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ABSTRACT  
   

Longitudinal studies contain correlated data due to the repeated measurements on 

the same subject. The changing values of the time-dependent covariates and their 

association with the outcomes presents another source of correlation. Most methods used 

to analyze longitudinal data average the effects of time-dependent covariates on 

outcomes over time and provide a single regression coefficient per time-dependent 

covariate. This denies researchers the opportunity to follow the changing impact of time-

dependent covariates on the outcomes. This dissertation addresses such issue through the 

use of partitioned regression coefficients in three different papers.  

In the first paper, an alternative approach to the partitioned Generalized Method 

of Moments logistic regression model for longitudinal binary outcomes is presented. This 

method relies on Bayes estimators and is utilized when the partitioned Generalized 

Method of Moments model provides numerically unstable estimates of the regression 

coefficients. It is used to model obesity status in the Add Health study and cognitive 

impairment diagnosis in the National Alzheimer’s Coordination Center database.  

The second paper develops a model that allows the joint modeling of two or more 

binary outcomes that provide an overall measure of a subject’s trait over time. The 

simultaneous modelling of all outcomes provides a complete picture of the overall 

measure of interest. This approach accounts for the correlation among and between the 

outcomes across time and the changing effects of time-dependent covariates on the 

outcomes. The model is used to analyze four outcomes measuring overall the quality of 

life in  the Chinese Longitudinal Healthy Longevity Study.  
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The third paper presents an approach that allows for estimation of cross-sectional 

and lagged effects of the covariates on the outcome as well as the feedback of the 

response on future covariates. This is done in two-parts, in part-1, the effects of time-

dependent covariates on the outcomes are estimated, then, in part-2, the outcome 

influences on future values of the covariates are measured. These model parameters are 

obtained through a Generalized Method of Moments procedure that uses valid moment 

conditions between the outcome and the covariates. Child morbidity in the Philippines 

and obesity status in the Add Health data are analyzed.  
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CHAPTER 1 

INTRODUCTION 

Longitudinal studies with binary outcomes are conducted across a wide range of 

scientific fields. Examples include longitudinal clinical trials that seek to understand why 

heart rate changes from normal to abnormal and national longitudinal surveys that 

attempt to understand the changing habits of the population with time. In some 

longitudinal studies, the focus is placed on a single outcome variable. In others, multiple 

outcomes that provide a joint measure of a subject’s trait over time are of interest. This is 

the case when abnormal heart rate, abnormal blood pressure and abnormal heart wall 

thickness are used to measure heart function over time. All longitudinal studies collect 

data on subjects or units that are observed and measured over time.  Datasets coming 

from longitudinal studies usually contain time-independent covariates, so their values 

don’t change over time, such as race. These datasets also contain time-dependent 

covariates with values that might vary from one time-point to another, like weight. The 

changing values of time-dependent covariates change their impact on the outcomes; for 

example, weight gain might increase the risk for high blood pressure. There are also 

situations where there might be feedback of importance from the outcome to the 

covariate, such that the outcome influences future values of the time-dependent 

covariates. A situation where feedback is present happens when depression results in 

cognitive impairment, and having cognitive impairment makes patients more depressed.  
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The main purpose of longitudinal studies is to identify these changing associations and 

feedback processes from covariates to outcomes and vice versa across time.  

1.1 Generalized Linear Models 

Generalized Linear Models (GLM) are used when estimating regression 

coefficients for independent binary, count, or continuous outcomes that are assumed to 

follow a distribution from an exponential family (McCullagh & Nelder, 1989). Let 𝑦𝑦𝑖𝑖 be 

the observed outcome of interest for subject 𝑖𝑖 and 𝒙𝒙𝒊𝒊 be the vector of covariates, under 

the exponential family framework the density or mass function of 𝑦𝑦𝑖𝑖 is expressed as: 

𝑓𝑓(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊) = exp �
𝑦𝑦𝑖𝑖𝜃𝜃𝑖𝑖 − 𝑏𝑏(𝜃𝜃𝑖𝑖)

𝑎𝑎𝑖𝑖(𝜑𝜑) + 𝑐𝑐(𝑦𝑦𝑖𝑖,𝜑𝜑)� 

where 𝜃𝜃𝑖𝑖 is the location parameter related to the mean, 𝜑𝜑 is the dispersion 

parameter related to the variance with 𝑎𝑎𝑖𝑖(. ), 𝑏𝑏(. ) and 𝑐𝑐(. ) known functions. For all types 

of outcomes, the first two moments are 𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊) = 𝑏𝑏′(𝜃𝜃𝑖𝑖) and 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊) =

𝑏𝑏′′(𝜃𝜃𝑖𝑖)𝑎𝑎𝑖𝑖(𝜑𝜑). All generalized linear models have three components, the random 

component which is given by the vector of responses 𝒚𝒚, the systematic component 𝜂𝜂𝑖𝑖 =

𝒙𝒙𝒊𝒊′𝜷𝜷 which is based on the covariates, and the link component that matches 𝜃𝜃𝑖𝑖 to the 

systematic component through a monotone differentiable function 𝑔𝑔(. ) known as the link 

function such that 𝜃𝜃𝑖𝑖 = 𝑔𝑔(𝜂𝜂𝑖𝑖). 

The logistic regression model for binary outcomes is a generalized linear model 

with logit link such that: 

logit�𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝒙𝒙𝑖𝑖)� = 𝒙𝒙𝒊𝒊′𝜷𝜷 
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 1.2 Generalized Estimating Equations  

The Generalized Estimating Equations (GEE) approach provides an extension to 

Generalized Linear Models (GLM) for analyzing longitudinal data (K.-Y. Liang & Zeger, 

1986). This approach provides population-averaged regression coefficients that are 

estimated while accounting for the correlation among outcomes from the same subject. 

This approach leads to more efficient parameter estimates for the regression coefficients. 

Suppose that you observe 𝑁𝑁 subjects across 𝑇𝑇 time-points and that repeated 

observations coming from different subjects are independent, while observations from the 

same subject might be correlated. Let 𝒚𝒚𝒊𝒊 = (𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2, … , 𝑦𝑦𝑖𝑖𝑖𝑖)′ be the vector of observed 

outcomes for subject 𝑖𝑖 (𝑖𝑖 = 1, … ,𝑁𝑁) and 𝑿𝑿𝒊𝒊 = (𝒙𝒙𝑖𝑖1,𝒙𝒙𝑖𝑖2, … ,𝒙𝒙𝑖𝑖𝑖𝑖)′ its corresponding 𝑇𝑇 × 𝑝𝑝 

matrix of covariates. Under the GEE approach, the marginal expectation of 𝑦𝑦 for subject i 

at time 𝑡𝑡 (𝑡𝑡 = 1, 2, . . . ,𝑇𝑇), 𝜇𝜇𝑖𝑖𝑖𝑖, is modeled assuming that 𝐸𝐸(𝑦𝑦𝑖𝑖𝑖𝑖|𝒙𝒙𝑖𝑖𝑖𝑖) = 𝑔𝑔−1(𝒙𝒙𝑖𝑖𝑖𝑖′ 𝜷𝜷) and 

𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑖𝑖𝑖𝑖) = 𝑣𝑣(𝜇𝜇𝑖𝑖𝑖𝑖)𝜑𝜑 such that the variance is a function of the mean. Then for each 

subject 𝑖𝑖 each with measurements at 𝑇𝑇 different time points, we have a vector of means 

𝝁𝝁𝒊𝒊 = (𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2, … , 𝜇𝜇𝑖𝑖𝑖𝑖) and a diagonal matrix 𝑨𝑨𝒊𝒊 = diag{𝑣𝑣(𝜇𝜇𝑖𝑖1), 𝑣𝑣(𝜇𝜇𝑖𝑖2), … , 𝑣𝑣(𝜇𝜇𝑖𝑖𝑖𝑖)}. This 

method assumes that there exists a working correlation matrix 𝑹𝑹(𝜶𝜶) that appropriately 

describes the correlation among outcomes coming from the same subject and might 

depend on a vector of unknown parameters 𝜶𝜶 of length 𝑆𝑆. Let 𝑽𝑽𝑖𝑖(𝜶𝜶), the variance-

covariance matrix for 𝒚𝒚𝑖𝑖  related to 𝑹𝑹(𝜶𝜶) be 𝑽𝑽𝒊𝒊(𝜶𝜶) = 𝑨𝑨𝒊𝒊
𝟏𝟏
𝟐𝟐� 𝑹𝑹(𝜶𝜶)𝑨𝑨𝒊𝒊

𝟏𝟏
𝟐𝟐� . Zeger and Liang 

(Zeger & Liang, 1986) showed that the vector of regression coefficients 𝜷𝜷 can estimated 

by solving the Generalized Estimating Equations (GEE)  
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𝒈𝒈𝑁𝑁(𝜷𝜷) =
1
𝑁𝑁
�𝑫𝑫𝑖𝑖

′𝑽𝑽𝒊𝒊−𝟏𝟏(𝜶𝜶)(𝒀𝒀𝒊𝒊 − 𝝁𝝁𝒊𝒊)
𝑁𝑁

𝑖𝑖=1

= 𝟎𝟎 

where 𝑫𝑫𝑖𝑖
′ = 𝜕𝜕𝝁𝝁𝒊𝒊

′

𝜕𝜕𝜷𝜷
. They proved that under mild regularity conditions, the estimator 𝜷𝜷� 

derived from the GEEs above converges in probability to 𝜷𝜷, the true parameter of 

regression coefficients, and is asymptotically normal. Thus, as 𝑁𝑁 → ∞ 

√𝑁𝑁�𝜷𝜷� − 𝜷𝜷� → 𝑁𝑁(𝟎𝟎,𝚪𝚪) 

Where 𝚪𝚪 = lim
𝑁𝑁→∞

�1
𝑁𝑁
∑ 𝑫𝑫𝑖𝑖

′𝑽𝑽𝒊𝒊−𝟏𝟏𝑫𝑫𝑖𝑖
𝑁𝑁
𝑖𝑖=1 �

−1
�1
𝑁𝑁
∑ 𝒈𝒈𝑖𝑖(𝜷𝜷)𝒈𝒈𝑖𝑖(𝜷𝜷)′𝑁𝑁
𝑖𝑖=1 � �1

𝑁𝑁
∑ 𝑫𝑫𝑖𝑖

′𝑽𝑽𝒊𝒊−𝟏𝟏𝑫𝑫𝑖𝑖
𝑁𝑁
𝑖𝑖=1 �

−1
 

1.3 Generalized Method of Moments for Longitudinal Data 

Generalized Method of Moments (GMM) estimators are an extension to the 

method of moments. Suppose that you want to estimate a parameter 𝜷𝜷 of 𝑝𝑝 regression 

coefficients from a longitudinal dataset with 𝑁𝑁 subjects. Assume that there exists a 

function 𝒈𝒈𝑖𝑖(𝜷𝜷), the estimating equations (EE), from ℝ𝑝𝑝 → ℝ𝑞𝑞 that is continuous and 

differentiable with respect to 𝜷𝜷 and that 𝐸𝐸�𝒈𝒈𝑖𝑖(𝜷𝜷)� exists for all 𝑖𝑖 and 𝜷𝜷. Then the 

population moment conditions are 𝐸𝐸�𝒈𝒈𝑖𝑖(𝜷𝜷)� = 𝟎𝟎 with sample moment conditions 

𝒈𝒈𝑵𝑵(𝜷𝜷) = 1
𝑁𝑁
∑ 𝒈𝒈𝑖𝑖(𝜷𝜷)𝑁𝑁
𝑖𝑖=1 = 1

𝑁𝑁
∑ 𝑫𝑫𝑖𝑖

′𝑽𝑽𝒊𝒊−𝟏𝟏(𝜶𝜶)(𝒀𝒀𝒊𝒊 − 𝝁𝝁𝒊𝒊)𝑁𝑁
𝑖𝑖=1 . Let 𝑾𝑾𝑵𝑵 = 1

𝑁𝑁
∑ 𝒈𝒈𝑵𝑵(𝜷𝜷)𝒈𝒈𝑵𝑵(𝜷𝜷)′𝑁𝑁
𝑖𝑖=1  

be a weighting matrix that converges to a positive definite matrix 𝑊𝑊 as 𝑁𝑁 → ∞. Hansen 

(Hansen, 1982) showed that 𝜷𝜷� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝒈𝒈𝑵𝑵(𝜷𝜷)′𝑾𝑾𝑵𝑵
−𝟏𝟏𝒈𝒈𝑵𝑵(𝜷𝜷)� provides a consistent 

estimator of 𝜷𝜷 for which the asymptotic distribution is normal. 

Qu, Linsday, and Li (Qu et al., 2000) developed a GMM estimator for the 

regression coefficients 𝜷𝜷 based on GEE that avoided the direct estimation of the vector 𝜶𝜶 
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that characterizes 𝑹𝑹(𝜶𝜶). They argued that the inverse of the working correlation matrix 

𝑹𝑹−𝟏𝟏(𝜶𝜶) can be represented by a linear combination of 𝑆𝑆 matrices such that  

𝑹𝑹−1(𝜶𝜶) = �𝛼𝛼𝑠𝑠𝑀𝑀𝑠𝑠

𝑆𝑆

𝑠𝑠=1

 

where 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑆𝑆 are unknown constants and 𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑆𝑆 are a set of known basis 

matrices. Then, they expanded the GEEs, 𝒈𝒈𝑁𝑁(𝜷𝜷), to  

𝒈𝒈𝑁𝑁(𝜷𝜷) =
1
𝑁𝑁

⎝

⎜
⎜
⎜
⎛�𝑫𝑫𝑖𝑖

′𝑨𝑨𝑖𝑖
1
2� 𝑴𝑴1𝑨𝑨𝑖𝑖

1
2� (𝒚𝒚𝑖𝑖 − 𝝁𝝁𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
⋮

�𝑫𝑫𝑖𝑖
′𝑨𝑨𝑖𝑖

1
2� 𝑴𝑴𝑆𝑆𝑨𝑨𝑖𝑖

1
2� (𝒚𝒚𝑖𝑖 − 𝝁𝝁𝑖𝑖)

𝑁𝑁

𝑖𝑖=1 ⎠

⎟
⎟
⎟
⎞

 

and estimated 𝜷𝜷 using the GMM estimator 𝜷𝜷� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝒈𝒈𝑵𝑵(𝜷𝜷)′𝑾𝑾𝑵𝑵
−𝟏𝟏𝒈𝒈𝑵𝑵(𝜷𝜷)� 

where 𝑾𝑾𝑵𝑵 = 1
𝑁𝑁
∑ 𝒈𝒈𝑵𝑵(𝜷𝜷)𝒈𝒈𝑵𝑵(𝜷𝜷)′𝑁𝑁
𝑖𝑖=1 . This approach lets them combine the estimating 

equations optimally. 

1.4 Bayesian Estimation 

In Bayesian statistics, inferences for parameters of interest (𝜽𝜽) are summarized 

through random draws from the posterior distribution of such parameters, 𝑝𝑝(𝜽𝜽|𝒚𝒚). This 

posterior distribution depends on the likelihood function of the data 𝑝𝑝(𝒚𝒚|𝜽𝜽) and the prior 

distribution of the parameters, 𝑝𝑝(𝜽𝜽), such that  

𝑝𝑝(𝜽𝜽|𝒚𝒚) ∝  𝑝𝑝(𝒚𝒚|𝜽𝜽) 𝑝𝑝(𝜽𝜽) 

The goal of Bayesian computation is to obtain sets of independent draws 𝜽𝜽𝒕𝒕 with 

𝑡𝑡 = 1, … ,𝑇𝑇, from the posterior distribution, with enough draws 𝑇𝑇 so that any function of 
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the parameters, 𝑔𝑔(𝜽𝜽), can be estimated with reasonable accuracy (Gelman et.al, 2014). 

Bayesian computations are usually done using Markov Chain Monte Carlo (MCMC) 

methods such as Metropolis, Metropolis-Hastings, and Hamiltonian Monte Carlo 

sampling algorithms.  

Markov Chain Monte Carlo methods are used to generate draws from a 

distribution that approximates the posterior, 𝑝𝑝(𝜽𝜽|𝒚𝒚) when such distribution can be 

evaluated but not easily sampled from (Givens & Hoeting, 2013). All these methods are 

based on Markov Chains, which are sequences of vectors composed of random variables 

�𝜽𝜽(𝑡𝑡)�, 𝑡𝑡 = 0,1,2, …, where the next observed values 𝜽𝜽(𝑡𝑡+1) are only dependent on the 

present values 𝜽𝜽(𝑡𝑡). When using MCMC methods, we build Markov Chains that start at 

some point, 𝜽𝜽(0), and then for each iteration 𝑡𝑡 ( 𝑡𝑡 = 1,2, … ,𝑇𝑇), we draw values 𝜽𝜽(𝑡𝑡) from 

a transition or proposal distribution 𝐽𝐽�𝜽𝜽(𝑡𝑡)|𝜽𝜽(𝑡𝑡−1)� which depends on the previous values 

𝜽𝜽(𝑡𝑡−1). The proposal distribution, 𝐽𝐽�𝜽𝜽(𝑡𝑡)|𝜽𝜽(𝑡𝑡−1)�, must be constructed to guarantee that 

the Markov Chains converge to a unique stationary distribution that is the posterior, 

𝑝𝑝(𝜽𝜽|𝒚𝒚). According to Gelman, et.al. (Gelman et al., 2014), the key aspect in MCMC 

methodology is to create Markov processes whose stationary distribution is 𝑝𝑝(𝜽𝜽|𝒚𝒚). 

Thus, for a sufficiently large number of simulations, the chain corresponding to such 

Markov process will have a marginal distribution that approximates the posterior (Givens 

& Hoeting, 2013).  We now describe the steps followed in Metropolis, Metropolis-

Hastings, and Hamiltonian Monte Carlo sampling algorithms.  
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1.4.1 Metropolis Algorithm 

The metropolis sampling algorithm is mostly used when there are no conjugate 

priors for parameters of interest. It proceeds by sampling a new proposed value 𝜽𝜽∗ that is 

close to the previous value 𝜽𝜽(𝑡𝑡−1) using a symmetric proposal distribution. A proposal 

distribution 𝐽𝐽 (. |. ) is symmetric if 𝐽𝐽(𝜽𝜽𝑏𝑏|𝜽𝜽𝑎𝑎) = 𝐽𝐽(𝜽𝜽𝑎𝑎|𝜽𝜽𝑏𝑏) meaning that the probability of 

going from 𝜽𝜽𝑎𝑎 to 𝜽𝜽𝑏𝑏 is the same as the probability of going from 𝜽𝜽𝑏𝑏 to 𝜽𝜽𝑎𝑎.  

The Metropolis algorithm with 𝑇𝑇 random draws starts by sampling a starting random 

value, 𝜽𝜽(0), from the proposal distribution such that 𝑝𝑝�𝜽𝜽(0)|𝒚𝒚� > 0. Then, according to 

Hoff (Hoff, 2009) at each iteration 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇), the following process is conducted: 

1. Sample 𝜽𝜽∗~𝐽𝐽�𝜽𝜽∗�𝜽𝜽(𝑡𝑡−1)�, where 𝜽𝜽∗ is a new proposed value that the vector of 

parameters might take at iteration 𝑡𝑡  

2. Compute acceptance ratio 

𝑟𝑟 =
𝑝𝑝(𝜽𝜽∗|𝒚𝒚)

𝑝𝑝(𝜽𝜽(𝑡𝑡−1)|𝒚𝒚)
         (1) 

Where 𝑝𝑝(𝜽𝜽∗|𝒚𝒚) represents the posterior probability of the proposed value 𝜽𝜽∗ and 

𝑝𝑝�𝜽𝜽(𝑡𝑡−1)|𝒚𝒚� is the posterior probability of the parameter value at the previous 

iteration, 𝜽𝜽(𝑡𝑡−1).    

3. Sample 𝑢𝑢~𝑈𝑈𝑈𝑈𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(0,1)  

If 𝑢𝑢 < 𝑟𝑟 then 𝜽𝜽(𝑡𝑡) = 𝜽𝜽∗  

If 𝑢𝑢 > 𝑟𝑟 then 𝜽𝜽(𝑡𝑡) = 𝜽𝜽(𝑡𝑡−1)  

For step 3, if the posterior probability of the proposed value 𝜽𝜽∗ is higher than that 

of the previous value 𝜽𝜽(𝑡𝑡−1), then 𝑟𝑟 > 1 and the proposed value will certainly be part of 



  8 

our sample of values. However, if 𝑟𝑟 < 1 there will be times when we will take the 

proposed value 𝜽𝜽∗ as our new value 𝜽𝜽(𝑡𝑡) and others when we will keep the previous value 

such that  𝜽𝜽(𝑡𝑡) = 𝜽𝜽(𝑡𝑡−1). Thus, there is the possibility that we will have the same value 

for the parameter for several consecutive iterations. 

1.4.2 Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm is also mostly used when there are no conjugate 

prior distributions and follows the same procedure for building Markov Chains as the 

Metropolis algorithm. However, this method is different from the Metropolis algorithm in 

that the proposal distributions are usually not symmetric. Each iteration 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) 

consists of the following steps: 

1. Sample 𝜽𝜽∗~𝐽𝐽�𝜽𝜽�𝜽𝜽(𝑡𝑡−1)� where 𝜽𝜽∗ is the new value proposed for the parameter of 

interest and  𝐽𝐽�𝜽𝜽�𝜽𝜽(𝑡𝑡−1)� is not necessarily symmetric 

2. Compute acceptance ratio 

𝑟𝑟 =
𝑝𝑝(𝜽𝜽∗|𝒚𝒚)

𝑝𝑝(𝜽𝜽(𝑡𝑡−1)|𝒚𝒚) ×
𝐽𝐽�𝜽𝜽(𝑡𝑡−1)|𝜽𝜽∗�
𝐽𝐽(𝜽𝜽∗|𝜽𝜽(𝑡𝑡−1))           (2) 

Where 𝑝𝑝(𝜽𝜽∗|𝒚𝒚) is the posterior probability of the proposed value 𝜽𝜽∗ given the 

data, 𝑝𝑝�𝜽𝜽(𝑡𝑡−1)|𝒚𝒚� is the posterior probability of the parameter’s previous value 

given the data, 𝐽𝐽�𝜽𝜽∗|𝜽𝜽(𝑡𝑡−1)� is the probability of going from 𝜽𝜽(𝑡𝑡−1) to 𝜽𝜽∗ under 

the proposal distribution and  𝐽𝐽�𝜽𝜽(𝑡𝑡−1)|𝜽𝜽∗� represents the probability of going 

from 𝜽𝜽∗ to 𝜽𝜽(𝑡𝑡−1) also under the proposal.     

3. Sample 𝑢𝑢~𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0,1)  

If 𝑢𝑢 < 𝑟𝑟 then 𝜽𝜽(𝑡𝑡) = 𝜽𝜽∗  
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If 𝑢𝑢 > 𝑟𝑟 then 𝜽𝜽(𝑡𝑡) = 𝜽𝜽(𝑡𝑡−1)  

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm. 

Since the proposal distribution is symmetric and thus 𝐽𝐽�𝜽𝜽(𝑡𝑡−1)|𝜽𝜽∗� =  𝐽𝐽�𝜽𝜽∗|𝜽𝜽(𝑡𝑡−1)�, then 

in the Metropolis sampler the factor 𝐽𝐽�𝜽𝜽
(𝑡𝑡−1)|𝜽𝜽∗�

𝐽𝐽�𝜽𝜽∗|𝜽𝜽(𝑡𝑡−1)�
= 1 which reduces the ratio in (2) to the 

ratio in (1). 

As explained before, in Metropolis-based algorithms it might be the case that the 

proposed values 𝜽𝜽∗ are rejected in more than one consecutive draw and that we keep the 

same value 𝜽𝜽(𝑡𝑡) for several consecutive iterations, causing autocorrelation among the 

simulated draws. This is due to the random walk behavior of the Metropolis-based 

algorithms and can make such sampling algorithms inefficient, especially when 

estimating high dimension parameter vectors. As such, there are situations in which more 

efficient algorithms are needed.      

1.4.3 Hamiltonian Monte Carlo Algorithm 

Gelman et.al. (2014) define the Hamiltonian Monte Carlo algorithm as a 

generalization of the metropolis algorithm that subdues its random walk behavior and 

allows HMC to move faster in the parameter space by including momentum variables, 

resulting in faster mixing and convergence, especially for high dimensional parameter 

vectors. This algorithm is most used when there are several parameters to be estimated 

and the Metropolis algorithm moves slowly through the target distribution. It depends on 

a vector of auxiliary variables 𝝓𝝓 of the same dimension as the vector of parameters 𝜽𝜽 and 

the proposal distribution for 𝜽𝜽 is based on 𝝓𝝓.  
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In Hamiltonian Monte Carlo the posterior distribution 𝑝𝑝(𝜽𝜽|𝒚𝒚) is combined with 

an independent distribution of the auxiliary variables 𝑝𝑝(𝝓𝝓) resulting in a joint distribution 

𝑝𝑝(𝜽𝜽,𝝓𝝓) = 𝑝𝑝(𝝓𝝓)𝑝𝑝(𝜽𝜽|𝑦𝑦). Random draws are obtained using this joint distribution. Still 

interest is placed only on 𝜽𝜽, and 𝝓𝝓 values are discarded, since they are only added to 

move across the parameter space faster. Apart from the posterior distribution, this 

algorithm also requires the gradient of its log, 

𝜕𝜕log 𝑝𝑝(𝜽𝜽|𝒚𝒚)
𝜕𝜕𝜽𝜽

= �
𝜕𝜕log 𝑝𝑝(𝜽𝜽|𝒚𝒚)

𝜕𝜕𝜃𝜃1
,
𝜕𝜕log 𝑝𝑝(𝜽𝜽|𝒚𝒚)

𝜕𝜕𝜃𝜃2
, … ,

𝜕𝜕log 𝑝𝑝(𝜽𝜽|𝒚𝒚)
𝜕𝜕𝜃𝜃𝑘𝑘

� 

The Hamiltonian Monte Carlo sampling algorithm is described in Gelman et.al (2013) 

as follows. For iteration 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) steps taken are: 

1. Sample 𝝓𝝓 from 𝑝𝑝(𝝓𝝓), where 𝝓𝝓~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝟎𝟎,𝑴𝑴) and 𝑴𝑴 is usually a 

diagonal matrix 

2. Update 𝜽𝜽 and 𝝓𝝓 simultaneously repeating 𝐿𝐿 leapfrog steps which consist of the 

following: 

a. Let 𝝓𝝓 = 𝝓𝝓 + 𝜀𝜀
2
𝜕𝜕log 𝑝𝑝(𝜽𝜽|𝒚𝒚)

𝜕𝜕𝜽𝜽
 

b. Let 𝜽𝜽 = 𝜽𝜽 + 𝜀𝜀𝑀𝑀−1𝝓𝝓 

c. Update 𝝓𝝓  one more time by letting 𝝓𝝓 = 𝝓𝝓 + 𝜀𝜀
2
𝜕𝜕log 𝑝𝑝(𝜽𝜽|𝒚𝒚)

𝜕𝜕𝜽𝜽
  

3. Let 𝜽𝜽(𝑡𝑡−1) and 𝝓𝝓(𝑡𝑡−1) be the values that 𝜽𝜽 and 𝝓𝝓 had before starting the leapfrog 

process and 𝜽𝜽∗ and 𝝓𝝓∗ their values after the 𝐿𝐿 leapfrog steps, then calculate the 

ratio 
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𝑟𝑟 =
𝑝𝑝(𝜽𝜽∗|𝒚𝒚 )
𝑝𝑝(𝜽𝜽(𝑡𝑡−1))

𝑝𝑝(𝜽𝜽∗)
𝑝𝑝(𝜽𝜽(𝑡𝑡−1)) 

4. Draw 𝑢𝑢~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (0,1) 

If 𝑢𝑢 < 𝑟𝑟 then 𝜽𝜽(𝑡𝑡) = 𝜽𝜽∗ 

If 𝑢𝑢 > 𝑟𝑟 then 𝜽𝜽(𝑡𝑡) = 𝜽𝜽(𝑡𝑡−1) 

In this algorithm, 𝜀𝜀 is a scaling factor for the probability distribution of the 

momentum variables and is known as stepsize. Gelman et.al. (2013) recommend that the 

product of the number of leapfrog steps and the scaling factor 𝐿𝐿𝐿𝐿 = 1. If convergence is 

not achieved, the number of leapfrog steps should be increased, and the scaling factor 

should be reduced. Depending on the choices on distribution for the momentum 

variables, the scaling factor and the number of leapfrog steps, the Hamiltonian Monte 

Carlo sampling algorithm might converge to the posterior distribution faster than the 

Metropolis-based algorithms, making it more efficient in Bayesian computation, but that 

might not always be the case (Vazquez Arreola & Wilson, 2019).   

