗
((k−1)x)

)
and y

(k−1)∗
((k−1)x) = [x, . . . , x︸ ︷︷ ︸

k−1

]. It follows that

H(y) = H(ŷ) ≤ h(x+ 1) +H
(
y

(k−1)∗
((k−1)x)

)
= H

(
y

(k)∗
(kx+1)

)
.

Now if ŷ1 > x+ 1, then ∃i ∈ {2, . . . , k} such that ŷi < x+ 1, because otherwise,

k∑
t=1

ŷt =
k∑
t=1

yt > kx+ 1

which means y /∈ Y(k)
(kx+1).
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Let ∆u = x + 1 − ŷ1 and ∆d = ŷi − x − 1, where ∆u ≥ 1 and ∆d ≥ 1. It follows

that

h(ŷ1) + h(ŷi)− h(x+ 1)− h(x+ 1 + ∆u −∆d)

=δŷ1 − γ(2ŷ1 − 1) + δŷi − γ(2ŷi − 1)

− δ(x+ 1) + γ(2x+1 − 1)

− δ(x+ 1 + ∆u −∆d) + γ(2x+1+∆u−∆d − 1)

=γ
(
2x+1 + 2x+1+∆u−∆d − 2x+1+∆u − 2x+1−∆d

)
=γ2x+1(2∆u − 1)(2−∆d − 1)

<0.

(2.14)

Let y{1,i} = [y2, . . . , yi−1, yi+1, . . . , yk], and we have

H(y) =H(ŷ)

=h(ŷ1) + h(ŷi) +H(ŷ{1,i})

<h(x+ 1) + h(x+ 1 + ∆u −∆d) +H(ŷ{1,i})

≤h(x+ 1) +H
(
y

(k−1)∗
((k−1)x)

)
=H

(
y

(k)∗
(kx+1)

)
Therefore we conclude that for m = 1

y
(k)∗
(kx+1) = [x+ 1, x, . . . , x︸ ︷︷ ︸

k−1

] ∈ arg max
y∈Y(k)

kx+1

H(y).

To use induction, suppose that for 1 ≤ n < k − 1, we have

y
(k)∗
(kx+n) = [x+ 1, . . . , x+ 1︸ ︷︷ ︸

n

, x, . . . , x︸ ︷︷ ︸
k−n

] ∈ arg max
y∈Y(k)

(kx+n)

H(y).

Now consider m = n+1, and let y = [y1, . . . , yk] be an arbitrary element in Y(k)
(kx+n+1).

We construct ŷ by sorting elements in y from the maximum to the minimum, i.e.

ŷ1 ≥ · · · ≥ ŷk. Then we have H(ŷ) = H(y).
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If ŷ1 = x + 1, then H(ŷ) = h(x + 1) + H
(
y{1}
)
, where ŷ{1} = [ŷ2, . . . , ŷk] and

ŷ{1} ∈ Y(k−1)
((k−1)x+n). By the assumption of the induction, we have

y
(k−1)∗
((k−1)x+n) =[x+ 1, . . . , x+ 1︸ ︷︷ ︸

n

, x, . . . , x︸ ︷︷ ︸
k−1−n

]

∈ arg max
y∈Y(k−1)

((k−1)x+n)

H(y).

It follows that

H(y) =H(ŷ)

=h(x+ 1) +H
(
ŷ{1}
)

≤h(x+ 1) +H
(
y

(k−1)∗
((k−1)x+n)

)
=H

(
y

(k)∗
(kx+n+1)

)
.

If ŷ1 > x+ 1, then ∃i ∈ {2, . . . , k} such that ŷi < x+ 1, because otherwise

k∑
t=1

ŷt =
k∑
t=1

yt > kx+ k,

which means y /∈ Y(k)
(kx+n+1). Let ŷ1 = x+ 1 + ∆u, ŷi = x+ 1−∆d, where ∆u ≥ 1 and

∆d ≥ 1. According to inequality (2.14), we have

H(y) =H(ŷ)

=h(ŷ1) + h(ŷi) +H(ŷ{1,i})

<h(x+ 1) + h(x+ 1 + ∆u −∆d) +H(ŷ{1,i})

≤h(x+ 1) +H
(
y

(k−1)∗
((k−1)x+n)

)
=H

(
y

(k)∗
(kx+n+1)

)
.

Therefore, when m = n+ 1, we conclude

y
(k)∗
(kx+n+1) = [x+ 1, . . . , x+ 1︸ ︷︷ ︸

n+1

, x, . . . , x︸ ︷︷ ︸
k−n−1

] ∈ arg max
y∈Y(k)

(kx+n+1)

H(y).
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In a summary, by induction, we conclude that for 1 ≤ m < k, the following

relation holds:

y
(k)∗
(kx+m) = [x+ 1, . . . , x+ 1︸ ︷︷ ︸

m

, x, . . . , x︸ ︷︷ ︸
k−m

] ∈ arg max
y∈Y(k)

(kx+m)

H(y).

Lemma 2.6.3. Consider a single-link network with a ≥ 1 packets to transmit over k

time slots such that 0 < k ≤ d. The optimal schedule, denoted by s∗, that solves (2.7)

for the single-link network satisfies

1. If x∗ = 0, then s∗ = [0, . . . , 0].

2. If x∗ ≥ 1 and 0 < k ≤ a
x∗

, then

s∗ = [x∗, . . . , x∗].

3. If x∗ ≥ 1 and and k > a
x∗

, then

s∗ =

⌊ak⌋, . . . , ⌊ak⌋︸ ︷︷ ︸
kc

,
⌈a
k

⌉
, . . . ,

⌈a
k

⌉
︸ ︷︷ ︸

k(1−c)

 ,
where c = 1−

(
a
k
−
⌊
a
k

⌋)
.

Proof. It is trivial to prove the result when x∗ = 0 so we focus on the proof when

x∗ ≥ 1.

We first prove that for a single-link network to transmit a certain number of

packets in a given number of time slots, the strategy defined by Lemma 2.6.2 solves

(2.7). Then we prove under such strategy, the more packets transmitted, the higher

the total weight will be.
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Consider 0 < k ≤ a
x∗

, which implies kx∗ ≤ a. Let s be an arbitrary element in

S(a, k). We first construct ŝ from s by ordering elements in si from the maximum to

the minimum, i.e. ŝ1 ≥ · · · ≥ ŝk. It follows that H(s) = H(ŝ). Then we construct

ŝ(i) = [x∗, . . . , x∗︸ ︷︷ ︸
i

, ŝi+1, . . . , ŝk].

It follows that

H(ŝ) = H(ŝ(0)) ≤ · · · ≤ H(ŝ(k)).

Thus we have

H(ŝ(k)) ≥ H(ŝ) = H(s),∀s ∈ S(a, k),

which implies that

s∗ = ŝ(k) = [x∗, . . . , x∗] ∈ arg max
s∈S(a,k)

H(s)

when 1 ≤ k ≤ a
x∗

.

For k > a
x∗

that implies kx∗ > a and a
k
< x∗, we have ba

k
c < da

k
e ≤ x∗. Here we

first prove that if all packets are required to be transmitted, then the strategy defined

in Lemma 2.6.2 is optimal. Let

S(k)
(a) =

{
s : s = [s1, . . . , sk],

k∑
t=1

st = a, st ∈ Z+

}
.

We consider two cases of c in the following.

1. c = 1 implies a
k

=
⌊
a
k

⌋
. From Lemma 2.6.1, we have

s
(k)∗
(a) =

[⌊a
k

⌋
, . . . ,

⌊a
k

⌋]
∈ arg max

s∈S(k)
(a)

H(s).
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2. If 0 < c < 1, then we have a = k
⌊
a
k

⌋
+ k(1 − c) and 0 < k(1 − c) < k. By

Lemma 2.6.2, we have

s
(k)∗
(a) = s

(k)∗
(kb akc+k(1−c))

=

⌊ak⌋+ 1, . . . ,
⌊a
k

⌋
+ 1︸ ︷︷ ︸

k(1−c)

,
⌊a
k

⌋
, . . . ,

⌊a
k

⌋
︸ ︷︷ ︸

kc



=

⌊ak⌋, . . . , ⌊ak⌋︸ ︷︷ ︸
kc

,
⌈a
k

⌉
, . . . ,

⌈a
k

⌉
︸ ︷︷ ︸

k(1−c)

 ∈ arg max
s∈S(k)

(a)

H(s)

Therefore, we have

s
(k)∗
(a) =

⌊ak⌋, . . . , ⌊ak⌋︸ ︷︷ ︸
kc

,
⌈a
k

⌉
, . . . ,

⌈a
k

⌉
︸ ︷︷ ︸

k(1−c)

 ∈ arg max
s∈S(k)

(a)

H(s).

Now we prove the total weight increases as the number of packets transmitted

using the policy in Lemma 2.6.2 increases. Let m ∈ Z+ and m ≤ a− 1. We first note

s
(k)∗
(a−m) =


⌊
a−m
k

⌋
, . . . ,

⌊
a−m
k

⌋
︸ ︷︷ ︸

kcm

,

⌈
a−m
k

⌉
, . . . ,

⌈
a−m
k

⌉
︸ ︷︷ ︸

k(1−cm)

 ∈ arg max
s∈S(k)

(a−m)

H(s),

where cm = 1−
(
a−m
k
−
⌊
a−m
k

⌋)
; and

s
(k)∗
(a−m−1) =


⌊
a−m− 1

k

⌋
, . . . ,

⌊
a−m− 1

k

⌋
︸ ︷︷ ︸

kcm−1

,

⌈
a−m− 1

k

⌉
, . . . ,

⌈
a−m− 1

k

⌉
︸ ︷︷ ︸

k(1−cm−1)


∈ arg max
s∈S(k)

(a−m−1)

H(s),

where cm−1 = 1−
(
a−m−1

k
−
⌊
a−m−1

k

⌋)
. We also consider two cases of cm.
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1. If cm = 1, then
⌊
a−m
k

⌋
= a−m

k
. Since 0 < 1

k
< 1, we have

⌈
a−m−1

k

⌉
= a−m

k
and⌊

a−m−1
k

⌋
= a−m

k
− 1. Thus 1− cm−1 = 1− 1

k
and cm−1 = 1

k
. It follows that

s
(k)∗
(a−m) =

a−m
k

, . . . ,
a−m
k︸ ︷︷ ︸

k



s
(k)∗
(a−m−1) =

a−mk − 1,
a−m
k

, . . . ,
a−m
k︸ ︷︷ ︸

k−1


2. If 0 < cm < 1, then we have a−m

k
>
⌊
a−m
k

⌋
. In addition, a−m

k
≥
⌊
a−m
k

⌋
+ 1

k
,

because otherwise we would have

k

⌊
a−m
k

⌋
< a−m < k

⌊
a−m
k

⌋
+ 1

which means a−m /∈ Z+. Thus

a−m− 1

k
=
a−m
k
− 1

k
≥
⌊
a−m
k

⌋
and

a−m− 1

k
<
a−m
k
≤
⌈
a−m
k

⌉
,

which implies
⌊
a−m−1

k

⌋
=
⌊
a−m
k

⌋
and

⌈
a−m−1

k

⌉
=
⌈
a−m
k

⌉
. It follows that

1− cm−1 =
a−m− 1

k
−
⌊
a−m− 1

k

⌋
=
a−m− 1

k
−
⌊
a−m
k

⌋
=1− cm −

1

k

and

cm−1 =

⌈
a−m− 1

k

⌉
− a−m− 1

k

=

⌈
a−m
k

⌉
− a−m− 1

k

=cm +
1

k
.
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Therefore we have that s
(k)∗
(a−m) and s

(k)∗
(a−m−1), can be specified by the following

form

s
(k)∗
(a−m) =


⌊
a−m
k

⌋
, . . . ,

⌊
a−m
k

⌋
︸ ︷︷ ︸

kcm

,

⌈
a−m
k

⌉
, . . . ,

⌈
a−m
k

⌉
︸ ︷︷ ︸

k(1−cm)



s
(k)∗
(a−m−1) =


⌊
a−m
k

⌋
, . . . ,

⌊
a−m
k

⌋
︸ ︷︷ ︸

kcm+1

,

⌈
a−m
k

⌉
, . . . ,

⌈
a−m
k

⌉
︸ ︷︷ ︸

k(1−cm)−1

 .

Since ⌊
a−m
k

⌋
<

⌈
a−m
k

⌉
< x∗,

we have

h

(⌊
a−m
k

⌋)
< h

(⌈
a−m
k

⌉)
,

which implies that

H
(
s

(k)∗
(a−m)

)
−H

(
s

(k)∗
(a−m−1)

)
= h

(⌈
a−m
k

⌉)
− h

(⌊
a−m
k

⌋)
> 0.

Thus

H
(
s

(k)∗
(a)

)
> · · · > H

(
s

(k)∗
(1)

)
.

Therefore we can conclude that

s
(k)∗
(a) =

⌊ak⌋, . . . , ⌊ak⌋︸ ︷︷ ︸
kc

,
⌈a
k

⌉
, . . . ,

⌈a
k

⌉
︸ ︷︷ ︸

k(1−c)


∈ arg max

s∈S(k)
(a)

H(s)

∈ arg max
s∈S(a,k)

H(s),

when k > a
x∗

, which finishes the proof.
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Lemma 2.6.4. The elements in the incremental weight gain matrix generated in

PDMax satisfies

∆Wl,1 ≥ · · · ≥ ∆Wl,T ≥ 0.

Proof. When x∗l = 0, ∆Wl,1 = · · · = ∆Wl,T = 0. Now assume x∗l ≥ 1. Define

h(x) = δlx− γl(2x − 1) and H(s) =
∑T

t=1 h(st). We consider the following four cases.

1. If k + 1 ≤ a
x∗

and k ≤ a
x∗

, we have

Wl,k −Wl,k−1 = h(x∗).

Thus

∆Wl,1 = ∆Wl,2 = · · · = ∆Wl,b ax∗ c.

2. If k + 1 > a
x∗

and k ≤ a
x∗

, we have

∆Wl,k = Wl,k −Wl,k−1 = h(x∗)

and

∆Wl,k+1 =Wl,k+1 −Wl,k ≤ (k + 1)h(x∗)− kh(x∗) = h(x∗).

Thus in this case, ∆Wl,k+1 ≤ ∆Wl,k.

3. If k + 1 > a
x∗

, k > a
x∗

and k − 1 ≤ a
x∗

, we have

∆Wl,k+1 −∆Wl,k = Wl,k+1 +Wl,k−1 − 2Wl,k.

Since 2Wl,k = H (s(2a, 2k, δ, γ)∗) and ∃s ∈ S(2k)
(2a−ε) for some ε ≥ 0 such that

Wl,k+1 +Wl,k−1 = H(s), we have

H (s(2a, 2k, δ, γ)∗) ≥ H (s(2a− ε, 2k, δ, γ)∗) ≥ H(s),

which is equivalent to ∆Wl,k+1 ≤ ∆Wl,k.
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4. For the last case, if we have the conditions k + 1 > a
x∗

, k > a
x∗

and k − 1 > a
x∗

,

we have

∆Wl,k+1 −∆Wl,k = Wl,k+1 +Wl,k−1 − 2Wl,k.

Since

2Wl,k = H (s(2a, 2k, δ, θ)∗)

and ∃s ∈ S(2k)
(2a) , such that Wl,k+1 +Wl,k−1 = H(s), we have

H (s(2a, 2k, δ, γ)∗) ≥ H(s),

which is equivalent to ∆Wl,k+1 ≤ ∆Wl,k.

In a summary, we have ∆Wl,1 ≥ · · · ≥ ∆Wl,T .

Define V = {V : max{Vt(1) = l} ≤ dl,∀l ∈ L} to be the set of all feasible lists that

satisfies the deadline constraints, where Vt(1) is the first element of Vt. By Brassard

and Bratley (1996), we have that

V ∗ ∈ arg max
V ∈V

∑
t∈T

∆WVt(1),Vt(2), (2.15)

where V ∗ is defined in step 2 of PDMax.

By Lemma 2.6.4, if (l, k) ∈ V ∗ and (l, k − 1) /∈ V ∗ for some k ≥ 2, we can

replace (l, k) by (l, k − 1) in V ∗ without decreasing the value of
∑

t∈T ∆WV ∗t (1),V ∗t (2).

We repeat this for every such (l, k) ∈ V ∗ until for every (l, k) ∈ V ∗ where k ≥ 2, we

have (l, k − 1) ∈ V ∗. By doing so, we get a new list V̄ ∗ such that∑
t∈T

∆WV ∗t (1),V ∗t (2) ≤
∑
t∈T

∆WV̄ ∗t (1),V̄ ∗t (2)

and if (l, k) ∈ V̄ ∗ then (l, k − 1) ∈ V̄ ∗, . . . , (l, 1) ∈ V̄ ∗.

It follows that∑
t∈T

∆WV ∗t (1),V ∗t (2) ≤
∑
t∈T

∆WV̄ ∗t (1),V̄ ∗t (2) =
∑
l∈L

kl∑
t=1

∆Wl,t =
∑
l∈L

Wl,kl ,
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where kl =
∑

t∈T 1{V ∗t (1)=l}(t) denotes number of time slots each link l is allocated in

schedule s∗.

For s∗ generated by PDMax, we have that

H̃(s∗) :=
∑
l∈L

∑
t∈T

hl(s
∗
lt) =

∑
l∈L

kl∑
t=1

hl(s(kl)
∗
lt)

=
∑
l∈L

Wl,kl =
∑
t∈T

∆WV ∗t (1),V ∗t (2),

where

hl(x) = δlx− γl(2x − 1).

Given an arbitrary schedule s
′ ∈ S(a, d), we let

k
′

l =
∑
t∈T

1{s′l,t>0}(t)

denote number of time slots allocated to link l in schedule s
′
. Then we have

∑
t∈T

hl(s
′

lt) ≤ Wl,k
′
l
, ∀l ∈ L.

Following (2.15), we have

H̃(s
′
) =

∑
l∈L

∑
t∈T

hl(s
′

lt) ≤
∑
l∈L

Wl,k
′
l

=
∑
l∈L

k
′
l∑

t=1

∆Wl,t =
∑
t∈T

∆WV
′
t (1),V

′
t (2)

≤
∑
t∈T

∆WV ∗t (1),V ∗t (2) = H̃(s∗),

where V
′

is the list consists of (l, 1), . . . , (l, k
′

l) for each l in which

1{s′lt>0}(t) = 1{V ′t (1)=l}(t), ∀t ∈ T .

The first part of Theorem 2.3.1 is therefore proved.
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Chapter 3

CAPACITY ALLOCATION TO IMPROVE ITINERARY COMPLETION IN

HEALTHCARE NETWORK

3.1 Itinerary Completion Optimization Model and Solution Algorithm

Consider a discrete time queueing network of U stations, with U = {0, 1, . . . , U−1}

denoting the set of stations. Each station u ∈ U corresponds to a service in the

care network that patients may need to use, such as the diagnostic clinic or general

surgery. Each time unit represents a single day. The decision is the number of

appointment slots in the “root” service to allocate to each type of target patient

(breast cancer patients in our case study) on each day. Patients are then scheduled

into these root appointment slots after the template is designed. After the initial root

appointment of a patient’s itinerary, the patient requests subsequent appointments

randomly at different services. This sequence of services visits represents the patient’s

care path. Figure 3.1 illustrates a simplified example of a patient’s path in breast

cancer treatment planning.

Home

Breast 
Diagnostic

Clinic

Mayo Clinic Medical
Oncology

Radiation
Oncology

General 
Surgery

Plastic 
Surgery

New Patient

Figure 3.1: Simplified Example of the Flow Model for Breast Cancer Patients.

We model K types of target patients, with K = {0, 1, . . . , K − 1} denoting the

set of patient types. A patient type could be a combination of patient diagnosis and
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home location. For example, for the same diagnosis such as breast cancer, national or

international patients who travel to Mayo Clinic often require different resources than

local or regional patients. Thus, each type k ∈ K patient has its own care pathway

distributions. Each patient is assumed to have at most one appointment at each

station on a given day, where the capacity of each station is represented by the total

number of appointment slots available on a given day. The objective is to maximize

the proportion of patients that complete their itinerary by their patient-type specific

target deadlines.

In Section 3.1.1, we specify the queueing network for modeling the patient flow.

In Section 3.1.2, we characterize the itinerary completion time (ICT) and how it

depends on the network blocking profile that is generated by the initial appointment

allocation decision.

3.1.1 A Queueing Network for Patient Flow

In this section, we specify the patient flow model describing the patient’s move-

ment in the healthcare network that serves as the building block for the stochastic op-

timization to maximize itinerary completion rates. We first specify the model inputs:

initial root appointments, patient care paths, and capacities. Then we characterize

the underlying stochastic process that captures the system status as a function of

these inputs. While the root appointments are the decision variables, we consider

them as given in this section and leave the decision model formulation to the next

section.

Patient arrivals: root appointments. We denote the number of root appointment

slots to reserve for type k patients on day d as

Θk,d, ∀k ∈ K, d ∈ {1, . . . , D},

48



where D is the length of the appointment cycle. We use Θ = {Θk,d} to denote the

vector of all the decision variables. For the ease of exposition, we set D = 5 in the

rest of this paper unless otherwise specified, since Mayo Clinic, and many healthcare

service providers, adopt a static template for each day of the week (Mon-Fri) that

repeats every week. We refer to d ∈ {1, . . . , 5} as weekday d, reserving t for days in

the absolute sense. We define d(t) as the weekday associated with day t. Due to long

waiting lists, we assume that these root appointment slots are always filled, though

our modeling framework can accommodate probabilistic arrivals.

Itinerary. An itinerary involves a series of treatment and diagnosis stages, where a

patient must complete a set of appointments in one stage before moving to the next.

The itinerary for patient type k is specified by the set of tuples

Ck = {(u, s, pku,s) : u ∈ U , s = 0, 1, 2, . . . , S, pku,s ∈ (0, 1]},

where (u, s, pku,s) indicates that an appointment at station u is required in the sth

stage of treatment with probability pku,s for type k patients. s = 0 denotes the start

of a patient’s itinerary, i.e., the root appointment, and S is the maximum number of

stages. We account for two important features of the care path:

1. Parallel service: appointments at multiple stations could be required in a single

stage, i.e., same value of s for multiple u’s;

2. Stochastic itinerary: visits over the care path are probabilistic, i.e., a random

subset of resources is required for a given realization of a care path.

For exposition, we assume all itineraries start with a root appointment in station 0

(the root service) for any patient type, because we are modeling a particular illness,

which in many cases starts with a consult in a specific specialty; e.g. breast diagnostic

clinic (BDC) for breast cancer patients. However, the analytical framework and
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solution we develop can be easily adapted to different and potentially random starting

locations of the root appointments.

Table 3.1 illustrates a possible itinerary from our partner’s data. The root ap-

pointment of each itinerary starts in station 0, the Breast Diagnostic Clinic (BDC);

each entry in the table denotes the probability that an appointment that is needed

from the service (station) in each stage. Patients following this itinerary start in the

BDC. In addition to this root appointment, they need a follow-up consult at BDC in

stage 1 with 100% chance. The patients also need consults in medical oncology with

2% and 9% chances in stage 1 and stage 2, respectively. Other entries in the table

can be interpreted similarly.

BDC Med Onco Rad Onco Gen Surg Plastic Surg

ui 0 1 2 3 4

1 (root)

stage 1 1 0.02 0.01 0.02 0.00

stage 2 0.08 0.09 0.04 1 0.28

stage 3 0.05 0.01 0.01 0.01 0.03

stage 4 0.02 0.02 0.01 0.05 0.04

Table 3.1: Sample of a Care Path for National Breast Cancer Patients.

Exogenous patients. Each service in the network serves both the target patients

and other patients, which we call exogenous patients. For example, breast cancer

patients typically require a general surgery consult as part of their treatment planning,

though many other types of patients also have general surgery consults. We do not

model the detailed itineraries of exogenous patients. Instead, we assume that the
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number of requests for an appointment from exogenous patients at station u on day

d is given by a random variable denoted as Λe
u(d).

Capacity. Let Cu,d denote capacity, i.e. the maximum number of appointment slots

available in service u on day d. Let C = {Cu,d} represent the capacity vector. If a

patient needs an appointment from a service that is full, blocking occurs.

Blocking. The capacity of each station is used to serve exogenous patients as well

as target patients that are arriving for root appointments or returning for subsequent

visits later in their care path. Target patients arriving for their root appointment

in station 0 are guaranteed an appointment slot because these appointments are

booked in advance of the patient arriving to the clinic. Target patients arriving

to subsequent appointments in their itinerary join a random ordering of all patients

requesting appointment at a given service. We model the flow this way because we are

modeling a capacity allocation decision and not a scheduling decision for individual

patients. Hence, we do not model the exact timing of each appointment within a

day and instead use this random ordering to capture the scheduling complexities at

a high level.

Let Nu(t) denote the total number of patients requesting an appointment (exclud-

ing root appointments) in station u on day t, from either the target or the exogenous

patient groups. Under random ordering, each patient requesting an appointment from

u is blocked with probability:

Bu(t) =

(
Nu(t)− Cu,d(t)

)+

Nu(t)
, (3.1)

where d(t) is the weekday for day t, and x+ = max(x, 0) for any real number x. We

abuse the notation slightly for ease of exposition, since the capacity for station 0 is

in fact C̃0,d(t) = C0,d(t) −
∑

k∈K Θk,d(t) after excluding the reserved capacity for root

appointments; the same convention is used in the rest of the paper unless specified
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otherwise. From (3.1), the blocking probability, Bu(t), is itself a stochastic process

since it depends on Nu(t).

