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ABSTRACT

Speech is known to serve as an early indicator of neurological decline, particularly

in motor diseases. There is significant interest in developing automated, objective

signal analytics that detect clinically-relevant changes and in evaluating these algo-

rithms against the existing gold-standard: perceptual evaluation by trained speech

and language pathologists. Hypernasality, the result of poor control of the velopha-

ryngeal flap—the soft palate regulating airflow between the oral and nasal cavities—is

one such speech symptom of interest, as precise velopharyngeal control is difficult to

achieve under neuromuscular disorders. However, a host of co-modulating variables

give hypernasal speech a complex and highly variable acoustic signature, making it

difficult for skilled clinicians to assess and for automated systems to evaluate. Pre-

vious work in rating hypernasality from speech relies on either engineered features

based on statistical signal processing or machine learning models trained end-to-end

on clinical ratings of disordered speech examples. Engineered features often fail to

capture the complex acoustic patterns associated with hypernasality, while end-to-end

methods tend to overfit to the small datasets on which they are trained. In this thesis,

I present a set of acoustic features, models, and strategies for characterizing hyper-

nasality in dysarthric speech that split the difference between these two approaches,

with the aim of capturing the complex perceptual character of hypernasality with-

out overfitting to the small datasets available. The features are based on acoustic

models trained on a large corpus of healthy speech, integrating expert knowledge to

capture known perceptual characteristics of hypernasal speech. They are then used

in relatively simple linear models to predict clinician hypernasality scores. These sim-

ple models are robust, generalizing across diseases and outperforming comprehensive

set of baselines in accuracy and correlation. This novel approach represents a new

state-of-the-art in objective hypernasality assessment.
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Chapter 1

INTRODUCTION

Neuromuscular disorders tend to present early, detectable symptoms in speech due

to the precise fine motor control required to properly render phonemes and assemble

words. Changes to speech can even be the only evidence of or the only significant

impairment resulting from neurological disease (Duffy (2000)). Thus, speech analysis

is a promising route to improve diagnostic speed and quality in a variety of brain

diseases (Harel et al. (2004)). Typically, this analysis is performed perceptually, by

trained speech language pathologists (SLPs), who provide opinion assessments on a

variety of speech qualities that allow for systematic insights into the underlying pro-

duction failures taking place. Such analysis performed over time can provide unique

insights into the progression of a disease and drive treatment decisions. Unfortu-

nately, high-fidelity tracking of symptom progression over time using the opinions of

trained specialists is difficult for two main reasons. First, clinician perceptual assess-

ment is costly and time-consuming. Second, some speech parameters are particularly

challenging to consistently assess objectively, either due to low inter- or intra-rater re-

liability. Therein lies the motivation to develop better automated pathological speech

diagnostic metrics.

Hypernasality is one such diagnostically relevant quality of speech that is par-

ticularly difficult for clinicians to assess. Hypernasality refers to the perception of

excessive nasal resonance in speech, caused by velopharyngeal dysfunction (VPD),

an inability to achieve proper closure of the velum, the soft palate regulating airflow

between the oral and nasal cavities. It is a common symptom in motor-speech disor-

ders such as Parkinson’s Disease (PD) (Theodoros et al. (1995)), Huntington’s Disease
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(HD) (Novotny et al. (2016)), amyotrophic lateral sclerosis (ALS) (Duffy (1995)), and

cerebellar ataxia (Poole et al. (2015)), as rapid movement of the velum requires very

precise motor control. It is also the defining perceptual trait of cleft palate speech,

(Kuehn and Moller (2000)). Reliable detection of hypernasality is useful in both re-

habilitative (e.g. tracking the progress of speech therapy) and diagnostic (e.g. early

detection of neurological diseases) settings, as demonstrated by Carrow et al. (1974),

and Theodoros et al. (1993). Because of the promise hypernasality tracking shows for

assessing neurological disease, there is interest in developing measurement strategies

for it that are robust to the limitations of existing work.

Detecting and assessing hypernasality are complex tasks that require inferring the

ratio of resonances across the pharyngeal, oral, and nasal cavities. A disproportion-

ately high amount of nasal resonance is regarded as atypical and hypernasal. This

presents a challenging estimation task, vulnerable to co-modulating variables includ-

ing word choice, the particular geometry of an individual’s resonating cavities, and

other covarying dysarthria symptoms (e.g. vocal quality). This results in a highly

nonlinear and complex mapping between the percept and the actual acoustic nasal

resonance (Bettens et al. (2018), de Stadler and Hersh (2015)).

Current techniques for measuring velopharyngeal function in-clinic employ percep-

tion, imaging, and instrumentation. The current state of the art is SLP perceptual

assessment (Kummer and Lee (1996)), however there is a growing body of work sug-

gesting clinical perception is susceptible to the co-modulating variables mentioned

above and listener expertise (S. Paal and Schuster (2005)). Reliable perceptual mea-

sures of hypernasality require evaluation from multiple clinicians (Scarmagnani et al.

(2014)) or intensive training according to specific protocols (Brunnegard et al. (2012)).

Some potential approaches to mitigating these shortcomings include direct imaging

of the velopharyngeal closing mechanism using X-Ray or multiview videofluoroscopy
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(Woo (2012)), or nasometry, analysis using a specialized head-mounted apparatus

(Pentax (2016)). However, the imaging techniques are invasive and uncomfortable,

and nasometry requires specialized equipment. Neither approach is scalable or com-

mon practice in-clinic.

An ideal machine hypernasality assessment technique would assess the symptom

directly from the speech signal without using any specialized equipment, and ac-

curately and objectively model the most consistent opinion scores of SLPs. Such

a system would enable the remote tracking of neurological disease progression, for

example through a smartphone application, greatly reducing the burden of regular

testing for patients and cost for clinics.

Previous work toward assessing hypernasality directly from the speech signal can

be categorized broadly in two groups: engineered features based on statistical sig-

nal processing (SSP) (Rafael Orozco Arroyave et al. (2012)) and supervised methods

based on machine learning (ML) (Hegde et al. (2018)). The SSP approaches tend to

be explainable and demonstrate some effectiveness in measuring hypernasality, but

the complex spectral signature of nasalization is difficult to capture with a simple

representation and there is a great deal of person-to-person variability (Lohmander

and Olsson (2004)). However, the more complex ML-based metrics are fundamen-

tally dependent on the small, disease-specific datasets on which they are trained.