1.5 Accounting for Time-dependent Covariates and their Associations with One or 

Multiple Binary Outcomes 

In this work, methods are used to study the changing associations between time-

dependent covariates and binary outcomes over time. These are marginal models using 

partitioned coefficients to describe the association.  

First, an alternative approach to the Partitioned GMM model with Bayesian 

estimates that allows the assessment of the current and lagged effects of the time-dependent 
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covariates on binary outcomes is developed. This approach is particularly useful when the 

Partitioned GMM model provides numerically unstable regression estimates or standard 

errors.  

Second, a method for simultaneously modeling two or more binary longitudinal 

outcomes while accounting for all forms of correlation among and between outcomes 

coming from the same subject is developed. This approach helps us to understand the 

changing associations of time-dependent covariates across time with the multiple outcomes 

through partitioned coefficients. It is utilized when multiple binary outcomes measure an 

overall trait of a subject to get a complete picture of such trait.    

Finally, a two-part model with feedback that allows one to measure the direct effect 

and the feedback effect of time-dependent covariates on the outcomes and vice versa. 

However, it is not always that a feedback effect is interpretable or makes sense.  
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CHAPTER 2 

PARTITIONED MVM MARGINAL MODEL WITH BAYES ESTIMATES FOR 

CORRELATED DATA AND TIME-DEPENDENT COVARIATES 

 

Abstract 

It is customary in the analysis of longitudinal data that one examines the relationship 

between the outcomes and the risk factors which often include time-dependent covariates. 

The fit of existing marginal models for such data does not always capture all the types of 

extra variation among the responses and the covariates. However, when they do, they are 

often not fully explored. This paper proposes a Partitioned Method of Valid Moments 

(MVM) marginal regression model with Bayes estimates, using lagged coefficients to fit 

to longitudinal data, with time-dependent covariates using composite likelihoods. The 

model is flexible and readily attainable in obtaining estimates of the regression 

coefficients for time-dependent covariates. A simulation study is conducted to evaluate 

the properties of the model coefficients. The fit of modeling cognitive impairment 

diagnosis in NACC Alzheimer survey data and modeling obesity status in the Add Health 

survey data are explored. Sensitivity analyses in these examples were conducted to 

evaluate the impact of the prior distribution on the posterior inferences. 
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2.1 Introduction 

Approximately 16 million people lived with cognitive impairment in the United States, in 

2011 (Cognitive Impairment: A Call for Action, 2011). Such ailments affect people’s 

cognitive functions, interfering with their everyday activities. It results in their inability to 

live independently, costing patients’ family members and government significant in the 

vicinity of millions of dollars. Time-dependent covariates such as depression, thyroid 

disorder diagnosis and traumatic brain injury are risk factors of cognitive impairment. In 

the analysis of longitudinal data, an examination of the changing effects of depression, 

thyroid disorder diagnosis and traumatic brain injury in cognitive impairment diagnosis 

across time while controlling for race, gender, and age was conducted. This research 

proposes a model that addresses the correlation between response and time dependent 

covariates, with limited number of valid moments by obtaining Bayes estimates. 

Health surveys are often collected longitudinally, with observations obtained from 

each respondent at multiple time-periods. Such methods of collection result in 

observations that are correlated due to the repeated measurements on each respondent. 

This induced intraclass correlation makes it impossible to obtain a joint likelihood 

function for the observations. It is customary to address such correlation in two ways.  

One approach is to use the conditional likelihood principles in a subject-specific 

model based on two or more distributions. It depends on the number of random effects, 

with one distribution for the outcomes conditional on those random effects. Though the 

random effects are frequently used in such modeling, the likelihood conditioned on the 
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random effects, as a remedy does not provide insight into the population-averaged mean 

(Laird & Ware, 1982). 

A second approach is to alter the distribution in the random component of the 

three components designation in a generalized linear model. This is done through a mean-

variance relation thereby treating the correlation as a nuisance. Such a method is based on 

moments as in the generalized estimating equation (GEE) method (Liang & Zeger, 1986). 

The GEE method is a robust approach which produces efficient estimates of the marginal 

mean parameters when the working correlation structure is correctly specified. However, 

they are consistent and distribute as an asymptotic normal estimators even when the 

working correlation matrix is misspecified (Zeger & Liang, 1986). This approach leads to 

population-averaged model, which is used to study the marginal mean. This approach is 

based on the quasi-likelihood principles.  

Generalized method of moments (GMM) models are also an attractive alternative 

for fitting marginal models to longitudinal data. GMM is common in econometrics 

modeling (Hall, 2005; Hansen, 1982; Hansen et al., 1996), when the likelihood is difficult 

or impossible to obtain, as it improves the estimation efficiency. Asymptotic theory for 

GMM estimators has resulted in great interest through the population moment conditions 

(McFadden, 1989). Qu et al. (2000) and Lai and Small (2007) used a GMM estimator to 

fit marginal regression models to analyze longitudinal data as an advantage over the use 

of GEE estimates. Lalonde, Wilson, and Yin (2014) extended this method, and 

introduced a hypothesis test to identify valid moment conditions. 
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In some cases, when fitting models to longitudinal data, the repeated 

measurements at different time-periods induce correlation due to the covariate in one-

time-period affecting responses in other time-periods. These relationships across different 

time-periods lead to additional regression coefficients that give added information at 

different times. Irimata, Broatch, and Wilson (2019) built upon the GMM framework 

proposed by Lalonde, Wilson and Yin (2014) and introduced a unique method to fit 

population-averaged models to correlated data with time-dependent covariates. Their 

method relies on GMM estimation with a derived partitioned data matrix. This 

Partitioned GMM model identifies separate coefficients based on the use of valid 

moments to address the varying impacts of the covariates over time. Thus, multiple 

regression coefficients are produced to identify changing relationships between time-

dependent covariates and outcomes, rather than averaging these relationships across time 

into a single parameter estimate.  

In the fit of the Partitioned GMM marginal model for longitudinal data with its 

time-dependent covariates, the convergence criterion for the optimization algorithm are 

not always met, especially in small sample sizes. One may receive a warning indicating 

that there are numerical instabilities in the parameter estimates and their standard errors. 

In such cases as an alternative, a Partitioned MVM marginal model with Bayesian 

estimates is useful.  

The remainder of this paper is organized as follows. In Section 2, an introduction 

of the notation, a review of the Bayesian estimation principles in a generalized linear 

model framework, along with relevant models for time-dependent covariates are 
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reviewed. In Section 3, the Partitioned MVM marginal model with Bayesian estimates for 

longitudinal data with time-dependent covariates is developed. In Section 4, a simulation 

study to determine the performance of the proposed model is conducted. In Section 5, 

two numerical examples, Alzheimer’s data from NACC database (Beekly et al., 2007) 

and Add Health data (Harris & Udry, 2016) are analyzed. A comparison of the fit of the 

Partitioned MVM model with Bayesian estimates and the fit of the Partitioned frequentist 

GMM model is made, and the advantages and disadvantages noted. A sensitivity analysis 

in these examples is undertaken to evaluate the impact of the prior distribution on the 

posterior inferences. Some remarks are made in Section 6. 

2.2 Background 

2.2.1 Marginal Regression Modeling with Time-Dependent Covariates 

Lai and Small (2007) fitted marginal models with time-dependent covariates while 

identifying valid moments through a process as belonging to one of three groups. Their 

method of identification of valid moments made use of a marginal model for longitudinal 

continuous data with GMM through moment conditions where, 

              E �𝜕𝜕𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑗𝑗

{𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷)}� = 0                                   (2.1) 

for time-points 𝑠𝑠 = 1, … ,𝑇𝑇 and 𝑡𝑡 = 1, … ,𝑇𝑇 and covariate  𝑗𝑗, where 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷) = E{[𝑦𝑦𝑖𝑖𝑖𝑖|𝒙𝒙𝑖𝑖𝑖𝑖]} 

denotes the expectation of response 𝑦𝑦𝑖𝑖𝑖𝑖 based on the covariate 𝒙𝒙𝑖𝑖𝑖𝑖. and the ordinary least 

squares regression parameters 𝜷𝜷 in the systematic component. Then, the valid moments 

are computed to obtain an estimate of a single regression coefficient to represent the 

overall effect of a given covariate on the response. Others have developed similar 
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approaches including Zhou, Lefante, Rice, and Chen (2014) who utilized a modified 

quadratic inference function, and Chen and Westgate (2017) who utilized a modified 

weight matrix based on linear shrinkage.  

Lalonde, Wilson and Yin (2014) introduced an extension of this GMM approach. 

In addition, they provided a statistical test to identify valid moment conditions when 

using time-dependent covariates on binary responses and extended the classification of 

Lai and Small (2007) to type IV. However, their method determines which moment 

conditions are valid using a correlation test. This approach consists of first fitting a 

logistic regression model at each time-period t, such that logit(𝑝𝑝𝑖𝑖𝑖𝑖) = 𝒙𝒙𝑖𝑖𝑖𝑖′ 𝜷𝜷, where 𝒙𝒙𝑖𝑖𝑖𝑖′  

represents the vector of covariates for subject i measured at time t. Individual correlation 

tests are conducted to determine whether the correlation between residual 𝑒𝑒𝑡𝑡 at time t and 

covariate 𝑥𝑥𝑗𝑗𝑗𝑗 measured at time s with (𝑠𝑠 ≠ 𝑡𝑡) is significantly different from zero. If the 

statistical test determines that such correlation is not significantly different from zero, 

then the moment condition between 𝑦𝑦𝑡𝑡 and covariate 𝑥𝑥𝑗𝑗𝑗𝑗 is declared as valid. This 

approach recognizes that moment conditions for time-independent covariates and time-

dependent covariates measured at the same time as the outcome are valid. 

2.2.2 Partitioned Coefficients with Time-Dependent Covariates 

Irimata, Broatch, and Wilson (2019) modeled the effect of time-dependent covariates on 

binary responses through a derived partitioned data matrix with GMM estimation. They 

partitioned the data matrix to incorporate a set of valid moment conditions based on a 

time-spacing measure. Valid moment conditions were identified using the statistical tests 

by Lalonde, Wilson and Yin (2014); however, rather than grouping the valid moments to 
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obtain an average effect of the covariate on the response, they separated out the effects of 

the covariates on the responses across time-periods. This creates additional regression 

parameters, thus providing insight into the time-varying effects of that covariate on the 

response at different time-periods. This model is a special case of the generalized linear 

regression model proposed by Müller and Stadtmuller (2005). In this paper, we propose 

the use of Bayesian estimates to obtain these partitioned regression parameter estimates 

as an alternative to the Partitioned GMM model.  

2.2.3    Bayesian Estimates  

Bayesian methods of analysis rely heavily on the Bayes' theorem and the likelihood 

principle. Given the prior distribution, statistical inferences are based on a posterior 

distribution of the model parameters within the linear estimating function family (Hoff, 

2009). The Bayesian estimation procedure is a useful alternative, especially in small 

datasets or in complex set of modeling with extra parameters, as is the case when one 

considers the time-dependent covariates with valid moments (Efron, 2015). 

Yin (2009) proposed the Bayesian GMM, through the derivation of moments 

obtained from the working correlation matrix and used it to obtain a quadratic objective 

function, in the usual GMM framework (Hansen, 1982). This objective function, along 

with prior distributions was used in the Markov chain Monte Carlo procedure in order to 

sample from the posterior distribution. In addition, Yin (2009) examined the properties of 

the Bayesian GMM under the linear regression model for repeated measurements with 

correlated errors. However, under the Bayesian GMM approach the regression 

parameters, 𝜷𝜷, and the weighting optimal matrix, 𝑾𝑾𝑵𝑵(𝜷𝜷), are updated concurrently 
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making the surface of the quasi-posterior distribution complicated and causing the 

Markov Chain Monte Carlo (MCMC) algorithm to become inefficient and unstable 

(Tanaka, 2020; Yin et al., 2011). Therefore, even in cases when the number of moment 

conditions is much smaller than the sample size, a Bayesian GMM estimator can be ill-

posed (Tanaka, 2020). As such this research deviates from the Bayesian GMM approach. 

Instead, a Partitioned Method of Valid Moments (MVM) model with Bayesian estimates 

is proposed. This method provides parameter estimates at least as efficient as estimates 

from the frequentist partitioned GMM model or from the GEE model with lagged 

covariates and an independent working correlation matrix.   

2.2.4 Composite Likelihoods    

Varin, Reid and Firth (2011) stated that composite likelihoods are referred to by different 

names, for example pseudo likelihood (Molenberghs & Verbeke, 2005), approximate 

likelihood (Stein et al., 20014), and quasi-likelihood (Glasbey, 2001; Hjort et al., 1994; 

Hjort & Varin, 2008). Methods based on composite likelihood are called limited 

information methods, in the psychometric literature (Varin, 2008; Varin et al., 2011). 

Varin, Reid and Firth (2011) developed a review of recent developments in the theory 

and application of composite likelihood  where they emphasized the current state of 

knowledge on efficiency and robustness of composite likelihood inference. They 

mentioned that the set of application areas include longitudinal data analysis.  

The simplest composite likelihood for inference in marginal regression models is 

the pseudo likelihood built under working independence assumptions (Varin et al., 2011), 

ℒ𝑖𝑖𝑖𝑖𝑖𝑖(𝜷𝜷;𝒚𝒚) = ∏ 𝑓𝑓(𝒚𝒚𝑖𝑖;𝜷𝜷)𝑁𝑁
𝑖𝑖=1 , 
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often referred to in the literature as the independence likelihood (Chandler & Bate, 2007). 

The independence likelihood allows inference only on marginal regression parameters 

(Varin et al., 2011). If parameters related to correlation are also of interest one has to 

model blocks of observations, as in the pairwise likelihood (Cox & Reid, 2004; Varin, 

2008; Varin et al., 2011) 

ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜷𝜷;𝒚𝒚) = � � 𝑓𝑓(𝒚𝒚𝑖𝑖𝒚𝒚𝑘𝑘;𝜷𝜷)
𝑁𝑁

𝑘𝑘=𝑖𝑖+1

𝑁𝑁−1

𝑖𝑖=1

 

with its extension built from larger sets of observations (Caragea & Smith, 2007). This 

paper makes use of composite likelihood. 

Varin, Reid and Firth (2011) stated one of the motivations for choosing composite 

likelihoods is usually computational since they help avoid computing or modelling the 

joint distribution of a possibly high-dimensional response vector. Another reason they 

provided for using composite likelihoods, is the notion of robustness under possible 

misspecification of the higher order dimensional distributions similar to the type of 

robustness achieved by generalized estimating equations, but different to robust point 

estimation (Varin et al., 2011). Composite likelihoods can also be used to construct joint 

distributions in settings where there are not clear high dimensional distributions or where 

the likelihood surface can be much smoother than the full joint likelihood and easier to 

maximize (G. Liang & Yu, 2003; Varin et al., 2011). When the high dimensional 

characteristics of the model are not fully specified, one allows for a less complex 

structure on the parameter space, reduces computational efforts, and takes advantage of 

the robustness properties of the composite likelihoods (Varin et al., 2011).   
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2.3 Partitioned MVM Bayesian Marginal model 

2.3.1 Inference for Correlated Data using the Independence Likelihood     

In this paper, the problem of accounting for clustering in longitudinal studies 

when conducting inference is undertaken using the independence log likelihood. 

Chandler and Bate (2007) demonstrated the properties of independence estimating 

equations that adjust the independence loglikelihood function in the presence of 

clustering. Their adjustment relies on a robust sandwich estimator of the parameter 

covariance matrix that fits the model assuming the observations are independent and then 

adjusts the estimated standard errors to account for the correlation. Their estimators are 

solutions to the independence estimating equations by Joe (1997) and their approach 

contends positively with established techniques based on independence estimating 

equations. For generalized linear models, their method corresponds to that  of using an 

independence working correlation structure when fitting a generalized estimating 

equations model.  

Consider a longitudinal study where 𝑁𝑁 subjects are observed at 𝑇𝑇 different time 

periods, then 𝒚𝒚𝑖𝑖 = (𝑦𝑦𝑖𝑖1, …𝑦𝑦𝑖𝑖𝑖𝑖)′ is the vector of 𝑇𝑇 observed outcomes on the 𝑖𝑖th subject. 

For each subject 𝑖𝑖, denote ℑ𝑖𝑖 as a conditioning set relevant to 𝒚𝒚𝑖𝑖, in our case the time-

dependent and time-independent covariates. Assume that the observed outcomes are 

drawn from a parametric family of joint distributions, indexed by parameter vectors 𝜷𝜷 

and 𝜶𝜶 and with density functions factorized as ∏ 𝑓𝑓𝑖𝑖(𝒚𝒚𝑖𝑖|ℑ𝑖𝑖;𝜷𝜷,𝜶𝜶)𝑁𝑁
𝑖𝑖=1  (Chandler & Bate, 

2007). 
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According to Chandler and Bate (2007), the densities { 𝑓𝑓𝑖𝑖𝑖𝑖 ∶ 𝑡𝑡 =  1, . . . ,𝑇𝑇} of the 

components of 𝒚𝒚𝑖𝑖 are assumed to depend on 𝜷𝜷 but not on 𝜶𝜶 when conditioning on the 

covariates (ℑ𝑖𝑖). Therefore, 𝜶𝜶 parameterizes the within-subject correlation, and 𝜷𝜷 

parameterizes the marginal structure. In our case 𝜷𝜷 represents the regression coefficients. 

Our interest lies on the inference about 𝜷𝜷. In the analysis of longitudinal studies subjects 

(clusters) are assumed to be independent.  

Chandler and Bate (2007) suggested that by letting the joint distributions for each 

subject 𝑖𝑖 be given by 𝑓𝑓𝑖𝑖(𝒚𝒚𝒊𝒊|ℑ𝑖𝑖;𝜷𝜷,𝜶𝜶) { 𝑖𝑖 = 1, … ,𝑁𝑁}, inference can be based on the full 

loglikelihood function  

ℓ𝐹𝐹(𝜷𝜷,𝜶𝜶) = � log
𝑁𝑁

𝑖𝑖=1

𝑓𝑓𝑖𝑖(𝒚𝒚𝑖𝑖|ℑ𝑖𝑖;𝜷𝜷,𝜶𝜶)                      (3.1) 

However, when the goal of the analysis is inference about the marginal regression 

parameters 𝜷𝜷 and the correlation parameters 𝜶𝜶 are of no interest, the use of the full 

likelihood function may not be practical (Chandler & Bate, 2007). Such is the case when 

fitting marginal models to longitudinal data, where it is accepted to proceed as though, 

given the covariates {ℑ𝑖𝑖}, the observations are independent. Then the marginal 

regression coefficients 𝜷𝜷 are estimated by maximizing the independence loglikelihood 

function  

ℓ𝐼𝐼(𝜷𝜷) = �� log
𝑇𝑇

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

𝑓𝑓𝑖𝑖(𝒚𝒚𝒊𝒊|ℑ𝑖𝑖;𝜷𝜷,𝜶𝜶)              (3.2). 

Chandler and Bate (2007) used the score equations 𝑈𝑈(𝜷𝜷) corresponding to ℓ𝐼𝐼(𝜷𝜷) to 

determine unique root estimators of the independence estimating equations 
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𝑈𝑈(𝜷𝜷) = 𝜕𝜕ℓ𝐼𝐼
𝜕𝜕𝜷𝜷

= ∑ 𝑈𝑈𝑖𝑖(𝜷𝜷)𝑁𝑁
𝑖𝑖=1 = ∑ ∑ 𝑈𝑈𝑖𝑖𝑖𝑖(𝜷𝜷)𝑇𝑇

𝑡𝑡=1
𝑁𝑁
𝑖𝑖=1 = 0. 

2.3.2 Partitioned GMM Estimation 

Consider a model with a data matrix of time-dependent covariates that originated from an 

identification of the valid moments (Irimata et al., 2019). Thus, consider a derived 

partitioned data matrix 𝑿𝑿𝑖𝑖𝑖𝑖
[ ] whose dimension depends on the number of repeated 

measures on the response, 𝑇𝑇. These relationships exist between the outcomes 𝒀𝒀∗𝑡𝑡 

observed at time 𝑡𝑡, and the jth covariate 𝑿𝑿∗𝑗𝑗𝑗𝑗 observed at time s, for 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑇𝑇 and 𝑗𝑗 =

1, . . , 𝐽𝐽. Each time-dependent covariate 𝑿𝑿∗𝑗𝑗∗ = �𝑿𝑿∗𝑗𝑗1, … ,𝑿𝑿∗𝑗𝑗𝑗𝑗� is measured at time-

periods 𝑡𝑡 = 1, 2, … ,𝑇𝑇; for subject 𝑖𝑖. Thus, the data matrix is restructured into a lower 

triangular matrix,  

𝑿𝑿𝑖𝑖𝑖𝑖
[] =

⎣
⎢
⎢
⎡
1 𝑋𝑋𝑖𝑖𝑖𝑖1 0 … 0
1 𝑋𝑋𝑖𝑖𝑖𝑖2 𝑋𝑋𝑖𝑖𝑖𝑖1 … 0
⋮ ⋮ ⋮ … ⋮
1 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖(𝑇𝑇−1) … 𝑋𝑋𝑖𝑖𝑖𝑖1⎦

⎥
⎥
⎤

= �𝟏𝟏 𝑿𝑿𝑖𝑖𝑖𝑖
[0] 𝑿𝑿𝑖𝑖𝑖𝑖

[1] … 𝑿𝑿𝑖𝑖𝑖𝑖
[𝑇𝑇−1]�, 

where the superscript denotes the difference in time-periods, |𝑡𝑡 − 𝑠𝑠| > 0, between the 

response measured at time t and the covariate measured at time s, and 𝟏𝟏 is the vector of 

ones. The regression model,  

g(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽𝐼𝐼𝐼𝐼𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖
[0] + 𝛽𝛽𝑗𝑗

[1]𝑋𝑋𝑖𝑖𝑖𝑖
[1] + 𝛽𝛽𝑗𝑗

[2]𝑋𝑋𝑖𝑖𝑖𝑖
[2] … + 𝛽𝛽𝑗𝑗

[𝑇𝑇−1]𝑋𝑋𝑖𝑖𝑖𝑖
[𝑇𝑇−1]    (3.3) 

where 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 is the time independent covariate and 𝛽𝛽𝐼𝐼𝐼𝐼  is the regression coefficient. In 

matrix notation, 

g(𝝁𝝁𝒊𝒊) = 𝑿𝑿𝐼𝐼𝐼𝐼𝜷𝜷𝐼𝐼𝐼𝐼 + 𝑿𝑿𝒊𝒊𝒊𝒊
[ ]𝜷𝜷𝑗𝑗, 
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where the 𝑿𝑿𝑖𝑖𝑖𝑖
[ ] matrix is the lower triangular matrix obtained from the original data 

matrix, and the mean 𝝁𝝁𝑖𝑖 = (𝜇𝜇𝑖𝑖1, … , 𝜇𝜇𝑖𝑖𝑖𝑖)′ depends on the regression coefficients  

𝜷𝜷𝑗𝑗 = �𝛽𝛽0,𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡,𝛽𝛽𝑗𝑗
[1],𝛽𝛽𝑗𝑗

[2], … ,𝛽𝛽𝑗𝑗
[𝑇𝑇−1]�. The regression coefficient 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡 denotes the effect of 

the covariate 𝑿𝑿∗𝑗𝑗𝑗𝑗 on the response 𝒀𝒀∗𝑡𝑡, when both are observed in time-period 𝑡𝑡. When 

the covariate is observed in a time-period prior to the outcome, or in other words when 

𝑠𝑠 < 𝑡𝑡, the lagged effect of the covariate 𝑿𝑿∗𝑗𝑗𝑗𝑗 on the response 𝒀𝒀∗𝑡𝑡 across a  (𝑡𝑡 − 𝑠𝑠) period 

lag is given by the coefficients 𝛽𝛽𝑗𝑗
[1],𝛽𝛽𝑗𝑗

[2], … ,𝛽𝛽𝑗𝑗
[𝑇𝑇−1]. The coefficient 𝛽𝛽𝑗𝑗

[1] for instance, 

denotes the effect of the covariate on the response across a single time-period lag. Thus, 

the effect of the covariate on the response varies across different time-period lags.  

Let the vector 𝜷𝜷 denote the concatenation of the parameters associated with each 

of the J covariates and 𝑿𝑿𝑖𝑖𝑖𝑖
[ ] denote the column-bound data matrix of the lower-triangular 

matrix. Each of the 𝐽𝐽 time-dependent covariates yield up to 𝑇𝑇 partitions corresponding to 

𝜷𝜷𝑗𝑗. Thus, 𝑿𝑿𝒊𝒊∗
[ ] = �𝑿𝑿𝑖𝑖1

[ ], … .𝑿𝑿𝑖𝑖𝑖𝑖
[ ]� will have a dimension of (𝐽𝐽 × 𝑇𝑇) + 1 by 𝑁𝑁, and 𝜷𝜷 will be 

a vector of length (𝐽𝐽 × 𝑇𝑇) + 1. In the presence of time-dependent covariates, it is 

necessary to consider studying lagged relationships between the covariate and the 

outcome as the outcome might depend on one or several previous values of the covariate 

(Schildcrout & Heagerty, 2005). 
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When modeling longitudinal data, the association between a time-dependent covariate 

and the outcome cannot reasonably be assumed to be only direct and instantaneous, since 

it is likely to be cumulative over a certain period of time and to depend on past 

measurements of the covariate. One approach is to use a lagged model based on splines 

which are estimated using Bayesian estimates (Obermeier et al., 2015). The primary 

advantage of using models with lagged covariates is the potential to accurately 

understand the detailed dependence of the outcome on the full history of time-dependent 

covariate measurements (Heagerty & Comstock, 2013). One way to properly model 

longitudinal binary outcomes with time dependent covariates is to include the appropriate 

lagged values of the covariate (Heagerty, 2002). 

