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ABSTRACT

The volume of available spatial data has increased tremendously. Such data includes

but is not limited to: weather maps, socioeconomic data, vegetation indices, geo-

tagged social media, and more. These applications need a powerful data management

platform to support scalable and interactive analytics on big spatial data. Even

though existing single-node spatial database systems (DBMSs) provide support for

spatial data, they suffer from performance issues when dealing with big spatial data.

Challenges to building large-scale spatial data systems are as follows: (1) System

Scalability: The massive-scale of available spatial data hinders making sense of it

using traditional spatial database management systems. Moreover, large-scale spatial

data, besides its tremendous storage footprint, may be extremely difficult to manage

and maintain due to the heterogeneous shapes, skewed data distribution and complex

spatial relationship. (2) Fast analytics: When the user runs spatial data analytics

applications using graphical analytics tools, she does not tolerate delays introduced

by the underlying spatial database system. Instead, the user needs to see useful

information quickly.

In this dissertation, I focus on designing efficient data systems and data indexing

mechanisms to bolster scalable and interactive analytics on large-scale geospatial data.

I first propose a cluster computing system GeoSpark which extends the core engine of

Apache Spark and Spark SQL to support spatial data types, indexes, and geometrical

operations at scale. In order to reduce the indexing overhead, I propose Hippo, a

fast, yet scalable, sparse database indexing approach. In contrast to existing tree

index structures, Hippo stores disk page ranges (each works as a pointer of one or

many pages) instead of tuple pointers in the indexed table to reduce the storage space

occupied by the index. Moreover, I present Tabula, a middleware framework that

i



sits between a SQL data system and a spatial visualization dashboard to make the

user experience with the dashboard more seamless and interactive. Tabula adopts

a materialized sampling cube approach, which pre-materializes samples, not for the

entire table as in the SampleFirst approach, but for the results of potentially unforeseen

queries (represented by an OLAP cube cell).
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Chapter 1

INTRODUCTION

The volume of available spatial data has increased tremendously. Such data

includes but is not limited to: weather maps, socioeconomic data, vegetation indices,

geo-tagged social media, and more. Furthermore, several cities are beginning to

leverage the power of sensors to monitor the urban environment. For instance, the

city of Chicago started installing sensors across its road intersections to monitor

the environment, air quality, and traffic. Making sense of such spatial data will

be beneficial for several applications that may transform science and society – For

example: (1) Socio-Economic Analysis: that includes climate change analysis [19],

study of deforestation [109], population migration [18], and variation in sea levels [95],

(2) Urban Planning: assisting government in city/regional planning, road network

design, and transportation / traffic engineering, (3) Commerce and Advertisement [23]:

e.g., point-of-interest (POI) recommendation services. These applications need a

powerful data management platform to support scalable and interactive analytics on

big spatial data. Existing spatial database systems (DBMSs) [74] extend relational

DBMSs with new data types, operators, and index structures to handle spatial

operations based on the Open Geospatial Consortium standards [92]. Even though

such systems provide support for spatial data, they suffer from performance issues

when dealing with big spatial data. Challenges to building large-scale spatial data

systems are as follows:

• Challenge I: System Scalability. The massive-scale of available spatial data

hinders making sense of it using traditional spatial database management systems.
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Moreover, large-scale spatial data, besides its tremendous storage footprint, may

be extremely difficult to manage and maintain due to the heterogeneous shapes,

skewed data distribution and complex spatial relationship. The underlying

database system must be able to digest Terabytes of spatial data and effectively

analyze it.

• Challenge II: Fast Analytics. In the past decade, interactive graphical

analytics tools, such as Tableau, Apache Zeppelin [8], and Jupyter Notebook,

become very popular. When the user runs spatial data analytics applications

using these tools, he or she will not tolerate delays introduced by the underlying

spatial database system. Instead, the user needs to see useful information quickly.

Hence, the underlying spatial data processing system must figure out effective

ways to execute spatial analytics in a short time window.

Recent works (e.g., [5, 29]) extend cluster computing systems, such as the Hadoop

MapReduce [42], to perform spatial analytics at scale. Although the Hadoop-based

approach achieves high scalability, it still exhibits slow run time performance and

the user will not tolerate such delays. On the other hand, Apache Spark is now

the defacto general-purpose cluster computing framework due to its speed and ease

of use. It provides a novel data abstraction called Resilient Distributed Datasets

(RDDs) [106] that are collections of objects partitioned across a cluster of machines.

Each RDD is built using parallelized transformations (filter, join or groupBy) that

could be traced back to recover the RDD data. All RDD transformations compose a

Directed Acyclic Graph that is used by Spark’s job scheduler to further optimize the

execution. In-memory RDDs and DAG scheduler allow Spark to outperform existing

models (MapReduce). Unfortunately, the native Spark ecosystem does not provide
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support for spatial data and operations. Hence, Spark users need to perform the

tedious task of programming their own spatial data processing jobs on top of Spark.

In addition, since Spark puts intermediate data in-memory during the computation,

it requires a great deal of memory. In fact, most analytics applications usually impose

some filters (for both regular data and geospatial data) and hence only use a part

of the raw data which is usually stored on disk-based database systems. To reduce

the memory consumption, Spark and other in-memory computation engines such as

Apache Flink [7] try to push some filters down to the underlying database systems,

ask the underlying systems to perform the filtering tasks, and only load necessary data

to the memory of a cluster. Disk-based database systems such as PostgresSQL [75]

and PostGIS [74] often employ index structures, e.g., B+Tree [20] for regular data

and R-Tree [39] for spatial data, to speed up filtering queries on the indexed table.

Even though classic database indexes reduce the query response time, they face the

following challenges: (1) A non-clustered database index usually yields 5% to 15%

additional storage overhead (e.g., Solid State Drives, Non-Volatile Memory and Hard

Disk Drive). Although the overhead may not seem too high in small databases, it

results in non-ignorable dollar cost in big data scenarios (explained in Section 4). (2)

Maintaining a database index incurs high latency because the DBMS has to locate

and update those index entries affected by the underlying table changes (explained in

Section 4).

Moreover, data scientists tend to explore a spatial dataset using graphic interfaces

such as visualization dashboards (i.e., Tableau and ArcGIS) or web-based interactive

notebooks (i.e., Apache Zeppelin [8]). Data exploration on the visualization dashboards

often involves several interactions between the dashboard and underlying databases.

In each interaction, the dashboard application first issues a query to extract the data
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of interest from the underlying data system, and then runs the visual analysis task

(e.g., heat maps and statistical analysis) on the selected data. The same user may

iteratively go through such steps several times to draw useful insights from a dataset.

Every iteration may take a significant amount of time to run when dealing with

large-scale data. An important observation is that data scientists may tolerate slight

accuracy loss for this kind of visualization applications as long as the dashboard can

maintain interactive performance. Therefore, sampling techniques are widely used

in practice. There are two kinds of approaches used by practitioners: (1) prebuilt

samples or stratified samples [24, 2, 76]: draw a small sample of the entire data table

and run the dashboard on this subset (2) draw samples on-the-fly [38, 71]: run SQL

queries over the entire table for every interaction, draw a sample of the extracted

population and send it back to the dashboard. Unfortunately, the former cannot

provide deterministic accuracy loss for geospatial visualization while the latter suffers

from non-negligible query latency and sampling overhead.

Therefore, in this dissertation, I study the problem of designing efficient data

systems and data indexing mechanisms to bolster scalable and interactive analytics on

large-scale geospatial data. Specifically, I build data systems to answer the following

questions:

• How to efficiently and precisely analyze big geospatial data?

• How to reduce the indexing overhead (in terms of storage and maintenance

overhead) in big spatial data systems?

• How to interactively analyze big geospatial data (response time within a few

seconds)?
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By answering the above questions, the main contribution of the dissertation can be

summarized as follows. I first propose a cluster computing system GeoSpark 1 which

extends the core engine of Apache Spark and Spark SQL to support spatial data types,

indexes, and geometrical operations at scale. In order to reduce the indexing overhead,

I propose Hippo 2, a fast, yet scalable, sparse database indexing approach. In contrast

to existing tree index structures, Hippo stores disk page ranges (each works as a

pointer of one or many pages) instead of tuple pointers in the indexed table to reduce

the storage space occupied by the index. Moreover, I present Tabula 3, a middleware

framework that sits between a SQL data system and a spatial visualization dashboard

to make the user experience with the dashboard more seamless and interactive. Tabula

adopts a materialized sampling cube approach, which pre-materializes samples, not

for the entire table as in the SampleFirst approach, but for the results of potentially

unforeseen queries (represented by an OLAP cube cell).

The remainder of this dissertation is structured as follows. In Chapter 2, I review

the related work. In Chapter 3, I discuss the proposed cluster computing system,

GeoSpark. In Chapter 4, I explain the lightweight indexing mechanism, Hippo index.

Chapter 5 shows the sampling middleware system Tabula. Chapter 6 concludes the

dissertation and list future work.

1GeoSpark website: https://datasystemslab.github.io/GeoSpark/

2Hippo source code: https://github.com/DataSystemsLab/hippo-postgresql

3Tabula source code: https://github.com/DataSystemsLab/Tabula
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Chapter 2

BACKGROUND AND RELATED WORK

In this section, I will briefly introduce the background and related work in scalable

and interactive spatial data systems.

2.1 Spatial Database Operations

Spatial database operations are deemed vital for spatial analysis and spatial data

mining. Users can combine query operations to assemble a complex spatial data

mining application.

Spatial Range query: A spatial range query [69] returns all spatial objects that

lie within a geographical region. For example, a range query may find all parks in

the Phoenix metropolitan area or return all restaurants within one mile of the user’s

current location. In terms of the format, a spatial range query takes a set of points or

polygons and a query window as input and returns all the points / polygons which lie

in the query area.

Spatial Join: Spatial join queries [72] are queries that combine two datasets or

more with a spatial predicate, such as distance relations. There are also some real

scenarios in life: tell me all the parks which have rivers in Phoenix and tell me all of

the gas stations which have grocery stores within 500 feet. Spatial join query needs

one set of points, rectangles or polygons (Set A) and one set of query windows (Set

B) as inputs and returns all points and polygons that lie in each one of the query

window set.
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Spatial K Nearest Neighbors (KNN) query: Spatial KNN query takes a

query center point, a spatial object set as inputs and finds the K nearest neighbors

around the center points. For instance, a KNN query finds the 10 nearest restaurants

around the user.

Spatial Indexing: Spatial query processing algorithms usually make use of spatial

indexes to reduce the query latency. For instance, R-Tree [39] provides an efficient

data partitioning strategy to efficiently index spatial data. The key idea is to group

nearby objects and put them in the next higher level node of the tree. R-Tree is

a balanced search tree and obtains better search speed and less storage utilization.

Quad-Tree [32] recursively divides a two-dimensional space into four quadrants.

2.2 Cluster Computing Systems

Over the years, researchers and practitioners have designed several different cluster

computing systems to address the scalability issue on big data. These systems do not

come with the functionalities of spatial data processing by default. However, learning

their internals is very beneficial for understanding how people extend the core models

to support geospatial data.

Hadoop MapReduce. The Hadoop MapReduce system [42] is an open-source

implementation of Google MapReduce model [22]. The MapReduce model is inspired

by the decades-old Map and Fold operations in functional programming languages

such as S [11] and R [52] but extends the idea to the cluster computing environment

by incorporating fault tolerance, task scheduling and so on. It is designed to process

large datasets with a distributed algorithm on a cluster. This system gives a simple

abstraction of complex distributed programs and hides the details of parallelization,
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fault-tolerance, data distribution and load balancing. A MapReduce program usually

consists of three phases: Map, Shuffle, and Reduce. Among them, the Map and

Reduce phases can run user-defined functions. The map function takes an input

value key/value pair and generates a set of intermediate key/value pairs. The reduce

function will merge the values of that key to a smaller set of values, based on the

logic written by the user. A complex program may need to repeat the three phases,

Map, Shuffle, and Reduce, many times and the intermediate data between two phases

are persisted on local disk. The MapReduce system will execute the algorithm by

scheduling tasks to distributed machines, running different tasks in parallel, managing

data shuffle and providing redundancy and fault tolerance.

Apache Spark. The Spark system is a distributed general-purpose cluster com-

puting framework which allows users to easily write distributed programs without

being involved in the details of parallelism. It also can tolerate faults and scale out to

many commodity machines. It is an implementation of Resilient Distributed Datasets

(RDD) [106]. RDD is an immutable distributed collection of in-memory objects. Each

RDD is built using parallelized transformations (filter, join or groupBy). For fault

tolerance, Spark rebuilds lost data on failure using lineage: each RDD remembers

how it was built from other datasets (through transformations) to recover itself. The

lineage among RDDs is represented as a Directed Acyclic Graph which consists of a

set of RDDs (points) and directed Transformations (edges).

There are two transformations can be applied to RDDs, (1) narrow transformation:

Each partition of the parent RDD is used by at most one partition of the child RDD.

A Narrow transformation does not incur any data shuffle. Examples are map and

filter.(2) wide transformation: Each partition of the parent RDD is used by multiple
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child partitions. An example is join. A wide transformation will introduce data shuffle.

The dependency between the parent and child is called wide dependency.

Directed Acyclic Graph (DAG) scheduler is deemed one of the most important

components of Apache Spark that conducts stage-oriented scheduling. After a complex

job is submitted to Spark, the scheduler computes a Directed Acyclic Graph for this

job and divides the job into a set of stages based on this graph. This way, Spark can

maximize the utilization of in-memory intermediate data and avoid unnecessary data

shuffle (aka data transfer among nodes in the cluster).

SparkSQL [9] is an independent Spark module for structured data processing. It

provides a higher-level abstraction called DataFrame over Spark RDD. A DataFrame

is structured to the format of a table with column information. SparkSQL optimizer

leverages the structure information to perform query optimization. SparkSQL supports

two kinds of APIs: (1) DataFrame API manipulates DataFrame using Scala and

Java APIs; (2) SQL API manipulates DataFrame using SQL statements directly.

Unfortunately, Spark and SparkSQL do not provide native support for spatial data

and spatial operations. Hence, users need to perform the tedious task of programming

their own spatial data exploration jobs on top of Spark.

2.3 Process Geospatial Data in Cluster Environments

Most of the existing cluster computing systems do not come with out-of-box spatial

data support. Given the fact that geospatial data analytics may involve a huge amount

of geospatial data, researchers and practitioners have been working on extending the

state-of-the-art cluster computing systems to support spatial data management.
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2.3.1 Geospatial Data Processing in the Hadoop Ecosystem

There exist systems that extend state-of-the-art Hadoop to support massive-scale

geospatial data processing. A detailed comparison of the existing Hadoop-based

systems is given in Table 1. Although these systems have well-developed functions, all

of them are implemented on top of the Hadoop MapReduce framework, which suffers

from a large number of reads and writes on disk.

SpatialHadoop [29] provides native support for spatial data in Hadoop. It

supports various geometry types, including polygon, point, line string, multi-point

and so on, and multiple spatial partitioning techniques [27] including uniform grids,

R-Tree, Quad-Tree, KD-Tree, Hilbert curves and so on. Furthermore, SpatialHadoop

provides spatial indexes and spatial data visualization [30]. The SQL extension of

SpatialHadoop, namely Pigeon [28], allows users to run Spatial SQL queries following

the standard SQL/MM-Part 3 [53].

Parallel-Secondo [61] integrates Hadoop with SECONDO, a database that can

handle non-standard data types, like spatial data, usually not supported by standard

systems. It employs Hadoop as the distributed task manager and performs operations

on a multi-node spatial DBMS. It supports the common spatial indexes and spatial

queries except KNN . However, it only supports uniform spatial data partitioning

techniques, which cannot handle the spatial data skewness problem. In addition, the

visualization function in Parallel-Secondo needs to collect the data to the master local

machine for plotting, which does not scale up to large datasets.

HadoopGIS [5] utilizes SATO spatial partitioning [89] (similar to KD-Tree) and

local spatial indexing to achieve efficient query processing. Hadoop-GIS can support

declarative spatial queries with an integrated architecture with HIVE [87]. However,
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Feature
name

GeoSpark Simba Magellan Spatial
Spark

GeoMesa Spatial
Hadoop

Parallel
Sec-
ondo

Hadoop
GIS

RDD
API

3 7 7 3 3 7 7 7

DataFrame
API

3 3 3 7 3 7 7 7

Spatial
SQL
[53, 48]

3 7 7 7 3 3 7 7

Complex
geomet-
rical
opera-
tions

3 7 7 7 3 3 7 7

Spatial
index-
ing

R-Tree
Quad-
Tree

R-Tree
Quad-
Tree

7 R-
Tree

Grid
file

R-Tree
Quad-
Tree

R-Tree R-
tree

Spatial
parti-
tioning

Multiple Multiple Z-
Curve

R-
Tree

R-Tree Multiple Uniform SATO

Range
/ Dis-
tance
query

3 3 3 3 3 3 3 3

KNN
query

3 3 7 7 7 3 7 3

Range
/ Dis-
tance
Join

3 3 3 3 3 3 3 3

Table 1: Spatial data processing systems in Hadoop MapReduce and Apache Spark

HadoopGIS doesn’t offer standard Spatial SQL [53]. In addition, it lacks the support

of complex geometry types including convex/concave polygons, line string, multi-point,

multi-polygon and so on. HadoopGIS visualizer can plot images on the master local

machine.

2.3.2 Spark-based Geospatial Data Processing Systems

Limitations of Spark-based systems I have studied four popular Spark-based

systems including their research papers and source code: Simba [98], Magellan [82],
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SpatialSpark [101] and GeoMesa [50]. Before diving into the details of each system, I

want to summarize their common limitations (see Table 1):

• Simple shapes only: Simba only supports simple point objects for KNN and

join. Magellan can read polygons but can only process spatial queries on the

Minimum Bounding Rectangle (MBR) of the input polygons. SpatialSpark

only works with point and polygon. Spatial objects may contain many different

shapes and even a single dataset may contain heterogeneous geometrical shapes.

Calculating complex shapes is time-consuming but indeed necessary for real life

applications.

• Approximate query processing algorithms: Simba does not use the Filter and

Refine model [39, 32], which cannot guarantee the query accuracy for complex

shapes. The Filter-Refine model is a must in order to guarantee R-Tree/Quad-

Tree query accuracy although it takes extra time. Magellan only uses MBR in

spatial queries instead of using the real shapes. Simba and GeoMesa do not

remove duplicated objects introduced by spatial partitioning (i.e., polygon and

line string) and directly returns inaccurate query results.

• RDD only or DataFrame only: Simba and Magellan only provide DataFrame

API. However, the Java / Scala RDD API allows users to achieve granular

control of their own application. For complex spatial data analytics algorithm

such as spatial co-location pattern mining, Simba and Magellan users have to

write lots of additional code to convert the data from the DataFrame to the

RDD form. That leads to additional execution time as well as coding effort.

On the other hand, SpatialSpark only provides RDD API and does not provide

support for spatial SQL. The lack of a SQL / declarative interface makes it

difficult for the system to automatically optimize spatial queries.
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• No standard Spatial SQL [53]: Simba’s SQL interface doesn’t follow either

OpenGIS Simple Feature Access [48] or SQL/MM-Part 3 [53], the two de-

facto Spatial SQL standards. Magellan only allows the user to issue queries via

its basic SparkSQL DataFrame API and does not allow users to directly run

spatial queries in a SQL statement.

Simba [98] extends SparkSQL to support spatial data processing over the

DataFrame API. It supports several spatial queries including range query, distance

join query, KNN and KNN join query. Simba builds local R-Tree indexes on each

DataFrame partition and uses R-Tree grids to perform the spatial partitioning. It also

optimizes spatial queries by: (1) only using indexes for highly selective queries. (2)

selecting different join algorithms based on data size.

Magellan [82] is a popular industry project that received over 300 stars on GitHub.

It extends SparkSQL to support spatial range query and join query on DataFrames.

It allows the user to build a “z-curve index” on spatial objects. Magallan’s z-curve

index is actually a z-curve spatial partitioning method, which exhibits slow spatial

join performance [27].

SpatialSpark [101] builds on top of Spark RDD to provide range query and

spatial join query. It can leverage R-Tree index and R-Tree partitioning to speed up

queries.

GeoMesa [50] is an open-source spatial index extension built on top of distributed

data storage systems. It provides a module called GeoMesaSpark to allow Spark to

read the pre-processed and pre-indexed data from Accumulo [90] data store. GeoMesa

also provides RDD API, DataFrame API and Spatial SQL API so that the user can run

spatial queries on Apache Spark. GeoMesa must be running on top of ZooKeeper [51]

with 3 master instances. GeoMesa supports range query and join query. In particular,
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it can use R-Tree spatial partitioning technique to decrease the computation overhead.

However, it uses a grid file as the local index per DataFrame partition. Grid file is a

simple 2D index but cannot well handle spatial data skewness in contrast to R-Tree or

Quad-Tree index. Most importantly, GeoMesa does not remove duplicates introduced

by partitioning the data and hence cannot guarantee join query accuracy. In addition,

GeoMesa does not support parallel map rendering. Its user has to collect the big

dataset to a single machine then visualize it as a low resolution map image.

2.4 Database Indexing Mechanisms

Classic database indexes (e.g., B + -Tree and R-Tree), though speed up queries,

suffer from storage overhead and maintenance overhead. There has been a flurry of

database indexing mechanism trying to solve this problem. This section studies the

existing techniques that index regular data or spatial data (see Table 2).

B+-Tree B+-Tree is the most commonly used type of indexes. The basic idea can

be summarized as follows: For a non-leaf node, the value of its left child node must

be smaller than that of its right child node. Each leaf node points to the physical

address of the original tuple. With the help of this structure, searching B+-Tree can

be completed in one binary search time scope. The excellent query performance of

B+-Tree and other tree like indexes is benefited by their well designed structures

which consist of many non-leaf nodes for quick searching and leaf nodes for fast

accessing parent tuples. This feature incurs two inevitable drawbacks: (1) Storing

plenty of nodes costs a huge chunk of disk storage. (2) Index maintenance is extremely

time-consuming. For any insertions or deletions occur on parent table, tree like indexes
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firstly have to traverse themselves for finding proper update locations and then split,

merge or re-order one or more nodes which are out of date.

R-Tree An R-Tree index is a balanced search tree that indexes spatial data [39]

using a similar data structure like B+-Tree: each non-leaf node has a set of <

key, pointer >. In a non-leaf node, the pointer points to its child node while in a leaf

node, the pointer points to the parent table tuple. The key is 2 dimensional rectangle

which is the Minimum Bounding Rectangle (MBR) of data in the corresponding child

node. In other words, R-Tree’s basic idea is to group nearby spatial objects together

and use an upper tree node to store their Minimum Bounding Rectangle (MBR) as

well as pointers. R-Tree bulk-loading algorithm runs in a bottom-up fashion, which is

indeed faster than inserting tuple one by one. The bulk loading algorithm generates

plenty of tree nodes besides tuples pointers and, in practice, it writes many temporary

files onto disk for scalability. The index search algorithm takes as input a spatial

rectangular range predicate. The algorithm starts at the root node and traverses the

child nodes that satisfy the spatial predicate. The algorithm then prunes subtrees in

R-Tree, which possess MBRs that do not intersect with the spatial query predicate.

The algorithm performs this step recursively until it reaches the tree leaf level and

finally returns all spatial objects that lie within the spatial query range. The tree

structure offers fast index search on highly selective queries at the cost of excessive

indexing and maintenance overhead.

Bitmap Indexes A Bitmap index [57, 83, 113] has been widely applied to low

cardinality and read-only datasets. It uses bitmaps to represent values without trading

query performance. However, Bitmap index’s storage overhead significantly increases

when indexing high cardinality attributes because each index entry has to expand its
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bitmap to accommodate more distinct values. Bitmap index also does not perform

well in update-intensive workloads due to tuple-wise index structure.

Compressed Indexes Compressed indexes drop some repeated index information

to save space and recover it as fast as possible upon queries but they all have guaranteed

query accuracy. These techniques are applied to tree indexes [36, 40]. Though

compressed indexes are storage economy, they require additional time for compressing

beforehand and decompressing on-the-fly. Compromising on the time of initialization,

query and maintenance is not desirable in many time-sensitive scenarios. Hippo on

the other hand reduces the storage overhead by dropping redundancy tuple pointers

and hence still achieves competitive query response time.

Approximate Indexes Approximate indexes [10, 49, 79] give up the query

accuracy and only store some representative information of parent tables for saving

indexing and maintenance overhead and improving query speed. They propose many

efficient statistics algorithms to figure out the most representative information which

is worth to be stored. In addition, some people focus on approximate query processing

(AQP)[3, 108] which relies on data sampling and error bar estimating to accelerate

query speed directly. However, trading query accuracy makes them applicable to

limited scenarios such as loose queries.

Sparse Indexes A sparse index, e.g., as Zone Map [14], Block Range Index [84]

(BRIN), Storage Index [68], and Small Materialized Aggregates (SMA) index [63],

only stores pointers to disk pages / column blocks in parent tables and value ranges

(min and max values) in each page / column block so that it can reduce the storage

overhead. For spatial data, the value range is a Minimum Bounding Rectangle of all

spatial data in the corresponding page / column block. For a posed query, it finds value

ranges which cover the query predicate and then inspects the associated few parent
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table pages one by one for retrieving truly qualified tuples. However, for unordered

data, a sparse index has to spend lots of time on page scanning since the stored value

ranges (min and max values) may cover most query predicates. In addition, column

imprints [81], a cache-conscious secondary index, significantly enhances the traditional

sparse indexes to speed up queries at a reasonably low storage overhead in-memory

data warehousing systems. It leverages histograms and bitmap compression but does

not support dynamic pages / column block size control to further optimize the storage

overhead reduction especially with partially clustered data. The column imprints

approach is designed to handle query-intensive workloads and puts less emphasis on

efficiently update the index in row stores. BRIN-Spatial index [84, 75] in PostgreSQL

extends Block Range Index to support geospatial data. Similar to BRIN, BRIN-Spatial

also groups pages into a fixed disk page range unit (128 pages per range by default).

Each index entry contains two components: a static disk page range (e.g., page 1 - 10)

and a Minimum Bounding Rectangle (MBR) that encloses all spatial data tuples that

are recorded in the page range. The index initialization algorithm scans the indexed

table only once to generate BRIN-Spatial. For each page range, BRIN-Spatial reads

all tuples to construct the MBR for each index entry. Given a spatial range query,

the query processor only searches the index entries for which the MBRs intersect with

the spatial query predicate. It is highly recommended to ensure that the indexed

spatial objects physically maintain their spatial locality in a certain way, e.g., sorting

by longitude/latitude coordinate or Hilbert curve. In that case, the index entries keep

the minimal MBR overlap between each other.
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Index type Fast query Guaranteed accuracy Low storage Fast maintenance
B+ Tree and R-Tree 3 3 7 7

Compressed index 7 3 3 7

Bitmap Indexes 3 7 3 7

Approximate index 3 7 3 7

Sparse index 7 3 3 3

Hippo 3 3 3 3

Table 2: Compared Indexing Approaches

2.5 Interactive Analytics on Big Spatial Data

To support interactive analytics on big data including geospatial data, practitioners

have proposed a variety of techniques such as sampling techniques and data cube

relevant techniques.