If a target patient is blocked, they try again the next day to obtain an appointment

at the same service. If the patient is not blocked, they move to the next stage of their

itinerary on the following day. For analytical tractability, we assume that the blocked

exogenous patients will exit the system. However, in one of our case studies we relax

this assumption and allow exogenous patients to retry.

Patient flow model. We specify the stochastic process that models the dynamics of

the queueing network with inputs Θ, {Ck : k ∈ K}, and Cu,d. For ease of exposition, we

present the patient flow model where at most one (but potentially different) resource is

required in each stage; the full model with multiple parallel appointments is specified

in Appendix B.2.

For a given station u, let MB,k
u,s (t) and MNB,k

u,s (t) denote the number of blocked

and non-blocked type k patients in station u that are in stage s at the end of day t,

with MB
u (t) =

∑
k,sM

B,k
u,s (t) being the total number of blocked patients at the end of

day t. Let Nk
u,s(t+1) denote the total number of type k patients in stage s requesting

an appointment in station u on day t+ 1, which can be calculated as

Nk
u,s(t+ 1) = MB,k

u,s (t) + M̃k
u,s(t) + Λu(t+ 1). (3.2)

The MB,k
u,s (t) blocked patients will retry to obtain an appointment in station u on

day t + 1. The random variable (r.v.) Λu(t + 1) ∼ Bin
(
Θk,d(t), p

k
u,1

)
represents the

number of new patients who need to visit station u after their root appointments in

stage 0. The r.v. M̃k
u,s(t) counts the patients who have finished their appointments in

stage s− 1 at the end of day t, requesting an appointment at station u in stage s on

day t+ 1. It follows that M̃k
u,s(t) =

∑
ũ eu ·Mult(MNB,k

ũ,s−1(t), [pku0,s
, pku1,s

, . . . , pkuU−1,s
]),

where each term in the summation denotes the amount of patients, out of those
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MNB,k
ũ,s−1(t), that will come to station u (eu denotes the variable for station u in the

multinomial outcomes). The total number of patients requesting appointments at

station u on day t+ 1 is thus given by

Nu(t+ 1) =
∑
k

∑
s

Nk
u,s(t+ 1) + Λe

u(d(t+ 1)),

and the blocking probability Bu(t + 1) can then be calculated using (3.1). Based on

Bu(t + 1), we can calculate the transitions from Nu(t + 1) to {MB,k
u,s (t + 1),∀k, s}

based on hyper-geometric and multinomial distributions; see details in Appendix B.

The patient-count process
{
Nk
u,s(t), t = 0, 1, . . . ,∀u, s, k

}
then forms a discrete-time

Markov chain (DTMC).

Lemma 3.1.1. Let qu be the smallest probability, among all stages, that a patient will

not return to station u after completing an appointment in u at the current stage. Let

pu = maxs,k p
k
u,s be the largest probability, among all stages and patient types, that a

patient will visit station u. Under the sufficient condition

quCu,d > Θk,dp
k
u,1 +

∑
v 6=u

Cv,d−1pu, ∀u, d, (3.3)

1. the DTMC {Nk
u,s(t)} is positive recurrent with a unique stationary distribution;

2. the steady-state distribution of {Nk
u,s(t)} is periodic.

Proof. It is sufficient to prove for each station u, that the total patient-count Nu

will not explode. Since the exogenous patients do not retry, they do not affect the

stability of the system and we exclude them from the rest of the analysis. In other

words, we consider that Nu(t) only includes requests from the target patients on each

day t. We use the Lyapunov function V (x) = x. Denote the conditional expectation

E
[
· | Nu(t) = n

]
as En. Condition on n, note that all blocked target patients
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MB
u (t) =

∑
k,sM

B,k
u,s (t) = (n − Cu,d(t))

+. Then, the Lyapunov drift, conditional on

Nu(t) = n, equals

E
[
V (Nu(t+ 1))− V (Nu(t))

∣∣Nu(t) = n
]

≤ En

[
MB

u (t) + (1− qu)
(
n−MB

u (t)
)

+
∑
v 6=u

Cv,d(t)pu + Θk,d(t+1)p
k
u,1

]
− n

= En

[
quM

B
u (t) + (1− qu)n+ Θk,d(t+1)p

k
u,1 +

∑
v 6=u

Cv,d(t)pu

]
− n

= (1− qu)n+ qu · (n− Cu,d(t))
+ − n+ Θk,d(t+1)p

k
u,1 +

∑
v 6=u

Cv,d(t)pu.

For the inequality in the second row, we use two facts (i) for all the n −
∑

k,smu,k,s

patients who completed appointments at station u on day t, at most (1− qu) of them

will request an appointment from station u in the next stage; (ii) there are at most

Cv,d(t) patients could have completed appointments at another station v 6= u on day

t, and at most pu of them in the previous stage and need to visit u for the next stage

(pu is an upper bound since if the patient needs to visit multiple stations in the last

stage, she may not be able to move to the next stage due to blocking).

When n > Cu,d(t+1) is large, this drift equals

(1− qu)n+ qu(n− Cu,d(t+1))− n+ Θk,d(t)p
k
u,1 +

∑
v 6=u

Cv,d(t)pu

= −quCu,d(t+1) + Θk,d(t)p
k
u,1 +

∑
v 6=u

Cv,d(t)pu,

which is negative from Condition (3.3). As a result, by the Foster-Lyapunov theorem,

the DTMC is positive recurrent and has a unique stationary distribution.

The periodicity of the Markov chain comes from the fact that the arrivals from the

target and exogenous patients, as well as the capacities are periodic with the same

period T (while the care pathway is time-stationary). Thus, the transition matrix

for the patient-count DTMC is also periodic with the same period T . Hence, it is
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straightforward to prove that, when the system is in the steady state,
(
N(t), . . . , N(t+

D − 1)
)

has the same distribution as
(
N(t+D), . . . , N(t+ 2D − 1))

)
.

From this DTMC, we can also characterize the dynamics for the blocking proba-

bility process {Bu(t), t = 0, 1, . . . ,∀u}, based on which we will calculate the itinerary

completion time as described in the following section.

3.1.2 Itinerary Completion Optimization Model

The goal of our healthcare partner, and the impetus for this project, is to redesign

the root appointment allocation to improve the itinerary completion rate, where the

time needed to finish the entire itinerary does not exceed a type-dependent deadline.

In this section, we first characterize the itinerary completion time (ICT) distribution

and then formulate the optimization model.

Itinerary completion. Let Li,k,t denote the ICT for patient i of type k, who starts

her itinerary at time t. This ICT is equivalent to the sojourn time in the queueing

network of our patient flow model. The distribution of Li,k,t depends on the blocking

probabilities {Bu(s), s ∈ [t, t+Li,k,t]} along the patient’s itinerary, which is correlated

among time periods, all patients in the system, and the decision variables, Θ.

Our main objective is to minimize the total penalty costs associated with patients

who fail to complete their itineraries by a preset deadline, subject to capacity and

throughput constraints. Let τk,d denote the itinerary completion deadline for type k

patients starting on weekday d. The long-run average cost associated with a given Θ

is given by

lim
T→∞

1

T
E


T∑
t=1

∑
k

wk

Θk,d(t)∑
i=1

1
(
Li,k,t ≥ τk,d(t)

) . (3.4)

Here, wk represents the relative weight for different types of patients. For example,

our healthcare partner suggests a higher wk for national and international patients,
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since they have to travel long distances to receive care. By Lemma 3.1.1, this long-run

average cost can be reformulated as

∑
k∈K

D∑
d=1

wk ·Θk,d · P∞(Lk,d ≥ τk,d | Θ), (3.5)

where P∞ is the steady-state distribution of the itinerary completion time for type

k patients who start their itineraries on weekday d, and Lk,d is the steady-state

version for Li,k,t. Note, P∞ depends on the DTMC {Nk
u,s(t)}, which further depends

on the template Θ, the capacities C, and itineraries C. Let B = {Bu,d} denote

the corresponding set of random variables characterizing the steady-state blocking

probabilities in station u on day d, where Bu,d = limt→∞Bu(t) is the limit taken on

the lattice where d(t) = d. The following theorem characterizes the distribution of

Lk,d.

Proposition 3.1.1. The steady-state itinerary completion time for a type k patient

starting itinerary on day d, denoted by Lk,d, follows a doubly-stochastic distribution

given by

P∞(Lk,d ≤ x|Θ) =

∫
b∈[0,1]u·d

(
1− ed(Tb)x · 1

)
dFB(b|Θ), (3.6)

where Tb denotes the generator matrix for a phase-type distribution, b = {bu,d} is the

vector of (realized) blocking probabilities for each u and d from the joint distribution

with CDF FB(·|Θ), ed is the unit vector with 1 in the dth column and zero elsewhere,

and 1 is the unit vector of ones.

Proof. First, B = {Bu,d} is well defined by Lemma 3.1.1. Next, under the random

ordering assumption, for a given set of realized blocking probabilities b = {bu,d}, in

each stage of her itinerary, a patient is either able to obtain an appointment from

station u on weekday d with probability bu,d and moves to the next stage, or is blocked

and remains in station u to retry on day d + 1, with probability 1 − bu,d. Thus, the
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sojourn time through the network is the same as the absorption time of a DTMC

governed by the generator matrix Tb that depends on b, and this sojourn time follows

a phase-type distribution. The structure of Tb is fully specified in Sections 3.3.1 and

Appendix B.3. The CDF of the phase-type distribution for a patient starting on day

d is given by

Hk,d(x) = 1− ed(Tb)
x · 1. (3.7)

The distribution of Lk,d in (3.6) is obtained by unconditioning on the blocking prob-

abilities.

Stochastic optimization model. Let Wu,d denote the workload, defined as the

(random) number of appointments requested at service u on day d combining both

target and exogenous patients. Let θk be the weekly throughput requirement for type

k patients, i.e. the volume of patients that should be seen each week in accordance

with management goals. We assume that {θk}’s are chosen such that the system is

stable. The optimization is given by:

min
Θ

∑
k∈K

D∑
d=1

wk ·Θk,d · P∞(Lk,d ≥ τk,d | Θ) (3.8)

s.t.
D∑
d=1

Θk,d ≥ θk, ∀k ∈ K, (3.9)

∑
k∈K

Θk,d ≤ C0,d, ∀d = 1, . . . , D, (3.10)

P∞(Wu,d ≥ Cu,d | Θ) ≤ γu,d, ∀u ∈ U , d = 1, . . . , D, (3.11)

Θk,d ∈ R+. (3.12)

Constraints (3.9) and (3.10) are throughput and capacity constraints. Constraints (3.11)

are service level-type constraint that ensures that the chance that the workload at

each station exceeds capacity is smaller than γu,d to avoid excessive blocking of exoge-
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nous patients. Healthcare management can choose their desired target service levels

by setting 1− γu,d properly.

It is worth to emphasize that, although we focus on the service metric given

in (3.8) for this paper, the modeling framework and the analytical methods we devel-

oped can be adapted to other metrics that depend on the distribution of the sojourn

time, Lk,d. In addition, we can further incorporate additional constraints on the ICT

distributions for each type of patient, as we will demonstrate in the case study in Sec-

tion 3.4. By incorporating multiple ICT constraints, e.g., for regional patients 20%

must complete within two days and 70% within four days, we can actually control

the distribution of ICT, not just the mean. This flexibility gives our template opti-

mization framework a precision that would not be possible if optimizing to a mean or

variance-based objective, which in turn would not be possible without the proceeding

detailed modeling of ICT distributions.

3.2 Challenges and Scalable Iterative Algorithm

In this section, we discuss the challenges associated with solving optimization

problem (3.8) -(3.12) and then present a solution approach to overcome these chal-

lenges.

3.2.1 Analytical and Computational Challenges.

The correlations between the template, Θ, and the ICT, Lk,d make the stochastic

optimization problem both mathematically complex and computationally intractable.

Several major barriers include: (i) Lk,d has a doubly stochastic distribution depending

on the blocking probabilities, which have a complex dependence on Θ. The joint dis-

tribution, FB(·|Θ) requires solving the steady-state distribution of high-dimensional

DTMC, which is of size n̄K·U ·S, where n̄ is an upper bound on Nk
u,s(t). For example,
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the state space size is 15200 in our case study if we cap the patient count at n̄ = 15

(a conservative estimate). (ii) Numerically evaluating the integration (3.6) requires

evaluating the phase-type distribution at sufficiently many realization b = {bu,d} from

FB(·|Θ), which is difficult when there is a large number of combinations of u, d. (iii)

Since there is no analytical form to evaluate (3.6) for a given Θ, the only method

for directly solving the optimization is to perform an exhaustive search. This is

computationally intractable even if we could evaluate Lk,d efficiently, say, using sim-

ulation, since the decision space is of size
∏

k,d(θk)
d, which, in our case study would

be approximately 2520.

At a high level, the challenges above stem from the (i) the strong correlation

between all the ICT random variables, {Lk,d ∀k, d}, and (ii) the dependence of Lk,d

on the entire matrix of decision variables Θ = {Θk,d ∀k, d}. This is because follow-up

appointments generated from all root appointments occupy the same set of resources

in the queueing network over intersecting time periods. Next, we provide a high level

overview of our novel approach to overcome these challenges and develop a scalable

algorithm to optimize itinerary completion for large queueing networks.

3.2.2 Scalable Iterative Algorithm.

To solve the optimization problem (3.8) – (3.12), we develop an iterative algo-

rithm that decouples the correlation between decisions, Θ, and the deadline-violation

probability P∞(Lk,d ≥ τk,d). This algorithm iterates between two steps: (1) perfor-

mance evaluation of the itinerary completion distribution that addresses the first two

challenges, and (2) policy improvement on the decision variables that addresses the

third challenge.

1. Performance evaluation. In each iteration i + 1, we evaluate P∞(Lk,d ≤

x) using the template generated in the previous iteration, Θ(i). To evaluate
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P∞(Lk,d ≤ x), we develop a mean-field model in Section 3.3.2 that allows us

to replace the integration in (3.6) over FB(·|Θ(i)), with the point mass for the

blocking probabilities in iteration i, β(i) = {β(i)
u,d}, where β(i) is the equilibrium

solution from the mean-field model under Θ(i). That is,

P∞(Lk,d ≤ x) =

∫
b∈[0,1]u·d

(
1− ed(Tb)x · 1

)
dFB(b) ≈

(
1− ed(Tβ(i))x · 1

)
. (3.13)

Since the mean-field model is a deterministic system, its equilibrium is easy to

solve versus solving the high-dimensional DTMC. Additionally, we only need to

evaluate the matrix power calculation once on this point mass versus numeri-

cally evaluating an integral. To justify the replacement in (3.13), we rigorously

show in Chapter 4 the asymptotic convergence of the steady-state blocking dis-

tribution, FB, to the point mass β from the mean-field model, via the Stein’s

method framework.

2. Policy improvement. We use a policy improvement approach to decouple

the dependence between calculating P∞(Lk,d ≤ x) and optimizing the decision

variable Θ. To get the updated template, Θ(i+1), we first replace P∞(Lk,d ≤

x) with (3.13), where β(i) is calculated from the mean-field model using the

previous template Θ(i). This decouples Lk,d and Θ to be optimized in the

current iteration as follows.
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min
Θ

∑
k∈K

D∑
d=1

wk ·Θk,d ·
(
ed(Tβ(i))τk,d · 1

)
(3.14)

s.t.

D∑
d=1

Θk,d ≥ θk, ∀k ∈ K, (3.15)

∑
k∈K

Θk,d ≤ C0,d, ∀d = 1, . . . , D, (3.16)

∣∣∣βu,d(Θ)− β(i)
u,d

∣∣∣ ≤ ε, ∀u ∈ U , d = 1, . . . , D, (3.17)

Emf [Nu,d| Θ](1− γu,d) ≤ Cu,d, ∀u ∈ U , d = 1, . . . , D, (3.18)

Θk,d ∈ R+. (3.19)

Here, βu,d(Θ) in constraint (3.17) and Emf [Nu,d| Θ] in constraint (3.18) are cal-

culated using the deterministic approximation in the mean-field model, with

Emf [Nu,d| Θ] being the mean-field version for Wu,d in constraint (3.11), and

βu,d(Θ) = (Emf [Nu,d| Θ]−Cu,d)+/Emf [Nu,d| Θ]. Constraint (3.18) is the mean-

field version for constraints (3.11). Constraint (3.17) ensures the network block-

ing profile is sufficiently close to the blocking profile from the previous iteration.

Thus, P∞(Lk,d ≤ x) evaluated using (3.13), is sufficiently close between iteration

i and i + 1 so that the itinerary completion probabilities calculated using Θ(i)

will be a good approximation within the feasible set of decision variables that

solve for template Θ(i+1). In Section 3.3.3, we provide a performance bound

on this approximation by bounding the gap between the ICT distribution ob-

tained from the template in the previous iteration and the ICT distributions in

the feasible set of the current iteration.

The key here is that there are sufficiently many templates Θ in the feasible set

that can generate similar blocking profiles, but they can lead to very different

ICT distributions for different types of patients, since ICT also depends on the
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timing of the itinerary start. In addition, the expected workload, Emf [Nu,d], is

calculated by taking the expectation of the arrivals and departures, adjusted by

the expected number of blocked patients each day using β(i), so that constraints

(3.17) and (3.18) are linear in the decision variable Θ. Given the linear objective

function and the linear constraints in (3.14) to (3.19), the optimization program

here is a linear program (LP) that can be solved efficiently for large (realistic-

sized) networks with a commercial optimization software such as CPLEX. We

conclude with two remarks for the iterative algorithm.

Remark 3.2.1 (Initialization). To obtain an initial set of blocking probabilities for the

policy improvement, one can use the historical template to compute the corresponding

blocking probabilities. An alternative approach is to develop a workload smoothing

optimization as a pre-processing stage to minimize the blocking probabilities across the

system, since high blocking along the itinerary can extend the ICT. The full details of

the workload smoothing are given in Appendix D.

Remark 3.2.2 (Refinement for low-blocking settings). The mean-field model captures

the blocking on the “fluid scale,” which is best when blocking is significant. In set-

tings where the workload is often below the capacity such that the fluid-scale blocking

probability is 0 (but blocking still occurs due to stochastic fluctuations), we refine the

approximation to the blocking probabilities using an offered load approach. At a high-

level, we approximate the aggregate workload distribution of each station u on each

day d for a given template Θ with a normal r.v. having mean µu,d(Θ) and standard

deviation σu,d(Θ), where the mean and standard deviation are calculated by assuming

there is no capacity constraint (Massey and Whitt, 1993). See Appendix D.1 for a

detailed calculation.
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3.3 Itinerary Completion Time Approximation: Exact Analysis and

Approximations

In this section, we take the template Θ as given and focus on the ICT evalua-

tion. We first characterize the doubly-stochastic distribution (3.6) by specifying the

generator matrix Tb in Section 3.3.1. To address the computational difficulty in the

exact analysis of this doubly-stochastic distribution, we then introduce the mean-

field model in Section 3.3.2, which provides an equilibrium solution for β that is the

input to (3.13). The mean-field approximation is justified in (3.13) by proving the

asymptotic convergence from the distribution of B = {Bu,d} to the point mass β

and characterizing the convergence rate in Chapter 4. We also translate the error in

the blocking probabilities to a performance bound in the ICT distribution (our main

metric of interests) in Section 3.3.3.

We focus on the setting where a patient visits one resource in each stage in this

section; in Appendix B.3, we incorporate the feature that patients may need to visit

multiple stations in parallel in each stage of their itineraries, examples of which are

prevalent in our data.

3.3.1 Phase-Type Representation in the Base Setting

We first review the idea of the phase-type representation of ICT in (3.6). Condi-

tioning on a given realization of the blocking probabilities b = {bu,d} ∼ FB(·|Θ), the

time to complete an appointment station on a patient’s itinerary is a Bernoulli trial

with a failure represented by the patient being blocked. This follows from the random

ordering assumption, which is appropriate for our capacity planning level of analysis

as explained in Section 3.1.1. The time to complete all appointments on a patient’s

itinerary is thus driven by an underlying Markov chain with transition matrix based
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on (i) the probability of completing the current appointment and (ii) if successful,

the transition to the next appointment. Thus, the ICT is the sum of geometric dis-

tributions with time-varying success probabilities, which forms a discrete phase-type

distribution (Casale, 2010).

Single stage. For illustration, we start by considering the simplest setting with

a single stage (requiring service at station u) for a given patient type k. For any

realization of the blocking probabilities b = {bu,d}, the patient is either able to get the

appointment at service u or is blocked (with probability 1− bu,d or bu,d, respectively).

If the patient is blocked, she will retry to get the appointment the next day until being

successful; otherwise, her itinerary finishes. For the given b, the event of getting the

appointment or being blocked becomes independent Bernoulli trials among different

days. Then, the ICT of type k patient starting on weekday d, Lk,d resembles a

geometric distribution except the success probability is time-varying. The transitions

of these success probabilities are driven by a DTMC that can be characterized by one

common generator matrix :

Tb | T0
b

0 | 1

 =



0 bu,1 0 0 0 | 1− bu,1

0 0 bu,2 0 0 | 1− bu,2

. . . . . . . . . . . . . . . . . .

bu,5 0 0 0 0 | 1− bu,5

0 0 0 0 0 | 1


, (3.20)

where Tb · 1 + T0
b = 1 and 1 is the vector of 1’s. Each state in Tb represents the

blocking status on day d, while the column of T0
b represents the absorbing state –

itinerary completion. For example, the first row in the generator matrix indicates that

the initial attempt is made on day 1 (Monday). With probability bu,1 the patient is

blocked and moves to Tuesday (column 2) to try to obtain the appointment; with

probability 1− bu,1 the patient obtains the appointment and moves to the absorbing
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state. Other rows can be interpreted similarly except when the initial attempt is

made on day 5, the next retrial has to be made on day 1 of the next week, as the

system is periodic with D = 5 as the period. The last row indicates that the success

state is an absorbing state. The CDF of Lk,d is given in (3.7), while its probability

mass function (pmf) is

hk,d(x) = ed(Tb)
x−1 ·T0

b , (3.21)

To explain (3.21), note that, for a patient whose initial trial is on day d, the probability

that her first success is on day x equals the probability of no success in the past

x − 1 days, (Tb)
x−1, and that a success occurs on day x, T0

b . Here, ed adjusts the

initial starting day to be day d. The CDF in (3.7) has a similar explanation; also

see Latouche and Ramaswami (1999).

Probabilistic requirements in multiple stages. We now extend the above

phase-type representation to the setting where an itinerary involves multiple stages

and probabilistic resource requirements. Here, we still model each stage with only

one station as a building block. For notational simplicity, we drop the type k in

the description below when denoting the itinerary for a given type patient C =

{(u0, 0, 1), (u1, 1, pu1,1), . . . , (un, n, pun,n)}, where pus,s denotes the probability that this

particular type patient requires service from station us in stage s and pu0,0 = 1 for

the root appointment.

When a patient completes service at station us in stage s, she requests an appoint-

ment at the next station us+1 if this service is required with probability pus+1,s+1. If

stage s + 1 is skipped, the patient transitions to request an appointment at station

us+2 with probability pus+2,s+2, or not requiring stage s + 2 either, in which case the

patient transitions to request an appointment at station us+3 and so forth.
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The generator matrix for the transitions between phases in Lk,d follows

Tb | T0
b

0 | 1

 =



T1
u1

T2
u1

T3
u1

T4
u1

. . . Tn
u1

| T0
u1

0 T1
u2

T2
u2

T3
u2

. . . Tn−1
u2

| T0
u2

. . . . . . | ...

0 0 0 0 . . . T1
un

| T0
un

0 0 0 0 . . . 0 | 1


. (3.22)

Each state in the transition matrix represents the blocking status in (s, d), a combi-

nation of which stage s the patient is in and on which workday d. The matrix block

T1
us

is defined similarly as Tu in (3.20) with bus,d replacing bu,d. T1
us

characterizes the

transitions within stage s; i.e. an appointment has not yet been obtained at station

us. The other matrices on each row characterize the transitions out of stage s to stage

s+ j − 1 or to the absorbing state as follows:

Tj
us

= pus+j−1,s+j−1

s+j−2∏
m=s+1

(1− pum,m)



0 1− bus,1 0 0 0

0 0 1− bus,2 0 0

. . . . . . . . . . . . . . .

1− bus,5 0 0 0 0


,

(3.23)

for j = 2, . . . , n− s+ 1. Tj
us

represents the transition from stage s to stage s+ j − 1

given it is not skipped. The transition directly to the absorbing stage, given that all

remaining stages are skipped, is given by

T0
ui

=
n∏

m=s+1

pum,m ·
[
1− bus,1 1− bus,2 . . . 1− bus,5

]′
. (3.24)

We use the convention that an empty product is equal to 1 for (3.23) and (3.24). The

CDF and pmf of Lk,d have the same form as in (3.7) and (3.21), where we replace Tb

and T0
b with the ones from (3.22).
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3.3.2 Mean-Field Model and Numerical Illustration

As highlighted in Section 3.2, evaluating P∞(Lk,d ≥ Tk,d|Θ) for a given schedule

Θ relies on the steady-state blocking probability distribution FB(·|Θ), which needs to

be solved from a high-dimensional DTMC. Even if we are able to efficiently compute

the distribution FB(·|Θ), calculating Lk,d for each realized b ∼ FB(·|Θ) still requires

evaluating integration that involves matrix power, as demonstrated in Section 3.3.1.

To address this challenge, we leverage the mean-field model for the DTMC and re-

place the steady-state distribution of FB(·|Θ) with a point mass β = {βu,d} that is

the equilibrium solution of the mean-field model. We specify the mean-field model

next, and will rigorously prove the asymptotic convergence of the blocking probability

distribution to the point mass β in Chapter 4. Before the technical details, we first

numerically demonstrate that the distribution of bu,d converges to the point mass βu,d

when the system size is large.