These metrics tend to generalize poorly across diseases; it is not clear if black-box

models are fitting to the true perceptual qualities of hypernasality or to other co-

modulating variables. Furthermore, collecting good clinicial speech data is costly and

time-consuming, this scarcity of training data for means the more sophisticated ML

methods are particularly prone to overfitting.

This thesis represents an approach to hypernasality assessment that falls between

the SSP and ML groups, inspired by transfer learning. In short, all versions of this
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approach involve training two separate models. First, a more robust acoustic model

than can be achieved through traditional SSP hypernasality techniques is trained on

a large corpus of healthy speech. This model can then be used to extract “correct

phoneme/realized phoneme” likelihood ratios from the speech of a neurological pa-

tient reading a known passage aloud. These likelihood ratios are used as input to

the simpler, second model, which estimates the clinician-rated hypernasality score.

These novel hypernasality assessment systems are evaluated against a set of compet-

ing approaches, representing the best of the SSP and ML groups, as well as novel

extensions on the newest in pre-trained deep speech representations.

This evaluation is performed on a dataset of 75 English speaking patients with

Parkinson’s disease, Huntington’s disease, ALS, or cerebellar ataxia, in two cross

validation conditions—leave one speaker out and leave one disease out—to assess

both best-case performance and robustness to disease-specific confounders. In these

testing conditions the models are compared using MAE and PCC to assess consistency

across similar severity levels and trend capture reliability, as both of these qualities

are necessary to fulfill the purposes of the ideal system described above.

Against all of these baselines, our novel set of assessment systems presented herein

achieves state-of-the-art performance in SLP-rated hypernasality score prediction.

1.1 Existing Work

Clinician perceptual assessment is the gold-standard technique for assessing hy-

pernasality (Extence and Cassidy (2017)). However, this method has been shown to

be susceptible to a wide variety of error sources, including stimulus type, phonetic

context, vocal quality, articulation patterns, and previous listener experience and ex-

pectations (Kent (1996)). Additionally, these perceptual metrics have been shown

to erroneously overestimate severity on high vowels when compared with low vowels
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(Kuehn and Moon (1998)), and vary based on broader phonetic context (Lintz and

Sherman (1961)). Although these difficulties may be mitigated by averaging multiple

clinician ratings, this further drives up costs associated with hypernasality assessment

and makes its use as a trackable metric over time less feasible.

Various instrumentation-based hypernasality assessment systems have been pro-

posed to mitigate these shortcomings in perceptual assessment, but have not managed

to supplant SLP perception. These direct assessment techniques visualize the velopha-

ryngeal closing mechanism using videofluoroscopy (Henningsson and Isberg (1991))

or magnetic resonance imaging (MRI) (Kao et al. (2008)) and provide information

about velopharyngeal port size and shape (Bettens et al. (2014)). These methods

are invasive and may cause pain and discomfort to the patients. As an alternative,

nasometry seeks to measure nasalence, the modulation of the velopharyngeal opening

area, by estimating the acoustic energy from the nasal cavity relative to the oral cav-

ity. This is done by measuring the acoustic energy from two microphones separated

by a plate that isolates the mouth from the nose (Pentax (2016)). In some cases,

nasalance scores yield a modest correlation with perceptual judgment of hypernasal-

ity (Brancamp et al. (2010); Watterson et al. (1993)), however there is considerable

evidence that this relationship depends on the person and the reading passages used

during assessment (Watterson et al. (1993)), (Sinko et al. (2017)). Because of this, the

clinician’s perception of hypernasality is often the de-facto gold-standard in clinical

practice (Chapman et al. (2016)). Furthermore, properly administering the evalua-

tion requires significant training and it cannot be used to evaluate hypernasality from

existing speech recordings.

Spectral analysis of speech is a potentially effective method to analyze hypernasal-

ity. Acoustic cues based on spectral flattening, amplitude reduction, and bandwidth

increases that accompany nasalization (Tarun et al. (2007)), formant F1 and F2 am-
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plitudes (Kozaki-Yamaguchi et al. (2005), Yu and Barkana (2009)), 1/3rd octave band

analysis (Kataoka et al. (2001)), spectral peak shifts (Hawkins and Stevens (1985)),

the introduction of low-frequency resonances (Vijayalakshmi et al. (2007)), pole/zero

pairs (Glass and Zue (1985), Vijayalakshmi et al. (2009)) and changes in the voice

low tone/high tone ratio (Lee et al. (2006), Lee et al. (2009), Tsai et al. (2012)) have

been proposed to detect or evaluate hypernasal speech. These spectral modifications

in hypernasal speech will have an impact on articulatory dynamics, thereby affect-

ing speech intelligibility. Statistical signal processing methods that seek to reverse

these cues, such as suppressing the nasal formant peaks and then performing peak-

valley enhancement, have demonstrated improvement in the perceptual qualities of

cleft palate and lip-caused hypernasal speech (Vikram et al. (2016)), further demon-

strating the connection between these cues and intelligibility. The large variability

of speech degradation patterns across neurological disease or injury challenges simple

features that are based on domain expertise (Orozco-Arroyave et al. (2015)). Over-

all, these simple features are not robust to the complicated acoustic patterns that

emerge in hypernasality, and are prone to high false positive and negative error rates

in out-of-domain test cases.

In response, data-derived representations of hypernasality that combine more el-

emental speech features and supervised learning have been proposed. Mel-frequency

cepstral coefficients (MFCCs) and other spectral transformations (Rah et al. (2001),

He et al. (2014), Orozco-Arroyave et al. (2015), Rendón et al. (2011), Nikitha et al.

(2017), Dubey et al. (2016), Dubey et al. (2018a), Vogel et al. (2009), Kataoka et al.