2.5.1 Sampling Techniques

Data systems using pre-built samples. In the past two decades, several

research works studied the implementation of classic sampling techniques such as

random sampling, stratified sampling, cluster sampling, systematic sampling [46], and

spatial sampling in database systems. However, samples pre-computed by classic

sampling techniques may eventually lead to inaccurate results [17]. To enhance the

accuracy of pre-built samples, recent systems [2, 24, 91, 1, 76] proposed sampling

approaches that take into account different data populations. Sample+Seek [24] applies

approximate query processing techniques on the data cube and offers a distribution

precision guarantee. BlinkDB [2] and SnappyData [76] support approximate query

processing with bounded error over customized HIVE and Spark clusters. They

create stratified samples over Query Column Set (QCS) to improve accuracy. But
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their pre-built stratified samples have no accuracy guarantee so the systems and only

support classic OLAP aggregate measures such as SUM, COUNT, AVG.However, all

aforementioned approaches assume specific business scenarios, and hence only apply

tailored optimization strategies on classic OLAP aggregate measures such as SUM,

COUNT, AVG. Such specialized measure-biased sampling techniques cannot be easily

extended to other types of analysis such as geospatial visualization.

Sample on the fly (i.e., Query time sampling). Approximate query process-

ing [97, 56, 107] rely on sampling. Some approaches [58, 41] work on placing samplers

inside join queries. Many approximate systems such as ABS [107] and Quickr [56]

focus more on where to place the online sampler in the query plan. These approaches

yield better accuracy and reduce the data-system query time but still inevitably access

raw datasets on the fly. A recently proposed approach, namely Dice [55, 54], applies

speculative query execution techniques to predict the human next query and prefetch

the anticipated query answer upon a data cube [37] that holds pre-computed aggregate

measures (e.g., SUM, COUNT, AVG). Such query speculation technique speeds up

data-system query over databases. However, Dice still runs an online sampler to return

a sample for each query whereas Tabula directly fetches pre-built samples without

accessing raw data because it exhausts all query results in advance. Moreover, Tabula

provides deterministic sample accuracy loss guarantees while other approaches only

guarantee bounded-error with a confidence level.

Spatial sampling. Researchers proposed various approaches to accelerate spatial

visualization process on big datasets. POIsam and VAS [38, 71] propose similar

visualization-aware sampling approaches with sample accuracy loss guarantee. They

shorten map visualization time but, in the case of spatial visualization dashboards, still

perform sampling on the fly and have no optimization to reduce online data-system
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query time. Wang et al. [91] propose a spatial indexing mechanism that indexes spatial

data by different levels such that their online sampler can run faster and produce

more accurate results. But they do not provide a deterministic sample accuracy loss

guarantee and cannot speed up queries that involve non-spatial attributes.

2.5.2 Data Cube Relevant Techniques

Data cubes. Gray et al. [37] proposed the concept of data cubes which pre-

materializes the answers for all future analytics queries. A data cube is a collection

of aggregate measures calculating using all GroupBy queries issued over n “cubed”

attributes. The following query can be used to initialize a data cube:

SELECT [List of attributes] COUNT(*) AS count

FROM nyctaxi

GROUPBY CUBE(List of attributes)

This query leads to 2num_attributes-1 different GroupBy queries such that the result

of each GroupBy query is called a cuboid. It is obvious that the cube initialization

time grows exponentially with the number of attributes involved in the cube. Later,

several papers [4, 45] proposed more advanced techniques to initialize data cubes with

distributive and algebraic measures. These algorithms require the aggregate measures

in the cube to be distributive or algebraic [37, 64] (1) Distributive: The measure of a

cell can be computed solely based on the same measure of its descendant cells. For

instance, SUM in Cell〈∗ : SUM〉 is equal to the sum of 〈Cash : SUM〉, 〈Credit :

SUM〉, 〈Dispute : SUM〉. (2) Algebraic: The measure of a cell can be computed based

on several other types of measures in its descendant cells, e.g., AVG(). A distributive

measure must be algebraic and an algebraic measure may not be distributive. All

20



other measures are called holistic measures. These techniques focus on allocating

cuboid groups to preserve data orders in the same group and avoiding unnecessary raw

table accesses. Researchers [12] came up with the iceberg data cube and a Bottom-

Up initialization algorithm to compute cube distributive measures with minimal

overhead. Instead of persisting all measures, the iceberg cube by nature only stores a

small number of aggregate measures. H-Cubing [44] and Star-Cubing [100] propose

different iceberg cube initialization algorithms for algebraic measures. However, all

aforementioned cubes only work for algebraic measures.

Application-aware data cubes. In the past decade, researchers turn their

attention to data cubes with specialized aggregate measures and data types tailored

for specific applications. Ranking cube [99] is a data cube to answer Top-K queries.

Graph cube [111] propose data cube creation on graph data and textual data. MRcube

describes a data cube initialization algorithm for MapReduce framework such that

it can produce reducer-friendly cuboid groups for partially-algebraic measures and

compute them in parallel. Sampling cube’08 [59] has a similar name to the sampling

cube maintained by Tabula but acts very differently; it builds an iceberg data cube

on a sample of the raw table to speed up the cube initialization. The aggregate

measures of this cube are simple algebraic measures such as AVG. After the first round

initialization, the cube will improve some inaccurate AVGs using nearby cells’ AVGs.

Differently, Tabula is built on the raw table and persists samples in cells to support user

defined analysis tasks. Nano cube [60] and its variants [70] pre-materialize heat maps

and other types of aggregates to answer online visualization requests. To mitigate the

storage overhead, they design a set of complex visual encoding techniques to compress

materialized aggregates. To query the cubes, a custom-made front-end visualization

tool is required while Tabula is a middleware system which has no requirements on
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both visualization front-ends and underlying data systems. It is worth noting that

the encoding techniques used in these cubes are complementary to Tabula such that

they can work in concert with my system to further reduce the memory footprint.

Moreover, none of the aforementioned approaches offer a generic system to uphold

various user-defined visual analytics including map visualization.
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Chapter 3

A CLUSTER COMPUTING SYSTEM FOR PROCESSING LARGE-SCALE

SPATIAL DATA

In this chapter, I focus on the details of designing and developing of GeoSpark [105],

a cluster computing framework which extends the core engine of Apache Spark and

SparkSQL to support spatial data types, indexes, and geometrical operations at scale.

3.1 Introduction

Existing spatial database systems (DBMSs) [74] extend relational DBMSs with

new data types, operators, and index structures to handle spatial operations based on

Figure 1: GeoSpark Overview
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the Open Geospatial Consortium standards [92]. Even though such systems provide

support for spatial data, they suffer from a scalability issue. That happens because

the massive scale of available spatial data hinders making sense of it when using

traditional spatial query processing techniques. Recent works (e.g., [5, 29]) extend the

Hadoop ecosystem to perform spatial analytics at scale. Although the Hadoop-based

approach achieves high scalability, it still exhibits slow run time performance and the

user will not tolerate such delays.

Apache Spark, on the other hand, provides a novel data abstraction called Resilient

Distributed Datasets (RDDs) [106] that are collections of objects partitioned across a

cluster of machines. Each RDD is built using parallelized transformations (filter, join

or groupBy) that could be traced back to recover the RDD data. In memory RDDs

allow Spark to outperform existing models (MapReduce). Unfortunately, the native

Spark ecosystem does not provide support for spatial data and operations. Hence,

Spark users need to perform the tedious task of programming their own spatial data

processing jobs on top of Spark. In fact, large-scale spatial data cannot be easily

stored in Spark’s native RDD like plain objects because of the following challenges:

Heterogeneous data sources. Different from generic datasets, spatial data is

stored in a variety of special file formats that can be easily exchanged among GIS

libraries. These formats include CSV, GeoJSON [15], WKT [73], NetCDF/HDF [86]

and ESRI Shapefile [31]. Spark does not natively understand the content of these files

and straightforward loading of such data formats into Spark may lead to inefficient

processing of such data.

Complex geometrical shapes. There are many different types of spatial objects

each of which may possess very complex shapes such as concave/convex polygons and

multiple sub-shapes. In addition, even a single dataset may contain multiple different
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objects such as Polygon, Multi-Polygon, and GeometryCollection. These objects

cannot be efficiently partitioned across machines, serialized in memory, and processed

by spatial query operators. It requires too much effort to handle such spatial objects,

let alone optimize the performance in terms of run time cost and memory utilization.

Spatial partitioning. The default data partitioner in Spark does not preserve

the spatial proximity of spatial objects, which is crucial to the efficient processing

of spatial data. Nearby spatial objects are better stored in the same RDD partition

so that the issued queries only access a reduced set of RDD partitions instead of all

partitions.

Spatial index support. Spark does not support any spatial indexes such as

Quad-Tree and R-Tree. In addition, maintaining a regular tree-like spatial index yields

additional 15% storage overhead[104, 102]. Therefore, it is not possible to simply

build a global spatial index for all spatial objects of an RDD in the master machine

memory.

In this section, I present the details of designing and developing GeoSpark 4, which

extends the core engine of Apache Spark and SparkSQL to support spatial data types,

indexes, and geometrical operations at scale. In other words, the system extends the

Resilient Distributed Datasets (RDDs) concept to support spatial data. Figure 1 gives

an overview of GeoSpark. Users can interact with the system using either a Spatial

SQL API or a Scala/Java RDD API. The Scala/Java RDD API allows the user to

use an operational programming language to write her custom made spatial analytics

application. The user can create a Spatial RDD, call the geometrical library and run

spatial operations on the created RDDs. The Spatial SQL API follows the SQL/MM

Part 3 Standard [53]. Specifically, three types of Spatial SQL interfaces are supported:

4source code: https://github.com/DataSystemsLab/GeoSpark
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(1) Constructors: initialize a Spatial RDD. (2) Geometrical functions: that represent

geometrical operations on a given Spatial RDD (3) Predicates: issue a spatial query

and return data that satisfies the given predicate such as Contains, Intersects and

Within.

The Spatial Resilient Distributed Dataset (SRDD) Layer extends Spark

with Spatial RDDs (SRDDs) that efficiently partition spatial data elements across the

Apache Spark cluster. This layer also introduces parallelized spatial transformations

and actions (for SRDD) that provide a more intuitive interface for programmers to

write spatial data analytics programs. A Spatial RDD can accommodate heterogeneous

spatial objects which are very common in a GIS area. Currently, GeoSpark allows up

to seven types of spatial objects to co-exist in the same Spatial RDD. The system also

provides a comprehensive geometrical operations library on-top of the Spatial RDD.

The Spatial Query Processing Layer allows programmers to execute spatial

query operators over loaded Spatial RDDs. Such a layer provides an efficient imple-

mentation of the most-widely used spatial query operators, e.g., range filter, distance

filter, spatial k-nearest neighbors, range join and distance join.

3.2 Spatial RDD (SRDD) layer

GeoSpark Spatial RDDs are in-memory distributed datasets that intuitively extend

traditional RDDs to represent spatial objects in Apache Spark. A Spatial RDD consists

of many partitions and each partition contains thousands of spatial objects.The rest of

this section highlights the details of the Spatial RDD layer and explains how GeoSpark

exploits Apache Spark core concepts for accommodating spatial objects.
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3.2.1 SRDD Spatial Objects Support

Spatial RDD supports various input formats (e.g., CSV, WKT, GeoJSON, NetCD-

F/HDF, and Shapefile), which cover most application scenarios. Line delimited file

formats (CSV, WKT and GeoJSON) that are compatible with Spark can be created

through the GeoSpark Spatial SQL interface. Binary file formats (NetCDF/HDF and

Shapefile) need to be handled by GeoSpark customized Spark input format parser

which detects the position of each spatial object.

Since spatial objects have many different types [15, 73, 86, 31], GeoSpark uses a

flexible implementation to accommodate heterogeneous spatial objects. Currently,

GeoSpark supports seven types of spatial objects, Point, Multi-Point, Polygon, Multi-

Polygon, LineString, Multi-LineString, GeometryCollection, and Circle. This means

the spatial objects in a Spatial RDD can either belong to the same geometry type or

be in a mixture of many different geometry types.

GeoSpark users only need to declare the correct input format followed by their

spatial data without any concern for the underlying processing procedure. Complex

data transformation, partitioning, indexing, in-memory storing are taken care of by

GeoSpark and do not bother users.

A SQL and Scala example of constructing a Spatial RDD from WKT strings is

given below.

/* Spatial SQL API*/

SELECT ST_GeomFromWKT(TaxiTripRawTable.pickuppointString)

FROM TaxiTripRawTable

/* Scala/Java RDD API */
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var TaxiTripRDD = new SpatialRDD(sparkContext, dataPath)

3.2.2 SRDD Built-in Geometrical Library

GeoSpark provides a built-in library for executing geometrical computation on

Spatial RDDs in parallel. This library provides native support for over 20 geometrical

operations (e.g., Dataset boundary, polygon union and reference system transform)

that follow the Open Geospatial Consortium (OGC) [92] standard 5. Operations in

the geometrical computation library can be invoked through either GeoSpark Spatial

SQL interface or GeoSpark RDD APIs. Each operation in the geometrical library

employs a distributed computation algorithm to split the entire geometrical task into

small sub-tasks and execute them in parallel. I explain the algorithms used in Dataset

Boundary and Reference System Transformation as examples (SQL is also given);

other operations have similar algorithms.

DatasetBoundary (SQL: ST_Envelope_Aggr): This function returns the

rectangle boundary of the entire Spatial RDD. In GeoSpark Spatial SQL, it takes

as input the geometry type column of the dataset. It uses a Reduce-like algorithm

to aggregate the boundary: it calculates the merged rectangular boundary of spatial

objects two by two until the boundaries of all the objects are aggregated. This process

first happens on each RDD partition in parallel. After finding the aggregated boundary

of each partition, it aggregates the boundary of partitions two by two until the end.

For instance, the following function returns the entire rectangular boundary of all

taxi trips’ pickup points.

5A complete list of geometrical operations supported in GeoSpark:
https://datasystemslab.github.io/GeoSpark/api/sql/GeoSparkSQL-Overview/
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/* Spatial SQL */

SELECT ST_Envelope_Aggr(TaxiTripTable.pickuppoint)

FROM TaxiTripTable

/* Scala/Java RDD API */

var envelopeBoundary = TaxiTripRDD.boundary()

ReferenceSystemTransform (SQL: ST_Transform) Given a source and a

target Spatial Reference System code, this function changes the Spatial Reference

System (SRS) [92] of all spatial objects in the Spatial RDD. In GeoSpark Spatial SQL,

this function also takes as input the geometry type column of the dataset. It uses

a Map-like algorithm to convert the SRS: for each partition in a Spatial RDD, this

function traverses the objects in this partition and converts their SRS.

3.2.3 SRDD Partitioning

Apache Spark loads the input data file into memory, physically splits its in-

memory copy to many equally sized partitions (using hash partitioning or following

HDFS partitioned file structure) and passes each partition to each worker node.

This partitioning method doesn’t preserve the spatial proximity which is crucial for

improving query speed.

GeoSpark automatically repartitions a loaded Spatial RDD according to its internal

spatial data distribution. The intuition of Spatial RDD partitioning is to group spatial

objects into the same partition based upon their spatial proximity. Spatial partitioning

accelerates the query speed of a join query. It achieves that by reducing the data

shuffles across the cluster (see Section 3.3.3) and avoiding unnecessary computation
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on partitions that are impossible to have qualified data. A good spatial partitioning

technique keeps all Spatial RDD partitions balanced in terms of memory space and

spatial computation, aka. load balancing.

Algorithm 1: SRDD Spatial Partitioning
Data: An original SRDD
Result: A repartitioned SRDD
/* Step 1: Build a global grid file at master node */

1 Take samples from the original SRDD A partitions in parallel;
2 Construct the selected spatial structure on the collected sample at master

node;
3 Retrieve the grids from built spatial structures;
/* Step 2: Assign grid ID to each object in parallel */

4 foreach spatial object in SRDD A do
5 foreach grid do
6 if the grid intersects the object then
7 Add (grid ID, object) pair into SRDD B;

// Only needed for R-Tree partitioning
8 if no grid intersects the object then
9 Add (overflow grid ID, object) pair into SRDD B;
/* Step 3: Repartition SRDD across the cluster */

10 Partition SRDD B by ID and get SRDD C;
11 Cache the new SRDD C in memory and return it;

Spatial RDD represents a very large and distributed dataset so that it is extremely

time consuming to traverse the entire Spatial RDD for obtaining the spatial distribution

and partition it according to its distribution. GeoSpark employs a low overhead spatial

partitioning approach to take advantage of global spatial distribution awareness. Hence,

GeoSpark swiftly partitions the objects across the cluster. The spatial partitioning

technique incorporates three main steps as follows (see Algorithm 1):

Step 1: Building a global spatial grid file: In this step, the system takes

samples from each Spatial RDD partition and collects the samples to Spark master

node to generate a small subset of the Spatial RDD. This subset follows the Spatial

30



RDD’s data distribution. Hence, if I split the subset into several load balanced

partitions that contain a similar number of spatial objects and apply the boundaries of

partitions to the entire Spatial RDD, the new Spatial RDD partitions should still be

load-balanced. Furthermore, the spatial locations of these records should also be of a

close spatial proximity to each other. Therefore, after sampling the SRDD, GeoSpark

constructs one of the following spatial data structures that splits the sampled data into

partitions at the Spark master node (see Figure 2). As suggested by [27], GeoSpark

takes 1% percent data of the entire Spatial RDD as the sample:

• Uniform Grid: GeoSpark partitions the entire two-dimensional space into equal

sized grid cells which have the same length, width and area. The boundaries of

these grid cells are applied to the entire Spatial RDD. The partitioning approach

generates non-balanced grids which are suitable for uniform data.

• R-Tree | Quad-Tree | KDB-Tree: This approach exploits the definition

of capacity (fanout) in the classical spatial tree index structures, R-Tree [39],

Quad-Tree [32] and KDB-Tree [77]: each tree node contains the same number

of child nodes. GeoSpark builds an R-Tree, Quad-Tree or KDB-Tree on the

sample subset and collects the leaf node boundaries to a grid file. It is worth

noting that: the grids of R-Tree that builds on the sample data do not cover

the entire space of the dataset. Thus, I need to have an overflow partition to

accommodate the objects that do not fall in any grid of R-Tree partitioning.

However, since Quad-Tree and KDB-Tree always start the splitting from the

entire dataset space, I don’t need the overflow partition.

Step 2: Assigning a grid cell ID to each object: After building a global

grid file, GeoSpark needs to know the grid inside which each object falls and then

repartition the Spatial RDD in accordance with the grid IDs. Therefore, GeoSpark
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(a) SRDD partitioned by uniform grids (b) SRDD partitioned by Quad-Tree

(c) SRDD partitioned by R-Tree (d) SRDD partitioned by KDB-Tree

Figure 2: Grids generated by SRDD spatial partitioning techniques

duplicates the grid files and broadcasts the copies to each Spatial RDD partition. After

receiving the broadcasted grid file, each original Spatial RDD partition simultaneously

starts to check each internal object against the grid file. The results are stored in a

new Spatial RDD whose schema is <Key, Value>. If an object intersects with a grid,

the grid ID will be assigned to this object and a <grid ID, object>pair will be added

to the result Spatial RDD. Because some objects span across multiple grids and some

grids overlap with each other, an object may belong to multiple grids and hence the

resulting SRDD may contain duplicates. To guarantee the query accuracy, GeoSpark

spatial query processing layer handles this issue using two different techniques to

remove duplicates (see Section 3.3.3).

Step 3: Re-partitioning SRDD across the cluster: The Spatial RDD gen-

erated by the last step already has <Key, Value>pair schema. The Key represents a

grid cell ID. In this step, GeoSpark repartitions the Spatial RDD by Key and then

spatial objects which have the same grid cell ID (Key) are grouped into the same
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partition. These partitions constitute a new Spatial RDD. This step results in massive

data being shuffled across the cluster due to passing spatial objects to their assigned

worker nodes.

3.2.4 SRDD Indexing

Spatial indexes such as R-Tree and Quad-Tree can speed up a spatial query

significantly. That is due to the fact that such indexes group nearby spatial objects

together and represent them with a tight bounding rectangle in the next higher level

of the tree. A query that does not intersect with the rectangle cannot intersect with

any of the objects in the lower levels.

Since many spatial analysis algorithms (e.g., spatial data mining, geospatial

statistical learning) have to query the same Spatial RDD many times until convergence,

GeoSpark allows the user to build spatial indexes and the built indexes can be cached,

persisted and re-used many times. However, building a spatial index for the entire

dataset is not possible because a tree-like spatial index yields additional 15% storage

overhead [104, 102]. No single machine can afford such storage overhead when the

data scale becomes large.

Build local indexes To solve the problem, if the user wants to use a spatial

index, GeoSpark will build a set of local spatial indexes rather than a single global

index. In particular, GeoSpark creates a spatial index (R-Tree or Quad-Tree) per

RDD partition. These local R-Trees / Quad-Trees only index spatial objects in their

associated partition. Therefore, this method avoids indexing all objects on a single

machine.
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To further speed up the query, the indexes in GeoSpark are clustered indexes. In

that case, spatial objects in each partition are stored directly in the spatial index

of this partition. Given a query, the clustered indexes can directly return qualified

spatial objects and skip the I/O of retrieving spatial index according to the qualified

object pointers.

Query local indexes When a spatial query is issued by the spatial query process-

ing layer, the query is divided into many smaller tasks that are processed in parallel.

In case a local spatial index exists in a certain partition, GeoSpark will force the

spatial computation to leverage the index. In many spatial programs, the built indexes

will be re-used again and again. Hence, the created spatial indexes may lead to a

tremendous saving in the overall execution time and the index construction time can

be amortized.

In addition, since spatial indexes organize spatial objects using their Minimum

Bounding Rectangle (MBR) instead of their real shapes, any of the queries that

leverage spatial indexes have to follow the Filter and Refine model [39, 32] (explained

in Section 3.3): In the filter phase, I find candidate objects (MBR) that intersect with

the query object (MBR); in the refine phase, I check the spatial relation between the

candidate objects and the query object and only return the objects that truly satisfy

the required relation (contain or intersect).

Persist local indexes To re-use the built local indexes, GeoSpark users first need

to store the indexed spatial RDD using one of the following ways (DataFrame shares

similar APIs) - (1) cache to memory: call IndexedSpatialRDD.cache() (2) persist on

disk: call IndexedSpatialRDD.saveAsObjectFile(HDFS/S3_PATH). Both methods

make use of the same algorithm: (1) go to each partition of the RDD in parallel (2)

call SRDD customized serializer to serialize the local index on each partition to a
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byte array, one array per partition (see Section 3.2.5) (3) write the generated byte

array of each partition to memory or disk. The user can directly use the name of the

cached indexed SpatialRDD in his program because Spark manages the corresponding

memory space and de-serializes byte arrays in parallel to recover the original RDD

partition information. For an indexed SpatialRDD on disk, the user needs to call

IndexedSpatialRDD.readFromObjectFile(HDFS/S3_PATH) to explicitly read it back

to Spark. Spark will read the distributed file partitions in parallel and the byte array

of each partition is de-serialized to a local index.

3.2.5 SRDD Customized Serializer

When Spark transfers objects across machines (e.g., data shuffle), all objects have

to be first serialized in byte arrays. The receiver machines will put the received data

chunk in memory and then de-serialize the data. Spark default serializer can provide

a compact representation of simple objects (e.g., integers). However, for objects such

as spatial objects that possess very complex geometrical shapes, the default Spark

serializer cannot efficiently provide a compact representation of such objects [67]. That

may lead to large-scale data shuffled across the network and tremendous memory

overhead across the cluster.

To overcome this issue, GeoSpark provides a customized serializer for spatial

objects and spatial indexes. The proposed serializer uses a binary format to serialize

a spatial object and indexes. The serialized object and index are put in byte arrays.

The way to serialize a spatial object is as follows:

• Byte 1 specifies the type of the spatial object. Each supported spatial object

type has a unique ID in GeoSpark.
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• Byte 2 specifies the number of sub-objects in this spatial object.

• Byte 3 specifies the type of the first sub-object (only needed for GeometryCol-

lection, other types don’t need this byte).

• Byte 4 specifies the number of coordinates (n) of the first sub-object. Each

coordinate is represented by two double type (8 bytes * 2) data X and Y.

• Byte 5 - Byte 4+16*n stores the coordinate information.

• Byte 16*n+1 specifies the number of coordinates (n) of the second sub-object...

• Until the end Here all sub-objects have been serialized.

The way to serialize a single local spatial index (Quad-Tree or R-Tree, explained

in subsection 3.2.4) is detailed below. It uses the classic N-ary tree serialization/dese-

rialization algorithm. It is also worth noting that, spatial objects are stored inside

tree nodes.

Serialization phase It uses the Depth-First Search (DFS) to traverse each tree

node from the root following the pre-order strategy (first write current node information

then write its children nodes). This is a recursive procedure. In the iteration of each

tree node (each recursion), it first serializes the boundary of this node, and then

serializes all spatial objects in this node one by one (use the object serializer explained

above). Eventually, it goes to the children nodes of the working node. Since each

N-ary tree node may have various internal spatial objects and children nodes, it also

writes a memo to note the number of spatial objects and children nodes in this node.

De-serialization phase It still utilizes the same traverse strategy as the serial-

ization phase (DFS, pre-order). It starts from the root and runs a recursive algorithm.

In each recursion, it first re-constructs the boundary and internal spatial objects of the

working node. Then it starts reading the bytes of the children nodes of the working

node and hands over the work to the next recursion.
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Figure 3: Spatial range query and KNN query DAG and data flow

Based on my experiments in subsection 3.5, GeoSpark serializer is faster than

Spark kryo serializer and has smaller memory footprint when running complex spatial

operations, e.g., spatial join query.

3.3 Spatial Query Processing Layer

After the Spatial RDD layer loads, partitions, and indexes Spatial RDDs, GeoSpark

can run spatial query processing operations on the SRDDs. The spatial query

proccessing layer provides support for a wide set of popular spatial operators that

include range query, distance query, K Nearest Neighbors (KNN) query, range join

query and distance join query.

3.3.1 Processing Spatial Range and Distance Queries

A spatial range query is fast and less resource-consuming since it only returns all

the spatial objects that lie within the input query window object (point, polygon,

line string and so on). Such a query can be completed by a parallelized Filter

transformation in Apache Spark, which introduces a narrow dependency. Therefore,
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Algorithm 2: Range query and distance query
Data: A query window A, a Spatial RDD B and spatial relation predicate
Result: A Spatial RDD that contains objects that satisfy the predicate

1 foreach partition in the SRDD B do
2 if an index exists then

// Filter phase
3 Query the spatial index of this partition using the window A’s MBR;

// Refine phase
4 Check the spatial relation predicate using real shapes of A and

candidate objects;
5 else
6 foreach object in this partition do
7 Check spatial relation predicate between this object and A;
8 Record this object if it is qualified;
9 Generate the result Spatial RDD;

it is not necessary to repartition the Spatial RDD since repartitioning might lead to a

wide dependency in the Apache Spark DAG. A more efficient way is to broadcast the

query window to all worker nodes and parallelize the computation across the cluster.

For non-closed query window objects such as a point or a line string, the range query

processing algorithm only checks the “intersect” relation rather than “contain”.

The spatial distance query conducts the same operation on the given Spatial RDD

but adds an additional distance buffer between the query window and the candidate

objects.