Numerical validation. As highlighted in Section 3.2, evaluating P∞(Lk,d ≥ Tk,d|Θ)

for a given template Θ relies on the steady-state blocking probability distribution

FB(·|Θ), which needs to be solved from a high-dimensional DTMC. Even if we are

able to efficiently compute the distribution FB(·|Θ), calculating Lk,d for each realized

b ∼ FB(·|Θ) still requires evaluating an integral over matrix powers. To address this

challenge, we leverage a mean-field model for the DTMC and replace the steady-

state distribution of FB(·|Θ) with a point mass β∞ = {βu,d}, which comes from the

equilibrium solution of the mean-field model. Before presenting the technical details,

we first illustrate numerically how the distribution of FB(·|Θ) converges to the point

mass β∞ as the system size grows.

Figures 3.2(a) shows the blocking probability distribution for BDC on Monday.

This distribution comes from simulating a five-station network used as the baseline
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in our case study in Section 3.4. The network is parameterized via our partner’s data

using the historical appointment template. We model four types of patients with

time-varying arrivals and capacities, with possible parallel appointments. The average

capacity for BDC is N = 51, and we scale this baseline system (along with capacities

of the other four stations as well as arrivals) by 10 and 50 times proportionally. As the

system size increases, we observe that the distributions of the blocking probabilities

quickly become concentrated near a point mass – which is what we will prove in

Chapter 4. The capacity for BDC is N = 51. We consider four types of patients and

the arrivals and capacities are time-varying as estimated from the data. We scale this

baseline system by 10 and 50 times proportionally.

Figure 3.2 (b) plots the blocking probability distribution for BDC on Monday

under a scenario with a higher average system load.

The level of concentration, defined as the fraction of blocking probabilities that

fall within the range of the point mass ±0.05, is illustrated in Figure 3.2(c) for the

original scenario as well as a scenario with a higher average system load.

Figure 3.2(d) demonstrates that, even if the blocking probabilities are moderately

concentrated, as in the current system (N = 51), the approximation for the ICT dis-

tribution is already very close to that from the simulation. Applying the Kolmogorov-

Smirnov (KS) statistic, we find that the median and maximum distances between the

two distributions are less than 2 % and 7% respectively across all patient types and

starting days for all the experimental settings in the case study. See Appendix E for

more numerical results.

Dynamics of mean-field model. The point mass β∞ comes from the equilibrium

solution of the mean-field model, which serves as a deterministic approximation for the

proportion of blocked patients in the original stochastic system, U(t) = {Uu(t), u =

0, . . . , U − 1}. This is also known as the occupancy measures (Ying, 2018). For each
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Figure 3.2: Illustration of Blocking Probability Approximation

station u, Uu =
∑

k,sM
B,k
u,s (t)/

∑
k,sN

k
u,s(t), whereNk

u,s(t) andMB,k
u,s (t) are respectively

the number of target patients requesting an appointment and number of blocked at

station u on day t. Let mB,k
u,s (t) and mNB,k

u,s (t) be the deterministic counterparts of

MB,k
u,s (t) and MNB,k

u,s (t) = Nk
u,s(t) −MB,k

u,s (t), and nku,s(t + 1) be the counterpart for

Nk
u,s(t+ 1). By taking the expectation of the random quantities in (3.2), we get

nku,s(t+ 1) = mB,k
u,s (t) +

∑
ũ

pku,s ·m
NB,k
ũ,s−1(t) + pku,1 ·Θk,d(t).
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Consequently, for the total number of patients in station u on day t+ 1, we have

the following:

nu(t+ 1) =
∑
k

∑
s

nku,s(t+ 1) + λeu(d(t+ 1)) (3.25)

where λeu(d(t + 1)) is the expectation of the exogenous arrivals Λe
u(d(t + 1)). Then,

with βu(t+ 1) =
[
nu(t+ 1)− Cu,d(t+1)

]+
/nu(t+ 1) being the blocking probability in

the deterministic system, we have

mB,k
u,s (t+1) = βu(t+1) ·nku,s(t+ 1), mNB,k

u,s (t+1) = nku,s(t+1)−mB,k
u,s (t+1). (3.26)

Finally, let µu(·) is the deterministic counterpart for Uu(·). We have

µu(t+ 1) =

∑
k,sm

B,k
u,s (t+ 1)∑

k,s n
k
u,s(t+ 1)

= βu(t+ 1).

Under the same stability condition given in Lemma 3.1.1, we can show the deter-

ministic system has a unique equilibrium solution β∞ by verifying the Lynapunov

condition.

3.3.3 Bounding the Gap in ICT Distributions

Consider two sets of blocking probabilities such that |βu,d − β′u,d| ≤ ε for all u, d.

In this section, we translate this ε gap between the blocking probabilities into the gap

between the corresponding ICT distributions and establish an upper bound for the

latter gap.

Lemma 3.3.1. Let p = maxd βd be the largest blocking probability for a type k patient

across all days d. Let Θ and Θ′ be two feasible schedules in the program (3.14) to

(3.19), with the induced blocking probabilities satisfying |βu,d− β′u,d| ≤ ε, ∀u, d. Let S

be the maximum number of stages in a care pathway. Then∣∣∣P∞(Lk,d ≤ x|Θ)− P∞(Lk,d ≤ x|Θ′)
∣∣∣ ≤ O(xSpx−1 · ε) + o(ε).
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Proof. For notional convenience, we omit the station u index and re-index βd with

d = d mod 5 ∈ {0, . . . , 4}. In other words, we omit the mod operator in the index of

day for the blocking probabilities. Under this labeling scheme we can write

P∞(Lk,d ≤ x|Θ) = 1− ed · (Tβ)x · 1 = 1−
d+x−1∏
d̃=d

βd̃, (3.27)

∣∣∣P∞(Lk,d ≤ x|Θ)− P∞(Lk,d ≤ x|Θ′)
∣∣∣ ≤ d+x−1∑

d0=d

d+x−1∏
d̃=d

((
βd̃
)11{d̃6=d0} · ε

)
+ o(ε). (3.28)

The second line follows from the assumption that |βd−β′d| ≤ ε. Replacing βd̃ in (3.27)

with βd̃± ε and subtracting the two distributions yields (3.28). Since p = maxd βd, it

is easy to show by replacing βd with p for all d that (3.28) can be bounded by

d+x−1∑
d0=d

d+x−1∏
d̃=d

((
βd̃
)11{d̃6=d0} · ε

)
+ o(ε) ≤ x · px−1 · ε+ o(ε). (3.29)

To extend to multiple stages, we leverage the property that the generator matrix Tβ

is upper triangular and use an induction to prove the performance bound. We first

illustrate with the two-stage case and then extend the general S-stage case.
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TC =

T1
u1

T2
u1

0 T1
u2

 , (3.30)

TC(ε) =

T1
u1

(ε) T2
u1

(ε)

0 T1
u2

(ε)

 , (3.31)

T1
u(ε) =



0 bu,1 + ε 0 0 0

0 0 bu,2 + ε 0 0

. . . . . . . . . . . . . . .

bu,5 + ε 0 0 0 0


(3.32)

T2
u(ε) =



0 1− bu,1 − ε 0 0 0

0 0 1− bu,2 − ε 0 0

. . . . . . . . . . . . . . .

1− bu,5 − ε 0 0 0 0


, (3.33)

Let T
2,(x−1)
u1 be the upper right block of (TC)

x−1. It is easy to show that:

(TC)
x =

(T1
u1

)x
T1
u1
·T2,(x−1)

u1 + T2
u1
·
(
T1
u2

)x−1

0
(
T1
u2

)x
 , (3.34)

Now consider∣∣∣P∞(Lk,d ≤ x|Θ)− P∞(Lk,d ≤ x|Θ(i))
∣∣∣ ≤ ∣∣∣ed · (TC(ε))x · 1− ed · (TC)x · 1

∣∣∣. (3.35)

Note that the terms ed · (TC(ε))x · 1 that do not contain ε cancel with the terms of

ed · (TC)x · 1. For example, selecting all non-ε terms from e1(T1
u1

(ε))3 · 1 = (βu1,1 +

ε)(βu1,2 + ε)(βu1,3 + ε) yields βu1,1 · βu1,2 · βu1,3 = e1(T1
u1

)x · 1. Thus, we can cancel all

the terms from the upper left block of P∞(Lk,d ≤ x|Θ). To calculate the remaining

error terms after canceling all terms without ε, consider terms that are linear in ε.

For example, the ε-linear terms from e1(T1
u1

(ε))3 · 1 = (βu1,1 + ε)(βu1,2 + ε)(βu1,3 + ε)
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are βu1,1 · βu1,2 · ε+ βu1,1 · βu1,3 · ε+ βu1,2 · βu1,3 · ε. Note, there are
(
x
x−1

)
such terms in

(TC(ε))
x · 1. The remainder of the terms are O(ε). Hence, the error contributed by

the upper left block of ed (TC(ε))
x · 1 can be written as

ε ·
d+x−1∑
d0=d

d+x−1∏
d1=d

((
bu1,d

)11{d1 6=d0}
)

+ o(ε)

To get a uniform bound, let b = maxi,d{bui,d}. The bound can then be written as

x · (b)x−1ε+ o(ε) (3.36)

Consider the upper right block of the matrix.

T2,(1)
u1

= T2
u1

(3.37)

T2,(2)
u1

= T1
u1
·T2,(1)

u1
+ T2

u1
· (T1

u2
) = T1

u1
·T2

u1
+ T2

u1
· (T1

u2
) (3.38)

T2,(3)
u1

= T1
u1
·T2,(2)

u1
+ T2

u1
· (T1

u2
)2 = (T1

u1
)2 ·T2

u1
+ T1

u1
·T2

u1
·T1

u2
+ T2

u1
· (T1

u2
)2

(3.39)

T2,(x)
u1

=
x−1∑
j=0

(T1
u1

)j ·T2
u1
· (T1

u2
)(x−j−1) (3.40)

From (3.40), each term in the sum captures the probability of spending j days in

stage 1 (station u1) and at least n− j− 1 days in stage 2. Summing them up, we see

that T
2,(n)
u1 is in fact just the probability that stage 1 has been completed but stage 2

has not yet been completed by time n. Multiplying T
2,(x−1)
u1 (ε) by ed ·T1

u1
on the left

and 1, intuitively each term from (3.40) becomes of the form

(bu1,d + ε)

(
d+1+j−1∏
d0=d+1

(bu1,d0 + ε)

)
· (1− bu1,d+1+j−1)− ε)

d+1+n−2∏
d0=d+1+j

bu2,d0 +O(ε)
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Canceling the ε-constant terms and isolating the terms that are linear in ε, we

find the error for each term is

ε · (1− bu1,(d+1+j−1))
d+x−1∑
d1=d+1

(
d+1+j−1∏
d0=d

(bu1,d0)11{d0 6=d1}

)
d+x−1∏

d0=d+1+j

(bu2,d0)11{d0 6=d1}

− ε

(
d+1+j−1∏
d0=d

(bu1,d0)

)
d+x−1∏

d0=d+1+j

(bu2,d0) +O(ε) (3.41)

Note, each term j has x− 1 terms, each of which are a multiplication of x− 1 terms.

Further, we consider j = 0, . . . , x − 1. Hence we have x2 terms. To get a uniform

bound, let b = maxi,d{bui,d}. We have a bound on (3.41) of

x(x− 1) · (b)x−1ε+ o(ε). (3.42)

This bound dominates the x · (b)x−1ε. Thus, the total error bound is given by∣∣∣P∞(Lk,d ≤ x|Θ)− P∞(Lk,d ≤ x|Θ(i))
∣∣∣ ≤ O(ε · x2(b)x−1) + o(ε). (3.43)

For S stages, the error terms can be determined through a recursive way. In stage

s (i.e. the sth block of the top row of blocks (which is all we need) taken to the nth

power gives that

TS,(n)
u1→us =

n−1∑
j=0

(T1
u1

)j ·

(
s∑
i=2

Ti
u1
·TS−i+1,(n−j−1)

ui→us

)
. (3.44)

That is, each term T
i,(n−j−1)
ui is the block in stage i for the n − j − 1 power of the

phase-type matrix that excludes the first i − 1 stations. Intuitively, this means we

stay in station 1 for j units of time (being blocked) and then jump to stage i and stay

in stage i for at least n − j − 1 units of time. Plugging in the error bounds derived

for smaller number of stages eventually gives us the final bound of∣∣∣P∞(Lk,d ≤ x|Θ)− P∞(Lk,d ≤ x|Θ(i))
∣∣∣ ≤ O(ε · xSbx−1) + o(ε)
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Remark 3.3.1. In the single-stage scenario, we can further obtain an uniform bound

for the gap in the ICT distributions. That is, the maximum distance is given by

max
x∈N

∣∣∣P∞(Lk,d ≤ x|Θ)− P∞(Lk,d ≤ x|Θ′)
∣∣∣ ≤ x∗p(x∗−1) · ε+ o(ε), (3.45)

where x∗ =
⌈

p
1−p

⌉
. This can be shown by noting that the sequence sx = x · px−1

on x ∈ N is either strictly decreasing in x, or is unimodal in x, first increasing

and then decreasing. Since limx→∞
x
x+1

= 1, there exists x∗ such that the sequence

is increasing prior to x∗ and decreasing afterward, which implies that the maximum

distance between the two ICT distributions can be found at x∗ = min{x : x
x+1
≥ p},

which gives us the results in (3.45).

3.4 Case Studies of Itinerary Completion Improvement

In this section, we present a comprehensive case study applying our optimization

to the problem of improving itinerary completion for breast cancer (BC) patients in

our partner healthcare network. While our analytical framework and algorithm is

easily scalable to optimizing itinerary completion rates for an ensemble of services

offered across the entire healthcare network, we focus on the BC patients as the tar-

get patients in the case study as a proof of concept. The BC service line volunteered

to provide contextualization and data as an initial pilot, and this service provides

a sufficiently rich network and complexity of itineraries to demonstrate the full ca-

pabilities of our method. In Section 3.4.1, we introduce the dataset, the network

setting of our healthcare partner, and the model parameterization for our numerical

experiments. In Section 3.4.2, we compare our optimal template with the historical

template for the current BC network, demonstrating that (1) our optimization algo-

rithm can efficiently solve a large-scale, 26-station network, and (2) can significantly

improve itinerary completion rates. In Section 3.4.3, we demonstrate the importance
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of an integrated optimization approach by highlighting the pitfalls and challenges of

manual template design. In Section 3.4.4 we perform sensitivity analyses where we

relax several analytical assumptions and generate generalizable insights to settings

beyond our case study.

3.4.1 Dataset and Model Parametrization

Datasets. In this analysis, we leverage two separate datasets from Mayo clinic

that span from 2006 to 2011: (1) patient appointment data and (2) staffing plan

data. The patient appointment data contains the itinerary for each patient, the

type of patient, their geo-code (e.g. local, national), appointment area (e.g. general

surgery), appointment type (e.g. physician consult), and appointment day and time.

The staffing data contains how many and which type of staff were scheduled to work

and how many appointments were seen in each service for each day.

Network. Among all itineraries, 26 services were utilized by more than 0.5% of

BC patients. Figure 3.1 shows a simplified diagram of the patient flow for five key

breast cancer services (stations): breast diagnostic clinic (BDC), medical oncology

(Med Onco), radiation oncology (Rad Onco), general surgery (Gen Surg), and plastic

surgery (Plas Surg).

Patient types. Since we focus on one type of diagnosis, we differentiate the patient

type by geo-code (international, national, regional, and local) in the case study. Na-

tional/international patients are the priority patients and the others are non-priority,

because the former are time-sensitive due to their travel constraints. Figure 3.3a dis-

plays the historical average number of root appointments for priority and non-priority

patients; Table 3.2 provides details.

Care path. Care path probabilities, pu,k,d, are estimated from the fraction of each

patient type, k, requiring an appointment in service u on day d of their itinerary. In
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International National Regional Local Total

Mon 2% 36% 27% 35% 10.91

Tue 2% 45% 22% 32% 10.02

Wed 1% 43% 26% 30% 13.29

Thu 2% 38% 29% 32% 13.87

Fri 3% 36% 24% 36% 8.23

Total 2% 40% 26% 33% 56.33

Table 3.2: The Average Number of Root Appointments Allocated by Day of Week

from Historical Data, and the Proportion from Each Patient Type

estimating care paths, we reduce the bias caused by blocking by using patient flow

data from periods of low congestion during 2006 – 2011, where there was little to no

blocking. Table 3.1 in Section 3.1 shows these probabilities for national patients in

the first four stages.

Exogenous workload. We model non-BC patients as an exogenous, random arrival

stream, and do not control their arrival allocations in this case study. But note

that our model is fully capable of optimizing the appointment allocations beyond BC

patients in an integrated system-wide implementation. We approximate the workload

distribution from these exogenous arrivals as a normal random variable truncated at

zero, with mean and variance parameters estimated from historical data. Table 3.3

summarizes the average total workload for each station on each day of the week, along

with the percentage of workload contributed by BC patients.

Capacity. To estimate the capacity, we assume each patient takes one fixed slot,

which is reasonable since appointment lengths are generally standard within each

service. However, different stations may have different service times and/or hours of
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Total workload BDC Med Onco Rad Onco Gen Surg Plas Surg

Mon 48.5 123.6 91.9 56.0 54.0

Tue 43.6 145.1 95.5 64.5 59.8

Wed 53.2 141.4 102.7 68.3 54.5

Thu 55.7 124.1 108.2 65.9 53.5

Fri 33.9 102.2 56.6 38.3 38.9

% of BC 65% 2% 2% 26% 8%

Capacity 51 152 118 72 60

Table 3.3: Estimated Total Average Workload, Capacity, and Proportion of

Workload Contributed by BC Patients for Each Station in the 5-Station Network

operation. To estimate capacities, Cu,d, we first estimate the appointment capacity

per FTE (full-time equivalent) using the 95% percentile of the historical workload per

FTE. We chose 95% since our healthcare partner indicated that patients are usually

being “squeezed” into overtime in the top 5% of days worked. Leveraging the staffing

data from a separate data set, we multiply capacity per FTE by the average number

of staff on duty to obtain the total capacity; see Table 3.3.

Optimization objective and algorithm. In the baseline, we maximize the

proportion of priority patients that complete their treatment by Friday. The target

deadline is Td = 6− d for patients starting their itineraries on workday d = 1, . . . , 5.

We set wk = 1 in (3.14) for priority patients and 0 otherwise. In Section 3.4.3, we

consider a setting where target completion rates for regional patients are incorporated

as constraints.

For the iterative policy improvement algorithm, we obtain the initial blocking

probabilities from the pre-processing workload smoothing optimization (see details in
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Appendix D.1). We set the target service level, γ, to be close to the historical service

level for each station to ensure that the optimal template does not significantly impact

access for exogenous patients. We add a small tolerance term ε = 0.03 in (3.17) to

solve the optimization efficiently.

Simulation platform. We develop a discrete-event simulation using Python to

evaluate the blocking probabilities and itinerary completion in the queueing network

from various template designs; it also serves as a benchmark to evaluate the accuracy

of the ICT approximations developed in Section 3.3.1 and Appendix B.3. We calculate

performance metrics using batch means to obtain means and confidence intervals. We

simulate the system for 20,000 weeks and divide it into 10 batches, where the first

batch is excluded as a warm-up period. All simulation experiments are run on a

desktop computer with an Intel i7-8700 CPU and 64GB of RAM.

We describe the flow of events in our discrete-even simulation, which is calibrated

with the parameters introduced above. At the beginning of each day, we first deter-

mine the number of new patients. Patients getting root appointments arrive accord-

ing to the template Θ = {Θk,d} and are guaranteed to get their root appointments.

To account for non-integer Θ, we generate arrivals according to a random variable

bΘk,dc + Bern(Θk,d − bΘk,dc), where Bern(p) is the Bernoulli random variable with

parameter p, s.t. (1 + p)bΘk,dc = Θk,d. For each new patient of type k starting

on day d, we generate a priori a realization of her care path by considering S · U

independent Bernoulli trials, one for each station in each stage, where each trial is

given by Bern(pku,s). We generate exogenous arrivals from the fitted Gaussian distri-

bution (truncated at zero). Each station maintains a pool of appointments, which

records the unique ID (generated at admission time) of each patient that currently

has an appointment at station u to be finished. To determine which appointments

are fulfilled on a given day d in station u, we randomly shuffle the list of patients
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requesting an appointment and admit patients in their randomized order up to the

capacity Cu,d, with the remaining (target) patients being blocked, staying in the pool

of appointments for the next day; exogenous patients are lost in the no-retrial setting.

If a patient is not blocked, they join the pool of appointments for the next station(s)

of their pre-generated care path on the following day. On each day of the simulation,

we record the total number of patients blocked, the blocking probability (fraction of

patients blocked), and the number of exogenous patients blocked. For each patient,

we also record her ICT and whether or not they complete by the target deadlines.

3.4.2 Itinerary Completion Results for Mayo Clinic Breast Cancer Patients

To demonstrate the computational efficiency of our algorithm, we solve the op-

timization for for the 26-station network for BC patients as described above. Table

3.4 reports the itinerary completion rates under the historical and optimal templates

for the 26-station network. The results are obtained by simulating each template

on the 26-station network. The optimal template, which is solved from our iterative

optimization algorithm, can significantly improve itinerary completion for national

and international patients, with only a small reduction for regional patients. While

the optimal template benefits priority patients, seemingly at the expense of local pa-

tients, local patients live within 50 miles of the clinic and completing by Friday is

not a significant concern. Further, the average itinerary completion time under the

optimal template is actually shorter for regional and local patients due to lower block-

ing rates; 3.11 days under the historical template versus 3.03 days under the optimal

template. For patients with no travel restrictions, the completion time is likely more

important than completing by Friday.

We also compare the 26-resource network solution with the smaller 5-resource

network solution (the five key resources in Figure 3.1); the results are nearly the
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same. As a result, we analyze the 5-resource network in the remainder of this case

study to generate clearer insights.

Computation time. The 26-station network solves in about 30 minutes per itera-

tion, compared with 5 minutes per iteration for the 5-station network. This suggests

that the computational time increases linearly in the network size, demonstrating the

scalability of our algorithm.

International National Regional Local

Historical 38.0± 2.3% 58.8± 0.2% 62.3± 0.5% 62.9± 0.4%

Optimal 94.1± 1.3% 93.1± 0.3% 56.7± 0.6% 22.5± 0.4%

5-resource template 94.5± 0.9% 92.9± 0.2% 55.7± 0.5% 21.4± 0.3%

Table 3.4: Itinerary Completion Rates with 95% Confidence Intervals for the

Historical Template, Optimal Template Solved from the 26-Station Full Network,

and Optimal Template Solved from a Smaller, 5-Station Critical Resource Network

3.4.3 Pitfalls of Manual Template Design: Value of an Integrated Approach

In this section, we analyze the performance of our network optimization and high-

light the key drivers behind poor itinerary completion rates for BC patients. First,

the historical template does poorly by allocating too many priority patient slots near

the end of the week, where they have little chance to complete their itineraries by

Friday. The solution to this seems obvious: move priority appointments to the be-

ginning of the week. However, we demonstrate the myopic nature of this approach

and illustrate several pitfalls in template design that lead to (i) direct blocking, (ii)

overflow blocking from non-priority patients, and (iii) network blocking. These oc-

cur because of a failure to consider (i) subsequent appointments generated from the
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root appointment, (ii) itineraries of non-priority patients, and (iii) workloads at other

services in the network, respectively.

Direct blocking: front-loaded template.

Comparing the historical template in Figure 3.3(a) with the optimal template in

Figure 3.3(b) we see a migration of priority patients from mid-late week to Monday

and Tuesday primarily. To demonstrate that moving patients earlier in the week is

only part of the benefit of the optimization, we also design a front-loaded template

that moves priority patients to Monday to give them the greatest buffer between

their root appointment and their deadline; see Figure 3.3(c). However, as we detail

below, the benefits of this additional buffer for priority patients in the front-loaded

template are dampened by the increase in direct blocking caused by overloading BDC

on earlier days of the week. We call this direct blocking because most patients require

a follow-up in BDC after their root appointment, and overloading the BDC service

lengthens the entire itinerary.

Mon Tue Wed Thu Fri0

5

10

15

(a) Historical

Mon Tue Wed Thu Fri0

5

10

15

(b) Optimal

Mon Tue Wed Thu Fri0

5

10

15

20

25 Non-priority
Priority

(c) Front-loaded

Figure 3.3: Historical Template, Optimal Template, and Front-Loaded Template

Table 3.5 shows that the front-loaded template falls well short of the optimal

performance. This can be explained by the ICT distributions shown in Figure 3.4.

Under the optimal template, nearly all patients complete their itinerary within five
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International National Regional Local

Historical 40.4%± 1.6% 62.8%± 0.3% 65.7%± 0.4% 65.4%± 0.5%

Front-loaded 75.0%± 1.5% 84.1%± 0.3% 73.8%± 0.3% 73.6%± 0.4%

Optimal 96.6%± 1.0% 95.4%± 0.2% 62.2%± 0.4% 22.9%± 0.2%

Table 3.5: Itinerary Completion Rates with 95% Confidence Intervals for the

Historical Template, a Front-loaded Template, and the Optimal Template.
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Figure 3.4: PDF and CDF of Itinerary Completion Time for National and

International Patients Admitted on Monday

days, whereas 17% of patients in the front-loaded template have ICTs of at least

five days, despite the fact that most patients only require three to four stages. This

protracted ICT time is caused by direct blocking being as high as 45%-50% on Mon-

day through Wednesday at BDC, where much of the initial diagnosis and treatment

planning occurs. Blocking is less than 2% across all weekdays under the optimal

template.
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To further illustrate the impact of this direct blocking, Table 3.6 shows the over-

all average ICT and the average time to complete each stage for national patients

admitted on Monday. ICTs are over a day longer under the front-loaded template,

with much of the delays occurring in the first stage of the care path. This can be

particularly frustrating for patients, as they travel to the clinic with the expecta-

tion of a quick turnaround only to find that they must wait days to get their second

appointment.