2.3.3 Partitioned MVM Inferences with Bayes Estimates 

Once the partitioning of the data is complete and the valid moments are identified, Bayes 

principles are applied to the resulting model. The partitioning of the data matrix and its 

lagged components with valid moment conditions accounts for some of the correlation in 

the data. The adjustment unlike the GEE based models takes place in the systematic 

component of the model. Moreover, when the expectation of an outcome, yit, depends on 

previous values of the outcome, 𝑦𝑦𝑖𝑖𝑖𝑖 (𝑠𝑠 < 𝑡𝑡), then the time-dependent covariate 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 

measured at time 𝑠𝑠 affects the expected value of the outcome 𝑦𝑦𝑖𝑖𝑖𝑖 at time 𝑡𝑡 (Lalonde et al., 

2014).  

Consider the likelihood function, assuming that the marginal mean of  𝑦𝑦𝑖𝑖𝑖𝑖 is 

affected by current and previous values of the time-dependent covariates while 
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accounting for time-independent covariates. Then, using (3.2), the independence 

likelihood, the proposed model  

𝑔𝑔(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽𝐼𝐼𝐼𝐼𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽1𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖1𝑡𝑡 + 𝛽𝛽1
[1]𝑋𝑋𝑖𝑖1[𝑡𝑡−1] + ⋯+ 𝛽𝛽1

[𝑡𝑡−1]𝑋𝑋𝑖𝑖11 + ⋯+ 𝛽𝛽𝐽𝐽𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝐽𝐽
[1]𝑋𝑋𝑖𝑖𝑖𝑖[𝑡𝑡−1] + ⋯+ 𝛽𝛽𝐽𝐽

[𝑡𝑡−1]𝑋𝑋𝑖𝑖𝑖𝑖1 

has likelihood 

𝐿𝐿𝑐𝑐�𝒚𝒚�𝑿𝑿∗∗∗
[] ,𝜷𝜷� = �𝑓𝑓𝑌𝑌�𝑦𝑦𝑖𝑖1, …𝑦𝑦𝑖𝑖𝑖𝑖|𝟏𝟏,  𝑿𝑿𝑖𝑖1

[0],  𝑿𝑿𝑖𝑖1
[1], … ,  𝑿𝑿𝑖𝑖1

[𝑇𝑇−1], … ,  𝑿𝑿𝑖𝑖𝑖𝑖
[0],  𝑿𝑿𝑖𝑖𝑖𝑖

[1], … ,  𝑿𝑿𝑖𝑖𝑖𝑖
[𝑇𝑇−1],𝜷𝜷�

𝑁𝑁

𝑖𝑖=1

 

= ��𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝑋𝑋𝑖𝑖11,𝑋𝑋𝑖𝑖12, … ,𝑋𝑋𝑖𝑖1𝑡𝑡 , … ,𝑋𝑋𝑖𝑖𝑖𝑖1,𝑋𝑋𝑖𝑖𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝛽𝛽0,𝛽𝛽𝐼𝐼𝐼𝐼 ,𝛽𝛽1𝑡𝑡𝑡𝑡 ,𝛽𝛽1
[1], … ,𝛽𝛽1

[𝑡𝑡−1], … ,𝛽𝛽𝐽𝐽𝑡𝑡𝑡𝑡 ,𝛽𝛽𝐽𝐽
[1], … ,𝛽𝛽𝐽𝐽

[𝑡𝑡−1]�
𝑇𝑇

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 

= ���1 + 𝑒𝑒−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖𝑖𝑖)�−𝑦𝑦𝑖𝑖𝑖𝑖�1 + 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖𝑖𝑖)�𝑦𝑦𝑖𝑖𝑖𝑖−1
𝑇𝑇

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 

Let π(𝜷𝜷) = π(𝛽𝛽0,𝛽𝛽𝐼𝐼𝐼𝐼,𝛽𝛽1𝑡𝑡𝑡𝑡,𝛽𝛽1
[1],𝛽𝛽1

[2], … ,𝛽𝛽1
[𝑇𝑇−1], … ,𝛽𝛽𝐽𝐽𝑡𝑡𝑡𝑡,𝛽𝛽𝐽𝐽

[1],𝛽𝛽𝐽𝐽
[2], … ,𝛽𝛽𝐽𝐽

[𝑇𝑇−1]) denotes the 

prior distribution for the coefficients in the partitioned matrix. The prior distribution for 

the vector of regression coefficients, 𝜷𝜷 is a multivariate normal distribution. The 

regression coefficients are assumed independent and their prior distributions are assumed 

normally distributed such that 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡~𝑁𝑁(𝜇𝜇𝑗𝑗0,𝜎𝜎𝑗𝑗02 ) and 𝛽𝛽𝑗𝑗
[𝑡𝑡−𝑠𝑠]~𝑁𝑁(𝜇𝜇𝑗𝑗0,𝜎𝜎𝑗𝑗02 ) for (𝑡𝑡 − 𝑠𝑠) =

1, … ,𝑇𝑇 − 1. The parameter 𝜇𝜇𝑗𝑗0 is the prior mean and  𝜎𝜎𝑗𝑗02  is the prior variance. A prior 

distribution (same or different) for each of the coefficients (𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡,𝛽𝛽𝑗𝑗
[1],𝛽𝛽𝑗𝑗

[2], … ,𝛽𝛽𝑗𝑗
[𝑇𝑇−1]) for 

the covariate 𝑋𝑋𝑖𝑖𝑖𝑖
[𝑡𝑡−𝑠𝑠] with valid moments. In cases, when there is no known prior 

information about the effect of a covariate on the outcome of interest, one can use non-

informative priors (Efron, 2015). Then, given the likelihood function of the data, the 

posterior distribution of 𝜷𝜷 is 

𝜋𝜋 �𝜷𝜷|𝒚𝒚,𝑿𝑿𝑖𝑖∗∗
[] � ∝  𝐿𝐿𝐶𝐶 �𝒚𝒚|𝑿𝑿∗∗∗

[] ,𝜷𝜷�  𝜋𝜋(𝜷𝜷) . 

The posterior distribution of 𝜷𝜷, the vector of regression coefficients is unknown, but one 
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can use the Monte Carlo Markov Chain to draw samples. 

2.4 Simulation Study 

A simulation study to examine the performance of the Partitioned MVM marginal model 

with Bayesian estimates is conducted. A comparison is made of its performance to that of 

the partitioned GMM model and the lagged GEE model with the independent working 

correlation matrix. Simulated datasets with sample sizes N ∈ {25, 50, 100, 500, 1000} 

subjects and time periods T ∈ {3, 5} are generated. The simulated data are generated from 

a Bernoulli random variable with mean a function of current and lagged covariates of type 

II (Diggle et al., 2002; Irimata et al., 2019; Lai & Small, 2007). Simulated data under each 

of the scenarios generated by (𝑁𝑁 ∩ 𝑇𝑇) for each of the combinations of the 1,000 datasets 

are generated. Assign time-dependent covariates with weights between [2, 4] to estimate 

delayed effect (lag-1), with time-dependent covariate with weights between [1 , 2] to 

estimate further delayed effect (lag-2). The correlation is induced by random effects 

distributed normal as 𝑁𝑁 (0, 1). The regression coefficients are set to 𝛽𝛽0 = 0, 𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5, 

𝛽𝛽[1] = 0.3 and 𝛽𝛽[2] = 0.1. Thus, the association between the outcome and the covariate is 

strongest at the immediate effect (cross-sectional) and weak for delayed (lag 1) and weaker 

for further delayed effects (lag 2). The prior distributions are 𝑁𝑁 (0, 10000). 

The percentage coverage, the root mean square error (RMSE), the bias and the 

percent converged for the parameter estimates are used to compare performances on three 

models: the Partitioned MVM marginal model with Bayes estimates, the partitioned GMM 

marginal model, and the lagged GEE model with working independence (Nakata & 

Tonetti, 2014).  
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The results for the three models when 𝑇𝑇 = 3 using RMSE and percent coverage are 

given in Table 2.1, bias and percentage of datasets where models converged are presented 

in Table 2.2. The Partitioned MVM marginal model with Bayes estimates performs better 

than both the Partitioned GMM model in terms of percentage of coverage for sample sizes 

of (𝑁𝑁 = 25, 50, 100). The percent coverage between the Partitioned MVM marginal 

model with Bayes estimates and the lagged GEE model with working independence are 

similar in the settings.  For the parameter estimates with the sample sizes used, the RMSE 

for the Partitioned MVM marginal model with Bayes estimates are similar to those for the 

partitioned GMM model and the lagged GEE model with independent working correlation 

matrix. Thus, providing estimates as efficient as those of the other two models. For all 

sample sizes, the bias of the Partitioned MVM model with  Bayes estimates is between the 

bias of the partitioned GMM model and the lagged GEE model with independent working 

correlation matrix. 

For (𝑇𝑇 = 5),  the time-dependent covariate’s weight is held between[2, 4] for delayed 

effect, the time-dependent covariate’s weight is held between  [1, 2] for a further delayed 

effect (lag 2), for furthermost delayed effect weight is held between [0.5, 1] (lag 3), and at 

a level higher than furthermost with a weight [0, 0.5] (lag 4).  The regression coefficients 

are set to 𝛽𝛽0 = 0, 𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7, 𝛽𝛽[1] = 0.5, 𝛽𝛽[2] = 0.3, 𝛽𝛽[3] = 0.1  and 𝛽𝛽[4] = 0.05. Thus, the 

association between the outcome and the covariate is weakest at furthest delayed (lag 4), 

and stronger at smaller lags (less delayed effects). Similar results for (𝑇𝑇 = 5) are similar 

to those obtained for cases (𝑇𝑇 = 3), Tables 2.3 and 2.4. 
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Table 2.1  

Simulation Results for T=3  

Sample 
size Parms 

Partitioned GMM Partitioned Bayes GEE independent 
Coverage RMSE Coverage RMSE Coverage RMSE 

25 

𝛽𝛽0 = 0 66.77 5.181 93.00 0.366 93.42 0.331 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5 69.54 3.956 91.60 0.431 94.57 0.363 
𝛽𝛽[1] = 0.3 68.48 6.258 92.20 2.230 94.46 1.285 
𝛽𝛽[2] = 0.1 57.39 16.499 85.90 26.758 88.09 6.810 

50 

𝛽𝛽0 = 0 84.70 0.904 92.90 0.237 93.79 0.228 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5 86.70 1.131 92.50 0.270 93.49 0.247 
𝛽𝛽[1] = 0.3 81.00 5.094 92.80 0.934 93.09 0.852 
𝛽𝛽[2] = 0.1 71.34 11.585 91.00 5.276 91.59 4.305 

100 

𝛽𝛽0 = 0  91.50 0.180 94.80 0.151  95.20 0.148 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5  92.60 0.206 94.90 0.166  95.50 0.161 
𝛽𝛽[1] = 0.3  90.40 3.600 94.20 0.580  95.20 0.557 

𝛽𝛽[2] = 0.1  85.65 6.009 95.30 1.549 95.30 1.331 

500 

𝛽𝛽0 = 0  94.50 0.070 94.30 0.067  94.60 0.067 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5  94.00 0.076 93.50 0.072  94.30 0.071 
𝛽𝛽[1] = 0.3  94.40 0.273 94.00 0.251  94.10 0.248 

𝛽𝛽[2] = 0.1  94.02 0.711 95.40 0.565  95.50 0.551 

1000 

𝛽𝛽0 = 0  94.70 0.049 95.20 0.046  95.10 0.046 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5  93.40 0.054 93.10 0.051  93.70 0.051 
𝛽𝛽[1] = 0.3  93.70 0.188 93.60 0.176  94.40 0.175 

𝛽𝛽[2] = 0.1  94.94 0.463 95.00 0.405  95.10 0.401 
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Table 2.2  

Bias and Percentage of Datasets that Converged in T=3  

Sample 
size Parms 

Partitioned GMM Partitioned Bayes GEE independent 
 Bias % converged Bias % converged Bias % converged 

25 

𝛽𝛽0 = 0 -0.142 

97.50 

0.001 

100 

0.001 

95.70 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5 -1.025 -0.154 -0.081 
𝛽𝛽[1] = 0.3 -1.258 -0.365 -0.100 
𝛽𝛽[2] = 0.1 -3.905 -7.921 -1.520 

50 

𝛽𝛽0 = 0 -0.001 

100 

0.009 

100 

0.007 

99.90 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5 -0.233 -0.074 -0.040 
𝛽𝛽[1] = 0.3 -0.960 -0.107 -0.043 
𝛽𝛽[2] = 0.1 -2.696 -1.269 -0.661 

100 

𝛽𝛽0 = 0 -0.001 

100 

0.006 

100 

0.005 

100 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5 -0.042 -0.018 -0.004 
𝛽𝛽[1] = 0.3 -0.463 -0.083 -0.054 
𝛽𝛽[2] = 0.1 -1.079 -0.320 -0.084 

500 

𝛽𝛽0 = 0 0.003 

100 

0.003 

100 

0.002 

100 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5 -0.010 -0.007 -0.003 
𝛽𝛽[1] = 0.3 -0.013 -0.009 -0.005 
𝛽𝛽[2] = 0.1 -0.036 -0.036 0.000 

1000 

𝛽𝛽0 = 0 0.000 

100 

0.000 

100 

0.000 

100 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.5 -0.002 -0.001 0.002 
𝛽𝛽[1] = 0.3 -0.017 -0.011 -0.012 
𝛽𝛽[2] = 0.1 -0.033 -0.017 -0.011 
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Table 2.3 

Simulation Results for 𝑻𝑻 = 𝟓𝟓 

Sample 
Size Parms 

Partitioned GMM Partitioned Bayes GEE independent 
Coverage RMSE Coverage RMSE Coverage RMSE 

25 

𝛽𝛽0 = 0 60.82 1.020 93.00 0.407 93.89 0.366 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 62.03 1.141 88.50 0.543 95.18 0.427 
𝛽𝛽[1] = 0.5 64.30 2.151 90.20 2.046 94.85 1.386 
𝛽𝛽[2] = 0.3 50.27 5.654 84.90 7.786 86.17 4.702 
𝛽𝛽[3] = 0.1 93.93 13.712 84.60 21.645 66.56 11.747 
𝛽𝛽[4] = 0.05 35.10 35.729 74.80 50.797 41.16 46.503 

50 

𝛽𝛽0 = 0 67.52 0.515 93.20 0.257 94.07 0.241 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 69.15 0.708 92.10 0.305 94.41 0.268 
𝛽𝛽[1] = 0.5 66.47 1.295 93.40 1.119 93.61 0.965 
𝛽𝛽[2] = 0.3 48.25 3.108 90.70 3.888 88.25 3.755 
𝛽𝛽[3] = 0.1 34.58 7.810 87.50 8.839 73.32 10.432 
𝛽𝛽[4] = 0.05 39.13 20.199 79.50 22.355 47.43 41.755 

100 

𝛽𝛽0 = 0 71.40 0.491 94.30 0.166 94.70 0.161 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 70.02 0.290 90.50 0.203 93.17 0.188 
𝛽𝛽[1] = 0.5 65.43 0.915 95.20 0.644 94.60 0.621 
𝛽𝛽[2] = 0.3 53.39 2.022 92.20 2.178 92.97 1.775 
𝛽𝛽[3] = 0.1 35.87 4.536 89.90 4.623 83.08 5.262 
𝛽𝛽[4] = 0.05 28.54 15.214 77.60 11.159 58.41 19.297 

500 

𝛽𝛽0 = 0 91.21 0.862 93.80 0.074 94.20 0.073 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 91.25 0.089 93.10 0.079 94.10 0.078 
𝛽𝛽[1] = 0.5 91.14 0.365 95.80 0.251 95.50 0.252 
𝛽𝛽[2] = 0.3 80.52 1.013 94.20 0.619 94.30 0.612 
𝛽𝛽[3] = 0.1 62.69 2.363 95.80 1.375 93.00 1.391 
𝛽𝛽[4] = 0.05 50.64 4.962 95.10 3.179 85.40 3.282 

1000 

𝛽𝛽0 = 0 94.64 0.966 95.20 0.048 94.90 0.048 
𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 94.10 0.061 85.20 0.066 85.80 0.065 
𝛽𝛽[1] = 0.5 94.41 0.218 93.90 0.193 93.00 0.195 
𝛽𝛽[2] = 0.3 88.93 0.676 95.60 0.398 96.20 0.398 
𝛽𝛽[3] = 0.1 79.69 1.434 97.50 0.900 97.30 0.898 
𝛽𝛽[4] = 0.05 62.81 3.522 89.50 2.095 91.20 2.025 
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Table 2.4  

Bias and Percentage of Datasets that Converged in T=5 

Sample 
Size Parms 

Partitioned GMM Partitioned Bayes GEE independent 

Bias % 
converge Bias % 

converge Bias % 
converge 

25 

𝛽𝛽0 = 0 0.033 

74.80 

-0.001 

100 

0.015 

62.20 

𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 -0.370 -0.214 -0.094 
𝛽𝛽[1] = 0.5 -0.460 -0.591 -0.209 
𝛽𝛽[2] = 0.3 -1.398 -0.027 -1.030 
𝛽𝛽[3] = 0.1 -0.839 -4.769 0.177 
𝛽𝛽[4] = 0.05 -0.102 5.225 -2.631 

50 

𝛽𝛽0 = 0 0.025 

85.90 

-0.017 

100 

-0.017 

87.70 

𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 -0.220 -0.124 -0.064 
𝛽𝛽[1] = 0.5 -0.227 -0.190 -0.091 
𝛽𝛽[2] = 0.3 -0.553 -1.155 -0.599 
𝛽𝛽[3] = 0.1 -0.870 -1.663 -1.641 
𝛽𝛽[4] = 0.05 -0.302 1.745 -3.922 

100 

𝛽𝛽0 = 0 0.024 

91.60 

-0.007 

100 

-0.006 

98.10 

𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 -0.104 -0.087 -0.052 
𝛽𝛽[1] = 0.5 -0.206 -0.015 0.014 
𝛽𝛽[2] = 0.3 -0.474 -0.501 -0.206 
𝛽𝛽[3] = 0.1 -0.451 -0.626 -0.721 
𝛽𝛽[4] = 0.05 -1.248 1.661 -2.499 

500 

𝛽𝛽0 = 0 0.061 

96.70 

-0.005 

100 

-0.004 

100 

𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 -0.020 -0.025 -0.019 
𝛽𝛽[1] = 0.5 -0.079 0.016 0.023 
𝛽𝛽[2] = 0.3 -0.289 -0.027 0.027 
𝛽𝛽[3] = 0.1 -0.540 -0.196 -0.171 
𝛽𝛽[4] = 0.05 -0.287 -0.060 0.071 

1000 

𝛽𝛽0 = 0 0.057 

97.10 

0.002 

100 

0.003 

100 

𝛽𝛽𝑡𝑡𝑡𝑡 = 0.7 -0.012 -0.026 -0.022 
𝛽𝛽[1] = 0.5 -0.027 0.037 0.041 
𝛽𝛽[2] = 0.3 -0.125 0.024 0.043 
𝛽𝛽[3] = 0.1 -0.204 0.029 0.023 
𝛽𝛽[4] = 0.05 -0.240 0.290 0.073 
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2.5 Numerical Examples 

An analysis of two numerical datasets [NACC (Beekly et al., 2007) Alzheimer’s data and 

Add health (Harris & Udry, 2016) survey data] using Partitioned MVM marginal models 

with Bayes estimates is presented. When possible, a comparison of results with the 

results obtained using a Partitioned frequentist GMM model is made for convenience. 

The valid moment conditions  are determined using a statistical test (Lalonde et al., 

2014). The %partitionedDataMatrix SAS macro is utilized to obtain the valid moment 

conditions for time-dependent covariates with the fit of the Partitioned MVM marginal 

models with Bayes estimates.  

Having obtained the partitioned data matrix, the Hamiltonian Monte Carlo 

sampling algorithm is used through the RStan (Gabry et al., https://cran.r-

project.org/web/packages/rstan/index.html; Stan Development Team, https://mc-

stan.org/docs/2_19/stan-users-guide/index.html)  R-package to fit the Partitioned MVM 

marginal models with Bayes estimates. Three chains each with 1,000 burn in iterations 

and 1,000 sampling iterations with thinning=1 are used. The chain convergence is 

evaluated using visual plots, 𝑅𝑅� statistic and effective samples sizes of 1,000 or higher. 

The Markov Chains for the models converge to the same posterior region. For the 

parameters, the effective sample size, the minimum number of independent draws from 

the posterior distribution, are achieved. The statistic, measuring whether the between-

chain variance is considerably larger than the within-chain variance, 𝑅𝑅� is equal to one. 

This suggests convergence of the chains (Givens & Hoeting, 2013). The code to fit the 

Partitioned MVM marginal models with Bayes estimates in R and SAS is given in the 
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Appendix. While  the %PartitionedGMM SAS macro (Irimata & Wilson, 2018) is 

utilized to fit a frequentist Partitioned GMM model with time-dependent covariates.   

2.5.1 National Alzheimer’s Coordinating Center Data 

Data from the National Alzheimer’s Coordination Center (NACC) (Beekly et al., 2007) 

are fit using the  Partitioned MVM marginal models with Bayes estimates and the 

Partitioned frequentist GMM model. The data include 1,106 patients, each with four 

annual visits between 2005 and 2015. Race, gender and age are time-independent 

covariates. Depression diagnosis, thyroid disease and traumatic brain injury diagnosis are 

time-dependent covariates. 

Prior information pertaining to cognitive impairment and its relationships with the 

covariates in the model are based on what follows. Rocca et.al. (2011) found that men are 

significantly less likely to present cognitive impairment than women (OR=0.77 with 95% 

CI (0.66, 0.89). Blacks (OR=2.38 with 95% CI (1.97, 2.86)) are significantly more likely 

to have cognitive impairment when compared to whites. Paterniti et.al. (2002) discovered 

that those with depressive symptoms are significantly more likely to suffer cognitive 

impairment (OR=1.07 with 95% CI (1.01, 1.13)). Hogervorst et.al. (2008) showed that 

those with thyroid disorders are more likely to suffer cognitive impairment (OR=1.22 

with 95% CI (0.88, 1.69)). LoBue et.al (2016) found that when adjusting for several 

patients’ characteristics, those who had a history of traumatic brain injury are more likely 

to present mild cognitive impairment (OR=1.14 with 95% CI (0.94, 1.37)). Sheffield and 

Peek (2011) found that age increased the likelihood of suffering cognitive impairment 

(OR=1.12 with 95% CI (1.11, 1.13)). This information led to prior distribution for gender 
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(male vs female) as 𝑁𝑁(−0.26, 1), for race (white vs black) as 𝑁𝑁(−0.87, 1) and for age as 

𝑁𝑁(0.12, 1). For the coefficients of depression, the prior is 𝑁𝑁(0.07, 1), for thyroid 

disorders the prior is 𝑁𝑁(0.20, 1) and for traumatic brain injury diagnosis the prior is 

𝑁𝑁(0.13, 1). Further, thyroid disorder and traumatic brain injury diagnosis had valid 

moment conditions at lag-1, lag-2 and lag-3. Depression diagnosis had valid moments at 

lag-1.  

The regression coefficients in the Partitioned MVM marginal models with Bayes 

estimates for cognitive impairment, in the three Markov Chains converged to the same 

posterior region, Figure 2.1. A comparison of the prior and posterior distributions for the 

regression coefficients is made, Figure 2.2. The posterior distribution for the Partitioned 

MVM marginal models with Bayes estimates are noted in Table 2.5. The model suggests 

that gender showed differential effects on the probability of diagnosed with cognitive 

impairment. There is no evidence that diagnoses for thyroid disorder and traumatic brain 

injury impacted the probability of presenting cognitive disorder. While depression has an 

immediate and delayed effect on cognitive impairment. Instead, the frequentist GMM 

model provides unstable estimates and large standard errors for the regression 

coefficients suggesting non-convergence. 
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Table 2.5  

Partitioned MVM Marginal Models with Bayes Estimates for Alzheimer’s Data 

 
Parameter OR 95% Credible interval ESS Significant 

White 0.819 0.670 1.000 4653 No 
Male 1.584 1.391 1.822 4458 Yes 
Age 1.020 1.010 1.020 3684 Yes 
Depression 2.075 1.699 2.535 4453 Yes 
depression lag-1 1.363 1.041 1.768 3570 Yes 
TBI 1.041 0.756 1.448 3214 No 
TBI lag-1 0.951 0.607 1.507 2619 No 
TBI lag-2 1.094 0.657 1.822 3009 No 
TBI lag-3 1.030 0.589 1.804 3615 No 
Thyroid 0.811 0.631 1.051 3354 No 
Thyroid lag-1 1.000 0.712 1.419 2958 No 
Thyroid lag-2 1.197 0.811 1.768 3410 No 
Thyroid lag-3 1.105 0.719 1.682 4271 No 
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Figure 2.1 

Markov Chains for Coefficients’ Posterior Distributions for Cognitive Impairment 

Diagnosis Model 

 
*Note: beta[1]=intercept, beta[2]=white, beta[3]=male, beta[4]=depression, beta[5]=lag-
1 depression, beta[6]=TBI, beta[7]=lag-1 TBI, beta[8]=lag-2 TBI, beta[9]=lag-3 TBI, 
beta[10]=thyroid, beta[11]=lag-1 thyroid, beta[12]=lag-2 thyroid, beta[13]=lag-3 thyroid, 
beta[14]=age. 
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Figure 2.2 

 Prior and Posterior Distributions for Regression Coefficients in Cognitive 

Impairment Diagnosis Model 
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The point estimates and credible intervals for the odds ratios for the impact of 

depression, traumatic brain injury and thyroid disorder on cognitive impairment over time 

are displayed, Figure 2.3. 

 

Figure 2.3 

Posterior OR and 95% Credible Intervals for Time-dependent Covariates across 

Time for Cognitive Impairment Diagnosis 

 
 

A prior sensitivity analysis allows a comparison between the posterior 

distributions of the regression coefficients based on different prior distributions. The 
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graphs show a superimposition of the posterior distributions(Skene et al., 1986). A 

measure of prior sensitivity using the Hellinger distance to assess discrepancies between 

posterior distributions(Roos & Held, 2011) is obtained for modeling cognitive 

impairment. There are five prior distributions including informative priors with variance 

of 1 and used as the reference priors. There are three informative priors with the same 

means as the reference prior but with variances 0.25, 5 and 10. There are also non-

informative priors, for regression coefficients with a mean of 0 and the variance of 

10000. The Hellinger distances are close to 0, indicating that the posteriors are 

similar(Roos & Held, 2011).   Thus, the choice of the mean for the prior distributions has 

little effect on the posterior distributions, Figure 2.4. The posterior distributions for 

informative priors with variance 0.25 are tighter than the others and had higher peaks at 

the mean or slight shift to the left. The Hellinger distances are smaller than 0.1, except for 

the posteriors corresponding to the informative priors with variance 0.25 for which 

Hellinger distances are higher than 0.1, Table 2.6. 
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Figure 2.4 

Posterior Distributions for Prior Sensitivity Analysis for Regression Coefficients 

when Modeling Cognitive Impairment 
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Table 2.6 

Hellinger Distances in Posterior Distributions for Cognitive Impairment  

Parameter Noninformative var=10 var=5 var=0.25 
White 0.050 0.048 0.049 0.300 
Male 0.033 0.040 0.037 0.211 
Age 0.044 0.060 0.060 0.029 
Depression 0.053 0.050 0.040 0.258 
depression lag-1 0.036 0.034 0.034 0.097 
TBI  0.042 0.052 0.035 0.124 
TBI lag-1 0.047 0.046 0.033 0.202 
TBI lag-2 0.031 0.046 0.032 0.216 
TBI lag-3 0.037 0.046 0.033 0.224 
Thyroid  0.033 0.039 0.036 0.139 
Thyroid lag-1 0.038 0.036 0.042 0.119 
Thyroid lag-2 0.032 0.032 0.031 0.188 
Thyroid lag-3 0.035 0.036 0.039 0.173 

Note: Posterior distributions for non-informative priors and informative priors with 
variances 5, 10 and 0.25 are compared to posterior distributions with informative priors 
with variance 1. 