(1996)), glottal source related features (jitter and shimmer) (Castellanos et al. (2006),

Dubey et al. (2018b)), difference between the low-pass and bandpass profile of the

Teager Energy Operator (TEO) (Cairns et al. (1996)), Maier et al. (2008), and non-

linear features (Orozco-Arroyave et al. (2012), Orozco-Arroyave et al. (2013)) have all
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been proposed as model input features. Gaussian mixture models (GMM), support

vector machines, and deep neural networks have been used in conjunction with these

features for hypernasality evaluation from word and sentence level data (Nieto et al.

(2014), Golabbakhsh et al. (2017), Cairns et al. (1996)). Recently, end-to-end neural

networks taking MFCC frames as input and producing hypernasality assessments as

output have also been proposed (Vikram et al. (2018)).

These methods rely on supervised learning and are trained on small data sets. For

this application they run the risk of overfitting to the data by focusing on associated

disease-specific symptoms rather than the perceptual acoustic cues of hypernasality

itself.

Features based on automatic speech recognition (ASR) acoustic models targeting

articulatory precision have been used in nasality assessment systems Maier et al.

(2008). A particularly important technique in articulatory precision assessment comes

from the related area of accent analysis in computer aided language learning. This

approach, called Goodness of Pronunciation (GoP) involves using the ASR acoustic

model to produce a likelihood ratio (Witt (1999), Witt and Young (2000)). We refer

back to the GoP in Chapter 3.

A promising approach toward developing portable, generalized neural representa-

tions of speech was proposed as the “problem-agnostic speech encoder” (PASE) by

Pascual et al. (2019). In this work a neural model is pretrained on a series of tasks

such as speaker identification and speech recognition in a transfer learning framework

similar to the one deployed in the production of word embeddings and generalized

pretrained image recognition models. This work will motivate parts of Chapters 3

and 4.
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1.2 Thesis Outline

The thesis is structured as follows.

Chapter 2 introduces the data used for training and evaluating the models presented

afterward, in particular the large healthy ASR speech corpus LibriSpeech, the novel

75-speaker pathological speech corpus, a small 10-speaker evaluation cleft palate eval-

uation corpus, and the Wisconsin Microbeam articulatory inversion corpus which is

used to supervise one of the competing neural models in Chapter 4.

Chapter 3 is about building features that are well-correlated with hypernasality

using acoustic modeling, presents the nasalization + articulatory precision (NAP) and

nasal cognate distinctiveness (NCD) families of features, and discusses the correlation

between these novel features and clinician hypernasality rating.

Chapter 4 brings the introduced features together as input to clinician hypernasality

score predicting models, describes the baselines in more detail, and presents the results

of the comparison between the novel systems and the baselines.

Chapter 5 concludes the thesis with a summary of the findings and discussion of

future research directions.

1.3 Previously Published Work

The contents of Chapters (2) and (3) include material adapted from previously

published work, “Objective Measures of Plosive Nasalization in Hypernasal Speech,”

Saxon et al. (2019). Material from Chapters (2-5) has been publicly released as a

preprint, “Robust Estimation of Hypernasality in Dysarthria with Acoustic Model

Likelihood Features,” Saxon et al. (2020), and is currently in peer review.
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Chapter 2

DATA

This thesis focuses on an approach to modeling hypernasality that falls between

the two extremes of simple hand-engineered statistical signal processing (SSP) fea-

tures and sophisticated supervised machine learning (ML) models. To achieve this,

more sophisticated perceptual modeling features are trained on abundantly available

healthy speech, and the disordered speech is saved for training simpler models atop

the feature model representations.

This approach requires multiple corpora of data: a large healthy corpus to train

the perceptual models, and a pathological speech corpus collected from neurologically

disordered individuals with clinician-assessed hypernasality severity labels. For these

two purposes the publicly available LibriSpeech dataset and a clinical dataset collected

by Profs. Liss and Berisha are used, respectively.

For auxiliary tasks, two other datasets are used. First, a publicly available dataset

cleft palate speech (CLP) is used to validate the hypernasality modeling features, as

individuals with cleft palate exhibit extreme hypernasality but otherwise healthy and

normal speech. Finally, to fine-tune existing pre-trained generalized neural speech

representations the publicly available Wisconsin Microbeam dataset is used to prove

an articulatory inversion supervising task.

2.1 Healthy Speech Corpus

LibriSpeech is a public domain corpus of transcript-labelled healthy English ut-

terances. It contains roughly 1000 hours of speech sampled at 16kHz. The speech

consists of 1,128 female and 1,210 male speakers reading book passages aloud. It
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contains “clean” samples, which have been carefully segmented and aligned, as well

as “other” samples which are more challenging to use Panayotov et al. (2015). It is

freely available for download at openslr.org. This corpus was employed in training

all three acoustic models presented in Chapter 3.

2.2 Dysarthric Speech Corpus

The database consists of recordings from 75 speakers (40 male and 35 female) of

varying levels of hypernasality. The corpus contains data from speakers diagnosed

with several different neurological disorders: 38 patients have Parkinson’s disease

(PD), 6 patients have Huntington’s disease (HD), 16 patients have cerebellar Ataxia

(A), and 15 patients have amyotrophic lateral sclerosis (ALS).

All individuals read the same set of five sentences, capturing a range of phonemes.

Reading is an ideal stimulus for this task because it controls for phonetic distribu-

tional variations that would be present in more spontaneous speech and enables for

consistency between speakers and between assessments in-time, ideal qualities for a

clinical measure.

The perceptual evaluation of hypernasality from recorded samples was carried

out by 14 different speech language pathologists on a scale of 1 to 7. The average

hypernasality score for each speaker was used as the ground truth. The inter-rater

reliability of the SLPs was moderate, with a Pearson Correlation Coefficient of 0.66

and an average inter-clinician mean absolute error of 1.44 on the 7-point scale. The

sentences spoken were:

1. The supermarket chain shut down because of poor management.

2. Much more money must be donated to make this department succeed.

3. In this famous coffee shop they serve the best doughnuts in town.
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Figure 2.1: Distribution of clinician-rated hypernasality score by disorder.

4. The chairman decided to pave over the shopping center garden.

5. The standards committee met this afternoon in an open meeting.

The speech recordings were carried out in sound treated room using a microphone.