SQL API: Spatial predicates such as “ST_Contains” can be used to issue a range

query in GeoSpark Spatial SQL. For instance, “ST_Contains (A, B)” returns true if

A contains B. “ST_Distance (A, B)≤ d” returns true if the distance between A and B

is equal to or less than d. The following two Spatial SQL examples depict (1) return

taxi trips that are picked up in Manhattan (2) return taxi trips that are picked up

within 1 mile from Manhattan. The other two Scala/Java examples take as input a

Spatial RDD and a query window object and then run the same operations.
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/* Spatial SQL Range query */

SELECT *

FROM TaxiTripTable

WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint)

/* Spatial SQL Distance query */

SELECT *

FROM TaxiTripTable

WHERE ST_Distance(Manhattan, TaxiTripTable.pickuppoint) <= 1

/* Scala/Java RDD Range query */

RangeQuery.SpatialRangeQuery(PickupPointRDD, Manhattan)

/* Scala/Java RDD Distance query */

RangeQuery.SpatialDistanceQuery(PickupPointRDD, Manhattan, 1)

Algorithm For a given spatial range query, GeoSpark broadcasts the query window

to each machine in the cluster. For each Spatial RDD partition (see Algorithm 2),

if a spatial index exists, it follows the Filter and Refine model: (1) uses the query

window’s MBR to query the spatial index and return the candidate results. (2) checks

the spatial relation between the query window and candidate objects using their real

shapes. The truly qualified spatial objects are returned as the partition of the new

resulting Spatial RDD. If no spatial index exists, GeoSpark filters spatial objects using

the query window and collects qualified objects to be a partition of the new result

Spatial RDD. The result Spatial RDD is sent to the next stage of the Spark program

(if needed) or persisted on disk. For a distance query, I added a distance buffer to the

query window such that it extends the boundary of the query window to cover more
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area. The remaining part of distance query algorithm remains the same with range

query.

DAG and iterative spatial data mining The DAG and data flow of the

range query and the distance query are described in Figure 3. The query processing

algorithm only introduces a single narrow dependency, which does not require data

shuffle. Thus, all it needs is just one stage. For a compute-intensive spatial data mining

program, which executes range queries many times (with different query windows),

all queries access data from the same cached indexed Spatial RDD fluently without

any interruptions from wide dependencies so that the procedure is very fast.

3.3.2 Spatial K Nearest Neighbors (KNN) Query

The straightforward way to execute a KNN query is to rank the distances between

spatial objects and the query location, then pick the top K nearest neighbors. However,

ranking these distances in a large SRDD should be avoided if possible to avoid a

large amount of data shuffle, which is time-consuming and bandwidth-consuming. In

addition, it is also not necessary to spatially partition a Spatial RDD that incurs a

single wide dependency.

SQL API: In Spatial SQL, “ST_Neighbors(A, B, K)” issues a spatial KNN query

which finds the K nearest neighbors of A from Column B. The SQL example below

returns the 100 nearest taxi trip pickup points of New York Time Square. The

Scala/Java example performs the same operation.

/* Spatial SQL API */

SELECT ST_Neighbors(TimeSquare, TaxiTripTable.pickuppoint, 100)

FROM TaxiTripTable
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/* Scala/Java RDD API */

KnnQuery.SpatialKnnQuery(PickupPointRDD, TimeSquare, 100)

Algorithm To parallelize a spatial KNN query more efficiently, GeoSpark modifies

a popular top-k algorithm [16] to fit the distributed environment (1) to be able to

leverage local spatial indexes if they exist (2) to reduce the data shuffle scale of ranking

distances. This algorithm takes an indexed/non-indexed SRDD, a query center object

(point, polygon, line string and so on) and a number K as inputs. It contains two

phases (see Algorithm 3): selection and sorting.

• Selection phase For each SRDD partition, GeoSpark calculates the distances

from the given object to each spatial object, then maintains a local priority

queue by adding or removing objects based on the distances. Such a queue

contains the nearest K objects around the given object and becomes a partition

of the new intermediate SRDD. For the indexed Spatial RDDs, GeoSpark can

query the local indexes (only R-Tree supports this, see [78]) in partitions to

accelerate the distance calculation. Similarly, GeoSpark needs to follow Filter

and Refine model to recheck the results returned by the index search using their

real shapes.

• Sorting phase Each partition in the Spatial RDD generated by the selection

phase only contains K objects. GeoSpark sorts this intermediate Spatial RDD in

ascending order according to the distances. Sorting the small scale intermediate

Spatial RDD is much faster than sorting the original Spatial RDD directly. The

sorting phase also outputs an intermediate Spatial RDD. GeoSpark collects the

first K objects in the intermediate Spatial RDD across the cluster and returns

those objects as the final result.
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Algorithm 3: K nearest neighbor (KNN) query
Data: A query center object A, a Spatial RDD B, the number K
Result: A list of K spatial objects
/* Step 1: Selection phase */

1 foreach partition in the SRDD B do
2 if an index exists then
3 Return K nearest neighbors of A by querying the index of this partition;
4 else
5 foreach object in this partition do
6 Check the distance between this object and A;
7 Maintain a priority queue that stores the top K nearest neighbors;
/* Step 2: Sorting phase */

8 Sort the spatial objects in the intermediate Spatial RDD C based on their
distances to A;

9 Return the top K objects in C

DAG and iterative spatial data mining Figure 3 depicts the DAG and data

flow of spatial KNN query. The query processing algorithm includes two transfor-

mations: selection, sorting. The former incurs a narrow dependency and the latter

introduces a wide dependency that results in a small data shuffle. These two transfor-

mations will be scheduled to two stages without pipeline execution. However, because

the intermediate Spatial RDD generated by the first transformation only has K objects

per partition, the shuffle caused by transforming this Spatial RDD is very small and

will not impact the execution much. For an iterative spatial data mining using KNN

query, the two intermediate Spatial RDDs are dropped after each query execution but

the indexed Spatial RDD still resides in memory cache. Recycling the indexed Spatial

RDDs accelerates the iterative execution to a greater extent.
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Figure 4: Join query DAG and data flow

3.3.3 Processing Spatial Join Queries

Spatial join, a computation and data intensive operation, incurs high data shuffle

in Spark. Taking into account the spatial proximity of spatial objects, GeoSpark

partitions Spatial RDDs in advance based on the objects’ spatial locations in Spatial

RDD layer (Section 3.2.3) and caches the Spatial RDDs. Therefore, GeoSpark join

query algorithm re-uses the spatial partitioned RDDs (probably indexed as well) and

avoids large scale data shuffle. Moreover, since GeoSpark skips the partitions which

are guaranteed not to satisfy the join query predicate, it can significantly accelerate

the overall spatial join processing.

GSJoin algorithm GeoSpark combines the approaches proposed by [112, 62, 110]

to a new spatial range join algorithm, namely GSJoin, that re-uses spatial partitioned

RDDs as well as their indexes. This algorithm, which takes two spatial partitioned
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RDDs A and B (i.e., TaxiStopStations and TaxiTripTable), consists of three steps as

follows (see Algorithm 4 and Figure 4).

• Zip partitions This step zips the partitions from A and B (TaxiStopStations

and TaxiTripTable) according to their grid IDs. For instance, I merge Partition

1 from A and B to a bigger partition which has two sub-partitions. Both

Partition 1 s from A and B have the spatial objects that fall inside Grid 1 (see

Section 3.2.3). Partition 1 from A (TaxiStopStations) contains all taxi stop

stations that locate in Grid 1 and Partition 1 from B (TaxiTripTable) contains

all taxi trips that are picked up in Grid 1. Note that, the data in Partition1

from A is guaranteed to disjoint from other partitions (except 1) of B because

they belong to totally different spatial regions (see Section 3.2.3). Thus, GSJoin

does not waste time on checking other partitions from B with Partition 1 from

A. This Zip operation applies to all partitions from A and B and produces an

intermediate RDD called C.

• Partition-level local join (no index) This step runs a partition-level local

range join on each partition of C. Each partition from C has two sub-partitions,

one from A and one from B. If no indexes exist on both the sub-partitions, the

local join will perform a nested loop join that traverses all possible pairs of

spatial objects from the two sub-partitions and returns the qualified pairs. This

costs O(n2) complexity on each C partition, where n is the number of objects in

a sub-partition.

• Partition-level local join (with index) During the partition-level local join

step, if an index exists on either one sub-partition (say, sub-partition from B

is indexed), this local join will do an index-nested loop. It uses each object

in the sub-partition from A as the query window to query the index of the
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sub-partition from B. This costs O(n*log(n)) complexity on each C partition,

where n is the number of objects in a sub-partition. It is worth noting that

this step also follows the Filter and Refine model which is similar to this part

in Range query and Distance query (mentioned in Section 3.2.4). Each query

window needs to recheck the real shapes of candidate spatial objects which are

obtained by scanning the index.

• Remove duplicates This step removes the duplicated spatial objects intro-

duced by spatial partitioning. At that time, I duplicate the spatial objects

that intersect with multiple grids and assign different grid IDs to these dupli-

cates and this will lead to duplicated results eventually. Figure 5 illustrates

an example. Since both Pa and Pb fall in Grid 1, 2, 3, and 4, the result “Pa

intersects Pb” will be reported four times in the final join result set. In order to

remove the duplicates, two methods are available. The first method is to use a

“GroupBy” operation to collect all objects that intersect with Pa in this cluster

then remove the duplicated ones. This method introduces a big data shuffle

across the cluster because it needs to do a GroupBy on all results. I should

always avoid unnecessary data shuffle. The second method is called “Reference

point” [25]. The intuition of the reference point is to establish a rule that, if

duplicated results appear, only report it once. When doing a partition-level

local join, GeoSpark calculates the intersection of two intersecting objects (one

from SRDD A and the other from B) and only reports the pair of objects when

the reference point falls in the associated grid of this partition. To find this

reference point, I first calculate the intersection shape of the two intersected

objects. The X-coordinate/Y-coordinate of a reference point is the max X/Y

of all coordinates of the intersection. In Figure 5, I use the red point as the
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Figure 5: Removing duplicates

reference point and only report “Pa intersects Pb” when doing the local join

on Partition 2. Note that, the reference point idea only works for Quad-Tree

and KDB-Tree partitioning because their grids don’t overlap with each other.

R-Tree and other methods that produce overlapped grids have to use the first

method because even the reference point can still appear in multiple grids.

Note that the GSJoin algorithm can query Spatial RDDs that are partitioned

by any GeoSpark spatial partitioning method including Uniform grids, R-Tree grids,

Quad-Tree grids, KDB-Tree grids and indexed by any of the indexing methods such as

R-Tree index and Quad-Tree index. That is why I also implemented other partitioning

methods and indexes in GeoSpark for benchmarking purpose.

Broadcast join algorithm Besides GSJoin, GeoSpark also provides a straight-

forward broadcast range join algorithm, which works well for small scale Spatial

RDDs. When at least one of the two input Spatial RDDs is very small, this algorithm

broadcasts the small Spatial RDD A to each partition of the other Spatial RDD B.

Then, a partition-level local join (see GSJoin) happens on all partitions of B in parallel.

The Broadcast join algorithm has two important features: (1) it is faster than GSJoin
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Algorithm 4: GSJoin algorithm for range join and distance join query
Data: (repartitioned) SRDD A and (repartitioned) SRDD B
Result: PairRDD in schema <Left object from A, right object from B>
/* Step1: Zip partitions */

1 foreach partition pair from SRDD A and B with the same grid ID i do
2 Merge two partitions to a bigger partition that has two sub-partitions;
3 Return the intermediate SRDD C;
/* Step2: Run partition-level local join */

4 foreach partition P in the C do
5 foreach object OA in the sub-partition from A do
6 if an index exists in the sub-partition from B then

// Filter phase
7 Query the spatial index of this partition using the OA’s MBR;

// Refine phase
8 Check the spatial relation using real shapes of OA and candidate

objects OBs;
/* Step3: Remove duplicates */

9 Report <OA, OB> pair only if the reference point of this pair is in
P;

10 else
11 foreach object OB in the sub-partition from B do
12 Check spatial relation between OA and OB;

/* Step3: Remove duplicates */
13 Report <OA, OB> pair only if the reference point of this pair is

in P;
14 Generate the result PairRDD;

for very small datasets because it does not require any spatial partitioning methods

and duplicate removal. (2) it may lead to system failure or very long execution time

for large datasets because it shuffles an entire SRDD A to each partition of SRDD B.

Distance join algorithm The distance join algorithms can be seen as extensions

to the range join algorithms, GSJoin and Broadcast join. The only difference is that I

add a distance buffer to all objects in either Spatial RDD A or B at the very beginning

(even before spatial partitioning) to extend their boundaries. The extended spatial

objects can be used in both range join algorithms.
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Spark DAG: The DAG and data flow of GSJoin are shown in Figure 4. The

join query introduces two transformations: zip partitions and partition-level local join.

Both of them incur narrow dependencies. Therefore, they are pipelined to one stage

with fast execution. On the contrary, the broadcast join algorithm (see the right part

in Figure 4) introduces two wide dependencies which lead to heavy network traffic

and intensive computation. Until now, the effect of spatial partitioning is shown by

degrading wide dependencies to narrow dependencies. For spatial analytics program

that runs multiple join queries, the repartitioned A and B are cached into memory

and recycled for each join query.

3.4 Application Use Cases

3.4.1 Application 1: Spatial Aggregation

A data scientist in NYC Taxi Company would like to further investigate the

distribution of taxi pickup points because he makes an interesting observation from

the Region Heat Map: the distribution is very unbalanced. New York City has many

taxi zones and each zone may have very different demographic information. Therefore,

this time, the scientist wants to know the pickup points distribution per taxi zone.

This spatial aggregation can be easily completed by GeoSpark: He first uses Range

Join Query (SQL interface) to find the taxi trips that are picked up in each taxi

zone then calculates the count per taxi zone. The result of this aggregation can be

directly visualized by the GeoSpark Choropleth Map. The corresponding pseudo

code is available in Figure 7. The SQL statement issues a range join query since the
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(a) Spatial Aggregation: Trip pickup points
aggregated by taxi zones

(b) Spatial Co-location: Taxi trips co-locate
with area landmarks

Figure 6: Visualized spatial analytics

1 var aggregatedDataframe = spark.sql
2 ("SELECT TaxiZone.boundary , COUNT(TaxiTripTable.pickuppoint)
3 FROM TaxiZone ,TaxiTripTable
4 WHERE ST_Contains(TaxiZone.boundary , TaxiTripTable.pickuppoint)
5 GROUP BY TaxiZone.boundary")
6 var vizEffect = new ChoroplethMap(resolutionX , resolutionY)
7 vizEffect.Visualize(aggregatedDataframe.toRDD)

Figure 7: Spatial Aggregation: Range Join Query + Choropleth Map

inputs of “ST_Contains” are from two datasets. The “COUNT()” function counts

the taxi trip pickup points per taxi zone. Each row in the join query result is in the

form of “TaxiZoneShape,Count”. The Choropleth Map API takes as input the map

resolution and its “Visualize” function can plot the given join query result. Figure 6a

is the generated Choropleth Map. A red colored zone means that more taxi trips were

picked up in that zone. According to the Choropleth map, the scientist finds that the

hottest zones are in Manhattan but there are two zones which are in orange colors
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1 val PickupPoints = new PointRDD(sparkContext ,DataPath1 ,FileType.CSV)
2 val AreaLandmarks = ShapefileReader.readToGeometryRDD(DataPath2)
3
4 PickupPoints.spatialPartitioning(GridType.KDBTREE)
5 PickupPoints.buildIndex(IndexTYpe.QuadTree)
6 PickupPoints.indexedRDD.cache ()
7
8 for (i <- 1 to 10) {
9 currentDistance = beginDistance + i*distanceIncrement

10 AreaLandmarks.spatialPartitioning(PickupPoints.getPartitioner ,
currentDistance)

11 var adjacencyMatrixCount = JoinQuery.DistanceJoinQueryFlat (
sparkContext ,

12 PickupPoints , AreaLandmarks , currentDistance).count
13 println(RipleyK(coefficient , adjacencyMatrixCount))}

Figure 8: Spatial Co-location Pattern Mining: iterative Distance Join Query

but far from Manhattan. Then, he realizes these two zones are La Guardia Airport

and JFK Airport, respectively.

3.4.2 Application 2: Spatial Co-location Pattern Mining

After finding many pickup points in La Guardia Airport and JFK Airport, the

data scientist in the NYC Taxi Company makes a guess that the taxi pickup points are

co-located with the New York area landmarks such as airports, museums, hospitals,

colleges and so on. In other words, many taxi trips start from area landmarks (see

Figure 6b). He wants to use a quantitative metric to measure the degree of the

co-location pattern. This procedure is called spatial co-location pattern mining.

Spatial co-location pattern mining is defined by two kinds of spatial objects

that are often located in a neighborhood relationship. Ripley’s K function [93] is

commonly used in judging co-location. It usually executes multiple times and forms a
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2 dimensional curve for observation. To obtain Ripley’s K in each iteration, I need

to calculate the adjacency matrix of two types of spatial objects given an updated

distance restriction. To obtain the adjacency matrix, a time-consuming distance join

is necessary. The user can use GeoSpark RDD APIs to assemble this application6 and

migrate the adjacency matrix computation to a Spark cluster.

A snippet of the application source code is given in Figure 8. The user first needs

to create two Spatial RDDs, PickupPoints from a CSV file and AreaLandmarks from

an ESRI shapefile. Then he should run spatial partitioning and build local index on

the larger Spatial RDD (PickupPoints RDD is much larger in this case) and cache the

processed Spatial RDD. Since Ripley’s K requires many iterations (say, 10 iterations)

with a changing distance, the user should write a for-loop. In each loop, he just needs

to call DistanceJoinQuery API to join PickupPoints (cached) and AreaLandmarks.

DistanceJoinQuery takes as input two Spatial RDDs and a distance and returns the

spatial objects pairs that are located within the distance limitation. Although the

distance is changing in each loop, the cached PickupPoints can be quickly loaded from

memory to save plenty of time. The experiment verifies this conclusion.

3.5 Experiments

This section presents a comprehensive experiment analysis that experimentally

evaluates the performance of GeoSpark and other spatial data processing systems. I

compare four main systems:

6Runnable example: https://github.com/jiayuasu/GeoSparkTemplateProject
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Dataset Size Description

OSMpostal 1.4 GB 171 thousand polygons, all postal areas on the planet
(from Open Street Map)

TIGERedges 62 GB 72.7 million line strings, all streets in US. Each street is
a line string which consists of multiple line segments

OSMobject 90 GB 263 million polygons, all spatial objects on the planet
(from Open Street Map)

NYCtaxi 180 GB 1.3 billion points, New York City Yellow Taxi trip infor-
mation

Table 3: Dataset description

• GeoSpark: I use GeoSpark 1.0.1, the latest release. It includes all functions

needed in this experiment. I also open GeoSpark customized serializer to improve

the performance.

• Simba [98]: I use Simba’s latest GitHub repository which supports Spark 2.1.

By default, Simba automatically opens Spark Kryo serializer.

• Magellan [82]: Magellan 1.0.6, the latest version, is used in my experiment. By

default, Magellan automatically opens Spark Kryo serializer.

• SpatialHadoop [29]: I use SpatialHadoop 2.4.2 in the main GitHub repository

in the experiments.

Datasets. Table 3 summarizes four real spatial datasets used in the experiments,

described as follows:

• OSMpostal [43]: contains 171 thousand polygons extracted from Open Street

Maps. These polygons are the boundaries of all postal code areas on the planet.

• TIGERedges [88]: contains 72.7 million line strings provided by United States

Census Bureau TIGER project. These line strings are all streets in the United

States. Each of them consists of many line segments.

• OSMobject [66]: includes the polygonal boundaries of all spatial objects on the

planet (from Open Street Maps). There are 263 million polygons in this dataset.
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• NYCtaxi [85]: The dataset contains the detailed records of over 1.1 billion

individual taxi trips in the city from January 2009 through December 2016.

Each record includes pick-up and drop-off dates/times, pick-up and drop-off

precise location coordinates, trip distances, itemized fares, and payment methods.

But I only use the pick-up points in my experiment.

Workload. I run the following spatial queries on the evaluated systems. Distance

query and distance join results are not stated in the evaluation because they follow

similar algorithms as the range query and the range join query, respectively.

• Spatial Range query: I run spatial range queries on NYCtaxi, OSMobject and

TIGERedges with different query selectivities. Simba can only execute range

queries on points and polygons without index. Its local index construction fails

on points and polygons due to extremely high memory utilization. Magellan

does not support accurate queries on polygons and line strings.

• Spatial KNN query: I test the spatial KNN query by varying K from 1 to

1000 on NYCtaxi, OSMobject and TIGERedges datasets. Only GeoSpark and

SpatialHadoop support KNN query. Simba offers a KNN API but doesn’t return

any results.

• Spatial Range join query (./): I run OSMpostal ./ NYCtaxi, OSMpostal ./

OSMobject, OSMpostal ./ TIGERedges. Magellan only supports the first case

(polygons ./ points). Simba only offers distance join between points and points

(explained later).

Cluster settings. I conduct the experiments on a cluster which has one master

node and four worker nodes. Each machine has an Intel Xeon E5-2687WV4 CPU

(12 cores, 3.0 GHz per core), 100 GB memory, and 4 TB HDD. I also install Apache
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Figure 9: The impact of GeoSpark local index on complex shapes range query
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Figure 10: Range query with different selectivity (SELE) on NYCtaxi points

Hadoop 2.6 and Apache Spark 2.1.1. I assign 10 GB memory to the Spark driver

program that runs on the master machine, which is quite enough to handle any

necessary global computation.

Performance metrics. I use two main metrics to measure the performance of

the evaluated systems: (1) Execution time: It stands for the total run time the system

takes to execute a given job. (2) Peak execution memory: that represents the highest

execution memory used by the system when running a given job.
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Figure 11: Range query with different selectivity (SELE) on OSMobject polygons

3.5.1 Performance of Range Query

This section evaluates the performance of all four systems on NYCtaxi points,

OSMobject polygons and TIGERedges linestrings (see Figure 10, 11, 12). I vary the

range query selectivity factor as follows: (1) I use the entire dataset boundary as

the largest query window.(2) then, I reduce the window size to its 1
4
th and generate

many rectangular windows in this size but at random locations within the dataset

boundary. (3) I keep reducing the window size until I get four different query selectivity

factors (window size): 1
64
*boundary (SELE*1), 1

16
*boundary, 1

4
*boundary, boundary

(SELE*64).

Impact of GeoSpark local indexing For the NYCtaxi point dataset, the fastest

GeoSpark method is GeoSpark range query without index (Figure 13). I created

different versions of GeoSpark, as follows: (1) NoIndex: GeoSpark running with no

local indexes built in each SRDD partition. (2) RTree: GeoSpark running with R-Tree

index built on each local SRDD partition. RTree-Search represents the R-tree search

time, whereas RTree-Build denotes the R-Tree construction time. (3) QuadTree:

Similar to RTree but with Quad-Tree index stored in each local SRDD partition
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instead. The NoIndex version of GeoSpark has similar range query search time as

the indexed version of GeoSpark but the indexed (i.e., RTree or QuadTree) range

query needs extra time to build the index. This is because the NYCtaxi point data

is too simple and using index to prune data does not save much computation time.

The RTree version even has around 5% longer search time than the NoIndex version

because GeoSpark follows the Filter and Refine model: after searching local indexes

using MBRs, GeoSpark rechecks the spatial relation using real shapes of query window

and spatial objects in order to guarantee the query accuracy (the window can be a

very complex polygon rather than a rectangle). As it turns out in Figure 9a and 9b

(OSMobject and TIGERedges), GeoSpark RTree leads to 2 times less search time

than the NoIndex version. GeoSpark QuadTree exhibits 4 times less search time than

the NoIndex version. This makes sense because the tested polygon data and line

string data have very complex shapes. For instance, a building’s polygonal boundary

(OSMobject) and a street’s shape (TIGERedges) may have more than 20 coordinates.

A local index in GeoSpark can prune lots of useless data to save the computation

time while the regular range query needs to check all complex shapes in each partition

across the cluster.

Comparing different systems I show the range query execution times of the

four systems in Figure 10a, 11a and 12a. Simba can run range query on NYCtaxi

points and OSMobject polygons without index. I do not use Simba R-Tree index

range query because it always runs out of memory on these datasets even though the

tested cluster has 400GB memory. Magellan and SpatialHadoop do not use indexes

in processing a range query by default. I do not show the results for Magellan on

OSMobject polygons and TIGERedges linestrings because it only uses MBRs and

hence cannot return accurate query results. I use the most optimized GeoSpark in
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Figure 12: Range query with different selectivity (SELE) on TIGERedges line strings

the comparison: GeoSpark range query without index in Figure 10a and QuadTree in

Figures 11a and 12a.

For NYCtaxi point data (Figure 10a), GeoSpark shows the least execution time.

Furthermore, its execution time is almost constant on all query selectivities because

it finishes the range query almost right after loading the data. On highly selective

queries (ie.e., SELE*1), GeoSpark has similar execution time with Simba and Magellan.

Moreover, the execution times of Simba, Magellan and SpatialHadoop increase with

the growth of the query window size. On SELE*4, *16 and *64, Simba and Magellan

are 2-3 times slower than GeoSpark. SpatialHadoop is 2 times slower than GeoSpark

on SELE*1 and 10 times slower than GeoSpark on SELE*64.

For OSMobject polygons and TIGERedges linestrings (Figure 11a and 12a),

GeoSpark still has the shortest execution time. On OSMobject polygons, the QuadTree

version of GeoSpark is around 2-3 times faster than Simba and 20 times faster than

SpatialHadoop.

GeoSpark outperforms its counterparts for the following reasons: (1) on polygon

and line string data, GeoSpark’s Quad-Tree local index can speed up the query by
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Figure 13: The impact of GeoSpark local index on NYCtaxi range query

pruning a large amount of data. (2) GeoSpark serializer overrides the default Spark

generic serializer to use my own spatial data serialization logic. According to range

query’s DAG (see Figure 3), Spark performs RDD transformations to produce the

result RDD and internally calls the serializer. GeoSpark serializer directly tells Spark

how to understand and serialize the spatial data quickly while the default Spark generic

serializer wastes some time on understanding complex spatial objects. Although the

GeoSpark serializer is faster than the Spark default serializer, it is worth noting that

in order to support heterogeneous spatial objects in a single Spatial RDD, GeoSpark

customized serializer costs some extra bytes to specify the geometry type per spatial

object besides the coordinates (see Section 3.2.5): (1) 3 extra bytes on point objects

(15% additional memory footprint) (2) 2+n extra bytes on polygons or line strings,

where n is the number of coordinates (7% addition memory footprint, if n = 10).

My experiment verifies the theoretical values. Figures 10b, 11b and 12b illustrate

the peak memory utilization of different systems. Since the range query processing

algorithm is similar on evaluated systems (a filter operation on all data partitions),

the peak memory utilization is roughly equal to the input data memory footprint.

Compared to Simba and Magellan, GeoSpark costs around 10% additional memory on
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Figure 14: KNN query with different K on NYCtaxi points

points and polygons (Figure 10b and 11b). GeoSpark Quad-Tree index range query

costs 13% additional memory and R-Tree index range query costs 30% additional

memory. This is because a tree index takes 10%-40% additional space to store the

tree node information [104, 102]. In general, R-Tree consumes more space because it

needs to store MBRs and extra child node information while Quad-Tree always has

4 child nodes. SpatialHadoop always has 2-3 times less memory utilization because

Hadoop-based systems don’t utilize memory much and all intermediate data is put on

the disk.