 

2.5.2  Add Health Study 

Data obtained from the National Longitudinal Study of Adolescent to Adult Health are 

analyzed using the Partitioned MVM marginal models with Bayes estimates. There is a 

need to identify the relationship between several time-dependent covariates on obesity in 

adolescents until adulthood the United States of America. These data contain information 

on students in grades 7-12, collected initially in the academic year 1994-1995 (Harris & 

Udry, 2016). Repeated measures are taken in waves; at baseline and at three follow-up 

periods. The binary outcome, obesity status, is determined based on BMI. If BMI ≥ 30 

then the outcome “obese” takes the value 1, and 0 otherwise. The time-dependent 

covariates are depression on a continuum, average number of hours watching TV per 
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week, physical activity level, and social drinker status. Race (white vs non-white) is a 

time-independent covariate.  

A statistical test identifies the valid moment conditions for these time-dependent 

covariates (Lalonde et al., 2014). The partitioning of the time-dependent covariates led to 

coefficients for measurements at cross-sectional, lag-1, lag-2 and lag-3. In particular,  

valid moment conditions for time-dependent covariates at lag-1. At lag-2, only the 

moment conditions for physical activity level and social drinker status are valid. At lag-3, 

only the moment condition for physical activity level is valid. 

  The prior relationships between obesity and the covariates are as follows. 

Caucasian adults are less likely to be obese than non-white (African Americans).  Adults 

among non-depressed (b=-0.696, SE=0.125) and depressed (b=-0.383, SE=0.306) 

subpopulations (Lincoln et al., 2014). Depression increases the odds of developing 

obesity (OR=1.58 with 95% CI (1.33, 1.87)). Luppino et.al. (2010). Among children 

between 3-15 years old, physical activity has a negative relationship with the risk of 

being obese (OR=0.93 with 95% CI (0.87, 0.98)) (Hong et al., 2016). Children under 18 

years of age, who watched TV for one hour daily (OR=1.29 with 95% CI (1.11, 1.50)), 

two hours daily (OR=1.64 with 95% CI (1.41, 1.89)), and three or more hours daily 

(OR=2.29 with 95% CI (1.97, 2.67)) are more likely to be obese than those who watched 

TV less than one hour per day (Singh et al., 2010). This information led to prior 

distributions for the regression coefficients. In cases where the standard errors for 

estimated effects in previous studies are too small, assign use standard errors of 1. Such a 

choice means that the prior distributions would completely cover the tails of the posterior 
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distributions (Givens & Hoeting, 2013). The prior distribution for the regression 

coefficient for race is 𝑁𝑁(−0.113, 1), the regression coefficients for depression is 

𝑁𝑁(0.457, 1), the regression coefficients for physical activity level is 𝑁𝑁(−0.073, 1) and 

the regression coefficients for television hours is 𝑁𝑁(0.255, 1).  In the absence of 

consensus, data with conflicting results regarding social alcohol use as it relates to 

obesity (Traversy & Chaput, 2015), a non-informative prior distribution of 𝑁𝑁(0,10000) 

is used. 

Figure 2.5 presents trace plots for the three Markov Chains for the regression 

parameters. It shows that three chains converge to the same posterior region. Figure 2.6 

includes a comparison between the prior and posterior distributions for the regression 

coefficients. It shows that the parameters have prior distributions which completely cover 

the tails of the posterior distributions. The posterior distribution for the marginal model 

has parameter as given in Table 2.7.  
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Table 2.7 

Results of Partitioned MVM Model with Bayes Estimates for Add Health Data 

Parameter OR 95% Credible Interval ESS 
Race 1.162 1.030 1.297 3834 
Alcohol 0.914 0.803 1.041 2950 
Lag1 alcohol 0.990 0.878 1.127 3085 
Lag 2 alcohol 1.209 1.062 1.377 3320 
Depression 1.336 1.116 1.600 2241 
Lag1 depression 1.840 1.553 2.160 2673 
Tv hours 1.010 1.010 1.020 4308 
Lag1 tv hours 1.010 1.000 1.010 4433 
Physical activity  0.795 0.748 0.844 2932 
Lag1 activity 0.923 0.878 0.970 2761 
Lag 2 activity 1.185 1.139 1.234 2579 
Lag 3 activity 1.150 1.094 1.197 2567 

 

Figure 2.5 

Markov Chains for Coefficients’ Posterior Distributions for Obesity 

 
*Note: beta[1]=intercept, beta[2]=white, beta[3]=depression, beta[4]=TV hours, beta[5]=physical activity, 
beta[6]=alcohol, beta[7]=lag-1 depression, beta[8]=lag-1 TV hours, beta[9]=lag-1 physical activity, 
beta[10]=lag-1 alcohol, beta[11]=lag-2 physical activity, beta[12]=lag-2 alcohol, beta[13]=lag-3 physical 
activity. 
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Figure 2.6 

Prior and Posterior Distributions for Coefficients in Obesity Status 
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*Note: Red dotted line represents prior distribution, black solid density represents the 
posterior distribution 

 

The Partitioned MVM marginal models with Bayes estimates found that social 

drinking did not have an immediate effect or delayed effect on obesity status. However, 

there is a significant further delayed effect of social drinking on obesity. Depression had 

an immediate and delayed effect on obesity. The number of hours spent watching TV had 

a significant immediate effect on obesity. Physical activity level had an immediate, 

delayed effects, further delayed and furthermost delayed on obesity. We found that the 

impact of most time-dependent covariates changed over time, except for the number of 

hours spent watching TV, Figure 2.7.  
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Figure 2.7  

Posterior OR and 95% Credible Intervals for Time-dependent Covariates  

 

 
 

In this analysis, both Partitioned MVM marginal models with Bayes estimates and 

the Partitioned frequentist GMM produce similar results, Table 2.8. There are no issues 

with convergence in the Partitioned frequentist GMM as in the first example. 
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Table 2.8 

Comparison of Partitioned MVM Marginal Models with Bayes Estimates and 

Partitioned GMM (Add Health) 

Parameter Bayesian Frequentist 
OR estimate Significant OR estimate Significant 

Race 1.162 Yes 1.249 Yes 
Alcohol 0.914 No 1.010 No 
lag1 alcohol 0.990 No 1.047 No 
lag 2 alcohol 1.209 Yes 1.343 Yes 
Depression 1.336 Yes 1.650 Yes 
lag1 depression 1.840 Yes 1.790 Yes 
tv hours 1.010 Yes 1.015 Yes 
lag1 tv hours 1.010 No 1.004 No 
physical activity 0.795 Yes 0.848 Yes 
lag1 activity 0.923 Yes 0.909 Yes 
lag 2 activity 1.185 Yes 1.197 Yes 
lag 3 activity 1.150 Yes 1.171 Yes 

 

A prior sensitivity analysis is conducted for modeling obesity in the Add health dataset 

similar to the methods in the previous example. Figure 2.8 shows the superimposed 

posterior distributions based on several prior distribution choices for the obesity status 

model. It reveals that the choice of mean or variance for prior distributions have little 

effect on the posterior distributions. This is validated in Table 2.9. The Hellinger 

distances between posterior distributions for reference priors and the other priors are 

smaller than 0.1. 
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Figure 2.8 

Posterior Distributions for Prior Sensitivity for Regression Coefficients of Obesity 
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Table 2.9 

Hellinger Distances between Posterior Distributions for Obesity  

Parameter Noninformative var=10 var=5 var=0.25 
Race 0.025 0.027 0.034 0.089 
Alcohol 0.029 0.029 0.040 0.026 
lag1 alcohol 0.031 0.034 0.027 0.036 
lag 2 alcohol 0.044 0.043 0.054 0.044 
Depression 0.031 0.026 0.041 0.058 
lag1 depression 0.037 0.035 0.028 0.034 
tv hours 0.025 0.029 0.033 0.027 
lag1 tv hours 0.032 0.029 0.037 0.042 
physical activity  0.019 0.029 0.035 0.098 
lag1 activity 0.032 0.032 0.038 0.038 
lag 2 activity 0.024 0.040 0.024 0.019 
lag 3 activity 0.036 0.049 0.047 0.044 

Note: Posterior distributions for non-informative priors and informative priors with 
variances 5, 10 and 0.25 are compared to posterior distributions with informative priors 
with variance 1. 
 

2.6 Discussion 

The Partitioned MVM marginal model with Bayes estimates for time-dependent 

covariates addresses the correlation due to time-dependent covariates through an 

identification of valid moments from a derived Partitioned matrix. It consists of 

additional regression covariates and as such, it also addresses the situation of few valid 

moments at times and avoids non-convergence.  

The coefficients provide a model with estimates as efficient to those from the 

GEE with lagged covariates and working correlation matrix with independence, or as 

good as the frequentist GMM marginal model. It takes advantage of the Bayesian 

principles. It is flexible and attainable in obtaining estimates of the regression coefficients 

for time-dependent covariates. It achieves fast computation and avoiding the issue of 
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non-convergence which remains a challenging problem for the lagged modeling 

approaches. 
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CHAPTER 3 

MODELING SIMULTANEOUS RESPONSES WITH NESTED WORKING 

CORRELATION AND BAYES ESTIMATES FOR DATA WITH TIME-DEPENDENT 

COVARIATES 

 

Abstract 

In the analysis of longitudinal data, it is common to characterize the relationship between 

the (repeated) response measures and the covariates. However, when the covariates do 

vary over time (time-dependent covariates) there is extra relation due to the delayed 

effects that need to be accounted for. Moreover, these studies often consist of 

simultaneous responses from a subject. However, a joint likelihood function of the 

simultaneous responses is impossible to determine and so maximum likelihood estimates 

are unattainable as the observations are correlated. In this paper, a simultaneous modeling 

of multiple response variables, using a hierarchical working correlation matrix, with 

Bayesian regression estimates on a partitioned data matrix is developed. A simulation 

study demonstrating the benefits of this model is conducted. The method using data from 

Chinese Quality of Health survey data was analyzed. We provide code in R and a SAS 

macro. 
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3.1 Introduction 

Hierarchically structured data are common in survey data. In particular, clustering 

of subjects (e.g., patients clustered within hospitals) and longitudinal repeated 

measurements taken from a subject lead to hierarchical data structure. When analyzing 

such interdependent data as longitudinal repeated measures, the sampling units are 

independent, but the repeated measurements on each sampling unit over time are 

correlated. For clustered or longitudinal binary data, the joint likelihood of the repeated 

measurements on a subject is typically difficult to formulate. In such cases, we often rely 

on a quasi-likelihood thereby concentrating on the variance-mean relation through 

marginal models that help us understand what impacts the mean outcome of the 

population of interest. The fit using the so-called generalized estimating equation (GEE) 

(Liang & Zeger, 1986), leads to a robust method that produces consistent and asymptotic 

normal estimators even with a miss specified working correlation matrix is widely known 

to statisticians. If the correlation structure is correctly specified, the GEE estimator is 

efficient, notwithstanding, it gives us a population-averaged or marginal model. 

Marginal models are often not the choice with repeated measures data as 

researchers often resort to subject specific models, in other words, modeling a function of 

the mean outcome conditional on individual subjects (Hu et al., 1998). Subject-specific 

models are based on two or more parametric distributions, one or more associated with 

the random effects and one for the outcomes conditional on the random effects. However, 

while random effects models are frequently used in modeling longitudinal data, they 

answer the question about the mean response of an individual with conditional results, 
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rather than the one initially posed by the marginal model. In fact, these random 

coefficient models are conditioned on the random effects, which largely are random so 

the notion of conditional on it is sometimes tough to wrap one’s mind around (Laird & 

Ware, 1982; Ware, 1985).  

The method of regression estimates using the generalized method of moments 

(GMM) is a popular technique in econometrics modeling (Hall, 2005; Hansen, 1982; 

Hansen et al., 1996). The use of GMM estimators and the related asymptotic theory 

through population moment conditions have gotten lots of attention in statistical research 

(Hansen, 1982; McFadden, 1989). The GMM method achieves estimation efficiency 

when the likelihood is difficult or impossible to work with, as is the case with correlated 

binary observations. The GMM is also used to make inferences to semiparametric models 

where there are more moment conditions than unknown parameters.  

Qu et al. (2000) and Lai and Small (2007) presented a GMM marginal regression 

model to analyze longitudinal data and demonstrated its advantages over the GEE model. 

Lalonde, Wilson, and Yin (2014) extended Lai and Small’s work in presenting a method 

to identify valid moments. Interestingly, Irimata, Broatch, and Wilson (2019) presented a 

reconfiguration of the data matrix to address the correlation due to the varying impact of 

the covariates on the response at present and future times. The reconfiguration addresses 

the correlation due to the time-dependent covariates. 

These methods have been used when modeling a single response of interest. 

However, many longitudinal studies have multiple responses of interest measured at each 

time point. Studies that observe multiple binary responses may focus on the simultaneous 
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occurrence of two or more of these responses (McCulloch, 2008). Sometimes the 

multiple responses of interest are considered a joint measure of a subject’s trait over time. 

Lipsitz et.al. (2009) studied a joint measure of heart function over time based on the 

binary responses abnormal heart rate,  abnormal blood pressure and abnormal heart wall 

thickness.  

When longitudinal studies focus on the simultaneous occurrence of multiple 

responses but the analysis focuses on a single response at a time, it provides an 

incomplete picture (Lipsitz et al., 2009). Fieuws et.al. (2007) and Lipsitz et.al.(2009) 

argued that to understand longitudinal change in simultaneous responses, one must model 

them jointly over time. A joint model for multiple longitudinal responses must account 

for the correlation between repeated measurements on the same response within subjects, 

and should allow for correlation between measurements on the different responses 

(Fieuws et al., 2007; Lipsitz et al., 2009). When time-dependent covariates are present, 

one should also account for the changing effects of such covariates on one or more of the 

simultaneous responses of interest (Irimata et al., 2019). There are times when one or 

more time-dependent covariates are thought to affect all of the simultaneous responses. 

The simultaneous modeling allows the assessment of the overall impact as well as the 

separate and joint effect of such covariates on the responses over time (McCulloch, 

2008).      

In this paper, a model is presented that addresses time-dependent covariates 

effects on simultaneous binary responses. It is a marginal regression model for multiple 

binary outcomes that relates the marginal probability of each outcome to a set of 
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covariates over time. It provides partitioned regression coefficients for time-dependent 

covariates. The regression parameters are estimated for each outcome, and the model 

does not assume all outcomes have the same regression parameters. Also this model 

depends on the use of Bayesian principles to obtain estimates of regression coefficients as 

applied to the reconfiguration of the data matrix (Irimata et al., 2019). 

The remainder of this paper is organized as follows. In Section 2, a review of the 

GMM partitioning of the data matrix to address the time-dependent covariates. In Section 

3, a simultaneous modelling of responses with Bayes estimates of the coefficients with a 

hierarchical working correlation on the responses is derived. In Section 4, a simulation 

study to demonstrate the properties of the simultaneous model coefficients is conducted. 

The fit of the proposed model is demonstrated with a numerical example using the  

Chinese Longitudinal Healthy Longevity Survey data in Section 5.   

3.2 Background 

Consider a longitudinal data structure comprised of one response variable 𝑦𝑦𝑖𝑖𝑖𝑖 and a 

vector of 𝐽𝐽 covariates 𝒙𝒙𝑖𝑖∗𝑡𝑡 =  (𝑥𝑥𝑖𝑖1𝑡𝑡, . . . , 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖), observed at times 𝑡𝑡 =  1, . . . ,𝑇𝑇; for 

subjects 𝑖𝑖 =  1, . . . ,𝑁𝑁. Such longitudinal data in which measurements are collected 

repeatedly, with certain regularity, are common in health and health related fields and in 

social science research to name a few. Assume there is missing data, the missing is 

completely at random assumption (Lai & Small, 2007; Little & Rubin, 2002). Then, 

whether a subject’s data are missing at a given time 𝑡𝑡 is conditionally independent, given 

the subject’s covariates at time 𝑡𝑡, 𝐱𝐱𝑖𝑖∗𝑡𝑡, of the subject’s missing outcomes, past outcomes, 

future outcomes and the covariates at past or future time points (Little & Rubin, 2002).  
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Without loss of generality and for convenience, assume each subject is observed at each 

time point. Let 𝒚𝒚𝑖𝑖  =  (𝑦𝑦𝑖𝑖1, . . . ,𝑦𝑦𝑖𝑖𝑖𝑖)′ be the 𝑇𝑇 × 1 vector of outcome values associated 

with the 𝐽𝐽 ×  1 covariate vectors 𝒙𝒙𝒊𝒊∗𝟏𝟏, . . . ,𝒙𝒙𝒊𝒊∗𝑻𝑻 for the 𝑖𝑖th subject. For 𝑖𝑖 ≠ 𝑖𝑖′ , assume 𝒚𝒚𝑖𝑖 

and 𝐲𝐲i′ are independent, but generally the components of 𝒚𝒚𝑖𝑖 are correlated. 

At time 𝑡𝑡 , let the ith subject  (𝑖𝑖 = 1, 2, … ,𝑁𝑁) be observed with response 𝑦𝑦𝑖𝑖𝑖𝑖 and 

let 𝒙𝒙𝑖𝑖∗𝑡𝑡 be the corresponding vector of 𝐽𝐽 covariates (𝑗𝑗 = 1, 2, . . , 𝐽𝐽). Characterize the 

relationship between 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝒙𝒙𝑖𝑖∗𝑡𝑡 as if the observed values 𝑦𝑦𝑖𝑖𝑖𝑖 come from a distribution 

belonging to the exponential family. Thus, the density function of 𝑦𝑦𝑖𝑖𝑖𝑖 given 

𝒙𝒙𝑖𝑖∗𝑡𝑡 = 𝑥𝑥𝑖𝑖1𝑡𝑡, … , 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 takes the form of a random variable with mean 𝜇𝜇 and variance 𝜎𝜎2 as a 

member of the exponential family: 

f(𝑦𝑦𝑖𝑖𝑖𝑖|𝜃𝜃𝑖𝑖𝑖𝑖,𝜙𝜙) = exp ��𝑦𝑦𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏(𝜃𝜃𝑖𝑖𝑖𝑖)�
𝑎𝑎(𝜙𝜙) + 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖,𝜙𝜙)�    (2.1) 

where 𝜃𝜃𝑖𝑖𝑖𝑖 is the canonical mean parameter, 𝜙𝜙 is the dispersion parameter, and the 

functions 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are known. Further, 

𝜇𝜇𝑖𝑖𝑖𝑖 = 𝐸𝐸(𝑦𝑦𝑖𝑖𝑖𝑖|𝒙𝒙𝑖𝑖∗𝑡𝑡) = 𝑏𝑏′(𝜃𝜃𝑖𝑖𝑖𝑖) 

and 

σ2 = a(ϕ)b′′(θit) 

where 𝑏𝑏′ denotes the first derivative and 𝑏𝑏′′ denotes the second derivative. Thus, the 

mean and variance are related 

Var(y𝑖𝑖𝑖𝑖) = 𝑎𝑎(𝜙𝜙)V(μ𝑖𝑖𝑖𝑖) 

where 

𝑎𝑎(𝜙𝜙) = 𝜙𝜙
𝑤𝑤

, 
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where 𝑤𝑤 is the weight and V(μ𝑖𝑖𝑖𝑖) is the variance function (McCullagh & Nelder, 1989). 

Barndorff-Nielsen (1978) and Blaesild (1985) studied generalized linear models and 

showed that 𝑎𝑎, 𝑏𝑏, and 𝜃𝜃𝑖𝑖𝑖𝑖 are related. A generalized linear model (GLM) consists of a 

unified framework for various discrete and continuous outcomes (McCullagh & Nelder, 

1989). 

The generalized estimating equation (GEE) model relies on working correlation 

structure which can depend on an unknown 𝑠𝑠 × 1 parameter vector 𝜶𝜶. The dimension of 

the matrix depends on the number of repeats and correlation strength can differ from 

subject to subject, but the type of the correlation matrix Σ𝑖𝑖 for the 𝑖𝑖th subject is fully 

specified by 𝜶𝜶. The working covariance matrix of 𝒚𝒚𝑖𝑖 

𝑽𝑽𝑖𝑖 = 𝐴𝐴𝑖𝑖
1
2𝑅𝑅(𝜶𝜶)𝐴𝐴𝑖𝑖

1
2/𝜆𝜆 

Then, we define the generalized estimating equations as  

�𝑈𝑈𝑖𝑖(𝜷𝜷,𝜶𝜶)
𝑁𝑁

𝑖𝑖=1

= �𝑫𝑫𝑖𝑖
𝑇𝑇𝑽𝑽𝑖𝑖−1𝑺𝑺𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

where 𝑫𝑫𝑖𝑖 = 𝜕𝜕𝝁𝝁𝒊𝒊(𝜷𝜷)
𝜕𝜕𝜷𝜷

 and 𝑺𝑺𝑖𝑖 = 𝒀𝒀𝑖𝑖 − 𝝁𝝁𝑖𝑖(𝜷𝜷). The generalized estimating equations are similar 

to the function presented from the quasi-likelihood approach except that in this case 𝑽𝑽𝑖𝑖 is 

a function of 𝜷𝜷 and 𝜶𝜶. Liang and Zeger (1986) showed conditions under which 𝜷𝜷� satisfies 

∑ 𝑈𝑈𝑖𝑖�𝜷𝜷� ,𝜶𝜶�𝑁𝑁
𝑖𝑖=1 = 0. They include the assumption that the estimating equation is 

asymptotically unbiased and √𝑛𝑛�𝜷𝜷� − 𝜷𝜷� is asymptotically multivariate Gaussian under 

suitable regularity conditions. They showed that 𝜷𝜷� is consistent regardless of whether the 
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actual correlation matrix of is 𝑅𝑅𝑖𝑖(𝜶𝜶). Although correct specification of the working 

correlation structure does not affect consistency, correct specification enhances efficiency. 

3.2.1 Marginal Regression Modeling with Time-Dependent Covariates 

Lai and Small (2007) fitted marginal models to continuous data with time- 

dependent covariates through grouping of the valid moments. They presented a marginal 

model for longitudinal continuous data with GMM estimates through the moment 

conditions  

E �𝜕𝜕𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑗𝑗

{𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷)}� = 0                                   (2.2) 

for appropriately chosen times 𝑠𝑠, 𝑡𝑡, and predictor  𝑗𝑗. Let 

𝜇𝜇𝑖𝑖𝑡𝑡(𝜷𝜷) = E[{𝑦𝑦𝑖𝑖𝑖𝑖|𝒙𝒙𝑖𝑖∗𝑡𝑡}] 

denote the expectation of 𝑦𝑦𝑖𝑖𝑖𝑖 based on the vector of covariate values 𝒙𝒙𝑖𝑖∗𝑡𝑡 associated with 

the vector of parameters 𝜷𝜷 in the systematic component that describes the marginal 

distribution of 𝑦𝑦𝑖𝑖𝑖𝑖. Lai and small (2007) classified time-dependent covariates into three 

types and determined valid moment conditions based on such classifications. They 

combined the valid moments to obtain an estimate of a single regression coefficient to 

represent the overall effect of a given covariate. Lalonde, Wilson, and Yin (2014) 

introduced a method that identifies valid moments. Other approaches to address the 

problem include Zhou, Lefante, Rice, and Chen (2014) who utilized a modified quadratic 

inference approach, while Chen and Westgate (2017) chose a modified weight matrix 

based on linear shrinkage, and Müller and Stadtmuller (2005) used a generalized 

functional linear regression model. 
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3.2.2 Partitioned Coefficients with Time-Dependent Covariates 

Irimata, Broatch and Wilson (2019) provided a method based on time-dependent 

covariates with the use of GMM estimates based on a reconfiguration of the data matrix. 

Their method identifies valid moments for time-dependent covariates one at a time. 

However, instead of combining the valid moments into one regression coefficient, they 

are held separately to provide measures for the cross sectional (immediate effect) effect, 

lag-1 (delayed) effect, and so on. This method is unique as it differs from other models, 

which do not separate out the regression coefficients.  

While these additional regression coefficients have the advantage of 

interpretability. At times, the number of valid moments may not be sufficient to provide 

consistent estimates (Lai & Small, 2007). This problem of having too few equations and 

not having enough data to obtain the generalized method of moment’s estimates for the 

regression coefficients are addressed with Bayesian estimates.  

This partitioning of the data matrix is convenient and readily attainable, as it 

provides an alternative but interpretable approach to modeling correlated data with time-

dependent covariates (Irimata et al., 2019). It produces additional regression parameters 

for each time-dependent covariate, and provides valuable insight into time-varying 

relationships.  