Table 2.1 shows the breakdown of clinical characteristics of the subjects and the

statistics of the nasality score (NS) subsets. S.D. denotes standard deviation. Figure

2.1 contains the clinician hypernasality score histograms for each disorder population.

Table 2.1: Clinical characteristics and nasality scores of the subjects.

Disease Male Female Mean Age S.D. Age Mean NS S.D. NS

PD 20 18 71.06 9.62 2.55 0.75

A 6 10 62.47 14.05 3.58 0.68

ALS 8 7 59.54 13.23 4.41 0.85

HD 6 0 58.40 13.20 3.31 0.59

Total 40 35 65.80 12.67 3.20 1.04
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2.3 Cleft Palate Speech Corpus

Cleft lip and palate (CLP) also gives rise to hypernasal speech. However, un-

like individuals with neuromuscular disease, CLP speakers produce otherwise healthy

speech without the other perceptual changes (slurring, generalized articulatory im-

precision) that also arise in dysarthria (Kuehn and Moller (2000)). Thus, CLP speech

is invaluable in validating that a model trained on pathological speech is indeed cap-

turing the perceptual qualities of hypernasality.

I use a corpus of 6 child and 12 adult CLP speakers with different levels of hyper-

nasality severity, that span the hypernasality range (from normal to extreme) in equal

intervals (Kuehn et al. (2002)) to demonstrate that our model chiefly captures hyper-

nasality rather than any associated neurologically disorded speech symptoms. These

CLP speakers are otherwise healthy and exhibit no other co-modulating symptoms

such as imprecise articulation resulting from other motor impairments. Because the

hypernasality assessments for these speakers were performed by different clinicians

than our dysarthric data, I focus on correlation alone to evaluate the performance of

our hypernasality evaluation system on this speech.

2.4 Wisconsin Microbeam Dataset

One of the baseline neural feature models, the problem agnostic speech encoder

(PASE) (Pascual et al. (2019)) is trained using a series of “worker tasks” to learn

generalized speech representations to enable simple models trained on downstream

tasks. Among the tasks not included in PASE is “articulatory inversion,” the problem

of inferring the time series of articulator positions (tongue, lips, jaw, etc) from the

speech signal they produced. Shah et al. (2019) demonstrate how articulatory inver-

sion targets can provide useful constraints that improve the performance of models
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on seemingly unrelated tasks such as spoken emotion recognition. As neurologically

pathological speech fundamentally is an inability to adequately control the articula-

tors, I was interested in using articulatory inversion to attempt to similarly improve

the performance of PASE as an input to hypernasality estimation. To train this

auxilliary task the Wisconsin Microbeam Dataset was used.

The Wisconsin Microbeam Dataset consists of the recorded speech of 57 native

speakers of American English, 32 female and 25 male, as defined in Westbury (1994).

Each speaker recorded a variety of passages, phonations, and words while being mea-

sured by an X-Ray microbeam recorder, an apparatus that tracks a set of pellets

glued to the articulators in their mouths to provide real-time measurement of the

articulator motion. Because the muscular control issues resultant from speech dis-

orders are fundamentally a lack of control of the articulators, articulatory inversion,

the estimation of this articulator data from the speech signal, is a sensible task for

supervision of generalized models. I use this dataset in Chapter 4 to provide an artic-

ulatory inversion task for a model estimating nine “tract variables” (Sivaraman et al.

(2019)) that define the vocal tract shape formed by the articulators in a relatively

speaker-invariant manner.
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Chapter 3

HYPERNASALITY-CORRELATED FEATURES

This chapter will introduce the two families of acoustic model features that rep-

resent the first half of the “train features on healthy speech, models on disordered

speech” framework that drives the thesis. The feature families are

1. Nasal cognate distinctiveness (NCD), an acoustic model likelihood ratio inspired

by GoP that models the clinician observation of “nasal cognates pairs” plosives

that are co-located with a nasal sonorant.

2. Nasalization and Articulatory precision (NAP), a set of features that analyze

voiced phonemes using a perceptual modeling “nasalization feature” (N), and

unvoiced phonemes using an “articulatory precision feature” (AP), goodness of

pronunciation (Witt (1999)).

The three features (NCD, N, AP) contained in these feature families are all eval-

uated on a phoneme-by-phoneme basis. When used in a clinical setting, patients

would be asked to read from a phonetically rich script. Then, a forced alignment

process matches the phoneme timestamps from the speech audio to the sequence of

phonemes that compose the transcript (in this case, I use Viterbi decoding with ASR

models). These transcript-derived phonemes compose the ground truth against which

the likelihood of some test phoneme or phoneme class is assessed. The specifics of

these feature computations follow.

Each feature is specific to a class of phonemes. NCD is only assessed on the plosives

T, D, P, B, K, and G, for which the “nasal cognates” N, M, and NG are perceptibly

substituted when a speaker is unable to appropriately close the velum. For all other
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phonemes, NCD cannot be assessed. The NAP family is assessed on all phonemes,

which are divided into the voiced and unvoiced classes. Within the unvoiced class,

AP is assessed, because for unvoiced sounds, hypernasal speech results in imprecise

consonant production—the characteristic insufficient closure of the velopharyngeal

port renders the speaker unable to build sufficient pressure in the oral cavity to

properly form plosives and fricatives, causing the air to instead leak out through the

nose (Woo (2012)). N is assessed on the voiced phonemes, evaluating a likelihood ratio

for whether the phoneme in question belongs to the “nasal” or “oral” class. Since

hypernasal speech results in perceptible extra resonances at the lower frequencies in

voiced sounds (Kummer and Lee (1996)), an incorrect high likelihood for “nasal” in

a non-nasal voiced phoneme would be evidence of hypernasality.

3.1 Data Pre-Processing

Consider an utterance x(t) with sampling rate Fs and a corresponding transcript

of phonemes pj, {p1, p2, . . . pNp}. x(t) is analyzed with a 20ms frame length and

10ms overlap. For a frame indexed by i, xi(t), extract a set of features, xi. The

utterance x(t) is force-aligned using the Montreal Forced Aligner1 at the phoneme

level (McAuliffe et al. (2019)). I denote the data feature matrix for all frames that

are aligned to phoneme pj by Xpj .

