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ABSTRACT

Information Retrieval (IR) is the task of obtaining pieces of data (such as docu-

ments or snippets of text) that are relevant to a particular query or need from a large

repository of information. IR is a valuable component of several downstream Natural

Language Processing (NLP) tasks, such as Question Answering. Practically, IR is at

the heart of many widely-used technologies like search engines.

While probabilistic ranking functions, such as the Okapi BM25 function, have been

utilized in IR systems since the 1970’s, modern neural approaches pose certain ad-

vantages compared to their classical counterparts. In particular, the release of BERT

(Bidirectional Encoder Representations from Transformers) has had a significant im-

pact in the NLP community by demonstrating how the use of a Masked Language

Model (MLM) trained on a considerable corpus of data can improve a variety of

downstream NLP tasks, including sentence classification and passage re-ranking.

IR Systems are also important in the biomedical and clinical domains. Given the

continuously-increasing amount of scientific literature across biomedical domain, the

ability find answers to specific clinical queries from a repository of millions of articles

is a matter of practical value to medics, doctors, and other medical professionals.

Moreover, there are domain-specific challenges present in the biomedical domain, in-

cluding handling clinical jargon and evaluating the similarity or relatedness of various

medical symptoms when determining the relevance between a query and a sentence.

This work presents contributions to several aspects of the Biomedical Semantic

Information Retrieval domain. First, it introduces Multi-Perspective Sentence Rele-

vance, a novel methodology of utilizing BERT-based models for contextual IR. The

system is evaluated using the BioASQ Biomedical IR Challenge. Finally, practical

contributions in the form of a live IR system for medics and a proposed challenge on

the Living Systematic Review clinical task are provided.
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Chapter 1

INTRODUCTION AND MOTIVATION

Perhaps most widely utilized in the form of search engines, the ability to take a

query and use it to find relevant information from a repository of knowledge is essential

to effectively making use of large amounts of data. The field of study that deals

with finding and ranking relevant information based on certain criteria is Information

Retrieval (IR), which utilizes many components from the field of Natural Language

Processing (NLP), particularly when dealing with textual data such as webpages or

research papers. NLP can be considered to be a subfield of Artificial Intelligence (AI)

that deals with the semantic interpretation of natural language by machines. Over

the decades, several NLP statistical metric- and machine learning-based techniques,

such as term frequency–inverse document frequency, bag-of-words, and deep neural

networks, have been applied to IR systems with varying degrees of success.

Information Retrieval systems have considerable research and practical value. IR

systems are used in NLP tasks like question answering, document classification, and

automatic document summarization. From a practical standpoint, systems that can

accurately locate relevant data can have many domain-specific uses. For instance,

there is considerable real-world value in being able to accurately and automatically

locate relevant scientific literature from a repository of millions of papers that can

answer a particular clinical query. An effective IR system can offset considerable

manual human review of data and allow users to focus on information that is relevant.

From casual web searching to specific tasks like clinical study results lookup, there is

significant interest and value in the development of accurate and reliable IR systems.

However, discussing such a system begs the question, what does it mean for a
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sentence or document to be relevant to a query? After all, a piece of information’s

“relevance” to a query is rarely a simple binary value. For instance, two sentences

may both be relevant to a query, but one could be more relevant than the other by

containing more complete information. Part of the objective of IR is to determine

what constitutes “relevance” and how to locate information that matches this.

In this work, we present a semantic Information Retrieval system for the biomed-

ical domain which incorporates elements from several NLP tasks such as Sentence

Relevance, Semantic Textual Similarity, and Semantic Information Availability. We

demonstrate the effectiveness of this system in retrieving and ranking relevant doc-

uments and sentences from the MEDLINE/PubMed Baseline through the BioASQ

Challenge. Additionally, we present multiple applications of the work described above,

in the form of (1) an interactive and functional interface, and (2) a proposal of multi-

ple challenges with respect to application of such semantic IR systems to the Living

Systematic Review workflow, a clinical workflow which is currently done entirely

manually in practice.

1.1 Information Retrieval

Information Retrieval (IR) is an active area of research with significant down-

stream practical and research-related applications, especially when paired with Ques-

tion Answering (QA). The goal of an IR system is to take in a query and locate from

a data repository pieces of information that are most relevant to the query. Such a

system therefore requires the ability to parse and interpret a query (employing meth-

ods from the subfield of QA), as well as to evaluate and rank the relevance of data

in the repository with respect to the query. This work will specifically focus on IR in

the textual domain.

The meaning and nature of a “relevant” document given a query can depend on
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the domain and the task for which IR system is being used. For instance, in the

biomedical domain, if a medical professional submits a query about the efficacy of a

specific drug on a particular illness, they would likely be looking for the results of

clinical trials, rather than general information about a particular drug (which could

be interpreted as being relevant to the query, but would not be relevant with respect

to the likely intent behind the search).

In order to create an IR system that searches over a particular data repository

(such as a repository of text files), the data in the repository needs to be converted into

a representation that facilitates efficient searching and ranking. Once such an index

is constructed, a ranking algorithm is used to locate the most relevant documents in

the index given a particular query. A brief overview of the various indexing methods

and ranking algorithms is presented in the subsequent Chapter.

1.2 BioASQ Challenge

The BioASQ Challenge is a semantic indexing and question answering competition

for the biomedical domain (Tsatsaronis et al., 2015). In this work, we will be focusing

on Task B, Phase A of this challenge, specifically on the document retrieval and

sentence retrieval components of this challenge. The BioASQ dataset consists of a

series of queries. For each query, up to 10 gold “relevant” documents with respect to

the query are provided in the form of their PubMed URLs, and up to 10 “relevant”

snippets of text with respect to the query (most commonly single sentences), which

have been obtained from the gold documents are provided. A “document” consists of

the title and abstract of a paper on PubMed. The dataset from which these documents

are obtained is the MEDLINE/PubMed Baseline repository, which consists of roughly

28 million articles (where an article consists of a paper’s document and abstract).

For this particular challenge, teams receive a list of queries. For each query,
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the system must first obtain up to 10 most relevant documents, and from those

documents, up to 10 most relevant snippets of text. Thus, the snippet retrieval task

can be considered a “downstream” task of the document retreival task. The results

are evaluated on a variety of metrics that include the F1 score and Mean Average

Precision (MAP) of the document and sentences.

Table 1.1 provides examples of relevant and nonrelevant sentences, taken from

documents in the MEDLINE/PubMed 2018 Baseline dataset, given a particular query.

The samples in the table were obtained from the BioASQ Challenge, and “relevant”

samples are defined as the Top 10 most relevant sentences from a particular query

per the BioASQ Gold Dataset; the “nonrelevant” sentences are those outside the Top

10.

1.3 Research Value

Having the ability to effectively access biomedical information has importance of

practical value in the clinical field. For instance, clinical sites in developing nations,

offshore sites, or in areas with limited resources, may not have the resources to main-

tain an up-to-date repository of medical best-practices for a variety of situations to

easily access when needed. In areas such as this, having an Information Retrieval

and Question Answering system that can accept a clinical or biomedical query and

automatically obtain sentences or documents that can address such a query. Doing

so would obviate the need for extensive manual review of hundreds of new scientific

literature, and allow professionals to concentrate on only the most relevant literature

and spend greater time on making clinical decisions.
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Query What is the effect of TRH on myocardial contractility?

Relevant

Samples

• Acute intravenous administration of TRH to rats with

ischemic cardiomyopathy caused a significant increase in heart

rate

• TRH can enhance cardiomyocyte contractility in vivo

• TRH in the range of 0.1-10 mumol/l was found to exert

a positive inotropic effect on cardiac contractility.

• Thyrotropin-releasing hormone (TRH) improved mean arterial

pressure (MAP) and myocardial contractility (dp/dtmax,

-dp/dtmax, Vpm, and Vmax).

• TRH improves cardiac contractility, cardiac output,

and hemodynamics.

Nonrelevant

Samples

• These data suggest that 5-HT is an important transcriptional

regulator of the cardiac TRH gene.

• The effects of thyrotropin-releasing hormone (TRH) and the

TRH-analogs, 4-fluoro-Im-TRH (4-F-TRH) and,

2-trifluoromethyl-Im-TRH (2-TFM-TRH), on the cardiovascular

system and prolactin (PRL) release were examined in conscious

rats.

• Thyrotropin-releasing hormone (TRH) has been shown to

be scattered throughout the gastrointestinal tract.

• It is concluded that the enhancement by TRH of

indomethacin-induced gastric lesions is due to a combination

of the central and peripheral actions of the ulcerogenic agents.

Table 1.1: Relevant and nonrelevant samples, given a query.
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1.4 Research Evaluation

The approach is evaluated on the BioASQ 6B-Phase A challenge , specifically on

the document and sentence retrieval tasks. The official evaluation script is used, which

expects a predictions file in the same format as the gold standard file (JSON files)

and outputs a series of metrics, including Precision, Recall, F1, and Mean Average

Precision for both document and sentence retrieval tasks. The official evaluation

metric for this particular challenge is the Mean Average Precision (MAP) metric.

The evaluation script will be used to obtain all of the described metrics.

1.5 Contributions

This work presents a series of contributions related to semantic Information Re-

trieval in the biomedical domain:

1. Contextual Multi-Perspective Sentence Relevance

The main contribution of this work is a novel approach for conducting Sentence

Ranking and Document Ranking for application in tasks such as Information

Retrieval. This approach involves the evaluation of multiple “perspectives”

related to query-sentence pair relevance and the fusion of these perspectives to

form a more rounded ranking score. The development of this methodology, as

well as successes and challenges encountered in various iterations of the process,

are presented.

2. BioASQ Document and Sentence Ranking Challenges

The Multi-Perspective Sentence Relevance system was evaluated on the BioASQ

6B and 7B Phase A tasks. The results and accompanying analysis are presented.

3. Interactive Semantic IR Demo for Medics
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An interactive demo, representing a valuable application of Semantic Infor-

mation Retrieval in retrieving information from medical handbooks, has been

developed as part of this work. Details about the demo and corresponding

Application Programming Interface (API) are provided.

4. Semantic IR Applied to Living Systematic Review

Background information about clinical Systematic Reviews, as well as multiple

challenges regarding the application of Semantic Information Retrieval to Living

Systematic Reviews, is presented.

1.6 Structure of Thesis

This work will first review some background and existing work on the topic of

Information Retrieval and Semantic Information Retrieval. Next, it will cover the

novel Semantic IR approach taken in this work, including the intuitions behind it,

formulations, and training process. Next, the system’s performance in the BioASQ

Document and Sentence Ranking challenges will be reported and analyzed. A prac-

tical application of the system in the form of an IR application for medics will then

be examined. Next, a new challenge will be proposed around the Living Systematic

Review clinical task. Finally, some concluding remarks and areas of future work will

be detailed.
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Chapter 2

BACKGROUND AND RELATED WORK

In this Chapter, we will discuss various techniques utilized for Information Re-

trieval, ranging from ranking models developed several decades ago to modern, deep

learning-based techniques. In Section 2.1 we will briefly review IR methodologies de-

veloped and used over the past several decades. In Section 2.2, we will discuss recent

neural breakthroughs in NLP and their applicability to IR. In Section 2.3, we will

discuss recent semantic IR systems that leverage neural methodologies for document

and sentence retrieval tasks. In Section 2.4, we will review the application of the

previously-mentioned techniques to specifically the biomedical domain.

2.1 Traditional Information Retrieval Methodologies

Variants of automated information retrieval systems have been implemented for

the past several decades. At the heart of being able to retrieve documents is creat-

ing effective representations of them. Historically, models such as the Vector Space

model and Probabilistic model, which rely on factors including term frequency, inverse

document frequency, document length, have been used to come up with document

representations (Mitra and Chaudhuri, 2000).

Once the documents have been converted from text into a numerical or vector-

based representation, a ranking function needs to sort the documents in terms of

relevance to a particular query. The Okapi BM25 ranking function, a derivative

of the Probabilistic retrieval model, is one of the most well-known and widely-used

ranking functions in IR, and is a bag-of-words retrieval function that also relies on

term frequency and inverse document frequency (TF-IDF).
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2.2 Neural Breakthroughs in NLP

BERT (Bidirectional Encoder Representations from Transformers) is a language

representation model that, along with similar types of models, has empirically been

shown to yield state-of-the-art results in several NLP tasks, such as on the GLUE

benchmark, and on tasks related to IR like Question Answering (Devlin et al., 2018).