Irimata, Broatch and Wilson (2019) address a marginal model for cases when 

there are time-dependent covariates. The valid moments are consistent with the 

reconfiguration of the data matrix (or partitioned data matrix). The data matrix has  

dimension depending on the number of repeated measures on the response. The 



  64 

reconfigured matrix is partitioned into a lower triangular matrix. These valid moments 

are identified as a result of the uncorrelated relationship between the residuals (𝑌𝑌𝑡𝑡 −

𝜇𝜇𝑡𝑡) at time 𝑡𝑡, and the 𝑗𝑗th covariate value 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 observed at time s, for 𝑠𝑠 ≤ 𝑡𝑡. Thus, for 

subject 𝑖𝑖 with the jthcovariate, each time-dependent covariate 𝑿𝑿𝑖𝑖𝑖𝑖 is measured at times 

1, 2, … ,𝑇𝑇, and the partitioned data matrix is reconfigured as a lower triangular matrix,  

𝑿𝑿𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎡
1 𝑋𝑋𝑖𝑖𝑖𝑖1 0 … 0
1 𝑋𝑋𝑖𝑖𝑖𝑖2 𝑋𝑋𝑖𝑖𝑖𝑖1 … 0
⋮ ⋮ ⋮ … ⋮
1 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖(𝑇𝑇−1) … 𝑋𝑋𝑖𝑖𝑖𝑖1⎦

⎥
⎥
⎤

= �𝟏𝟏 𝑿𝑿𝑖𝑖𝑖𝑖
[0] 𝑿𝑿𝑖𝑖𝑖𝑖

[1] … 𝑿𝑿𝑖𝑖𝑖𝑖
[𝑇𝑇−1]� 

where the superscript denotes the difference, 𝑡𝑡 − 𝑠𝑠 in time-periods between the response 

time t and the covariate time s. Thus, a model for subject 𝑖𝑖 at time 𝑡𝑡 with one time-

dependent covariate, 𝑿𝑿𝑖𝑖𝑖𝑖 and no time-independent covariates is  

    𝑔𝑔(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑗𝑗
[1]𝑋𝑋𝑖𝑖𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽𝑗𝑗

[2]𝑋𝑋𝑖𝑖𝑖𝑖,𝑡𝑡−2 + ⋯+𝛽𝛽𝑗𝑗
[𝑇𝑇−1]𝑋𝑋𝑖𝑖𝑖𝑖1    (2.3) 

In matrix notation g(𝝁𝝁𝒊𝒊) = 𝑿𝑿𝑖𝑖′𝜷𝜷, where the 𝑿𝑿𝑖𝑖 is the subject’s matrix of covariates 

denoting the systematic component of the model with mean 𝝁𝝁𝑖𝑖 = (𝜇𝜇𝑖𝑖1, … , 𝜇𝜇𝑖𝑖𝑖𝑖)′ that 

depends on the regression coefficients 𝜷𝜷 = �𝜷𝜷1, … ,𝜷𝜷𝐽𝐽�, the concatenation of the 

parameters associated with each of the 𝐽𝐽 covariates. Where 𝜷𝜷𝒋𝒋 =

�𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡,𝛽𝛽𝑗𝑗
[1],𝛽𝛽𝑗𝑗

[2], … ,𝛽𝛽𝑗𝑗
[𝑇𝑇−1]� and 𝑗𝑗 = 1, … . , 𝐽𝐽. The coefficient 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡 denotes the effect of the 

covariate 𝑿𝑿∗𝑗𝑗𝑗𝑗 on the response 𝑌𝑌𝑡𝑡 during the tth period, or in other words, when the 

covariate and the outcome are observed in the same time-period. When 𝑠𝑠 < 𝑡𝑡 , we denote 

the lagged effect of the covariate 𝑿𝑿∗𝑗𝑗𝑗𝑗 on the response 𝑌𝑌𝑡𝑡 by the 

coefficients 𝛽𝛽𝑗𝑗
[1],𝛽𝛽𝑗𝑗

[2], … ,𝛽𝛽𝑗𝑗
[𝑇𝑇−1]. These additional coefficients allow the effect of the 
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covariate on the response to change across time and to be addressed separately, rather 

than assuming that the association maintains the same strength and direction over time. 

For example, the coefficient 𝛽𝛽𝑗𝑗
[1] denotes the effect of 𝑿𝑿∗𝑗𝑗𝑗𝑗 on 𝑌𝑌𝑡𝑡 across a one time-period 

lag. In general, each of the 𝐽𝐽 time-dependent covariates produce a maximum of 𝑇𝑇 

partitions of  𝜷𝜷𝑗𝑗. Thus, for a model with 𝐽𝐽 covariates, the data matrix 𝑿𝑿 will have a 

maximum dimension of  𝑁𝑁 × �(𝐽𝐽 × 𝑇𝑇) + 1� and 𝜷𝜷 is a vector of maximum length 

�(𝐽𝐽 × 𝑇𝑇) + 1�. 

The moment conditions when 𝑠𝑠 = 𝑡𝑡 have been proven to be always valid (Lai & 

Small, 2007; Pepe & Anderson, 1994), thus the cross-sectional regression coefficient, 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡 

is always guaranteed to be estimable. However, as the lagged regression coefficients 

𝛽𝛽𝑗𝑗
[1], … ,𝛽𝛽𝑗𝑗

[𝑇𝑇−1] rely on moment conditions evaluated using hypothesis testing, they may 

not be estimable if no valid moment conditions are identified. 

3.2.3 Bayes Inferences  

This scenario with few cases for valid moment conditions led to the consideration of 

Bayes principles. Let 𝐷𝐷 = {(𝑿𝑿𝑖𝑖,𝑌𝑌𝑖𝑖)}𝑖𝑖=1𝑁𝑁  be a dataset, where 𝑿𝑿𝑖𝑖 is a vector of covariates 

and 𝑌𝑌𝑖𝑖 is a response. Let π0(𝜷𝜷) be a prior density on a parameter vector 𝜷𝜷, and let 

P(𝑌𝑌𝑖𝑖|𝑿𝑿𝑖𝑖,𝜷𝜷) be the likelihood of observation 𝑖𝑖 given the parameter 𝜷𝜷. The Bayesian 

posterior is calculated as the density  

𝑃𝑃𝑁𝑁(𝜷𝜷) =
exp�𝛹𝛹𝑁𝑁(𝜷𝜷)�π0(𝜷𝜷)

𝜀𝜀𝑁𝑁
 

where 𝛹𝛹𝑁𝑁(𝜷𝜷) = ∑ ln𝑃𝑃(𝑌𝑌𝑖𝑖|𝑿𝑿𝑖𝑖,𝜷𝜷)𝑁𝑁
𝑖𝑖=1 ) is the model log-likelihood and 
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𝜀𝜀𝑁𝑁 = � exp�𝛹𝛹𝑁𝑁(𝜷𝜷)�π0(𝜷𝜷)𝑑𝑑𝜷𝜷 

is the marginal likelihood. Thus, we rely on a dataset  

𝐷𝐷� = ��𝜁𝜁𝑖𝑖 ,𝑋𝑋�𝑖𝑖,𝑌𝑌�𝑖𝑖��𝑖𝑖=1
𝑀𝑀

 

with 𝑀𝑀 ≤ 𝑁𝑁 such that the weighted log-likelihood  

𝛹𝛹�𝑁𝑁(𝜷𝜷)� 𝜁𝜁𝑖𝑖ln
𝑀𝑀

𝑖𝑖
 𝑃𝑃(𝑌𝑌�𝑖𝑖|𝑋𝑋𝚤𝚤� ,𝜷𝜷) 

satisfies 

�𝛹𝛹𝑁𝑁(𝜷𝜷) −𝛹𝛹�𝑁𝑁(𝜷𝜷)� ≤ 𝜀𝜀|𝛹𝛹𝑁𝑁(𝜷𝜷)| ∀𝜷𝜷𝜖𝜖𝜣𝜣                               (2.4) 

If 𝐷𝐷� satisfies (2.4) then it is an ε-coreset of D, and the approximate posterior 

𝑃𝑃�𝑁𝑁(𝜷𝜷) =
exp �𝛹𝛹�𝑁𝑁(𝜷𝜷)�π0(𝜷𝜷)

𝜀𝜀𝑁̃𝑁
 

with  

𝜀𝜀𝑁̃𝑁 = � exp �𝛹𝛹𝑁𝑁� (𝜷𝜷)�π0(𝜷𝜷)𝑑𝑑𝜷𝜷 

has a marginal likelihood 𝜀𝜀𝑁̃𝑁 which approximates the true marginal likelihood 𝜀𝜀𝑁𝑁 . This 

follows (Huggins et al., 2016), that if 

�𝛹𝛹𝑁𝑁(𝜷𝜷) −𝛹𝛹�𝑁𝑁(𝜷𝜷)� ≤ 𝜀𝜀|𝛹𝛹𝑁𝑁(𝜷𝜷)| ∀𝜷𝜷𝜖𝜖𝜣𝜣 

then for any prior π0(𝜷𝜷) such that the marginal likelihoods  

𝜀𝜀𝑁̃𝑁 = �𝑒𝑒𝑒𝑒𝑒𝑒 �𝛹𝛹𝑁𝑁� (𝜷𝜷)�𝜋𝜋0(𝜷𝜷)𝑑𝑑𝜷𝜷 

are finite, the marginal likelihoods satisfy |ln𝜀𝜀 − ln𝜀𝜀𝑁̃𝑁| ≤ 𝜀𝜀|ln𝜀𝜀|.   
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3.3 MVM Marginal Model with Bayes Estimates 

The longitudinal studies are often designed to study changes which are measured 

repeatedly over time (Fieuws et al., 2007). They are often multivariate in responses 

(several response variables) having repeated measurements on the different responses for 

each subject. When modeling multiple longitudinal outcomes one should account for two 

types of correlation: correlations between measurements on different outcomes and 

correlations among measurements on the same outcomes (Gueorguieva, 2001).  

One approach to modeling simultaneous longitudinal outcomes, is to use a set of 

latent, unobserved, random effects to address correlation for two or more responses 

(Ghebremichael, 2015; Fang, Sun & Wilson, 2018). Such models assume that the 

responses shared a common unobservable feature, and as such account for the correlation 

between the measures taken from the same subject. However, the proposed model takes a 

different approach, one that would allow interpretation to remain on the marginal mean 

and not to divert to the conditional mean. 

The proposed model accounts for two sets of correlation, one between the 

simultaneous responses and another for current and future effects of time dependent 

covariates. The correlation among the simultaneous responses is modeled through a 

working correlation matrix for within-outcome correlations (e.g., caused by repeated 

measures of the outcome across time) and an outer working correlation matrix for 

between-outcome correlations (e.g., caused by outcome responses taken from the same 

subject). Thus, we adjust the random component as we would in the usual generalized 

estimating equations.  
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3.3.1 Simultaneous Responses with Nested Working Correlation Matrix 

Consider a model for simultaneous responses that accounts for the two types of 

correlation among these responses, while addressing the time-dependent covariates. In 

this model, (on the left side of the model) time is nested within responses and responses 

are nested within subjects. This gives rise to a two-part GEE partitioned model with 

normal priors in pursuit of a posterior distribution while making use of a nested working 

correlation matrix to address the responses. 

Let 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 denote the 𝑟𝑟th response (𝑟𝑟 =  1, …  𝑅𝑅) from the 𝑖𝑖th subject (𝑖𝑖 = 1, … . ,𝑁𝑁) 

at the tth period (t = 1, … , T). Then 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is a binary random variable and takes on a value 

of 1 (event) or a value of 0 (non-event). For the ith subject, measured T times, on the rth 

response denote the vector of length T as  𝒀𝒀𝒊𝒊𝒊𝒊 = (𝑌𝑌𝑖𝑖𝑖𝑖1 𝑌𝑌𝑖𝑖𝑖𝑖1 … . 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖)′. Then, for the ith 

subject measured 𝑇𝑇 times on the R responses there is a vector 𝒀𝒀𝒊𝒊 = (𝒀𝒀𝒊𝒊𝒊𝒊 𝒀𝒀𝒊𝒊𝒊𝒊 … . 𝒀𝒀𝒊𝒊𝒊𝒊)′ 

of length (𝑅𝑅 × 𝑇𝑇). Assume that for the vector of length 𝑇𝑇, 𝒀𝒀𝒊𝒊𝒊𝒊, there is a set of covariates 

(time-independent and time-dependent) that generate its own partitioned data matrix 𝑿𝑿𝒊𝒊𝒊𝒊
[ ] . 

Let 𝑿𝑿𝒊𝒊
[ ] be  a block diagonal design matrix for subject 𝑖𝑖, composed of the partitioned data 

matrices of covariates  𝑿𝑿𝒊𝒊𝒊𝒊
[ ] for 𝑟𝑟 = 1, … ,𝑅𝑅; with associated regression coefficients 𝜷𝜷 =

(𝜷𝜷𝟏𝟏 … . . 𝜷𝜷𝑹𝑹)′, where 𝜷𝜷𝒓𝒓  (𝑟𝑟 = 1, …𝑅𝑅) is the vector of regression coefficient 

associated with  𝑿𝑿𝒊𝒊𝒊𝒊
[ ] for the 𝑟𝑟𝑡𝑡ℎ response. 

The R simultaneous responses from the same subject 𝑖𝑖 have two levels of 

correlation, between responses and within responses. The R responses are measured T 

times and this gives rise to a square matrix of correlations Σ of dimension 𝑅𝑅 × 𝑇𝑇 such that 
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𝚺𝚺 = �
Σ11 ⋯ Σ1𝑇𝑇
⋮ ⋱ ⋮
Σ1𝑇𝑇 ⋯ Σ𝑇𝑇𝑇𝑇

� 

and 

𝚺𝚺𝑟𝑟𝑟𝑟′ = �
1 ⋯ 𝜌𝜌1𝑟𝑟𝑟𝑟
⋮ ⋱ ⋮
𝜌𝜌1𝑟𝑟𝑟𝑟 ⋯ 1

�. 

The 𝚺𝚺𝑟𝑟𝑟𝑟′  is seen as the innermost correlation or within correlation, while Σ contain the 

outmost correlation or between responses. The within correlations are the association 

within each of R responses. Then, there is the correlation between the R responses. The 

relations between and within, may each take on different correlation strength but the 

structure remains the same. This approach to simultaneous modelling of responses allows 

us to address a set of correlated responses as a marginal or population-averaged model 

with time-dependent covariates. 

To illustrate how the working correlation matrix works in this model, consider an 

example where data are collected on three binary outcomes, (𝑌𝑌1,𝑌𝑌2,𝑌𝑌3), at three different 

time periods for each subject. The vector of outcomes for each subject is 𝒀𝒀𝒊𝒊′ =

(𝑌𝑌𝑖𝑖11,𝑌𝑌𝑖𝑖12,𝑌𝑌𝑖𝑖13,𝑌𝑌𝑖𝑖21,𝑌𝑌𝑖𝑖22,𝑌𝑌𝑖𝑖23,𝑌𝑌𝑖𝑖31,𝑌𝑌𝑖𝑖32,𝑌𝑌𝑖𝑖33). The correlation matrix contains components 

measuring the two levels of correlation among the  outcomes and is of the form  



  70 

 

This correlation matrix is made up for three types of correlation parameters 

(Alzahrani, 2016): 

1. The intra-outcome correlation parameter, 𝜈𝜈𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟, relates outcome 𝑟𝑟 

measured at time 𝑡𝑡 with the same outcome measured at time 𝑠𝑠 

2. The inter-outcome correlation parameter, 𝛼𝛼𝑟𝑟𝑟𝑟,𝑟𝑟′𝑡𝑡, which relates outcome 𝑟𝑟 

measured at time 𝑡𝑡 with outcome 𝑟𝑟′ also measured at time 𝑡𝑡 

3. The cross-correlation parameters, 𝜏𝜏𝑟𝑟𝑟𝑟,𝑟𝑟′𝑠𝑠, which relate outcome 𝑟𝑟 

measured at time 𝑡𝑡 with outcome 𝑟𝑟′ measured at time 𝑠𝑠. 

 The intra-outcome correlation parameters, 𝜈𝜈𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟, make up the within outcome correlation 

structure. The inter-outcome, 𝛼𝛼𝑟𝑟𝑟𝑟,𝑟𝑟′𝑡𝑡, and cross-correlation parameters 𝜏𝜏𝑟𝑟𝑟𝑟,𝑟𝑟′𝑠𝑠, compose 

the between outcome correlation structure.  

At the within level, the correlation structure may be independent, compound 

symmetry (exchangeable), auto regressive, unstructured, or self-determined, among 

others. The within outcome correlation matrices for the three outcomes are equal. If the 

within outcome correlation structure is  
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• independent, then all 𝜈𝜈𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟 = 0.  

• exchangeable, then all 𝜈𝜈𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟 = 𝜌𝜌. 

• autoregressive(1), then 𝜈𝜈𝑟𝑟1,𝑟𝑟2 = 𝜈𝜈𝑟𝑟2,𝑟𝑟3 = 𝜌𝜌 and 𝜈𝜈𝑟𝑟1,𝑟𝑟3 = 𝜌𝜌2. 

• unstructured, then all  𝜈𝜈𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟 are different from each other. 

 In this example, there are three between outcome correlation matrices. At the 

between level, the structure can be independent, exchangeable or unstructured. If the 

between outcome correlation structure is  

• independent, then all  𝛼𝛼𝑟𝑟𝑟𝑟,𝑟𝑟′𝑡𝑡 = 0 and all 𝜏𝜏𝑟𝑟𝑟𝑟,𝑟𝑟′𝑠𝑠 = 0, for all three between 

outcome correlation matrices. 

• exchangeable, then all three between outcome correlation matrices are equal, with 

𝛼𝛼𝑟𝑟𝑟𝑟,𝑟𝑟′𝑡𝑡 = 𝜌𝜌 for all 𝑡𝑡 and all 𝑟𝑟 ≠ 𝑟𝑟′. The values of 𝜏𝜏𝑟𝑟𝑟𝑟,𝑟𝑟′𝑠𝑠 vary depending on the 

within outcome correlation structure. 

• unstructured, then then all three between outcome correlation matrices are 

different, with 𝛼𝛼1𝑡𝑡,2𝑡𝑡 = 𝛼𝛼12, 𝛼𝛼1𝑡𝑡,3𝑡𝑡 = 𝛼𝛼13 and 𝛼𝛼2𝑡𝑡,3𝑡𝑡 = 𝛼𝛼23. The values of 𝜏𝜏𝑟𝑟𝑟𝑟,𝑟𝑟′𝑠𝑠 

vary depending on the within outcome correlation structure.    

 The fit of this model consists of two-steps following the identification of the valid 

moments associated with each response. Define our simultaneous model as 

𝐄𝐄(𝒀𝒀𝒊𝒊) = 𝑬𝑬�

𝒀𝒀𝒊𝒊𝒊𝒊
𝒀𝒀𝒊𝒊𝒊𝒊
⋮
𝒀𝒀𝒊𝒊𝒊𝒊

� = 𝐠𝐠

⎝

⎜⎜
⎛

⎝

⎜
⎛

 𝑿𝑿𝒊𝒊𝒊𝒊
[ ] 𝟎𝟎 𝟎𝟎

𝟎𝟎  𝑿𝑿𝒊𝒊𝒊𝒊
[ ] 𝟎𝟎

⋮
𝟎𝟎

⋮
𝟎𝟎

⋱
…

 

𝟎𝟎
𝟎𝟎
⋮

 𝑿𝑿𝒊𝒊𝒊𝒊
[ ]

⎠

⎟
⎞
�

𝜷𝜷𝟏𝟏
𝜷𝜷𝟐𝟐
⋮
𝜷𝜷𝑹𝑹

�

⎠

⎟⎟
⎞

 

The estimators of the regression parameters 𝜷𝜷 are consistent.  Each 𝜷𝜷𝒓𝒓 represents a vector 

of regression parameters associated with the partitioned matrix corresponding to the 𝑟𝑟th 
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vector of responses, 𝒀𝒀𝒊𝒊𝒊𝒊, for 𝑟𝑟 = 1, …𝑅𝑅. Let 𝜟𝜟𝑖𝑖 be the diagonal matrix of the marginal 

variance of 𝒚𝒚𝑖𝑖. Let 𝜠𝜠𝑖𝑖 be the true correlation matrix, and let 𝛀𝛀𝑖𝑖 be a working correlation 

matrix which may not be identical to 𝑬𝑬𝑖𝑖.  

The partitioned data matrices for the R outcomes with 𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑅𝑅 time-dependent 

covariates are 𝑿𝑿𝒊𝒊𝒊𝒊
[ ],𝑿𝑿𝒊𝒊𝒊𝒊

[ ] , … ,𝑿𝑿𝒊𝒊𝒊𝒊
[ ] , respectively; such that 

𝑿𝑿𝒊𝒊𝒊𝒊
[ ] = �

1 𝑋𝑋𝑖𝑖𝑖𝑖11
1
⋮

𝑋𝑋𝑖𝑖𝑖𝑖12
⋮

1 𝑋𝑋𝑖𝑖𝑖𝑖1𝑇𝑇

   

0 …
𝑋𝑋𝑖𝑖𝑖𝑖11
⋮

…
⋱

𝑋𝑋𝑖𝑖𝑖𝑖1(𝑇𝑇−1) …
   

0
0
⋮

𝑋𝑋𝑖𝑖𝑖𝑖11

   

𝑋𝑋𝑖𝑖𝑖𝑖21 0
𝑋𝑋𝑖𝑖𝑖𝑖22
⋮

𝑋𝑋𝑖𝑖𝑖𝑖21
⋮

𝑋𝑋𝑖𝑖𝑖𝑖2𝑇𝑇 𝑋𝑋𝑖𝑖𝑖𝑖2(𝑇𝑇−1)

  
… 0
…
⋱

0
⋮

… 𝑋𝑋𝑖𝑖𝑖𝑖21

     

… 𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟1
…
⋱

𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟2
⋮

… 𝑋𝑋𝑖𝑖𝑟𝑟𝐽𝐽𝑟𝑟𝑇𝑇 

 

0 … 0
𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟1
⋮

…
⋱

0
⋮

𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟(𝑇𝑇−1) … 𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟1

�

= �𝟏𝟏 𝑿𝑿𝑖𝑖𝑖𝑖1
[0]    𝑿𝑿𝑖𝑖𝑖𝑖1

[1] …  𝑿𝑿𝑖𝑖𝑖𝑖1
[𝑇𝑇−1] 𝑿𝑿𝑖𝑖𝑖𝑖2

[0]   𝑿𝑿𝑖𝑖𝑖𝑖2
[1] …  𝑿𝑿𝑖𝑖𝑖𝑖2

[𝑇𝑇−1] ⋯   𝑿𝑿𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟
[0] 𝑿𝑿𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟

[1]    … 𝑿𝑿𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟
[𝑇𝑇−1]� 

Then for each of the R outcomes the vector of logits has components: 

logit(𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑿𝑿𝒊𝒊𝒊𝒊
[ ][𝑡𝑡, ]𝜷𝜷𝑟𝑟

= 𝛽𝛽𝑟𝑟0 + 𝛽𝛽𝑟𝑟1𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖1𝑡𝑡 + �𝛽𝛽𝑟𝑟1
[𝑘𝑘]𝑋𝑋𝑖𝑖𝑖𝑖1(𝑡𝑡−𝑘𝑘)|𝑣𝑣.𝑚𝑚.

𝑡𝑡−1

𝑘𝑘=1

+ 𝛽𝛽𝑟𝑟2𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖2𝑡𝑡 + �𝛽𝛽𝑟𝑟2
[𝑘𝑘]𝑋𝑋𝑖𝑖𝑖𝑖2(𝑡𝑡−𝑘𝑘)|𝑣𝑣.𝑚𝑚.

𝑡𝑡−1

𝑘𝑘=1

+ ⋯

+ 𝛽𝛽𝑟𝑟𝐽𝐽𝑟𝑟
𝑡𝑡𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟𝑡𝑡 + �𝛽𝛽𝑟𝑟𝐽𝐽𝑟𝑟

[𝑘𝑘]𝑋𝑋𝑖𝑖𝑖𝑖𝐽𝐽𝑟𝑟(𝑡𝑡−𝑘𝑘) |𝑣𝑣.𝑚𝑚.

𝑡𝑡−1

𝑘𝑘=1

 

where 𝑿𝑿𝒊𝒊𝒊𝒊
[ ][𝑡𝑡, ] is the row vector of covariates for outcome 𝑟𝑟 coming from subject 𝑖𝑖 at time 

𝑡𝑡. 

Assume that each binary outcome 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 in 𝒀𝒀𝒊𝒊𝒊𝒊 follows a marginal Bernoulli 

distribution. Then, the vector of success probabilities 𝒑𝒑𝒊𝒊𝒊𝒊 for outcome 𝑟𝑟 and subject 𝑖𝑖 has 

components 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 =
exp (𝑿𝑿𝒊𝒊𝒊𝒊

[ ][𝑡𝑡, ]𝜷𝜷𝑟𝑟)

1 + exp (𝑿𝑿𝒊𝒊𝒊𝒊
[ ][𝑡𝑡, ]𝜷𝜷𝑟𝑟)

 

The overall vector of marginal probabilities for subject 𝑖𝑖, 𝒑𝒑𝒊𝒊′ = (𝒑𝒑𝒊𝒊𝒊𝒊′ ,𝒑𝒑𝒊𝒊𝒊𝒊′ , … ,𝒑𝒑𝒊𝒊𝒊𝒊′ ) also has 

length 𝑅𝑅 × 𝑇𝑇 (Lipsitz et al., 2009). 
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Following Lipsitz et.al. (2009) approach, the generalized estimating equations 

(GEE) are given by  

���
𝜕𝜕𝒀𝒀𝒊𝒊
𝜕𝜕𝜷𝜷

�
′

𝑽𝑽𝑖𝑖−1(𝒀𝒀𝒊𝒊 − 𝒑𝒑𝒊𝒊)�
𝑁𝑁

𝑖𝑖=1

= 0 

where, 𝒑𝒑𝒊𝒊 is a mean vector of dimension (R × T)  such that 𝒑𝒑𝒊𝒊= E (𝒀𝒀𝒊𝒊) and the variance 

covariance matrix is defined as a 

𝑽𝑽𝑖𝑖 = 𝜃𝜃𝜟𝜟𝒊𝒊
𝟏𝟏/𝟐𝟐𝜴𝜴𝑖𝑖𝜟𝜟𝒊𝒊

𝟏𝟏/𝟐𝟐 

 where 𝜟𝜟𝑖𝑖 is the diagonal matrix of the marginal variance of 𝒀𝒀𝒊𝒊, and 𝜴𝜴𝑖𝑖 is a working 

correlation matrix which may not be identical to 𝑬𝑬𝑖𝑖, the true correlation matrix.  

The procedure to estimate the regression coefficients for the model consists of 

two stages. In the first stage, we estimate the working correlation matrix using frequentist 

joint GEE, with no covariates in the model and assuming that the intercepts for each of 

the outcomes are not necessarily the same. In the second stage, use in the estimated 

working correlation matrix into the Gaussian log-likelihood utilized by Crowder (1985) 

and Zhang and Paul (2013) when fitting GEE models to binary outcomes:  

L�(𝒚𝒚|𝜷𝜷) = �−
1
2
�(𝒀𝒀𝒊𝒊 − 𝒑𝒑𝒊𝒊(𝜷𝜷))′𝑽𝑽𝒊𝒊−𝟏𝟏(𝒀𝒀𝒊𝒊 − 𝒑𝒑𝒊𝒊(𝜷𝜷)) + log (|2𝜋𝜋𝑽𝑽𝒊𝒊|)
𝑁𝑁

𝑖𝑖=1

� 

Combine this log-likelihood, L�(𝒚𝒚|𝜷𝜷), with π(𝜷𝜷), the prior distribution for the 

vector of coefficients 𝜷𝜷 (Chernozhukov & Hong, 2003; Yin, 2009), to form the posterior 

distribution of 𝜷𝜷 such that 

π�(𝜷𝜷| 𝒚𝒚) ∝  L�(𝒚𝒚|𝜷𝜷) π(𝜷𝜷) 
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Assume that the prior distribution of the vector of regression coefficients π(𝜷𝜷) is 

multivariate normal (Yin, 2009). Assign normal priors to the elements of  𝜷𝜷, and then 

sample from the posterior distribution accordingly. The working correlation matrix 

estimated in stage one for all iterations of the Markov Chain Monte Carlo (MCMC) 

algorithm is used. The process for estimating this model combines the simplicity of 

estimating working correlation matrix using the frequentist joint GEE, with the desirable 

properties of MCMC for estimating the regression coefficients (Canapu et al., 2013). 