Average ICT stage 1 stage 2 stage 3 stage 4

Optimal

require 3 stages 3.05± 0.01 1.00± 0.00 1.03± 0.01 1.02± 0.00

require 4 stages 4.06± 0.01 1.00± 0.00 1.03± 0.01 1.02± 0.01 1.01± 0.01

Front-loaded

require 3 stages 4.28± 0.01 2.14± 0.01 1.06± 0.00 1.08± 0.01

require 4 stages 5.35± 0.04 2.14± 0.03 1.06± 0.01 1.10± 0.01 1.05± 0.01

Table 3.6: Average ICT by Care Path Stage for National Patients Admitted on

Monday

Note that stages two to four are also completed more quickly in the optimal

template; this is due to reduced blocking in General Surgery and Plastic Surgery,

which are the primary services required later in the itinerary. This failure to consider

the other services on the care path is the third pitfall (network blocking), which we

discuss in Section 3.4.3.

The analysis here highlights the importance of smoothing the workload to reduce

blocking across the network. Figure 3.5 plots the workloads resulting from the three

templates. Compared with the other templates, the optimal template creates lower
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internal (controllable by the template) workload on Wednesdays and Thursdays in

response to the higher external (non-controllable) workloads. This generates a much

smoother utilization across different days of the week. The front-loaded template

highlights the importance of workload smoothing, since simply pushing priority pa-

tients as early in the week as possible is not sufficient. In contrast, our optimization

performs a careful allocation of appointments across the week to balance the timing

of priority patient root appointments with the more subtle cause for non-completion:

blocking on the care path.

Mon Tue Wed Thu Fri0%

25%

50%

75%

100%

(a) Historical template

Mon Tue Wed Thu Fri0%

25%

50%

75%

100%

(b) Optimal template

Mon Tue Wed Thu Fri0%

50%

100%

150% External
Internal

(c) Front-loaded template

Figure 3.5: Utilization of the BDC and Decomposition by Internal v.s. External

Overflow blocking and non-priority patients.

In the front-loaded template, direct blocking at BDC caused itinerary completion

failures. To alleviate direct blocking, one might spread out the priority patients over

the earlier days in the week, while allocating non-priority patients later in the week

to clear the middle of the week for priority patients to complete their itineraries; see

Figure 3.6(a) for this historical-revised template. Perhaps surprisingly, this template

only performs marginally better than the front-loaded template in the completion

rates (86% national and 74% international, versus 84% national and 75% interna-

tional). Despite reducing direct blocking, blocking remains high in BDC on Monday
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(50%) and Tuesday (35%). Here, however, the blocking is caused by non-priority

patients that overflow to Monday of the next week from both blocking on Friday and

regular subsequent appointments in stage two; note the high internal workloads on

Monday and Tuesday shown in Figure 3.6(b). Focusing solely on priority patients does

little to improve their completion rates and can significantly hurt regional patients.

Though regional patients are not as sensitive to the Friday deadline, ignoring their

completion rates entirely can be myopic. A more strategic approach would optimize

priority patient completion with a guarantee on the fraction of regional patients that

are also able to meet their completion target. Figure 3.7 plots the trade-off between

completion rate of priority patients vs regional patients by adding a constraint for

regional patient completion, which is varied on the x-axis. While the shape of this

curve is intuitive, generating this output to support strategic management decision

making would not be possible without our integrated framework.
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Figure 3.6: Performance under the Historical Revised

Template.
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Network Blocking.

The front-loaded and historical-revised templates highlight the importance of reduc-

ing blocking in BDC, where root appointments occur. However, in a coordinated care

system, blocking in other services also affects itinerary completion rates. Here, we

return to the last scenario considered in the previous subsection, in which we opti-

mize priority patient itineraries while ensuring with at least a 75% completion rate

for regional patients. We then compare the network-optimal template (solved from

our optimization approach) with a network-agnostic template from an optimization

that considers only BDC; see Table 3.7.

International National Regional Local

Network-optimal 96.3± 0.7% 91.0± 0.2% 74.8± 0.7% 6.8± 0.2%

Network-agnostic 96.4± 0.5% 95.3± 0.1% 63.1± 0.4% 14.4± 0.2%

Table 3.7: Impact of Network Dynamics: Comparing a Network-Agnostic

Optimization with the Network Optimization

While the network-agnostic template assumes it achieves the target 75% comple-

tion rate for regional patients when optimizing with only BDC, the actual completion

rate, as reported in Table 3.7, only reaches 63% when simulated in the five-resource

network. This shows that a simpler model focusing on one main resource can intro-

duce significant bias. Indeed, if the volume of exogenous patients in general surgery

were to increase by 20%, which is common in practice due to shifting service-line

strategies, regional completion drops even lower to 58%, while the network-optimal

performance is barely affected. This ability to adjust to dynamic changes in auxiliary

service-lines can be valuable for proactive decision making, and was a main impetus

for this research.
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Comparing the network-optimal and network-agnostic templates in Figure E.4 in

Appendix E.3, it is easy to see where the network-agnostic one goes wrong. It al-

locates too many regional patient apopintment slots on Thursday (30% more than

the network optimal), assuming that they will be guaranteed to complete their ap-

pointments at other services (e.g. General Surgery) without any delay. There are

two key problems with this template. First, any delay in the broader network for a

patient starting late in the week is likely to cause a completion failure. Second, BC

patients often require a general surgery consult on the first or second stage after the

root appointment at BDC. Thus, allocating too many patients on Thursday can exac-

erbate network blocking by overloading general surgery. This analysis highlights not

only the importance of network-driven design, but also that it is critical to account

for parallel appointments (as in Appendix B.3), though this feature has been largely

overlooked in the literature.

Value of an integrated approach.

We conclude this section by highlighting the following key insights into the pitfalls of

template design:

1. The historical template allocates too many appointments for the priority pa-

tients late in the week, leading to low itinerary completion rates. However,

simply moving these priority patients to the beginning of the week is not nec-

essarily beneficial due to direct blocking.

2. Although we optimize itinerary completion for priority patients, ignoring the

impact of non-priority patients can backfire due to overflow blocking.

3. It is crucial to coordinate the network of care services; ignoring network dy-

namics can lead to significantly reduced performance relative to expectations.
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3.4.4 Impact of Exogenous Retrials

For analytical tractability, we made the assumption that exogenous patients exit

the system if they are blocked. To test the robustness of our model to this assumption,

we conduct simulation experiments where exogenous patients are allowed to retry

until they are able to obtain an appointment. This analysis further highlights the

importance of our optimization approach, which is robust to exogenous retrials, while

other templates are not.

Table 3.8 reports the completion rates of the front-loaded, historical revised and

optimal templates. Compared to the scenario without exogenous patient retrials

(see Table 3.5), the itinerary completion rate for priority patients drops by 7% in

the front-loaded and historical revised templates while the rate for regional patients

drops by 12%. Exogenous retrials create a cascading effect, propagating blocking

across the days of the week. For example, in the front-loaded template the blocking

on Monday only increases by 5%, whereas the blocking on Tuesday jumps by 14% due

to the carry-over from exogenous patients blocked on Monday. This cascading effect

pushes itineraries successively later in the week. The compounding effect of cascading

blocking caused by the retrials that occur in the actual system makes it even more

difficult to heuristically design a template that can work well in practice. On the other

hand, the optimal solution has nearly identical performance to the scenario without

retrials. The primary reason for the robustness of the optimal solution to the retrial

assumption is that it accounts for the complex blocking dynamics across the network,

which reduces the number of retrials and hence the impact of retrials on itinerary

completion. This highlights the importance of accounting for blocking, which would

be nearly impossible without a queueing network optimization framework like the one

we develop in this paper.
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International National Regional Local

Historical 40.0± 2.3% 62.1± 0.2% 64.9± 0.5% 64.8± 0.5%

Front-loaded 68.3± 1.8% 76.8± 0.4% 60.7± 0.7% 60.5± 0.5%

Historical Revised 66.4± 1.1% 79.1± 0.4% 0.0± 0.0% 0.0± 0.0%

Optimal 96.5± 0.4% 95.0± 0.2% 62.0± 1.0% 22.7± 0.1%

Table 3.8: Itinerary Completion Rates under Historical, Front-Loaded and

Historical Revised Templates and the Optimal Template from Our Algorithm When

Exogenous Patient Retrials are Allowed
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Chapter 4

MEAN-FIELD ANALYSIS FOR APPROXIMATION OF BLOCKING

PROBABILITIES

In this Chapter, we state the main results showing that the distributions of the

blocking probabilities converge to point masses, in both the transient state and steady

state. Specifically, in a network with n stations, for the transient analysis we show

that the distribution of U(t) = {Uu(t), ∀u = 1, . . . , n} converges to the point mass

β(t) = {βu(t), ∀u = 1, . . . , n} as the size of the system N →∞; for their steady-state

counterparts, we show that U∞ = {Uu,∞} converge to the point mass β∞ = {βu,∞}

as N →∞.

4.1 Transient Analysis

We begin by stating a general version of the results. That is, for a class of functions

h satisfying certain conditions, the difference between E[h(U(t))] and h(β(t)) for each

t ≥ 0 is of order O(1/N), where N is a scaling factor for the system size (e.g.,

capacity). Then, by choosing h to be a quadratic function in Corollary 4.1.1, we

show the convergence of the stochastic system in mean square, which implies the

convergence in probability.

In the standard mean-field framework, the total population size is fixed at N ,

and it is sufficient to describe the system dynamics using the occupancy measures

{Uu(t)} and {µu(t)}. However, in our setting the total number of patients, Nu(t), is

changing in every period, preventing us from applying the existing results to establish

the desired convergence results. To overcome this, we introduce an auxiliary variable,

Vu(t) = Nu(t)/N
q ∈ V for some q ≥ 0. For given N and q, it is equivalent to record
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Vu(t) as to record Nu(t), which maintains the Markovian properties when tracking

the dynamics from time 0 to t. Setting q properly allows us to establish the desired

convergence results when N → ∞. It is worth emphasizing that the occupancy

measures, {Uu(t)}, are the actual variable of interest, not {Vu(t)}. Thus, the output

of the testing functions h in Theorem 4.1.1 below depends only on Uu(t)’s. Examples

of such functions include h(u1, v1, . . . , un, vn) = u1 and h(u1, v1, . . . , un, vn) = (u1−ū)2

with ū being some constant.

Theorem 4.1.1. Consider a function h : [0, 1]n×Vn → R that is continuous and twice

differentiable, where the first derivative of h is (1/γ)-Lipschitz, i.e., |h′(a)− h′(b)| ≤
1
γ
||a − b||. Assume the following initial condition: Nu(0) = nu(0) = cu,0N for each

station u, where cu,0 does not depend on N ; and Uu(0) = µu(0) for each u. Then, for

any fixed t ≥ 0, if q ≥ 3/2, we have that∣∣∣E [h (U1(t), V1(t), . . . , Un(t), Vn(t))]− h(µ1(t), v1(t), . . . , µn(t), vn(t))
∣∣∣ ≤ ct

N
, (4.1)

where ct > 0 is a constant that is independent of N, q.

The main proof uses an induction argument, where a key lemma for the induction

establishes a similar bound as in (4.1) for each t, conditioning on the state in t − 1.

This key lemma is proved by performing a Taylor expansion around h(µ1(t−1), v1(t−

1), . . . , µn(t− 1), vn(t− 1)), where we show that the stochastic system and mean-field

model agree in expectation for the one-step transition and hence the first-order term

of the Taylor expansion can be cancelled out. Then, it is sufficient to simply bound

the remainder term by O(1/N). The complete proof is detailed in Appendix F.1.

Considering a particular testing function h
(
u1, v1, . . . , un, vn

)
=
(
uu − βu(t)

)2
for

a given station u ∈ {1, . . . , n} gives us the following corollary.

Corollary 4.1.1. Under the same conditions in Theorem 4.1.1, Uu(t) → βu(t) in

mean square as N →∞ for any given t ≥ 0 and station u.
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Proof. Recall that µu(t) = βu(t) for a given u ∈ {1, . . . , n}. It is easy to verify

that h
(
u1, v1, . . . , un, vn

)
=
(
uu − βu(t)

)2
satisfies the conditions for Theorem 4.1.1.

Applying the theorem gives us E [(Uu(t)− βu(t))2] = O(1/N), i.e., convergence in

mean square as N → ∞. Note, mean-square convergence implies convergence in

probability.

4.2 Steady-State Analysis

For the steady-state analysis, we focus on the time-stationary setting where λu(t) =

λu, λe,u(t) = λe,u, and Cu(t) = Cu for each u. We denote (Uu,∞, Vu,∞) and (µu,∞, vu,∞)

as the steady-state version of (Uu(t), Vu(t)) and (µu(t), vu(t)). In addition, µu,∞ =

βu,∞, the steady-state blocking probability, for each station u. We denote (U∞, V∞)

and (µ∞, v∞) as the vector of these steady-state variables from all stations in the

stochastic and deterministic systems.

Theorem 4.2.1. Under the stability condition (3.3),

E
[
||(U∞, V∞)− (µ∞, v∞)||22

]
= O

(
1

N

)
. (4.2)

The proof follows the Stein’s method framework developed in Braverman and Dai

(2017), Ying (2018), and Gast et al. (2018). The main difficulties in our setting

include (i) we have a discrete-time system, not a continuous-time system as studied

in most previous papers; (ii) the varying population size requires us to introduce

the auxillary variable V∞. Further, this variable can be unbounded, requiring us to

conduct analysis separately on a bounded set and outside the bounded set; previous

papers such as Gast et al. (2018) mostly work with bounded sets. We give a sketch

of the proof below, and relegate the complete proof to Appendix F.2.

Proof. Sketch of proof. The key to the Stein’s method framework is that, instead

of directly bounding the difference between (U∞, V∞) and (µ∞, v∞), we bound the
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difference between the value functions from the Poisson equation with respect to the

deterministic system. Consider a given state (u, v) = (u1, . . . , un, v1, . . . , vn). Let

Gt(u, v) and Ψt(u, v) denote the generators for t-step transitions in the stochastic

system and the mean-field model, respectively. The Poisson equation with respect to

Ψ1 can be written as:

fg(u, v) = g(u, v)− g
(
µ∞, v∞

)
+ fg

(
Ψ1(u, v)

)
,

or equivalently

g(u, v)− g
(
µ∞, v∞

)
= fg(u, v)− fg

(
Ψ1(u, v)

)
. (4.3)

Here, g(u, v) =
∑

i(ui − µi,∞)2 + (vi − vi,∞)2 and fg is the (relative) value function,

given as

fg(u, v) =
∞∑
t=0

[
g
(
Ψt(u, v)

)
− g
(
µ∞, v∞

)]
.

fg is well-defined since the deterministic system has a unique equilibrium solution

under the stability condition (3.3). Next, taking expectation of (4.3) with respect to

(u, v) ∼ (U∞, V∞),

E
[
g
(
U∞, V∞

)
− g
(
µ∞, v∞

)]
= E

[
fg(U∞, V∞)− fg

(
Ψ1(U∞, V∞)

)]
.

Then, using the basic adjoint relationship E
[
fg
(
G1(U∞, V∞)

)
− fg(U∞, V∞)

]
= 0 for

the stochastic system and adding this 0 term to the above equation, we get

E
[
g
(
U∞, V∞

)
− g
(
µ∞, v∞

)]
= E

[
fg(U∞, V∞))− fg

(
Ψ1(U∞, V∞)

)]
+E

[
fg
(
G1(U∞, V∞)

)
− fg(U∞, V∞)

]
= E

[
fg
(
G1(U∞, V∞)

)
− fg

(
Ψ1(U∞, V∞)

)]
.
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Now we have achieved generator coupling on the right-hand side of the above equation

(Braverman and Dai, 2017). To prove (4.2), we just need to bound

E
[
fg
(
G1(U∞, V∞)

)
− fg

(
Ψ1(U∞, V∞)

)]
= E

[ ∞∑
t=0

[
g
(
Ψt(G1(U∞, V∞))

)
− g
(
Ψt(Ψ1(U∞, V∞))

)] ]
.

This coupling allows us to work directly with the one-step generator G1 and the

deterministic transition generators Ψt. The rest of the proof involves:

1. We first consider when (u, v) are in a bounded set and show that there exists a T ∗

for any (u, v) in this set, such that the system enters a “contraction” region after

T ∗. After entering the contraction region, there exists a constant (1 − ε) < 1

such that, for any pair of states (u, v) and (u′, v′) that are sufficiently close

to the equilibrium (µ∞, v∞), we have |Ψ1(u, v) − Ψ1(u′, v′)| ≤ (1 − ε)||(u, v) −

(u′, v′)||. Thus, we can bound E
[∑∞

t=T ∗+1

[
g
(
Ψt(G1(u, v))

)
− g
(
Ψt(Ψ1(u, v))

)]]
by O(1/N), leveraging the transient analysis combined with this contraction

mapping. For each t ≤ T ∗, we also apply the results from the transient analysis

by verifying h = g ◦ Ψt satisfies the conditions required for testing function in

Theorem 4.1.1.

2. Next we analyze states outside the bounded set. Following the framework in

Ying (2017), we show that, for any v > rb in the unbounded set, the deter-

ministic process will be absorbed back into the bounded set in finite steps Tv.

We then calculate the expected error incurred while in the unbounded set. The

key insight is that we can bound this error by E [V∞ − rb]N−1/2; then replac-

ing rb with v∞ and squaring the difference inside the expectation allows us to

move this error term to the LHS of the bounding equation and combine it with

E [||(U∞, V∞)− (µ∞, v∞)||22] – which is what we are trying to bound. Then,
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combining the results on the bounded set, we show that the remaining terms on

the RHS of the bounding equation is O(1/N), which establishes the final result.

Finally, note that Bu(t) = E[Uu(t)|N(t)] and Bu = E[Uu,∞|N∞], while the distri-

butions of Uu(t) and Uu,∞ converge to the point masses βu(t) and βu,∞, which do

not depends on Nu(t) or N∞. Thus, the distributions of Bu(t) and Bu also converge

to the same point mass. In other words, when the system size N is large, we can

approximately replace the blocking probability of each patient by the deterministic

number β, justifying approximation (3.13). We conclude our analysis by providing a

bound on the phase-type distribution approximation in the policy evaluation step of

our optimization algorithm.
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Chapter 5

CONCLUSION

In this dissertation, we study scheduling in a co-located wireless network under both

deadline and average power level constraints. We first formulate an optimization

problem such that any power-control and scheduling algorithm that solves the op-

timization problem is throughput optimal. Then we propose a low complexity al-

gorithm, named PDMax, and proved its throughput optimality. We compared the

performance of PDMax with greedy-MaxWeight and LDF through simulations and

showed that our algorithm outperforms the other two algorithms by achieving higher

throughput and using lower average transmit power.

We also develop an optimization approach to a queueing network model for pri-

ority appointment allocation in a network of healthcare services with patient classes

that have different time-sensitivities. We apply our new approach to meet itinerary

completion deadlines for national/international patients at the Mayo Clinic. To cap-

ture the sojourn time in the queueing network, we design a phase-type approximation

that we rigorously justify using mean field theory, with provable error bounds. We

leverage this phase-type model in an iterative decomposition approach and provide

bounds on the error introduced by the decomposition. This approach transforms the

non-linear stochastic optimization into a sequence of tractable LP models that can

efficiently optimize sojourn times relative to class-specific deadlines in large scale net-

works. Finally we present a case study of improving itinerary completion for breast

cancer patients at the Mayo Clinic. In this study, we demonstrate that template de-

sign is a complex and multifaceted problem in which multiple aspects of the system’s

dynamics must be considered, including network blocking, timing of root appoint-
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ments for priority patients, and the impact of non-priority and exogenous patients on

itinerary completion. We illustrate some of the pitfalls of templates that fail to con-

sider all the factors that impact itinerary completion, which makes manual template

design extremely challenging. Simultaneously addressing all of these factors requires

an analytical model, which we show can significantly improve itinerary completion

for breast cancer patients traveling long distances to receive care.
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For a link to transmit a number of packets in T consecutive time slots, we will

first prove that the number of possible schedules is
∏T
i=1(a+i)

T !
in Theorem A.0.1 and

then utilize the Stirling’s approximation formula to show it is at the order of O(ea+T )
in Corollary A.0.1. Lemma A.0.1 is used for proving an equation that is later used in
Theorem A.0.1. Lemma A.0.2 is used in the proof of Corollary A.0.1.

Lemma A.0.1. The following equality holds for any a = 0, 1, 2, . . . and t = 1, 2, 3, . . .

1 +
a∑
i=1

i−1∏
j=0

a− j
a+ t− j

=1 +
a

a+ t
+

a(a− 1)

(a+ t)(a+ t− 1)
+ . . .

+
a(a− 1) · · · 1

(a+ t)(a+ t− 1) · · · (t+ 1)
=
a+ t+ 1

t+ 1

Proof. We use the induction for the proof. For a = 0, 1, 2, we have

1 +
0∑
i=1

i−1∏
j=0

0− j
0 + t− j

=1 =
0 + t+ 1

t+ 1
, for all t = 1, 2, . . .

1 +
1∑
i=1

i−1∏
j=0

1− j
1 + t− j

=1 +
1

t+ 1
=

1 + t+ 1

t+ 1
, for all t = 1, 2, . . .

1 +
2∑
i=1

i−1∏
j=0

2− j
2 + t− j

=1 +
2

t+ 2
+

2× 1

(t+ 2)(t+ 1)
=

2 + t+ 1

t+ 1
, for all t = 1, 2, . . .

For a = n, we assume the following equality holds for all t = 1, 2, . . .

1 +
n∑
i=1

i−1∏
j=0

n− j
n+ t− j

=1 +
n

n+ t
+

n(n− 1)

(n+ t)(n+ t− 1)
+ . . .

+
n(n− 1) · · · 1

(n+ t)(n+ t− 1) · · · (t+ 1)
=
n+ t+ 1

t+ 1
.
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Then for the case of a = n + 1, by applying the induction hypothesis, we have the
following:

1 +
n+1∑
i=1

i−1∏
j=0

n+ 1− j
n+ 1 + t− j

=1 +
n+ 1

n+ 1 + t
+

(n+ 1)n

(n+ 1 + t)(n+ t)
+ . . .

+
(n+ 1)n(n− 1) · · · 1

(n+ 1 + t)(n+ t)(n+ t− 1) · · · (t+ 1)

=1 +
n+ 1

n+ 1 + t

(
1 +

n

n+ t
+

n(n− 1)

(n+ t)(n+ t− 1)
+ . . .

+
n(n− 1) · · · 1

(n+ t)(n+ t− 1) · · · (t+ 1)

)
=1 +

n+ 1

n+ 1 + t

n+ t+ 1

t+ 1
(by assumption)

=1 +
n+ 1

t+ 1
=

(n+ 1) + t+ 1

t+ 1
,

for all t = 1, 2, . . .

Theorem A.0.1. For a single link system with T time slots in a frame and a packets
to transmit, denote N(a, T ) as the number of possible schedules, we have

N(a, T ) =

∏T
i=1(a+ i)

T !

Proof. We enumerate all the choices for each time slot:

� For time slot 1, possible numbers of packets to transmit are 0, 1, . . . , a. Assume
we choose s1 packets to transmit.

� For time slot 2, possible numbers of packets to transmit are 0, 1, . . . , a − s1.
Assume we choose s2 packets to transmit.
· · ·

� For time slot T , possible numbers of packets to transmit are 0, 1, . . . , a− (s1 +
s2 + · · ·+ sT−1). Assume we choose sT packets to transmit.

Thus the number of possible schedules are

N(a, T ) =
a∑

s1=0

a−s1∑
s2=0

· · ·
a−(s1+···+sT−1)∑

sT=0

1 =
a∑

sT=0

a−sT∑
sT−1=0

· · ·
a−(s2+···+sT )∑

s1=0

1. (A.1)

The second equality comes from looking at the procedure of deciding the schedule
backwards, i.e. from the last time slot to the first time slot. We will then use induction
for the proof.
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We begin with the case of T = 1 and T = 2. By applying (A.1), we have that the
number of possible schedules for these two cases are

N(a, 1) =
a∑

s1=0

1 = (a+ 1) for all a = 0, 1, 2, . . .

N(a, 2) =
a∑

s1=0

a−s1∑
s2=0

1 =
a∑

s1=0

(a− s1 + 1) =
(a+ 2)(a+ 1)

2× 1

for all a = 0, 1, 2, . . .

Assume that for T = t, we have

N(a, t) =

∏t
i=1(a+ i)

t!
for all a = 0, 1, 2, . . . ,

Then for T = t+ 1, we have

N(a, t+ 1) =
a∑

st+1=0

a−st+1∑
st=0

· · ·
a−(s2+···+st+1)∑

s1=0

1


=

a∑
st+1=0

N(a− st+1, t)

=
a∑

st+1=0

∏t
i=1(a− st+1 + i)

t!
(by assumption)

=

∏t
i=1(a+ i)

t!
+

∏t
i=1(a− 1 + i)

t!
+ · · ·+

∏t
i=1 i

t!

=

∏t
i=1(a+ i)

t!

(
1 +

a

a+ t
+

a(a− 1)

(a+ t)(a+ t− 1)
+ . . .