BERT and related models are able to achieve significant performance gains in part due

to the large corpora of data they are trained on. Moreover, the Transformer neural

network architecture (Vaswani et al., 2017), which BERT is built on, facilitates deep

relationships between individual tokens in an input, thereby allowing the model to

gain better contextual awareness of the relationships present in the input.

2.3 Recent Semantic IR Systems

Apache Lucene is an open-source search library which is widely used for developing

and deploying IR systems, both in research and commercial applications (Lucene,

2010). The software is able to turn raw data repositories into indices containing the

data represented in a form which allows for efficient searching and ranking. Moreover,

common ranking and searching algorithms, such as the aforementioned Okapi BM25

algorithm, are implemented in the software. Anserini is an IR toolkit built on top

of Lucene that facilitates easier experimentation and reproduction of results when

using bag-of-words ranking models like BM25 (Yang et al., 2018). Anserini also has

a Python interface named Pyserini.

Recently, several IR systems have been developed that take advantage of the

ability of BERT to capture contextual information. Because running BERT models is

computationally expensive compared to ranking algorithms like BM25, these systems

generally use BM25 or similar algorithms to perform a “coarse” level retrieval to
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narrow down candidates from the order of millions of documents to tens or hundreds,

and then carry out finer reranking via BERT.

One such system is Birch, which utilizes a combination of Anserini for coarse rank-

ing and BERT for fine ranking (Yilmaz et al., 2019). BERT performs top Document

Retrieval via Anserini and further re-ranking of the document list via BERT.

One key insight made in Nogueira and Cho (2019), which will be explored further

in the context of the work detailed in this paper, is the notion that the Semantic Rank

of a particular document can be represented by the weighted sum of the document’s

3 most relevant Sentences. In this way, a basic formulation of Document Ranking

via Sentence Ranking can be made. This idea will be discussed further in subsequent

Chapters.

2.4 Semantic IR in the Biomedical Domain

There have been many innovations specifically in the biomedical and clinical NLP

domains. Some widely-used pretrained and finetuned variants of BERT are BioBERT

(Lee et al., 2019) and NCBI BlueBERT (Peng et al., 2019). Various participants in

BioASQ Challenges have utilized variants of BERT, such as BioBERT or BERT-

Large, for the Sentence Ranking components.

Other participants in the BioASQ Challenge, have also utilized BERT-based sys-

tems for document and/or snippet retrieval purposes. Traditionally, such IR systems

have consisted of two independent modules, a document ranking and sentence ranking

module, with the overall system operating as a “pipeline”. This formulation matches

the BioASQ Challenge, where Sentence Retrieval is a downstream task of the Docu-

ment Retrieval challenge. However, some participants, such as the team from Athens

University of Economics and Business, have developed methodologies to jointly rank

and retrieve documents and sentences, to successful results (Pappas et al., 2019).
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As utilizing BERT and BERT-like neural models can be computationally expensive,

efficient ranking algorithms like the previously-mentioned BM25 algorithm are gener-

ally used to retrieve a smaller subset of potentially relevant documents from the full

repository of about 25 million documents. The more contextual, computationally-

expensive algorithms are then run on the smaller subset of documents rather than on

the full repository.
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Chapter 3

COMPONENTS OF SEMANTIC BIOMEDICAL INFORMATION RETRIEVAL

Having briefly covered the foundations of Information Retrieval systems, along

with relevant prior work, we will discuss our IR system designed for Document and

Sentence Retrieval in the biomedical domain. We have seen from previous literature

that a combination of traditional and neural network-based approaches can incorpo-

rate greater contextual awareness in IR algorithms, leading to better results. In this

section, we will describe our semantic Information Retrieval system, including the

various iterations (both successful and unsuccessful) of the algorithm throughout the

course of its development.

The main motivating objectives behind the development of this system were:

• The BioASQ Information Retrieval + Question Answering Challenge

• An Interactive Semantic IR System for Medics System

• Performing automated Living Systematic Reviews

This Chapter will detail the development of the system and its fundamental com-

ponents. We will leave evaluation and task-specific descriptions of system to subse-

quent Chapters.

3.1 General System Architecture

The primary focus of research and development was on a Sentence Ranking mod-

ule, as that module was directly applicable to all three of the main motivating objec-

tives. Because the BioASQ Challenge requires Document Retrieval and Ranking to
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be performed upstream of Sentence Ranking, a Document Ranking module – formu-

lated using the Sentence Ranking module – was also developed. Because the Sentence

Ranking module is central to all three objectives, including in the Document Retrieval

task, we will first discuss that module.

Figure 3.1 provides a high-level overview of the system as a whole as part of the

BioASQ Challenge, with the Sentence Ranking module emphasized. The diagram

illustrates the use of the Sentence Ranking module in both the Document Retrieval

and Sentence Ranking tasks. The first task of the system for the BioASQ Challenge

is to take a query and retrieve the top k relevant documents out of roughly 29 million

candidates in the MEDLINE/Pubmed Baseline, where k is an integer that is set by

the user depending on the objectives (for the BioASQ Challenge, k is up to 10). Given

the top k relevant documents along with the original query, the second part of the

system will break the documents down into individual sentences and perform semantic

ranking on the sentences to identify the top n most relevant sentences given the query,

where n is again an integer that is set by the user (for the BioASQ Challenge, n is

up to 10).

This Chapter will discuss the development of the Sentence Ranking module first,

followed by the Document Retrieval component.

3.2 Sentence Ranking

The Sentence Ranking component of the IR system is comprised of multiple sub-

systems. Each of these systems was developed and refined separately, and then further

refined as part of the Sentence Ranking component. Thus, the following section will

cover the various sub-systems of the Sentence Ranking module, along with challenges

in the development of them, and then discuss their fusion.

We randomly divide the BioASQ training data into a training and development
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Figure 3.1: Overall Semantic IR system architecture

set, of 1742 and 433 queries, respectively. Each query contains up to 10 ranked

documents and up to 10 ranked snippets (which for the most part are single sentences),

which we will refer to as the “training set” and “development set” in the subsequent

subsections.

3.2.1 Sentence Relevance

As noted in previous literature, utilizing BERT-based architectures for Sentence

Relevance can provide comparatively effective results for sentence relevance ranking.

This work follows the approach detailed by Nogueira et al. in repurposing BERT as a

Passage Reranker (Nogueira and Cho, 2019). A BERT-Large model (with 24 layers,

16 attention heads, and 340 million parameters) is trained on a binary classification

task of classifying a query-sentence pair as a “relevant” pair or “not relevant” pair.

During inference, the prediction probability is taken as the Sentence Ranking score;

sentences with higher scores are considered to be more relevant. Figure 3.2 provides a

high-level overview of this process for both fine-tuning and inference in IR systems. As

noted by the authors in Nogueira and Cho (2019), this model was surprisingly effective

across various domains; specifically, they demonstrated its effectiveness across general
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English training and Twitter domain IR performance (Nogueira and Cho, 2019).

We start with a BERT model that has been fine-tuned on a binary classification

task of whether a particular sequence was relevant to a given query or not, using the

Microsoft MS MARCO dataset (Nguyen et al., 2016). The model weights for such

a finetuned version of this model, detailed in the paper, have been made available

by the authors on GitHub (Nogueira and Cho, 2019). The authors have trained the

model on a dataset of 12.8 million (query, sentence) pairs from the MS MARCO

dataset.

Using the BioASQ training data, we create a biomedical binary sentence relevance

dataset in the same format in order to further finetune the MS MARCO-finetuned

model using data from the biomedical domain. We generate binary training samples

using the training set and evaluate using binary samples generated from the develop-

ment set. The training and development binary sentence relevance datasets are 221K

and 55K samples, respectively. We further finetune the model on this domain-specific

binary sentence relevance task, evaluating on the development set. Examples from

this dataset are shown in Table 3.1.

We find that, as the model has already been finetuned once on the MS MARCO

dataset, only a small amount of further finetuning – under 1 epoch – is necessary

to achieve a peak in the model’s performance on both the binary sentence relevance

score and the BioASQ Sentence Ranking score. Each checkpoint of the model is

evaluated on both these measures, and it is found that further finetuning for 1000

checkpoints on the biomedical sentence relevance dataset leads to a small gain in the

model’s performance compared to the MS MARCO “baseline” model. Moreover, it

can be seen that there is a correlation between performance on the binary sentence

relevance task – evaluated using the F1 metric – and the sentence ranking task –

evaluated using the Mean Average Precision, per the BioASQ Guidelines, in that a
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Figure 3.2: Overall Sentence Relevance model fine-tuning and inference-time
methodologies.

higher score on the binary sentence relevance task largely correlates with a higher

MAP score in the BioASQ sentence ranking task (when the documents are fixed with

the gold input). The hyperparameters used to finetune this model are described in

Table 3.2.

The data is formulated in the following manner to pass into the BERT model:

[CLS] Query [SEP] Sentence

where Query and Sentence are the tokenized query and the sentence respectively,

[CLS] is the classification token, and [SEP ] is the separator token that separates the

query and sentence. For example,

[CLS]What is Dravet syndrome?[SEP]Dravet syndrome is a severe form of

epilepsy.

(where the sentences would be tokenized and represented as vectors of numbers

rather than alphabetically).

Like that of MS MARCO task, the loss function of this additional finetuning is

a Cross-Entropy loss. In other words, the goal of this process is to try to finetune

a BERT model to accurately predict whether or not a particular sentence, given a

query, is relevant or not.
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( Is nintedanib effective for Idiopathic Pulmonary Fibrosis?,

In this review, we present the positive results of recently published clinical

trials regarding therapy for IPF, with emphasis on pirfenidone and nintedanib.,

1 )

( Is nintedanib effective for Idiopathic Pulmonary Fibrosis?,

Results will be reported in the first half of 2014.,

0 )

(Mutation of which gene is implicated in the familial isolated pituitary

adenoma?, Germline mutations in the aryl-hydrocarbon interacting protein gene

are identified in around 25% of familial isolated pituitary adenoma kindreds.,

1 )

(Mutation of which gene is implicated in the familial isolated

pituitary adenoma?, However, the exact molecular mechanism by which

its disfunction promotes tumorigenesis of pituitary is unclear.,

0 )

Table 3.1: Examples from the biomedical Sentence Relevance dataset.

learning rate 3e-06

seq len 128

weight decay 0.01

adam epsilon 1e-08

Table 3.2: Hyperparameters used to finetune Sentence Relevance BERT model.
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Model Description Precision Recall F1 Score

MS MARCO 0.4154 0.6118 0.4948

MS MARCO + Bio Sentence Relevance

(checkpoint 1000)
0.6813 0.5466 0.6066

MS MARCO + Bio Sentence Relevance

(checkpoint 2000)
0.7484 0.4860 0.5893

MS MARCO + Bio Sentence Relevance

(checkpoint 3000)
0.7580 0.4806 0.5882

Table 3.3: Model performances on biomedical binary sentence relevance task. Scores
for the “1” class.

During inference time as part of the Sentence Retrieval pipeline, each relevant

document retrieved from the Document Retrieval pipeline is split into individual

sentences. Each sentence is then tokenized in the same format as described above,

and passed through the Sentence Relevance BERT model. Because the BERT model

has been trained to classify between two classes (0/not relevant and 1/relevant), the

model outputs two values; when passed through a softmax layer, they sum to 1.0 and

represent the prediction probability for each of the possible classes. To determine a

particular sentence’s Sentence Relevance rank, the probability of the 1 class is taken.

Thus, each sentence from all the relevant documents will receive a score between

0.0 and 1.0; the sentences will then be sorted by this score. Figure 3.2 provides a

high-level overview of the fine-tuning and inference-time processes.

To evaluate the performance of the models on the binary Sentence Relevance

dataset, the Precision, Recall, and F1 metrics were used. Scores are shown in Table

3.3. It was found that the finetuned model at checkpoint of step 1000 was the best

performing on this sentence relevance task compared to the original MS MARCO

finetuned model and the model finetuned on more data.
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Model Name
MPrec

snippets

MRec

snippets

MF1

snippets

MAP

snippets

GMAP

snippets

MS MARCO +

Bio Sent Relevance

(checkpoint 1000)

0.4571 0.4630 0.4037 0.5016 0.1173

MS MARCO +

Bio Sent Relevance

(checkpoint 2000)

0.4576 0.4681 0.4068 0.5000 0.1139

MS MARCO +

Bio Sent Relevance

(checkpoint 3000)

0.4602 0.4702 0.4087 0.5022 0.1135

Table 3.4: Model performances on BioASQ Sentence Ranking challenge. Evaluated
on the development dataset using Gold Relevant Document list.