3.3.2  Special Case: Single Response MVM Models with Bayesian estimates 

 The simultaneous MVM model can be modified to fit a single outcome, if there is 

only one outcome of interest. The response vector for subject 𝑖𝑖, 𝒀𝒀𝒊𝒊𝒊𝒊, has length 𝑇𝑇, as does 

the vector of marginal probabilities 𝒑𝒑𝒊𝒊𝒊𝒊. The partitioned data matrix contains the 

covariates and the lags of time-dependent covariates with valid moments for that 

particular outcome. The dimensions of the working correlation matrix reduce to (𝑇𝑇 × 𝑇𝑇) 

as the modification of the model is done through this working correlation matrix. When 

estimating the single response model, we follow the same steps as if we were estimating 

the simultaneous response model. However, in the first stage, we only estimate the 

within-outcome working correlation matrix, 𝚺𝚺𝑟𝑟𝑟𝑟′, for the outcome of interest. At stage 

two of the estimation process, replace the estimated within outcome working correlation 

matrix, 𝚺𝚺𝑟𝑟𝑟𝑟′� , in the Gaussian log-likelihood at each iteration of the Markov Chain Monte 

Carlo algorithm to obtain Bayesian estimates for the regression coefficients. 
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3.4. Simulation Study 

A simulation study was conducted to assess the performance of the simultaneous MVM 

Bayesian model. Simulate two binary outcomes (𝑌𝑌1,𝑌𝑌2), each measured at three time 

points, resulting in 6 correlated binary outcomes per subject. These outcomes are 

simulated assuming that both are affected by the same continuous time-dependent 

covariate, but that the covariate is associated with them in different ways. For outcome 1, 

the regression coefficients are set to 𝛽𝛽0 = 0, 𝛽𝛽𝑡𝑡𝑡𝑡 = 0.04, 𝛽𝛽[1] = 0.12 and 𝛽𝛽[2] = 0.2. For 

outcome 2, the regression coefficients are set to 𝛼𝛼0 = 0, 𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25, 𝛼𝛼1
[1] = 0.15 and 

𝛼𝛼1
[2] = 0.05. The working correlation matrix had an exchangeable within-outcome 

correlation and an exchangeable between outcome correlation structures. For the within-

outcome correlation, the off-diagonal elements are 𝜌𝜌𝑤𝑤 = 0.45; for the between-outcome 

correlation the diagonal elements are 𝜌𝜌𝑑𝑑𝑑𝑑 = 0.35, while the off-diagonal elements 

were 𝜌𝜌𝑜𝑜𝑜𝑜 = 0.30, thus the working correlation matrix used was: 

⎣
⎢
⎢
⎢
⎢
⎡

1 0.45 0.45
0.45 1 0.45
0.45 0.45 1

0.35 0.30 0.30
0.30 0.35 0.30
0.30 0.30 0.35

0.35 0.30 0.30
0.30 0.35 0.30
0.30 0.30 0.35

1 0.45 0.45
0.45 1 0.45
0.45 0.45 1 ⎦

⎥
⎥
⎥
⎥
⎤

 

The longitudinal binary outcomes with the exchangeable working correlation within 

outcomes and the exchangeable working correlation matrix between outcomes are 

generated following the algorithm by Emrich and Piedmonte (1991) through the SAS 

function RandMVBinary. The sample sizes used are N ∈ {25, 100, 500, 1000} with 200 

datasets simulated for each sample size. For each dataset, we fit the simultaneous MVM 

model with Bayes estimates with the correct working correlation matrix (exchangeable 
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within-outcome and exchangeable between-outcome). The simultaneous MVM model 

with incorrect working correlation matrix structures was also fit: unstructured within-

outcome and independent between-outcome, unstructured within-outcome and 

unstructured between-outcome, and AR(1) within-outcome and exchangeable between-

outcome. These choices allow one to assess the performance of the simultaneous MVM 

Bayesian model when the working correlation structure among the outcomes is miss 

specified. The percentage of coverage, the root mean square error (RMSE) and the mean 

bias for each model is computed (Table 3.1, Table 3.2 and Table 3.3, respectively). 

Define percentage coverage as the percentage of datasets for which the credible interval 

of the simultaneous model covers the true value of the parameter. 

The percentage of coverage suggest the miss specification of the working 

correlation matrix did not affect coverage. All models, including the wrong working 

correlation matrix structures had similar percentages of coverage for all regression 

parameters. The percentages of coverage were smallest for sample sizes of 25 subjects. 

However, the percentage of coverage for all parameters for sample sizes of 25 were all 

greater than 83.00. 

The RMSE’s for models with miss specified working correlation matrix structures 

are very similar to the RMSE’s for the model with the correct working correlation 

structures. The RMSE’s decreased as the sample size increased. When measuring 

efficiency of estimators using RMSE, larger sample sizes result in more efficient 

estimators. In general, the RMSE’s for the regression parameters corresponding to the 

cross-sectional effects were smaller than the RMSE’s for parameters corresponding to 
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lag-1 effects, which in turn had smaller RMSE’s than the regression parameters 

corresponding to the lag-2 effects. 

For all regression parameters, the mean bias for the models with miss specified 

working correlation matrix structures are very similar to the mean bias of the model with 

the correctly specified working correlation matrix. The highest absolute value of the 

mean bias was 0.059, resulting in the highest percentage bias being 5.9%. This indicates 

that the simultaneous MVM model with Bayesian estimates performs well in terms of 

bias, even with incorrect working correlation matrix structures. The sample size did not 

influence means bias, since for some parameters the mean bias did not decline with 

higher sample sizes.   

We also studied whether the miss specification of the working correlation matrix 

structure affected the precision of the simultaneous MVM Bayesian model estimators, 

Table 3.4. A check for the percentage of datasets for which the model with the true 

working correlation matrix resulted in more precise estimates than the models with miss 

specified working correlation structures. For each dataset, the model with the true 

working correlation matrix is more precise than the other model, if the credible interval 

for the model with the true working correlation matrix contained the true value of the 

parameter and was narrower than the credible interval of the model with the miss 

specified working correlation matrix. In general, as the sample size increased, the model 

with the true working correlation matrix became more precise than the models with 

incorrect working correlation matrices. Also, the models with incorrect working 

correlation matrices that accounted for the between outcome correlation (unstructured 
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within and unstructured  between, AR(1) within and exchangeable between) were at least 

as precise as the model with the true working correlation matrix. However, the model 

with incorrect working correlation matrix that assumed that there was no between 

outcome correlation (unstructured within, independent within) is less precise than the 

model with the true working correlation matrix. The precision is not affected by 

incorrectly specified working correlation matrices as long as the between outcome 

correlation is accounted for. It is important to note that the precision of this model is 

affected when the between outcome correlation of the simultaneous outcomes is assumed 

to not exist.    

The results of the simulation study show that the simultaneous MVM model with 

Bayes estimates preserves the properties of GEE models. Bias, RMSE and percentage of 

coverage are not affected by miss-specification of the working correlation matrix. 

However, precision of the model is affected if it is assumed that the simultaneous 

outcomes are independent of one another. This relates to the efficiency of GEE, where 

models with independent working correlation matrices are less efficient than models with 

other working correlation matrix structures. 
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Table 3.1 

Comparing Percentage Coverage between Models using Different Structures of 

Working Correlation Matrix 

Sample 
size Outcome Parameter Exchangeable, 

Exchangeable 
Unstructured, 
Independent 

Unstructured, 
Unstructured 

AR(1), 
Exchangeable 

25 

Y1 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 83.00 85.00 85.50 86.00 
𝛽𝛽1

[1] = 0.12 91.50 89.50 90.00 86.50 
𝛽𝛽1

[2] = 0.20 89.50 89.50 88.50 88.50 

Y2 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 84.00 84.00 85.00 84.00 
𝛼𝛼1

[1] = 0.15 87.00 88.00 87.50 85.50 
𝛼𝛼1

[2] = 0.05 87.50 86.00 87.00 86.00 

100 

Y1 

𝛽𝛽0 = 0 96.50 97.00 97.50 96.00 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 92.50 93.00 93.50 95.00 
𝛽𝛽1

[1] = 0.12 91.50 93.50 93.00 91.00 
𝛽𝛽1

[2] = 0.20 97.50 96.50 97.00 96.50 

Y2 

𝛼𝛼0 = 0 92.00 91.00 93.00 92.00 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 89.50 91.00 89.00 86.50 
𝛼𝛼1

[1] = 0.15 97.00 96.00 97.00 95.50 
𝛼𝛼1

[2] = 0.05 94.00 92.50 94.00 96.00 

500 

Y1 

𝛽𝛽0 = 0 93.00 92.00 93.50 91.50 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 99.50 96.50 99.00 98.50 
𝛽𝛽1

[1] = 0.12 94.50 96.00 94.50 95.50 
𝛽𝛽1

[2] = 0.20 98.00 98.00 98.00 96.50 

Y2 

𝛼𝛼0 = 0 97.00 97.50 97.50 97.00 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 89.00 91.00 90.50 90.50 
𝛼𝛼1

[1] = 0.15 93.00 93.00 91.50 91.50 
𝛼𝛼1

[2] = 0.05 94.00 94.00 95.50 97.00 

1000 

Y1 

𝛽𝛽0 = 0 100.00 100.00 100.00 100.00 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 100.00 99.50 100.00 99.50 
𝛽𝛽1

[1] = 0.12 97.00 98.00 85.00 85.00 
𝛽𝛽1

[2] = 0.20 90.50 91.00 90.50 96.50 

Y2 

𝛼𝛼0 = 0 91.00 95.50 87.50 86.00 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 96.00 99.00 96.00 96.50 
𝛼𝛼1

[1] = 0.15 98.00 99.50 98.00 93.50 
𝛼𝛼1

[2] = 0.05 78.00 77.50 78.00 85.50 
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Table 3.2 

Comparing RMSE between Models using Different Structures of Working Correlation 

Matrix 

Sample 
size Outcome Parameter Exchangeable, 

Exchangeable 
Unstructured, 
Independent 

Unstructured, 
Unstructured 

AR(1), 
Exchangeable 

25 

Y1 

𝛽𝛽0 = 0 0.337 0.360 0.338 0.344 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 0.274 0.276 0.271 0.278 
𝛽𝛽1

[1] = 0.12 0.328 0.324 0.319 0.340 
𝛽𝛽1

[2] = 0.20 0.471 0.465 0.452 0.495 

Y2 

𝛼𝛼0 = 0 0.327 0.354 0.330 0.331 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 0.306 0.307 0.300 0.313 
𝛼𝛼1

[1] = 0.15 0.402 0.421 0.402 0.419 
𝛼𝛼1

[2] = 0.05 0.540 0.534 0.530 0.567 

100 

Y1 

𝛽𝛽0 = 0 0.128 0.139 0.128 0.131 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 0.114 0.117 0.113 0.114 
𝛽𝛽1

[1] = 0.12 0.132 0.131 0.131 0.134 
𝛽𝛽1

[2] = 0.20 0.176 0.179 0.176 0.183 

Y2 

𝛼𝛼0 = 0 0.150 0.166 0.151 0.153 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 0.118 0.123 0.117 0.121 
𝛼𝛼1

[1] = 0.15 0.125 0.130 0.126 0.131 
𝛼𝛼1

[2] = 0.05 0.192 0.198 0.193 0.198 

500 

Y1 

𝛽𝛽0 = 0 0.069 0.079 0.069 0.071 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 0.039 0.040 0.038 0.038 
𝛽𝛽1

[1] = 0.12 0.054 0.051 0.053 0.055 
𝛽𝛽1

[2] = 0.20 0.069 0.072 0.070 0.072 

Y2 

𝛼𝛼0 = 0 0.066 0.075 0.066 0.065 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 0.050 0.053 0.050 0.051 
𝛼𝛼1

[1] = 0.15 0.067 0.063 0.068 0.071 
𝛼𝛼1

[2] = 0.05 0.081 0.083 0.080 0.083 

1000 

Y1 

𝛽𝛽0 = 0 0.044 0.046 0.043 0.043 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 0.027 0.032 0.027 0.028 
𝛽𝛽1

[1] = 0.12 0.058 0.049 0.059 0.064 
𝛽𝛽1

[2] = 0.20 0.057 0.059 0.057 0.063 

Y2 

𝛼𝛼0 = 0 0.054 0.055 0.054 0.054 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 0.023 0.024 0.023 0.022 
𝛼𝛼1

[1] = 0.15 0.049 0.039 0.049 0.051 
𝛼𝛼1

[2] = 0.05 0.083 0.084 0.081 0.081 
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Table 3.3 

Comparing Bias between Models using Different Structures of Working Correlation 

Matrix 

Sample 
size Outcome Parameter Exchangeable, 

Exchangeable 
Unstructured, 
Independent 

Unstructured, 
Unstructured 

AR(1), 
Exchangeable 

25 

Y1 

𝛽𝛽0 = 0 -0.010 -0.012 -0.007 -0.004 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 0.011 0.005 0.006 0.008 
𝛽𝛽1

[1] = 0.12 -0.034 -0.041 -0.024 -0.032 
𝛽𝛽1

[2] = 0.20 0.006 0.023 0.022 -0.003 

Y2 

𝛼𝛼0 = 0 -0.021 -0.021 -0.019 -0.022 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 -0.052 -0.059 -0.049 -0.050 
𝛼𝛼1

[1] = 0.15 0.011 -0.002 0.016 0.009 
𝛼𝛼1

[2] = 0.05 -0.064 -0.057 -0.059 -0.070 

100 

Y1 

𝛽𝛽0 = 0 -0.017 -0.019 -0.017 -0.019 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 -0.002 -0.008 0.000 -0.001 
𝛽𝛽1

[1] = 0.12 0.012 0.001 0.013 0.012 
𝛽𝛽1

[2] = 0.20 0.021 0.016 0.020 0.019 

Y2 

𝛼𝛼0 = 0 0.007 0.010 0.008 0.008 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 0.012 0.002 0.014 0.013 
𝛼𝛼1

[1] = 0.15 0.001 -0.008 0.004 0.007 
𝛼𝛼1

[2] = 0.05 -0.005 -0.006 -0.006 -0.008 

500 

Y1 

𝛽𝛽0 = 0 -0.012 -0.013 -0.012 -0.014 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 0.009 0.002 0.010 0.010 
𝛽𝛽1

[1] = 0.12 0.021 0.006 0.021 0.019 
𝛽𝛽1

[2] = 0.20 0.025 0.021 0.025 0.029 

Y2 

𝛼𝛼0 = 0 0.008 0.009 0.008 0.008 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 0.009 -0.005 0.010 0.008 
𝛼𝛼1

[1] = 0.15 0.027 0.012 0.027 0.030 
𝛼𝛼1

[2] = 0.05 -0.010 -0.016 -0.010 -0.009 

1000 

Y1 

𝛽𝛽0 = 0 0.002 0.001 0.002 0.001 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 -0.013 -0.021 -0.013 -0.012 
𝛽𝛽1

[1] = 0.12 0.046 0.034 0.047 0.050 
𝛽𝛽1

[2] = 0.20 0.037 0.035 0.039 0.044 

Y2 

𝛼𝛼0 = 0 -0.006 -0.005 -0.006 -0.007 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 0.005 -0.008 0.005 0.004 
𝛼𝛼1

[1] = 0.15 0.039 0.027 0.039 0.042 
𝛼𝛼1

[2] = 0.05 -0.052 -0.054 -0.050 -0.049 
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Table 3.4 

Comparing Precision between Simultaneous Model with True Working Correlation 

Matrix and Three Simultaneous Models with Miss Specified Working Correlation 

Matrix 

Sample 
size Outcome Parameter Unstructured, 

Independent 
Unstructured, 
Unstructured 

AR(1), 
Exchangeable 

25 

Y1 

𝛽𝛽0 = 0 77.00 43.00 13.00 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 51.00 31.50 51.00 
𝛽𝛽1

[1] = 0.12 51.50 35.00 42.00 
𝛽𝛽1

[2] = 0.20 48.00 36.00 70.50 

Y2 

𝛼𝛼0 = 0 68.50 36.50 22.50 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 47.50 28.50 51.00 
𝛼𝛼1

[1] = 0.15 42.00 25.50 34.50 
𝛼𝛼1

[2] = 0.05 43.50 33.50 68.00 

100 

Y1 

𝛽𝛽0 = 0 87.50 44.50 18.00 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 72.50 40.50 65.00 
𝛽𝛽1

[1] = 0.12 64.00 40.00 43.50 
𝛽𝛽1

[2] = 0.20 56.50 48.00 89.00 

Y2 

𝛼𝛼0 = 0 79.50 50.00 17.50 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 66.00 46.00 64.00 
𝛼𝛼1

[1] = 0.15 63.00 43.50 44.50 
𝛼𝛼1

[2] = 0.05 55.50 40.00 82.50 

500 

Y1 

𝛽𝛽0 = 0 91.50 43.00 10.00 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 82.50 42.50 78.00 
𝛽𝛽1

[1] = 0.12 73.00 46.50 34.50 
𝛽𝛽1

[2] = 0.20 69.50 51.50 95.50 

Y2 

𝛼𝛼0 = 0 90.00 48.50 11.00 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 59.00 42.00 74.50 
𝛼𝛼1

[1] = 0.15 74.00 41.50 53.00 
𝛼𝛼1

[2] = 0.05 62.00 51.00 87.50 

1000 

Y1 

𝛽𝛽0 = 0 99.50 40.50 2.00 
𝛽𝛽1𝑡𝑡𝑡𝑡 = 0.04 80.00 36.50 83.50 
𝛽𝛽1

[1] = 0.12 72.00 47.50 39.00 
𝛽𝛽1

[2] = 0.20 59.00 51.00 90.50 

Y2 

𝛼𝛼0 = 0 91.00 50.50 23.50 
𝛼𝛼1𝑡𝑡𝑡𝑡 = 0.25 80.00 49.50 57.50 
𝛼𝛼1

[1] = 0.15 77.50 41.00 62.00 
𝛼𝛼1

[2] = 0.05 43.50 33.00 78.00 
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3.5. Numerical Examples 

A numerical example demonstrating the fit of the simultaneous responses MVM models 

with Bayesian estimates for time dependent covariates is presented. In that example, 

quality of life measures as it pertains to Chinese Longitudinal Healthy Longevity Study 

are analyzed (Zeng et al. 2009).  

3.5.1 Simultaneous Responses- Chinese Longitudinal Healthy Longevity Study 

A four-response MVM model with Bayesian estimates for time-dependent 

covariates to the Chinese Longitudinal Healthy Longevity Study is fit. This fit identifies 

relationships between several covariates (time-independent and time-dependent) and 

responses that measured one’s quality of life. The data are collected in four waves 

starting in 1998 and continuing in 2000, 2002 and 2005 for Chinese people aged 77 years 

and older.  

The four binary responses are (1) healthy or not, (2) complete physical check as 

measured by interviewer or not, (3) self-rated quality of life, and (4) self-rated health. 

The time-dependent covariates are: make their own decisions, consumed vegetables 

frequently, dress without assistance and having visual difficulties. Gender is also 

included as a time-independent covariate. Table 3.5 shows how the outcomes are coded 

as binary. 

The working correlation matrix for the four outcomes at the four time periods, 

using an AR (1) structure for the within-subject correlation and an exchangeable structure 

for the between-outcome correlation is obtained. The within-outcome correlation matrix 
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is �
1 0.167 0.028 0.005

0.167 1 0.167 0.028
0.028
0.005

0.167
0.028

1
0.167

0.167
1

�. While the between-outcome correlation matrix is 

�

0.196 0.033 0.005 0.001
0.033 0.196 0.033 0.005
0.005
0.001

0.033
0.005

0.196
0.033

0.033
0.196

�.  

 

Table 3.5 

Coding Outcomes as Binary 

Outcome Original value Binary 

(1) Interviewer-rated health 

Surprisingly healthy Good health Relatively healthy 
Moderately ill Bad health Very ill 

(2) Complete physical check 
Yes Yes 
Partially able to No No 

(3) Self-rated quality of life 

Very good Good Good 
So so 

Not good Bad 
Very bad 

(4) Self-rated health 

Very good Good Good 
So so 

Not good Bad 
Very bad 

 

The valid moment conditions are obtained. Non-informative priors 𝑁𝑁(0, 10000) 

for all regression coefficients are instituted. Table 3.6 contains results of the fitted model. 

Figures 3.1, 3.2, 3.3 and 3.4 show the credible intervals for the odds ratios of the time-

dependent covariates on the four outcomes over time. All covariates show significant 
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immediate effects on interviewer-rated health. There are delayed effects for eating 

vegetables, ability to dress without assistance, having visual difficulties. Ability to make 

own decisions, frequently consuming vegetables, and having visual difficulties had 

further delayed significant effects on interviewer-rated health.  

Males were significantly more likely to complete a physical check than females. 

All covariates had a significant impact on the probability of completing a physical check 

at immediate effects. Delayed effects for consuming vegetables and the ability to dress 

without assistance had a significant impact on ability to complete a physical check. 

Further delayed effects ability to make own decision and ability to dress without 

assistance significantly impacted respondents’ probabilities of completing a physical 

check. Furthermost delayed effects for frequently consuming vegetables and having 

visual difficulties had a significant impact on ability to complete physical check.  

For self-rated quality of life, frequently eating vegetables and having visual 

difficulties had a significant immediate impact. There were no significant delayed or 

further delayed effects for any of the predictors on self-rated quality of life. Visual 

difficulties had significant furthermost delayed effects on self-rated quality of life.  

For self-rated health, all covariates are significant immediate impacts for having 

false teeth. Ability to dress without assistance had significant effects on self-rated health 

as a further delayed impact. Having visual difficulties significantly impacted self-rated 

health across a further delayed effect. 

Being able to make own decisions and to dress without assistance increased the 

immediate likelihood of being in good health according to interviewer and to self and to 
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complete a physical check. The frequent consumption of vegetables had positive 

immediate effects on the four outcomes, while the presence of visual difficulties had 

negative effects on all outcomes. Vegetable consumption has a significant negative 

delayed effect on interviewer-rated health and completion of physical check only. The 

ability to dress without assistance had negative delayed effects on interviewer-rated 

health, complete physical check and self-rated health. Visual difficulties decreased the 

likelihood of being in good health according to the interviewer and of good quality of life 

according to self across a one time period lag. Ability to make own decisions had 

negative further delayed effects on interviewer-rated health and completion of a physical 

check. Interviewer-rated health and self-rated health were both negatively impacted by 

presence of visual difficulties across a two time period lag. In general, when a covariate 

affected more than one of the simultaneous outcomes measuring quality of life at the 

same time period, it affected the simultaneous outcomes in a similar fashion. 
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Table 3.6 

Results of Simultaneous MVM Model with Bayes Estimates for Chinese Longevity 

Study 

Outcome Time-period Parameter OR  OR 95% CI ESS 

Interviewer 
rated 
health 

Immediate 
Effects 

Male 1.041 0.914 1.174 6837 
Own decision 1.916 1.649 2.226 4739 
Vegetables 2.387 2.034 2.829 4638 
able to dress 8.085 6.360 10.074 4298 
visual difficulty 0.343 0.298 0.395 4673 

Delayed 
Effect 

Own decision 0.923 0.811 1.062 3729 
Vegetables 0.741 0.644 0.869 3903 
able to dress 0.423 0.361 0.497 3633 
visual difficulty 0.625 0.533 0.741 4602 

Further 
Delayed 
effect 

Own decision 0.698 0.560 0.878 6780 
Vegetables 0.651 0.543 0.779 5168 
able to dress 1.051 0.835 1.323 4238 
visual difficulty 0.638 0.507 0.795 4818 

Furthermost 
delayed 
effect 

Own decision 0.852 0.664 1.105 4214 
Vegetables 1.105 0.819 1.492 4639 
able to dress 0.705 0.472 1.030 3403 
visual difficulty 1.259 0.861 1.804 5006 

 Ability to 
complete 
physical 
check 

Immediate 
Effects 

Male 1.433 1.271 1.616 5091 
Own decision 1.584 1.363 1.840 4325 
Vegetables 1.768 1.492 2.117 4105 
able to dress 5.529 4.393 6.959 4251 
visual difficulty 0.237 0.206 0.275 5339 

Delayed 
Effect 

Own decision 1.083 0.914 1.297 3549 
Vegetables 0.741 0.625 0.887 3983 
able to dress 0.651 0.533 0.803 3633 
visual difficulty 0.896 0.748 1.062 5647 

Further 
Delayed 
effect 

Own decision 0.589 0.436 0.811 3604 
Vegetables 1.127 0.844 1.537 6170 
able to dress 1.462 1.221 1.768 2823 
visual difficulty 1.000 0.733 1.350 5554 

Furthermost 
delayed 
effect 

Own decision 0.763 0.566 1.020 4623 
Vegetables 2.014 1.477 2.746 4607 
able to dress 0.803 0.543 1.221 4373 
visual difficulty 0.566 0.415 0.771 4959 
Male 0.980 0.852 1.139 5809 
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Self-rated 
quality of 
life 

Immediate 
Effects 

Own decision 1.150 0.980 1.363 4801 
Vegetables 1.462 1.209 1.768 5356 
able to dress 1.297 0.980 1.768 3727 
visual difficulty 0.787 0.657 0.923 5104 

Delayed 
Effect 

Own decision 1.105 0.852 1.433 5554 
Vegetables 0.923 0.803 1.062 4113 
able to dress 0.861 0.549 1.336 3639 
visual difficulty 0.803 0.651 0.990 4667 

Further 
Delayed 
effect 

Own decision 1.010 0.795 1.284 5113 
able to dress 0.763 0.472 1.209 3907 
visual difficulty 1.020 0.763 1.336 5578 

Furthermost 
delayed 
effect 

Own decision 0.914 0.664 1.271 4523 
Vegetables 1.174 0.819 1.699 4303 
able to dress 1.051 0.698 1.616 3434 
visual difficulty 1.377 0.905 2.014 4606 

Self-rated 
health 

Immediate 
Effects 

Male 1.116 0.961 1.310 4949 
Own decision 1.197 1.010 1.433 4744 
Vegetables 1.632 1.350 1.974 4969 
able to dress 2.858 2.181 3.781 4014 
visual difficulty 0.613 0.522 0.726 4889 

Delayed 
Effect 

Own decision 1.174 0.961 1.462 4953 
Vegetables 1.030 0.835 1.271 4198 
able to dress 0.763 0.583 0.980 4092 
visual difficulty 0.869 0.705 1.073 4244 

Further 
Delayed 
effect 

Own decision 1.041 0.733 1.522 5066 
Vegetables 0.970 0.748 1.246 3463 
able to dress 0.638 0.482 0.835 2922 
visual difficulty 0.726 0.560 0.961 4961 

Furthermost 
delayed 
effect 

Own decision 1.094 0.795 1.522 5771 
Vegetables 1.139 0.779 1.665 5347 
able to dress 0.844 0.517 1.336 3935 
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Figure 3.1 

Point Estimates and 95% Credible Intervals for Interviewer-rated Health 

 
 
Figure 3.2 

Point Estimates and 95% Credible Intervals for Ability to Complete Physical Check 
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Figure 3.3 

Point Estimates and 95% Credible Intervals for Self-rated Quality of Life 

 
 
Figure 3.4 

Point Estimates and 95% Credible Intervals for Self-rated Health 
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3.6 Discussion 

The proposed simultaneous MVM model with Bayesian estimates is used for marginal 

inference in longitudinal studies with multiple response variables. It has the unique 

behavior to partition the time-dependent covariates which addresses correlation caused to 

the time varying effects of the covariates. In addition, it accounts for the two types of 

correlation (inner-outer) when looking at multiple responses. However, the model relies 

on the ability to identify valid moments to obtain consistent estimates of the regression 

parameters. The expansion of the use of the GEE model affords the same properties of 

consistency and efficiency afforded to the GEE estimators. The use of Bayes principles 

affords the model the advantages appreciated with such.  