3.5.2 Performance of K Nearest Neighbors (KNN) query

This section studies the performance of GeoSpark and SpatialHadoop. Spatial-

Hadoop does not use an index for KNN queries by default. Simba offers a KNN API

but the source code does not return any results on the tested datasets. I vary K to

take the values of 1, 10, 100 and 1000 and randomly pick several query points within

the dataset boundaries.
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Figure 15: KNN query with different K on OSMobject polygons

Since the KNN query shows similar performance trends as the range query, I only

put the results of KNN on NYCtaxi points and OSMobject polygons. R-Tree [39, 78]

data structure supports KNN because it uses MBR to represent tree node boundaries.

As depicted in Figures 14a and 15a, on NYCtaxi points, GeoSpark NoIndex

is 2̃0 times faster than SpatialHadoop and GeoSpark RTree is 6̃ times faster than

SpatialHadoop. On OSMobject polygons, GeoSpark NoIndex is 5 times faster than

SpatialHadoop and the RTree version of GeoSpark is 7 times faster than SpatialHadoop

in terms of total execution time including the index building time. On point data,

GeoSpark NoIndex shows similar search time performance as the indexed version

(explained in Section 3.5.1).

The execution time of a KNN query in GeoSpark and SpatialHadoop remains

constant with different values of K. That happens because the value of K is very small

in contrast to the input data and the majority of the time is spent on processing the

input data.

The peak memory utilization of GeoSpark is 2̃ times higher than SpatialHadoop

because Spark stores intermediate data in main memory. It is also worth noting that,

although GeoSpark’s peak memory utilization remains constant in processing range
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Figure 16: The impact of spatial partitioning on range join in GeoSpark

and KNN queries, SpatialHadoop’s peak memory utilization of KNN queries is 3 times

larger than that of range queries because SpatialHadoop needs to sort the candidate

objects across the cluster, which leads to a data shuffle across the network. In practice,

heavy network data transfer increases memory utilization.

3.5.3 Performance of Range Join Query

This section evaluates the range join query performance of compared systems

when joining the following datasets: (a) OSMpostal ./ NYCtaxi, (b) OSMpostal ./

OSMobject, (c) OSMpostal ./ TIGERedges.

Impact of spatial partitioning. As depicted in Figure 16, GeoSpark KDB-

Tree partitioning method exhibits the shortest local join time (KDB-LocalJoin) on

all join queries. Quad-Tree partitioning local join time (QUAD-LocalJoin) is 1.5

times slower than KDB-LocalJoin. R-Tree partitioning local join time (R-LocalJoin)

is around 2 times slower than KDB-Tree partitioning. This is because KDB-Tree

partitioning generates more load-balanced grid cells. For instance, on OSMpostal

polygons ./ NYCtaxi points, during the spatial partitioning step (see the DAG and

61



data flow of GSJoin in Figure 4): (1) Shuffled serialized data across the cluster by

GeoSpark are 12.9GB (KDB), 13.2GB (QUAD) and 13.4GB (R) (2) The min, median

and max shuffled SRDD partition sizes are 4MB-6.4MB-8.8MB (KDB), 1MB-3.2MB-

10.4MB (QUAD), 5MB-9.3MB-103MB (R). Obviously, the partition size of KBD-Tree

partitioning is more balanced. Quad-Tree method is not as balanced as KDB-Tree.

R-Tree partitioning has an overflow data partition, which is much larger than other

partitions because R-Tree does not usually cover the entire space. According to the

example given above, it makes sense that GeoSpark KDB-Tree spatial partitioning

has the least local join time and R-Tree partitioning has the slowest local join speed.

Another factor that slows down R-Tree partitioning local join is the additional data

shuffle step resulting from removing duplicates among overlapped partitions (see

Section 3.3.3).

Comparing different systems. Magellan only supports OSMpostal ./ NYCtaxi

(polygons, points) using Z-Curve spatial partitioning. Simba only supports distance

join between points and points. In order to make Simba work with OSMpostal ./

NYCtaxi, I take the central point of each postal area in OSMpostal to produce a

point dataset and use the average radius of OSMpostal polygon as distance to run

the distance join. By default, Simba uses R-Tree spatial partitioning and builds

local R-Tree indexes on the smaller dataset of the join query. SpatialHadoop uses

Quad-Tree spatial partitioning by default and it also builds Quad-Tree local index

on NYCtaxi, OSMobject and TIGERedges. GeoSpark uses three different spatial

partitioning methods, KDB-Tree (KDB), Quad-Tree (QUAD), and R-Tree (R) (these

partitioning methods are not GeoSpark local indexes). Based on the performance

of GeoSpark range query and KNN query, I build GeoSpark Quad-Tree index on
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Figure 17: Range join query performance on datasets ./ OSMpostal

NYCtaxi, OSMobject and TIGERedges by default. The experimental result is shown

in Figure 17.

In Figure 17a, I compare GeoSpark KDB-Tree partitioning join query with Quad-

Tree local index, Simba, Magellan and SpatialHadoop. As I can see from this figure, in

comparison with GeoSpark, Simba is around 10 times slower (OSMpostal ./ NYCtaxi),

Magellan is 15 times slower (OSMpostal ./ NYCtaxi) and SpatialHadoop is more

than 25 times slower on all join query scenarios. The execution time contains all parts

in a join query including spatial partitioning, local index building and local join. A

red cross means that this join data type is not supported by this system.

Simba exhibits higher join time for the following reasons: (1) it uses R-Tree

partitioning. As explained above, R-Tree partitioning is not as balanced as KDB-Tree

partitioning. (2) GeoSpark customized serializer tells Spark how to serialize spatial

data exactly. Simba uses the default Spark kryo serializer which produces many

unnecessary intermediate data when serializing and shuffling spatial data. (3) Simba’s

join algorithm shuffles lots of data across the cluster. Based on my test, Simba shuffles

around 70GB data while GeoSpark only shuffles around 13GB.
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GeoSpark outperforms Magellan because (1) Magellan uses Z-Curve spatial par-

titioning which leads to many overlapped partitions [27]. Using Z-Curve to index

spatial objects loses lots of spatial proximity information. Thus, this forces the system

to put lots of spatial objects that are impossible to intersect together. This wastes

a significant amount of execution time and introduces a huge network data transfer.

Based on my test, Magellan reads 623GB data through the network during the join

query execution. (2) Magellan doesn’t support any spatial tree index like R-Tree or

Quad-Tree. (3) Magellan doesn’t have customized serializer like GeoSpark.

SpatialHadoop is slow because SpatialHadoop has to put intermediate data on the

disk and this becomes even worse on spatial join because the spatial partitioning part

in the join query shuffles lots of data across the cluster which stresses memory as well

as disk.

The peak memory utilization is given in Figure 17b. GeoSpark has the lowest

peak memory and Simba has 1.7 times higher peak memory utilization. The peak

memory used by Simba is close to the upper limitation of my cluster, almost 400GB.

That means if I increase the input data size, Simba will crash. Magellan has 1.3 times

higher peak memory utilization than GeoSpark. SpatialHadoop still has the lowest

peak memory which is around 1 - 2 times less than GeoSpark.

3.5.4 Performance of Application Use Cases

This section evaluates the three use cases presented earlier in Section 3.4. I use

the same GeoSpark source code in Figure 7 and 8 to test the performance: (1) App1:

Region heat map: I first run a range query on NYCtaxi to only keep Manhattan

region pick-up points then produce a map with OSM L6 zoom level [65] which has
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Application GeoSpark Simba Magellan SpatialHadoop
Spatial aggregation 17 min X 20min 41min

234GB X 307GB 105GB
Spatial coLocation 1st iter., 8.5min Crashed X X

10 iter., 10.5min Crashed X X
execution, 240GB
cached, 101GB

Table 4: Performance of GeoSpark applications (min is for execution time, GB is for
peak memory)

4096 map tiles and 268 million pixels. (2) App2: Spatial aggregation: I perform a

range join between NYCtaxi points and NYC taxi zones (published along with [85],

264 taxi polygonal zones in NYC) then count the taxi trip pickup points in each

zone. (3) App3: Spatial co-location pattern mining: I cache the spatial-partitioned

Spatial RDD and its local index and iterate co-location pattern mining 10 times.

To be precise, I also write the applications using the compared Hadoop-based and

Spark-based systems and test their performance.

It is worth noting that SpatialHadoop is able to plot heat maps (used in App1) and

range join query (used in App2). SpatialHadoop uses Quad-Tree spatial partitioning

by default and it also builds Quad-Tree local index on NYCtaxi. It doesn’t support

distance join query used in App3. Magellan only supports App2 (NYC taxi zones ./

NYCtaxi (polygons, points) using Z-Curve spatial partitioning). It doesn’t support

distance join query in App3. Simba only supports distance join between points and

points (used in App3) but it doesn’t support NYC taxi zones ./ NYCtaxi (polygons,

points) (used in App2). By default, Simba uses R-Tree spatial partitioning and builds

local R-Tree indexes on the smaller dataset of the join query. GeoSpark uses KDB-Tree

spatial partitioning and builds Quad-Tree index on NYCtaxi. The experimental result

is shown in Table 4. An X means that this join type is not supported by this system.
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As it turns out in Table 4, region heat map takes GeoSpark 7 minutes because

it needs to repartition the pixels across the cluster following the uniform grids. Its

peak memory is dominated by the range query part because the repartitioning part

only shuffles the Manhattan region data which is smaller than the input Spatial RDD.

SpatialHadoop runs 4 times slower than GeoSpark because it puts intermediate on

disk. However, its memory utilization is much less than GeoSpark.

Regarding App2 spatial aggregation using NYCtaxizone ./ NYCtaxi, the execution

time of GeoSpark is 1̃7 minutes, which is 2 times longer than that on OSMpostal ./

NYCtaxi because there are 10 times more taxi zones than OSMpostal postal areas

in New York City. In addition, spatial aggregation executes a CountBy operation to

count the pickup point per taxi zone and this leads to data shuffle across the cluster.

GeoSpark is faster than Magellan because of KDB-Tree partitioning and Quad-Tree

index. Its memory consumption is lower than Magellan due to the help of GeoSpark

customized serializer. SpatialHadoop is still around 2 times slower than other systems

but its peak memory is lower.

As depicted in Table 4, GeoSpark and Simba support App3 Co-location pattern

mining because they support distance joins. However, Simba takes a very long time

to run and eventually crashes because of memory overflow in distance join query.

GeoSpark is the only system can properly handle this application and finish it in a

timely manner. Recalled that I run 10 iterations using GeoSpark in this application.

The first iteration of the co-location pattern mining algorithm takes 8.5 minutes and

all 9 others take 2.3 minutes. The first iteration takes 30 times more time than the

other iterations. This happens because GeoSpark caches the spatial RDD and the

corresponding local indexes. Hence, the upcoming iteration directly reads data from

the memory cache, which saves a lot of time.
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3.6 Summary

In this section, I presented the anatomy of GeoSpark, an in-memory cluster

computing framework for processing large-scale spatial data. GeoSpark provides

Spatial SQL and Spatial RDD APIs for Apache Spark programmers to easily develop

spatial analysis applications. Moreover, the system provides native support for spatial

data partitioning, indexing, , and query processing in Apache Spark to efficiently

analyze spatial data at scale. Extensive experiments show that GeoSpark outperforms

Spark-based systems such as Simba and Magellan up to one order of magnitude and

Hadoop-based system such as SpatialHadoop up to two orders of magnitude. The

release of GeoSpark stimulated the database community to work on spatial extensions

to Spark. I expect that more researchers and practitioners will contribute to GeoSpark

code base to support new spatial data analysis applications.
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Chapter 4

A FAST, YET LIGHTWEIGHT, DATABASE INDEXING MECHANISM

In this chapter, I first explain the design of Hippo [104, 102], a lightweight database

indexing mechanism that reduces the storage overhead and maintenance overhead of

existing indices for regular numerical data. Then I show that how I extend the idea of

Hippo to support geospatial data indexing.

4.1 Indexing Regular Numerical Data

4.1.1 Introduction

A database system (DBMS) often employs an index structure, e.g., B+-Tree, to

speed up queries issued on the indexed table. Even though classic database indexes

improve the query response time, they face the following challenges:

Table 5: Index overhead and storage dollar cost
(a) B+-Tree overhead

TPC-H Index size Initialization time Insertion time
2 GB 0.25 GB 30 sec 10 sec
20 GB 2.51 GB 500 sec 1180 sec
200 GB 25 GB 8000 sec 42000 sec

(b) Storage dollar cost

HDD EnterpriseHDD SSD EnterpriseSSD
0.04 $/GB 0.1 $/GB 0.5 $/GB 1.4 $/GB
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• Indexing Overhead: A database index usually yields 5% to 15% additional

storage overhead. Although the overhead may not seem too high in small

databases, it results in non-ignorable dollar cost in big data scenarios. Table 5a

depicts the storage overhead of a B+-Tree created on the Lineitem table from

the TPC-H benchmark [21] (database size varies from 2, 20 and 200 GB).

Moreover, the dollar cost increases dramatically when the DBMS is deployed

on modern storage devices (e.g., Solid State Drives and Non-Volatile Memory)

because they are still more than an order of magnitude expensive than Hard

Disk Drives (HDDs). Table 5b lists the dollar cost per storage unit collected

from Amazon.com and NewEgg.com. In addition, initializing an index may be a

time consuming process especially when the index is created on a large table

(see Table 5a).

• Maintenance Overhead: A DBMS must update the index after inserting

(deleting) tuples into (from) the underlying table. Maintaining a database index

incurs high latency because the DBMS has to locate and update those index

entries affected by the underlying table changes. For instance, maintaining a

B+-Tree searches the tree structure and perhaps performs a set of tree nodes

splitting or merging operations. That requires plenty of disk I/O operations

and hence encumbers the time performance of the entire DBMS in big data

scenarios. Table 5a shows the B+ Tree insertion overhead (insert 0.1% records)

for the TPC-H Lineitem table.

Existing approaches that tackle one or more of the aforementioned challenges are

classified as follows: (1) Compressed indexes: Compressed B+-Tree approaches [35,

36, 113] reduce the storage overhead but compromise on the query performance due

to the additional compression and decompression time. Compressed bitmap indexes
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also reduce index storage overhead [40, 57, 83] but they mainly suit low cardinality

attributes which are quite rare. For high cardinality attributes, the storage overhead of

compressed bitmap indexes significantly increases [96]. (2) Approximate indexes: An

approximate index [10, 49, 79] trades query accuracy for storage to produce smaller, yet

fast, index structures. Even though approximate indexes may shrink the storage size,

users cannot rely on their un-guaranteed query accuracy in many accuracy-sensitive

application scenarios like banking systems or user archive systems. (3) Sparse indexes:

A sparse index [14, 63, 84, 68] only stores pointers which refer to disk pages and

value ranges (min and max values) in each page so that it can save indexing and

maintenance overhead. It is generally built on ordered attributes. For a posed query,

it finds value ranges which cover or overlap the query predicate and then rapidly

inspects the associated few parent table pages one by one for retrieving truly qualified

tuples. However, for unordered attributes which are much more common, sparse

indexes compromise too much on query performance because they find numerous

qualified value ranges and have to inspect a large number of pages.

In this section, I propose Hippo a fast, yet scalable, sparse database indexing

approach. In contrast to existing tree index structures, Hippo stores disk page

ranges (each works as a pointer of one or many pages) instead of tuple pointers

in the indexed table to reduce the storage space occupied by the index. Unlike

existing approximate indexing methods, Hippo guarantees the query result accuracy

by inspecting possible qualified pages and only emitting those tuples that satisfy the

query predicate. As opposed to existing sparse indexes, Hippo maintains simplified

histograms that represent the data distribution for pages no matter how skew it is, as

the summaries for these pages in each page range. Since Hippo relies on histograms

already created and maintained by almost every existing DBMS (e.g., PostgreSQL), the
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system does not exhibit a major additional overhead to create the index. Hippo also

adopts a page grouping technique that groups contiguous pages into page ranges based

on the similarity of their index key attribute distributions. When a query is issued

on the indexed database table, Hippo leverages the page ranges and histogram-based

page summaries to recognize those pages for which the internal tuples are guaranteed

not to satisfy the query predicates and inspects the remaining pages. Thus Hippo

achieves competitive performance on common range queries without compromising

the accuracy. For data insertion and deletion, Hippo dispenses with the numerous

disk operations by rapidly locating the affected index entries. Hippo also adaptively

decides whether to adopt an eager or lazy index maintenance strategy to mitigate the

maintenance overhead while ensuring future queries are answered correctly.

I implemented a prototype of Hippo inside PostgreSQL 9.57. Experiments based

on the TPC-H benchmark as well as real and synthetic datasets show that Hippo

occupies up to two orders of magnitude less storage space than that of the B+-Tree

while still achieving comparable query execution performance to that of the B+-Tree

for 0.1% - 1% selectivity factors. Also, the experiments show that Hippo outperforms

BRIN, though occupies more storage space, in executing queries with various selectivity

factors. Furthermore, Hippo achieves up to three orders of magnitude less maintenance

overhead than its counterparts, i.e., B+-Tree and BRIN. Most importantly, Hippo

exhibits up to an order of magnitude higher throughput (measured in terms of the

number of tuples processed per second) than both BRIN and B+-Tree for hybrid

query/update workloads.

7https://github.com/DataSystemsLab/hippo-postgresql
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Figure 18: Initialize and search Hippo on age table

4.1.2 Hippo Overview

This section gives an overview of Hippo. Figure 18 depicts a running example that

describes the index initialization (left part of the figure) and search (right part of the

figure) processes in Hippo. The main challenges of designing an index are to reduce the

indexing overhead in terms of storage and initialization time as well as speed up the

index maintenance while still keeping competitive query performance. To achieve that,

an index should possess the following two main properties: (1) Less Index Entries:

For better storage space utilization, an index should determine and only store the

most representative index entries that summarize the key attribute. Keeping too many
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Figure 19: Hippo Index Structure

index entries inevitably results in high storage overhead as well as high initialization

time. (2) Index Entries Independence: The index entries should be independent from

each other. In other words, the range of values that each index entry represents

should have minimal overlap with other index entries. Interdependence among index

entries, like that in a B+-Tree, results in overlapped tree nodes. That may lead to

more I/O operations during query processing and several cascaded updates during

index maintenance.

Data Structure. Figure 19 depicts the index structure. To create an index,

Hippo scans the indexed table and generates histogram-based summaries for a set

of disk page based on the index key attribute. These summaries are then stored by

Hippo along with page ranges they summarize. As shown in Figure 19, Hippo consists

of n index entries such that each entry consists of the following two components:

• Summarized Page Range: represents the IDs of the first and last pages

summarized (i.e., StartPageID and EndPageID in Figure 19) by the index entry.

The DBMS can load particular pages into buffer according to their IDs. Hippo
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summarizes more than one physically contiguous pages to reduce the overall index

size, e.g., Page 1 - 10, 11 - 25, 26 - 30 in Figure 18. The number of summarized

pages in each index entry varies. Hippo adopts a page grouping technique

that groups contiguous pages into page ranges based on the similarity of their

index attribute distributions, using the partial histogram density (explained in

Section 4.1.4).

• Histogram-based Summary: A bitmap that represents a subset of the com-

plete height balanced histogram buckets (maintained by the underlying DBMS),

aka. partial histogram. Each bucket, if exists, indicates that at least one of the

tuples of this bucket exists in the summarized pages. Each partial histogram

represents the distribution of the data in the summarized contiguous pages. Since

each bucket of a height balanced histogram roughly contains the same number of

tuples, each of them has the same probability to be hit by a random tuple from

the table. Hippo leverages this feature to handle a variety of data distributions,

e.g., uniform, skewed. To reduce the storage footprint, only bucket IDs are kept

in partial histograms and partial histograms are stored in a compressed bitmap

format. For instance, the partial histogram of the first index entry in Figure 18

is 01110.

Main idea. Hippo solves the aforementioned challenges as follows: (1) Each

index entry summarizes many pages and only stores two page IDs and a compressed

bitmap.(2) Each page of the parent table is only summarized by one Hippo index

entry. Hence, any updates that occur in a certain page only affect a single independent

index entry. Finally, during a query, pages whose partial histograms do not have

desired buckets are guaranteed not to satisfy certain query predicates and marked
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as false positives. Thus Hippo only inspects other pages that probably satisfies the

query predicate and achieves competitive query performance.

4.1.3 Index Search

The search algorithm takes as input a query predicate and returns a set of qualified

tuples. As explained in Section 4.1.2, partial histograms are stored in a bitmap format.

Hence, any query predicates for a particular attribute are broken down into atomic

units: equality query predicate and range query predicate. Each unit predicate is

compared with the buckets of the complete height balanced histogram (discussed in

Section 4.1.4). A bucket is hit by a predicate if the predicate fully contains, overlaps,

or is fully contained by the bucket. Each unit predicate can hit at least one or more

buckets. Afterwards, the query predicate is converted to a bitmap. Each bit in this

bitmap reflects whether the bucket that has the corresponding ID is hit (1) or not (0).

Thus, the corresponding bits of all hit buckets are set to 1.

The search algorithm then runs in two main steps (see pseudo code in Algorithm 5):

(1) Step I: Scanning Hippo index entries and (2) Step II: Filtering false positive pages.

The search process leverages the index structure to avoid unnecessary page inspection

so that Hippo can achieve competitive query performance.

4.1.3.1 Step I: Scanning Index Entries

Step I finds possible qualified disk pages, which may contain tuples that satisfy

the query predicate. Since it is quite possible that some pages may not contain any
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Algorithm 5: Hippo index search
Data: A given query predicate Q
Result: A set of qualified tuples R

1 // Step I: Scanning Index Entries;
2 Set of Possible Qualified Pages P = φ;
3 foreach Index Entry in Hippo do
4 if the partial histogram has joint buckets with Q then
5 Add the IDs of pages indexed by the entry to P ;
6 // Step II: Filtering False Positive Pages;
7 Set of Qualified Tuples R = φ;
8 foreach Page ID ∈ P do
9 Retrieve the corresponding page p;

10 foreach tuple t ∈ p do
11 if t satisfies the query predicate then
12 Add t to R;
13 return R;

qualified tuple especially for highly selective queries, Hippo prunes these index entries

(that index these unqualified pages) that definitely do not contain any qualified pages.

In this step, the search algorithm scans the Hippo index. For each index entry,

the algorithm retrieves the partial histogram which summarizes the data distribution

in the pages indexed by such entry. The algorithm then checks whether the input

query predicate has one or more joint (i.e. overlapped) buckets with the partial

histogram. To efficiently process that, Hippo performs a nested loop between each

partial histogram and the input query predicate to find the joint buckets. Since

both the partial histograms and the query predicate are in a bitmap format, Hippo

accelerates the nested loop by performing a bitwise ’AND’ of the bytes from both

sides, aka. bit-level parallelism. In case bitwise ’AND’ing the two bytes returns 0,

that means there exist no joint buckets between the query predicate and the partial

histogram. Entries with partial histograms that do not contain the hit buckets (i.e.,

the corresponding bits are 0) are guaranteed not to contain any qualified disk pages.

76



Partial histogram 1 0 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

Query predicate 1
Miss...

Overlap!

Query predicate 2

Figure 20: Scan index entries

Hence, Hippo disqualifies these pages and excludes them from further processing. On

the other hand, index entries with partial histograms that contain at least one of the

hit buckets, i.e., the corresponding bits are 1, may or may not have qualified pages.

Hippo deems these pages as possible qualified pages and hence forwards their IDs to

the next step.

Figure 20 visualizes the procedure of scanning index entries according to their

partial histograms. In Figure 20, buckets hit by the query predicates and the partial

histogram are represented in a bitmap format. According to this figure, the partial

histogram misses a query predicate if the highlighted area of the predicate falls into

the blank area of the partial histogram, whereas a partial histogram is selected if the

predicate does not fall completely into the blank area of the histogram.

4.1.3.2 Step II: Filtering False Positive Pages

The previous step identifies many unqualified disk pages that are guaranteed not

to satisfy the query predicate. However, not all unqualified pages can be detected by

the previous step. The set of possible qualified pages, retrieved from Step I, may still

contain false positives (defined below). During the search process, Hippo considers

a possible qualified page p a false positive if and only if (1) p lies in the page range

summarized by a qualified index entry from Step I and (2) p does not contain any
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tuple that satisfies the input query predicate. To filter out false positive pages, Step II

inspects every tuple in each possible qualified page, retrieves those tuples that satisfy

the query predicate, and finally returns those tuples as the answer.

Step II takes as input the set of possible qualified pages IDs, formatted in a separate

bitmap. Each bit in this bitmap is mapped to the page at the same position in the

original table indexed by Hippo. For each page ID, Hippo retrieves the corresponding

page from disk and checks each tuple in that page against the query predicate. In

case, a tuple satisfies the query predicate, the algorithm adds this tuple to the final

result set. The right part of Figure 18 describes how to search the index using an

input query predicate. First, Hippo finds that query predicate age = 55 hits bucket 3.

Since the first one of the three partial histograms nicely contains bucket 3, only the

disk pages 1 - 10 are selected as possible qualified pages and hence sent for further

inspection in step II. It is also worth noting that these partial histograms summarize

different number of pages.

4.1.4 Index Initialization

To create an index, Hippo takes as input a database table and the key attribute

(i.e., column) in this table. Hippo then performs two main steps (See pseudo code in

Algorithm 6) to initialize itself: (1) Generate partial histograms (Section 4.1.4.1), and

(2) Group similar pages into page ranges (Section 4.1.4.2), described as follows.
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4.1.4.1 Generate Partial Histograms

To initialize the index, Hippo leverages a complete height balanced histogram,

maintained by most DBMSs, that represents the data distribution. A histogram

consists of a set of buckets such that each bucket represents the count of tuples with

attribute value within the bucket range. A partial histogram only contains a subset

of the buckets that belongs to the height balanced histogram. The resolution of the

complete histogram (H) is defined as the total number of buckets that belongs to

this histogram. A histogram will obviously have larger physical storage size if it has

higher resolution. The histogram resolution also affects the query response time (see

Section 4.1.6 for further details).

Hippo stores a partial histogram for each index entry to represent the data

distribution of tuples in one or many disk pages summarized by the entry. Partial

histograms allow Hippo to early identify unqualified disk pages and avoid unnecessary

page inspection. To generate partial histograms, Hippo scans all disk pages of the

indexed table. For each page, the algorithm retrieves each tuple, the key attribute

value is extracted from each tuple and then compared to the complete histogram using

binary search. Buckets hit by tuples are kept for this page and then compose a partial

histogram. A partial histogram only contains distinct buckets. For instance, there is

a group of age attribute values like the first entry of Hippo given in Figure 18: 21, 22,

55, 75, 77. Bucket 2 is hit by 21 and 22, bucket 3 is hit by 55 and bucket 4 is hit by

77 (see partial histogram 1 in Figure 18).

Hippo shrinks the storage footprint of partial histograms by dropping all bucket

value ranges and only keeping bucket IDs. Actually, as mentioned in Section 4.1.2,

dropping value range information does not have much negative impact on the index
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Algorithm 6: Hippo index initialization
Data: Pages of a parent table
Result: Hippo index

1 Create a working partial histogram (in bitmap format);
2 Set StartPage = 1 and EndPage = 1;
3 foreach page do
4 Find distinct buckets hit by its tuples;
5 Set associated bits to 1 in the partial histogram;
6 if the working partial histogram density > threshold then
7 Store the partial histogram and the page range (StartPage and

EndPage) as an index entry;
8 Create a new working partial histogram;
9 StartPage = EndPage + 1;

10 EndPage = StartPage;
11 else
12 EndPage = EndPage + 1;

search. To further shrink the storage footprint, Hippo stores the histogram bucks IDs

in bitmap type format instead of using an integer type (4 bytes or more). Each partial

histogram is stored as a bitmap such that each bit represents a bucket at the same

position in a complete histogram. Bit value 1 means the associated bucket is hit and

stored in this partial histogram while 0 means the associated bucket is not included.