We found these results on the binary Sentence Relevance dataset also correlated

with performance on the Sentence Ranking task from the BioASQ Challenge. To

evaluate on the BioASQ Sentence Ranking task, we fixed the Document Retrieval

portion by feeding the system the gold labeled documents, and in this way evaluated

the Sentence Ranking by itself. We found that in this task, the clinical Sentence

Relevance finetuned at checkpoints 1000 and 3000 performed the highest in terms of

the MAP measure. The scores for this are shown in Table 3.4.

In short, we found that employing methods similar to the existing work discussed

in Chapter 2 provided decent results on the BioASQ Challenge. However, there are a

few key issues that remain unaddressed with this method. The central problem with

solely relying on a binary Sentence Relevance-based system for Sentence Ranking

tasks is that binary Sentence Relevance is not equivalent to Sentence Ranking by

importance.
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Figure 3.3: High-level Multi-Perspective architecture concept.

There are several aspects of binary Sentence Relevance that make it advantageous

for training such systems on. Primarily, there is a significant amount of labeled data

for this task, both in general English and in biomedical domains. Moreover, it is rela-

tively simple to generate additional data, both automatically and semi-automatically,

by modifying existing datasets, as we did with the BioASQ dataset. However, intu-

itively speaking, just because a sentence is “relevant” does not mean it is a top-ranked

sentence in terms of what a user submitting a query is looking for. In other words,

“relevance” is generally not a binary attribute – there are different degrees of rele-

vance – two sentences can both be relevant, but one can be more relevant than the

other – that cannot be adequately captured by such a binary formulation.

Additionally, in the BioASQ challenge, sentences and documents are ranked by

confidence of relevance, rather than just relevance. A different way of interpreting

this task is to rank sentences by the amount of “evidence” or “justification” that

can be compiled about its relevance. This intuitive understanding leads us to the

consideration of other metrics and methodologies that can be used to gather additional

“justification” for the relevance of a sentence which can ideally fill the gaps present

through the sole utilization of the Sentence Relevance-based methodology.
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Thus, we propose the fusion of three models trained on different NLP tasks –

Sentence Relevance, Semantic Textual Similarity, and Semantic Information Avail-

ability – to create a joint representation of the relevance of a sentence. We will first

describe the remaining two tasks of Semantic Textual Similarity and Semantic In-

formation Availability, then discuss the process of fusing these three representations

into a single one. In the following Chapters, we will discuss the empirical results of

this representation in greater detail.

3.2.2 Semantic Textual Similarity

Semantic Textual Similarity (STS) is a benchmark that evaluates how similar two

sentences are two each other, often on a scale from 0.0 - 5.0, with 0.0 representing

entirely dissimilar sentences, and 5.0 representing semantically identical sentences

(although not necessarily lexically exactly the same).

One benefit STS systems can offer in the context of IR is the ability to resolve

synonyms or semantic similarities present in medical jargon, clinical symptoms, or

the like. For instance, two terms such as “migraine” and “headache”, or “abdom-

inal pain” and “stomachache”, can be semantically very similar. However, because

these terms are not lexically identical it can be possible for systems to miss these.

Although techniques such as query expansion exist in traditional IR systems, they

are not always effective in identifying all related words and consequently can miss

particular associations that may semantically exist. STS systems can help resolve

these similarities and identify terms that could be potentially relevant to the query

which otherwise may have been missed.

As a concrete example to demonstrate the effectiveness of STS systems in practical

IR tasks, we take the following passage, excerpted from Zimran et al. (2016):

“Long-term efficacy and safety results of taliglucerase alfa up to 36 months
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in adult treatment-naive patients with Gaucher disease. Taliglucerase alfa

is an intravenous enzyme replacement therapy approved for treatment of

type 1 Gaucher disease (GD), and is the first available plant cell-expressed

recombinant therapeutic protein. Herein, we report long-term safety and

efficacy results of taliglucerase alfa in treatment-naive adult patients with

GD. Patients were randomized to receive taliglucerase alfa 30 or 60 U/kg

every other week, and 23 patients completed 36 months of treatment...

All treatment-related adverse events were mild to moderate in intensity

and transient. The most common adverse events were nasopharyngitis,

arthralgia, upper respiratory tract infection, headache, pain in extremity,

and hypertension....”

The abstract has been truncated for brevity.

Given the above passage, and the following query:

“Can Gaucher disease treatment cause migraines?”

a user would expect an IR system to return the last sentence in the excerpt,

due to the fact that it mentions a connection between a potential treatment for

Gaucher disease and headaches, and the semantic similarities between “migraines”

and “headaches”. However, when computing Sentence Ranking scores using the Bi-

nary Sentence Relevance model, we receive the highlighted sentences displayed in

Figure 3.4 as the Top 3 ranked sentences. Thus, it is evident the Sentence Relevance-

based module did not consider the potential semantic similarity between the two

terms to be significant enough to warrant a high ranking score.

On the other hand, Figure 3.5 shows the Top 3 sentences when using the STS

module to generate sentence rankings. In this case, the particular sentence recieved

a high enough score to warrant a Top 3 ranking.
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This example seeks to demonstrate the value of an STS system in a practical IR

situation. As will be demonstrated in subsequent Sections and Chapters, utilizing

solely an STS based system is not effective in a Sentence Ranking task; thus, there

needs to be an integration of these multiple modules.

Figure 3.4: Top 3 Ranked Sentences when using Sentence Relevance module.

Figure 3.5: Top 3 Ranked Sentences when using Semantic Textual Similarity mod-
ule.

23



Given a query Q and a sentence S:

Value Description

4 Sentence S has the exact information related to query Q

3 Sentence S has almost exact information related to query Q

2 Sentence S has partial information related to query Q

1 Sentence S has very little information related to query Q

0 Sentence S has no information related to query Q

Table 3.5: The Semantic Information Availability (SIA) scale

3.2.3 Semantic Information Availability

Existing scales used in NLP like Natural Language Inference (NLI) and Seman-

tic Textual Similarity (STS) can be useful for finding and evaluting knowledge, like

discussed previously. However, there is no standardized scale for information-seeking

tasks that can answer the question Given a query Q and sentence S, how much infor-

mation does S have that is needed to answer Q? The motivation behind proposing a

new scale, termed Semantic Information Availability (SIA), is to have a formal met-

ric that can do so. Being able to evaluate query-sentence pairs in this manner can

have direct practical benefits for tasks like IR, for which existing methodologies, as

discussed previously, are not able to fully capture the necessities for effective ranking.

The SIA scale is defined in Table 3.5. A more detailed interpretation of the SIA

scale is as follows:

Given question Q and sentence S:

4 - S can completely and unambiguously answer Q with no additional reasoning nec-

essary

3 - S can answer Q if some slight reasoning is applied to the information given in S

(meaning the answer is not 100% explicitly spelled out in S)
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2 - One other piece of information is needed to “link” the information given in S to

answer Q (one-hop reasoning)

1 - There is some information in S which, when reasoning is applied, can relate to

part of the question Q. In other words, applying reasoning to S will get you to half

or less of the full answer. In other words – S requires multi (n > 1)-hop reasoning to

answer Q

0 - There is absolutely nothing in S that can be used to answer any portion of Q,

even if additional reasoning is applied

As can be observed from the definition of the SIA scale, as well as the definitions

of each of the components in the scale, this task is very aligned with the high-level

goals of Information Retrieval – to be able to score how well a particular sentence

answers a query. Accordingly, the intuition is that having a module which, given a

query and sentence as an input, predicts a score from 0 to 4 reflecting the amount

of information that the sentence has to answer the query will be very useful for this

Semantic IR task.

The major challenge in being able to utilize the SIA scale as part of a model is

that there is no existing dataset. Consequently, it is necessary to create very large

amounts of data (in the tens of thousands of entries) in order to train a system which

can be an accurate predictor for SIA. In order to rapidly generate the data necessary

to train a system on the SIA task, a largely automated methodology was taken that

utilized existing datasets and generative models.

First, specifically, automatic generation was used to come up with (query, sentence)

pairs of Categories 0, 2, and 4, in the following process:

The Question Answering via Sentence Composition (QASC) Dataset was used

as a base for science-related SIA (Khot et al., 2019). This dataset consists of 9,980
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8-way multiple-choice questions about grade school science, and comes with a corpus

of 17M sentences. Each question is annotated with two facts from the corpus that

can be combined together to arrive at the answer (question, possible answers,

correct answer, fact1, fact2, combinedFact). The following rules were used

to convert this dataset into an SIA dataset:

For Category 4 Samples: For each gold row in QASC, create SIA entry

(Q=question, S=combinedFact).

For Category 2 Samples: For each gold row, there are two potential SIA

entries: (Q=question, S=fact1) and (Q=question, S=fact2). However, because

this is a multiple-choice task and SIA is meant to be an open-ended dataset, one of

the answers will not be suitable for the SIA task as it will exploit the multiple-choice

nature of the QASC dataset due to the data generation templates used for QASC.

Thus, to select the best sentence, the BERT Sentence Relevance model finetuned on

the MS MARCO dataset (described earlier this Chapter) was applied on both pairs,

and the higher scoring pair was selected. This method was determined to be a useable

heuristic by randomly hand-annotating around 50 samples and recognizing that this

method correctly selected the useable sentence for each sample.

For Category 0 Samples: Using a RoBERTa (Liu et al., 2019) STS model

trained on the GLUE STS-B general English task, two gold rows were picked in the

QASC dataset, where the STS score between the two gold questions was above a par-

ticular threshold, determined heuristically. As long as the two queries did not match,

two SIA rows were created: (Q=question1, S=combinedFact2) and (Q=question2,

S=combinedFact1)

Using this methodology, a preliminary SIA dataset in the science domain was

created, consisting of roughly 30,000 rows of (query, sentence, sia score) tuples.

From this initial dataset, two generative models are trained. Specifically, the
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OpenAI Generative Pretrained Transformer 2 (GPT-2) model is used (Radford et al.,

2019). A GPT-2 Medium (355 Million parameters) is trained to generate a query

given a sentence 4 value, and another is trained to generate a sentence 2 given a

sentence 4. Both these models are trained only on the initially-generated dataset.

These generative models enable creation of SIA samples in a purely unsupervised

manner, rather than having to rely on existing datasets and repurposing them for the

SIA task.

To generate Sentence 3 and Sentence 1 entries, the following method was used.

For each Sentence 4, the ScispaCy library (Neumann et al., 2019), built on the SpaCy

library (Honnibal and Montani, 2017), was used to identify relevant biomedical enti-

ties from the sentence. Then, with a random probability, the entity is selected (and

split into individual words if necessary). For each word, a substitution is found by

finding the top 5 words by cosine similarity in a word2vec model trained on several

clinical datasets, from which a random one is selected. The original word is swapped

with its substitution. In this manner, a sentence from which part of the key entities

are replaced with similar words is generated, and taken as Sentence 3 value. The same

process is used to generate Sentence 1 entries; however, instead of using a Sentence 4

as the “base”, the Sentence 2 is used.

Using both the generative models and word swapping techniques, a SIA dataset

is constructed using sentences from the BioASQ training dataset. Roughly 200,000

SIA samples are created through this process. These samples are added to the first

phase of auto-generated examples via the QASC dataset.

While the automatically-generated samples are comparatively less nuanced, and

in some cases, less varied than examples which could be human-annotated, having an

automated pipeline allows for the generation of the many examples needed to train a

system from scratch.
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Once the SIA dataset has been generated, a BERT-Large model is finetuned on

this task, formulated as a regression task. The Mean Squared Error loss is used during

the training of this model. During inference, a query and sentence are passed in to

the model, which returns a score between 0.0 and 4.0, which is taken as the “SIA

Score” for that particular query-sentence pair.

For application of the SIA module to the BioASQ Challenge, two versions of the

model were developed; one using only the initial auto-generated data from QASC,

and one using the data generated with the methodology described above. In practice,

the former model was found to yield better results in the BioASQ Challenge.
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Chapter 4

MULTI-PERSPECTIVE INFORMATION RETRIEVAL

We have now discussed the semantics and methods behind different ways of evaluating

and measuring query-sentence pairs. We have also noted the advantages and disad-

vantages of each of the methods with respect to their application to the IR task. We

will now discuss the “fusion” component of the proposed system illustrated in Figure

3.3. In order to determine how to most effectively combine this disparate models into

a single ranking score, 7 broad methodologies were tried out and evaluated empirically

on the BioASQ challenge. In this subsection, we will discuss these methodologies in

detail and discuss their successes and failures, and describe the eventual system used.