+
a(a− 1) · · · 1

(a+ t)(a+ t− 1) · · · (t+ 1)

)
=

∏t
i=1(a+ i)

t!

a+ t+ 1

t+ 1
(by Lemma A.0.1)

=

∏t+1
i=1(a+ i)

(t+ 1)!
,

for all a = 0, 1, 2, . . .

Lemma A.0.2. For any n = 7, 8, 9, . . . , we have the inequalities(n
3

)n
< n! <

(n
2

)n
.
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Proof. By Robbins (1955) we have that for any n = 1, 2, . . . the following inequalities
hold: √

2πnn+ 1
2 e−n+ 1

12n+1 ≤ n! ≤
√

2πnn+ 1
2 e−n+ 1

12n .

To prove the first inequality, since e < 3, for any n = 1, 2, . . . we have that
√

2πnn+ 1
2 e−n+ 1

12n+1 >
√

2πnn+ 1
2 e−n

=
√

2πn
(n
e

)n
>
√

2πn
(n

3

)n
>
(n

3

)n
To prove the second inequality, since e >

√
2πe

1
12n for any n = 1, 2, . . . , it follows that

√
2πnn+ 1

2 e−n+ 1
12n < enn+ 1

2 e−n.

To compare the RHS of the above to (n/2)n, for integer n ≥ 7, we have that

enn+ 1
2 e−n(

n
2

)n = e
√
n

(
2

e

)n
< 1.

Thus for any n = 7, 8, 9, . . . , the following inequality holds
√

2πnn+ 1
2 e−n+ 1

12n < (n/2)n .

Corollary A.0.1. For a single link system with T time slots in a frame and a packets
to transmit, the number of possible schedules is at least at the order of O(ea+T ).

Proof. By Theorem A.0.1, we have

N(a, T ) =

∏T
i=1(a+ i)

T !
=

(a+ T )!

a!T !
.

By Lemma A.0.2, we have that for sufficiently large n,(n
3

)n
< n! <

(n
2

)n
.

Thus, a lower bound for N(a, T ) under sufficiently large a and T is

N(a, T ) >

(
a+T

3

)a+T

(T/2)T (a/2)a
=

(
a+T

3

)T (a+T
3

)a
(T/2)T (a/2)a

=

(
2

3

)T (
1 +

a

T

)T (2

3

)a(
1 +

T

a

)a
=

(
2

3

)a+T (
1 +

a

T

)T (
1 +

T

a

)a
,

Since limT→∞
(
1 + a

T

)T
= ea and lima→∞

(
1 + T

a

)a
= eT , we have that for sufficiently

large a+ T ,

N(a, T ) >

(
2

3

)a+T

ea+T .
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APPENDIX B

ADDITIONAL DETAILS ON THE PATIENT FLOW MODEL, MEAN FILED
MODEL AND ITINERARY COMPLETION TIME FOR SETTINGS WITH

PARALLEL APPOINTMENTS
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B.1 Settings Without Parallel Appointment

Denote the total number of target patients blocked at the end of day t + 1 as
MB

u (t + 1). Recall that Nu(t + 1) is the total number of requests and Bu(t + 1) is
the blocking probability. Conditioning on Nu(t + 1) = n and Λe

u(d(t + 1)) = λe,

and denoting
(
Nu(t + 1) − Cu,d(t+1)

)+
= b, we have that MB

u (t + 1) follows the
hypergeometric distribution

P
(
MB

u (t+ 1) = k|b, λe
)

=
c(n− λe, k) · c(λe, b− k)

c(n, b)
, (B.1)

where c(a, b) is the binomial coefficient. Note that MB
u does not follow a binomial

distribution because, in total, there are exactly b patients blocked. Thus, we are
sampling b patients without replacement from the joint pool of target patients and
exogenous patients, whereas the binomial distribution assumes each patient has an
independent Bernoulli trial, i.e., sampling with replacement. In other words, the
blocking events are correlated among patients.

Once we have MB
u (t + 1), under the random ordering assumption, the joint

distribution of {MB,k
u,s (t + 1),∀k, s} follows the multinomial distribution with pa-

rameters MB
u (t + 1) and probabilities

{
Nk
u,s(t+1)∑

k,sN
k
u,s(t+1)

,∀k, s
}

, and MNB,k
u,s (t + 1) =

Nk
u,s(t+ 1)−MB,k

u,s (t+ 1).

B.2 Patient Flow and Meal-Field Models for Settings with Parallel Appointments

To specify the patient flow model with potentially parallel appointments in each
stage, we denote Rk,s = {u1, u2, . . . , un} as the set of resources that are required to
complete stage s for a type k patient. We further define the following vector tracking
the appointment completion status for resource group Rk,s as

BRk,s =(au1 , au2 , . . . , aun),

where for each uj ∈ Rk,s, auj = 0 indicates that the appointment at resource uj has
not yet been completed and auj = 1 indicates that it has been completed. Given
Nk,s total possible resources that can be used by a type k patient at stage s, each
resource group is one possible combination of the Nk,s resources. That is, Rk,s ∈
P({u1, . . . , uNk,s}), where P is the power set.

For illustration purposes, we explain the patient flow model by considering the
case where each stage contains only two stations for the patient to visit; the model
framework can be generalized easily. In this scenario, the blocking status vector BRk,s
can take four possible values: (0, 0), (1, 0), (0, 1), (1, 1), where (1, 1) represents that
the patient finished all appointments required in the current stage and is ready to
move to the next stage on her care path.

Now, we define the following patient count that differentiates not only by k, s but
also by the blocking status. That is, we denote Mk,B

R,s(t) that counts the total number
of type k patients whose blocking status is B = (a1, a2) in stage s, at the end of day
t. We drop the index k, s from B and R for notational simplicity. The total number
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of target patients requesting an appointment from station u on day t+ 1 is a random
variable that follows:

Nk
u,s(t+ 1) =

∑
R:u∈R

∑
B:au=0

Mk,B
R,s(t) + M̃k

R,s(t) + Λu(t+ 1).

Here, the first double-summation represents all the patients who are in stage s and
need to visit station u, yet have not finished their appointments at u. The second
term represents the patients who have finished all appointments in stage s− 1 by the
end of day t and now need to visit station u in stage s. That is,

M̃k
R,s(t) =

∑
Rs−1

Mult
(
M

k,(1,1)
R,s−1 (t), pRs−1,Rs

)
,

where each term in the summation denotes the number of patients, out of those

M
k,(1,1)
R,s−1 (t) who completed all appointments in stage s− 1, that request appointments

from resource group Rs in stage s with probability pRs−1,Rs , where this patient count
follows a multinomial distribution.

Transitions in the Stochastic System

Once we get Nk
u,s(t + 1), we can then define Nu(t + 1) similarly as in Section 3.1.1

and calculate Bu(t + 1) in (3.1). To obtain Mk,B
R,s(t + 1), we first calculate the fol-

lowing intermediate variables: N b,k,B
R,s (t + 1;u), which counts the number of patients,

out of all patients in the same category determined by (k, s,B,R), that are blocked
at station u on day t + 1. As in Section 3.1.1, we get MB

u (t + 1) from the hypergeo-
metric distribution that samples blocked patients without replacement from the joint
pool of the target patients and exogenous patients. Then, the joint distribution of
N b,k,B
R,s (t + 1;u)’s follow a multinomial distribution with parameters MB

u (t + 1) and
the proportions of patients from the corresponding category of (k, s,B,R).

With these intermediate variables, we can characterize the transitions in the pa-
tient counts to the new blocking status. Here, we give a sketch of this characterization
using an example from the two-resource setting. Assume that for a given k, s,R, there
are three patients in status (0, 0) who need appointments from both stations u1 and

u2. Conditioning on N b,k,B
R,s (t + 1;u1) = 2 and N b,k,B

R,s (t + 1;u2) = 1, we then need to
enumerate over all possible sequences of the three patients. Index the three patients
with 1, 2, 3. Then we have the following possibilities for the blocking status in u1 and
u2:

{(1, 2), 3; (1, 3), 2; (2, 3), 1} for u1, {(1), 2, 3; (2), 1, 3; (3), 1, 2} for u2,

where the patients in the parenthesis are blocked. We then enumerate over all the
possible combinations of the blocking status between the two stations and then get
the new Mk,B

R,s(t+1). For example, if we have (1, 2), 3 in u1 and (1), 2, 3 in u2, then we
know that, out of the three patients, one of them stays in status (0, 0), one transitions
to status (0, 1), and one transitions to (1, 1). Other cases can be derived similarly.
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Mean-Field Model

Once we have the stochastic patient flow model, the corresponding mean-field model
can be written by taking the expectation of the random quantities, similar to what
we show in Section 3.3.2. In particular, in the mean-field model, the transitions
from mk,B

R,s(t)’s to mk,B
R,s(t+ 1)’s (the deterministic counterparts for Mk,B

R,s(·)) are much
simplified. For example, for a patient in a starting status (0, 0), the transition prob-
abilities into status (0, 0), (1, 0), (0, 1), and (1, 1) are simply βu1(t + 1)βu2(t + 1),(
1−βu1(t+1)

)
βu2(t+1), βu1(t+1)

(
1−βu2(t+1)

)
, and

(
1−βu1(t+1)

)(
1−βu2(t+1)

)
,

respectively, where βu(t+ 1) is the blocking probability on day t+ 1 in the mean-field
model. The stability condition (3.3) ensures that we have an equilibrium solution
β = {βu,d}, which can be solved numerically from the mean-field model.

B.3 Itinerary Completion Time for Settings With Parallel Appointments

In this section, we generalize the characterization of the ICT distribution to the
setting where patients may require parallel appointments from multiple stations in the
same stage, in addition to probabilistic resource requirements and multiple stages of
treatment presented in Section 3.3. These features are critical to itinerary completion
as seen in our data, but have not been considered in prior works such as Casale
(2010). Modeling r parallel appointments requires calculating the generator matrix
for the maximum of r phase-type distributions. In the interest of space, we focus on
considering parallel appointments in a single stage here and relegate the extension to
the general multi-stage model to Appendix C.

Consider r parallel appointments at stations u1, u2, . . . , ur. The time to obtain an
appointment from each station is characterized by the phase-type random variables
X1, X2, . . . , Xr. The time to complete all appointments in this stage is thus given by
X = max{X1, X2, . . . , Xr}. If we directly apply results on the maximum of multiple
phase-type distributions, e.g., see Davio (1981), the generator matrix for X involves a
recursive calculation. Given r phase-type RVs, each with a generator matrix Ti (i =
1, . . . , r) of size N×N , the generator matrix TX is of size

(
(N+1)r−1

)
×
(
(N+1)r−1

)
.

As r increases, the size of the generator matrix will experience exponential growth.
In our case study, for a five-station network, TX (in one stage) has a size of 7, 775×
7, 775, with 60, 450, 625 entries. This makes solving any realistically sized networks
computationally intractable. To overcome this computational challenge, we develop
a new state transformation, which leads to an exact, yet compact representation of
the generator matrix.

A Compact Representation for the Generator Matrix.

We develop an alternate, equivalent representation for the generator matrix, TX , by
leveraging special structures of the network sojourn problem. The key is to introduce
a transformed state by noting that (i) transitions can only occur between the current
day and the next day, i.e., from day 1 to day 2, or day 2 to day 3; and (ii) the time
for attempting to obtain parallel appointments is synchronized, e.g., it is impossible
to have a state where an appointment for station 1 is attempting to get scheduled on
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day 1 while another appointment for station 2 is attempting to get scheduled on day
3. To specify the state transformation, we first define the Kronecker product.

Definition B.3.1. The Kronecker Product of matrices A and B, A ⊗ B, is an op-
eration on two matrices, such that if A is an m × n matrix and B is a p × q then
A⊗B is a mp× nq matrix that can be written as follows:

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 . (B.2)

The next proposition shows the generator matrix of X using the state transformation.

Proposition B.3.1. Let X1, . . . , Xr be r phase-type r.v.. Then X = maxrj=1 Xj

follows a phase-type distribution with the following generator matrix:

V =


Day 1 Day 2 Day 3 Day 4 Day 5 Absorb

Day 1 0 V1,2 0 0 0 V0
1

Day 2 0 0 V2,3 0 0 V0
2

. . . . . . . . . . . . . . . . . . . . .
Day 5 V5,1 0 0 0 0 V0

5

Absorb 0 0 0 0 0 1

 . (B.3)

Here, Vi,i+1 and V0
i are specified through the Kronecker product as follows[

Vi,i+1 | V0
i

0 | 1

]
=

n⊗
j=1

Auj ,i, (B.4)

with Auj ,i being the following 2 × 2 matrix that depends on the blocking probabilities
βuj ,i

Aj,i =

[
βuj ,i 1− βuj ,i

0 1

]
. (B.5)

Proof. We give a sketch of proof by construction. Each matrix block, Vi,i+1 or V0
i ,

represents the transitions from day i to day i+ 1. In this case, either at least one of
the r appointments has not yet been finished and must retry on day i + 1, given by
Vi,i+1; or all r appointments are completed to reach the absorbing state, given by V0

i .
Consider the following state representation for the underlying DTMC that governs
the transition in Vi,i+1 or V0

i : (a1, a2, . . . , aL), where aj = 1 means that the patient
has completed her appointment at station j and aj = 0 means that the patient has
not yet completed her appointment at station j. Under this state representation, the
transition probabilities in Vi,i+1 or V0

i are characterized by all possible outcomes of
Bernoulli retrial for all stations with aj = 0 on day i (i.e., the stations that have not
yet been completed), which can be seen to be equivalent to the Kronecker product
in (B.4).
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In the case study of the five-station network in Section 3.4, this compact state
representation only requires multiplication of matrices of size 31 × 31, having 961
entries, compared to the original matrix size with 60, 450, 625 entries. Appendix C
specifies the generator matrix in the most general multi-stage setting with both par-
allel appointments and probabilistic resource requirements. Once we characterize the
generator matrix, to calculate the ICT distribution, we then replace the stochastic
blocking probabilities by their point mass from the mean-field model. The mean-field
model for the general setting with parallel appointments is detailed in Appendix B.2.
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APPENDIX C

A COMPREHENSIVE FRAMEWORK FOR PHASE-TYPE APPROXIMATION
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We consider the transition from one stage (with multiple appointments) to next
stage (with multiple appointments). We first define a set, R = {u1, u2, . . . , un}, that
contains the group of resources that are required to complete a particular stage of
treatment. We define the state space of the phase-type distribution for completing
all the appointments in group R as

SR = {(au1 , au2 , . . . , aun , d)},

where for each uj ∈ R, auj = 0 indicates that the appointment at resource uj has
not yet been completed on day d and auj = 1 indicates that it has been completed.

For a given group of resources, R, the size of the state space is 5 · (2|R| − 1), which
is the same as the size of the matrix block that defines the phase-type distribution
for completing all the appointments in resource group R. We adjust by −1 because
if not all auj ’s can be 1; otherwise, it should not be in this stage anymore. Given
N total possible resources that can be used by the patient, each group, R, is one
possible combination of the N resources. That is, R ∈ P({u1, . . . , uN}), where P is
the power set, or the set of all possible subsets of {u1, . . . , uN}.

C.1 Deterministic Resource Requirements

We first consider the case where each group of appointments must be finished
before moving to the next stage, i.e., no probabilistic resource requirements. For the
ease of exposition, we begin by illustrating the phase-type generator for a simpler
setting with m stages, where each stage contains only two stations for the patient to
visit. That is, let s = 1, 2, . . . ,m denote one of the m stages, and us,j ∈ {u1, . . . , uN}
(j = 1, 2, s = 1, . . . ,m) denote the jth station the patient needs to visit in stage s.
The state for stage s is given by

SRs =(aus,1 , aus,2 , d)

where d = 1, . . . , 5 represents the day of week. We specify the transition matrix for
the general setting at the end of this subsection.

The transition matrix has a similar block structure as the one shown in (3.22),
where we replace the blocking buj ,d probabilities (or non-blocking probabilities) at
each station in blocks T 1

uj
(or T 2

uj
) by a matrix that captures the blocking (or non-

blocking) probabilities for finishing all of the appointments in the current resource
group, instead of in a single station as in (3.22). We describe this new structure by
comparing with each block entry in (3.22).

Block Corresponding to Transitions Within One Stage

We first characterize V 1
Rs , which corresponds to T 1

us in (3.22). As mentioned, for
exposition, here we consider both resources are needed in stage s, i.e. Rs = {us,1, us,2}
for s = 1, 2, . . . ,m, Note that there can be at most three combinations for (aus,1 , aus,2):
(0, 0), (0, 1), and (1, 0), denoting that neither appointment was able to be scheduled,
the appointment in us,2 was able to be scheduled but not us,1, and the appointment
in us,1 was able to be scheduled but not us,2, respectively.
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The transition from day d to day d+ 1 corresponding to sample paths where the
patient has not completed both appointments in stage s is thus given by:

V1
Rs(d, d+ 1) =

 (0, 0, d+ 1) (0, 1, d+ 1) (1, 0, d+ 1)
(0, 0, d) βus,1,d · βus,2,d βus,1,d(1− βus,2,d) (1− βus,1,d)βus,2,d
(0, 1, d) 0 βus,1,d 0
(1, 0, d) 0 0 βus,2,d

 ,
(C.1)

where V1
Rs(d, d+ 1) is the multi-appointment analogue of the βus,d in (3.22), that is,

the matrix that represents the time to complete both jobs us,1 and us,2 in stage s –
also the maximum of two phase-type distributions.

As a result, block V 1
Rs can be written similarly to T 1

us as

V1
Rs =


Day 1 Day 2 Day 3 Day 4 Day 5

Day 1 0 V1
Rs(1, 2) 0 0 0

Day 2 0 0 V1
Rs(2, 3) 0 0

Day 3 0 0 0 V1
Rs(3, 4) 0

Day 4 0 0 0 0 V1
Rs(4, 5)

Day 5 V1
Rs(5, 1) 0 0 0 0

 , (C.2)

Note that the process will stay in block V1
Rs until all the appointments in group Rs

have been able to be successfully scheduled. The transitions to the next stage, s+ 1,
where all appointments in stage s have been completed are given below.

Block Corresponding to Transitions from One Stage to Another Stage

Let V2
Rs→Rs+1

(d, d+1) represent the transition from the group of resources, Rs on day
d to the group of resources Rs+1 on day d + 1. This block is the multi-appointment
analogue of to T 2

us in (3.22).
Recall, for illustration, we let Rs+1 = {us+1,1, us+1,2}, which indicates that two

resources are required in stage s + 1. Hence specifying the transition from states
(aus,1 , aus,2 , d) to states (aus+1,1 , aus+1,2 , d+ 1) gives us

V2
Rs,Rs+1

(d, d+ 1) =

 (0, 0, d+ 1) (0, 1, d+ 1) (1, 0, d+ 1)
(0, 0, d) (1− βus,1,d)(1− βus,2,d) 0 0
(0, 1, d) (1− βus,1,d) 0 0
(1, 0, d) (1− βus,2,d) 0 0

 ,
(C.3)

Note, when the process initially enters s + 1 on day d + 1, none of the new apoint-
ments generated for this stage have been completed yet. Hence it is only possible
to transition to state (0, 0, d + 1) (indicating that none of the new appointments for
stage s+ 1 have yet been completed) among all the states for (aus+1,1 , aus+1,2 , d+ 1).
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As a result, block V2
Rs→Rs+1

can be written as follows by stacking all the terms of

V2
Rs,Rs+1

(d, d+ 1):

V2
Rs→Rs+1

=
0 V2

Rs,Rs+1
(1, 2) 0 0 0

0 0 V2
Rs,Rs+1

(2, 3) 0 0
0 0 0 V2

Rs,Rs+1
(3, 4) 0

0 0 0 0 V2
Rs,Rs+1

(4, 5)
V2
Rs,Rs+1

(5, 1) 0 0 0 0

 ,
(C.4)

Full Transition Matrix

Now we are ready to specify the full transition matrix.

[
TC | T0

C

0 | 1

]
=


V1
R1

V2
R1→R2

0 0 . . . 0 | 0
0 V1

R2
V2
R2→R3

0 . . . 0 | 0
. . . . . . | ...

0 0 0 0 . . . V1
Rm

| V0
Rm

0 0 0 0 . . . 0 | 1

 (C.5)

Here, V0
Rm

is defined similarly to V2
Rs→Rs+1

(s < m), except for each block V0
Rm(d, d+

1), all transitions are to the absorbing state.

Extension to General Numbers of Stations in Each Stage

Using the compact form (B.4), we can easily extend the above descriptions to settings
where there are more than two stations to be visit in each stage. Consider the process
is in set of resources Rs in stage s and transitions to resources Rs+1 in stage s + 1.
Then we can define the transitions as follows:[

V1
Rs(d, d+ 1) | V2

Rs(d, d+ 1)
0 | 1

]
=
⊗
uj∈Rs

Auj ,d, (C.6)

which gives us V1
Rs(d, d+ 1) to specify the block V1

Rs and also

V2
Rr,Rs+1

(d, d+ 1) =
[
V2
Rr(d, d+ 1) 0|S(Rs)|×|S(Rs+1)|−1

]
. (C.7)

Here, 0|S(Rs)|×|S(Rs+1| in (C.7) is a |S(Rs)|× |S(Rs+1| matrix of zeros, and Auj ,i is the
following 2× 2 matrix:

Auj ,i =

[
βuj ,i 1− βuj ,i

0 1

]
. (C.8)
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C.2 Probabilisitic Resource Requirements

In this section, we consider the case where not each resource is required to visit in
each stage. The basic setting for this probabilistic resource requirement case is similar
as described above. Consider N total possible resources, the possible resource groups
form the powerset P({u1, . . . , uN}). Again, for the purposes of exposition, we first
present a simplified setting, where in each stage s = 1, . . . ,m, there are two possible
resources that may require appointments, us,1, us,2. We then specify the general form
at the end of this subsection.

In the simplified setting, the possible groups of resources for stage s are given by
Rs ∈ P({us,1, us,2} = {{us,1, us,2}, {us,1}, {us,2}, ∅}. In other words, for stage s, there
are four possible outcomes: visiting both stations, visiting us,1, visiting us,2, or skip
this stage, with probabilities P({us,1, us,2}) = νus,1νus,2 , P({us,1, }) = νus,1(1 − νus,2),
and P({us,2, }) = (1 − νus,1)νus,2 , and P(∅) = (1 − νus,1)(1 − νus,2), respectively. In
our phase-type generator matrix specified below, we omit the last one, the null set
∅, since it contains no resources. Let Rs,k, k = 1, . . . , 3 be the set of appointments
that need to be completed prior to exiting stage s, representing each of the three
non-empty outcomes.

To capture all possible resource groups, we first need to enlarge the state space to
be (

SRs,1 , SRs,2 , SRs,3 , d
)
,

where SRs,k the state space defined above for a given resource group Rs,k, i.e., the

tuple of au’s for all u ∈ Rs,k. For example, SRs,1 =
{

(aus,1 , aus,2)
}

since appointments

are required in both resources for group Rs,1. Similarly, SRs,2 =
{
aus,1

}
= {0} since

only us,1 is required in resource group Rs,2 (and we only need aus,1 = 0 to track
whether stage s is finished or not when there is a single resource).

Block Corresponding to Transitions Within One Stage

The transitions within a single stage are defined by the phase-type block matrix U1
r ,

which is the probabilistic analogue to V 1
r defined in the previous subsection. In the

simplifed setting, we have

U1
r =

V1
Rs,1 0 0
0 V1

Rs,2 0
0 0 V1

Rs,3

 , (C.9)

Here, each block represents the phase-type transitions for attempting to complete all
the appointments in the corresponding resource group. That is, block V 1

Rs,k captures
the transitions prior to completing all the appointments in the resource group Rs,k

and can be specified as the general form of (C.2) with V1
Rs,k(d, d+ 1) given by (C.6).

The reason why U1
r has a diagonal structure is that, once a process enters a given

block corresponding to groupRs,k, it will stay in that block until all the appointments
for resources in the group have been scheduled. Then the process will leave the block
according and transitions to stage r + 1 with probability defined by the blocks that
follow. Note that Rs,k’s are not necessarily all the same size, as the size of each block
is determined by the number of resources in that block.
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Block Corresponding to Transitions from Stage s to Stage s+ 1.

In the setting with probabilistic resource requirements, transition from stage s to
s + 1 indicates that the patient has completed all appointments required in stage s.
We specify the block for transitions out of stage s (i.e. completion of all required
appointments), U2

r , which corresponds to T 2
us in (3.22). Again, for illustration, we

focus on the simplified setting where there are only two stations that may need to be
visited in stage s and stage s + 1, i.e., each stage has three possible resource groups
(excluding the empty set) denoted as Rs,k and Rs+1,k (k = 1, 2, 3), respectively. In
this simplified setting, the block is given by

U2
r =



Rs+1,1 Rs+1,2 Rs+1,3

|
Rs,1 | ps+1,1 ·V2

Rs,1→Rs+1,1
ps+1,2 ·V2

Rs,1→Rs+1,2
ps+1,3 ·V2

Rs,1→Rs+1,3

|
Rs,2 | ps+1,1 ·V2

Rs,2→Rs+1,1
ps+1,2 ·V2

Rs,2→Rs+1,2
ps+1,3 ·V2

Rs,2→Rs+1,3

|
Rs,3 | ps+1,1 ·V2

Rs,3→Rs+1,1
ps+1,2 ·V2

Rs,3→Rs+1,2
ps+1,3 ·V2

Rs,3→Rs+1,3


,

(C.10)

While (C.10) may seem complex, it is easily interpreted. First, we have added labels
for the rows and columns. The row labels,Rs,k, indicate which resource set the patient
has just completed in stage s. The column labels, Rs+1,`, represent which resource
group the patient will require in stage s + 1 of treatment. Note these labels are
for exposition and do not represent the matrix states, nor do they directly indicate
the size of the blocks, which is fully defined by the V’s. Inside the matrix, ps+1,`

is the probability of requiring resource group Rs+1,` in stage s + 1. Thus, each
block entry (row Rs,k to column Rs+1,`) represents the probability of finishing the
remaining appointments of resource group Rs,k and transitioning to resource group
Rs+1,`, denoted by V2

Rs,k→Rs+1,`
; this event occurs with probability ps+1,`. Recall from

before that, for a given k, the matrix blocks V2
Rs,k→Rs+1,`

only differ from each other
by the number of zero blocks required to expand the state space to the appropriate
size for resource group Rs+1,`, which may be different for each `.