The partial histogram can also be compressed by any existing bitmap compression

technique. The time for compressing and decompressing partial histograms is ignorable

compared to that of inspecting possible qualified pages.

4.1.4.2 Group Pages Into Page Ranges

Generating a partial histogram for each disk page may lead to very high storage

overhead. Grouping contiguous pages and merging their partial histograms into a

larger partial histogram (in other words, summarizing more pages within one partial
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histogram) can tremendously reduce the storage overhead. However, that does not

mean that all pages should be grouped together and summarized by a single merged

partial histogram. The more pages are summarized, the more buckets the partial

histogram contains. If the partial histogram becomes a complete histogram and covers

any possible query predicates, it is unable to filter the false positives and the disk

pages summarized by this partial histogram will be always treated as possible qualified

pages.

One strategy is to group a fixed number of contiguous pages per partial histogram.

Yet, this strategy is not efficient when a set of contiguous pages have much more

similar data distribution than other areas. To remedy that, Hippo dynamically groups

more contiguous pages under the same index entry when they possess similar data

distribution and less contiguous pages if they do not show similar data distribution. To

take the page grouping decision, Hippo leverages a parameter called partial histogram

density. The density of a partial histogram is defined as the ratio of complete histogram

buckets that belongs to the partial histogram. Obviously, the complete histogram has

a density value of 1. The definition can be formalized as follows:

Partial histogram density (D) =
# Bucketspartial histogram

# Bucketscomplete histogram

The density exhibits an important phenomenon that, for a set of contiguous disk

pages, their merged partial histogram density will be very low if these pages are

very similar, and vice versa. Therefore, a partial histogram with a certain density

may summarize more pages if these contiguous pages have similar data, vice versa.

Making use of this phenomenon enables Hippo to dynamically group pages and merge

partial histograms into one. In addition, it is understandable that a lower density
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partial histogram (summarizes less pages) has the high probability to be excluded

from further processing.

Users can easily set the same density value for all partial histograms as a threshold.

Hippo can automatically decide how many pages each partial histogram should

summarize. Algorithm 6 depicts how Hippo initializes the index and summarizes more

pages within a partial histogram by means of the partial histogram density. The basic

idea is that new pages will not be summarized into a partial histogram if its density is

larger than the threshold and a new partial histogram will be created for the following

pages.

The left part of Figure 18 depicts how the initialization process for an index create

on the age attribute. In the example, the partial histogram density is set to 0.6. All

tuples are compared with the complete histogram and IDs of distinct buckets hit by

all tuples are generated as partial histograms along with their page range. So far,

as Figure 18 and 19 shows, each index entry has the following parameters: a partial

histogram in compressed bitmap format and two integers that stand for the first and

last pages summarized by this histogram (summarized page range). Each entry is

then serialized and stored on disk.

4.1.5 Index Maintenance

Inserting (deleting) tuples into (from) the table requires maintaining the index.

That is necessary to ensure that the DBMS can retrieve the correct set of tuples

that match the query predicate. However, the overhead introduced by frequently

maintaining the index may preclude system scalability. This section explains how

Hippo handles updates.
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Algorithm 7: Update Hippo for data insertion
Data: A newly inserted tuple that belongs to Page a
Result: Updated Hippo

1 Find the bucket hit by the inserted tuple;
2 Locate a Hippo index entry which summarizes Page a;
3 if an index entry is located
4 then
5 Fetch the located Hippo index entry;
6 Update the retrieved entry if necessary;
7 else
8 Retrieve the entry that summarizes the last page;
9 if the partial histogram density < threshold then

10 Summarize Page a into the retrieved index entry;
11 else
12 Summarize Page a into a new index entry;

4.1.5.1 Data Insertion

Hippo adopts an eager update strategy when a new tuple is inserted to the indexed

table. An eager strategy instantly updates or checks the index at least when a new

tuple is inserted. Otherwise, all subsequent queries might miss the newly inserted

tuple. Data insertion may change the physical structure of a table (i.e., heap file).

The new tuple may belong to any pages of the indexed table. The insertion procedure

(See Algorithm 7) performs the following steps: (I) Locate the affected index entry,

and (II) Update the index entry if necessary.

Step I: Locate the affected index entry: After retrieving the complete his-

togram, the algorithm checks whether a newly inserted tuple hits one or more of

the histogram buckets. The newly inserted tuple belongs to a disk page. This page

may be a new page has not been summarized by any partial histograms before or

an old page which has been summarized. However, because the numbers of pages

summarized by each histogram are different, searching Hippo index entries to find
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the one contains this target page is inevitable. From the perspective of disk storage,

in a Hippo, all partial histograms are stored on disk in a serialized format. It will

be extremely time-consuming if every entry is retrieved from disk, de-serialized and

checked against the target page. The algorithm then searches the index entries by

means of the index entries sorted list explained in Section 4.1.5.3.

Step II: Update the index entry: In case the inserted tuple belongs to a new

page and the partial histogram density which summarizes the last disk page is smaller

than the density threshold set by the system user, the algorithm summarizes the new

page into this partial histogram in the last index entry. Otherwise, the algorithm

creates a new partial histogram to summarize this page and stores them in a new

index entry. In case a new tuple belongs to a page that is already summarized by

Hippo, the partial histogram in the associated index entry will be updated if the

inserted tuple hits a new bucket.

It is worth noting that: (1) Since the compressed bitmaps of partial histograms

may have different size, the updated index entry may not fit the space left at the

old location. Thus the updated one may be put at the end of Hippo. (2) After

some changes (replacing old or creating new index entry) in Hippo, the corresponding

position of the sorted list might need to be updated.

The I/O cost incurred by eagerly updating the index due to a newly inserted

tuple is equal to log(# of index entries) + 4. Locating the affected index entry yields

log(# of index entries) I/Os, whereas Step II consumes 4 I/Os to update the index

entry. Section 4.1.6 gives more details on how to estimate the number of index entries

in Hippo.

84



4.1.5.2 Data Deletion

The eager update strategy is deemed necessary for data insertion to ensure the

correctness of future queries issued on the indexed table. However, the eager update

strategy is not necessary after deleting data from the table. That is due to the fact

that Hippo inspects possible qualified pages during the index search process and pages

with qualified deleted tuples might be still marked as possible qualified page in the

first phase of the search algorithm. Even if these pages contain deleted tuples, such

pages will be discarded during the “Step II: filtering false positive pages” phase of

the search algorithm. However, not maintaining the index at all may introduce a

lot of false positives during the search process, which may takes its toll on the query

repossess time.

Hippo still ensures the correctness of queries even if it does not update the index

at all after deleting tuples from a table. To achieve that, Hippo adopts a periodic lazy

update strategy for data deletion. The deletion strategy maintains the index after

a bulk of delete operations are performed to the indexed table. In such case, Hippo

traverses all index entries. For each index entry, the system inspects the header of

each summarized page for seeking notes made by DBMSs (e.g., PostgreSQL makes

notes in page headers if data is removed from pages). Hippo re-summarizes the entire

index entry instantly within the original page range if data deletion on one page is

detected. The re-summarization follows the same steps in Section 4.1.4.
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Page range Partial histogram Internal data

1 - 10 2,3,4 21,22,55,75,77

Blank space

26 - 30 1,2,5 11,12,25,101,110
…

Updated Hippo

Pointer

…
11 – 25 1,2,4,5 13,23,24,62,91,92

Move

Sorted list

Page #
Low
↓

High

Figure 21: Hippo Index Entries Sorted List

4.1.5.3 Index Entries Sorted List

When a new tuple is inserted, Hippo executes a fast binary search (according to

the page IDs) to locate the affected index entry and then updates it. Since the index

entries are not guaranteed to be sorted based on the page IDs (noted in data insertion

section), an auxiliary structure for recording the sorted order is introduced to Hippo.

The sorted list is initialized after all steps in Section 4.1.4 with the original order

of index entries and put at the first several index pages of Hippo. During the entire

Hippo life time, the sorted list maintains a list of pointers of Hippo index entries in the

ascending order of page IDs. Actually each pointer represents the fixed size physical

address of an index entry and these addresses can be used to retrieve index entries

directly. That way, the premise of a binary search has been satisfied. Figure 21 depicts

the Hippo index entries sorted list. Index entry 2 in Figure 18 has a new bucket ID 1

due to a newly inserted tuple in its internal data and hence this entry becomes the

last index entry in Figure 21. The sorted list is still able to record the ascending order

and help Hippo to perform a binary search on the index entries. In addition, such

sorted list leads to slight additional maintenance overhead: Some index updates need

to modify the affected pointers in the sorted list to reflect the new physical addresses.
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Table 6: Notations used in Cost Estimation

Term Definition

H
Complete histogram resolution which means
the number of buckets in this complete his-
togram

pageH Average number of histogram buckets hit by
a page

D Partial histogram density, which is a user sup-
plied parameter

P Average number of pages summarized by a
partial histogram for a certain attribute

T Average number of tuples summarized by a
partial histogram for a certain attribute

Card Total number of tuples of the indexed table

pageCard Average number of tuples per page

SF The selectivity factor of the issued query

4.1.6 Cost Model

This section deduces a cost model for Hippo. Table 6 summarizes the main

notations. Given a database table R with a number of tuples Card and average

number of tuples per disk page pageCard, a user may create a Hippo index on

attribute (i.e., column) ai of R. Let the complete histogram resolution be H (it has

H buckets in total) and the partial histogram density be D. Assume that each Hippo

index entry on average summarizes P data pages and T tuples. Queries executed

against the index have an average selectivity factor SF . To calculate the query I/O

cost, I need to consider: (1) I/Oscanning index represents the cost of scanning the index

entries (Phase I in the search algorithm) and (2) I/Ofiltering false positives represents

the I/O cost of filtering false positive pages (Phase II).

Estimating the number of index entries. Since all index entries are scanned

in the first phase, the I/O cost of this phase is equal to the total pages the index

spans on disk (I/Oscanning index=# of index entries
pageCard

). To estimate the number of Hippo
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index entries, I have to estimate how many disk pages (P ) are summarized by a

partial histogram in general, or how many tuples (T ) are checked against the complete

histogram to generate a partial histogram. This problem is very similar to the Coupon

Collector’s Problem[33]. This problem can be described like that: “A vending machine

sells H types of coupons (a complete histogram with H buckets). Alice is purchasing

coupons from this machine. Each time (each tuple) she can get a random type coupon

(a bucket) but she might already have a same one. Alice keeps purchasing until she

gets D ∗H types of coupons (distinct buckets). How many times (T ) does she need to

purchase?” Therefore, the expectation of T is determined by the following equation:

T = H×(
1

H
+

1

H − 1
+ ...+

1

H −D×H + 1
) (4.1)

= H×
D×H−1∑
i=0

1

H − i
(4.2)

Note that the partial histogram density D ∈ [pageH
H

, 1]. That means the global

density should be larger than the ratio of average hit histogram buckets per page to

all histogram buckets because page is the minimum unit when grouping pages based

on density. Estimating pageH is also a variant of Coupon Collector’s Problem: How

many types of coupons (distinct buckets) will Alice get if she purchases pageCard

coupons (tuples)? Given Equation 4.2, the mathematical expectation of pageH can

be easily found as follows:

pageH = H×(1− (1− 1

H
)pageCard) (4.3)
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The number of Hippo index entries is equivalent to the total number of tuples in

the indexed table divided by the average number of tuples summarized by each index

entry, i.e., Card
T

. Hence, the number of index entries is given in Equation 4.4. The

index size is equal to the product of the number of index entries and the size of a

single entry. The size of each index entry is roughly equal to each partial histogram

size.

# of Index entries = Card/(H×
D×H−1∑
i=0

1

H − i
) (4.4)

Given Equation 4.4, I observe the following: (1) For a certain H, the higher the

value of D, the less Hippo index entries there exist. (2) For a certain D, the higher

H there is, the less Hippo index entries there are. Meanwhile, the size of each index

entry increases with the growth of the complete histogram resolution. The final I/O

cost of scanning the index entries is given in Equation 4.5.

I/Oscanning index =
Card

H×pageCard
×(

D×H−1∑
i=0

1

H − i
)−1 (4.5)

Estimating the number of read data pages. Data pages summarized by each

index entry are likely to be checked in the second phase of the search algorithm, filtering

false positive pages, if their associated partial histogram has joint buckets with the

query predicate. Determining the probability of having joint buckets contributes to the

query I/O cost estimation. The probability that a partial histogram in an index entry

has joint buckets with a query predicate depends on how likely a predicate overlaps

with the highlighted area in partial histograms (see Figure 20). The probability is

determined by the equation given below:
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Prob = (Average buckets hit by a query predicate)×D

= SF×H×D (4.6)

To be precise, Prob follows a piecewise function as follows:

Prob =


SF×H×D SF×H 6 1

D

1 SF×H > 1
D

Given the aforementioned discussion, I observe that (1) when SF and H are fixed,

the smaller D is, the smaller Prob is. (2) when H and D are fixed, the smaller SF is,

the smaller Prob is. (3) when SF and D are fixed, the smaller H is, the smaller Prob

is. It is obvious that the probability in Equation 4.6 is equivalent to the probability

that pages in an index entry are checked in the second phase, i.e., filtering false positive

pages. Since the total pages in Table R is Card
pageCard

, the mathematical expectation of

the number of pages in R checked by the second part, as known as the I/O cost of

second part, is:

I/Ofiltering false positives = (Prob× Card

pageCard
) (4.7)

By adding up I/Oscanning index (Equation 4.5) and I/Ofiltering false positives (See

Equation 4.7), the total query I/O cost is as follows:

Query I/O =
Card

pageCard
×((H×

D×H−1∑
i=0

1

H − i
)−1 + Prob) (4.8)
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4.1.7 Experiments

This section provides a comprehensive experimental evaluation of Hippo. All

experiments are run on an Ubuntu Linux 14.04 64 bit machine with 8 cores CPU (3.5

GHz per core), 32 GB memory, and 2 TB magnetic hard disk. I install PostgreSQL

9.5 (128 MB default buffer pool) on the test machine.

Compared Approaches. During the experiments, I study the performance of

the following indexing schemes: (1) Hippo: A complete prototype of my proposed

indexing approach implemented inside the core engine of PostgreSQL 9.5. Unless

mentioned otherwise, the default partial histogram density is set to 20% and the default

histogram resolution (H) is set to 400. (2) B+-Tree: The default implementation of

the B+-Tree in PostgreSQL 9.5 (with a default fill factor of 90), (3) BRIN: A sparse

Block Range Index implemented in PostgreSQL 9.5 with 128 default pages per range.

I also consider other BRIN settings, i.e., BRIN-32 and BRIN-512, with 32 and 512

pages per range respectively.

Datasets. I use the following four datasets:

• TPC-H : A 207 GB decision support benchmark that consists of a suite of

business oriented ad-hoc queries and data modifications. Tables populated by

TPC-H follow a uniform data distribution. For evaluation purposes, I build

indexes on Linitem table PartKey, SuppKey or OrderKey attribute. PartKey

attribute has 40 million distinct values while SuppKey has 2 million distinct

values and the values of OrderKey attribute are sorted. For TPC-H benchmark

queries, I also build indexes on L_Shipdate and L_Receiptdate when necessary.

• Exponential distribution synthetic dataset (abbr. Exponential): This 200 GB

dataset consists of three attributes, IncrementalID, RandomNumber, Payload.
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RandomNumber attribute follows exponential data distribution which is highly

skewed.

• Wikipedia traffic (abbr. Wikipedia) [94]: A 231 GB Wikipedia article traffic

statistics covering seven months period log. The log file consists of 4 attributes:

PageName, PageInfo, PageCategory, PageCount. For evaluation purposes, I

build index on the PageCount attribute which stands for hourly page views.

• New York City taxi dataset (abbr. NYC Taxi) [85]: This dataset contains

197 GB New York City Yellow and Green Taxi trips published by New York

City Taxi & Limousine Commission website. Each record includes pick-up and

drop-off dates/times, pick-up and drop-off locations, trip distances, and itemized

fares. I reduce the dimension of pick-up location from 2D (longitude, latitude)

to 1D (integer) using a spatial dimension reduction method, Hilbert Curve, and

build indexes on pick-up location attribute.

Implementation details. I have implemented a prototype of Hippo inside

PostgreSQL 9.5 as one of the main index access methods by leveraging the underlying

interfaces which include but not limited to “ambuild”, “amgetbitmap”, “aminsert” and

“amvacuumcleanup”. A PostgreSQL 9.5 user creates and queries the index as follows:

CREATE INDEX hippo_idx ON lineitem USING hippo(partkey)

SELECT * FROM lineitem

WHERE partkey > 1000 AND partkey < 2000

DROP INDEX hippo_idx

The final implementation has slight differences from the aforementioned details due

to platform-dependent features. For instance, Hippo only records possible qualified
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Figure 22: Index size on different datasets (log. scale)
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Figure 23: Index initial. time on different datasets

page IDs in a tid bitmap format and returns it to the kernel. PostgreSQL automatically

inspects pages and checks each tuples against the query predicate. PostgreSQL DELETE

command does not really remove data from disk unless a VACUUM command is called

automatically or manually. Hippo then updates the index for data deletion when a

VACUUM command is invoked. In addition, it is better to rebuild Hippo index if there

is a huge change of the parent attribute’s histogram. Furthermore, a script, running

as a background process, drops the system cache during the experiments.
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Figure 24: Query response time at different selectivity factors

4.1.7.1 Tuning Hippo Parameters

This section evaluates the performance of Hippo by tuning two main system

parameters: partial histogram densityD (Default value is 20%) and complete histogram

resolution H (Default value is 400). For these experiments, I build Hippo on PartKey

attribute in Lineitem table of 200 GB TPC-H benchmarks. I then evaluate the index

size, initialization time, and query response time.

Impact of partial histogram density The following experiment compares the

default Hippo density (20%) with two different densities (40% and 80%) and tests
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Table 7: Tuning Parameters

Parameter Value Size Initial.
time

Query
time

Default D=20%
R=400

1012 MB 2765 sec 2500 sec

Density
(D)

40% 680 MB 2724 sec 3500 sec

80% 145 MB 2695 sec 4500 sec

Resolution
(R)

800 822 MB 2762 sec 3000 sec

1600 710 MB 2760 sec 3500 sec

their query time with selectivity factor 0.1%. As given in Table 7, when I increase

the density Hippo exhibits less indexing overhead as expected. That happens due

to the fact that Hippo summarizes more pages per partial histogram and write less

index entries on disk. Similarly, higher density leads to more query time because it is

more likely to overlap with query predicates and result in more pages are selected as

possible qualified pages.

Impact of histogram resolution This section compares the default Hippo

histogram resolution (400) to two different histogram resolutions (800 and 1600) and

tests their query time with selectivity factor 0.1%. The density impact on the index

size, initialization time and query time is given in Table 7 .

As given in Table 7, with the growth of histogram resolution, Hippo size decreases

moderately. The explanation is that higher histogram resolution leads to less partial

histograms and each partial histogram in the index may summarize more pages.

However, the partial histogram (in bitmap format) has larger physical size because

the bitmap has to store more bits.

As Table 7 shows, the query response time of Hippo varies with the growth of

histogram resolution. This is because for the large histogram resolution, the query
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Figure 25: Data update time (logarithmic scale) at different update percentage

predicate may hit more buckets so that this Hippo is more likely to overlap with query

predicates and result in more pages are selected as possible qualified pages.

4.1.7.2 Indexing Overhead

This section studies the indexing overhead (in terms of index size and index

initialization time) of the B+-Tree, Hippo, BRIN (128 pages per range by default),

BRIN-32, and BRIN-512. The indexes are built on TPC-H Lineitem table PartKey

(TPCH_PK), SuppKey (TPCH_SK), OrderKey (TPCH_OK) attributes, Exponential
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table RandomNumber attribute, Wikipedia table PageCount attribute, NYC Taxi

table pick-up location attribute.

As given in Figure 22, Hippo occupies 25 to 30 times smaller storage space than

the B+-Tree on all datasets (except on TPC-H OrderKey attribute). This happens

because Hippo only stores disk page ranges along with page summaries. Furthermore,

Hippo on TPC-H PartKey incurs the same storage space as that of the index built

on the SuppKey attribute (which has 20 times less distinct attribute values). That

means the number of distinct values does not actually impact Hippo index size as

long as it is larger than the number of complete histogram buckets. Each attribute

value has the same probability to hit a histogram bucket no matter how many distinct

attribute values there are. This is because the complete histogram leveraged by Hippo

summarizes the data distribution of the entire table. Hippo still occupies small storage

space on tables with different data distributions, such as Exponential, Wikipedia

and NYC Taxi data. That happens because the complete histogram, which is height

balanced makes sure that each tuple has the same probability to hit a bucket and

then avoid the effect of data skewness. However, it is worth noting that Hippo has

a significant size reduction when the data is sorted on TPC-H OrderKey attribute.

In this case, Hippo only contains five index entries and each index entry summarizes

thousands of pages. When data is totally sorted, Hippo keeps summarizing pages

until the first 20% of the complete histogram buckets (No.1 - 80) are hit, then the

next 20% (No. 81 - 160), and so forth. Therefore, Hippo cannot achieve competitive

query time in this case.

In addition, BRIN exhibits the smallest index size among the three indexes since

it only stores page ranges and corresponding value ranges (min and max values).

Among different versions of BRIN, BRIN-32 exhibits the largest storage overhead
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while BRIN-512 shows the lowest storage overhead because the latter can summarize

more pages per entry.

On the other hand, as Figure 23 depicts, Hippo and BRIN consume less time to

initialize the index as compared to the B+-Tree. That is due to the fact that the

B+-Tree has numerous index entries (tree nodes) stored on disk while Hippo and BRIN

have just a few index entries. Moreover, since Hippo has to compare each tuple to the

complete histogram which is kept in memory temporarily during index initialization,

Hippo may take more time than BRIN to initialize itself. Different versions of BRIN

spends most of the initialization time on scanning the data table and hence do not

show much time difference.

4.1.7.3 Query Response Time

This section studies the query response time of the three indexes, B+-Tree, Hippo

and BRIN (128 pages by default). I first evaluate the query response time of the three

indexes when different query selectivity factors are applied. Then, I further explore

the performance of each index using the TPC-H benchmark queries which deliver

industry-wide practical queries for decision support.

Queries with different selectivity factors This experiment studies the query

execution performance while varying the selectivity factor from 0.001%, 0.01%, 0.1%

to 1%. According to the Hippo cost model, the corresponding query time costs in this

experiment are 0.2Card, 0.2Card, 0.2Card and 0.8Card. The indexes are built on

TPC-H Lineitem table PartKey attribute (TPC-H), Exponential table RandomNumber

attribute, Wikipedia table PageCount attribute, NYC Taxi table pick-up location
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attribute. I also compare different versions of BRIN (BRIN-32 and BRIN-512) on

TPC-H PartKey attribute.

As the results shown in Figure 24, all the indexes consume more time to query

data on all datasets with the increasing of query selectivity factors. All versions of

BRIN are two or more times worse than B+-Tree and Hippo at almost all selectivity

factors. They have to scan almost the entire tables due to their very insufficient page

summaries - value ranges. Moreover, B+-Tree is not better than Hippo at 0.1% query

selectivity factor although it is faster than Hippo at low query selectivity factors

like 0.001% and 0.01%. Actually, the performance of Hippo is very stable on all

datasets including highly skewed data and real life data. In addition, Hippo consumes

much more time at the last selectivity factor 1% because it has to scan many more

pages as predicted by the cost model. Compared to the B+-Tree, Hippo maintains a

competitive query response time performance at selectivity factor 0.1% but consumes

25 - 30 times less storage space. In contrast to BRIN, Hippo achieves less query

response time at the small enough index size. Therefore, I may conclude that Hippo

makes a good tradeoff between query response time and index storage overhead at

medium query selectivity factors, i.e, 0.1%.

Evaluating the cost model accuracy This section conducts a comparison

between the estimated query I/O cost and the actual I/O cost of running a query

on Hippo. In this experiment, I vary the query selectivity factors to take the values

of 0.001%, 0.01%, 0.1%, and 1%. Hence, the average number of buckets hit by the

query predicate (SF ∗H) should be 0.004, 0.04, 0.4, and 4 respectively. However, in

practice, no in-boundary queries can hit less than 1 bucket. Therefore, the average hit

buckets by predicates are 1, 1, 1 and 4. Given H = 400 and D = 20%, the query I/O

cost estimated by Equation 4.8 is Card
pageCard

∗ (0.05% + 20%|20%|20%|80%). I observe
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that: (1) Queries for the first three SF values yields pretty similar I/O cost. That

matches the experimental results depicted in Figure 24. (2) The I/O cost of scanning

index entries consumes Card
pageCard

∗ 0.05% which is at least 40 times less than that of

filtering false positive pages.

Table 8: The estimated query I/O deviation from the actual query I/O for different
selectivity factors

SF 0.001% 0.01% 0.1% 1%
TPC-H 0.02% 0.02% 0.21% 6.18%

Exponential 0.37% 0.37% 0.35% 12.69%

Wikipedia 0.91% 0.91% 1.19% 9.10%

NYC Taxi 0.87% 0.87% 0.51% 13.39%

As Table 8 shows, the cost model exhibits high accuracy. Furthermore, the cost

model accuracy is stable especially for the first three lower selectivity factors. However,

when SF = 1%, the accuracy is relatively lower especially on Exponential and NYC

Taxi table. The reason behind that is two-fold: (1) The 1% selectivity factor query

predicate may hit more buckets than the other lower SF values. That leads to quite

different overlap situations with partial histograms. (2) The complete height balanced

histogram, maintained by the DBMS, does not perfectly reflect the data distribution

since it is created periodically using some statistical approaches. Exponential and

NYC Taxi tables exhibit relatively more clustered/skewed data distribution. That

makes it more difficult to reflect their data distribution accurately. On the other

hand, the histogram of a uniformly distributed TPC-H table is very accurate so that

predicated I/O cost is more accurate in this case.

TPC-H benchmark queries This section compares Hippo to the B+-Tree and

BRIN using the TPC-H benchmark queries. I select all TPC-H benchmark queries
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Figure 26: Throughput on different query / update workloads (logarithmic scale)

that contain typical range queries and hence need to access an index. I then adjust

their selectivity factors to 0.1% (i.e., one week reports). I build the three indexes on

the L_ShipDate (Query 6, 7, 14, 15 and 20) and L_ReceiptDate (Query 12) attributes

in the Lineitem table as required by the queries. The qualified queries, Query 6, 7, 12,

14, 15 and 20, perform at least one index search (Query 15 performs twice) on the

evaluated indexes.

Table 9: Query response time (Sec) on TPC-H

Index type Q6 Q7 Q12 Q14 Q15 Q20
B+-Tree 2450 259000 2930 2670 4900 3500

Hippo 2700 260400 3200 3180 5400 3750

BRIN 5600 276200 6200 6340 11300 6700
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As Table 9 depicts, Hippo achieves similar query response time to that of the B+-

Tree and runs around two times faster than BRIN on all selected TPC-H benchmark

queries. It is also worth noting that the time difference among all three indexes

becomes non-obvious for Query 7. That happens because the query processor spends

most of the time joining multiple tables, which dominates the execution time for Q7.