As described previously, Sentence Ranking was the primary focus of this system.

We will therefore discuss the integration of the various components discussed in the

previous Chapter into a single Sentence Ranking module. Next, we will discuss how

the Sentence Ranking module was used in the formulation of a Document Retrieval

module for the BioASQ Challenge.

4.1 Component Fusion for Sentence Ranking

The 7 broad methodologies used can be classified into two general categories,

which we refer to as “Feedforward Fusion” and “Weighted Sum”. We will divide the

discussion into these two broad categories and detail the different efforts within each

of these categories.
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4.1.1 Feedforward Fusion

The main objective of the Feedforward Fusion method was to learn how to combine

the different modules together into a single sentence ranking score. There were several

approaches that were evaluated in order to attempt to learn this fusion methodology;

the high-level approach of the Feedforward Fusion method is illustrated in Figure

4.3. There were two main ideas behind the Learnable Task, using binary Sentence

Relevance as the learnable task, or comparing two sentences as a time to predict the

higher-ranked one. Both these ideas and relevant approaches will be discussed.

Figure 4.1: General architecture of Feedforward Fusion method

Binary Sentence Relevance as Learnable Task

The intuition behind using binary Sentence Relevance as the task to learn the fusion

methodology was as follows:

• Out of the three modules, binary Sentence Relevance is semantically the closest

to the Sentence Ranking objective for IR.

• The best finetuned binary Sentence Relevance model only reaches an F1 score
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of 0.6066, indicating there is potential room for improvement in this task, pos-

sibly with the integration of the other modules. Furthermore, we have seen

a correlation between higher performance on the Sentence Relevance task and

higher performance on the BioASQ Sentence Ranking task, so there is value in

improving the Sentence Relevance task.

Figure 4.2: Architecture for the Binary Sentence Relevance Feedforward Fusion
method.

A variety of architectures were evaluated on their effectiveness to learn with teh

Sentence Ranking objective. In the first model, the (query, sentence) pairs are

passed through Sentence Relevance and STS BERT models, and the CLS tokens of the

BERT models are passed through a Linear layer, which outputs a binary prediction.

Other architectures consisted of the Sentence Relevance CLS token and STS prediction

passed through the Linear Layer and both Sentence Relevance and STS predictions

(rather than CLS tokens) passed through the Linear layer.

It was found experimentally that none of these methods resulted in a model that

was able to perform better on the binary Sentence Relevance task compared to the

Sentence Relevance-only model, and converged either at the same performance or

lower performance. This indicates that, for the binary Sentence Relevance task in

and of itself, the introduction of multiple perspectives is not valuable.
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Two Sentence Ranking as Learnable Task

The intuition behind this approach was to train models to try to learn to compare

two sentences, and determine what the ranking of Sentence 1 was respective to the

ranking of Sentence 2, given a query. To do this, two sentences were passed into the

model with the goal to make a binary prediction on whether Sentence 1 ranked higher

than Sentence 2. During inference time, all permutations of potential sentences would

be fed through the model, and the scores for each Sentence 1 would be summed up

to generate the Sentence Ranking score. The combinations of passing CLS layers and

numerical predictions were also employed here.

Figure 4.3: Architecture for the Two Sentence Ranking Feedforward Fusion method.

The results of this methodology showed decreased performance on the BioASQ

Sentence Ranking objective compared to the performance of the “baseline” Sentence

Ranking only-based model. This is likely because the objective difference between a

sentence of Rank n and a sentence of Rank n+1 in the BioASQ dataset is so subtle it is

difficult to learn a method to distinguish the two. Moreover, after training this model

and testing on the BioASQ Sentence Relevance challenge, the results significantly

underperformed that of the baseline methodology. Parenthetically, this difficulty in

distinguishing between particular biomedical data points is not altogether unexpected;
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similar challenges were encountered in our research when working on biomedical STS

tasks.

Summary and Analysis

All in all, neither of methods tested in the Feedforward Fusion category seemed to

show any results that were more promising than the baseline Sentence Relevance

model-only methodology. There are a few likely reasons why the Feedforward Fusion

class of approaches did not work:

• When trying to learn the fusion layer using a binary Sentence Relevance task,

the components besides the Sentence Relevance component are not useful to

generation of a prediction.

• Using a Relative Sentence Ranking task (comparing two Query-Sentence pairs

and trying to predict which of is more relevant) is very difficult to learn, given

that two sentences of Rank n and Rank n+1 are very similar in terms of rele-

vance.

Consequently, there may be a better means to formulate the learning task used in

the Feedforward Approach, which we will leave for consideration in future work.

The second point yields an intuition that is very helpful in clarifying the next

approach: Rather than considering “relevance” as an inherent semantic attribute of a

sentence given a query, we can think of relevance as the amount of “evidence” that can

be compiled about a sentence given a query that supports its usefulness in answering

the query. We will pursue this intuition and formulate it into the Weighted Sum

technique, which we will now discuss.
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4.1.2 Weighted Sum

The second broad methodology tried was that of the Weighted Sum. In this

methodology, the Sentence Ranking score would be formulated as:

SSENT = α1SSentRelevance + α2SSTS + α3SSIA

where α values were hyperparameters which would be learned over the develop-

ment set. The intuition behind this approach was that, because learning the correct

means to fuse together the different components were not effective as evidenced by

the results of the Feedforward Fusion experiments, a potentially better way of de-

termining how much to consider each component when fusing was to empirically see

what combinations worked the best.

This methodology was comparatively simpler than the Feedforward Fusion experi-

ments. Results from each of the models were cached for efficiency, and hyperparameter

combinations for all α values, between 0.0 and 1.0, at intervals of 0.1, were tested.

The combination that produced the highest Snippet Mean Average Precision (the

official metric for the BioASQ Sentence Ranking challenge) on the validation dataset

was kept.

Initially, these results were tuned using the gold document lists from the BioASQ

Challenge (meaning the values were optimized for the maximum Sentence MAP

score given the gold documents.

However, evaluating on the BioASQ Sentence Ranking challenge also requires a

Document Retrieval module to retrieve the top n documents, where n is up to 10, and

then ranking the sentences from those retrieved documents. Thus, having a Document

Retrieval module was necessary to evaluate the system on this particular challenge;

moreover, it was possible the hyperparameters obtained through validating with gold
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documents were not the ideal hyperparameters in a setting where the correctness of

the documents is not 100%.

We will therefore discuss the formulation of the Sentence Ranking task for the

Document Retrieval task, and the Alternating Optimization algorithm used to tune

the system, in the subsequent Section.

4.2 Document Retrieval

As discussed earlier, the main focus of this research was to develop a Sentence

Ranking system, as it could be evaluated in the BioASQ Challenge, as well as utilized

for the Medic Interface and Living Systematic Review tasks. Therefore, we choose

to formulate the Document Retrieval task as (partially) a Sentence Ranking task in

order to be able to use the same components we have developed earlier.

Specifically, we will formulate the Document Ranking task as a weighted sum

with the “baseline” BM25 algorithm, and the Top 3 sentence scores of a particular

document, as follows:

SDOC = (α1 ∗ SBM25) + (α2 ∗
∑3

i=0(wi ∗ SSENT i))

where α and w are hyperparameters that are learned over the validation set.

Intuitively, this means that a document will be ranked using a combination of the bag-

of-words-based BM-25 algorithm and the its Top 3 most relevant sentences (which are

determined through the Semantic Sentence Ranking methodology discussed above).

4.3 Semantic Document + Sentence Retrieval

We will now take this formulation one step further by integrating the Document

Ranking into the Sentence Ranking formulation as well. Doing so allows us to formu-

late an objective which we can represent as an Expectation Maximization (EM)-like
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algorithm (which we will term as an “Alternating Optimization” algorithm) described

in Figure 4.4.

Figure 4.4: Alternating Optimization formulation of Document and Sentence Rank-
ing.

This formulation captures some of the following intuitions:

• A document’s relevance can be captured (in part) by the relevance of its top

n sentences. This is an intuition that has also been followed in (Nogueira and

Cho, 2019).

• A sentence’s relevance can be captured (in part) by the overall relevance of the

document it is a part of.

There is an interesting recursive relationship between these two points – that is,

improving the Document Ranking could theoretically boost the Sentence Ranking

performance; in turn, improving the Sentence Ranking could boost the Document

Ranking performance. This sets up a recursive training loop which can be formulated

in a similar manner as an Alternating Optimization algorithm. The overall algorithm

to maximize the Sentence Mean Average Precision score, the primary benchmark for

the BioASQ Sentence Ranking challenge, is detailed in Algorithm 1.

Through running multiple iterations of the EM algorithm with randomly initial-

ized parameters, some heuristics were identified to help initialize the parameters with
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Algorithm 1 Algorithm for maximizing Sentence Mean Average Precision score using

Alternating Optimization methodology.

Given SDOC(α, β, w) = β1 ∗ SBM−25 + β2 ∗
∑3

i=1(wi ∗ SSENT i(α, β, w))

Given SSENT (α, β, w) = α1 ∗ SSentRelevance + α2 ∗ SSTS + α3 ∗ SDOC(α, β, w)

α← [rand(0, 1), rand(0, 1), rand(0, 1)]

β ← [rand(0, 1), rand(0, 1)]

w ← [rand(0, 1), rand(0, 1), rand(0, 1)]

SENT MAP ← 0.0

DOC MAP ← 0.0

NEW SENT MAP ← SSENT (α, β, w)

NEW DOC MAP ← SDOC(α, β, w)

while NEW SENT MAP > SENT MAP do

E Phase

DOC MAP ← NEW DOC MAP

new β, new w ← maximizeDOC MAP (α, β, w) via HyperOpt(β, w)

β ← new β

w ← new w

NEW DOC MAP ← SDOC(α, β, w)

M Phase

SENT MAP ← NEW SENT MAP

new α← maximizeSENT MAP (α, β, w) via HyperOpt(α)

α← new α

NEW SENT MAP ← SSENT (α, β, w)

end while
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values that would produce higher results. Primarily, initializing balanced α, β, and w

values (i.e. making all values in the array for a particular parameter the same values)

was found to be beneficial.

Moreover, conducting a hyperparameter search via gridsearch from a range of 0.0

to 1.0 by tenths (0.1) for each parameter was found to be computationally-expensive

and time-consuming, even with caching of the Anserini and BERT model results. To

circumvent this, two techniques were tried. First, gridsearch was used to conduct hy-

perparameter optimization, but with steps of 0.2. Once high-performing parameters

were found, the algorithm was run a second time, with smaller steps around a smaller

window around these parameters. The second technique was to utilize Bayesian Op-

timization using the BayesianOptimization Python package (Nogueira, 14 ) over the

parameters rather than gridsearch, to cover the search space with less computation.

This second approach proved to be empirically far more successful in finding parame-

ters that would maximize the Sentence MAP score on the validation set. When using

Bayesian Optimization, the initial starting parameters were not needed.

Some variants of this methodology were attempted. The first was coming up with

two sets of parameters, one set obtained through running the EM algorithm with

the maximization objective of maximizing Sentence MAP, and the other set obtained

through running the EM algorithm with the maximization objective of maximizing

Document MAP scores. The next was the intuition that, although Sentence Ranking

is a downstream task to Document Retrieval, maximizing the Document Retrieval F1

score is more important in improving the Sentence Ranking MAP score than maxi-

mizing the Document Retrieval MAP score. This notion will be further discussed in

the following Chapter. Thus, in one variant, the Expectation step seeked to maximize

F1, while the Maximization step seeked to maximize MAP.

This algorithm was run on the development set to obtain final values for α, β, and
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w. During the test phase of the BioASQ Document and Sentence Ranking Challenge,

these parameters are then used with the SDOC function to first fetch the top 10

Documents, and then with the SSENT function to fetch the top 10 Sentences from the

top documents. In the next Chapter we will discuss evaluation results of this system

on the BioASQ Challenge for Document Ranking and Snippet (Sentence) Ranking.

Table 4.1 lists the hyperparameters that were obtained following the Alternating

Optimization algorithm for maximizing the Sentence Mean Average Precision metric.