3.2 Unvoiced Phoneme Articulatory Precision (AP) Features

Although originally designed to aid second language learners as a component in

computer aided language learning software, the Goodness of Pronunciation (GoP)

articulatory precision (AP) feature has found use in the analysis of disordered speech

Pellegrini et al. (2014). The implementation of GoP used in my work is based on an

1Section 4.5 addresses forced alignment performance on these dysarthric speech samples.
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acoustic model trained using Kaldi as specified in Tu et al. (2018).

3.2.1 Acoustic Model

To train the acoustic model, I extract a set of observation feature vectors from

each training speech sample. The input speech sampling rate is 16 kHz. I analyze the

speech at a frame rate of 10 ms and denote the acoustic features for frame i by Oi. For

our implementation I used a triphone model trained with a Gaussian Mixture Model-

Hidden Markov Model on 960 hours of healthy native English speech data from the

LibriSpeech corpus Panayotov et al. (2015). I use the Kaldi toolkit training scripts

for training the model. The input features to the ASR model are 39-dimensional sec-

ond order Mel-Frequency Cepstral Coefficient (MFCC) with utterance-level cepstral

mean variance normalization and Linear Discriminant Analysis transformation (same

approach as in Tu et al. (2018)).

3.2.2 Feature Computation

After training, the acoustic model can be queried using the Viterbi decoding

algorithm for the posterior probability P (X|q) of a given set of acoustic feature frames

X representing a realization of some ground-truth transcript-assessed phoneme q. For

a “well-articulated” phoneme, no phoneme apart from the one intended by the speaker

should maximize this posterior.

I use the acoustic model to assess articulatory precision as follows. Considering

the set of phonemes Q in the language, I assess the log-likelihood ratio of the frames

Xpj from a given phoneme pj, to the maximum log-likelihood across all phonemes,

AP (pj) = log
( P (Xpj |pj)

maxq∈QP (Xpj |q)

)
/|Xpj |, (3.1)

where |Xpj | represents the number of acoustic frames aligned to phoneme pj.
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This processing is performed after forced alignment to the transcript labels, and

assessed for each unvoiced phoneme to permit by-phoneme analysis of precise artic-

ulation within the NAP model.

3.3 Plosive Nasal Cognate Distinctiveness (NCD) Features

A characteristic of hypernasal speech is the unintentional production of “nasal

cognates,” nasal sonorants sharing the same place of articulation as certain voiced

plosives, when production of the corresponding plosive is intended. This transfor-

mation means that the voiced alveolar stop D will sound like the alveolar nasal N,

the voiced bilabial stop B will sound like the bilabial nasal M, and the voiced velar

stop G will sound like the velar nasal NG (Shriberg and Kent (1982)). Similarly, the

unvoiced counterparts of these stops T, P, and K frequently are present in phonetic

environments where they are proceeded or followed by vowels, or proceeded by nasal

consonants (Giegerich (1992)), which means they also can share a propensity to be

mapped to the same nasal cognates (Shriberg and Kent (1982)). Predictable phe-

nomena such as this suggest that perceptually-motivated, phoneme-level objective

measures of hypernasality are warranted.

The Goodness of Pronunciation algorithm discussed above assesses the pronuncia-

tion of a speaker on a phoneme-by-phoneme basis as the log ratio of the probability of

the uttered phoneme segment given the correct phoneme from an aligned transcript

to the maximum across all phonemes of the uttered segment given a phoneme. I sub-

stitute the max denominator term in GoP with a nasal cognate mapping function, so

instead of looking for a “worst case” likelihood ratio that will reduce generally when

a phoneme is poorly realized, NCD will instead specifically look for the degradation

that uniquely occurs under velopharyngeal dysfunction.
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Figure 3.1: High-level overview of the NCD feature system.

3.3.1 Feature Computation

Fig. 3.1 is an overview of the NCD approach. I assume that I have an input speech

segment and corresponding transcript for analysis. Furthermore, I assume that the

input utterances have several instances of the phonemes of interest (P, B, T, D).

Similar to the Goodness of Pronunciation feature, the Nasal Cognate Distinctiveness

feature computation begins with an ASR acoustic model trained on healthy speech, as

explained in Section 3.2.1. This acoustic model is used to both force-align the speech

to the transcript to sample the plosives and estimate the likelihood ratios between

the plosives and their nasal cognates with which the NCD features are computed.

Finally, the individual instances of each phoneme are averaged to generate average

NCD features.2

NCD is formulated for phoneme p ∈ S = [T,D,P,B,K,G], frame Oi ∈ O, the

observation corresponding with p based on forced alignment to the transcript,

NCD(p,O) = Σi log
( P (Oi|p)
P (Oi|cog(p))

)
/|O| (3.2)

where cog(p) is a “cognate mapping function” that maps the stops in the set

S to their corresponding nasal cognate, and |O| is the total number of frames in

observation O.

2Code is available at https://github.com/michaelsaxon/ncd
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The probabilities in the numerator and denominator of the formula are assessed

using the Viterbi alignments in the ASR model. To assess the denominator probability

the cog(p) function is called first, swapping the given plosive with its cognate in the

triphone context.

Given a set of recordings of a speaker reading from a set of transcripts, the four

NCD features are evaluated as follows. First, the transcripts are force-aligned at the

phoneme level using the ASR model. With this alignment the NCD(p) feature can

be computed for each all phonemes p ∈ S in the input utterances. This produces

a set of many output NCD values, with each corresponding to an occurrence of one

of the four phonemes in consideration in the transcripts. The NCD values are then

averaged across all occurrences of the corresponding phonemes to return the output

features, NCD for T, D, P, B, K, and G.

3.4 Voiced Phoneme Nasalization (N) Feature

The acoustic nasalization model is trained using healthy speech data from the

LibriSpeech dataset. Two classes distributions of voiced phonemes are modeled. The

“oral” non-nasal (ORL) class consists of all voiced oral consonants and all vowels

from syllables where nasal consonants are not present. Similarly, the “nasal” class

(NAS) is defined to contain the nasal consonants as well as half of adjacent vowels

surrounding them. These rules were implemented after alignment; an illustrative

example of the two classes is shown in the third tier of the aligned example in Fig.