4.1.7.4 Maintenance Overhead

This experiment investigates the index maintenance time of three kinds of indexes,

B+-Tree, Hippo and BRIN, on all datasets when insertions or deletions. The indexes are

built on TPC-H Lineitem table PartKey attribute, Exponential table RandomNumber

attribute, Wikipedia table PageCount attribute, and NYC Taxi table Pick-up location

attribute. This experiment uses a fair setting which counts the batch maintenance

time after randomly inserting or deleting a certain amount (0.0001% , 0.001%, 0.01%,

and 0.1%) of tuples. In addition, after inserting tuples into the parent table, the

indexes’ default update operations are executed because they adopt an eager strategy

to keep indexes up to date. However, after deleting the certain amount of tuples from

the parent table, I rebuild BRIN from scratch because BRIN does not have any proper

update strategies for deletion. I also compare different versions of BRIN (BRIN-32

and BRIN-512) on TPC-H PartKey attribute.

As depicted in Figure 25 (in a logarithmic scale), Hippo costs up to three orders of

magnitude less time to maintain the index than the B+-Tree and up to 50 times less

time than all versions of BRIN. This happens because the B+-Tree spends more time

on searching proper index entry insert / delete location and adjusting tree nodes. On
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the other hand, BRIN’s maintenance is very slow after deletion since it has to rebuild

the index after a batch of delete operations.

4.1.7.5 Performance on Hybrid Workloads

This section studies the performance of Hippo in hybrid query/update workloads.

In this experiment, I build the considered indexes on TPC-H Lineitem table PartKey

attribute, Exponential table RandomNumber attribute, Wikipedia table PageCount

attribute, and NYC Taxi table Pick-up location attribute. I use five different hybrid

query/update workloads: 10%, 30%, 50%, 70% and 90%. The percentage here

stands for the percentage of queries in the entire workload. For example, 10% means

10% of the operations that access the index are queries and 90% are updates. The

average selectivity factor is 0.1%. The index performance is measured by throughput

(Tuples/second) defined as the number of qualified tuples queried or updated per a

given period of time. The results are given in Figure 26 (in logarithmic scale).

As it turns out in Figure 26, Hippo has the highest throughput on all workloads.

Hippo and BRIN can have higher throughput at update-intensive workloads like 10%

and 30%. That happens since Hippo and BRIN have less index maintenance time

that that of the B+-Tree. On the other hand, B+-Tree achieves higher throughput

on query-intensive workloads like 70% and 90%. This is due to the fact that B+-

Tree costs less or same query response time compared to Hippo. Therefore, I can

conclude that Hippo performs orders of magnitudes better than BRIN and B+-Tree

for update-intensive workload. Furthermore, for query intensive workloads, Hippo

still can exhibit slightly better throughput than that of the B+-Tree at a much small

index storage overhead.
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4.1.8 Summary

In this section, I introduced Hippo a data-aware sparse indexing approach that

efficiently and accurately answers database queries. Hippo occupies up to two orders

of magnitude less storage overhead than de-facto database indexes, i.e., B+-tree while

achieving comparable query execution performance. To achieve that, Hippo stores

page ranges instead of tuples in the indexed table to reduce the storage space occupied

by the index. Furthermore, Hippo maintains histograms, which represent the data

distribution for one or more pages, as the summaries for these pages. This structure

significantly shrinks index storage footprint without compromising much performance

on high and medium selectivity queries. Moreover, Hippo achieves about three

orders of magnitudes less maintenance overhead compared to the B+-tree and BRIN.

Such performance benefits make Hippo a very promising alternative to index high

cardinality attributes in big data application scenarios. Furthermore, the simplicity of

the proposed structure makes it practical for DBMS vendors to adopt Hippo as an

alternative indexing technique.

4.2 Extending Hippo to Index Big Spatial Data

To make sense of geospatial data, the first step is to digest the dataset in a

database system. The user can issue spatial queries using SQL, e.g., find all Taxi

trips to Laguardia airport. To speed up such queries, a user may build a spatial

index, e.g., R-tree, on the location or geometry attribute. However, spatial index

structures suffer from the same two issues as regular database indexing mechanisms:

huge indexing overhead and slow maintenance speed. Even though classic database
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indexes [20, 39] improve the query response time, they usually yield close to 15%

additional storage overhead. It results in non-ignorable cost in massive-scale spatial

database scenarios, e.g., Taxi trips locations. Moreover, existing database systems

take a lot of time in initializing and bulk loading the spatial index (e.g, R-Tree or

Quad-Tree [39, 32]) especially when the size of indexed spatial data reaches hundreds

of Gigabytes or more. Furthermore, spatial indexes supported by state-of-the-art

spatial database systems, e.g., PostGIS [74], are designed with the implicit assumption

that the underlying spatial data does not change much. However, many modern

applications constantly insert new spatial data into the database, e.g., inserting a new

taxi trip record. Maintaining a database index incurs high latency since the DBMS

has to locate and update those index entries affected by the underlying table changes.

For instance, maintaining an R-Tree searches the tree structure and perhaps performs

a set of tree nodes splitting or merging operations. That requires plenty of disk I/O

operations and hence encumbers the time performance of the entire DBMS in update

intensive application scenarios.

In this section, I first present my effort on extending the regular Hippo index to

index geospatial data (denoted as Hippo-Spatial). I then present a comprehensive

experimental analysis of classic and state-of-the-art spatial database indexing schemes

supported in PostgreSQL (a popular open source database system) [75]. This includes

a popular spatial tree indexing scheme (i.e., the GIST [47] implementation of R-

Tree [39]), a Block Range Index for spatial data [13] (denoted as BRIN-Spatial)

provided by PostgreSQL as well as the new indexing scheme, Hippo-Spatial. The

results emphasize the fact that there is no one size that fits all when it comes to

indexing massive-scale spatial data. The results also prove that modern database
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systems can maintain a lightweight index (in terms of storage and maintenance

overhead) that is also fast enough for spatial data analytics applications.

4.2.1 Hippo-Spatial Overview

Index structure. Hippo is a data-aware sparse index. In context of spatial data,

each Hippo (denoted as Hippo-Spatial) index entry is composed of two components:

a dynamic disk page range and a histogram-based page range summary (depicted

in Figure 27). In the summary, specifically, the simplified histogram (called partial

histogram), each bit shows whether the corresponding two dimensional bucket presents

(1) in this page range or not (0). The histogram-based summary is extracted from the

two complete load balanced 1D histograms on X and Y axises, respectively (visualized

histograms given in Figure 27). Such histograms are widely supported and naturally

maintained by most existing DBMSs and execute with no much extra cost. Two 1D

histogram buckets, one from X axis and one from Y, represent a 2D bucket. I number

a 2D histogram bucket by its 1D buckets on X and Y. For example, bucket (1,1)

represents the bucket on the lower-left corner of Figure 27 histogram. Hippo-Spatial

iterates each parent table tuple and groups as ranges contiguous similar pages (in

terms of data distribution). In the partial histogram of each page range, distinct

histogram buckets hit by tuples are marked as 1 in corresponding bits. Hippo-Spatial

ensures that the partial histogram in each index entry has the same density:

Partial histogram density (D) =
# Bucketsvalue=1

# Bucketscomplete histogram

Index search. When a spatial range query is issued, the system first locates the

histogram buckets cover / intersect / covered by the query predicate and outputs a
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Figure 27: Hippo-Spatial Index Structure

partial histogram similar to the histogram-based summary maintained for each index

entry. Then, the search algorithm reads each index entry and filters out the index

entries for which the histogram-based summary has no common buckets with the

query predicate. For all index entries that match the query predicate, the search

algorithm inspects the corresponding disk pages and the qualified data tuples are

returned.

Index maintenance. When a new tuple is inserted, Hippo-Spatial updates the

index entries in an eager manner. It first finds the 2D histogram bucket where the

tuple falls in and then runs a binary search on index entry sorted list to locate the

page range which the tuple belongs to. The sorted list maintains a list of index entry

pointers that are sorted in the ascending order of their start page ID. If this tuple hits

a distinct histogram bucket, the partial histogram in Hippo-Spatial index entry will

set the corresponding bit to 1; if no distinct buckets hit, Hippo-Spatial does nothing

instead. On the other hand, Hippo-Spatial deletion runs in a lazy manner. This

means Hippo-Spatial updates the index entries only for a batch of deletion operations.
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During the update, Hippo-Spatial scans the index entries and in case some tuples in a

certain page range are deleted, Hippo-Spatial will re-summarize all pages in this page

range and update the index entry.

4.2.2 Experimental Analysis

I run all experiments on an Ubuntu 16.04 64 bit machine with 12 cores CPU

(3.5 GHz per core), 128 GB memory, and 4 TB magnetic hard disk. I conduct the

experiments on PostgreSQL 9.6 and PostGIS 2.3 with 128 MB default buffer pool.

After fully loading the NYC city taxi trip dataset into PostgreSQL, the corresponding

NYC Taxi trips table occupies 25 million PostgreSQL disk pages on the test machine.

The size of PostgreSQL default buffer pool is rather small while the operating system

memory is too large to be ignored. To avoid the impact of pre-cached data, I clear OS

cache before each single transaction. I leverage the EXPLAIN ANALYZE, a PostgreSQL

built-in performance analysis tool, to capture the execution time of all transactions

and count the disk I/O operations. I use the default PostgreSQL 9.6 settings in all

experiments. I use the (CREATE INDEX) (given below) to build the specified index on

top of the NYC taxi trip table in PostgreSQL:

CREATE INDEX hippo_idx ON NYCTaxi USING Hippo (PickUpLocation);

All indexes are built on the NYC Taxi dataset pick-up location (i.e., latitude and

longitude coordinate) attribute. For the sake of GIST and BRIN-Spatial, the latitude

and longitude coordinates are represented by a single coordinate attribute in Post-

greSQL compatible geometry format. BRIN-Spatial allows a parameter called Pages

Per Range (P) which specifies the number of parent table pages summarized by each

index entry. I use 32, 128 (default) and 512 to tune BRIN-Spatial. Hippo-Spatial
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accepts a parameter named Density (D) to control the partial histogram density inside

each index entry. Its performance is also impacted by the number of buckets in the

complete histogram (H). I choose three parameter combinations to tune Hippo-Spatial:

(1) D = 20% H = 400 (default setting) (2) D = 40% H = 400 (3) D = 20% H = 800.

All indexes use their default settings unless otherwise stated.

I issue a spatial range query on NYC Taxi table with a particular query window

and qualified tuples are returned to the psql front-end. The format used in the

experiments is:

EXPLAIN ANALYZE SELECT count(*) FROM NYCTaxi WHERE <predicate>;

The predicate represents a spatial range query window targeted at the pick-up attribute

written in an index-dependent format. All insertions work in an eager manner to

ensure the query correctness. In the experiments, I use the (INSERT INTO NYCTaxi

VALUES (aTrip)) SQL command to inserts a new Taxi trip tuple in the NYC taxi

trips table. I also use (COPY NYCTaxi FROM aFile) command to insert a batch

of tuples in a single operation in order to avoid unnecessary I/O. Nonetheless, it

still performs the insertion/index update tuple by tuple. In PostgreSQL, a DELETE

operation just makes a note on the deleted tuples and hides them from the output

instead of immediately removing them physically. That is due to the fact that clearing

and recycling deleted tuples’ physical space is a time-consuming process. All physical

deletions and corresponding index updates only happen when the VACUUM command is

invoked. The VACUUM command runs periodically but also accepts manual invocation

from the user.
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Figure 28: Indexing overhead on different data scales (logarithmic scale)

4.2.2.1 Studying the Indexing Overhead

This section studies the indexing overhead incurred by the three compared indexing

schemes. I build three indexes on different sizes of the New York Taxi Trip data

and record the corresponding overhead (Figure 28) including index size and index

initialization time. Results of using different index parameters are described in

Figure 29 and Figure 30.

Index Size As depicted in Figure 28a, Hippo-Spatial occupies close to two orders

of magnitude less storage space than GIST. That happens due to the fact that GIST

stores the pointers of hundreds of millions of Taxi trips in the table and maintains a

Minimum Bounding Rectangle in each tree node. On the other hand, Hippo-Spatial

only stores disk page ranges and MBR summaries. A tuple pointer is a physical address

that consists of a disk page ID and slot ID. Once the index search is completed, GIST

collects the pointers and passes them to the DBMS. Given a tuple pointer, the DBMS

directly jumps to the specified address and retrieves the embedded tuple without any

rechecks. Retrieving a small amount of pointers during queries is fast, yet storing 1.1

billion tuple pointers in an index is very space-consuming. In addition, each MBR
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Figure 29: Index size (log. scale)

is represented by four double values, minimum X and Y, maximum X and Y, also

occupies non-negligible storage space. On the contrary, each Hippo-Spatial index

entry only contains a disk page range and a concise summary. Generally speaking, a

disk page may store 50 - 100 tuples, and that is why Hippo-Spatial incurs much less

storage overhead.

As given in Figure 28a, Hippo-Spatial leads to more storage overhead than BRIN-

Spatial. That happens because Hippo-Spatial, as opposed to BRIN-Spatial, is data-

aware and hence speeds up the search process. Each Hippo-Spatial index entry stores

a histogram-based page summary instead of a simple MBR. Nonetheless, the extra

storage space occupied by Hippo-Spatial is relatively small since its size is less than

1% of the indexed table.

Figure 29 studies the storage overhead of both BRIN-Spatial and Hippo-Spatial

using different parameter settings. For instance, Hippo-D20%-H400 denotes a hippo

index with density set to 20% and the number of histogram buckets set to 400 and

BRIN-P128 denotes a BRIN-Spatial index with 128 pages per range. Hippo-Spatial

occupies 100 times larger disk space than BRIN-Spatial. That makes sense because

each index entry in Hippo-Spatial maintains a histogram-based summary of a dynamic
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page range while BRIN-Spatial only stores the Minimum Bounding Rectangle per

each page range. Each summary in Hippo-Spatial represents a partial histogram and

each bucket in this histogram is represented by a single bit. Although Hippo-Spatial

compresses these partial histograms, they are still much larger than a simple MBR.

As the number of pages per range increases, BRIN-Spatial occupies less disk space

since it summarizes more pages within one range at the cost of slower query response

time. For different Hippo-Spatial parameter combinations, The higher the histogram

density, the more pages each Hippo-Spatial index entry summarizes. That will also

lead to more tuples being summarized by each index entry. Maintaining the same

density but increasing the total number of histogram buckets leads to an increase in

the storage space occupied by Hippo-Spatial. That happens because more complete

histogram buckets also leads to more tuples hitting more distinct buckets in each

partial histogram.

Index initialization time Figure 28b depicts the index initialization time in-

curred by creating each of the three indexes in PostgreSQL. The system takes the same

time to bulk load Hippo-Spatial and BRIN-Spatial because each of them scans the in-

dexed table tuple by tuple and summarizes each encountered tuple using an in-memory
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validation operation. The only difference is that, given a tuple, Hippo-Spatial finds the

histogram bucket to which the tuple belongs using binary search while BRIN-Spatial

checks whether the retreived tuple is covered by the temporary MBR and updates the

MBR if needed. Moreover, PostgreSQL spends two orders of magnitude more time to

bulk load GIST compared to BRIN-Spatial and Hippo-Spatial. This happens because

the initialization algorithm in GIST is rather complex and requires a large number

of temporary disk files to decide the boundries of the minimum bounding rectangles.

Hence, the intensive disk I/O cost encumbers the initialization performance of GIST.

Figure 30 depicts how a variety of parameters settings impact the initialization time

of both BRIN-Spatial and Hippo-Spatial. Hippo-Spatial takes 30% less initialization

time than BRIN-Spatial. That happens due to the fact that the index initialization

algorithm makes use of a temporary in-memory data structure (denoted TmpEntry) to

store the to-be-persisted index entry. For BRIN-Spatial and Hippo-Spatial, TmpEntry

keeps summarizing new incoming tuples and updates MBR for BRIN-Spatial (partial

histogram for Hippo-Spatial) if needed. This process continues until BRIN-Spatial

reaches pages per range limit or Hippo-Spatial reaches the density limit. Then,

TmpEntry will be serialized and persisted to disk. However, in most cases of Hippo-

Spatial, the TmpEntry data structure is rarely updated because TmpEntry only

notes distinct histogram buckets hit by the scanned tuples. Unlike Hippo-Spatial,

BRIN-Spatial initialization algorithm keeps updating the MBR as long as the newly

summarized tuple not fully covered by the MBR. Such frequent TmpEntry updates

lead to the gap in the initialization time.
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4.2.2.2 Evaluating the Query Response Time

This section studies the query execution performance time using each of the three

considered indexing indexes. To identify the proper scenarios for different indexes, I

define two metrics of spatial range query: spatial range query selectivity and query

range area size. The categorized results are given in Figures 31 and 33.

Varying the spatial range query selectivity factor This section studies the

impact of varying the spatial range query selectivity factor on the query response

time. The selectivity factor of a given spatial range query is calculated as the ratio

of the total NYC taxi trips returned by running the spatial range query over the

total number trips stored in the database. I vary the average spatial range query

selectivity from 0.001%, 0.01%, 0.1% to 1%. To generate the query workload with

average selectivity, I first create GIST index on the pick-up/drop-off location and

randomly select a set of query points from the table. Then, I use each query point to

issue a K Nearest Neighbors (KNN) searches on the NYC taxi table. The number K

refers to the number of tuples returned by 0.001% - 1% selectivity queries. For each

KNN query, the returned Kth nearest neighbor and its mirror point against the query

point represent a query range window that has the specified range selectivity. The

generated spatial range queries are then used to run the experiments and the reported

query execution time in Figure 31 represents the average time PostgreSQL took to

run the query workload.

As shown in Figure 31, GIST exhibits two orders of magnitude faster query

execution performance than Hippo-Spatial and BRIN-Spatial on highly selective

queries (0.001% selectivity factor). As the spatial range query selectivity factor

becomes higher (lower selectivity), the query execution time gap between GIST and
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Figure 31: Varying the spatial range query selectivity factor

Hippo-Spatial diminishes. For 0.1% and 1% selectivity factors, Hippo-Spatial is able

to achieve similar query execution performance to that of GIST. That happens due to

the fact that, for highly selective queries (e.g., 0.001% selectivity), GIST’s balanced

tree structure is able to prune disjoint subtrees and retrieve only a small amount of

qualified NYC taxi tuples to recheck. On the other hand, Hippo-Spatial still has many

more possible qualified page to inspect. For less selective queries (selectivity factor

0.1% and 1%), GIST also has to retrieve more tuples for further inspection and that

is why it has similar performance to that of Hippo-Spatial. However, BRIN-Spatial

exhibits the slowest query execution performance as compared to GIST and Hippo-

Spatial. The main reason is that all Minimum Bounding Rectangles store with each

index entry in BRIN-Spatial span the entire New York City metropolitan area and

BRIN-Spatial actually inspects almost all disk pages occupied by the NYC taxi table

to process queries with different selecitvities.

Figure31b describes the index probe time on different selectivity factors. The index

probe time refers in particular to the time these indexes spend on searching index

entries when a query is issued. That excludes the time the database system takes

to read the data pages. For GIST, the index probe time stands for the time GIST
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Figure 32: Inspected data pages on different query selectivities

used to find all qualified tuple pointers. The upcoming GIST refine and data page

retrieval phase is taken care of by PostgreSQL. For BRIN-Spatial and Hippo-Spatial,

the index probe time represents the time these indexes spend on traversing all index

entries. It is obvious that the index probe time for BRIN-Spatial and Hippo-Spatial

is constant for all spatial range selectivity factors. That happens due to the fact that

BRIN-Spatial and Hippo-Spatial always scan all index entries. On the other hand,

for higher selectivity factors, GIST have to expand its probe range and go to lower

tree levels. Figure 31b shows that the index probe time of GIST, in fact, increases

exponentially.

Figure 32 depicts the total number of inspected data pages using different index

parameters. Both BRIN-Spatial and Hippo-Spatial need to inspect possible qualified

pages for retrieving the truly qualified tuples. As given in Figure 32, Hippo-Spatial

inspects less pages than BRIN-Spatial. To be precise, Hippo-Spatial with 20% density

inspects up to 6 times less NYC taxi data pages on 0.001% and 0.01% selectivity

factors and BRIN-Spatial inspects up to 40% more disk pages for queries with 0.1%

and 1% selectivity factors. That happens because Hippo-Spatial is able to prune more

data pages since it only inspects page ranges which have joint histogram buckets with

the spatial query predicate. Hippo-Spatial with 40% density and Hippo-Spatial with

800 histogram buckets (i.e., Hippo-D40%-H800) experience slower query execution

time as compare to Hippo-Spatial. The partial histograms of Hippo-D40%-H800 are
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Figure 33: Query time issued in different spatial areas

too full and too many bits set to 1. That increases the probability that each index

entry in Hippo-Spatial has joint buckets with the spatial query predicate. It is also

worth noting that BRIN-Spatial in general (with various parameters setting) inspects

the same number of data pages since it always inspects the entire table due to its

data-agnostic nature.

Varying the spatial range area size This section studies the impact of varying

the size of the spatial range area. The range area represents the area covered by the

issued spatial range query. I have discussed the query response time for different query

selectivity factors. However, users rarely issue spatial queries in strict accordance to

the selectivity factor. Assume that a user observes the NYC taxi dataset on a web

browser. The user usually searches dense areas. In fact, spatial data is alway highly

skewed and sparse areas such as deserts are less interesting for analysts. I define two

types of queries:

• random area spatial query (studied in Figure 33b): To generate such queries,

I issue spatial range queries in random locations that lie within the New York

City region.
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• dense area spatial queries (studied in Figure 33a): To generate this workload, I

limit the spatial queries to dense locations (e.g., Manhattan). A dense location

contains a large number of Taxi trips. For instance, the hottest/densest data

areas in New York Taxi dataset are Times Square, JFK airport and Laguardia

airport.

Furthermore, I vary the range area size from 10−5% to 0.01%. Larger range area

such as 0.001% or 0.01% exposes the region of a city while smaller range area such

10−5% exhibits the nearby businesses of my current location. Results are given in

Figure 33. As it turns out in Figure 33b, GIST achieves the best query execution

performance for queries generated in random locations within NYC. That happens

because spatial data is always skewed and most spatial range queries only return

few tuples. On the contrary, in Figure 33a, GIST takes much more time for queries

issued in dense areas of NYC. That is due to the fact that the number of taxi trip

records in the Manhattan (i.e., dense) area are far more than other areas in New York

City. Moreover, Hippo-Spatial exhibits just a bit slower query execution performance

than GIST. BRIN-Spatial, on the other hand, exhibits the slowest query execution

performance since it has to inspect a large fraction of data pages.

4.2.2.3 Studying the Index Maintenance Overhead

This section studies the index maintenance overhead of all considered indexing

schemes. I study the overhead incurred by two main index maintenance operations,

i.e., insertion (see Figure 34a) and deletion time (see Figure 34b).
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Figure 34: Index maintenance performance on different data update percentage

Insertion time This section studies the time the database system takes to update

the index when new taxi trip inserted in the NYC taxi table. Note that updating the

index due to tuple insertion is deemed necessary to ensure the correctness of future

queries. This section compares the three indexing schemes after inserting a certain

amount of tuples in the NYC taxi table. I vary the number of inserted tuples as ratio

of the original data size, i.e., 0.0001%, 0.001%, 0.01% and 0.1% tuples of the index

NYC taxi table and insert them using the COPY FROM SQL clause.

As depicted in Figure 34a, GIST exhibits the highest index maintenance overhead

when new tuples are inserted. That happens because GIST spends too much time on

locating the proper tree node. Furthermore, GIST spends a non-ignorable amount of

time on splitting the tree nodes to accommodate the newly inserted key. Frequent tree

structure traverse and adjustments result in tremendous disk I/Os. Hippo-Spatial and

BRIN-Spatial exhibit more than two orders of magnitude less maintenance overhead

for insertion. That is due to the fact that both Hippo-Spatial and BRIN-Spatial

possess a flat index structure which is relatively less complex than GISTand hence

easier to maintain. A newly inserted tuple leads to updating at most a single index

entry. On the other hand, Hippo-Spatial takes more time time to insert a new tuple
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in contrast to BRIN-Spatial. That happens because Hippo-Spatial checks each new

tuple against the complete histogram and updates the corresponding on-disk partial

histogram if this new tuple hits a new distinct histogram bucket. On-disk updates

happens more frequently in Hippo-Spatial since BRIN-Spatial only does physical entry

updates when the new tuple is outside the corresponding MBR.

Deletion time In this section, I evaluate the time PostgreSQL takes to maintain

each of the three tested index structures in response to deleting a tuple(s) from the

NYC taxi trip table. I vary the percentage of deleted tuple to take 0.0001%, 0.001%,

0.01% and 0.1% values.

As shown in Figure 34b, Hippo-Spatial achieves close to two orders of magnitude

better performance than GIST) in handling the DELETE operation. For the sake of

batch deletion, Hippo-Spatial re-summarizes an index entry that contain many deleted

tuples in one go meanwhile GIST searches for the affected tree nodes and sometimes

merges the affected tree nodes in response to tuple deletion. On the other hand,

BRIN-Spatial follows a naive lazy update strategy that rebuilds the entire index after

a fixed number of tuples is deleted from the indexed table. That explains why Hippo-

Spatial achieves close to an order of magnitude better performance BRIN-Spatial

on low deletion percentages. The performance gap slightly decreases when a large

percentage of the table is deleted because Hippo-Spatial has to re-summarize most

index entries in that case, which is equivalent to re-building the whole index.

Hybrid workload performance Figure 35 compares the performance of three

indexes in hybrid query/update workloads. I generated five query / update workloads

that vary the percentage of issued search operations as compared to the update

operations, named after the percentage of search operations in the entire workload:

10%, 30%, 50%, 70% and 90%. Each workload consists of a thousand operations,
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Figure 35: Throughput

which represent either index search or data update operations. In the experiments,

I measure the system throughput achieved for each workload. The throughput is

measured in terms of the number of operations per second. In each workload, the

average spatial query selectivity factor is set to 0.01% while the average number of

updated tuples is set to 0.01%

As it turns out in Figure 35, GIST yields the lowest system throughput. That

happens because GIST spends too much time on index maintenance. BRIN-Spatial

works faster than GIST due to fast index maintenance although it incurs high latency

when performing search operations. Hippo-Spatial consistently achieves the highest

system throughput, as compared to BRIN-Spatial and GIST. That is explained by the

fact that Hippo-Spatial exhibits better index maintenance performance than GIST

and also exhibits a competitive query response time. Although Hippo-Spatial is

outperformed by BRIN-Spatial when performing insertion operations, Hippo-Spatial

still achieves higher throughput than BRIN-Spatial given its relatively superior query

execution performance and fast data deletion operations. In summary, I can conclude

that Hippo-Spatial and BRIN-Spatial are more suitable for update-involved workloads

while Hippo-Spatial outperforms BRIN-Spatial due to better query response time and

faster data deletion.
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4.2.3 Summary

Through extensive experiments, I presented a comprehensive analysis of classic and

state-of-the-art spatial database indexing schemes supported in PostgreSQL, GIST,

Hippo-Spatial and BRIN-Spatial. Below, I share my key insights through the following

learned lessons:

• Do not create GIST (i.e., spatial tree index) when the database system

is deployed on a storage device with high $ per GB. The storage overhead

introduced by GIST created over the NYC taxi dataset is 84 GB, which is close

to 50% of the original data size. Note that the dollar cost increases dramatically

when the DBMS is deployed on modern storage devices (e.g., SSD and Non-

Volatile-Ram) since they are still more than an order of magnitude expensive

than classic Hard Disk Drives (HDDs). As per Amazon.com and NewEgg.com,

the dollar cost per storage unit for HDD and SSD are 0.04 and 1.4 $/GB,

respectively. Instead, the user may consider Hippo-Spatial and BRIN-Spatial.

to reduce the overall storage cost since these indexes only occupy between 0.1

and 1 % as compared to the original dataset.