The size of the w vector represents how many scores of the top sentences from a

particular document would be used in the Document Score formulation. For instance,

having a w vector of size 5 would mean the Top 5 sentence scores from a particular

document would be weighted and utilized when ranking documents. However, it was

found that when utilizing any number of sentences beyond the Top 3, the remaining

sentences were not used. Even when using the Top 3 sentences, the majority of

the weights were placed on the highest and second-highest sentences, while the 3rd

highest-scored sentence was not utilized. These findings are reflected in Table 4.1.
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Hyperparameter Value

α1 Sentence Relevance 0.6123

α2 (Semantic Textual Similarity) 0.2664

α3 (Semantic Information Availability) 0.0785

α4 (Document Score) 0.9879

β1 (BM-25 Score) 0.0002

β2 (Sentence Relevance Score) 0.8523

w1 (Top Sentence Score 1) 0.9938

w2 (Top Sentence Score 2) 0.0338

w3 (Top Sentence Score 3) 0.0271

Table 4.1: Learned hyperparameter values over BioASQ Sentence Relevance devel-
opment dataset, with gold Documents.
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Chapter 5

BIOASQ DOCUMENT AND SENTENCE RANKING CHALLENGE

The system described in this work was initially evaluated on the BioASQ 6B Phase A

Document and Snippet ranking challenges, due to the comparatively larger amount

of existing literature available regarding this challenge for comparison and analysis

purposes. However, after evaluation on the BioASQ 6B results, this system was also

evaluated on the BioASQ 7B Phase A Document and Snippet ranking challenges.

Note that in the BioASQ Snippet Ranking component, a “snippet” is not necessarily

identical to a “sentence” (it can be a portion of a sentence or multiple sentences);

however, practically speaking, the majority of snippets were single sentences. Thus,

for the purposes of this system, a snippet is considered equivalent to a single sentence.

This Chapter will cover the performance of this system, as well as some other

systems, on the BioASQ Challenges, along with analysis of the results. Given that in

the BioASQ Challenge, Snippet Ranking is a downstream task of Document Ranking,

we will discuss the Document Ranking results first.

Figure 5.1 is the high-level overview of the system detailed in the previous Chapter

applied to the BioASQ Challenge.

Note: For both the BioASQ 6B and BioASQ 7B Phase A competitions, there

were 5 “batches” of test data which teams participated in. The tables shown in this

section are the BioASQ 6B Phase A, Batch 2; and BioASQ 7B Phase A, Batch 4

results. These results are generally representative of those from the other batches;

the other batch results are available in the Appendix of this document.
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Figure 5.1: Overall Semantic IR system architecture, with Document Ranking for-
mulated as a Sentence Ranking task

5.1 BioASQ Document Retrieval Challenge

The objective for the BioASQ Document Retrieval Challenge is, given a query,

to locate the top n documents from the MEDLINE/PubMed Baseline repository

for the particular query, where n is between 0 and 10 documents. The BioASQ

6 Challenge is based on the MEDLINE/PubMed 2018 Baseline repository, which

consists of about 25 million documents, while the BioASQ 7 Challenge is based on

the MEDLINE/PubMed 2019 Baseline repository, which consists of about 29 mil-

lion documents. A “document” in the context of the BioASQ Challenge and MED-

LINE/PubMed repository is the title and abstract of all completed citations in MED-

LINE present in that year.

As mentioned earlier, the system was intended to be evaluated on the BioASQ

6B Challenge and was subsequently also evaluated on the BioASQ 7B Challenge. As

a result, the system was trained using the BioASQ 6B Training Set, rather than the

BioASQ 7B Training Set, which contains additional data. Consequently, re-training

and hyperparameter tuning the system for the BioASQ 7B Challenge specifically may

lead to improved results in that task, which is left as an exercise for Future Work.
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The results for the BioASQ 6B Phase A Challenge, alongside some other teams’

submissions to the challenges, are detailed in Figure 5.1. The results for the BioASQ

7B Phase A Challenge are detailed in Figure 5.2. The Semantic-Doc submission is the

system that has been trained using the Alternating Optimization algorithm with the

objective to maximize Document Mean Average Precision; the Semantic-Sent submis-

sion is the system that has been trained using the AO algorithm with the objective to

maximize Sentence Mean Average Precision. When using documents for the down-

stream Sentence Ranking task, although the Document Ranking score is used in the

formulation of the Sentence Ranking score, the rank of the document with respect to

the other documents is explicitly not utilized; the more important factor is that the

document made the Top 10 list, and as few as possible irrelevant documents made the

Top 10 list. This can be reflected in the fact that for both BioASQ Challenges, the

Semantic-Sent system had a higher Document F1 score (which does not account for

ordering and only on presence or absence of the document), while the Semantic-Doc

system had a higher Document MAP score.

Further analysis will be discussed after the Sentence Retrieval scores have been

mentioned.

5.2 BioASQ Sentence Retrieval Challenge

In the scope of the BioASQ Snippet Retrieval Challenge, the system must retrieve

the top n snippets from the top k documents that have already been retrieved by

the system, given a query. n and k are each integers between 0 and 10, and for

the purposes of this system, a snippet is equivalent to a single sentence. Therefore,

Snippet Retrieval is a downstream task of the Document Retrieval challenge; the more

effective the Document Retrieval system is in identifying documents with relevant

snippets, the more effective the Snippet Retrieval system will be.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

ustb prir3 0.3121 0.6379 0.3396 0.2512 0.0639

ustb prir4 0.3121 0.6379 0.3396 0.2512 0.0639

aueb-nlp-4 0.3220 0.6431 0.3479 0.2500 0.0660

aueb-nlp-2 0.3210 0.6420 0.3475 0.2470 0.0701

testtext 0.3201 0.6355 0.3464 0.2467 0.0634

ustb prir1 0.3201 0.6355 0.3464 0.2467 0.0634

ustb prir2 0.3221 0.6618 0.3519 0.2458 0.0795

aueb-nlp-3 0.3160 0.6365 0.3423 0.2416 0.0646

aueb-nlp-1 0.3060 0.6294 0.3332 0.2319 0.0560

Semantic IR 0.2684 0.5697 0.2952 0.2085 0.0324

Table 5.1: BioASQ 6B Phase A Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-1 0.2541 0.6668 0.2998 0.2102 0.0316

aueb-nlp-2 0.2531 0.6523 0.2992 0.2092 0.0279

aueb-nlp-4 0.2481 0.6445 0.2948 0.2080 0.0268

aueb-nlp-5 0.4537 0.6416 0.4580 0.1968 0.0291

aueb-nlp-3 0.2401 0.6451 0.2857 0.1962 0.0282

lh sys4 0.2230 0.6121 0.2695 0.1752 0.0186

Semantic IR 0.2170 0.5867 0.2592 0.1777 0.0176

MindLab QA... 0.2080 0.5664 0.2463 0.1724 0.0121

MindLab QA... 0.2080 0.5664 0.2463 0.1724 0.0121

MindLab QA... 0.2080 0.5664 0.2463 0.1724 0.0121

Table 5.2: BioASQ 7B Phase A Document Ranking results.
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System
MPrec

Snippets

MRec

Snippets

F-Measure

Snippets

MAP

Snippets

GMAP

Snippets

Semantic IR 0.3805 0.3643 0.3357 0.3731 0.0787

aueb-nlp-5 0.3852 0.2976 0.2653 0.3187 0.0352

MindLab QA... 0.2878 0.2307 0.1985 0.2736 0.0065

MindLab QA... 0.2888 0.2298 0.1986 0.2695 0.0071

MindLab QA... 0.2888 0.2298 0.1986 0.2695 0.0071

aueb-nlp-4 0.2873 0.2146 0.1850 0.2337 0.0231

aueb-nlp-3 0.2746 0.2041 0.1749 0.2272 0.0210

aueb-nlp-2 0.2768 0.2133 0.1826 0.2256 0.0236

aueb-nlp-1 0.2716 0.2055 0.1749 0.2226 0.0202

ustb prir4 0.2179 0.6188 0.2566 0.1731 0.0205

Table 5.3: BioASQ 6B Phase A Snippet Ranking results.
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System
MPrec

Snippets

MRec

Snippets

F-Measure

Snippets

MAP

Snippets

GMAP

Snippets

aueb-nlp-2 0.3254 0.4308 0.3048 0.3409 0.0344

aueb-nlp-1 0.3209 0.4321 0.3018 0.3249 0.0281

Semantic IR 0.2959 0.3414 0.2568 0.3030 0.0151

aueb-nlp-2 0.3254 0.4308 0.3048 0.3409 0.0344

aueb-nlp-1 0.3209 0.4321 0.3018 0.3249 0.0281

Semantic IR 0.2959 0.3414 0.2568 0.3030 0.0151

aueb-nlp-5 0.3256 0.4403 0.3010 0.2976 0.0379

MindLab QA... 0.2276 0.2857 0.2093 0.2214 0.0052

aueb-nlp-3 0.2563 0.3581 0.2346 0.2213 0.0196

aueb-nlp-4 0.2550 0.3325 0.2318 0.2173 0.0178

MindLab Red... 0.2168 0.2718 0.1982 0.2000 0.0067

MindLab QA... 0.2112 0.2317 0.1819 0.1931 0.0058

MindLab QA... 0.1998 0.2669 0.1865 0.1892 0.0064

Table 5.4: BioASQ 7B Phase A Snippet Ranking results.
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5.3 Analysis of the BioASQ Competition Results

In the Document Ranking task, the system generally placed below the Top 5

submissions in the BioASQ 6 and 7 Document Ranking challenges. However, in the

Snippet Ranking task, the system generally placed around 1st and 4th on the BioASQ

6 and 7 Snippet Ranking challenges, respectively, in terms of systems and 1st and

2nd place, respectively, in terms of participants. The exact results are provided in

the Appendix of this document.

The Sentence Ranking module seems to perform very well with respect to the

upstream Document F1 score compared to the other systems. Specifically, the Doc-

ument F1 scores for the two systems outperforming this system in Snippet MAP in

the BioASQ 7 challenge are 0.3409 and 0.3249, respectively. This system’s Document

F1 score in that challenge is 0.2592. This seems to imply that, given a higher perfor-

mance in the Document Ranking task, the Snippet Ranking performance may come

closer or exceed the other systems’. The comparatively high performance of the Sen-

tence Ranking module in BioASQ 6, where the difference between this system’s F1

Document Score and that of other top-performing systems was considerably smaller

than in BioASQ 7, appears to support this idea. All in all, the value of introducing

Multiple Perspectives when conducting Semantic Ranking, as well as incorporating

the scores of the top sentences from a document that a sentence belongs to into that

particular sentence’s Ranking score, seems to be empirically validated through the

Snippet Ranking performance in the BioASQ Challenge.

There is potential to improve the Document Ranking module, which as noted

above will likely have the downstream impact of boosting the Sentence Ranking per-

formance as well. Although the main focus in this work was developing a Sentence

Ranking module, and formulating the Document Ranking task as partially a Sentence
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Ranking task, focusing on developing a Document Ranking module with a greater

emphasis on document-specific features may lead to improved performance in this

area.

A further discussion on the potential improvements of this system is left to the

Future Work portion of this document.
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Chapter 6

PRACTICAL APPLICATIONS OF THE SEMANTIC IR SYSTEM

This work presents practical contributions to Information Retrieval in the biomed-

ical/clinical domains. The two primary such contributions are:

1. An interactive interface for medics to retrieve relevant information to a query

from a clinical guidebook

2. The application of the system to the Living Systematic Review task

This Chapter will detail the technical work and contributions involved in the pro-

cess of developing these software applications. It will also provide a holistic evaluation

and reflection on this work, as well as potential use cases for these applications.

6.1 Medic App

The Medic App is an deployed instance of the Semantic IR system with an in-

teractive front-end interface. This contribution directly ties the research detailed in

this work to the practical use of such a system described in the Motivation section

of this document. As a demonstration, an interactive version of the Semantic IR

system has been implemented on the U.S Special Operations Forces Medical Hand-

book. The Medic App facilitates medical professionals or other users to quickly and

automatically locate information from the handbook relevant to clinical query. This

frees users from having to manually read through the medic handbook to locate the

information necessary to address a particular clinical query and instead jump directly

to the relevant information, allowing clinical sites with limited time or resources to

spend more effort on medical care.
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In this Section, we will discuss the technical components of the application and

demonstrate the value of utilizing the Semantic IR system for interfacing with the

handbook as opposed to using existing PDF software search.