4.1.

For this task, 100 hours of clean-labeled speech from the LibriSpeech dataset are

used. First, forced phone-alignment to the transcript is performed as shown in Fig-

ure 4.1. I partition all phonemes into the NAS and ORL classes. For each frame

in each phoneme, I extract 13 PLP coefficients, giving two feature matrices, XNAS
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and XORL, containing all frames of nasal PLPs in one, and non-nasal PLPs in the

other. PLP features were chosen rather than MFCCs because they preserve acous-

tic cues that have been previously used to model hypernasality, including formant

frequencies, bandwidths, and spectral tilt (Hermansky (1990)). To model the prob-

ability density functions, I use a 16-mixture Gaussian Mixture Model (GMM). The

weight, mean, and covariance matrix for each of the GMM components is learned

using the expectation maximization (EM) algorithm. The GMM for the nasal class

is represented by λNAS = {µNAS,ΣNAS, ωNAS}, i = 1, 2, ...16. Here, µNAS, ΣNAS

and ωNAS represent the mean, covariance matrix and weight of the ith Gaussian,

respectively. Similarly, for the non-nasal class the GMM components are given by

λORL = {µORL,ΣORL, ωORL}, i = 1, 2, ...16.

After training on healthy speech, I provide a segmented dysarthric utterance to

evaluate the likelihood from each of the two learned probability density functions. For

an out-of-sample input, I estimate the likelihood, voiced phoneme by voiced phoneme.

That is, for data feature matrix Xpj , the likelihood that this phoneme is nasalized is

f(Xpj |λNAS) =
∏
i∈pj

f(xi|λNAS), (3.3)

where the notation i ∈ pj is shorthand notation for all 20ms frames aligned to

phoneme pj. Similarly for the ORL class, I have

f(Xpj |λORL) =
∏
i∈pj

f(xi|λORL). (3.4)

I use the log-likelihood ratio test statistic as a continuous measure of nasalization.

In particular, I define

N(pj) = log

(
f(Xpj |λNAS)

f(Xpj |λORL)

)
/|Xpj |, (3.5)

where |Xpj | represents the number of acoustic frames aligned to phoneme pj. This

statistic is calculated for every voiced, non-nasal phoneme in the input utterance.
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Thus, for a given speaker, a nasalization ratio is computed containing the log-likelihood

ratios of nasalization of the voiced phonemes, (AA, AE, AH, AO, AW, AY, B, D, DH,

EH, ER, EY, G, IY, JH, V, Z).

3.5 Analysis

For non-nasalized speech, the value of N(Xpj) should be low, whereas for nasalized

speech, it should be high. For speakers who exhibit little hypernasality, AP (Xpj)

should be high, whereas for hypernasal speakers, it should be lower. Figure 3.2 shows

a comparison of the values of select NAP likelihood ratio features between a group

of high hypernasality (> 4 perceptual rating) and low hypernasality (< 3 Perceptual

rating) speakers. I average the hypernasality scores for the 4 most relevant voiced

phonemes and 2 most relevant unvoiced phonemes for predicting hypernasality, as

assessed in Section 4.3.1. As expected, there is an increase in the nasalization feature

value and a decrease in the articulatory precision feature value corresponding to an

increase in severity of hypernasality. Furthermore, I expect hypernasality to exhibit

unique patterns in terms of affected and unaffected unvoiced phonemes, that are not

general to dysarthria Saxon et al. (2019), making phoneme-level AP classification a

valuable signal in quantifying hypernasality.

Figure 3.3 contains box plots for the four phoneme NCD features. The speakers

were divided into four groups based on nasality severity for this analysis: control,

mild, moderate, and severe. To perform the separation the real range of non-control

assessed nasality was divided roughly in three, with the mild nasality N ∈ [1.3, 2.7),

moderate N ∈ [2.7, 4.1) and severe N ∈ [4.1, 5.6].

The feature trends very convincingly move for the voiceless phonemes T and P,

with the control and mild nasality speakers exhibiting the highest values of Nasal

Cognate Distinctness. The moderate nasality speakers then exhibit lower feature
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Figure 3.2: Bar charts of (left) N(D, B, IY, AA), and (right) AP(F, T) for low
hypernasality and high hypernasality speakers.

values and the severe nasality speakers exhibit the lowest. The means, medians, and

quartiles for all of the values decrease as nasality increases across groups. These

expected trends are not all exhibited in the voiced phonemes D and B, however. For

both phonemes the means, medians, and quartiles hardly move at all or do not move

together between the mild and moderate nasality groups. For B, the moderate nasality

NCD feature range even spans the entire range of values exhibited by all other groups.

Despite these inconsistencies, for all phonemes the NCD score completely separates

the control range from the severe nasality range.

Figure 3.4 contains plots of various AP, N, and NCD features against the mean

clinician hypernasality rating for all speakers. All demonstrate the expected trends

(NCD and AP decrease with increasing hypernasality, N increases with increasing

hypernasality), with linear correlation magnitude |PCC| > 0.25 The NAP features

used in the figure are the same as selected from the forward feature selection process

in Section 4.3.1, while the two NCD features plotted were chosen randomly.

Taken together, these plots demonstrate that these likelihood ratio features, AP,

N, and NCD, assessed using acoustic models trained exclusively on healthy speech

data, clearly capture the perceptual trends underlying hypernasality in speech.
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(a) NCD(T) (b) NCD(D)

(c) NCD(P) (d) NCD(B)

Figure 3.3: Box plots for the NCD feature distribution separated by nasality severity.
The y-axis in each plot represents the NCD feature value for the phoneme under
consideration.
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Figure 3.4: Plots of the two most prominent articulatory precision features (AP(T)
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against clinician-assessed hypernasality score.
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Chapter 4

CLINICIAN HYPERNASALITY SCORE ESTIMATION

The central goal of this thesis is the prediction of ground-truth averaged clinician

perceptual hypernasality scores from raw speech audio. This chapter presents the

process for training simple models on the features presented in Chapter 3 as extracted

from hypernasal speech, as well as the competing statistical signal processing (SSP)

and machine learning (ML) baselines, and the final evaluation results.