Block Corresponding to Transitions from Stage s to Stage s+ d.

The transitions from stage s to s+d are defined by matrix Ud+1
s , which has the exact

same form as (C.10) except that we replace resource group Rs+1,` with resource group
Rs+d,` and resource group probabilities ps+1,` with ps+d,`, where

ps+d,1 = νus+d,1νus+d,2Πs+d−1
q=s+1(1− νuq,1)(1− νuq,2)

and ps+d,2, ps+d,3 can be defined similarly by replacing the first two terms with
νus+d,1(1− νus+d,2) and (1− νus+d,1)νus+d,2 , respectively.
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Full Transition Matrix

Now we are ready to specify the full transition matrix with at total of m possible
stages.

[
TC | T0

C

0 | 1

]
=


U1

1 U2
1 U3

1 U4
1 . . . Um

1 | U0
1

0 U1
2 U2

2 U3
2 . . . Um−1

2 | U0
2

. . . . . . | ...
0 0 0 0 . . . U1

m | U0
m

0 0 0 0 . . . 0 | 1

 , (C.11)

U0
s = Πm−s

q=s+1(1− νuq,1)(1− νuq,2) ·

V0
Rs,1

V0
Rs,2

V0
Rs,3

 (C.12)

Note that the last column, U0
s, captures transitions to the absorbing state, where

each block V0
Rs,k

is defined similarly as V0
Rm

in (C.5).
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APPENDIX D

REFINED BLOCKING APPROXIMATION AND WORKLOAD SMOOTHING

121



D.1 Refined Blocking Approximation: Offered-Load Approximation for Workload
Distribution

To obtain analytical forms for the blocking probability, we leverage the normal
approximation for the distribution of the steady-state workload, D∞u,d, and character-
ize its mean and standard deviation. We approximate D∞u,d with a normal r.v. with
mean µu,d(Θ) and standard deviation σu,d(Θ). We denote the pdf of this normal r.v.
as φu,d(·). Then, we approximate the probability that there are x patients in need of

service from the station as π(x) =
∫ x+0.5

x−0.5
φu,d(s)ds, and thus, the blocking probability

as:

βu,d(Θ) ≈
∑

x≥Cu,d

π(x) · x− Cu,d
x

, (D.1)

where Cu,d is the capacity constraint for station u on weekday day d. Because the
queueing system we study has batch arrivals instead of continuous Poisson arrivals,
the traditional normal excess probability for approximating blocking does not apply
here. For a given static template Θ = {Θk,d}, we first consider the deterministic case
where Θk,d type k patients start their itinerary on each workday d = 1, . . . , 5 in each
week.

Next, we specify how to calculate µu,d(Θ) and σu,d(Θ). Since a patient may take
more than one week to finish her itinerary, the total workload on a given day could
come from patients scheduled in this week and all previous weeks. Let n̄ be the
maximum number of weeks that a patient is allowed to spend in the system during
one itinerary. Suppose we are in week 0 and consider weekday d. Then, to account
for workloads from earlier weeks that accumulate to d, we need to trace back all days
that start from the current day up to day d in n̄ weeks earlier. Let pu,d,k(t) be the

probability that a type k patient starts her itinerary t = d̃+ 5n days ago and requires
an appointments from station u on the current day d. For notational convenience, we

further define p̂n,d̃u,d,k = pu,d,k(d̃+ 5n). Then, the mean and variance of the workload in
station u on day d follow:

µu,d(Θ) =
∑
k∈K

5∑
d̃=1

n̄−1∑
n=0

Θk,d̃ · p̂
n,d̃
u,d,k. (D.2)

σ2
u,d(Θ) =

∑
k∈K

5∑
d̃=1

n̄−1∑
n=0

Θk,d̃ · p̂
n,d̃
u,d,k(1− p̂

n,d̃
u,d,k). (D.3)

The probability distribution pd,k,u(·) can be estimated from the data to capture dif-
ferent care pathways and the possible correlations among the visits on the pathway.

D.2 Workload Smoothing

In this section, we present the pre-processing stage of performing workload smooth-
ing to obtain an initial schedule for our iterative policy optimization framework. The
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main idea is to minimize blocking (i.e., the event where a patient can’t get an ap-
pointment on the day they request) over all services across the week. To explain
the rationale, recall that our eventual objective is to minimize the deadline-violation
probability. The more likely a patient is going to be blocked, the longer the sojourn
time of each patient is, and thus, the more likely the deadline is violated.

The objective of this workload smoothing stage is to find an initial schedule Θ such
that the overall probabilities that the workload at each station exceeds the capacity
are minimized. However, the blocking probabilities are not linear in the decision
variable Θ. To linearize the objective, we approximate φu,d(·) with a piecewise linear
function that anchors on the set of discrete points m(i). Then, for example, we can
calculate the integral over φu,d(·) by a linear summation of the values in each interval
[m(i),m(i+ 1)) of the piecewise linear function.

To formulate the workload smoothing optimization, we also need to design a set
of constraints that sets the workload realization in each interval [m(i),m(i+1)) to be
consistent with the blocking probability. For each interval which is characterized by
the starting grid point m(i), the workload realization in this interval equals µu,d(Θ)+
m(i)σu,d(Θ). However, σu,d(Θ) is still non-convex in the decision variable Θ because
it is the square root of the variance, even though the variance σ2

u,d(Θ) is linear in
Θ from (D.3). To remove this non-convexity, we propose to approximate the square
root of σ2

u,d(Θ) with the following approach based on Newton’s method. That is, let
σ̂u,d be an initial guess for the standard deviation, and the one-step Newton’s method
gives us

σu,d(Θ) ≈ 1

2

(
σ2
u,d(Θ)

σ̂u,d
+ σ̂u,d

)
,

which is then linear in terms of Θ. In our application, a high level of accuracy can be
achieved if σ̂ is set to the standard deviation of the historical workload of the current
system.

We now formally state the LP that minimizes the blocking probabilities across all
stations in the healthcare network. Again, without loss of generality, we consider a
planning horizon of 1, . . . , 5 corresponding to each workday in a week. Let θ̂k,d be
the maximum number of type k patients allowed to be scheduled on day d, and Q be
some large constant value. We have that

min
Θ,δ

∑
u∈U

5∑
d=1

∑
i∈M′

(
Φ(m(i+ 1))− Φ(m(i))

)
δu,d,i (D.4)

s.t.

µu,d(Θ) +m(i) · 1

2

(
σ2
u,d(Θ)

σ̂u,d
+ σ̂u,d

)
− Cu,d ≤ Q · δu,d,i ∀u ∈ U , i ∈M′, d = 1, . . . , 5

(D.5)

δu,d,i+1 ≥ δu,d,i ∀i ∈M′ (D.6)
5∑
d=1

Θk,d ≥ θk ∀k ∈ K (D.7)

Θk,d ∈ R+, δu,d,i ∈ {0, 1} ∀k ∈ K, d = 1, . . . , 5. (D.8)
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We explain this formulation as follows:

1. The objective (D.4) will drive the system to minimize the sum of the approxi-
mated blocking probabilities across the week over all stations in the healthcare
network. (One can also modify the objective to incorporate different weights to
reflect that blockage in some services may be more critical than in others.)

2. The set of auxiliary variables δ = {δu,d,i}, with δu,d,i being a surrogate to help
maintain the consistency between the workload realization and the blocking
instance. To see this and explain constraint (D.5), note that the objective

drives the program to minimize δu,d,i’s since
(

Φ(m(i + 1))− Φ(m(i))
)

has the

same (positive) value under our grid partition. Thus, if the realized workload

on the interval [m(i),m(i+ 1)), µu,d(Θ) +m(i) · 1
2

(
σ2
u,d(Θ)

σ̂u,d
+ σ̂u,d

)
is small than

the capacity Cu,d, i.e., no blocking, then this minimization objective will force
δu,d,i to take the value 0, the smallest value as the constraint allows. Meanwhile,
if the realized workload is larger than the capacity Cu,d, δu,d,i will be set to 1;
the constraint will still be satisfied since the right-hand side of (D.5) is large
after multiplying by the large constant Q. The standard deviation σ2

u,d(Θ) here
is approximated with the Newton’s method to linearize this constraint.

3. Constraint (D.6) is added to speed up solving the MIP.

4. Finally, constraint (D.7) says that the weekly volume meets the minimum
throughput requirement.

124



APPENDIX E

ADDITIONAL NUMERICAL RESULTS

125



E.1 Numerical Validation for the Phase-Type Approximation

In this section, we numerically show that the ICT approximation is still remark-
ably accurate in the more general setting with parallel appointments. The experi-
ments are performed on the five-station network as illustrated in Figure 3.1, which is
parameterized using data from our healthcare partner; see Section 3.4 for details.

For a given arrival template Θ, we compare the ICT distribution obtained from
the phase-type approximation (3.13) with the empirical distribution obtained from
simulating the system. To obtain the blocking probabilities for the phase-type ap-
proximations, we simulate the system under the template Θ. The details of the
dataset, parameterization, and simulation setup are introduced in Section 3.4 of the
main paper. Figure E.1 compares the ICT distributions from simulation and from
phase-type approximation for national patients who start their itineraries on Mon-
day. Figure E.1a demonstrates that the phase-type distribution is remarkably close
to the simulated distribution. Applying the Kolmogorov-Smirnov (KS) statistic, we
find that the maximum distance between the ICT distributions from the simulation
and the approximation is less than 6% across all patient types and starting days for
all the experimental settings we have tested.

We also evaluate the phase-type approximation for ICT when using the approx-
imated blocking probabilities from (D.1) as the input. Figure E.1b compares the
ICT distributions from simulation and from the phase-type approximation using the
approximate blocking probabilities. This figure demonstrates that the phase-type
approximation quality is not significantly impacted by the blocking approximation
that we use for computational efficiency. To further demonstrate the importance of
using (D.1) to approximate the blocking probabilities, Figure E.1c shows the ICT
distribution using the conventional method of calculating blocking using the normal
excess probability,

βu,t ≈ 1− Φ

(
Cu,t − µu,t

σu,t

)
.

Clearly, using (D.1) to approximate blocking significantly improves the approxima-
tion accuracy. The Kolmogorov-Smirnov (KS) statistic comparing the phase-type
distribution using the approximated blocking probabilities with the simulated distri-
bution has a maximum distance of less than 7% across all patient types and stations,
compared with 24% when employing the conventional excess probability; the median
distance is 2% when using (D.1) versus 8% when using excess probability.

E.2 Additional Results from the Full 26-Station Network

Figure E.2a plots the optimal template for the 26-resource setting, which is very
similar to optimal template for the 5-resource setting. Figure E.2b and E.2c plot the
utilization of BDC for the 26-resource setting under the optimal and the historical
templates respectively. The optimal template achieves a blocking probability less
than 2% for all weekdays, while the blocking probability for BDC reaches 14% under
the historical template.
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(a) Using simulated βu,t
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Figure E.1: Comparison of Simulated and Approximated ICT Distributions.
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(a) Optimal template for the
26-station setting.
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Figure E.2: Optimal Templates and the BDC Utilization under the Optimal
Template and the Historical Template for the 26-Station Setting.

Average ICT

Table E.1 shows the overall ICT and the average time to complete each stage for
national patients admitted on Monday. Similar to the 5-station setting, ICTs are
over a day longer under the front-loaded template, with much of the delays occurring
in the first stage.

Average ICT stage 1 stage 2 stage 3 stage 4
Optimal

require 3 stages 3.06 1.02 1.03 1.02
require 4 stages 4.13 1.04 1.04 1.03 1.02

Front-loaded
require 3 stages 4.28 2.14 1.06 1.07
require 4 stages 5.35 2.15 1.06 1.08 1.07

Table E.1: Average ICT by Care Path Stage for National Patients Admitted on
Monday for the 26-Station Setting
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Comparison with the Front-Loaded and the Historical-Revised Templates

Under the front-loaded template, the blocking probability for BDC is above 45%
from Monday to Wednesday. The historical-revised template has a comparatively
lower blocking probability for BDC on Tuesday (35%). However, it reaches 70% on
Friday and the patients who do not get appointments on Friday have to re-try on the
next Monday, which in turn causes high blocking probability for BDC on Monday
(50%).

Figure E.3 plots the ICT distributions for international and national patients
admitted on Monday under the optimal, front-loaded and historical-revised templates.
The curves are similar to the ones in the 5-resource setting we present in Section 3.4.3
of the main paper.
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completion time
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40% front loaded
optimal

(a) Optimal v.s. the front-loaded
templates

2 4 6 8 10
completion time
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30%

40% histr. rev.
optimal

(b) Optimal v.s. the historical revised
templates

Figure E.3: ICT Distribution Comparison for 26-Station Setting

E.3 Network Optimal and Network-Agnostic Templates

Figure E.4 shows the templates solved from the network-agnostic and full-network
optimization problems in Section 3.4.3. Note the network agnostic template is differ-
ent between the baseline scenario and the scenario with increased workload. This is
because some of the constraints needed to be changed for feasibility in the increased
workload scenario.
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Figure E.4: Network Optimal and Network-Agnostic Templates with an Additional
Constraint of 75% Completion Rate for Regional Patients.
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F.1 Proof of Theorem 4.1.1

For illustration purpose, we first detail the proof for the single-station in Sec-
tion F.1.1, which serves as a building block. We then detail the proof for the general
multi-station network in Sections F.1.2 and F.1.3.

F.1.1 Proof for the Single-Station Case

Stochastic System and Its Mean-Field Approximation

We start from the proof for the single-station setting with one type of patient. Let
MB(t) and MNB(t) denote the number of blocked and non-blocked patients at the end
of day t. Here, MNB(t) includes all patients who have finished their appointment in
their current stage; each unblocked patient will stay in the system with a probability
p and leave the system with probability (1− p); this probability does not depend on
which stage this patient is currently in.

As a result, the total number of requests from the target patients that will show
up at the beginning of day t+ 1, N(t+ 1), follows:

N(t+ 1) = MB(t) +Bin(MNB(t), p) + λ(t+ 1),

where Bin(MNB(t), p) denotes a binomial r.v. with parameters MNB(t) and p, cor-
responding to the patients who will stay, and λ(t + 1) is the number of new target
patients that will show up on day t+ 1. The total number of patients, including the
exogenous patients, equals N(t+1)+λe(t+1). For analytical tractability, we assume
that both λ(·) and λe(·) are deterministic. Note that, different from the notations
used in the main paper, we exclude the exogenous patients from N(·), which only
includes the requests from target patients.

Then, we can calculate the number of blocked and non-blocked patients at the
end of day t+ 1 as:

MB(t+ 1) = hGeo
(
N(t+ 1) + λe(t+ 1), N(t+ 1), b

)
; (F.1)

MNB(t+ 1) = N(t+ 1)−MB(t+ 1). (F.2)

Here, hGeo denotes the hyper-geometric distribution and

b =
(
λe(t+ 1) + n− C(t+ 1)

)+
,

where x+ = max(x, 0) for any real number x. That is, among the total number of
requests N(t + 1) = n plus the external arrivals λe(t + 1), there will be b number
of patients who cannot be accommodated since the capacity is C(t + 1). To see
why it follows the hyper-geometric distribution, choosing the b patients who cannot
be accommodated is equivalent to choosing b patients without replacement from two
pools: the pool of N(t + 1) = n target patients, and the pool of λe(t + 1) external
patients. As a result, the conditional probability for MB(t+ 1) follows

P(MB(t+ 1) = k|N(t+ 1) = n, b) =
c(n, k) · c(λe(t+ 1), b− k)

c(n+ λe(t+ 1), b)
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which is the hyper-geometric distribution, where c(a, b) denotes the binomial coeffi-
cient. Note that, when b = 0, this distribution is still well-defined with a point mass
on

P(MB(t+ 1) = 0|N(t+ 1) = n, b = 0) = 1.

We define
U(t) = MB(t)/N(t) ∈ [0, 1]

to be the proportion of blocked patients at the end of day t. Note that it is sufficient to
track

(
U(t), N(t)

)
as the state for the stochastic system, since we can recover MB(t)

and MNB(t) from U(t) and N(t). Furthermore, for a given scaling constant N ≥ 1

and a constant q ≥ 0, it is also equivalent to track
(
U(t), N(t)

Nq

)
as N q remains as a

constant that is independent of t; we will see why we introduce this scaling constant
later in the proof. We denote

V (t) =
N(t)

N q
∈ V ,

where V is the range for V (t) and it depends on N, q. We assume the following the
scaling for the arrival rates and the capacities.

Assumption F.1.1. For any given scaling factor N ≥ 1, we assume that for each
t ≥ 1, λ(t) = r(t)N , λe(t) = re(t)N , C(t) = rc(t)N , where r(t), re(t), rc(t) > 0
are constants that do not depend on N for each t ≥ 1. Further, the initial state
N(0) = c0N where c0 does not depend on N .

We end this subsection with two remarks. First, V (t) is an auxiliary variable
to help track the state of the system, in particular, make sure that the stochastic
system remains a Markov chain. However, U(t) is the variable that we eventually
care about, not V (t). This is why the values of the testing functions h we use in
the main theorems and the following lemmas only depend on U(t), not on V (t).
Examples of such functions include h(u, v) = u and h(u, v) = (u − ū)2 with ū being
some constant. We still keep the two arguments for h(·, ·) for the purpose of the
proof.

Second, for the domain of U(t) and V (t), later we will show that N(t) is in the
order of N , the same order as the arrival rates λ(·), λe(·) and the capacities C(·).
Thus, (MB(t),MNB(t)) are in the same order as N(t), so U(t) is well-defined on
[0, 1]. When q > 1, however, V (t) will shrink to 0 as N → ∞, so does V . This
shrinking domain does not affect our results, though, since the value of h(·, ·) does
not depend on V (t).

Deterministic System

A deterministic approximation for the system dynamics are as follows:

n(t+ 1) = mB(t) + p ·mNB(t) + λ(t+ 1); (F.3)

mB(t+ 1) = n(t+ 1) · βt+1; (F.4)

mNB(t+ 1) = n(t+ 1)−mB(t+ 1). (F.5)
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Here, n(·), mB(·), and mNB(·) are the deterministic counterparts for N(·), MB(·),
and MNB(·), respectively, and

βt =

(
n(t) + λe(t)− C(t)

)+

n(t) + λe(t)
= max

(
1− C(t)

n(t) + λe(t)
, 0

)
.

is the blocking probability on day t. We further define

µ(t) = mB(t)/n(t) = βt

be the proportion of blocking patients. Similarly to the stochastic system, it is suffi-

cient to track (µ(t), n(t)), or equivalently, (µ(t), v(t)), where v(t) = n(t)
Nq is the counter-

part for V (t) defined above, with N ≥ 1 and q ≥ 0 being the same scaling constants
we introduced previously. We define(

µ(t+ 1), v(t+ 1)
)

= Ψ1 (µ(t), v(t))

to be the one-step transition from
(
µ(t), v(t)

)
to
(
µ(t+ 1), v(t+ 1)

)
.

As with V (t), v(t) is the auxiliary variable to help track the state of the system,
but does not affect the value of the testing functions, h(·, ·). We specify Ψ1 = (Ψu

1 ,Ψ
v
1)

as the following:

v(t+ 1) = Ψv
1(u, v) = v − (1− p)(1− u)v +

λ(t)

N q
,

u(t+ 1) = Ψu
1(u, v) = max

(
1− C(t+ 1)

v(t+ 1)N q + λe(t+ 1)
, 0

)
= max

(
1− C/N q

v − (1− p)(1− u)v + λ(t)+λe

Nq

, 0

)
.

Note that Ψv
1(u, v) is a smooth function with continuous first and second derivatives,

while Ψu
1(u, v) is a piecewise smooth function with the non-smooth point at v(t +

1)N q = n(t+ 1) = C(t+ 1)−λe(t+ 1); however, on intervals that do not contain this
non-smooth point, both the first and second derivatives are continuous.

Transient Analysis

To prove the main theorem, we need the following lemmas first.

Lemma F.1.1. For any given (U(0), V (0)) = (u, v) with the given constants N and
q, we have that

Eu,v
[(
U(1), V (1)

)
−Ψ1(u, v)

]
= 0,

where Eu,v denotes the conditional expectation conditioning on (U(0), V (0)) = (u, v).

Proof. We first show that Eu,v [V (1)−Ψv
1(u, v)] = 0. Note that

N(1) = N(0)U(t) +Bin
(
N(0)(1− U(0)), p

)
+ λ(1),
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and hence the conditional expected number of patients for t = 1 can be calculated as
the following,

Eu,v[N(1)] = vN q · u+ vN q · (1− u)p+ λ(1) = vN q − vN q · (1− u)(1− p) + λ(1).

Then, we have

Eu,v[V (1)] = v − v · (1− u)(1− p) + λ(1)/N q = Ψv
1(u, v).

Next, we show that Eu,v [U(1)−Ψu
1(u, v)] = 0. Conditioning on N(1) = n and

using (F.1) and (F.2) for the relationship between MB(1), MMB(1) and N(1), we
have that

Eu,v [U(1)−Ψu
1(u, v)] = Eu,v

[
E
[
MB(1)/n−Ψu

1(u, v)
∣∣∣N(1) = n

]]
= 0.

To get the second equality, we use the fact that the mean of the hyper-geometric
distribution, conditioning on N(1) = n, equals nβ1.

In the following lemmas as well as in the main theorem, we will consider testing
functions that satisfy the following properties:

Assumption F.1.2. The testing function h : [0, 1]× V → R be any continuous and
twice differentiable function, where the first derivative of h is (1/γ)-Lipschitz, i.e.,

|h′(a)− h′(b)| ≤ 1

γ
||a− b||.

Further, the testing function only depends on U(·), not the auxiliary variable V (·).

The next lemma considers a one-step transition from the initial state.

Lemma F.1.2. Consider a function h : [0, 1] × V → R that satisfies Assump-
tion F.1.2. Under the scaling given in Assumption F.1.1 and given (U(0), V (0)) =
(u, v) where v = c0N

1−q and q ≥ 3/2, we have that∣∣∣Eu,v [h (U(1), V (1))]− h
(
Ψ1(u, v)

)∣∣∣ ≤ c1

N
,

where c1 = c1(r(1), re(1), rc(1), c0) > 0 is a constant that depends on r(1), re(1), rc(1), c0

but is independent of u,N, q.

Proof. We perform Taylor expansion of h for (U(1), V (1)) in the neighborhood of
Ψ1(u, v):

h (U(1), V (1))− h
(
Ψ1(u, v)

)
= h′

(
Ψ1(u, v)

)
· E + o (E) ,

where E =
(
U(1)−Ψu

1(u, v), V (1)−Ψv
1(u, v)

)
. We get

Eu,v [h (U(1), V (1))]− h
(
Ψ1(u, v)

)
= h′

(
Ψ1(u, v)

)
· Eu,v[E ] + Eu,v[o (E)].
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From Lemma F.1.1, we have Eu,v[E ] = 0. Thus, it is sufficient to finish the proof
by bounding Eu,v[o (‖E‖)]. For notational simplicity, we remove the time-index t and
just denote λ(1) = λ, λe(1) = λe, and C(1) = C. We have

Eu,v [o(‖E‖)] ≤ 1

2γ
Eu,v

[
‖E‖2

2

]
=

1

2γ
Eu,v

[(
U(1)−Ψu

1(u, v)
)2

+
(
V (1)−Ψv

1(u, v)
)2
]
.

Here, the first inequality follows from the Taylor’s theorem and Shalve-Shwartz and
Zhang (2013). Then,

Eu,v
[(
U(1)−Ψu

1(u, v)
)2
]

= Eu,v
[
E
[ (
MB(1)/n− β1

)2 |N(1) = n
]]

= Eu,v
[
E
[
Var
(
MB(1)/n

)
|N(1) = n

]]
= Eu,v

[
E
[ 1

n2
(λe + n− C)

n

λe + n

λe
λe + n

C

λe + n− 1
|N(1) = n, n > C − λe

]]
≤ Eu,v

[
E
[
C/n2 |N(1) = n, n > C − λe

]]
≤ C

λ2
,

where the third line uses the fact that the expectation of MB(1)/N(1) is simply β1

from Lemma F.1.1, the fifth line uses the fact that n, λe ≤ (n+λe) and λe +n−C ≤
λe + n − 1, and the last line uses the fact that N(1) ≥ λ for all N(1) = n. We

have that C
λ2 = rc(1)

r2(1)N
is in the order of 1/N . Thus, there exists a constant c̃1 > 0

independent of u, v,N, q such that Eu,v
[(
U(1)−Ψu

1(u, v)
)2
]
≤ c̃1/N .

Next,

Eu,v
[(
V (1)−Ψv

1(u, v)
)2
]

= Eu,v
[
Var
(
V (1)

)]
≤ 1

4
v2 =

1

4
c2

0 ·N2−2q.