The model regression parameters perform well in terms of percentage coverage, 

bias, and root mean square error in small samples and better in larger samples. The miss 

specification of the inner-outer working correlation matrix related does not affect 

percentage of coverage, bias, or root mean square error. The precision of the regression 

coefficients is not affected by miss specified working correlation matrices, unless the 

between outcome correlation of the simultaneous outcomes is ignored by assuming that 

the responses are independent.  
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CHAPTER 4 

A TWO-PART GMM REGRESSION MODEL FOR FEEDBACK FOR TIME-

DEPENDENT COVARIATES 

 

Abstract 

Correlated observations in longitudinal studies are often due to repeated measures on the 

subjects or in the case of clustered data due to hierarchical structure of the design. In 

addition, correlation may be realized due to the association between responses at a 

particular time and the predictors at earlier times. Also, there is feedback between 

response at the present and the covariates at a later time, though this is not always 

relevant and so is often ignored. In any event, each case must be accounted for as they 

can have different effects on the regression coefficients. Several authors have provided 

models that reflect the direct impact and the delayed impact of covariates on the 

response, utilizing valid moment conditions to estimate relevant regression coefficients. 

However, there are applications where one cannot ignore the impact of the responses on 

future covariates. We propose the use of a two-part model to account for the additional 

feedback thus modeling the direct impact, as well as the delayed impact of the covariates 

on future responses and vice versa. We demonstrate the use of the two-part model by 

revisiting child morbidity and its impact on future values of BMI in the Philippines health 

data. We also present an example where we model obesity status and its feedback effects 

of physical activity and depression levels using the Add Health dataset.  
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4.1 Introduction 

When analyzing longitudinal data, there is feedback that may go unchecked thus masking 

the real impact of the covariate. Diggle, Heagerty, Yee and Zeger (2002) explained that 

in the presence of longitudinal data with time-dependent covariates, there are usually 

three questions of interest:  

1. What is the relationship between the outcome 𝑌𝑌𝑖𝑖𝑖𝑖 and the covariate 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 when both are 

measured at the same time (cross-sectional relationship/association)? 

2.  Is the outcome at time 𝑡𝑡, 𝑌𝑌𝑖𝑖𝑖𝑖, impacted by the time-dependent covariate measured at 

time [𝑡𝑡 − 𝑠𝑠],  𝑋𝑋𝑖𝑖𝑖𝑖[𝑡𝑡−𝑠𝑠]; (𝑠𝑠 = 1, 2, . . , 𝑡𝑡 − 1) (lagged covariates related/associated with 

future values of the outcome)?  

3. What factors affect time-dependent covariate at time 𝑡𝑡, 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, does outcome at wave 

[𝑡𝑡 − 𝑠𝑠] associates with time-dependent covariate at time 𝑡𝑡? 

 The correlation realized due to the relation between the responses at a one period and the 

predictors at present or earlier time-periods has been addressed (Irimata et al., 2019). 

Such models used valid moment conditions from partial regression coefficients based on 

data relations between response (time 𝑡𝑡) and covariates (time 𝑠𝑠) [𝑋𝑋𝑠𝑠,𝑌𝑌𝑡𝑡]  where [ 𝑠𝑠 < =

 𝑡𝑡].  This is  necessary as response and predictor associated with different time periods do 

not necessarily provide valid moments. One can use a partitioned data matrix in the 

systematic component with additional regression coefficients to analyze such data 

(Irimata et al., 2019). Their model addressed the first two questions of interest when 

analyzing longitudinal data. 
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However, in health and health related data there are cases when the feedback 

(response on covariates in the future) is real. Such is the case the Philippine’s study. In 

that case, the response had an impact on the covariate at later times. Such situation 

corresponds to the third question. We expand on the partitioned GMM model to allow the 

responses as measured presently to impact future covariates. We propose to fit a two-part 

model to answer the three questions together. The first part consists of the partitioned 

GMM model, while the second part makes use of simultaneous modeling of the 

responses. 

There are two basic approaches used to analyze longitudinal data with time-

independent covariates. The subject-specific models, in which heterogeneity in regression 

parameters is explicitly modelled; and population-averaged models in which the mean 

response for the population is where the interest lies. The proposed model is of the latter. 

4.1.1 General Framework 

Consider the longitudinal data for unit/subject 𝑖𝑖 that has been measured 𝑇𝑇 times. 

Let 𝒚𝒚𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖)′ represent the vector of outcomes for subject 𝑖𝑖 that are associated 

with the data matrix 𝑿𝑿𝑖𝑖 = �
𝑥𝑥𝑖𝑖11 ⋯ 𝑥𝑥𝑖𝑖𝑖𝑖1
⋮ ⋱ ⋮

𝑥𝑥𝑖𝑖1𝑇𝑇 ⋯ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
�. Where the row vector, 𝒙𝒙𝑖𝑖∗𝑡𝑡′ =

�𝑥𝑥𝑖𝑖1𝑡𝑡, … , 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖� represents the covariate values at time 𝑡𝑡 and the column vector  𝒙𝒙𝑖𝑖𝑖𝑖∗ =

�𝑥𝑥𝑖𝑖𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖�′ contains the values of the 𝑗𝑗𝑡𝑡ℎ covariate, such that 𝑡𝑡 = 1, … ,𝑇𝑇; and 𝑗𝑗 =

1, … , 𝐽𝐽. For each subject 𝑖𝑖, consider a generalized linear model (McCullagh & Nelder, 

1989) with link function 𝑔𝑔 and covariate matrix 𝑿𝑿𝑖𝑖 of dimension 𝑇𝑇 by 𝐽𝐽; where 𝐽𝐽 

represents the total number of covariates, with mean 𝝁𝝁𝒊𝒊 then 𝑔𝑔[𝝁𝝁𝒊𝒊] = 𝑿𝑿𝑖𝑖𝜷𝜷. Let the 
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variance of 𝒚𝒚𝒊𝒊  var[𝒚𝒚𝒊𝒊] = 𝒗𝒗(𝝁𝝁𝒊𝒊)𝜑𝜑 where 𝝁𝝁𝒊𝒊  is the mean and 𝐯𝐯(. ) is a function of 𝝁𝝁𝒊𝒊. 

Consider a diagonal matrix 𝑨𝑨𝒊𝒊 based on the elements from the vector 𝒗𝒗(𝝁𝝁𝒊𝒊). Choose a 

correlation matrix 𝑹𝑹𝑖𝑖 of dimension 𝑇𝑇, which represents the relationship among the 𝑇𝑇 

responses from subject 𝑖𝑖. Thus, the variance-covariance matrix for 𝒚𝒚𝒊𝒊 is 

𝑽𝑽𝒚𝒚𝒊𝒊 = 𝑨𝑨𝒊𝒊
𝟏𝟏/𝟐𝟐𝑹𝑹𝒊𝒊𝑨𝑨′

𝟏𝟏/𝟐𝟐, 

and sum over all N subjects, 

∑ 𝑫𝑫𝒊𝒊
′𝑵𝑵

𝒊𝒊=𝟏𝟏 [𝑽𝑽𝒚𝒚𝒊𝒊� )]−𝟏𝟏(𝒚𝒚𝒊𝒊 − 𝝁𝝁𝒊𝒊) = 𝟎𝟎 

where 𝑫𝑫𝒊𝒊 = 𝝏𝝏𝝁𝝁𝒊𝒊
𝝏𝝏𝝏𝝏

 so  

𝜷𝜷� = [�𝑫𝑫𝒊𝒊
′

𝑵𝑵

𝒊𝒊=𝟏𝟏

[𝑽𝑽𝒚𝒚𝒊𝒊]
−𝟏𝟏𝑫𝑫𝒊𝒊]−𝟏𝟏[�𝑫𝑫𝒊𝒊

′
𝑵𝑵

𝒊𝒊=𝟏𝟏

[𝑽𝑽𝒚𝒚𝒊𝒊]
−𝟏𝟏𝒚𝒚𝒊𝒊] 

are quasi-likelihood regression parameter estimates that depend on the mean 𝝁𝝁𝒊𝒊 and 

variance of 𝒚𝒚𝑖𝑖 . Moreover, the solution reflects the weighted linear combination of the 

covariates as included in 𝑤𝑤𝑖𝑖𝑖𝑖 in computing the coefficients through ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑇𝑇
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 𝑦𝑦𝑖𝑖𝑖𝑖. 

Thus, the responses at each time are impacted by the present as well as past covariate 

values. We want to address the times when the responses in turn provide feedback on 

covariates in the future. The problem with the 𝑹𝑹𝑖𝑖 matrix is that it assumes the way 𝑥𝑥𝑖𝑖𝑖𝑖 

impact 𝑦𝑦𝑖𝑖𝑖𝑖 is the same way 𝑦𝑦𝑖𝑖𝑖𝑖 impacts 𝑥𝑥𝑖𝑖𝑖𝑖. Also, it includes all the correlations whether 

or not they are based on valid moment conditions.  

4.1.2 Covariate on Response Model  

It is not uncommon in health research to observe individuals over time, while 

taking note of a set of covariates at each visit. In modeling the interdependence in 

particular the feedback from the responses at time 𝑡𝑡 on the covariate in time 𝑡𝑡 + 𝑠𝑠. Zeger 
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and Liang (1992) showed how generalized estimating equations could be used to study 

feedback. They used a flexible class of feedback models by presenting the form of the 

conditional mean and covariance for each response given the covariates and the previous 

responses. 

4.1.3 Marginal Model  

There are two so-called basic approaches: subject-specific (SS) models in which 

heterogeneity in regression parameters is explicitly modelled; and population-averaged 

(PA) models in which the aggregate response for the population is the focus. The 

population-averaged response is modelled as a function of covariates without any 

concerns for subject-to-subject heterogeneity. In fact, the subject specific mixed models 

use both the method of population-averaged response as well as a distributional 

assumption concerning the variability among subjects to obtain coefficients estimates. 

Hence, the interpretation of coefficient between the two models differ (Zeger et al., 

1988).  

A population-averaged model for longitudinal data with time-dependent 

covariates has been with the GEE with non-diagonal working correlation structures 

would be valid with respect to a key condition (Pepe & Anderson, 1994). The key 

condition  is that the regression coefficients 𝛃𝛃 based on a population-averaged model 

E ��𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖�� = 𝑔𝑔(𝑋𝑋𝑖𝑖∗𝑡𝑡𝜷𝜷) are estimated using a diagonal working covariance matrix with 

the understanding that the marginal expected value is E ��𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖�� =

𝑔𝑔 ��𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖��, where 𝑌𝑌𝑖𝑖𝑖𝑖 is the outcome for the ith unit at the tth time and 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 
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is the corresponding covariate.  In other words, the condition says that the expectation of 

the response is a function of the current covariates only. 

One approach to treat models with time-dependent covariates may be to include 

one or more additional terms, 𝑋𝑋𝑖𝑖,𝑡𝑡−1,𝑋𝑋𝑖𝑖,𝑡𝑡−2, … … as predictors. However, these do not 

involve feedback. As other researchers have pointed out, the approach will depend in part 

on the goals of the analysis (Diggle et al., 2002, Chapter 12). The concerns with GEE that 

Pepe and Anderson (1994) addressed may arise when the analyst or researcher is unable 

or unwilling to include additional terms 𝑋𝑋𝑖𝑖,𝑡𝑡−1,𝑋𝑋𝑖𝑖,𝑡𝑡−2, … …. in the model. However, the 

consistency is assured regardless of the validity of the key assumption if a subject’s 

repeated measurements are treated as independent (the independent working correlation 

is employed). Pepe and Anderson (1994) suggested the use of the independent working 

correlation when using GEE with time-dependent covariates as a “safe” choice of 

analysis.  

4.1.4 Lagged Models 

Lagged dependent models are often used in longitudinal or time series data. These 

models incorporate the dependent variable from previous time periods to help take into 

account autocorrelation in the data (Keele & Kelly, 2006). The models include lagged 

dependent variables or so-called endogenous variable as well as lagged predictor 

variables. However, when there is serial correlation, these models can produce biased 

estimates. Moreover, the introduction of a lagged dependent variable sometimes 

suppresses the effects of the covariates in the model, and often lacks reasonable causal 

interpretation (Anchen, 2001). 
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4.1.5 GMM Models 

Lai and Small (2007) and Lalonde, Wilson, and Yin (2014) have shown that the 

generalized method of moments (GMM) model is a good choice when there are time-

dependent covariates. However, they distinguish between coefficients that measure on 

responses from time t and covariates from time s, 𝛽𝛽𝑗𝑗
|𝑠𝑠−𝑡𝑡| and covariates based on data 

with responses and covariates in the same time-period 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡 . While they have identified 

valid cases for estimation, they have rather combined valid cases (𝑠𝑠 < 𝑡𝑡, 𝑠𝑠 = 𝑡𝑡 ) in the 

model when estimating 𝛽𝛽𝑗𝑗.  

A generalized method of moments approach that partitions the regression 

coefficients to investigate individually the effect of covariates on the outcome when they 

are observed in the same time-period, as well as when they are observed in previous time-

periods has been developed by Irimata Broatch and Wilson (2019). In Section 2, we 

review existing GMM regression models. In Section 3, we present a two-part model as an 

extension of these key models. It allows us to determine the impact of the covariates at 

different times (when possible) on the response and response on covariate at another 

time.  

An example is as the case in the data were collected by the International Food 

Policy Research Institute in the Bukidnon Province in the Philippines and focus on 

quantifying the association between body mass index BMI, and morbidity 4 months into 

the future. The data were collected in 1984–1985 by surveying 448 households living 

within a 20-mile radius. Data were collected at four time points, on 4-month intervals 

(Bhargava, 1994). Lai and Small (2007) focused on the youngest child (1–14years) in 
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each household and only consider those children who have complete data at all-time 

points. This realized 370 children with three observations. The response variable measure 

repeatedly was 

𝑦𝑦𝑖𝑖𝑖𝑖 = log �
days over last 2 weeks before time t child was sick 

14.5 − days over last 2 weeks before time t child was sick
� 

The time dependent predictors were BMI, age and survey time. Gender is a time 

independent predictor. Lai and Small (2007) gave two reasons suggesting that there may 

be feedback.     

(a) If a child is sick, the child may not eat much and this could affect the child’s weight 

in the future and 

(b) Infections have generalized effects on nutrient metabolism and utilization (Martorell 

& Ho, 1984).  

Lai and Small (2007) said both reasons (a) and (b) indicate potential feed-back effect and 

are most relevant for diarrheal infections (Martorell & Ho, 1984) and the proportion of 

children in the study who were sick (over a 2-week period) and who had diarrheal 

infection was only 9%.  

4.2 Regression Models with Time-dependent Covariates 

4.2.1 Lai and Small Model 

Lai and Small (2007) used a marginal model for longitudinal continuous data with 

generalized method of moments (GMM) model to account for the time-dependent 

covariates. The model made full use of the valid moment conditions provided by time-

dependent covariates, to obtain estimates. This estimation was done as they classified the 
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time-dependent covariates into one of three types: I, II, and III. Through a selective 

grouping of certain moments, they obtained a single estimate for the regression 

coefficient associated with a certain covariate. 

Consider repeated observations taken over 𝑇𝑇 times on 𝑁𝑁 subjects with 𝐽𝐽 covariates 

such that (𝑦𝑦𝑖𝑖𝑡𝑡,𝒙𝒙𝑖𝑖𝑖𝑖.) contain measurements at time 𝑡𝑡 for subjects 𝑖𝑖 = 1, … ,𝑁𝑁; for 

covariates 𝑗𝑗 = 1, … , 𝐽𝐽; and times 𝑡𝑡 = 1, … ,𝑇𝑇;  where 𝑦𝑦𝑖𝑖𝑖𝑖 denotes the outcome for subject 𝑖𝑖 

at time 𝑡𝑡, whose marginal distribution given the time-dependent vector 𝒙𝒙𝑖𝑖𝑖𝑖 =

(𝑥𝑥𝑖𝑖1𝑡𝑡, … . . 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖) of covariates follows a generalized linear model. We assumed that 

observations 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑘𝑘𝑘𝑘 are independent whenever 𝑖𝑖 ≠ 𝑘𝑘 but not necessarily when 𝑖𝑖 = 𝑘𝑘 

and 𝑠𝑠 ≠ 𝑡𝑡. To obtain estimates of the coefficients, Lai and Small (2007) made use of the 

moment conditions  

E �
𝜕𝜕𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑗𝑗

{𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷)}� = 0 

for appropriately chosen 𝑠𝑠,𝑡𝑡, and 𝑗𝑗, where 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷) denotes expectation of 𝑦𝑦𝑖𝑖𝑖𝑖 based on the 

vector of covariate values, 𝒙𝒙𝑖𝑖𝑖𝑖 and 𝜷𝜷 is the vector of parameters in the systematic 

component that describes the marginal distribution of 𝑦𝑦𝑖𝑖𝑖𝑖.  

The challenge is to identify the appropriate method of moments associated with 

the covariates. The fact is that certain valid moment conditions may be omitted in the 

estimation of the regression coefficient if not properly accounted for. Such is the case 

when using GEE with working independence estimators with time-dependent covariates. 

 In order to identify all the valid moment conditions, Lai and Small (2007) relied 

on their definition of the type of covariate (types I, II, or III) to determine which moment 

conditions to use when estimating the model. Time-independent covariates were treated 
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as type I. Each type of covariate requires a different set of moment conditions to be used 

in finding the corresponding coefficient’s estimate. However, in their approach with such 

classification, it is assumed that the association between responses and covariates in any 

two different time-period remains the same. 

4.2.2 Lalonde, Wilson, and Yin Marginal Model 

Instead of using the grouping of moments, Lalonde, Wilson, and Yin (2014) 

adopted a method to identify the validity of each moment separately. However, similar to 

Lai and Small (2007) they grouped the valid moments to obtain an estimate of a single 

regression coefficient. In fact, they considered each moment condition separately for 

validity rather than grouping. They looked at bivariate correlations in determining if the 

corresponding moment condition is valid to use in obtaining estimates of regression 

coefficients. In particular, Lalonde, Wilson and Yin (2014) extended the classification of 

the types of covariates by introducing a type IV.       

4.2.3 Irimata, Broatch, and Wilson Marginal Model 

Irimata, Broatch and Wilson (2019)  instead of grouping all the valid conditions to 

estimate a particular 𝜷𝜷𝑗𝑗 over all time periods postulated that one needs to consider 

partitioning 𝜷𝜷𝒋𝒋 so as to have 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡,𝛽𝛽𝑗𝑗1𝑡𝑡, … ,𝛽𝛽𝑗𝑗𝑠𝑠𝑠𝑠. Where 𝛽𝛽𝑗𝑗𝑠𝑠𝑠𝑠 denotes the association of the 

covariate in period s with the response in period t (𝑠𝑠 < 𝑡𝑡). They let |𝑠𝑠 − 𝑡𝑡| dictate their 

grouping. Once this partitioning with valid moments were accomplished they uses GMM 

to obtain the regression coefficients. They argued that the 𝑇𝑇2 moment conditions present 

at most 𝑇𝑇 coefficients based on the possible valid moments.  
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4.3 Two-Part Model for Impact and Feedback 

4.3.1 Model Prediction on Responses with Time-dependent Covariates 

Correlated models are often addressed either in the random component, as in the 

case of GEE model, or in the systematic component, as in the case of generalized linear 

mixed models, with random effects. We proposed a model that in part addresses the 

correlation and the feedback through the systematic component but with fixed effects 

rather than with random effects.  

We consider a partitioned generalized method of moments (GMM) model, for 𝑠𝑠 <

𝑡𝑡.  Let each covariate 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  to be measured at times 𝑡𝑡 = 1, 2, … . ,𝑇𝑇; resulting for subject 𝑖𝑖  

and covariate 𝑿𝑿𝑖𝑖𝑖𝑖 = (𝑋𝑋𝑖𝑖𝑖𝑖1, … . .𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)′. Thus, we present the model 

g(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑗𝑗
|𝑠𝑠−𝑡𝑡|=1𝑋𝑋𝑖𝑖𝑖𝑖,𝑠𝑠=𝑡𝑡−1 … . +𝛽𝛽𝑗𝑗

|𝑠𝑠−𝑡𝑡|=𝑡𝑡−1𝑋𝑋𝑖𝑖𝑖𝑖,𝑠𝑠=1       [3.1] 

with  𝑠𝑠 < 𝑡𝑡, so 

g(𝝁𝝁𝒊𝒊) = 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃 𝜷𝜷𝑗𝑗 

where the 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃  is a matrix of a column of ones concatenated with a lower diagonal matrix 

as the systematic component, where 𝝁𝝁𝑖𝑖 = (𝜇𝜇𝑖𝑖1 … . . 𝜇𝜇𝑖𝑖𝑖𝑖)′ dependent on the regression 

coefficient 𝜷𝜷𝑗𝑗 = �𝛽𝛽0,𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡,𝛽𝛽𝑗𝑗
|𝑠𝑠−𝑡𝑡|=1,𝛽𝛽𝑗𝑗

|𝑠𝑠−𝑡𝑡|=𝑇𝑇−1� where 𝑠𝑠 and 𝑡𝑡 goes from 1  to 𝑇𝑇.  

The coefficient 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡 denotes the effect of the covariate 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 on the response 𝑌𝑌𝑖𝑖𝑖𝑖 

during the tth period. However, when 𝑠𝑠 ≠ 𝑡𝑡 it does not necessarily follow that we should 

interpret the past, using two different time periods in the same way as when 𝑿𝑿𝑖𝑖,𝑡𝑡 and 𝑌𝑌𝑖𝑖,𝑡𝑡 

are in the same time period,  s = t. The impact of a covariate on the response from 

another period is not intuitively the same as when they are in the same period. This is 
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especially true in health research when time of dose will have impact on the reaction of 

the patient. Thus, their effects should not all be combined, but rather analyzed through 

the use of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖. This is best explained by  𝛽𝛽𝑗𝑗
|𝑠𝑠−𝑡𝑡|=1 for representing the effect of 

𝑋𝑋𝑠𝑠=𝑡𝑡−1 on 𝑌𝑌𝑡𝑡 , and by 𝛽𝛽𝑗𝑗
|𝑡𝑡−𝑠𝑠|=2 for representing the effect of 𝑋𝑋𝑠𝑠=𝑡𝑡−2 on 𝑌𝑌𝑡𝑡 and so on. In 

general, we can consider the systematic component consisting of 𝐽𝐽 covariates and let 𝜷𝜷 =

�𝛽𝛽0,𝜷𝜷𝟏𝟏 , … ,𝜷𝜷𝑱𝑱 �′ be the parameters associated with those covariates. Thus 𝐗𝐗 is of 

maximum dimension 𝑁𝑁𝑁𝑁 by (𝐽𝐽𝐽𝐽 + 1)   and 𝜷𝜷  is a vector of maximum dimension 𝐽𝐽𝐽𝐽 + 1. 

The optimal GMM estimator of 𝜷𝜷, is 𝜷𝜷�𝐺𝐺𝐺𝐺𝐺𝐺 obtained using the objective function 

𝐡𝐡𝐧𝐧′ 𝐌𝐌𝐧𝐧𝐡𝐡𝐧𝐧 where 𝐡𝐡𝐧𝐧 is a (𝑁𝑁𝑣𝑣) x 1 vector consists of all valid moment conditions, and 𝐌𝐌𝐧𝐧 is 

a (𝑁𝑁𝑣𝑣 × 𝑁𝑁𝑣𝑣) weight matrix, where 𝑁𝑁𝑣𝑣 denotes the total number of valid moment 

conditions. 

Let 𝑻𝑻𝒗𝒗𝒗𝒗 be a square matrix of dimension 𝑇𝑇 that specifies valid moment conditions 

for the jth covariate. Thus, elements in 𝑻𝑻𝒗𝒗𝒗𝒗 take on the value of one when there is valid 

moment, such that the condition: 

E𝜷𝜷𝟎𝟎 �
𝜕𝜕𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎)
𝜕𝜕𝛽𝛽𝑗𝑗

𝑠𝑠𝑠𝑠 {𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎)}� = 0, 

holds for the jth covariate. Elements in 𝑻𝑻𝒗𝒗𝒗𝒗 are zero when the moment is not valid. 

Convert 𝑻𝑻𝒗𝒗𝒗𝒗 into a 1 x 0.5𝑇𝑇(𝑇𝑇 + 1)  row vector by reshaping it for 𝑗𝑗 = 1, … , 𝐽𝐽 and 

concatenate the rows for all covariates to form  𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔, a 𝐽𝐽 ×  𝑇𝑇2matrix. The number of 

1’s in  the 𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 matrix, is the total number of valid moment conditions, denoted by  𝑁𝑁𝑣𝑣. 