All models considered in this chapter are evaluated on L1 loss (MAE) and Pear-

son’s correlation coefficient (PCC) between the ground-truth clinician hypernasality

scores and the model predictions. These metrics are assessed in across two different

cross-validation strategies. Leave-one-speaker-out (LOSO) cross-validation provides

a best-case look at how a given feature-model combination will generalize to a new

patient, as is typically done in dysarthric speech processing studies. However, in

light of the limitations of previous approaches, and the complexity of hypernasal-

ity modeling given the many co-modulating variables described in Chapter 1, the

generalization across out-of-domain diseases is assessed using leave-one-disease-out

(LODO) cross-validation, a condition in which a test model is trained on three of the

speech disorder sets and evaluated on the fourth. In LODO, data for three of the

neurological conditions is used for training and the fourth is used for testing.
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Figure 4.1: A high-level diagram of the NAP method. The leftmost pre-proccessing segment depicts the forced alignment
of transcript to audio as well as the aligned word-phoneme-nasal class segmentation of the speech signal and spectrogram.
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4.1 Linear Models

The nasal cognate distinctiveness (NCD) and nasalization + articulatory precision

(NAP) feature families are both intended for use on specific subsets of phonemes;

NCD features may only be extracted from stops for which there are nasal cognates,

while NAP partitions all non-nasal phonemes based on voicing to be processed by

the nasalization (N) or articulatory precision (AP) acoustic model likelihood ratio

feature extractor. In a comprehensive hypernasality rating system, a collection of

these features are extracted for a subject’s speech samples and then fed as input into

a linear model, predicting the hypernasality score. In Figure 4.1, I provide a high-level

overview of the proposed NAP-based hypernasality score estimation scheme.

In the interest of generalization and clinical interpretability, simple linear ridge

regression models are used to estimate the nasality score using the phoneme-averaged

NAP or NCD features as input.

Table 4.2 contains three linear models trained on NCD features, NAP features, or

both. “NCD-Lin” uses the four NCD features for T, D, P, and B. “NAP-Lin” uses the

full set of N and AP features for the voiced and unvoiced phonemes. “NAP+NCD”

uses

Finally, “NAP+NCD” represents the best possible combination of all NAP and

NCD features available. I expected some of the likelihood features are more salient

to hypernasality prediction than others. To minimize the risk of overfitting, only a

most-salient subset of the NAP or NCD features are used in this evaluation. Greedy

correlation-based forward feature selection Hall (1999) was employed to choose which

features to use, yielding the set of AP(T, S, F, SH), N(IY, D, AA), and NCD(T, G).
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4.2 Baselines

To properly evaluate the novel approach, I implemented a set of baselines meant to

represent both sides of the spectrum of automated hypernasality approaches. Broadly,

this means a variety of traditional machine learning models ingesting a set of spectral

formant-based features to represent SSP, and a variety of neural network architectures

processing the raw audio or spectrograms to represent ML. Taken together, these can

be considered to constitute the state of the art in engineered features and in supervised

learning for hypernasality estimation.

4.2.1 SSP: Formant Feature Models

Styler (2015) presents a set of formant-based features that are maximally effective

in and correlated with hypernasality. Formants are the spectral peaks in voiced

speech that characterize vowel sounds, and are numbered Fx in an increasing series

of overtones starting from the fundamental frequency of the phonation, F0.

The formant features (FF) used in this analysis included F1 formant amplitude,

P0 nasality peak amplitude, and normalized and raw A1−P0 difference Chen (1997).

The FFs were extracted using Praat source code provided by Styler (2013). All

features were extracted for each vowel and used in a linear and non-linear model to

estimate the clinician-assessed hypernasality labels.

The linear model is based on simple multiple regression whereas the non-linear

models are based on additive regression and k-nearest neighbor regression. The results

of this model are labeled FF-Lin, FF-Add, and FF-KNN in Table 4.2.
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4.2.2 ML: Deep Neural Networks

Several neural network baselines were considered. First, I implemented the neural

network proposed in Vikram et al. (2018), one of the first works exploring using

neural networks in hypernasality estimation. The model consisting of three feed-

forward layers with sigmoid activations. This network consumes a time-series of

39-dimensional Mel Frequency Cepstral Coefficients (MFCC), extracted from 20 ms

windows with no overlap. The hidden layers are of size 100, and the output layer of

size 1. The output value is averaged across all frames to provide a single nasality score

estimation per speaker. The model is trained using L1 loss and the Adam optimizer

(Kingma and Ba (2014)) for 50 epochs with a learning rate of 0.001. In Table 4.2 this

model is referred to as MFCC-NN.

Because MFCCs are a very fundamental spectral feature, I was concerned that

the 75 speaker nasality dataset was insufficiently large for good representations to be

learned by the model. To alleviate this, the second neural approach employed the

problem agnostic speech encoder (PASE) from Pascual et al. (2019). The hope that

this neural speech encoder, pretrained on several supervising tasks including ASR

and emotion recognition, would contain richer speech representations than MFCC

frames with which MFCC-NN was trained. The PASE encodigns were fed through

three feed-forward layers with ReLU activations, followed by a single LSTM layer, all

with hidden size 250. The model is trained using L1 loss and the Adam optimizer

for 50 epochs with a learning rate of 0.0001. After max-pooling in time, a final feed-

forward layer projects the latent codes to the final hypernasality score estimation.

The performance of this model was assessed both with the PASE encoding layers

frozen as static feature extractors for the entire training process (PASE-NN in Table

4.2) and with unfreezing of the PASE encoder for fine-tuning after the 10th epoch
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(PFT-NN in Table 4.2).

The third and final baseline neural architecture that was employed builds on the

transfer-learning approach established in Pascual et al. (2019) with the supervisory

task of articulatory inversion, a distinct task from any of the “worker tasks” used to

train the PASE encoder, in which the underlying time-series of articulator positions

(tongue, jaw, lips) is inferred from the speech signal. A neural network based on the

architecture proposed by Sivaraman et al. (2019) is first trained on the Wisconsin

Microbeam Dataset (Section 2.4, Westbury (1994)), and then adapted to the task of

hypernasality estimation by replacing the output projection.