Here, to get the last inequality, we use the fact that

λ ≤ N(1) ≤ N(0) + λ, or λ/N q ≤ V (1) ≤ v + λ/N q,

and the Popoviciu’s inequality on variance for bounded random variables, i.e.,

Var
(
V (1)

)
≤ 1

4
(v + λ/N q − λ/N q)2.

Clearly, when q ≥ 3/2, Eu,v
[(
V (1)−Ψv

1(u, v)
)2
]
≤ 1

4
· c20
N2q−2 ≤ 1

4
· c

2
0

N
. Thus, setting

c1 = 1
2γ

(c̃1 + 1
4
· c

2
0

N
), we complete the proof.
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The following lemma is an extension of Lemma F.1.2 for the case of a general
value of t.

Lemma F.1.3. Consider a function h : [0, 1] × V → R that satisfies Assump-
tion F.1.2. Under the scaling given in Assumption F.1.1 and given (U(t− 1), V (t−
1)) = (u, v) and q ≥ 3/2, we have that∣∣∣Eu,v [h (U(t), V (t))]− h

(
Ψ1(u, v)

)∣∣∣ ≤ c̃t
N
,

where c̃t = c̃t(r(1), . . . , r(t), re(t), rc(t), c0) > 0 is a constant that depends on re(1),
rc(1), c0 and all r(t)’s from period 1 up to the current period t, but c̃t is independent
of u, v,N, q.

The proof for Lemma F.1.3 is similar to that for Lemma F.1.2, except that when

we bound Eu,v
[(
V (t)−Ψv

1(u, v)
)2
]
, we use the fact that

λ(t) ≤ N(t) ≤ N(0) +
t∑

s=1

λ(s), or r(t)N1−q ≤ V (t) ≤ c0N
1−q +

t∑
s=1

r(s)N1−q,

and thus,

Eu,v
[(
V (t)−Ψv

1(u, v)
)2
]

= Eu,v
[
Var
(
V (t)

)]
≤ 1

4

(
c0 +

t−1∑
s=1

r(s)

)2

·N2−2q,

which is of order 1/N when q ≥ 3/2.
Next, we are ready to prove the first main theorem. We restate the theorem first

and then show the proof.

Theorem 1. Consider a function h : [0, 1]×V → R that satisfies Assumption F.1.2.
Under the scaling given in Assumption F.1.1 and assume the following initial condi-
tion: N(0) = n(0) = c0N where c0 does not depend on N ; and U(0) = µ(0). Then,
for any fixed t ≥ 0, if q ≥ 3/2, we have that∣∣∣E [h (U(t), V (t))]− h(µ(t), v(t))

∣∣∣ ≤ ct
N
, (F.6)

where ct = ct(r(1), . . . , r(t), re(t), rc(t), c0) > 0 and is a constant that depends on
re(1), rc(1), c0 and all r(t)’s from period 1 up to the current period t, but ct is inde-
pendent of N, q.

Proof. We prove by induction. The theorem holds for the case t = 0 by assumption.
Assume that the theorem holds for some t ≥ 0, we have for t+ 1 that∣∣∣E[h (U(t+ 1), V (t+ 1))]− h (µ(t+ 1), v(t+ 1))

∣∣∣
≤

∣∣∣E [h (U(t+ 1), V (t+ 1))− h
(
Ψ1

(
U(t), V (t)

))] ∣∣∣ (F.7)

+
∣∣∣E[h (Ψ1

(
U(t), V (t)

))
− h (µ(t+ 1), v(t+ 1))

]∣∣∣. (F.8)
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For the term (F.7), by utilizing the definition of total expectation, we can establish
the following bound:∣∣∣E [h (U(t+ 1), V (t+ 1))− h

(
Ψ1

(
U(t), V (t)

))] ∣∣∣
≤ E

[∣∣Eu,v[h (U(t+ 1), V (t+ 1))]− h (Ψ1(u, v))
∣∣∣∣∣ U(t) = u, V (t) = v

]
≤ c̃t/N,

using Lemma F.1.3 and the fact that c̃t does not depend on U(t), V (t), N, q.
For (F.8), recall that (µ(t + 1), v(t + 1)) = Ψ1

(
u(t), v(t)

)
in the deterministic

system. We show in Lemma F.1.4 below that h ◦ Ψ1 is twice-differentiable and the
first derivative of h ◦Ψ1 is 1

γ
-Lipschitz. Thus, we can apply the induction hypothesis

to the function h ◦Ψ1 and get

E
[
h
(
Ψ1

(
U(t), V (t)

))
− h (µ(t+ 1), v(t+ 1))

]
= E

[
h ◦Ψ1

(
U(t), V (t)

)
− h ◦Ψ1

(
u(t), v(t)

)]
≤ ct/N,

where ct here depends on ch◦Ψ1 and on re(1), rc(1), c0 and all r(t)’s from period 1
up to the current period t, but it is independent of N, q. Setting ct+1 = c̃t + ct, we
complete the proof.

Lemma F.1.4. Let g : [0, 1] × V → R be any continuous and twice differentiable
function, where the second derivative of g is bounded by a constant ch > 0. Given a
scaling factor N ≥ 1 and q ≥ 3/2, g◦Ψ1 is twice-differentiable and the first derivative
of g ◦Ψ1 is 1

γ
-Lipschitz, where this Lipschitz constant is independent of N, q.

Proof. Given (µ(t), v(t)) = (u, v), we first specify Ψ when vN q +λe(t+ 1) > C(t+ 1).
We can write Ψ1 = (Ψu

1 ,Ψ
v
1) as the following:

v(t+ 1) = Ψv
1(u, v) = v − (1− p)(1− u)v +

λ(t+ 1)

N q
(F.9)

u(t+ 1) = Ψu
1(u, v) = βt+1 = 1− C(t+ 1)

v(t+ 1)N q + λe(t+ 1)
(F.10)

= 1− C/N q

v − (1− p)(1− u)v + λ(t+1)+λe(t+1)
Nq

. (F.11)

We show at the end of this proof that their first and second derivatives are continuous.
When vN q + λe(t+ 1) ≤ C(t+ 1). We can write Ψ1 = (Ψu

1 ,Ψ
v
1) as the following:

v(t+ 1) = Ψv
1(u, v) = v − (1− p)(1− u)v +

λ(t+ 1)

N q
(F.12)

u(t+ 1) = Ψu
1(u, v) = 0. (F.13)

Clearly, their first and second derivatives are also continuous.
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Since the first derivative of Ψ1 is piecewise continuous, it is sufficient to show that
(u, v) come from a bounded set (which also implies that the second derivatives are
bounded). Clearly, U(t) ∈ [0, 1] which is a bounded set. For V (t) and a fixed t ≥ 1,
we know that

r(t)N1−q ≤ V (t) ≤ c0N
1−q +

t∑
s=1

r(s)N1−q.

When q ≥ 3/2, limN→∞N
1−q = 0. Thus, there exists a constant c2 such that N1−q ≤

c2, and c2 is independent of N . As a result, V (t) is also on a bounded set, i.e., V is
bounded.

To see why bounded set is sufficient, let x0 denote the non-smooth point for a
function f(x), whose first derivative |f ′(x)| ≤ L. Then,

|f(a)− f(b)| ≤ |f(a)− f(x0)|+ |f(x0)− f(b)|

=

∣∣∣∣∫ x0

b

f ′(x)dx

∣∣∣∣+

∣∣∣∣∫ a

x0

f ′(x)dx

∣∣∣∣
≤

∫ x0

b

|f ′(x)|dx+

∫ a

x0

|f ′(x)|dx

≤ L(a− b).

Finally, we verify the first and second derivatives of Ψu
1(u, v) and Ψv

1(u, v) are
continuous when vN q + λe(t+ 1) > C(t+ 1).

∂Ψv
1

∂u
= (1− p)v,

∂Ψv
1

∂v
= p− pu+ u,

and

∂Ψu
1

∂u
=

v(1− p)C/N q(
vu+ vp(1− u) + (λ+ λe)/N q

)2

≤ v(1− p)C
(vu+ vp(1− u))2N q

, which is bounded because C = O(N), q ≥ 3/2;

∂Ψu
1

∂v
=

(u(1− p) + p)C/N q(
vu+ vp(1− u) + (λ+ λe)/N q

)2

≤ (u(1− p) + p)C

(vu+ vp(1− u))2N q
, which is bounded because C = O(N), q ≥ 3/2.

The second derivatives of Ψu
1(u, v) and Ψv

1(u, v) can be verified similarly. This
concludes the proof.

138



F.1.2 Transient Proofs for the Network Setting

Stochastic and Deterministic Systems

For the network setting, we consider a set of stations: u ∈ U = {1, . . . , n}. When we
refer to a station u, we use ui and station i interchangeably. For ease of exposition,
we start by consider a single type of patients (K = 1) and the routing probabilities
is the same for each stage. We denote pi,j as the routing probability from station i to
station j after completing the current appointment at station i. We allow a non-zero
probability of (1−

∑
u∈U pi,u) to directly leave the system. We discuss how to extend

the proof to multiple types of patients and to stage-dependent probabilities later in
Section F.1.3.

Same as in the single-station setting, we denote MB
u (t) and MNB

u (t) as the number
of blocked and non-blocked patients at the end of day t for station u. We denote the
total number of requests from the target patients that will show up at the beginning
of day t+ 1 for station u as Mu(t+ 1). We have

Mu(t+ 1) = MB
u (t) +

∑
ũ

Mult(MNB
ũ (t), pũ,u) + λu(t+ 1),

where Mult(MNB
ũ (t), pũ,u) denotes a multinomial r.v., corresponding to non-blocked

patients who will need to visit station u on day t + 1, and λu(t + 1) is the number
of target patients that will show up on day t + 1. (According to the setting in
our main paper, λu(t + 1) = 0 for non-BDC station, but we keep this in the proof
for completeness.) The total number of patients, including the exogenous patients,
equals Mu(t+ 1) + λeu(t+ 1). Again, for analytical tractability, we assume that both
λu(·)’s and λeu(·)’s are deterministic. Here, to not confuse with Nu(·) used in the
main paper, we use Mu(·) to denote the total target patients’ request and exclude the
exogenous patients from Mu(·); in the main paper, Nu(·) also includes the requests
from exogenous patients.

The dynamics from Mu(t + 1) to MB
u (t + 1) and MNB

u (t + 1) are the same as in
the single-station setting. We define

Uu(t) = MB
u (t)/Mu(t) ∈ [0, 1], u ∈ U

be the proportion of blocked patients at the end of day t for station u. Note that
it is sufficient to track

(
Uu(t),Mu(t), ∀u ∈ U

)
as the state for the stochastic system,

since we can recover MB
u (t) and MNB

u (t) from Uu(t) and Mu(t) for each station u.
Furthermore, for a given scaling constant N ≥ 1 and a constant q ≥ 0, we introduce
the auxiliary variables

Vu(t) =
Mu(t)

N q
∈ V , u ∈ U ,

where V is the range for V (t) and it depends on N, q. We assume the following the
scaling for the arrival rates and the capacities.

Assumption F.1.3. For any given scaling factor N ≥ 1, we assume that for each t ≥
1, λu(t) = ru(t)N , λeu(t) = ru,e(t)N , Cu(t) = ru,c(t)N , where ru(t), ru,e(t), ru,c(t) > 0
are constants that do not depend on N for each t ≥ 1 and for each u ∈ U . Further,
for each u, the initial state Mu(0) = cu,0N , where cu,0does not depend on N .
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A deterministic approximation for the system dynamics can be constructed as
follows:

mu(t+ 1) = mB
u (t) +

∑
ũ

pũ,u ·mNB
u (t) + λu(t+ 1); (F.14)

mB
u (t+ 1) = mu(t+ 1) · βu,t+1; (F.15)

mNB
u (t+ 1) = mu(t+ 1)−mB

u (t+ 1). (F.16)

Here, mu(·), mB
u (·), and mNB

u (·) are the deterministic counterparts for Mu(·), MB
u (·),

and MNB
u (·), respectively, and

βu,t =

(
mu(t) + λeu(t)− Cu(t)

)+

mu(t) + λeu(t)
= max

(
1− Cu(t)

mu(t) + λeu(t)
, 0

)
.

is the blocking probability on day t. We further define

µu(t) = mB
u (t)/mu(t) = βu,t

be the proportion of blocking patients for station u. We track (µu(t), vu(t)), where

vu(t) = mu(t)
Nq is the counterpart for Vu(t) defined above, with N ≥ 1 and q ≥ 0 being

the same scaling constants we introduced. We define(
µ1(t+ 1), v1(t+ 1), . . . , µn(t+ 1), vn(t+ 1)

)
= Ψ1 (µ1(t), v1(t), . . . , µn(t), vn(t))

be the one-step transition. We also define

µ1(t+ 1) = Ψu,1
1 (µ1(t), v1(t), . . . , µn(t), vn(t))

and
v1(t+ 1) = Ψv,1

1 (µ1(t), v1(t), . . . , µn(t), vn(t))

for station u = 1; other stations can be define similarly.

Transient Analysis

To prove the main theorem in the multi-station setting, the key is to note that all
stations function independently on how many are blocked or not today, conditioning
on the total requests given at the beginning of the day. Thus, it is easy to extend the
lemmas proved in the single-station setting to the multi-station setting here.

Lemma F.1.5. For any given (U1(0), V1(0), . . . , Un(0), Vn(0)) = (u1, v1, . . . , un, vn)
with the given constants N and q, we have that

Eu,v
[(
U1(1), V1(1), . . . , Un(1), Vn(1)

)
−Ψ1(u1, v1, . . . , un, vn)

]
= 0,

where Eu,v denotes the conditional expectation that is conditioning on the initial state
(u1, v1, . . . , un, vn).
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Proof. We first show that Eu,v
[
V1(1)−Ψv,1

1 (u1, v1, . . . , un, vn)
]

= 0 for station 1; the
proof is the same for all other stations. Note that

M1(1) = M1(0)U1(t) +
∑
u∈U

Mult
(
Mu(0)(1− Uu(0)), pu,1

)
+ λ1(1),

and hence,

Eµ,v[M1(1)] = v1N
q · u1 +

n∑
j=1

vjN
q · (1− µj)pj,1 + λ(1)

= Ψv,1
1 (u1, v1, . . . , un, vn).

The proof for showing Eu,v
[
U1(1)−Ψu,1

1 (u1, v1, . . . , un, vn)
]

= 0 is the same as that
in Lemma F.1.1 for the single-station, by noting the mean of the hyper-geometric
distribution, conditioning on M1(1) = m, equals mβ1,1.

In the following lemmas as well as in the main theorem, we will consider testing
functions that satisfy the following properties:

Assumption F.1.4. The testing function h : [0, 1]n×Vn → R be any continuous and
twice differentiable function, where the first derivative of h is (1/γ)-Lipschitz, i.e.,

|h′(a)− h′(b)| ≤ 1

γ
||a− b||.

Further, the testing function only depends on Uu(·) for some station u, not on any of
the auxiliary variable Vu(·)’s.

The next lemma is the multi-station version of Lemma F.1.2.

Lemma F.1.6. Consider a function h : [0, 1]n × Vn → R that satisfies Assump-
tion F.1.4. Under the scaling given in Assumption F.1.3 and given

(U1(0), V1(0), . . . , Un(0), Vn(0)) = (u1, v1, . . . , un, vn)

where vu = cu,0N
1−q for each u ∈ U and q ≥ 3/2, we have that∣∣∣Eu,v [h (U1(1), V1(1), . . . , Un(1), Vn(1))]− h

(
Ψ1(u1, v1, . . . , un, vn)

)∣∣∣ ≤ c1

N
,

where c1 = c1(ru(1), ru,e(1), ru,c(1), cu,0,∀u) > 0 is a constant that depends on all the
ru(1), ru,e(1), ru,c(1), cu,0’s, but is independent of N, q and U1(0), . . . , Un(0).

Proof. Denote (u, v) = (u1, v1, . . . , un, vn). We perform Taylor expansion of h in the
neighborhood of Ψ1(u, v):

h (U1(1), V1(1), . . . , Un(1), Vn(1))− h
(
Ψ1(u, v)

)
= h′

(
Ψ1(u, v)

)
· E + o (E) ,

where E =
(
U1(1) − Ψu,1

1 (u, v), V1(1) − Ψv,1
1 (u, v), . . . , Un(1) − Ψu,n

1 (u, v), Vn(1) −
Ψv,n

1 (u, v)
)
.
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Similar as in the single-station setting, using Lemma F.1.5, we have Eu,v[E ] = 0.
Thus, it is sufficient to finish the proof by bounding Eu,v[o (‖E‖)]. To do so, it is suffi-

cient to bound Eu,v
[(
Uj(1)−Ψu,j

1 (u, v)
)2
]

and to bound Eu,v
[(
Vj(1)−Ψv,j

1 (u, v)
)2
]

for each station j = 1, . . . , n. The latter can be bounded in the same way as in
Lemma F.1.2 by noting the fact that

λj(1) ≤Mj(1) ≤ λj(1) +
∑
u∈U

Nu(0), or λj(1)/N q ≤ Vj(1) ≤ λ/N q +
∑
u∈U

vu,

where vu = cu,0N
1−q for each u ∈ U .

The other term can be bounded as

Eu,v
[(
Uj(1)−Ψu,j

1 (u, v)
)2
]

= Eu,v
[
E
[ (
MB

j (1)/n− βj,1
)2 |Mj(1) = n

]]
= Eu,v

[
E
[
Var
(
MB

j (1)/n
)
|Mj(1) = n

]]
≤ Eu,v

[
E
[
Cj(1)/n2 |Mj(1) = n, n > Cj(1)− λj,e(1)

]]
≤ Cj(1)

λ2
j(1)

,

where
Cj(1)

λ2
j (1)

=
rj,c(1)

r2
j (1)N

is in the order of 1/N . The rest of the proof can be proceeded

in the same way as in Lemma F.1.2.

The following lemma is the multi-station version of Lemma F.1.3.

Lemma F.1.7. Consider a function h : [0, 1]n × Vn → R that satisfies Assump-
tion F.1.4. Under the scaling given in Assumption F.1.3 and given (U1(t− 1), V1(t−
1), . . . , Un(t− 1), Vn(t− 1)) = (u1, v1, . . . , un, vn) and q ≥ 3/2, we have that∣∣∣Eu,v [h (U1(t), V1(t), . . . , Un(t), Vn(t))]− h

(
Ψ1(u1, v1, . . . , un, vn)

)∣∣∣ ≤ c̃t
N
,

where c̃t = c̃t(ru(1), . . . , ru(t), ru,e(t), ru,c(t), cu,0,∀u) > 0 is a constant that depends
on all the ru,e(t), ru,c(t), cu,0’s and all ru(t)’s from period 1 up to the current period t,
but c̃t is independent of u, v,N, q.

Theorem 2. Consider a function h : [0, 1]n×Vn → R that satisfies Assumption F.1.4.
Under the scaling given in Assumption F.1.3 and assume the following initial condi-
tion: Nu(0) = nu(0) = cu,0N for each station u, where cu,0 does not depend on N ;
and Uu(0) = µu(0) for each station u. Then, for any fixed t ≥ 0, if q ≥ 3/2, we have
that∣∣∣E [h (U1(t), V1(t), . . . , Un(t), Vn(t))]− h(µ1(t), v1(t), . . . , µn(t), vn(t))

∣∣∣ ≤ ct
N
, (F.17)

where ct = ct(ru(1), . . . , ru(t), ru,e(t), ru,c(t), cu,0,∀u) > 0 is a constant that depends
on all the ru,e(t), ru,c(t), cu,0’s and all ru(t)’s from period 1 up to the current period t,
but ct is independent of N, q.
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Proof. We prove by induction. The theorem holds for the case t = 0 by assumption.
Let (U(t+ 1), V (t+ 1)) = (U1(t+ 1), V1(t+ 1), . . . , Un(t+ 1), Vn(t+ 1)) (µ(t), v(t)) =
(µ1(t), v1(t), . . . , µn(t), vn(t)). Same as in the single-station setting, assume that the
theorem holds for some t ≥ 0, we have for t+ 1 that∣∣∣E[h (U(t+ 1), V (t+ 1))]− h (µ(t+ 1), v(t+ 1))

∣∣∣
≤

∣∣∣E [h (U(t+ 1), V (t+ 1))− h
(
Ψ1

(
U(t), V (t)

))] ∣∣∣
+

∣∣∣E[h (Ψ1

(
U(t), V (t)

))
− h (µ(t+ 1), v(t+ 1))

]∣∣∣.
For the first term on the RHS, we have∣∣∣E [h (U(t+ 1), V (t+ 1))− h

(
Ψ1

(
U(t), V (t)

))] ∣∣∣
≤ E

[∣∣Eu,v[h (U(t+ 1), V (t+ 1))]− h (Ψ1(u, v))
∣∣∣∣∣ U(t) = u, V (t) = v

]
≤ c̃t/N,

using the multi-station version in Lemma F.1.7 and the fact that c̃t does not depend
on U(t), V (t), N, q. To bound the second term on the RHS, we apply the induction
hypothesis to h ◦Ψ1 as we did in the single-station version.

F.1.3 Extensions to Multiple Patient Classes and Stage-Dependent Routing
Probabilities

To extend to multiple classes and/or stage-dependent routing probabilities, we
just need to incorporate more states for tracking the system dynamics. We illustrate
how to do it for multiple classes; the extension to stage-dependent routing or the
combination or both is similar.

Now consider the case we have K types of patients, and denote pki,j as the routing
probability from station i to station j for type k patients, after completing the current
appointment at station i. We allow a non-zero probability of (1−

∑
u∈U p

k
i,u) to directly

leave the system.
We denote MB,k

u (t) and MNB,k
u (t) as the number of blocked and non-blocked

patients for each class k. For system dynamics, we need to track the total number
of patients from each class that request an appointment from station u on day t+ 1,
defined as

Mk
u (t+ 1) = MB,k

u (t) +
∑
ũ

Mult(MNB,k
ũ (t), pkũ,u) + λku(t+ 1).

The total number of target patients’ requests (across classes) that will show up at

the beginning of day t + 1 for station u, Mu(t + 1) =
∑K

k=1M
k
u (t + 1). Next, from

Mu(t+1) and λeu(t+1), we are able to calculate the blocking probabilities and the total
number of patients blocked as in the single-class setting. Then, we get MB,k

u (t + 1)
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and MNB,k
u (t + 1) for day t + 1 using the multinomial distribution with proportions

{ Mk
u (t+1)∑

kM
k
u (t+1)

}.
For the convergence results, we define

Uu(t) =

∑
kM

B,k
u (t)∑

kM
k
u (t)

∈ [0, 1], u ∈ U

as the proportion of blocked patients across K classes for station on day t. For the
auxiliary variables, we now need to track for each class. We define

V k
u (t) =

Mk
u (t)

N q
∈ V , u ∈ U ,

where V is the range for V k
u (t) and it depends on N, q. The testing functions h will

take arguments as

h
(
U1(t), V 1

1 (t), . . . , V K
1 (t), . . . , Un(t), V 1

n (t), . . . , V K
n (t)

)
.

For the deterministic system, we have

mk
u(t+ 1) = mB,k

u (t) +
∑
ũ

pkũ,u ·mNB,k
u (t) + λku(t+ 1),

mB,k
u (t+ 1) = mk

u(t+ 1) · βu,t+1, mNB,k
u (t+ 1) = mk

u(t+ 1)−mB,k
u (t+ 1),

where

βu,t =

(
mu(t) + λeu(t)− Cu(t)

)+

mu(t) + λeu(t)
, mu(t) =

K∑
k=1

mk
u(t).

We further define

µu(t) =

∑
km

B,k
u (t)∑

km
k
u(t)

= βu,t, vku(t) =
mk
u(t)

N q
.

Then, the one-step transition generator is defined via(
µ1(t+ 1), v1

1(t+ 1), . . . , vK1 (t+ 1), . . . , µn(t+ 1), v1
n(t+ 1), . . . , vKn (t+ 1)

)
= Ψ1

(
µ1(t), v1

1(t), . . . , vK1 (t), . . . , µn(t), v1
n(t), . . . , vKn (t)

)
.

We also define Ψu,i
1 and Ψv,k,i

1 as the one-step transition to µi(t+ 1) and vki (t+ 1) for
class k and station i.

Once we have the modified definitions on the states and transitions, it is straight-
forward to extend the proof for Lemmas F.1.5 through F.1.7 and the main theorem to
the multi-class version. For example, consider the extension for Lemma F.1.5. Given
(µ, v) = (µ1(0), v1

1(0), . . . , vK1 (0), . . . , µn(0), v1
n(0), . . . , vKn (0)), when showing

Eµ,v
[
V k

1 (1)−Ψv,k,1
1 (µ, v)

]
= 0
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for station 1 (other station uses the same argument), we note that {MB,k
u (0)} follows

a multinomial distribution with parameters Uu(0) ·
∑

kM
k
u (0) and { Mk

u (0)∑
kM

k
u (0)
}. This

gives us {MNB,k
u (0)} correspondingly. Then,

Mk
1 (1) = MB,k

1 (0) +
∑
u∈U

Multi
(
MNB,k

u (0), pku,1
)

+ λk1(1),

and hence,

Eµ,v[Mk
1 (1)] = vk1N

q · µ1 +
n∑
j=1

vkjN
q · (1− µj)pkj,1 + λk1(1)

= N q ·Ψv,k,1
1 (µ, v).

Other lemmas and the main theorem can be proceed in a similar way.