The Medic App comprises of multiple different components that bridge the IR

system to usable software. This Section will discuss the following components in

detail:

• Medic App User Interface

• Semantic IR Application Programming Interface (API)

6.1.1 Medic App Interface

The Medic App interface can be accessed via web browser. When a user visits

the web page, a querying and section analysis page will be displayed. The interface

allows the user to perform the following actions:

• Input a query in natural language

• Adjust the number of relevant results to locate

• View the system’s confidence in the returned results

• Search across various data repositories, including the medic handbook (default),

PubMed Baseline 2018 and 2019 repositories, or import a specific PubMed

document by its Document ID

The user inputs a query in the interface, and the system locates the most rele-

vant sentences through the Medic Handbook and returns those results. The results

are highlighted along with their adjacent sentences to provide better context to the

results. Figure 6.1 is a screen capture of the primary interface to the IR module.
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Figure 6.1: Medic App user interface.

6.1.2 Semantic IR API

To facilitate real-time, custom user requests through the interface, a custom Ap-

plication Programming Interface (API) was developed to serve requests to and from

the IR system. Via the API, users can submit any query to the IR system, adjust

parameters such as the number of relevant results to locate, and pass any custom data

to perform IR across. The API is called via GET request in the following manner:

http://<URL>/bert-ir?query=<QUERY>&sentences=<TEXTDATA>&

topn=<TOPN>&alpha=<ALPHA>

(where URL is the URL on which the API is served.)
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The parameters are as follows:

• query

A query as a String. For example, What happens during sceptic shock?

• sentences (Optional)

If the user chooses to search across custom text, the text can be passed through,

and the system will search across that text. Otherwise, the default medic hand-

book data index will be used.

• topn (Optional)

The number of top sentences to highlight and select for the user.

• alpha (Optional)

The alpha values, as defined in the Sentence Ranking module formulation earlier

in this document.

The code for hosting such an API is available on the public repository of this

work. The specified API endpoints can be utilized to develop custom user interfaces

across different devices. Although the neural network models can be hosted on CPU,

deploying the API on CPU-only will result in retrieval times on the order of roughly

10 seconds (depending on the length of documents the ranking is conducted over), as

opposed to 1-2 seconds if utilizing GPU.

Moreover, because the IR processing is done server-side, a user-facing tool can

be deployed on low-powered devices if they are connected to the internet or a local

intranet, such as smartphones or tablets. On the other hand, if an interface is deployed

to a location with intermittent or limited internet access, the API can be deployed

on a local machine so that all IR functionality will be available offline.
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There are apparent advantages to the application of this system to the medic

handbook with respect to the ability to find relevant semantic information that may

not match a query textually. Some examples demonstrative of the capabilities of the

system are included below:

• Query: “patient is stumbling unsteadily”

Top Results:

– Abnormal gait without dizziness is most likely ataxia (difficulty walking),

a motor control problem.

– When a patient presents with dizziness, the examiner must ascertain whether

the person is describing an alteration of consciousness (see Symptome:

Syncope), an alteration of balance, a sensation of motion, or a feeling of

lightheadedness that accompanies standing up.

• Query: “patient not looking up”

Top Results:

– A depressed person will often avoid eye contact, preferring to gaze down-

ward.

• Query: “What are causes of stomachache?”

Top Results:

– Introduction: Acute abdominal pain is an internal response to a mechanical

or chemical stimulus.

– Attention to the chronology and description of the pain can often suggest

the origin of acute abdominal pain.
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– The pain can be separated into three categories: visceral (dull and poorly

characterized), somatoparietal (more intense and precisely localized) and

referred (pain felt remote from the origin.

The semantic nature of the IR system can be seen in the results from the examples

above, in which there are no direct string matches. Instead, the system is able to re-

solve concepts like “stumbling unsteadily” and “dizziness” or “lightheadedness”, and

“not looking up” and “gaze downward”. Moreover, the value of the STS component

becomes evident in the third example. At the default alpha balance of 0.8 (which for

this system means a 0.8 weight for Sentence Relevance module and 0.2 weight for STS

module), only the first result from the third query is selected. However, after bal-

ancing the alpha a little more towards the STS module, the remaining two answers

are also retrieved. The STS module is able to resolve two distinct but potentially

similar clincal symptoms, “stomachache” and “abdominal pain” and bring a better

user result.

6.2 Living Systematic Review Task

In this section we propose a challenge for the application of a Semantic Infor-

mation Retrieval system to a clinical workflow. We will introduce the task, provide

background information, and illustrates the workflow necessary to achieve the final

objective.

6.2.1 Systematic Review

A Systematic Review is a survey methodology used to evaluate and make note

of new literature about a particular clinical topic and their clinical findings. Uman

describes the goal of Systematic Reviews in “Systematic Reviews and Meta-Analyses”

as “reducing bias by identifying, appraising, and synthesizing all relevant studies on
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Figure 6.2: Living Systematic Review workflow

a particular topic” (Uman, 2011). Carrying out Systematic Reviews is an essential

task for consolidating the findings of dozens of studies into a single document, upon

which further Meta-Analysis can be performed to be able to gain additional insights

from the aggregation of literature.

A Systematic Review is generally conducted by a team of domain experts, ranging

from clinical librarians to physicians and assistants. The expertise and efforts of these

different individuals is utilized at different stages of the Systematic Review pipeline.

Although the exact workflow for conducting a Systematic Review can vary, typ-

ically, given a particular topic, a search strategy is devised by domain-level experts

(such as a clinical librarian) to retrieve a candidate list of potentially relevant docu-

ments from multiple repositories of research papers, termed the “Identification” phase.

Next, the candidate documents are manually filtered through a review of their titles

and abstracts, and documents that appear to be irrelevant are excluded, termed the

“Screening” phase. (One thing to note is that throughout the pipeline, documents

are not selected to be “included” but instead always selected to be “excluded” or

sent to the next phase in the pipeline, until the final list of documents remains.)

After the initial screening is completed, the documents remaining in the pipeline are

read more closely to determine whether they are relevant to the objective of the Sys-

tematic Review or not, termed the “Eligibility” phase. For example, items like the

candidates in clinical trials, particular drugs evaluated, or study size are factors that
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determine whether a particular document remains in the pipeline or is removed. At

the end of the Eligibility phase, the documents remaining in the pipeline are included

in the resulting paper containing a summary and analysis of these results, called a

Meta-Analysis document. This high level workflow is detailed in Figure 6.2. Uman

breaks down these steps into greater detail, listing 8 Stages of a Systematic Review

and Meta-Analysis (Uman, 2011).

6.2.2 Living Systematic Review

A Living Systematic Review is envisioned to be a Systematic Review that is semi-

or fully-automated, with the review process being aided by NLP algorithms. There

is a strong motivation for this process – conducting Systematic Reviews manually re-

quires significant human investment, necessitating tens of hours of review. Moreover,

due to the often fast pace of research in particular clinical areas, a Systematic Review

can become out-of-date within months of its publication, requiring the process to

be carried out every few months in order to ensure the latest information is present

within these reviews.

Having a partially- or fully-automated Systematic Review process would enable it

to be regularly updated without encountering as many issues of manual investment

when trying to scale the process to be run more often. Consequently, such a system

could become a “Living” Systematic Review, where the pipeline is run frequently

enough to ensure the papers compiled as part of the Systematic Review are up-to-

date in their findings.

There are important considerations when seeking to automate parts or all of the

Systematic Review process. First, the penalties for excluding a relevant document

and including an irrelevant document are not identical, and need to be considered on

a case-by-case basis. For instance, if the system is only automated in its initial steps
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and manually reviewed in subsequent steps, including an irrelevant document may

not be a major problem, as the human reviewers can flag and exclude it downstream

in the pipeline. However, if relevant documents are systematically excluded by the

particular system, the manual reviews will never see those documents downstream

in the pipeline, thereby enabling production of Systematic Reviews which may be

overlooking potentially key studies or findings.

Another important consideration is the wide use-case for an automated system.

Systematic Reviews are conducted across medical specialities and domains, and for a

Living Systematic Review application to be broadly useful, the automated modules

should be able to adapt to different domains and clinical areas with minimal fine-

tuning required.

Finally, Living Systematic Reviews are generally performed on constant intervals

(for instance, every 3 months). An system should be able to learn from prior System-

atic Reviews conducted, along with any human interventions or adjustments made

throughout the course of the pipeline for the previous Systematic Reviews. Over time,

the system should theoretically adapt in response to the human changes to minimize

the amount of manual intervention that is necessary.

6.2.3 Proposed Challenges for Living Systematic Reviews

In this subsection, we will propose several challenges related to the integration of

Semantic Information Retrieval and similar systems to the Living Systematic Review

tasks. These proposals were developed through conversations with domain-level ex-

perts, including a clinical team that has conducted numerous Systematic Reviews and

is working on developing a Living Systematic Review frontend and backend pipeline.

As detailed earlier in this Section, a Systematic Review (and by extension, Living

Systematic Review) pipeline generally consists of multiple stages, at which candidate
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documents are selected for exclusion or kept in the pipeline. The following proposed

challenges will focus on developing systems around these various steps in the pipeline.

Document Identification Task

The first task is around the “Identification” phase. In this phase, domain-level experts

like clinical librarians generally work alongside key stakeholders, like the physicians or

researchers conducting these clinical reviews, to come up with search queries that will

fetch potentially-relevant documents from a range of clinical research paper databases

such as Embase, MEDLINE, and EBM Reviews - Cochrane Central Register of Con-

trolled Trials. Depending on the complexity and breadth of the subject matter, these

search queries can be several pages of plaintext. Typically, these queries will include

specific terms that need to be matched within documents, as well as terms to be

excluded from documents. The queries often take a syntax similar to those of regular

expressions; for example part of one query (out of possibly dozens of queries) could

be:

TITLE(cancer* or neoplasm* or neoplastic* or paraneoplas*)

which would indicate a search for documents whose titles start with those partic-

ular terms. This query would be compiled with dozens of queries. Depending on the

construction of the overall “meta” query, documents matching different combinations

of the smaller queries would be returned.

This proposed task centers around utilizing a Semantic IR system to replace the

query construction and database search parts of the Systematic Review process, ef-

fectively replacing the “Identification” phase. The task calls for the development or

application of an existing Semantic IR system that can take in a query written in

(mostly or completely) natural language and fetches documents semantically relevant
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to the query, rather than having to manually construct complex search queries to

retrieve such documents. Another added component in this process is multiple search

query patterns that either refine or broaden previous ones (similar to a AND or OR op-

erations, respectively). In contrast to this approach, the Semantic IR system adapted

to the BioASQ Challenges described earlier in this work operates by accepting one

query in natural language and returning results based on the single query. Such a

system would need to be modified to accept multiple queries at once or a sequence of

queries that would further refine the results in order to be suitable for this particular

Living Systematic Review challenge.

As the order or ranking of the documents does not matter for the Systematic

Review task, this challenge can be evaluated by metrics such as Precision, Recall,

and F1 scores.

Document Screening Task

As described earlier, in the “Screening” phase of the Systematic Review pipeline,

members of the team will generally manually review documents’ title and abstract

and make a determination whether the document should be excluded or remain in the

pipeline to be further analysed in the next phase. This determination is made with

respect to whether the title and abstract indicate that the document will meet the

original intent of the particular Systematic Review, expressed through the original

search queries.

This proposed task centers around using a Semantic IR system, or a system similar

to or built upon the Semantic IR system, to classify whether a document (consisting

of the title and abstract) should be excluded or kept in the pipeline based off the

query. This objective is similar to that of the Semantic IR system detailed earlier

in this work. The system applied to the BioASQ Challenge ranks documents and
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sentences given a query; the intended system in this proposal will classify documents

given the query.

As mentioned previously, a Living Systematic Review pipeline will be designed

to run at regular intervals on the same topic. Consequently, this system should be

able to learn from repeated iterations of the pipeline on the same clinical topic and

improve its performance on subsequent Systematic Review iterations.

Because the documents in this phase will be evaluated only on their title and ab-

stracts, the same information that is used by IR systems participating in the BioASQ

Challenge, it is possible to envision going directly from a query to the completion of

the Screening phase. In other words, a single IR system could replace both the “Iden-

tification” and “Screening” phases in a Systematic Review pipeline that are usually

manually conducted.