• Do not use BRIN-Spatial. or Hippo-Spatial for Yelp-like applications.

Applications like Yelp usually issue very highly selective spatial range queries

that retrieve point-of-interests (e.g., 0.001% range query selectivity) and present

them to the end-user. As per the experiments, GIST is deemed a perfect indexing

scheme for Yelp-like applications given its superior performance in executive

highly selective spatial range queries. Furthermore, spatial data (i.e., Point-of-

Interests) in Yelp are not dense. That is due to the fact that every longitude
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and latitude location on the surface of the earth contains a few (usually one)

Point-of-Interests (or buildings).

• Use Hippo-Spatial for spatial analytics applications over dynamic and

dense spatial data. NASA constantly collects Earth science data (e.g., weather,

pollution, socioeconomic data) [26]. Earth science data is quite dense and new

data is inserted into the system on a daily basis. Furthermore, since geospatial

data in such applications is typically consumed as aggregate visualizations (e.g.,

Heatmap, Cartogram), spatial range queries on such data are not quite selective

(selectivity factor between 0.1% and 1%) as in Yelp-like applications. Having

said that, Hippo-Spatial is deemed the perfect for such data given: (1) its

small storage footprint and low maintenance overhead compared to GIST and

(2) its superior query execution performance over selective queries and higher

throughput compared to BRIN-Spatial.
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Chapter 5

A SAMPLING MIDDLEWARE FOR INTERACTIVE GEOSPATIAL

VISUALIZATION DASHBOARDS

In this chapter, I first illustrate the need of interactive geospatial data analytics.

Then I explain the design of Tabula [103], a sampling middleware that makes the user

experience with the visualization dashboard more seamless and interactive. Finally,

I conducted extensive experiments to study the performance of Tabula and several

other systems.

5.1 Introduction

When a user explores a spatial dataset using a visualization dashboard, such as

Tableau and ArcGIS, that often involves several interactions between the dashboard

and the underlying data system. In each interaction, the dashboard application first

issues a query to extract the data of interest from the underlying data system (e.g.,

PostGIS and Apache Spark SQL), and then runs the visual analysis task (e.g., heat

maps and statistical analysis) on the selected data. Based on the visualization result,

the user may iteratively go through such steps several times to explore various subsets

of the database.

Running example. Figure 36 depicts a dashboard that visualizes 700 Million

taxi rides data stored as a 100 GB database table; each tuple represents a taxi ride

with various attributes (i.e., columns) such as the pick-up and drop-off dates/times,

pick-up and drop-off locations, trip distances (denoted asD), passenger count (denoted
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Figure 36: A real interactive spatial visualization dashboard in Tableau

as C), payment method (denoted as M), itemized fare amount, tip and so on. The

user can first select all taxi rides paid by cash using filters on the right pane and then

plots the pickup location of such rides on a heat map. She may then select taxi rides

paid by credit card and render another heat map to visually compare the difference

between the two maps.

Every interaction between the visualization dashboard and the underlying data

system may take a significant amount of time (denoted as data-to-visualization time)

to run, especially over large-scale data. The reason is two-fold: (1) The data-system

query time proportionally increases with the volume of the underlying data table.

Even scalable data processing systems such as Apache Spark and Hadoop, which

parallelize the query execution, still exhibit non-negligible latency on large scale data.

(2) Existing spatial visualization dashboards such as Tableau, ArcGIS and Apache

Zeppelin work well for small to medium size data but do not scale to large datasets.

Furthermore, since the user may perform various visualization effects on the same
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dashboard (e.g., 3 different tasks in Figure 36), practitioners would prefer to use a

more generic approach to reduce the data-to-visualization time rather than install

several different and isolated systems.

To remedy that, one approach that practitioners use is to draw a smaller sample of

the entire data table (e.g., 1 million tuples) and materialize the sample in the database.

This approach then keeps executing the dashboard on the materialized sample instead

of the actual data set. The caveat is that running queries on the sample may lead to

inaccurate visualization results since the query answer may significantly deviate from

the actual answer especially for some small data populations. As shown in Figure 37,

the approach that runs a query on the pre-built sample (denoted as SampleFirst)

generates different visualization results in Tableau (Figure 37b) as compared to the

approach that runs the query on the entire data table (Figure 37a). The SampleFirst

approach even misses important visual patterns (the taxi rides from an airport, the

red circle), and hence may mislead the user.

Recent research works such as Sample+Seek [24], BlinkDB [2], and SnappyData [76]

address the problem of enhancing the accuracy of pre-built samples for approximate

query processing. These approaches create stratified samples over multi-dimensional

data to improve accuracy with a given confidence level. However, the pre-built

stratified samples have no deterministic accuracy guarantee. So these systems may

still need to perform some queries over the entire underlying table in an online fashion.

Most importantly, all aforementioned approaches only support classic OLAP aggregate

measures, such as COUNT, AVG, and cannot be easily extended to other types of data

analysis (e.g., linear regression and most spatial visual effects in Figure 36). Instead of

creating pre-built samples, an alternative approach runs data-system queries over the

entire table for every iteration, draws a sample of the extracted population and sends
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Figure 37: Iterations between spatial visualization dashboards and data systems with
different sampling approaches

it back to the visualization dashboard to shorten the visualization time. Although this

approach (denoted as SampleOnTheFly) can certainly achieve higher and deterministic

accuracy for the selected population, it is prohibitively expensive since it has to query

the original table to prepare the sample for every user interaction.

In this chapter, I present Tabula, a middleware framework that sits between a SQL

data system and a spatial visualization dashboard to make the user experience with

the dashboard more seamless and interactive. Tabula can seamlessly integrate with

the existing data system infrastructure (e.g., PostgreSQL, SparkSQL). As opposed

to Nanocube and its variants [60], Tabula (given its inherent design as a middleware

system) can work in concert with existing visual exploration tools such as Tableau

and ArcGIS. Similar to Tabula, POIsam [38] and VAS [71] propose an online sampling

technique to produce samples specifically optimized for spatial visual analysis. However,
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as opposed to Tabula, POIsam and VAS resort to the SampleOnTheFly approach to

guarantee the sampling quality, which takes its toll on the overall data-to-visualization

(as I prove in Section 5.5).

Tabula adopts a materialized sampling cube approach, which pre-materializes

samples, not for the entire table as in the SampleFirst approach, but for the results

of potentially unforeseen queries (represented by an OLAP cube cell). Note that

Tabula stores the sampling cube in the underlying data system. In each dashboard

interaction, the system fetches a readily materialized sample for a given SQL query,

which mitigates the data-system time. To scale, Tabula employs two strategies to

reduce the sampling cube initialization time and memory utilization: (1) a partially

materialized cube which only materializes local samples of those queries for which

the global sample (the sample drawn from the entire dataset) exceeds the required

accuracy loss threshold. (2) a sample selection technique to further reduce memory

footprint. It finds similarities between different local samples, only persists a few

representative samples, then uses the representative sample as an answer to many

queries.

Since the dashboard application may show several types of visualization effects

(see Figure 36), Tabula allows users to extend the system’s functionality by declaring

their own user-defined accuracy loss function that fits each specific visualization effect.

The system automatically incorporates the user-defined accuracy loss function in the

sampling cube initialization and representative sample selection algorithms. Moreover,

it always ensures that the accuracy loss due to using the sample never exceeds a

user-specified deterministic accuracy loss threshold (100% confidence). That happens

because Tabula efficiently examines the accuracy loss for all unforeseen queries when

initializing the sampling cube.
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I built a prototype of Tabula on top of SparkSQL and conducted extensive

experiments to study the performance of Tabula and several other systems such as

SampleFirst, SampleOnTheFly, SnappyData [76] and POIsam [38]. Based on the

experiments, Tabula can bring down the total data-to-visualization time (including

both data-system and visualization times) of a heat map generated over 700 million

taxi rides to 600 milliseconds with 250 meters user-defined accuracy loss. It could be

up to 20 times faster than its counterparts. Besides, Tabula costs up to two orders of

magnitude less memory footprint (e.g., only 800 MB for the running example) and

one order of magnitude less initialization time than the fully materialized sampling

cube approach.

It is worth noting that the techniques proposed in this chapter may be applied to

both geospatial data and regular data visual analysis. For example, Section 5.2 shows

that the generic user-defined accuracy loss function can be about statistical mean and

geospatial heat maps. Having said that, I believe that geospatial visualization is the

most important scenario on which Tabula has a direct impact.

5.2 Using Tabula

Figure 38 gives an overview of Tabula. A user must initialize Tabula by providing

the following system parameters as input: (1) User-defined accuracy loss function

(abbr. loss()): This function determines how to calculate the accuracy loss due to

using the sample as opposed to the original query answer. (2) Accuracy loss threshold

θ: this parameter decides the acceptable accuracy for all queries processed by Tabula

(3) Target attribute attr on which loss() measures the accuracy loss (4) Cubed

attributes: the set of attributes that will be used to build the sampling cube (e.g.,
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Query1:
CREATE TABLE SamplingCube AS
SELECT D, C, M, SAMPLING(*,θ) AS sample
FROM nyctaxi GROUPBY CUBE(D, C, M)
HAVING loss(pickup point, Sam_global ) > θ

Query2:
SELECT sample
FROM SamplingCube
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Figure 38: Tabula overview. Samples in red cells are materialized. DCM cuboid
doesn’t show due to visualization limitation.

attributes D, C and M). Data-system SQL queries will use these attributes in WHERE

clause predicates. The user feeds such parameters to Tabula as follows:

CREATE TABLE [sampling cube name] AS

SELECT [cubed attributes], SAMPLING(*,[θ]) AS sample

FROM [table name]

GROUPBY CUBE([cubed attributes])

HAVING [loss function name]([attr], Samglobal) > [θ]

where Samglobal represents a sample constructed by Tabula over the entire table

using random sampling. SAMPLING() is a Tabula-specific function that takes a dataset

represented as a set of tuples and produces a sample of that dataset such that the

accuracy of the produced sample, compared to the original dataset, does not exceed
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the accuracy loss threshold θ. Using the above SQL query, Tabula leverages the

underlying data system to initialize a materialized sampling cube. The data system

can be any system that supports the CUBE operator. Query1 in Figure 38 is an

initialization query for the running example.

Once the sampling cube is initialized, the user, via the spatial visualization

dashboard, can issue SQL queries to Tabula, as follows:

SELECT sample FROM [sampling cube name]

WHERE [conditions]

After receiving this query, Tabula directly fetches a materialized sample from the

sampling cube and returns it back to the visualization dashboard. This way, Tabula

significantly reduces both the data-system time and visualization time. Besides, the

system always guarantees with 100% confidence level that the accuracy loss from

using the returned sample, as compared to the original query answer, does not exceed

the accuracy loss threshold θ.

It is worth noting that the attributes in the WHERE clause must be a subset of

the cubed attributes specified in the initialization query. Query2 in Figure 38 is an

example query which asks for a sample of tuples that satisfy D = [0, 5) AND C = 1.

The user can then issue subsequent queries with a different set of attributes to run

the same or different analysis on various populations.

User-defined accuracy loss function. The visual analytics result obtained

from a sample should be very close to that from the raw data. In this section, I

formalize the difference as accuracy loss. There are many ways to compute accuracy

loss, which serve different purposes. In fact, one size does not fit all. The accuracy

loss highly depends on the type of analysis the user plans to perform. That is the

main reason why Tabula provides a generic approach for the user to declaratively
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define her custom made accuracy loss function that suits the analytics task at hand.

The body of this function is a user-defined scalar expression over several aggregate

functions. The standard SQL syntax is given below (supported by databases such as

PostgreSQL):

CREATE AGGREGATE loss(Raw, Sam)

RETURN decimal_value AS

BEGIN scalar_expression END

Such a function takes raw data and sample data as input, then returns a decimal

value which is the accuracy loss. For instance, consider an analytics task which requires

a low relative error between the statistical mean of the sample and the statistical

mean of the raw data. Such an accuracy loss function is implemented in Tabula as

follows:

Function 1. BEGIN ABS(AVG(Raw) − AVG(Sam)
AVG(Raw)

) END

Another example is the geospatial heat map on taxi pickup locations in Figure 36,

where the accuracy loss function can stem from recent work on spatial visualization-

aware sampling (VAS [71] and POIsam [38]). In that case, the user may implement

the accuracy loss as the average minimum distance between the sample and raw data,

as follows:

Function 2. BEGIN 1
|Raw|

∑
x∈Raw

MINs∈Sam(losspair(x, s)) END

where losspair(x, s) is the Euclidean distance, Manhattan distance or any distance

metric between two data objects.

The third example is the linear regression analysis on trip tip amount VS. fare

amount in Figure 36, where the accuracy loss function calculates the angle difference

between the regression lines of raw data and sample data, as follows:

132



Function 3. BEGIN ABS(angle(Raw) − angle(Sam)) END

Given n tuples each of which has a 2D attribute (xi, yi), I use the following function

to calculate the slope [34]:

slope =
nΣ(xi ∗ yi)− Σxi ∗ Σyi

nΣx2i − (Σxi)2

I then convert slope to angle (unit: degree ◦). Eventually, the corresponding visual

analysis task plots the regression line of data of interest: y = slope ∗ x+ intercept. In

this example, the loss function uses fare amount as x, tip amount as y.

Tabula requires that the accuracy loss function must be algebraic (see definitions

in Section 2.5.2). To achieve that, all aggregate functions and mathematical operators

involved in calculating loss(Raw, Sam) must be distributive or algebraic. In fact,

many common aggregations satisfy this restriction [64] including SUM, COUNT, AVG,

STD_DEV, MIN, MAX, DISTINCT, TOP-K, excluding MEDIAN.

Once the user defines the accuracy loss function, Tabula embeds such a function

in the core components of the sampling cube. For instance, if the user defines the

statistical mean-aware accuracy loss function (discussed previously) and sets the value

of the accuracy loss threshold θ = 10%, Tabula will guarantee with 100% confidence

that the relative error due to using the statistical mean of every sample in the cube

will never exceed 10%. On the other hand, if the user uses geospatial heat map-aware

sampling accuracy loss and sets the value of θ to an absolute loss value, 1 meter, then

Tabula guarantees that the average min distance between the raw query result and

the returned sample will never exceed 1 meter.
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5.3 Materialized Sampling Cube

After the user issues the initialization query (presented in Section 5.2), Tabula

builds a partially materialized sampling cube and stores it in the underlying data

system. The system only materializes local samples for a selected set of cells in the

sampling cube, namely iceberg cells. A cell that satisfies loss(cell data, Samglobal) > θ

(SQL equivalent: loss([target attribute], Samglobal) > θ) is called an iceberg

cell. Otherwise, Tabula will use the global sample to answer a query corresponding

to a non-iceberg cell. Figure 38 gives the layout of a sampling cube, which contains

a cube table (see Figure 39(a)) and a sample table (see Figure 39(b)). All cells

depicted in Figure 39(a) are iceberg cells. A cell in the materialized sampling cube

is defined as 〈a1, a2, ..., an : sample_id〉, where n is the number of cubed attributes.

sample_id points to a sample in the sample table and many cells may share the same

sample_ids because of Tabula’s optimization in Section 5.4. Cell 〈[0, 5), null, null : 1〉

and 〈[0, 5), 1, credit : 1〉 both share the same sample set whose id is 1. ‘null’ indicates

*. In the rest of this section, I will first explain how the sampling module of Tabula can

harness the user-defined accuracy loss function to draw samples. I will then explain

how the system finds iceberg cells and efficiently constructs the sampling cube using

the sampling module.

5.3.1 Accuracy Loss-Aware Sampling

The sampling function (i.e., SAMPLING(*,[θ]) in Section 5.3) aims at generat-

ing a sample with the objective to minimize the sample size while guaranteeing

loss(Raw, Sam) ≤ θ. Since classic sampling algorithms such as random and stratified
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D. C. M. Sample ID
[0, 5) (null) (null) 1
[0, 5) 1 credit 1
[0, 5) 1 dispute 2
[0, 5) 1 (null) 1
[0, 5) 2 cash 3
[0, 5) 2 credit 2
[0, 5) 2 (null) 2
[0, 5) 3 dispute 3
[0, 5) 4 cash 3

…

ID Sample

1 {tuple,tuple,...}

2 {tuple,tuple,...}

3 {tuple,tuple,...}
(a) A part of the cube table. This table
only stores iceberg cells.

(b) Sample table

Figure 39: Tabula sampling cube physical layout

sampling do not handle a user-defined accuracy loss function, the sampling module in

Tabula employs a generic sampling algorithm, which works for a generic accuracy loss

function. The sampling problem can be formally defined as follows:

Definition 4 (Sampling problem). Given a dataset T, an accuracy loss function

(loss()), and an accuracy loss threshold θ, select a subset t from T such that:

(1) loss(T, t) ≤ θ and (2) The size of t is minimized.

The sampling module in Tabula employs a greedy algorithm similar to the algorithm

proposed by POIsam [38]. However, my algorithm guarantees that loss(T, t) ≤ θ

but the sample size may not be minimal. Algorithm 8 depicts the major steps of

this algorithm: it first creates an empty sample set t which has loss(T, t) = ∞.

In each greedy selection round, for every remaining tuple tp in T, it computes

loss(originalT, t + tp). OriginalT is the original raw dataset T. It always picks

from T (without replacement) the tuple which has the minimum loss and adds

it to t. This algorithm keeps picking tuples from T and adds them into t until

loss(originalT, t) <= θ. Tabula further accelerates the greedy algorithm using the

lazy-forward strategy of POIsam (not shown here). The final complexity of each
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Algorithm 8: Greedy algorithm for sampling
Data: A dataset T, loss(), θ
Result: A sample t

1 Create an empty list t;
2 Create a copy of T originalT ;
3 loss=∞;
4 while loss> θ do
5 minTuple = NULL;
6 foreach tuple tp in T do
7 tp_loss= loss(originalT , t+tp);
8 if tp_loss< loss then
9 loss= tp_loss;

10 minTuple = tp

11 t.add(minTuple);
12 T.remove(minTuple);
13 return t

greedy round is O(k*N) where N is the size of input data and k is much smaller than

N.

Lemma 5.3.1. The sampling function SAMPLING() can produce a sample whose

loss<= θ, in limited iterations.

Proof. This lemma can be proved by contradiction. Let us assume that SAMPLING()

cannot find the sample whose loss<= θ and keep running forever. According to the

definition, the algorithm in SAMPLING() picks at least one tuple from the remaining

tuples without replacement. It will definitely put all tuples into the sample set in

the worst case scenario and have no candidate for the next round. However, at this

moment, the sample set will be identical to the original dataset and the loss must

be 0 which is absolutely <= θ. So the assumption is contradictory to the algorithm

definition in SAMPLING().

Lemma 5.3.2. The sampling function SAMPLING() is a holistic aggregate function.

136



Proof. The definition of holistic functions is given in Section 2.5.2. Since the sampling

function embeds an arbitrary accuracy loss function and a threshold θ, I can assume

that a user defines the loss function as Equation 1 and θ = 10%. Thus, for a cube cell,

Tabula’s sampling function needs to draw a local sample such that loss(Raw, Samlocal)

<= θ. I can also assume that an ancestor cell has grouped raw data {1, 2, 3, 4, 6, 7, 8,

9} and two descendant cells have {1, 2, 3, 4} and {6, 7, 8, 9}, respectively. If Tabula

directly applies the sampling function to descendant cells, the qualified samples for

descendants could be {2, 3} and {7}, respectively. Next, Tabula applies the sampling

function to the union of descendant samples - {2, 3, 7} rather than the raw data

of the ancestor. The produced sample is still {2, 3, 7}. The sample actually is not

acceptable to the ancestor’s raw data because loss(ancestor, {2, 3, 7}) = 20% > θ. To

be short, applying the sampling function to descendant samples cannot always return

a correct sample for the ancestor. This violates the definitions of both distributive

and algebraic measures.

Any data cube with such a holistic aggregate function cannot leverage state-of-

the-art cube construction approaches [37].

5.3.2 Sampling Cube Initialization

The straightforward way to initialize a sampling cube is as follows: First, Tabula

draws a global random sample, called Samglobal, from the entire raw dataset. Second, it

builds the sampling cube by running a set of GroupBy queries to calculate all cuboids

in the cube (a cuboid [12] is a GroupBy query). This can be done via using the

SQL CUBE operator in the underlying DBMS (see Query 1 in Figure 38). Given the

grouped raw data of each cube cell, if applying the global sample to this cell satisfies
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the iceberg condition, i.e., loss(cell data, Samglobal) > θ, Tabula will identify this cell

as an iceberg cell and generate / materialize a local sample (denoted as Samlocal) for

it.

However, the cost of using the classic CUBE operator to build the sampling cube

increases exponentially with the number of cubed attributes. In Figure 36, each record

may have five attributes (filters) and running the CUBE operator on these attributes

requires (25 − 1) GroupBy operations over the entire table. Tabula avoids that by

learning which cuboid of the sampling cube really contains iceberg cells before actually

building the cube, then all unnecessary GroupBys can be avoided. To achieve that,

after drawing the global sample, the algorithm runs in two main stages, namely:

Stage 1: Dry run for iceberg cell lookup and Stage 2: Real run for sampling cube

construction.

5.3.2.1 Dry Run Stage: Iceberg Cell Lookup

In this stage, the system identifies all iceberg cuboids (cuboids that have iceberg

cells), by scanning the raw table data only once. According to the aforementioned

straightforward initialization query, Tabula applies two aggregate functions to each

iceberg cell in the sampling cube: SAMPLING() and loss(). Based on the literature

in OLAP data cube (see Section 2.5.2), I know that: if an aggregate measure is

distributive or algebraic, existing algorithms only need to run the full table GroupBy

operation once to build an initial cuboid and other cuboids can be built upon it. For a

holistic aggregate measure, there are no better algorithms to materialize the aggregate

measure for each cell other than building every cuboid from the raw data [37].
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Table 10: Example tables generated in the dry run stage

D. C. M.
(null) (null) credit
[0, 5) (null) cash
[5, 10) (null) (null)
[0, 5) 1 (null)
[5, 10) 1 (null)

...
(a) Iceberg cell table

D. C. M.
[0,5) 1 credit
[5,10) 1 credit
[15,20) 2 cash
[15,20) 3 cash
(b) Cuboid D,C,M

D. C. M.
[0, 5) 1 (null)
[5, 10) 1 (null)
(c) Cuboid D,C

D. C. M.
[5, 10) (null) (null)

(d) Cuboid D

Since the sampling function is holistic, although Tabula only materializes local

samples for some cells of the cube (iceberg cells), the underlying data system has to

run (2n - 1) full table GroupBy operations because it cannot speculate which cells are

iceberg cells beforehand (n is the number of cubed attributes). However, since the

loss function is algebraic, Tabula leverages such property in this stage by utilizing any

existing cube initialization algorithms in Section 2.5.2 to efficiently build a partially

materialized sampling cube. Such a cube only uses accuracy loss as the aggregate

measure. This way, Tabula only accesses the raw data once to build the top/bottom

cuboid and then all other cuboids can be derived from the cuboid itself.

The output of the dry run stage is an iceberg cell table (Table 10a). Tabula

then derives iceberg cell tables for each cuboid (e.g., Table 10b,10c,10d). In addition,

Tabula can also know the approximate number of all cells and iceberg cells in each

cuboid by checking the global sample. Therefore, based on these outcomes, I can

draw the lattice structure of Tabula (Figure 40a) without even computing any local

samples for now. Each vertex of the lattice is a cuboid (i.e., GroupBy query) and

letters indicate the attributes that appear on the grouping list of this cuboid. For

instance, the top vertex DCM is the cuboid that has trip distance, passenger count
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D C M

D,C D,M C,M

D,C,M

All

(8, 2)

(4, 1)

(16, 4)

(5, 1)

(6, 1)

(3, 0)

(9, 1)

(a) Actual cube lattice

Distance Count
[0, 5) 1
[0, 5) 2
[5, 10) 1
[5, 10) 3
[10, 15) 1
[10, 15) 2
[15, 20) 2
[15, 20) 3

(b) (D,C) status

Figure 40: Major steps in the initialization algorithm

and payment method. The bottom vertex “All“ actually is not a GroupBy query

because it has no attributes on the grouping list. Two cuboids 1 and 2 are connected

by an edge only if the grouping list of cuboid 1 is a subset of the grouping list of

cuboid 2. All cells in cuboid 1 can find their descendant cells in 2. As depicted in

Figure 40a, every colored cuboid contains at least one iceberg cell. The first number

indicates all cells and the second number indicates iceberg cells.

Global sample size. The size of a sample affects its accuracy loss. Since Tabula

checks the global random sample against every single cube cell during the dry run

stage (builds local samples later if necessary), the size of the global sample has no

effect on Tabula’s error bound which is the loss threshold. However, a too small global

sample may unnecessarily introduce too many iceberg cells. Therefore, Tabula utilizes

Serfling’s Inequality [80, 38] (a lemma of the law of large numbers) to determine a

proper global sample size. Let x1, x2, ...xn be a finite set of numbers in [0, 1] with a

mean µ, for any ε > 0 and 1 ≤ k ≤ n, I have
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Algorithm 9: Initialization: Real Run Stage
Data: The raw table tbl and results of the dry run stage
Result: A cube table including samples

1 foreach cuboid cbd in all cuboids do
2 if its iceberg cell table is not null then
3 if it statisfies Inequation 5.1 then
4 Run equality join tbl with the iceberg cells of cbd to retrieve data;
5 Build cbd via a GroupBy on tbl or retrieved data;
6 Draw a local sample for each iceberg cell;
7 else
8 Skip this cuboid;

P
[

max
k≤m≤n−1

| 1
m

m∑
i=1

xi − µ| ≥ ε
]
≤ 2exp(− 2kε2

1− k−1
n

) = δ

where k is the sample size. Therefore, given any relative error ε of µ and confidence

level δ, I have k ≈ ln 2
δ

2ε2
. By default, Tabula uses ε = 0.05 and δ = 0.01. Given the

NYCtaxi dataset (700 million records) used in Section 5.5, the global sample has

around 1000 tuples. This makes sure that this sample can represent the distribution

of the raw dataset.

5.3.2.2 Real Run Stage: Sampling Cube Construction

Based on the iceberg cell information learned in the dry run stage, Tabula constructs

a sampling cube that only contains iceberg cuboids. For each cell in this cuboid, the

algorithm draws a local sample if the cell is an iceberg cell. The algorithm performs

the same step for all iceberg cuboids until it eventually builds the sampling cube (see

Figure 41).

141



Algorithm 9 gives the detailed pseudocode of the real run stage. The dry run stage

has shown the number of iceberg cells in each cuboid (e.g., Table 10a), so Tabula can

easily skip these non-iceberg cuboids (uncolored cuboids in Figure 40a) and work on

iceberg cuboids that have at least one iceberg cell (red-colored cuboids in Figure 40a).

For each iceberg cuboid, the algorithm then fetches the raw data that correspond to

each iceberg cell in this cuboid. That can be done in two different ways: (1) Run

a GroupBy operation using the cuboid attributes on the raw data and check the

iceberg condition before drawing the sample for a cell (2) Run an equi-join operation

between the cuboid iceberg cell table and the raw data to find the data corresponding

to iceberg cells (see Figure 40b), then run the GroupBy operation on the retrieved

raw data of iceberg cells, and finally draw a local sample for such cells. The second

way is obviously more efficient when the iceberg cuboid only has a few iceberg cells.