F.2 Proof of Theorem 4.2.1

In the steady-state proof, we focus on proving the single-station setting. The
extension to the multi-station setting with potentially class- and stage-dependent
routing probabilities is the same as we show in the transient analysis, i.e., incorpo-
rating proper states in tracking the system dynamics. Furthermore, we focus on the
time-stationary setting. In the rest of this section, we first specify the necessary gen-
erators for the proof and give the roadmap for the proof under the Stein’s method
framework in Section F.2.1. The proof involves dealing with states in the bounded
set and the unbounded set separately. We prove results for states belonging to the
bounded set in Section F.2.2. Then, we prove the main theorem in Section F.2.3. The
proofs for several lemmas that are used in the main proof are detailed in Section F.2.4.

F.2.1 Generators and Stein’s Framework

We first define the following generators. In the deterministic system, let Ψt =
(Ψu

t ,Ψ
v
t ) (t ≥ 0) denote the t-step transition generator from the current state (µ(0), v(0))

to (µ(t), v(t)), with Ψ0 being the self-mapping from (µ(0), v(0)) to (µ(0), v(0) in the
same period. In the original (stochastic) system, we use Gt to denote the t-step gen-
erator from (U(0), V (0)) to (U(t), V (t)), with G0 being the self-mapping in the same
period and G1 being the one-step transition to (U(1), V (1)).

In the steady-state proof, we focus on the time-stationary setting. We also fix
q = 3/2 for ease of exposition.

Assumption F.2.1. For any given scaling factor N ≥ 1, we assume that for each
t ≥ 1, λ(t) = λ = rN , λe(t) = λe = reN , C(t) = C = rcN , where r, re, rc > 0 are
three constants that do not depend on N . Further, we fix q = 3/2.

We denote (U∞, V∞) as the random variable following the unique stationary dis-
tribution of the stochastic system, and (µ∞, ν∞) as the equilibrium point of the deter-
ministic system; these steady-state variables exist under the stability conditions we
proved. Different from the transient analysis, the proof will involve bounding both
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the distance between U∞ and µ∞ and the distance between V∞ and ν∞. Specifically,
we will consider one particular testing function

g(u, v) = (u− µ∞)2 + (v − ν∞)2.

We also denote g1(u, v) = (u − µ∞)2 and g2(u, v) = (v − ν∞)2. It is easy to verify
that g1 and g2 satisfy Assumption F.1.2.

Stein’s Method Framework

We first overview the Stein’s method framework, which serves as the backbone of our
proof. For a given state (u, v) ∈ [0, 1] × V , the Poisson equation with respect to Ψ
can be written as:

fg(u, v) = g(u, v)− g
(
µ∞, v∞

)
+ fg

(
Ψ1(u, v)

)
,

or equivalently

g(u, v)− g
(
µ∞, v∞

)
= fg(u, v)− fg

(
Ψ1(u, v)

)
. (F.18)

Here, fg is the (relative) value function, given as

fg(u, v) =
∞∑
t=0

[
g
(
Ψt(u, v)

)
− g
(
µ∞, v∞

)]
,

which is well-defined since the deterministic system has a unique equilibrium point.
Now, taking expectation of the Poisson equation (F.18) with respect to (u, v) ∼

(U∞, V∞), we get

E
[
g
(
U∞, V∞

)
− g
(
µ∞, v∞

)]
= E

[
fg(U∞, V∞)− fg

(
Ψ1(U∞, V∞)

)]
.

Then, using the basic adjoint relationship E
[
fg
(
G1(U∞, V∞)

)
− fg(U∞, V∞)

]
= 0 for

the stochastic system and adding this 0 term to the above equation, we then get

E
[
g
(
U∞, V∞

)
− g
(
µ∞, v∞

)]
= E

[
fg(U∞, V∞))− fg

(
Ψ1(U∞, V∞)

)]
+ E

[
fg
(
G1(U∞, V∞)

)
− fg(U∞, V∞)

]
= E

[
fg
(
G1(U∞, V∞)

)
− fg

(
Ψ1(U∞, V∞)

)]
.

Now we have achieved generator coupling on the right-hand side of the above equation.
To bound the value

∣∣E [g(U∞, V∞)− g(µ∞, v∞)] ∣∣, we just need to bound∣∣E [fg(G1(U∞, V∞)
)
− fg

(
Ψ1(U∞, V∞)

)] ∣∣ (F.19)

=

∣∣∣∣∣E[
∞∑
t=0

[
g
(
Ψt(G1(U∞, V∞))

)
− g
(
Ψt(Ψ1(U∞, V∞))

)] ]∣∣∣∣∣ . (F.20)
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Roadmap

To apply the Stein’s method framework to prove our main theorem, note that U∞ ∈
[0, 1], while V∞ is the steady-state counterpart of V (t) = N(t)/N q for the scaling
factor N and q ≥ 3/2. We discuss separately when V∞ is in a bounded set and when
it is not. We first state the following lemma, which shows the probability that V∞ is
not in the bounded set converges to 0 as N →∞.

Lemma F.2.1. Under the stability condition for the DTMC {N(t)}, we have

lim
N→∞

P∞(N(t) > rbN
q) = 0 ∀q > 1,

where rb ≥ 1 is some constant that does not depend on N, q, and P∞ denotes the
steady-state probability of the DTMC.

The proof of this lemma is detailed in Appendix F.2.4. We denote the bounded
set as Vb = [0, rb] and Ṽb = V/Vb as the complement set of Vb. Next, we first prove
results for (u, v) ∈ [0, 1] × Vb. Then, we prove the main theorem that considers the
entire domain [0, 1]× V ′.

F.2.2 Results on States in the Bounded Set

We first consider testing function h(u, v) where the outcome of h only depends on
u and satisfies Assumption F.1.2. For example, h(u, v) = g1(u, v) = (u− µ∞)2.

Proposition F.2.1. Let h : [0, 1]×Vb → R be a function satisfying Assumption F.1.2.
Conditioning on (U∞, V∞) = (u, v) ∈ [0, 1]× Vb, we have that∣∣∣∣∣E[

∞∑
t=0

[
h
(
Ψt(G1(u, v))

)
− h
(
Ψt(Ψ1(u, v))

)] ]∣∣∣∣∣ ≤ c∗1/N,

where c∗1 is a constant that is independent of N or (u, v).

Proof. First, for a given (u, v) ∈ [0, 1] × Vb, since the outcome of h(u, v) only
depends on u, it is equivalent to consider h

(
Ψu
t (G1(u, v)) for h

(
Ψt(G1(u, v)) and

h
(
Ψu
t (Ψ1(u, v)) for h

(
Ψt(Ψ1(u, v)), where Ψu

t (a, b) is the transition from (µ(0), v(0)) =
(a, b) to µ(t) in t-steps. Note that Ψu

t is well-defined because the transition dynamics
are deterministic as long as we know the starting state. Then, to prove the result, we
use: ∣∣∣∣∣E[

∞∑
t=0

[
h
(
Ψu
t (G1(u, v))

)
− h
(
Ψu
t (Ψ1(u, v))

)] ]∣∣∣∣∣
≤

∣∣∣∣∣E
[
T ∗−1∑
t=0

[
h
(
Ψu
t (G1(u, v))

)
− h
(
Ψu
t (Ψ1(u, v))

)]]∣∣∣∣∣ (F.21)

+

∣∣∣∣∣E
[
∞∑

t=T ∗

[
h
(
Ψu
t (G1(u, v))

)
− h
(
Ψu
t (Ψ1(u, v))

)]]∣∣∣∣∣ . (F.22)
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Here, T ∗ is the first time that, from any (u, v) ∈ [0, 1]×Vb, the maximum time in the
deterministic system to reach a “contraction” region that the (1) blocking probability
(u(t) = βt) will not cross the zero point anymore and (2) if µ∞ > 0, the mapping
from u(t) to u(t + 1) is Lipschitz with constant 1 − ε, where ε does not depend on
(u, v) or N , i.e., it is a contraction mapping. Formally, it is defined as follows:

� If C > λe + λ
1−p , T ∗ = sup(u,v) {t ≥ 0 : n(t) ≤ C − λe, (u(0), v(0)) = (u, v)};

� If λ
1−p < C ≤ λ

1−p + λe,

T ∗ = sup(u,v)

{
t ≥ 0 : n(t) ∈

[
C

1−µ∗+δ − λe,
C

1−µ∗−δ − λe
]
, (u(0), v(0)) = (u, v)

}
,

where δ > 0 satisfies the conditions defined in Lemma F.2.2. Because (u, v) ∈ [0, 1]×
Vb is on the bounded set, T ∗ is well defined. The rest of the proof leverages T ∗ to
establish bounds for (F.21) and (F.22).

For (F.21), we establish Lemma F.2.3, which is a modified version of Lemma F.1.2
(focusing on Ψu

t ). Based on this lemma, it is straightforward to show that∣∣∣∣∣E[
T ∗−1∑
t=0

[
h
(
Ψu
t (G1(u, v))

)
− h
(
Ψu
t (Ψ1(u, v))

)] ]∣∣∣∣∣ ≤ c∗2/N,

where c∗2 is some constant that is independent of N or (u, v).
For (F.22), if C > λe + λ

1−p , since u(t) = 0 for all t ≥ T ∗, we have∣∣∣∣∣E
[
∞∑

t=T ∗

[
h
(
Ψu
t (G1(u, v))

)
− h
(
Ψu
t (Ψ1(u, v))

)]]∣∣∣∣∣ = 0.

If λ
1−p < C ≤ λ

1−p + λe, by Lemma F.2.2, after entering the “contraction” region,

Ψu
1(u, v) ∈ Lip(1−ε) with respect to u, i.e., |Ψu

1(u1, v1)−Ψu
1(u2, v2)| ≤ (1−ε)|u1−u2|,

where the Lipschitz constant 1−ε < 1 does not depend (u, v) or N . Given this result,
we can show that ∣∣h(Ψu

T ∗+k(G1(u, v))
)
− h
(
Ψu
T ∗+k(Ψ1(u, v))

)∣∣
≤ 1

γ

∣∣Ψu
T ∗+k

(
G1(u, v)

)
−Ψu

T ∗+k

(
Ψ1(u, v)

)∣∣
≤ 1− ε

γ

∣∣Ψu
T ∗+k−1

(
G1(u, v)

)
−Ψu

T ∗+k−1

(
Ψ1(u, v)

)∣∣ . . .
≤ (1− ε)k

γ

∣∣Ψu
T ∗

(
G1(u, v)

)
−Ψu

T ∗

(
Ψ1(u, v)

)∣∣ ,
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and thus (F.22) can be bounded by the summation of the above geometric series as
follows, ∣∣∣∣∣E

[
∞∑

t=T ∗

[
h
(
Ψu
t (G1(u, v))

)
− h
(
Ψu
t (Ψ1(u, v))

)]]∣∣∣∣∣
≤

∣∣Ψu
T ∗

(
G1(u, v)

)
−Ψu

T ∗

(
Ψ1(u, v)

)∣∣ · ∞∑
k=0

(1− ε)k

≤ c∗3
εN

,

where c∗3 comes from Lemma F.2.3, and 1
ε

comes from the sum of geometric series.

Applying h(u, v) = g1(u, v) = (u− µ∞)2 to this proposition, we get the following
corollary.

Corollary F.2.1. Conditioning on (U∞, V∞) = (u, v) ∈ [0, 1]× Vb, we have that∣∣∣∣∣E[
∞∑
t=0

[(
Ψu
t (G1(u, v))− µ∞

)2 −
(
Ψu
t (Ψ1(u, v))− µ∞

)2
] ]∣∣∣∣∣ ≤ c∗1/N,

where c∗1 is a constant that is independent of N or (u, v).

Consider testing functions h̃(u, v) that only depend on v (e.g., h(u, v) = g2(u, v) =
(v − v∞)2), we get a similar result as Proposition F.2.1.

Proposition F.2.2. Let h̃ : [0, 1]×Vb → R be a function satisfying Assumption F.1.2

except that the output of h̃(u, v) only depends on v. Conditioning on (U∞, V∞) =
(u, v) ∈ [0, 1]× Vb, we have that∣∣∣∣∣E[

∞∑
t=0

[
h̃
(
Ψt(G1(u, v))

)
− h̃
(
Ψt(Ψ1(u, v))

)] ]∣∣∣∣∣ ≤ c̃∗1/N,

where c̃∗1 is a constant that is independent of N or (u, v).

The proof for this proposition is almost the same as that for Proposition F.2.1,
except since h̃(u, v) only depends on v, it is equivalent to consider h̃

(
Ψv
t (G1(u, v)) for

h̃
(
Ψt(G1(u, v)) and h̃

(
Ψv
t (Ψ1(u, v)) for h̃

(
Ψt(Ψ1(u, v)), where Ψv

t (a, b) is the transi-
tion from (µ(0), v(0)) = (a, b) to v(t) in t-steps. The proof also involves modifying
Lemma F.1.2 to focusing on Ψv

t . Similarly, we get the following corollary by applying

the testing function h̃(u, v) = g2(u, v) = (v − v∞)2 to Proposition F.2.2.

Corollary F.2.2. Conditioning on (U∞, V∞) = (u, v) ∈ [0, 1]× Vb, we have that∣∣∣∣∣E[
∞∑
t=0

[(
Ψv
t (G1(u, v))− v∞

)2 −
(
Ψv
t (Ψ1(u, v))− v∞

)2
] ]∣∣∣∣∣ ≤ c̃∗1/N,

where c̃∗1 is a constant that is independent of N or (u, v).
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F.2.3 Proof for the Main Theorem

For the main theorem, we focus on the testing function which is in the following
form

g(u, v) = g1(u, v) + g2(u, v) = (u− µ∞)2 + (v − v∞)2.

Proof. To prove

E
[
||(U∞, V∞)− (µ∞, v∞)||22

]
= O

(
1

N

)
, (F.23)

we utilize (F.20) that considers the definition of the Poisson equation and get the
following:

E
[
||(U∞, V∞)− (µ∞, v∞)||22

]
= E

[
g
(
U∞, V∞

)]
≤

∣∣∣∣∣E
∞∑
t=0

[
g1

(
Ψu
t (G1(U∞, V∞))

)
− g1

(
Ψu
t (Ψ1(U∞, V∞))

)]∣∣∣∣∣
+

∣∣∣∣∣E
∞∑
t=0

[
g2

(
Ψv
t (G1(U∞, V∞))

)
− g2

(
Ψv
t (Ψ1(U∞, V∞))

)]∣∣∣∣∣ .
Applying the two corollaries proved in the Section F.2.2 (and recall that c∗1 and c̃∗1 do
not depend on N or (u, v) ∈ [0, 1]× Vb), we get

RHS (F.24)

≤ c∗1/N + c̃∗1/N

+

∣∣∣∣∣E
∞∑
t=0

[
g1

(
Ψu
t (G1(U∞, V∞))

)
− g1

(
Ψu
t (Ψ1(U∞, V∞))

)]
1(U∞,V∞)∈[0,1]×Ṽb

∣∣∣∣∣ (F.25)

+

∣∣∣∣∣E
∞∑
t=0

[
g2

(
Ψv
t (G1(U∞, V∞))

)
− g2

(
Ψv
t (Ψ1(U∞, V∞))

)]
1(U∞,V∞)∈[0,1]×Ṽb

∣∣∣∣∣ . (F.26)

To deal with the part outside the bounded set, we follow the framework in Liu
and Ying (2018). For (u, v) ∈ [0, 1] × Ṽb, i.e., when v > rb, starting from v, let Tv
be the time until the process re-enters the bounded set. Note that when v > rb,
the total number of patients in the system is of order O(vN3/2) as we fix q = 3/2.
In the deterministic system, under the stability condition, the decreasing rate of
this total patient count is (1 − p)C − λ ∼ O(N) since C, λ is of order N . As a
result, the time Tv is of order O((v − rb)N1/2) as the decrease is linear with a rate
O(N) (also see the proof of Lemma F.2.1 in Appendix F.2.4). Applying the results
from the transient analysis, we know that in each period t ≤ Tv, the difference
E
[
g2

(
Ψv
t (G1(U∞, V∞))

)
− g2

(
Ψv
t (Ψ1(U∞, V∞))

)]
is of order O(1/N). As a result,

E
Tv∑
t=0

[
g2

(
Ψv
t (G1(U∞, V∞))

)
− g2

(
Ψv
t (Ψ1(U∞, V∞))

)]
∼ O((v − rb)N−1/2).
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With the same argument, we can get the same order for the following term, where g2

is replaced with g1

E
Tv∑
t=0

[
g1

(
Ψu
t (G1(U∞, V∞))

)
− g1

(
Ψu
t (Ψ1(U∞, V∞))

)]
∼ O((v − rb)N−1/2).

After entering the bounded set Vb, the cumulative difference is of order O(1/N) as
proved. Thus, there exist some constants c4, c5 > 0 such that we can bound (F.25)
and (F.26) in the RHS with

RHS ≤ c∗1/N + c̃∗1/N

+ c4E[(V∞ − rb)1V∞>rb ] ·N−1/2 + c5P(V∞ > rb) ·N−1. (F.27)

Then, leveraging the fact that v∞ → 0 as N →∞, with rb > 1 sufficiently large, we
get

E[(V∞ − rb)1V∞>rb ] ≤ E[(V∞ − v∞)1V∞>rb ] ≤ E[(V∞ − v∞)2
1V∞>rb ] ≤ E[(V∞ − v∞)2].

Now, plugging the above back to RHS, we get

E
[
||(U∞, V∞)− (µ∞, v∞)||22

]
= E

[
(U∞ − µ∞)2 + (V∞ − v∞)2

]
≤ RHS

≤ c∗1/N + c̃∗1/N

+ c4E[(V∞ − v∞)2] ·N−1/2 + c5 ·N−1.

In other words,

E[(U∞ − µ∞)2] + (1− c4·N−1/2)E[(V∞ − v∞)2] = O

(
1

N

)
.

Since limN→∞(1− c4·N−1/2) = 1, this concludes the proof.

F.2.4 Proof for Lemmas

We start by presenting the proof for Lemma F.2.1.

Proof. To prove Lemma F.2.1, we first state the result from Bertsimas, D., Gamarnik,
D., and Tsitsiklis, J. N. (2001), which will be leveraged to prove the lemma.

Proposition F.2.3 (Bertsimas et al. 2001). If there exists a function V : N → R+,
such that there exists γ > 0 and B ≥ 0 for the following to hold:

� E[V (N(t+ 1))− V (N(t))|N(t) = n] ≤ −γ for all n satisfying V (n) ≥ B;

� the DTMC {N(t)} has a stationary distribution π and Eπ[V (N(t))] <∞,
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then, for the case such that m = 0, 1, 2, . . . , we have that the following inequality
always hold

P∞(V (N(t) > B + 2vmaxm) ≤
(

pmaxvmax

pmaxvmax + γ

)m+1

, (F.28)

where

pmax = sup
n∈N

∑
n′∈N:V (n′)>V (n)

P(N(t+ 1) = n′|N(t) = n),

vmax =
∑

n,n′:P(N(t+1)=n′|N(t)=n)>0

|V (n′)− V (n)|.

To prove our results, we just need to verify the two conditions hold and pmax and
vmax are suitably bounded. In the rest of our proof, we choose the Lyapunov function
V (n) = n. We also use the time-stationary Assumption F.2.1.

We start by checking the first condition; the second is shown in Section 3.1.1 for
proving the stability. For the first condition,

E[V (N(t+ 1))− V (N(t))|N(t) = n]

= E[N(t+ 1)−N(t)|N(t) = n]

= λ− n+ E[MB(t)|N(t) = n)] + E
[
E
[
bino(MNB(t), p)|MB(t) = m,N(t) = n

]]
= λ− n+ E[MB(t)|N(t) = n)] + E

[
p(n−MNB(t))|N(t) = n

]
= λ− (1− p)n+ (1− p) n

n+ λe
(n+ λe − C)+.

When N(t) = n ≥ max{C − λe, λe/δ} = B for some given constant δ > 0, we can
further write the above as

E[V (N(t+ 1))− V (N(t))|N(t) = n]

= λ− (1− p)n+ (1− p)n
(

1− C

n+ λe

)
= λ− (1− p)C · n

n+ λe
≤ λ− 1− p

1 + δ
C.

Under the stability condition C > λ
1−p , there exists some constant γ > 0 such that

E[V (N(t + 1) − V (N(t)|N(t) = n] < −γ as long as δ is sufficiently small (i.e., B is
sufficiently large).

Next, for pmax and vmax, we get pmax ≤ 1. For vmax, note that

N(t+ 1)−N(t) = MB(t) + bino(MNB(t), p) + λ−N(t) ≥ λ− C

since MB(t) ≥ N(t)− C. We also have that N(t+ 1)−N(t) ≤ λ. Thus, we get

vmax = max{λ, |λ− C|} = max{r, |r − rc|}N.

We set r̃b = max{r, |r − rc|} such that vmax = r̃bN .
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Finally, since V (N(t)) = N(t), leveraging the result given in (F.28) and setting
m = dNαe, we have that

P∞(N(t) > B + 2r̃bN · dNαe) ≤
(

r̃bN

r̃bN + γ

)dNαe+1

, ∀α > 0.

Thus, as N →∞, P∞(N(t) > B+ 2r̃bN · dNαe)→ 0 for any α > 0. Since B does not
grow with N , there exists a constant rb ≥ 1 such that P∞(N(t) > rbN

q)→ 0, where
rb does not depend on N, q for any q > 1. This implies that N(t) = o(N q) for any
q > 1 in probability.

Lemma F.2.2. If the capacity C satisfies λ
1−p < C ≤ λ

1−p + λe, there exist some

0 < δ < u∗ and 0 < ε < 1, where u∗ = 1 − C(1−p)−λ
λe(1−p) is the blocking probability

at equilibrium, for any two states (u1(t), v1(t)) and (u2(t), v2(t)) such that u1(t) and
u2(t) are in the interval [u∗−δ, u∗+δ], we have |Ψu

1

(
u1(t), v1(t)

)
−Ψu

1

(
u2(t), v2(t)

)
| ≤

(1 − ε)|u1(t) − u2(t)|, where this ε does not depend on N or u, v. In addition, if
u(t) ∈ [u∗ − δ, u∗ + δ], then u(t+ 1) ∈ [u∗ − δ, u∗ + δ].

Proof. Consider u(t) > 0. We first derive the closed form of the deterministic mapping
from u(t) to u(t+ 1). For a state (u, v) of the deterministic system such that u > 0,
it must satisfy v = 1

Nq

(
C

1−u − λe
)

and n = vN q = C
1−u − λ. Thus

f(u) = Ψu
1 (u, v)

= 1− C/N q

v
(
1− (1− p)(1− u)

)
+ (λ+ λe)/N q

= 1− C(
C

1−u − λe
) (

1− (1− p)(1− u)
)

+ λ+ λe

= 1− C(1− u)

C + λe(1− p)(1− u)2 + (λ− C(1− p)) (1− u)
.

The derivative of f is

f ′(u) =
C [C − λe(1− p)(1− u)2]

[C + λe(1− p)(1− u)2 + (λ− C(1− p))(1− u)]2
.

At u∗ = 1− C(1−p)−λ
λe(1−p) , we have

f ′(u∗) =
C
[
C − λe(1− p)

(
(C(1−p)−λ)2

λ2
e(1−p)2

)]
[
C + λe(1− p)

(
(C(1−p)−λ)2

λ2
e(1−p)2

)
+ (λ− C(1− p))

(
(C(1−p)−λ)
λe(1−p)

)]2

=
C
(
C − (C(1−p)−λ)2

λe(1−p)

)
C2

= 1− (C(1− p)− λ)2

λe(1− p)C
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Since λ
1−p < C < λ

1−p + λe, we have 0 < C(1−p)−λ
λe(1−p) ≤ 1 and 0 < C(1− p)− λ < C. It

follows that 0 < (C(1−p)−λ)2

λe(1−p)C < 1. Thus f ′(u∗) = 1− (C(1−p)−λ)2

λe(1−p)C < 1. In addition, since

C, λ, λe are of order N , f ′(u∗) does not depend on N or q.

Since f ′(u) is continuous at u∗, there exist δ ∈ (0, u∗) and ε ∈
(

0, (C(1−p)−λ)2

λe(1−p)C

)
such

that for every u ∈ [u∗−δ, u∗+δ], f ′(u) < 1−ε. In addition, for any u ∈ [u∗−δ, u∗+δ],
since

|f(u)− u∗| < (1− ε)|u− u∗| < δ(1− ε) < δ,

f(u) is also in the interval [u∗− δ, u∗+ δ], i.e. if u(t) ∈ [u∗− δ, u∗+ δ], then u(t+ 1) ∈
[u∗ − δ, u∗ + δ].

Lemma F.2.3. For any given state (u, v) ∈ [0, 1] × V, and h : [0, 1] → R that is
continuous, twice-differentiable and first derivative of h is 1

γ
-Lipschitz. we have that∣∣∣E [h(Ψu

t (G1(u, v))
)
− h
(
Ψu
t (Ψ1(u, v))

)] ∣∣∣ ≤ c∗3

(
1

N

)
(F.29)

for any t ≥ 0, where c∗3 does not depend (u, v).

Proof. (F.29) is true for t = 0 by Lemma F.1.2, since Ψu
0 is the self-mapping and h ◦

Ψu
0 : [0, 1]×V → R satisfies Assumption F.1.2. For t > 0, we show that h◦Ψu

t satisfies
Assumption F.1.2 in Lemma F.1.2 by induction. It is easy to verify h ◦ Ψu

1 satisfies
Assumption F.1.2 by Lemma F.1.4. Assuming h ◦ Ψu

t satisfying Assumption F.1.2,
for h ◦Ψu

t+1, we have
h ◦Ψu

t+1 = (h ◦Ψu
t ) ◦Ψ1.

Thus (h ◦ Ψu
t ) ◦ Ψ1 satisfies Assumption F.1.2 by Lemma F.1.4. Therefore h ◦ Ψu

t

satisfies Assumption F.1.2 for each t ≥ 0.
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