Similar to the proposed Document Identification Task, this task can be evaluated

using the Precision, Recall, and F1 metrics.

Document Eligibility Task

The final task that we will propose is that of the Document Eligibility Task. The

Document Eligibility step is considerably more challenging than the previous step

in the pipeline of Screening. This is because when manually performed, this step

involves reading through the entire document and locating information that justifies

elimination or the keeping of the document. Moreover, there can be many reasons for

elimination that may be present in the document, such as the size, scope, or quality

of the clinical trials detailed in the document. Consequently, the criteria for keeping

a document in the pipeline or excluding it will need to be explicitly specified for this

task.

Whereas the previous proposed tasks have centered around document-level search-
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ing (specifically the title + abstract of a document, which has been evaluated previ-

ously in this work in the BioASQ Challenge), this particular task will require more

detailed examination of the document. Moreover, correctly completing this task will

necessitate developing modules that can correctly interpret nuances of concepts like

clinical trials, as described in the examples above. Consequently, we anticipate this

proposed challenge will be the most difficult to achieve effective results with.
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Chapter 7

CONCLUSION AND FUTURE DIRECTIONS

In this Chapter we will discuss the conclusion and avenues for further improvement

in the future. The first section will discuss the results of the IR system developed in

this work in the context of its performance on the BioASQ Challenge and its practical

use. The next section will consist of additional improvements to the system and its

applications that can be carried out as part of future work.

7.1 Conclusions

As discussed in previous Chapters, the system performed well on the BioASQ

Sentence Retrieval challenges compared to other systems. Moreover, the Sentence

Retrieval performance was notably high compared to the performance on the Doc-

ument Retrieval task, of which the Sentence Retrieval task was downstream. This

indicates that continuing to improve the Document Retrieval performance will further

boost the Sentence Retrieval performance in the BioASQ Competition.

As noted earlier in the paper, the primary focus of the research was on developing

an IR system centered around Sentence Retrieval. This is reflected in the formulation

of the Document Retrieval task as partially a Sentence Retrieval task. However,

significant effort was not placed into document-specific modules that could potentially

be used to boost the performance in the Document Retrieval task, a fact which will

be discussed in the following Section.

The Alternating Optimization training loop appeared to empirically yield sig-

nificant performance improvements. Specifically, conducting Bayesian Optimization

across the parameter search space, and alternatively focusing on maximizing Sen-
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tence and Document MAP scores, seemed to provide a framework for boosting the

performance for both tasks.

The Medic App is a proof-of-concept interface that demonstrates the abilities and

value of using the system for practical scenarios. It was found that evaluating the

system’s performance objectively on the BioASQ Challenge was a good proxy for its

observed performance in the Medic App. Consequently, continuing to improve the

system for the BioASQ Challenge will increase its utility in the context of the Medic

App.

We propose several different challenges regarding the Living Systematic Review

task which will have significant practical benefits in the clinical domain. The systems

developed in this work can contribute towards solving the challenges enumerated.

One interesting area of consideration is the application of the “Multi-Perspective”

nature of the Semantic IR system described in this work to other tasks or domains. In

particular, the three major components, or “perspectives”, used in this system – Sen-

tence Relevance, Semantic Textual Similarity, and Semantic Information Availability

– are well-suited for the Information Retrieval task, both intuitively and empirically.

However, for other NLP tasks, or perhaps even tasks involving a fusion of modalities

like vision or audio, alternative perspectives could be considered in the form of other

benchmark scales. There is an interesting scope for consideration of the use of other

novel perspectives, both in the context of Biomedical Information Retrieval, as well

as in other domains or tasks.

7.2 Future Work

The Sentence Retrieval Multi-Perspective approach was shown to provide empir-

ically better results than using the simple Sentence Relevance-based BERT model

approach. Future work may potentially involve incorporating additional “perspec-
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tives” into the model, as well as additional lexical and word-based features, into the

overall Sentence Retrieval module.

The Document Ranking module was formulated partially as a Sentence Ranking

task; consequently, no document-specific modules besides the BM25 scores were con-

sidered in the module. To this end, focusing on document-centric modules, perhaps

analogous to the modules considered for the Sentence Ranking tasks, would provide

greater support for the Document Ranking task and improve scores. To this extent,

methods that fall under a neural network-based approach similar to the Feedforward

Fusion method as well as a Weighted Sum-type approach can be considered, but on

the scale of entire documents rather than individual sentences. Doing so may provide

a more cohesive perspective on the relevance of documents and enable the system to

make more informed ranking decisions on the document level.

The Semantic Information Availability module contributed to the overall Seman-

tic IR system; however, there is potential for improvement of the SIA systems by

obtaining additional, higher-quality data. To this end, coming up with better heuris-

tics and systems for the purpose of automatically generating SIA data will remain an

area of future focus. With improved methodologies for automatically generating data,

SIA systems will ideally continue improving in their predictions. Given the similari-

ties between the SIA task and the overarching objective of an Information Retrieval

system, improving SIA performance may lead to gains in associated IR systems as

well.

Utilizing Bayesian Optimization across the parameter space in the Alternating

Optimization training technique proved to be far more effective than utilizing grid-

search. However, the current implementation offers no guarantee the best parameters

have been reached, either mathematically or empirically. Moreover, the importance

of decisions such as initial parameter values, whether to perform early-stopping after
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a particular degree of convergence, and so on have yet to be considered. A thorough

empirical evaluation of these different parameters will likely yield better insight into

how this Alternating Optimization training loop can provide better sets of param-

eters for the Document Ranking and Sentence Ranking tasks. Additionally, simply

spending more computation time in considering a greater number of hyperparameter

combinations per training loop may yield immediate improved results.

Efforts will need to be taken to utilize the Semantic IR system detailed in this

work for the Living Systematic Review challenges iterated in this work. The current

challenges provide many avenues for the system detailed in this work to be applied;

however, considerations specific to this particular domain and challenge will need to

be considered.

The first area of focus with respect to applying Semantic IR to the Living Sys-

tematic Review task will be determining how to formulate the task of carrying out

a search to retrieve documents based on an overarching research goal. The search

queries mentioned earlier in this document are generally very nuanced and specific,

and are constructed through a collaboration of domain experts like medical profes-

sionals and clinical librarians. Consequently, coming up with a way to incorporate

this high degree of domain-specific knowledge into an IR system is the first area of

focus.

Next, there is a very close resemblance between the BioASQ task the system de-

scribed in this work was focused around and the “Screening” phase of the Living

Systematic Review task described. Consequently, once an effective means of formu-

lating queries is identified, applying this system to that phase of the LSR pipeline will

be considered. The major difference between the BioASQ task and the the “Screen-

ing” phase is that the BioASQ Challenges were based on ranking documents and

sentences, while the “Screening” step is a task of binary classification. Therefore, the
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system will need to be adapted in order to perform this task.

All in all, there is scope for improvement of the various components of the Semantic

IR system described in this work, as well as the system as a whole. There are also

multiple areas of additional focus in terms of the applications of these systems.
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BIOASQ RESULTS
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The following are results from the BioASQ 6B and BioASQ 7B Competition.

A.1 BioASQ 6B Document Ranking Results

System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-3 0.3015 0.6387 0.3438 0.2327 0.0686

aueb-nlp-4 0.2965 0.6220 0.3365 0.2288 0.0574

aueb-nlp-2 0.2945 0.6307 0.3364 0.2275 0.0777

aueb-nlp-1 0.2965 0.6260 0.3372 0.2265 0.0639

Semantic IR 0.2650 0.5755 0.3018 0.2122 0.0367

sdm/rerank 0.2500 0.5648 0.2886 0.1840 0.0277

testtext 0.2390 0.4206 0.2618 0.1742 0.0099

ustb prir1 0.2390 0.4206 0.2618 0.1742 0.0099

ustb prir3 0.2380 0.4193 0.2605 0.1738 0.0115

ustb prir4 0.2380 0.4193 0.2605 0.1738 0.0115

Table A.1: BioASQ 6B Phase A Batch 1 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

ustb prir3 0.3121 0.6379 0.3396 0.2512 0.0639

ustb prir4 0.3121 0.6379 0.3396 0.2512 0.0639

aueb-nlp-4 0.3220 0.6431 0.3479 0.2500 0.0660

aueb-nlp-2 0.3210 0.6420 0.3475 0.2470 0.0701

testtext 0.3201 0.6355 0.3464 0.2467 0.0634

ustb prir1 0.3201 0.6355 0.3464 0.2467 0.0634

ustb prir2 0.3221 0.6618 0.3519 0.2458 0.0795

aueb-nlp-3 0.3160 0.6365 0.3423 0.2416 0.0646

aueb-nlp-1 0.3060 0.6294 0.3332 0.2319 0.0560

Semantic IR 0.2684 0.5697 0.2952 0.2085 0.0324

Table A.2: BioASQ 6B Phase A Batch 2 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

ustb prir2 0.3340 0.6340 0.3396 0.2622 0.1057

ustb prir3 0.3657 0.6244 0.3680 0.2610 0.0996

testtext 0.3637 0.6217 0.3655 0.2597 0.0991

aueb-nlp-4 0.3577 0.6035 0.3545 0.2556 0.0811

aueb-nlp-2 0.3557 0.5931 0.3511 0.2549 0.0796

ustb prir4 0.3160 0.6203 0.3251 0.2506 0.0965

ustb prir1 0.3250 0.6140 0.3314 0.2500 0.0923

aueb-nlp-3 0.3477 0.5975 0.3462 0.2477 0.0844

aueb-nlp-1 0.3437 0.5940 0.3432 0.2406 0.0824

Semantic IR 0.3020 0.5664 0.3065 0.2386 0.0647

Table A.3: BioASQ 6B Phase A Batch 3 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-4 0.2446 0.5877 0.2751 0.1843 0.0208

aueb-nlp-2 0.2456 0.5886 0.2760 0.1822 0.0207

aueb-nlp-3 0.2466 0.5930 0.2779 0.1804 0.0218

aueb-nlp-1 0.2436 0.5968 0.2749 0.1772 0.0225

ustb prir1 0.2330 0.6244 0.2701 0.1665 0.0261

ustb prir3 0.2459 0.6328 0.2821 0.1654 0.0281

testtext 0.2449 0.6327 0.2815 0.1650 0.0281

ustb prir2 0.2450 0.6378 0.2827 0.1649 0.0275

ustb prir4 0.2290 0.6015 0.2640 0.1638 0.0205

... ... ... ... ... ...

Semantic IR 0.1980 0.5031 0.2262 0.1482 0.0103

Table A.4: BioASQ 6B Phase A Batch 4 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-4 0.2265 0.4424 0.2487 0.1464 0.0122

aueb-nlp-3 0.2175 0.4200 0.2373 0.1422 0.0100

aueb-nlp-2 0.2215 0.4356 0.2435 0.1416 0.0128

aueb-nlp-1 0.2195 0.4197 0.2400 0.1403 0.0095

sdm/rerank 0.1975 0.4002 0.2230 0.1328 0.0074

ustb prir2 0.2125 0.4073 0.2375 0.1278 0.0093

ustb prir1 0.2090 0.3994 0.2312 0.1268 0.0072

aueb-nlp-5 0.2702 0.3591 0.2552 0.1250 0.0077

testtext 0.2095 0.4070 0.2330 0.1248 0.0089

... ... ... ... ... ...

Semantic IR 0.1860 0.3604 0.2076 0.1214 0.0062

Table A.5: BioASQ 6B Phase A Batch 5 Document Ranking results.
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A.2 BioASQ 6B Snippet Retrieval Results

System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

Semantic IR 0.2822 0.3547 0.2691 0.2957 0.0326

aueb-nlp-3 0.2224 0.2593 0.2004 0.1684 0.0118

aueb-nlp-1 0.2156 0.2496 0.1938 0.1675 0.0108

aueb-nlp-4 0.2127 0.2501 0.1924 0.1659 0.0111

aueb-nlp-2 0.2168 0.2599 0.1980 0.1642 0.0123

ustb prir4 0.1634 0.1619 0.1364 0.1209 0.0015

ustb prir2 0.1572 0.1616 0.1319 0.1205 0.0019

ustb prir3 0.1691 0.1680 0.1393 0.1193 0.0018

testtext 0.1664 0.1723 0.1409 0.1151 0.0022

ustb prir1 0.1664 0.1723 0.1409 0.1151 0.0022

Table A.6: BioASQ 6B Phase A Batch 1 Snippet Ranking results.