To decide that, Tabula employs the following cost model:

CostPrune + CostGroupPrunedData < CostGroupAllData

N ∗ i+
i

k
N ∗ logk(

i

k
N) < N ∗ logk(N) (5.1)

where N is the cardinality of the table, i is the number of iceberg cells, k is the

number of all cells in this cuboid. If the inequality holds, Tabula will use the second

way mentioned above. Note that this condition assumes that each cell has the same

amount of grouped raw data.

142



D. C. M. Cell raw data Sample

[0, 5) 1 credit

[0, 5) 1 dispute

[0, 5) 2 (null)

[0, 5) 2 cash

…

Figure 41: Output cube table of the initialization algorithm

5.4 Sample Selection

After the cube initialization, the partially materialized sampling cube may still

possess a large memory footprint. That is because: (1) the number of cuboids and

cube cells increases exponentially as the number of cubed attributes increase (2) for

every iceberg cell, Tabula materializes a sample dataset (not just a single aggregate

value), which may still consist of hundreds or thousands of tuples.

I observed that a sample in an iceberg cell can actually be re-used to represent

the samples of other iceberg cells. That happens when applying the sample to those

cells still ensures that loss(raw, sam) ≤ threshold θ. For example, in Figure 41,

the sample stored in Iceberg Cell 〈[0, 5), 1, dispute〉 is similar to the raw data of
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Iceberg Cell 〈[0, 5), 2, null〉. In this case, I can let Cell 〈[0, 5), 2, null〉 use the sample

of 〈[0, 5), 1, dispute〉 instead of materializing its own local sample. The sample of

〈[0, 5), 1, dispute〉 is the representative sample for these two iceberg cells’ samples.

Therefore, to further reduce the memory footprint, Tabula only persists a represen-

tative set of samples from the cube table, and re-uses the representative samples in

many iceberg cells rather than persisting every individual local sample. I define the

representation relationship between two samples as follow:

Definition 5 (Sample Representation relationship). Given the raw data of an iceberg

cell CellA (format: tuple, tuple, ...) and its local sample SamA (format: tuple, tuple,

...), the raw data of another iceberg cell CellB and its sample SamB. SamA can

represent SamB only if loss(CellB, SamA) ≤ loss threshold θ.

To select representative samples, Tabula first evaluates the relationships among

different iceberg cells, which are described by a graph, namely sample representation

graph (abbr. SamGraph). See the example in Figure 42.

Definition 6 (SamGraph). SamGraph(V , E) is a directed graph, where V and E

represent the set of vertexes and edges, respectively. Each v ∈ V represents a local

sample stored in an iceberg cell. A directed edge from vertex v to u indicates that the

sample v can represent the sample u. A bi-directed edge between a vertex v and u

means that both samples v and u can represent each other.

To build the SamGraph, Tabula performs an inner join on the cube table generated

by the initialization algorithm (Section 5.3.2). The join condition is the representation

relationship depicted above. I can express the inner join query using a SQL query as

follows:
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Sample1 Sample2 Sample3 Sample4

Sample5 Sample6 Sample7 Sample8

Figure 42: Select the representative samples

SELECT t1.D, t1.C, t1.M, t2.D, t2.C, t2.M

FROM cube_table t1, cube_table_no_rawdata t2

WHERE loss(t1.cellrawdata, t2.sample) ≤ threshold

where cube_table is the cube table in Figure 41 and cube_table_no_rawdata

is the same table but without raw data. Because the loss function may need some

measures of the cell raw data (e.g., AVG), the cube table from the initialization

algorithm needs to carry the raw data for each iceberg cell. Therefore, the cube table

generated by the real run stage has a column named Cell Raw Data. Note that this join

can be accelerated by any existing image/data similarity join algorithms. In addition,

this join result does not have to exhaust all possible representation relationships.

Sample selection on a non-exhaustive SamGraph may not minimize Tabula’s memory

footprint but still ensures Tabula’s bounded-error guarantee.

Tabula traverses the SamGraph to select the representative samples, only persists

selected samples, and drops the rest. I formally define the Representative Sample

Selection (abbr. RepSamSel) problem as follows:
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Definition 7 (Representative Sample Selection). Given a SamGraph = (V, E), select

a subset D of V such that: (1) For every vertex v /∈ D, v is represented by at least a

vertex u ∈ D and (2) The size of D is minimized.

As depicted above, the main objective is to persist a minimal set of local samples

and every unpersisted local sample can be represented by a persisted local sample.

The first condition guarantees that if a local sample is not selected to be persisted,

each iceberg cell can still use one of the persisted samples to answer queries. The

second condition ensures that Tabula selects the minimum number of samples to

persist/maintain, and hence reduces the overall memory space occupied by the sampling

cube.

Lemma 5.4.1. The representative sample selection (RepSamSel) problem is NP-Hard.

Proof. That can be proved by reducing the Minimum Dominating Set (MDS) problem

which is known to be NP-hard [6] to RepSamSel problem. I first relax the representation

relationship: if sample A can represent sample B, then sample B can also represent

A. Then, I can change all edges in SamGraph (V, G) to bi-directed edges. Now

RepSamSel problem is identical to the MDS problem. The RepSamSel problem

on bi-directed SamGraphs is a subset of that on directed SamGraphs. Therefore,

RepSamSel problem is also NP-hard. The full details of the reduction algorithm is

omitted due to space limitation.

Representative Sample Selection Algorithm. Since RepSamSel problem is

NP-hard, I resort to a greedy selection strategy. The algorithm (see Algorithm 10)

takes as input the SamGraph(V, E) and keeps selecting a sample v ∈ V and inserts

it into D based on a greedy strategy, until every remaining sample in V has at

least one representative in D. The greedy strategy always picks the sample v ∈ V
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Algorithm 10: Representative Sample Selection
Data: SamGraph(V, E), each edge is denoted as 〈head, tail〉. head and tail

are sample IDs
Result: A set D which consists of many sample IDs

1 Group edges E by head sample IDs;
// Sort head sample IDs by their outdegress

2 Sort groups in the descending order of the group counts;
3 Create a LinkedHashMap HM〈head, {tail, tail, ..}〉;
4 Insert sorted groups one by one into HM ;
5 Create a representative set D = ∅;
6 while HM != ∅ do

// Pick sample ID by outdegress
7 Remove the top map 〈head, {tail, tail, ..}〉 from HM ;
8 Put head in D;

// Remove samples that are represented by head
9 foreach tail in {tail, tail, ..} do

10 Remove the map whose key is tail, from HM

such that v has the highest number of edges directed from v to other samples. In

other words, the algorithm always selects the most representative sample among all

remaining samples in a greedy fashion. Given the SamGraph in Figure 42, the greedy

representative sample selection algorithm will pick Sample2 (represents 1,2,3,6,7),

Sample8 (represents 3,7,8), Sample5 (represents 5,6) and Sample4 (represents itself),

in this particular order. These four samples compose the representative samples set

and are persisted in a sample table as depicted in Figure 39(b). The resulting cube

table is normalized to the final cube table such as Figure 39(a) and each iceberg cell

of the final cube table links to a sample id. If the local sample of an iceberg cell can

be linked to multiple samples, I randomly pick one link to keep.
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5.5 Experiments

Compared approaches. All pre-built samples are cached into the cluster’s

memory: (1) SampleFirst (SamFirst): This approach creates a random sample of the

entire dataset before accepting any query (see the definition in Section 5.1). I use two

SampleFirst versions: 100MB and 1GB pre-built sample sizes. (2) SampleOnTheFly

(SamFly): This approach has no pre-built samples (see the definition in Section 5.1).

It uses the greedy sampling algorithm (Algorithm 8) to ensure the deterministic

accuracy guarantee. (3) POIsam [38]: It is similar to SampleOnTheFly but has an

extra random sampling step. After executing every query, it first creates a random

sample on the query result then applies Algorithm 8. Please note that this greedy

algorithm modifies the original POIsam’s algorithm which fixes returned sample size

and minimizes accuracy loss. POIsam supports visualization-aware sampling accuracy

loss function including 1 dimension and geospatial data. In the experiments, I use

POIsam’s default theoretical error bound (5%) and confidence level (10%). This

means that the sample produced by POIsam for every online query can have 5% or

more error than Sample on the fly, at 10% chance. (4) SnappyData [76]: It applies

data-system queries on the stratified samples, then returns an AVG of the query

result. I use the cubed attributes as Query Column Set (QCS) in the experiments.

Two versions of SnappyData are tested: 100MB and 1GB size pre-built samples. (5)

Tabula: this is the system proposed in this chapter. (6) Tabula*: this is Tabula but

does not have the sample selection technique. (7) Sampling cube (FullSamCube):

this approach creates a fully materialized data cube which holds a local sample for

every cell. (8) Partially materialized sampling cube(PartSamCube): this approach
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Figure 43: Initialization time of different loss functions and different cubed attributes

directly executes the initialization query as shown in Section 5.2. It does not use the

initialization algorithm in Section 5.3.2 and sample selection in Section 5.4.

Evaluation metrics. I use the following metrics to measure the performance of

each approach: (1) Initialization time: The time used to initialize the systems. I show

the initialization time of Tabula, FullSamCube, PartSamCube, and SnappyData. (2)

Memory footprint: The physical memory occupied by the pre-built / materialized sam-

ples in different approaches. SampleOnTheFly and POIsam do not incur extra memory

space because they always draw samples on the fly. (3) Data-to-visualization time: it

consists of (a) data-system: executing data-system queries and running online sampling

(only for SamFly and POIsam). (b) sample visualization: performing visual analysis

149



tasks (exclude SnappyData). SnappyData has no visual analysis time because it takes

a query and directly renders a conclusion, which is AVG. (4) Actual accuracy loss:

the actual accuracy loss of the returned sample, calculated by the user-defined loss

function. (5) Query answer size: the number of tuples sent to /processed by the

dashboard.

Dataset and query attributes. I use the New York City taxi trips real dataset

(NYCtaxi) [85] which is mentioned in the running example. I pre-cache the entire

dataset into the cluster’s memory before initializing or using any approach. There

are 7 categorical attributes used in the experiments: vendor name, pickup weekday,

passenger count, payment type, rate code, store and forward, dropoff weekday. I

use the first 4, 5, 6, 7 attributes in the predicates of data-system queries. Full data

cubes built upon these attributes have 3 thousand, 17 thousand, 47 thousand and 151

thousand cells, respectively. The first 5 attributes are used by default.

User defined accuracy loss functions. (1) Statistical mean loss: this is

Function 1 which checks against fare amount attribute of NYCtaxi data. (2) Geospatial

heatmap-aware loss function: this is Function 2 (3) Linear regression loss: this is

Function 3 (4) Histogram-aware loss: this is Function 2 but it is calculated on 1-

dimension data (using Euclidean distance). The corresponding analysis task is shown

in Figure 36. This function checks against NYCtaxi fare amount attribute so the

distance unit is US dollar.

Analytics workload. I build a full data cube on n attributes then randomly

pick 100 SQL queries (cells) from the cube. All compared approaches will then run

these queries. Returned query answers are passed to the visualization dashboard in

files. To quantitatively measure the visual analysis performance, I use two well-known

analysis tools to record the corresponding visual analysis time: (1) Matlab: a renowned
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Figure 44: Memory footprint of different loss functions and different attributes, in
logarithm scale

scientific computing software. I leverage it to draw histogram and geospatial heatmaps

on results returned in corresponding accuracy loss based experiments. (2) Scikit Learn:

a widely used machine learning Python library. I use it to calculate statistical means

and linear regression functions of returned query answers. All analysis tasks are

executed on the master machine of the cluster.

Cluster settings. All compared approaches are implemented with Apache Spark.

I conduct the experiments on a cluster which has one master node and four worker

nodes. Each machine has an Intel Xeon E5-2687WV4 CPU (12 cores, 3.0 GHz per

core), 100 GB memory, and 4 TB HDD. I also install Apache Hadoop 2.6, Apache

Spark 2.3, and SnappyData Enterprise 1.0.2.1 (column store).
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5.5.1 Initialization Time

In this section, I study the initialization time of different approaches (see Figure 43

and 45a). I vary the value of the user specified loss threshold θ. SampleFirst’s

initialization time is omitted because the random sampling time is negligible compared

to other approaches. I compare Tabula against FullSamCube and PartSamCube on a

small dataset, 5GB NYCtaxi (see Figure 45a) using histogram-aware loss function,

because FullSamCube and PartSamCube incur high initialization time and cannot

scale to the full NYCtaxi dataset. I also show the execution time of the dry run stage,

real run stage and sample selection (denoted as SamS) of Tabula.

As shown in Figure 45a, Tabula takes around 40 times less initialization time

compared to FullSamCube and PartSamCube. This makes sense because Tabula

utilizes the dry run stage to skip many unnecessary GroupBys while other approaches

run 2n − 1 GroupBy operations (n is the number of attributes). As depicted in

Figure 43, the dry run stage execution time remains the same for different user

specified loss thresholds but the overall initialization time of Tabula increases with the

decrease of loss threshold. This is because a lower value of θ introduces more iceberg

cells. Tabula always spends the same amount of time on the dry run stage to identify

iceberg cells. However, if there are more iceberg cells, Tabula will take more time

to draw local samples for iceberg cells in the real run stage and select representative

samples in sample selection. It is also worth noting that geospatial heatmap-aware loss

functions lead to Tabula consuming more time on the dry run stage while statistical

mean costs the least time on that. This makes sense because the visualization-aware

loss function involves complex tuple-to-tuple calculation compared to the statistical

mean loss function.
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Figure 45: Cubing overhead on 5GB NYCtaxi data

5.5.2 Memory Footprint

In this section, I study the memory footprint of Tabula for different accuracy loss

functions. Tabula consists of three physical components in memory, global sample,

cube table (Figure 39a) and sample table (Figure 39b). Tabula* does not have the

sample table. As depicted in Figure 44, decreasing the value of θ leads to more

memory space occupied by Tabula. That happens because a smaller θ results in more

iceberg cells and more materialized local samples. Among the three components of

Tabula, the global sample size remains the same for different θ values because this size

is only related to the raw dataset scale according to Section 5.3.2.1. Both the cube

and sample tables increase for smaller thresholds but the sample tables are at least

100 times larger than the cube tables. This makes sense because the cube table only

contains simple iceberg cell information without any materialized samples. Tabula* is

around 50 times larger than Tabula because it does not employ the sample selection

technique.

As depicted in Figure 45b, the size of FullSamCube remains the same for different

thresholds because it always materializes local samples for all cube cells regardless of
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thresholds while PartSamCube only materializes samples for iceberg cells. FullSam-

Cube is around 50-100 times larger than Tabula while PartSamCube is around 5 - 8

times larger than Tabula because PartSamCube does not contain the sample selection

technique.
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Figure 46: Performance of geospatial heatmap-aware loss (unit: meter), 0.25 kilo
meter ≈ 0.004 (normalized distance)
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Figure 47: Performance of different numbers of attributes in data-system queries, with
histogram-aware loss function

154



48 24 12 6
Accuracy loss threshold  ( )

0k

2k

4k

6k

Da
ta

-s
ys

te
m

 ti
m

e 
(m

s) SamFirst-100MB
SamFirst-1GB
SamFly-Query

SamFly-Sam
Tabula *

Tabula

(a) data-system time

48 24 12 6
Accuracy loss threshold  ( )

0

10

20

30

40

50

Ac
tu

al
 a

cc
ur

ac
y 

lo
ss

 (
)

SamFly
Tabula *

Tabula

(b) actual loss

Figure 48: Performance of linear regression loss (loss unit: degree ◦)
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Figure 49: Performance of statistical mean loss (loss unit: percentage)

5.5.3 Data-to-visualization Time

I study the effect of various accuracy loss functions and threshold values on the

total data-to-visualization time. I only run analysis tasks using the smallest accuracy

loss thresholds (θ) for all accuracy loss functions and report the time in Table 11.

In terms of data-system time, as shown in Figures 46a,49a and 48a, the data-

system time of SamFirst remains the same for all threshold values and loss functions

because the only factor that can affect SamFirst is the size of its pre-built sample.

POIsam and SampleOnTheFly are 10 times and 20 times slower than Tabula. This is
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because Tabula quickly returns either the materialized global or a local sample while

POIsam and SampleOnTheFly always query the entire dataset and draw samples on

the fly. Although I pre-cached the entire dataset and ran queries in parallel, the query

time is still significantly large. POIsam can reduce the online sampling time, but its

data-system time is still non-negligible.

Table 11: Sample visualization time of different approaches

Approach Geospatial heat map Statistical mean Regression
SamFirst-100MB 29 ms 0.02 ms 0.07 ms
SamFirst -1GB 59 ms 0.13 ms 0.15 ms

SamFly 146 ms 0.01 ms 0.29 ms
POIsam 143 ms - -
Tabula 390 ms 0.13 ms 1.33 ms

No sampling 330 sec 1.8 sec 1.9 sec

In terms of the sample visualization time, as shown in Table 11, Tabula has the

highest visual analysis time among all compared approaches because it sometimes

returns the global sample (around 1000 tuples) for queries which hit non-iceberg cells

while other approaches such as SampleOnTheFly and POIsam only return around 100

tuples for geospatial heat map loss function. However, analysis tools can still easily

render results for Tabula within several hundred milliseconds because of the small size

of global samples. Please note that it takes around 3 orders of magnitude more time

on analyzing the raw query result (without any sampling).

5.5.4 Studying the Actual Accuracy Loss

In this section, I vary the accuracy loss threshold value (error bound in SnappyData)

and evaluate the actual loss of samples returned by different approaches. The results

are depicted in Figures 46b,49b and 48b. Error bars indicate the minimum, average

and maximum actual accuracy loss. I omit the actual accuracy loss of two SamFirst
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approaches in figures because their average accuracy loss is 20 times larger than other

approaches for geospatial heatmap-aware loss functions and 4 times larger than others.

As shown in the figures, as I decrease the threshold value, the actual loss of POIsam,

SampleOnTheFly, SnappyData, and Tabula decreases. SampleOnTheFly, SnappyData

and Tabula never exceed the thresholds. The actual accuracy loss of POIsam is around

1%-5% percent larger than SampleOnTheFly and sometimes, it exceeds the threshold.

This makes sense because POIsam runs the greedy sampling function over a random

sample. Tabula* has similar actual accuracy loss to Tabula because the sample

selection technique does not necessarily increase accuracy loss. Also, SnappyData

can guarantee the error-bound since the actual accuracy loss exceeds the threshold

value, it accesses the raw table and runs queries and aggregation on-the-fly. Since

SnappyData implements its own optimized block-based column store, its data-system

time is still comparable to Tabula.

5.5.5 Impact of the Number of Attributes

In this section, I evaluate the impact of the number of attributes. I initialized

Tabula on 4, 5, 6 and 7 attributes of NYCtaxi dataset and use these attributes in

data-system queries. Histogram-aware loss function with “0.5 dollar” threshold value is

used in the experiment. 4 metrics are reported in Figure 43d, 44d and 47, respectively.

The result of actual accuracy loss is omitted because the number of attributes has no

effect on actual accuracy loss.

As depicted in the figures, in terms of initialization time, using more cubed

attributes leads to higher execution time for all three initializing stages of Tabula

because this introduces more cube cells as well as iceberg cells. Cube cells increase
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exponentially with more cubed attributes. But the number of attributes has relatively

small impact on the dry run stage because the dominating part in this stage is building

the first cuboid which requires a full table GroupBy. Other cuboids are derived from

the first one.

In terms of memory footprint, the global sample size of Tabula remains the same

because it is only related to the cardinality of the raw dataset. The sizes of the cube

table and sample table increase with more cubed attributes. But the growing speed

of the sample table becomes slower because, even though there are more and more

iceberg cells and local samples, Tabula still can only materialize a small number of

local samples as the representatives.

In terms of data-to-visualization time, using more attributes slightly increases

the data-system time of Tabula because of larger cube tables and sample tables.

SampleFirst approaches have the constant data-system time since they always perform

a full sequential filtering on pre-built samples. The query time of SampleOnTheFly

and POIsam remains the same for different numbers of attributes because they always

perform a full sequential scan on the raw table. However, the visual analysis time of

SampleFirst drops while using more attributes. This is because the queries will contain

more predicates and lead to smaller query results. Similarly, the sampling time of

SampleOnTheFly drops significantly while using more attributes. The online sampling

time of POIsam does not change much because it first draws a random sample of the

raw query result and the random sample size does not change much (controlled by

the law of larger numbers [38]). The visual analysis time of Tabula slightly reduces

while using more cubed attributes because Tabula returns materialized local sample

for more queries in this situation.
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5.6 Summary

In this section, I presented Tabula as a middleware system to accelerate the

spatial visualization dashboard. It can be easily extended, thanks to its generic

user-defined accuracy loss function, to support various visual analytics. Tabula adopts

a materialized sampling cube approach, which pre-materializes sampled answers for

a set of potentially unforeseen queries. To achieve scalability, the system employs a

partially materialized cube to only materialize local samples of iceberg cells based on

the accuracy loss function and a sample selection technique to selectively materialize

representative local samples. The system ensures the difference between the sample

and the raw query answer never exceeds a user-specified accuracy loss threshold.

According to the experiments, Tabula upholds different user-defined visual analysis:

for complex analysis such as geospatial visual analytics and linear regression, it achieves

up to 20 times less data-to-visualization time than SampleOnTheFly-like approaches;

for OLAP analytics such as statistical mean (AVG), it exhibits similar performance

to column-store based SnappyData. The proposed middleware system also occupies

up to two orders of magnitude less memory footprint and an order of magnitude

less initialization time than the fully materialized sampling cube approach. That

makes Tabula a very practical and scalable approach to deploy in real geospatial data

visualization dashboards.
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Chapter 6

CONCLUSION AND FUTURE WORK

This chapter concludes the dissertation by summarizing the contributions of the

work and highlighting the future directions.

6.1 Conclusion

In this dissertation, I designed database systems to accelerate large-scale geospatial

data analytics. In particular, I worked on several tasks in this direction: (1) scalable

analytics systems for geospatial data (2) lightweight database indexing mechanisms

(3) interactive analytics on big spatial data. The proposed approaches are as follows:

For scalable analytics systems, I first presented GeoSpark, an in-memory cluster

computing framework for processing large-scale spatial data. Moreover, the system

provides native support for spatial data partitioning, indexing, , and query processing

in Apache Spark to efficiently analyze spatial data at scale. Extensive experiments

show that GeoSpark outperforms Spark-based systems such as Simba and Magellan

up to one order of magnitude and Hadoop-based system such as SpatialHadoop up

to two orders of magnitude. I then introduced GeoSparkViz, a cluster computing

system for visualizing massive-scale geospatial data. The GeoSparkViz approach

allows users to declaratively define geosaptial visual analytics (GeoViz) tasks. The

system adopts a GeoViz-aware spatial partitioning scheme and execution strategies

that co-optimize the map visualization operations with spatial query operators (in

GeoSpark). Experiments based on real spatial data show that GeoSparkViz can
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achieve up to one order of magnitude less data-to-visualization time compared to its

counterparts.

For lightweight database indexing mechanism, I introduced Hippo, a data-aware

sparse indexing approach that efficiently and accurately answers database queries.

Hippo occupies up to two orders of magnitude less storage overhead than de-facto

database indexes, i.e., B+ -tree while achieving comparable query execution perfor-

mance. Moreover, Hippo achieves about three orders of magnitudes less maintenance

overhead compared to the B+-tree and BRIN. To achieve that, Hippo stores page

ranges instead of tuples in the indexed table to reduce the storage space occupied by

the index. Furthermore, Hippo maintains histograms, which represent the data distri-

bution for one or more pages, as the summaries for these pages. I then extend Hippo

to support spatial data indexing. Hippo-Spatial adopts a two-dimension histogram as

the page summaries. The proposed approach outperforms R-Tree index by showing

two orders of magnitude less storage overhead and competitive query performance.

For interactive analytics on big spatial data, I designed Tabula as a middleware

system to accelerate the spatial visualization dashboard. Tabula adopts a materialized

sampling cube approach, which pre-materializes sampled answers for a set of potentially

unforeseen queries. The system ensures the difference between the sample and the

raw query answer never exceeds a user-specified accuracy loss threshold. For complex

analysis such as geospatial visual analytics and linear regression, it achieves up to 20

times less data-to-visualization time than competitors.
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6.2 Future work

In the future, I will continue developing open-source high-performance data man-

agement systems to make sense of “Big Spatial Data”. My current work raises a number

of challenging research problems in this direction that I plan to address immediately.

Large-scale spatial streaming data analytics. The unprecedented popularity

of GPS-equipped mobile devices and Internet of Things (IoT) sensors has led to

continuously generating large-scale location information combined with the status

of surrounding environments. Such data has a streaming nature and keeps evolving

at a staggering rate over time. Precisely digesting the massive spatial streaming

data that swarms into the database systems in a short time window requires a well-

designed system architecture. It will be greatly beneficial to spatial data scientists in

a variety of real-world scenarios. For instance, to make timely planning strategies,

the city of Chicago started installing sensors across its road intersections to monitor

the environment, air quality, and traffic. Furthermore, making sense of real-time

streaming data from these “never sleeping” GPS-equipped devices may even bolster

autonomous city governance (i.e., City Brain) including AI-based climate control and

traffic planning. Unfortunately, existing streaming data management systems are not

scalable and efficient to handle spatial streaming data. They either require tedious

programming tasks or suffer from a significant performance drop. To remedy that, I

plan to address the scalability issue of large-scale spatial streaming data analytics by

developing a full-fledged distributed spatial streaming analytics system. To be specific,

I am going to investigate the applicability of Spark Streaming and Apache Flink to

continuous spatial queries such as range query, join query and nearest-neighbor query.
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I also plan to carry out research in inventing distributed spatial data structures in the

streaming environment.

Interactive visual analysis of dynamic geospatial data. Geospatial visual

analytics is the science of analytical reasoning assisted by geo-visual map interfaces.

In my current work Tabula, I have shown that interactive spatial visual analytics

can help users easily find interesting insights. Although there is a flurry of research

projects tackling this problem from different angles, the existing work mainly focuses

on static data rather than dynamic data, with the latter becoming more popular

recently. Consider an example user who wants to set up a real-time heat map of

millions of GPS-installed vehicles in New York City. As time goes on, this heat map

should change every minute or even every second to reflect the actual movement of

vehicles from place to place. Moreover, the user may impose filters on numerical

or textual attributes of moving vehicles or zoom in to a particular region for more

details. The interactive nature of geospatial visual analytics requires an immediate

response from visualization systems. I plan to address several challenges in this topic

that include the co-optimization between underlying database systems and front-end

visualization frameworks and materialized visualization maintenance.

Machine Learning-enhanced spatial data structures. Machine Learning

techniques have introduced significant performance improvement to several classic

database components such as data indices and query optimizers. Therefore, the user

can see analysis results with lower storage cost yet at a higher speed. In this ML

revolution, spatial data has got little attention and is merely treated as a second-class

citizen. However, spatial data has several special features that deserve better designs.

First, spatial data usually consists of heterogeneous objects including points, polygons,

and trajectories. Second, spatial queries are often clustered to certain hot geographical
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regions. Third, other attributes in a dataset are commonly correlated to the spatial

attribute (e.g., spatial auto-correlation: income - education -> location). Thus, I plan

to design a set of ML-enhanced spatial data structures such as indices or new physical

data layouts to facilitate spatial query processing. The newly invented spatial data

structures can also be embedded into my future projects derived from other research

topics that I plan to pursue.
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