But all 0.5𝑇𝑇(𝑇𝑇 − 1) moments are set to zero, pertaining to cases where 𝑠𝑠 < 𝑡𝑡. Our model 

is based only on the valid moment conditions.  
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Thus, the fitted model is  

𝜇𝜇𝑖𝑖𝑖𝑖(𝛽𝛽) = 𝛽𝛽0 + 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + ∑ 𝛽𝛽𝑗𝑗
[𝑠𝑠]𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡−𝑠𝑠)

𝒕𝒕−𝟏𝟏
𝒔𝒔=𝟏𝟏 |𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 

when the valid moments conditions exist and 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡 denotes the regression parameter for the 

cases when the valid moment conditions always exist, which represent the effect of the 

covariate in the same period as the response. The coefficient 𝛽𝛽𝑗𝑗
[𝑠𝑠] represents of the effect 

of the covariate on the response when the response is not in the same time period but the 

moment is valid and in particular when 𝑠𝑠 < 𝑡𝑡. The GMM estimator 𝜷𝜷�𝐺𝐺𝐺𝐺𝐺𝐺 is the argument 

to minimize the quadratic objective function  𝐡𝐡𝐧𝐧(𝜷𝜷𝟎𝟎)′ 𝐌𝐌𝐧𝐧(𝜷𝜷𝟎𝟎)  𝐡𝐡𝐧𝐧(𝜷𝜷𝟎𝟎), such that 

𝜷𝜷�𝐺𝐺𝐺𝐺𝐺𝐺 = argmin
𝜷𝜷𝟎𝟎

𝐡𝐡𝐧𝐧(𝜷𝜷𝟎𝟎)′ 𝐌𝐌𝐧𝐧(𝜷𝜷𝟎𝟎)  𝐡𝐡𝐧𝐧(𝜷𝜷𝟎𝟎). 

and 𝑁𝑁𝑣𝑣 × 𝑁𝑁𝑣𝑣 weight matrix 𝐌𝐌𝐧𝐧 is computed as  �1
𝑁𝑁
∑ 𝒉𝒉𝑖𝑖𝒉𝒉𝑖𝑖′𝑁𝑁
𝑖𝑖=1 �

−1
.The asymptotic variance 

of 𝜷𝜷�𝐺𝐺𝐺𝐺𝐺𝐺 is computed as  

��1
𝑁𝑁
∑ 𝜕𝜕𝒉𝒉𝑖𝑖(𝜷𝜷)

𝜕𝜕𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠

𝑁𝑁
𝑖𝑖=1 �

′
𝑴𝑴𝒏𝒏(𝜷𝜷) �1

𝑁𝑁
∑ 𝜕𝜕𝒉𝒉𝑖𝑖(𝜷𝜷)

𝜕𝜕𝜕𝜕𝑗𝑗
𝑠𝑠𝑠𝑠

𝑁𝑁
𝑖𝑖=1 ��

−1

, 

evaluated at 𝜷𝜷 = 𝜷𝜷�𝐺𝐺𝐺𝐺𝐺𝐺. In the case of logistic regression, the elements take the form: 

𝜕𝜕𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎)
𝜕𝜕𝛽𝛽𝑗𝑗

𝑠𝑠𝑠𝑠 [𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎)] = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎)[1 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎)][𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎)]  [3.2] 

where  

𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷𝟎𝟎) = exp (𝑿𝑿𝑖𝑖𝜷𝜷)
1+exp (𝑿𝑿𝑖𝑖𝜷𝜷) , 

such that the element in row s, column t of 𝑻𝑻𝒗𝒗𝒗𝒗 takes value 1. Stage 1 is explained by 

Figure 4.1. 
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Figure 4.1 

Stage 1: Impact of X on Y 

 

 

4.3.2 Feedback of Responses on Time-dependent Predictors Model  

In part 2, we address feedback from the responses to the time-dependent predictors in the 

model. This is not always of significance. Recall, in the International Food Policy 

Research Institute in Philippines, Lai and Small gave two reasons that one would 

consider such feedback. We consider function of the mean of the covariate 𝑋𝑋 on the 

response 𝑌𝑌 such that,  

g(𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖) = 𝛼𝛼0 + 𝛼𝛼𝑟𝑟𝑠𝑠𝑠𝑠𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑟𝑟
|𝑠𝑠−𝑡𝑡|=1𝑌𝑌𝑖𝑖,𝑡𝑡=𝑠𝑠−1 … . +𝛼𝛼𝑟𝑟

|𝑠𝑠−𝑡𝑡|=𝑠𝑠−1𝑌𝑌𝑖𝑖,𝑡𝑡=1       [3.3] 

for 𝑡𝑡 < 𝑠𝑠. We address the feedback as in the case of the direct impact through the 

systematic component but with fixed effects rather than random effects. Thus, in stage 
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one, we presented the model with 𝑠𝑠 < 𝑡𝑡 in [3.3]. In stage 2, we present a similar model 

with t < s for time-dependent covariates and a function so 

g(𝜸𝜸𝒊𝒊𝒊𝒊) = 𝒀𝒀𝒓𝒓𝑷𝑷𝜶𝜶𝑟𝑟 

where the 𝒀𝒀𝒓𝒓𝑷𝑷 matrix consists of a column of ones concatenated with a diagonal and lower 

diagonal matrix as the systematic component, with regression coefficient 𝜶𝜶𝑟𝑟 =

�𝛼𝛼𝑟𝑟0,𝛼𝛼𝑟𝑟
|𝑠𝑠−𝑡𝑡|=0,𝛼𝛼𝑟𝑟

|𝑠𝑠−𝑡𝑡|=1,𝛼𝛼𝑟𝑟
|𝑠𝑠−𝑡𝑡|=𝑇𝑇−1� where 𝑡𝑡 and 𝑠𝑠 goes from 1  to 𝑇𝑇. The lower diagonal 

matrix in this case is the upper diagonal matrix in stage 1 that was ignored. The impact of 

a response on the covariate in another period is not intuitively the same as when they are 

in the same period. There may be delayed effect. This is explained by  𝛼𝛼𝑟𝑟
|𝑠𝑠−𝑡𝑡|=1 for 

representing the effect of 𝑌𝑌𝑡𝑡−1 on 𝑋𝑋𝑡𝑡 , and by 𝛼𝛼𝑟𝑟
|𝑠𝑠−𝑡𝑡|=2 for representing the effect of 𝑌𝑌𝑡𝑡−2 

on 𝑋𝑋𝑡𝑡 and so on.  

Define the optimal GMM estimator of 𝜶𝜶, as 𝜶𝜶�𝐺𝐺𝐺𝐺𝐺𝐺 which is obtained by solving 

the objective function 𝐤𝐤𝐧𝐧′ 𝐒𝐒𝐧𝐧𝐤𝐤𝐧𝐧 where 𝐤𝐤𝐧𝐧 is a (𝑁𝑁𝑣𝑣𝛼𝛼) x 1 vector consists of all valid 

moment conditions, and 𝐒𝐒𝐧𝐧 is a �𝑁𝑁𝑣𝑣𝛼𝛼� x (𝑁𝑁𝑣𝑣𝛼𝛼) weight matrix, where 𝑁𝑁𝑣𝑣𝛼𝛼 denotes the total 

number of valid moment conditions. Similarly, we can identify the valid moments during 

stage 1 as the method of valid moments depends on correlations and not a distinction of 

covariate from response.  

Thus, for 𝑠𝑠 > 𝑡𝑡, let Ω𝑡𝑡𝑡𝑡 ∈ [𝑥𝑥𝑠𝑠 ,𝑦𝑦𝑡𝑡 ∈  𝑠𝑠 = 𝑡𝑡] and consider each valid moment 

condition where Ω𝑠𝑠𝑠𝑠 ∈ [𝑥𝑥𝑠𝑠, 𝑦𝑦𝑡𝑡  ∈  𝑠𝑠 ≠ 𝑡𝑡]. There are T members in Ω𝑡𝑡𝑡𝑡 and one member 

for each of Ω𝑠𝑠𝑠𝑠 .  Thus the fitted model is  

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶) = 𝛼𝛼𝑟𝑟0 + 𝛼𝛼𝑟𝑟𝑠𝑠𝑠𝑠𝑌𝑌𝑖𝑖𝑖𝑖 + ∑ 𝛼𝛼𝑟𝑟
|𝑡𝑡|𝑌𝑌𝑖𝑖,𝑠𝑠−𝑡𝑡𝒔𝒔−𝟏𝟏

𝒕𝒕=𝟏𝟏 |𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 
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when the valid moments conditions exist and 𝛼𝛼𝑟𝑟𝑠𝑠𝑠𝑠 denotes the regression parameter for the 

cases when the valid moment conditions always exist, which represent the effect of the 

response in the same period as the covariate. The coefficient 𝛼𝛼𝑟𝑟
|𝑡𝑡| represents the effect of 

the response on the covariate when the response is measured before the covariate is but 

the moment is valid and in particular 𝑠𝑠 > 𝑡𝑡.  

When there is only one jth  covariate providing feedback, we obtain GMM 

estimators for 𝛼𝛼�𝑗𝑗𝑡𝑡𝑡𝑡 following a similar process to that in part 1. However, if we have more 

than one covariate showing feedback, say 𝑅𝑅, we use a simultaneous GMM model to 

estimate the regression coefficients 𝜶𝜶 (Irimata et al., 2018). We let 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 denote the 𝑟𝑟th 

time-dependent covariate (𝑟𝑟 =  1, …  𝑅𝑅) from the 𝑖𝑖th subject (𝑖𝑖 = 1, … . ,𝑁𝑁) measured at 

the tth period (𝑡𝑡 = 1, … ,𝑇𝑇). For the ith subject, measured T times,  the vector 𝑿𝑿𝒊𝒊𝒊𝒊 =

(𝑋𝑋𝑖𝑖𝑖𝑖1 𝑋𝑋𝑖𝑖𝑖𝑖2 … . 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)′ contains the measurements on the rth time-dependent covariate. 

Then, for the ith subject measured 𝑇𝑇 times on the R time-dependent covariates with 

feedback there is a vector 𝑿𝑿𝒊𝒊 = (𝑿𝑿𝒊𝒊𝒊𝒊 𝑿𝑿𝒊𝒊𝒊𝒊 … . 𝑿𝑿𝒊𝒊𝒊𝒊)′ of length (𝑅𝑅 × 𝑇𝑇). Assume that 

each vector 𝑿𝑿𝒊𝒊𝒊𝒊 of length 𝑇𝑇 of time-dependent covariates has its own partitioned data 

matrix 𝒀𝒀𝒊𝒊𝒊𝒊
𝒑𝒑 , a block diagonal partitioned data matrix of lagged outcomes such that  

𝒀𝒀𝒊𝒊𝒓𝒓
𝒑𝒑 = �

𝑌𝑌𝑖𝑖1 0 0 0
𝑌𝑌𝑖𝑖2 𝑌𝑌𝑖𝑖1 0 0
⋮
𝑌𝑌𝑖𝑖𝑖𝑖

⋮
𝑌𝑌𝑖𝑖,𝑇𝑇−1

⋮
…

⋮
𝑌𝑌𝑖𝑖1

� 

 with associated regression coefficients 𝜶𝜶 = (𝜶𝜶𝟏𝟏 … . . 𝜶𝜶𝑹𝑹)′. Where 𝜶𝜶𝒓𝒓  (𝑟𝑟 = 1, …𝑅𝑅; ) 

is the vector of regression coefficients associated with  𝒀𝒀𝒊𝒊𝒊𝒊
𝒑𝒑  for the 𝑟𝑟𝑡𝑡ℎ time-dependent 

covariate.  



  108 

 We model the feedback from the outcome to each of the 𝑅𝑅 time-dependent covariates 

using the simultaneous GMM. We have vectors 𝑮𝑮𝟏𝟏,𝑮𝑮𝟐𝟐, … ,𝑮𝑮𝑹𝑹 containing the sample 

average of the valid moment conditions 𝑁𝑁𝑣𝑣1,𝑁𝑁𝑣𝑣2, … ,𝑁𝑁𝑣𝑣𝑣𝑣 associated with the vectors of 

regression coefficients 𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐, … ,𝜶𝜶𝑹𝑹, respectively. So that 

𝑮𝑮𝟏𝟏(𝜶𝜶𝟏𝟏) =
1
𝑁𝑁
�𝒈𝒈𝒊𝒊𝒊𝒊

𝑁𝑁

𝑖𝑖=1

 

 𝑮𝑮𝟐𝟐(𝜶𝜶𝟐𝟐) =
1
𝑁𝑁
�𝒈𝒈𝒊𝒊𝒊𝒊

𝑁𝑁

𝑖𝑖=1

 

⋮ 

 𝑮𝑮𝑹𝑹(𝜶𝜶𝑹𝑹) =
1
𝑁𝑁
�𝒈𝒈𝒊𝒊𝒊𝒊

𝑁𝑁

𝑖𝑖=1

 

 The 𝒈𝒈𝒊𝒊𝒊𝒊’s are vectors of length 𝑁𝑁𝑣𝑣𝑣𝑣 and contain the values of all the valid moment 

conditions for subject 𝑖𝑖 used to estimate the feedback of the outcome on the 𝑟𝑟𝑡𝑡ℎ time-

dependent covariate.  

We estimate the regression coefficients 𝜶𝜶, using the GMM estimation method by 

minimizing the quadratic form  

𝑄𝑄𝑁𝑁(𝜶𝜶) = 𝑮𝑮𝑁𝑁(𝜶𝜶)′𝑾𝑾𝑁𝑁(𝜶𝜶)𝑮𝑮𝑁𝑁(𝜶𝜶) 

Such that 𝑮𝑮𝑁𝑁(𝜶𝜶) = �𝑮𝑮𝟏𝟏(𝜶𝜶𝟏𝟏),𝑮𝑮𝟐𝟐(𝜶𝜶𝟐𝟐), … ,𝑮𝑮𝑹𝑹(𝜶𝜶𝑹𝑹)�
′
 is a vector of length 𝑀𝑀 = 𝑁𝑁𝑣𝑣1 +

𝑁𝑁𝑣𝑣2 + ⋯+ 𝑁𝑁𝑣𝑣𝑣𝑣 and 𝑾𝑾𝑁𝑁(𝜶𝜶) is the optimal weight matrix of dimension 𝑀𝑀 × 𝑀𝑀 with  

𝑾𝑾𝑁𝑁(𝜶𝜶) = �
1
𝑁𝑁
���

𝒈𝒈𝒊𝒊𝒊𝒊
𝒈𝒈𝒊𝒊𝒊𝒊
⋮
𝒈𝒈𝒊𝒊𝒊𝒊

�
𝑁𝑁

𝑖𝑖=1

�

𝒈𝒈𝒊𝒊𝒊𝒊
𝒈𝒈𝒊𝒊𝒊𝒊
⋮
𝒈𝒈𝒊𝒊𝒊𝒊

�

′

��

−1
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Thus, 𝜶𝜶�𝐺𝐺𝐺𝐺𝐺𝐺 = argmin𝛼𝛼∈Α 𝑄𝑄𝑁𝑁(𝜶𝜶). 

When the 𝑟𝑟𝑡𝑡ℎ time-dependent covariate is binary the elements of 𝒈𝒈𝒊𝒊𝒊𝒊 take a similar form 

to those in [3.2]. If the 𝑟𝑟𝑡𝑡ℎ time-dependent covariate is continuous the elements of 𝒈𝒈𝒊𝒊𝒊𝒊 

have the form 

𝒈𝒈𝒊𝒊𝒊𝒊 = 𝑦𝑦𝑖𝑖𝑖𝑖[𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)] 

We calculate the asymptotic variance of 𝜶𝜶� by first obtaining  

𝐴̂𝐴 =
1
𝑁𝑁
�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝒈𝒈𝒊𝒊𝒊𝒊(𝜶𝜶𝟏𝟏�)
𝜕𝜕𝜶𝜶𝟏𝟏

𝜕𝜕𝒈𝒈𝒊𝒊𝒊𝒊(𝜶𝜶𝟐𝟐�)
𝜕𝜕𝜶𝜶𝟐𝟐
⋮

𝜕𝜕𝒈𝒈𝒊𝒊𝒊𝒊(𝜶𝜶𝑹𝑹� )
𝜕𝜕𝜶𝜶𝑹𝑹 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑁𝑁

𝑖𝑖=1

 

Where 𝐴̂𝐴 is the vector of partial derivatives evaluated at 𝜶𝜶�𝐺𝐺𝐺𝐺𝐺𝐺 and the asymptotic 

variance of  𝜶𝜶�𝐺𝐺𝐺𝐺𝐺𝐺 is given by 𝑉𝑉𝑉𝑉𝑟𝑟(𝜶𝜶�𝐺𝐺𝐺𝐺𝐺𝐺) = �𝐴̂𝐴𝑊𝑊𝑁𝑁
−1𝐴̂𝐴�

−1
 with 𝑊𝑊𝑁𝑁

−1 evaluated at 𝜶𝜶�𝐺𝐺𝐺𝐺𝐺𝐺.  

The partial derivatives in 𝐴̂𝐴 can be calculated separately for each 𝜶𝜶𝒓𝒓�. If the  𝑟𝑟𝑡𝑡ℎ time-

dependent covariate is binary the rows of 𝜕𝜕𝒈𝒈𝒊𝒊𝒊𝒊(𝜶𝜶𝒓𝒓�)
𝜕𝜕𝜶𝜶𝒓𝒓

 are calculated using the following 

expression: 

𝜕𝜕𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)
𝜕𝜕𝛼𝛼𝑟𝑟

[𝑘𝑘] �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)�

𝜕𝜕𝛼𝛼𝑟𝑟
[𝑘𝑘′]

= 𝑦𝑦𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)[1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)]{𝑦𝑦𝑖𝑖𝑖𝑖[1− 2𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)][𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)]

− 𝑦𝑦𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)[1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)]}  

When the 𝑟𝑟𝑡𝑡ℎ time-dependent covariate is continuous the rows of 𝜕𝜕𝒈𝒈𝒊𝒊𝒊𝒊(𝜶𝜶𝒓𝒓�)
𝜕𝜕𝜶𝜶𝒓𝒓

 can be 

computed as: 
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𝜕𝜕𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)
𝜕𝜕𝛼𝛼𝑟𝑟

[𝑘𝑘] �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝜶𝜶𝒓𝒓)�

𝜕𝜕𝛼𝛼𝑟𝑟
[𝑘𝑘′] = −𝑦𝑦𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 

For 𝑘𝑘 = 0, 1, … ,𝑇𝑇 − 1  and 𝑘𝑘 = 0, 1, … ,𝑇𝑇 − 1. 

 

Figure 4.2 

Stage 2: Impact of Y on X  

 

 

The two-part model consists of two submodels: a marginal generalized linear model for 

the responses and a similar marginal generalized linear model for the time-dependent 

covariate. In stage one, as shown in Figure 1, for the time-dependent covariates 𝑋𝑋 on the 

response 𝑌𝑌 for T times depicting the impact of current effects, and delayed effects on 𝑌𝑌. 

Thus, we write two-part model as  
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𝜇𝜇𝑖𝑖𝑖𝑖(𝛽𝛽) = 𝛽𝛽0 + 𝑿𝑿𝟎𝟎 + 𝛽𝛽𝑗𝑗𝑡𝑡𝑡𝑡𝑋𝑋𝑗𝑗𝑗𝑗 + ∑ 𝛽𝛽𝑗𝑗
|𝑠𝑠−𝑡𝑡|=𝑇𝑇−1𝑋𝑋𝑗𝑗𝑗𝑗𝑻𝑻

𝒔𝒔<𝒕𝒕 |𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 

With time-independent variable 𝒁𝒁𝟎𝟎 with valid moments, and time-dependent predictors 

with possible feedback 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼) = 𝛼𝛼0 + ∑ 𝛼𝛼𝑟𝑟
|𝑠𝑠−𝑡𝑡|=𝑇𝑇−1𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑻𝑻

𝒔𝒔>𝒕𝒕 |𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 

4.4 Numerical Examples 

4.4.1 Child Morbidity in the Philippines 

We revisited the data collected by the International Food Policy Research Institute in the 

Bukidnon Province in the Philippines to check what impacted children’s morbidity. Our 

outcome variable was whether the child was sick. Our time-dependent covariate was 

body mass index (BMI). We also include gender and age as covariates in our model. We 

first investigated how our covariates impacted children’s likelihood of being sick using 

Part-1 of our model. We then checked whether sickness status influenced future values of 

children’s BMI using Part-2 of the model.  

Table 4.1 presents results for Part-1. We found that age had a significant effect on 

morbidity (p<0.0001). Body mass index had immediate (p=0.038), delayed (p=0.044) and 

further delayed effects (p=0.0001) on children’s likelihood of getting sick. There was an 

increasing relationship between BMI and morbidity status over time, the more time 

passed the less BMI increases reduced the likelihood of being sick.   
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Table 4.1 

Modeling Morbidity 

Covariate OR 95% CI P-value 
Gender 1.140 0.847 1.534 0.388 
Age 0.979 0.969 0.990 <0.0001 
BMI cross-sectional 0.885 0.788 0.993 0.038 
BMI lag-1 0.980 0.961 0.999 0.044 
BMI lag-2 1.035 1.014 1.057 0.001 

 

We also investigated whether there was a feedback effect from child morbidity to BMI, 

Table 4.2. We found that whether a child was sick or not did not significantly impact the 

child’s BMI in the future. However, our overall model indicated that if children were sick 

in time 1 or time 2 than their BMI decreased in the next time-period. For those children 

who were sick in time 1, their BMI decreased in time 2 which increased their likelihood 

of being sick in time 2 and time 3.  

 

Table 4. 2  

Feedback from Morbidity to BMI 

 Effect 95% CI p-value 
Intercept 15.433 13.353 17.514 <0.0001 
Sick cross-sectional -0.095 -2.846 2.656 0.946 
Sick lag-1 -0.249 -3.257 2.758 0.871 
Sick lag-2 0.097 -3.105 3.299 0.953 

 

4.4.2 Add Health Study 

We used data from the first four waves of the Add health study to determine what risk 

factors associated with obesity status over time, this is Part 1 of the model. The risk 

factors studied included time-independent and time-dependent risk factors. Our time-
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independent risk factors included race (white vs non-white) and gender (male vs female). 

The time-dependent risk factors included social alcohol use, physical activity level, 

depression level and number of hours spent watching television. We also studied whether 

obesity status associated with future values of the risk factors physical activity level and 

depression level, the Part-2 of the model.  

We found that when fitting Part-1 of the model, all time-dependent risk factors 

had valid moment conditions across a one time period lag. However, only social alcohol 

use and physical activity level had valid moment conditions across a two-time period lag 

and across a three time period lag only physical activity level had valid moment 

conditions. Table 4.3 presents the results for Part-1 of the model. We can observe that 

physical activity level (p<0.0001), depression level (p<0.0001) and number of hours 

spent watching television (p<0.0001) had significant cross-sectional associations with 

obesity status. Physical activity level (p<0.0001) and depression (p<0.0001) associated 

significantly with obesity status across a one time period lag. Social alcohol use 

(p<0.0001) and physical activity level (p<0.0001) associated with obesity status across a 

two-time period lag. Physical activity level (p<0.0001) associated with obesity status 

across a three time period lag. 

 We studied whether obesity status significantly associated with future physical activity 

level, Table 4.4. We found that obesity status significantly associated with physical 

activity levels in the next three time-periods. There was an increasing association 

between obesity status and physical activity levels, the more time distance (lags) between 
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obesity status and physical activity levels the less obesity status reduced physical activity 

levels. 

We found that physical activity reduced the likelihood of being obese at the cross-

sectional and lag-1 time periods. Those who were obese reported less physical activity 

levels in the next time period, which resulted in them being more likely to be obese 

which again reduced their physical activity levels. In general, being obese had a negative 

impact in the physical activity levels for the next three time periods. 

 

 Table 4.3 

Modeling Obesity Status 

Time period Risk factor OR 95% CI  p-value 

Cross-sectional effects 

Race 1.239 1.027 1.496 0.025 
Gender 0.922 0.773 1.101 0.369 
Alcohol 1.019 0.874 1.188 0.812 
Activity 0.849 0.796 0.906 <0.0001 
Depression 1.727 1.410 2.115 <0.0001 
TV hours 1.016 1.012 1.020 <0.0001 

Delayed effects 

Alcohol 1.041 0.917 1.182 0.531 
Activity 0.909 0.866 0.955 <0.0001 
Depression 1.788 1.454 2.197 <0.0001 
TV hours 1.004 1.000 1.008 0.059 

Further delayed effects Alcohol 1.333 1.166 1.523 <0.0001 
Activity 1.193 1.144 1.243 <0.0001 

Furthermost delayed effects Activity 1.174 1.125 1.224 <0.0001 
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Table 4.4 

Feedback from Obesity Status to Physical Activity Level 

 Effect 95% CI p-value 
Obesity cross-sectional -0.800 -0.872 -0.729 <0.0001 
Obesity lag-1 -0.415 -0.469 -0.361 <0.0001 
Obesity lag-2 -0.207 -0.247 -0.168 <0.0001 
Obesity lag-3 -0.070 -0.111 -0.028 0.001 

 

We also studied the feedback effect of obesity status on future values of depression 

levels, Table 4.5. Obesity status significantly associated with depression levels in the next 

two time periods. There was a changing association between obesity status and 

depression levels over time, being obese decreased depression levels in the next time-

period, but increased depression levels at the two-time period lag. We also observed that 

the more depressed a person was the more likely that person was of being obese in the 

present in the next time-period, however, obesity status not always resulted in higher 

depression levels. Our analysis shows a complicated relationship between obesity status 

and depression levels, such results have been observed in the past (Newman & 

Robertson, 2018).    

 

Table 4.5  

Feedback from Obesity Status to Depression Level 

 Effect 95% CI p-value 
Obesity cross-sectional 0.275 0.252 0.299 <0.0001 
Obesity lag-1 -0.138 -0.172 -0.104 <0.0001 
Obesity lag-2 0.088 0.047 0.129 <0.0001 
Obesity lag-3 0.031 -0.026 0.087 0.285 
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4.5 Conclusions 

The correlation inherent in measures recorded over time as affected by time-dependent 

covariates presents a set of extra challenges as compared to the analysis of cross-sectional 

data. In particular, the changes and feedback presented when the covariates are time-

dependent cannot be ignored. Often, the feedback effects go unchecked. However, any 

modeling of longitudinal data must address the impact from the feedback as well as the 

immediate and the delayed effects of covariates on the responses. We found that 

modeling time-dependent covariates allows us to identify the valid moments, which in 

turn helps determine the significant predictors to consider. While there is merit in the 

models that address time-dependent covariates (Irimata et al., 2019; Lai & Small, 2007; 

Lalonde et al., 2014; Zhou et al., 2014), they do not always account for the feedback. The 

two-part partitioned GMM model presented allows one to account for the feedback across 

different time-periods. It partitions the regression coefficients and allow us to identify 

directional and delayed effects.  
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CHAPTER 5 

CONCLUSIONS 

 

In this dissertation, I present three papers that address the modeling of longitudinal binary 

outcomes while accounting for covariates that are time-dependent.  

The first paper presents an alternative model to estimate the current and future 

effects of time-dependent covariates on binary outcomes when the partitioned GMM 

model provides numerically unstable estimates and standard errors of the regression 

coefficients. This model uses the partitioned data matrix to account for the correlation 

among the outcomes. It is estimated using Markov Chain Monte Carlo algorithms that 

provide Bayesian estimates of the regression coefficients. It provides more efficient 

estimates than the partitioned GMM model and as efficient estimates as the GEE model 

with lagged covariates and an independent working correlation matrix. This was shown 

by the simulation study. 

The second paper introduces an approach for jointly modeling of two or more 

longitudinal binary outcomes. This model accounts for both the correlation among and 

between multiple outcomes as well as the changing effects of time-dependent covariates 

on these outcomes. The model estimation consists of two stages. In the first stage, the 

working correlation matrix that contains the within and between outcome correlation is 

estimated using joint GEE. In the second stage, the regression coefficients are estimated 

using Markov Chain Monte Carlo sampling algorithms, thus providing Bayesian 
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estimates. The regression coefficient estimates are efficient even when the working 

correlation matrix is miss specified. 

In the third paper, I propose a two-part model that investigates the changing 

effects of time-dependent covariates on a binary outcome as well as feedback from the 

outcome to the time-dependent covariates. Stage 1 of the model allows one to determine 

whether there are significant cross-sectional and lagged associations between several 

time-dependent covariates and a binary outcome over time, while controlling for time-

independent covariates. Stage 2 of the model allows one to determine whether the 

outcome has significant impact on future values of the time-dependent covariates. The 

partitioned GMM model is used to estimate stage 1 of the model and stage 2 depending if 

the feedback is practical enough to warrant modeling. If one is interested on the feedback 

involving two or more time-dependent covariates, then stage 2 of the model is estimated 

using the simultaneous partitioned GMM model.  

Overall, these three papers discuss different approaches to help better understand the 

relationship between time-dependent covariates and binary outcomes when modeling 

longitudinal data. These models are marginal mean models. They can be extended to 

subject-specific models.   
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