76



System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

Semantic IR 0.3476 0.2946 0.2399 0.3335 0.0230

aueb-nlp-5 0.3852 0.2976 0.2653 0.3187 0.0352

MindLab QA System ++ 0.2878 0.2307 0.1985 0.2736 0.0065

MindLab QA System 0.2888 0.2298 0.1986 0.2695 0.0071

MindLab QA Reloaded 0.2888 0.2298 0.1986 0.2695 0.0071

aueb-nlp-4 0.2873 0.2146 0.1850 0.2337 0.0231

aueb-nlp-3 0.2746 0.2041 0.1749 0.2272 0.0210

aueb-nlp-2 0.2768 0.2133 0.1826 0.2256 0.0236

aueb-nlp-1 0.2716 0.2055 0.1749 0.2226 0.0202

ustb prir4 0.2179 0.6188 0.2566 0.1731 0.0205

Table A.7: BioASQ 6B Phase A Batch 2 Snippet Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

Semantic IR 0.3805 0.3643 0.3357 0.3731 0.0787

aueb-nlp-5 0.3807 0.3655 0.3452 0.3320 0.0536

aueb-nlp-4 0.2600 0.2607 0.2298 0.2306 0.0359

aueb-nlp-1 0.2588 0.2612 0.2304 0.2278 0.0415

aueb-nlp-3 0.2515 0.2525 0.2214 0.2221 0.0337

MindLab QA Reloaded 0.2374 0.2832 0.2377 0.2217 0.0134

aueb-nlp-2 0.2532 0.2486 0.2211 0.2197 0.0319

MindLab QA System 0.2491 0.3094 0.2504 0.2113 0.0218

testtext 0.2951 0.2600 0.2452 0.2021 0.0246

ustb prir3 0.2951 0.2600 0.2452 0.2021 0.0246

Table A.8: BioASQ 6B Phase A Batch 3 Snippet Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

Semantic IR 0.2300 0.3351 0.2272 0.2177 0.0075

aueb-nlp-5 0.2403 0.3229 0.2368 0.2138 0.0061

aueb-nlp-2 0.1822 0.2566 0.1742 0.1555 0.0038

aueb-nlp-3 0.1836 0.2513 0.1736 0.1480 0.0035

aueb-nlp-4 0.1761 0.2367 0.1646 0.1479 0.0033

aueb-nlp-1 0.1798 0.2377 0.1656 0.1444 0.0035

MindLab QA System ++ 0.1480 0.2342 0.1579 0.1413 0.0015

ustb prir1 0.1752 0.3028 0.1753 0.1216 0.0077

testtext 0.1748 0.3027 0.1738 0.1213 0.0070

ustb prir3 0.1749 0.3027 0.1739 0.1213 0.0070

Table A.9: BioASQ 6B Phase A Batch 4 Snippet Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

Semantic IR 0.1450 0.1902 0.1325 0.1219 0.0018

aueb-nlp-5 0.1360 0.1669 0.1248 0.1147 0.0020

aueb-nlp-4 0.1409 0.1849 0.1285 0.1007 0.0024

MindLab QA System 0.0923 0.1444 0.0926 0.1006 0.0005

MindLab QA Reloaded 0.0908 0.1411 0.0911 0.1000 0.0005

aueb-nlp-2 0.1364 0.1781 0.1238 0.0967 0.0028

aueb-nlp-3 0.1303 0.1706 0.1175 0.0929 0.0021

aueb-nlp-1 0.1362 0.1755 0.1224 0.0927 0.0024

MindLab Red Lions++ 0.0876 0.1446 0.0910 0.0874 0.0005

ustb prir1 0.1264 0.1424 0.1100 0.0865 0.0010

Table A.10: BioASQ 6B Phase A Batch 5 Snippet Ranking results.
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A.3 BioASQ 7B Document Ranking Results

System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

Semantic IR 0.1942 0.5320 0.2257 0.1619 0.0097

Deep ML methods... 0.1930 0.5339 0.2230 0.1569 0.0089

lh sys5 0.1950 0.5420 0.2288 0.1434 0.0084

lh sys4 0.1910 0.5281 0.2237 0.1425 0.0075

lh sys1 0.1910 0.5281 0.2237 0.1401 0.0078

Ir sys2 0.1910 0.5443 0.2248 0.1388 0.0082

lh sys2 0.1720 0.4534 0.1971 0.1300 0.0039

Ir sys1 0.1770 0.5096 0.2095 0.1231 0.0067

lh sys3 0.1770 0.4843 0.2053 0.1224 0.0048

Ir sys4 0.1560 0.3949 0.1752 0.0926 0.0021

Table A.11: BioASQ 7B Phase A Batch 1 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-4 0.2570 0.6342 0.2888 0.2181 0.0209

aueb-nlp-2 0.2480 0.6159 0.2791 0.2056 0.0203

aueb-nlp-5 0.4368 0.5861 0.4307 0.2032 0.0145

aueb-nlp-1 0.2440 0.6292 0.2770 0.2009 0.0219

aueb-nlp-3 0.2470 0.6335 0.2805 0.2007 0.0221

Semantic IR 0.2289 0.5562 0.2551 0.1858 0.0126

lalala 0.2260 0.5981 0.2610 0.1796 0.0132

lh sys4 0.2290 0.5927 0.2613 0.1784 0.0118

lh sys1 0.2260 0.5981 0.2610 0.1744 0.0127

lh sys3 0.2260 0.5981 0.2610 0.1717 0.0123

Table A.12: BioASQ 7B Phase A Batch 2 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-2 0.3610 0.6842 0.3952 0.2898 0.0841

aueb-nlp-4 0.3460 0.6797 0.3820 0.2839 0.0862

aueb-nlp-1 0.3420 0.6452 0.3730 0.2761 0.0663

aueb-nlp-5 0.5476 0.6465 0.5289 0.2679 0.0740

aueb-nlp-3 0.3310 0.6472 0.3658 0.2566 0.0657

Semantic IR 0.2901 0.5782 0.3230 0.2443 0.0346

MindLab QA System 0.2870 0.5778 0.3159 0.2392 0.0348

MindLab Red Lions++ 0.2870 0.5778 0.3159 0.2392 0.0348

MindLab QA Reloaded 0.2840 0.5709 0.3119 0.2323 0.0332

Deep ML methods for 0.2770 0.5658 0.3054 0.2272 0.0359

Table A.13: BioASQ 7B Phase A Batch 3 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-1 0.2541 0.6668 0.2998 0.2102 0.0316

aueb-nlp-2 0.2531 0.6523 0.2992 0.2092 0.0279

aueb-nlp-4 0.2481 0.6445 0.2948 0.2080 0.0268

aueb-nlp-5 0.4537 0.6416 0.4580 0.1968 0.0291

aueb-nlp-3 0.2401 0.6451 0.2857 0.1962 0.0282

lh sys4 0.2230 0.6121 0.2695 0.1752 0.0186

Semantic IR 0.2170 0.5867 0.2592 0.1777 0.0176

MindLab QA Reloaded 0.2080 0.5664 0.2463 0.1724 0.0121

MindLab QA System ++ 0.2080 0.5664 0.2463 0.1724 0.0121

MindLab QA System 0.2080 0.5664 0.2463 0.1724 0.0121

Table A.14: BioASQ 7B Phase A Batch 4 Document Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-2 0.1570 0.4221 0.1802 0.1218 0.0036

aueb-nlp-4 0.1580 0.4632 0.1905 0.1080 0.0052

aueb-nlp-1 0.1510 0.4346 0.1799 0.1049 0.0037

aueb-nlp-5 0.2708 0.4196 0.2712 0.1004 0.0038

aueb-nlp-3 0.1440 0.4406 0.1757 0.0968 0.0042

lh sys5 0.1350 0.4432 0.1653 0.0884 0.0033

lh sys4 0.1310 0.4311 0.1612 0.0850 0.0028

lh sys1 0.1280 0.4235 0.1570 0.0829 0.0028

Deep ML methods... 0.1240 0.4004 0.1497 0.0823 0.0026

.. .. .. .. .. ..

Semantic IR 0.1180 0.3659 0.1440 0.0806 0.0019

Table A.15: BioASQ 7B Phase A Batch 5 Document Ranking results.
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A.4 BioASQ 7B Sentence Ranking Results

System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

Semantic IR 0.2134 0.3702 0.2426 0.2112 0.0060

Deep ML methods... 0.1529 0.2933 0.1773 0.1411 0.0029

Table A.16: BioASQ 7B Phase A Batch 1 Snippet Ranking results.

Note: only one other participant for this batch.

System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-5 0.2746 0.3414 0.2623 0.2650 0.0099

aueb-nlp-1 0.2536 0.3785 0.2535 0.2609 0.0100

aueb-nlp-2 0.2448 0.3763 0.2454 0.2449 0.0110

Semantic IR 0.2394 0.3117 0.2228 0.2435 0.0067

aueb-nlp-4 0.1955 0.2652 0.1805 0.1820 0.0066

Deep ML methods for 0.1743 0.2354 0.1752 0.1750 0.0017

aueb-nlp-3 0.1892 0.2723 0.1777 0.1663 0.0062

lh sys3 0.1269 0.1708 0.1196 0.0935 0.0014

lh sys5 0.1276 0.1712 0.1201 0.0933 0.0013

lh sys1 0.1269 0.1708 0.1196 0.0894 0.0014

Table A.17: BioASQ 7B Phase A Batch 2 Snippet Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-2 0.3933 0.4120 0.3522 0.3864 0.0777

aueb-nlp-1 0.3636 0.3755 0.3219 0.3657 0.0454

aueb-nlp-5 0.3678 0.3609 0.3277 0.3481 0.0533

Semantic IR 0.3323 0.3333 0.2879 0.3470 0.0315

aueb-nlp-4 0.2853 0.2735 0.2454 0.2609 0.0335

aueb-nlp-3 0.2715 0.2661 0.2373 0.2349 0.0266

MindLab QA Reloaded 0.2202 0.2541 0.2046 0.2330 0.0061

Deep ML methods for 0.2049 0.2596 0.2052 0.1955 0.0083

MindLab Red Lions++ 0.2072 0.2178 0.1804 0.1820 0.0135

MindLab QA System 0.1874 0.1980 0.1675 0.1690 0.0057

Table A.18: BioASQ 7B Phase A Batch 3 Snippet Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-2 0.3254 0.4308 0.3048 0.3409 0.0344

aueb-nlp-1 0.3209 0.4321 0.3018 0.3249 0.0281

Semantic IR 0.2959 0.3414 0.2568 0.3030 0.0151

aueb-nlp-5 0.3256 0.4403 0.3010 0.2976 0.0379

MindLab QA Reloaded 0.2276 0.2857 0.2093 0.2214 0.0052

aueb-nlp-3 0.2563 0.3581 0.2346 0.2213 0.0196

aueb-nlp-4 0.2550 0.3325 0.2318 0.2173 0.0178

MindLab Red Lions++ 0.2168 0.2718 0.1982 0.2000 0.0067

MindLab QA System ++ 0.2112 0.2317 0.1819 0.1931 0.0058

MindLab QA System 0.1998 0.2669 0.1865 0.1892 0.0064

Table A.19: BioASQ 7B Phase A Batch 4 Snippet Ranking results.
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System
MPrec

Docs

MRec

Docs

F-Measure

Docs

MAP

Docs

GMAP

Docs

aueb-nlp-2 0.1459 0.3019 0.1575 0.1383 0.0018

aueb-nlp-5 0.1391 0.2830 0.1520 0.1194 0.0016

aueb-nlp-1 0.1168 0.2681 0.1312 0.1146 0.0010

Semantic IR 0.1103 0.2500 0.1292 0.1122 0.0013

aueb-nlp-4 0.1118 0.2600 0.1222 0.0948 0.0013

aueb-nlp-3 0.1033 0.2361 0.1126 0.0859 0.0010

MindLab QA System ++ 0.0720 0.1923 0.0874 0.0781 0.0004

MindLab QA Reloaded 0.0720 0.1923 0.0874 0.0781 0.0004

MindLab QA System 0.0737 0.2129 0.0885 0.0670 0.0005

MindLab Red Lions++ 0.0701 0.1970 0.0854 0.0578 0.0005

Table A.20: BioASQ 7B Phase A Batch 5 Snippet Ranking results.
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APPENDIX B

LINKS TO CODE REPOSITORY
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The code for this work is available at https://github.com/samrawal/bio-semantic-

ir.
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