For the articulatory inversion task, PASE encodings are once again used as the

input feature. The PASE encodings are first consumed by a single 1D convolutional

layer in time with a filter size of 50 PASE frames. Each PASE frame is roughly 6.9

ms long, thus this convolution gives each sample in the resultant sequence a receptive

field of roughly 340 ms. The output of this convolutional layer is then fed through

four feed-forward layers of size 250, followed by Layer Normalization (Ba et al. (2016))

and a projection to size 9 to provide a time-sequence of tract variable (TV) positions

corresponding to the articulators. Finally, to enforce the physiological constraints

inherent to articulator motion, 1D Gaussian filtering in time is performed on the

output sequence predictions, with a kernel of filter length 120 frames (832 ms) and

sigma of 40 (274 ms). The model is trained using L1 loss, the Adam optimizer for

50 epochs with a learning rate of 0.0015. The articulatory inversion model achieves

a correlation of 0.32 with the ground truth inversion data at the saturation point of

training.

This trained articulatory inversion model is then adapted to hypernasality esti-

mation by processing input speech through the PASE encoder, conv layer, and four

feed-forward hidden layers to generate a time series of 250-dimensional latent codes.
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The hypernasality estimation task then is performed with the same network architec-

ture and hyperparameters as the PASE-based hypernasality estimator, but with the

inversion model latent codes as input rather than PASE encodings, with no unfreezing

of any pretrained elements. This model is referred to as AINV-NN in Table 4.2.

4.2.3 Human Baseline

Finally, to evaluate whether any of the approaches addresses the core problem

of inter-rater non-reliability, I treat each of the 14 clinical hypernasality severity

evaluators as an individual estimator, for which I can evaluate mean average error

(MAE) and Pearson’s Correlation Coefficient (PCC) from the average scores that are

used as ground truth for training and evaluating the other models. For the LOSO

evaluation I average the 14 human evaluator MAE and PCC scores across the 75

speakers, and then average these across the 14 evaluators to get an average human

baseline MAE and PCC. Similarly, for the LODO conditions I evaluate only the

evaluation disease subset. In other words, the reported “Human” MAE and PCC

scores in Table 4.2 for the LODO conditions are evaluated on the “Test on” set for a

given column.

4.3 Results

Multiple regression analysis was used to test if the NCD measure for the four

nasal cognates predicted the average clinician nasality ratings. The results of the

regression analysis indicated that the four predictors explained 47% of the variance

(R = 0.687, F (4, 79) = 16.798, p < 0.05). It was found that the NCD for T signifi-

cantly predicted the hypernasality rating (β = −0.316, p < 0.05), as did the NCD for

P (β = −0.278, p < 0.05).
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Factor B SE B β p

T -0.225 .093 -0.316* 0.018

D -0.061 .043 -0.201 0.163

P -0.077 .030 -0.278* 0.013

B 0.000 .016 0.002 0.987

R2 0.473

F 16.798**

Table 4.1: Summary of Linear Regression Analyses for Variables Predicting Clinical
Hypernasality Scores from the NCD Measures (N=80). *p < 0.05, **p < 0.001
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Figure 4.2: Output of the linear regression model predicting nasality using T, D, P,
and B as shown in Table 4.1.

Figure 4.2 shows model-predicted nasality in Table 4.1 against the SLP-assessed

clinical hypernasality measure.

In Table 4.2, I show the results of the evaluations (LOSO - leave one speaker out

and LODO - leave one disease out for the four diseases) for seven different models. The

results show that the linear model based on NAP features consistently outperforms

the other two models, especially under the LODO conditions. The differences are also

apparent when I analyze the individual LOSO correlation plots in Figure 4.3. These

scatter plots relate the estimated hypernasality score for each speaker against the
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(a) FF-KNN
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(b) MFCC-NN
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(c) NAP-Linear
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(d) NAP+NCD-Forward

Figure 4.3: Leave one speaker out (LOSO) results from predicting the hypernasality
score for the simple feature baseline with (a) the KNN classifier and simple formant
features (FF-KNN), (b) the neural network baseline (MFCC-NN), (c) the NAP fea-
tures with simple linear regression (NAP-Linear), and (d) the NAP+NCD optimized
set.

actual hypernasality score. As is clear from the figures, the correlation of the baseline

methods is largely driven by the samples with very high nasality scores. The NAP

model exhibits a linear trend between the predicted and actual values throughout the

hypernasality range.
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Table 4.2: Comparative evaluation of statistical signal processing (SSP) and neural (ML) baselines against the (novel)
hybrid features NCD, NAP, and their composition, and the human raters for predicting average clinician hypernasality
score. Conducted using leave-one-speaker-out (LOSO) and leave-one-disease-out cross validation. Mean absolute error
(MAE) on the 7-point scale and Pearson correlation coefficient (PCC) are reported. For each metric the best overall
model is bold, and the best non-novel model is italicized.

Train on LOSO (74) HD, PD, ALS Ataxia, PD, ALS Ataxia, HD, ALS Ataxia, PD, HD

Test on LOSO (1) Ataxia HD PD ALS

Model MAE PCC MAE PCC MAE PCC MAE PCC MAE PCC

S
S
P

FF-Lin 0.871 0.180 0.823 0.042 0.666 -0.751 1.316 0.351 1.426 -0.425

FF-Add 0.789 0.435 0.730 -0.123 0.693 -0.557 1.334 0.277 1.260 0.429

FF-KNN 0.754 0.481 0.781 0.333 0.567 0.381 1.218 0.402 1.227 -0.039

M
L

MFCC-NN 0.884 0.458 0.904 -0.120 0.429 0.568 0.800 0.457 1.233 0.315

PASE-NN 0.774 0.417 0.707 -0.204 0.433 0.237 1.150 0.163 1.407 0.176

PFT-NN 0.896 0.135 0.995 0.074 0.489 -0.271 1.100 0.227 1.540 0.238

AINV-NN 0.874 0.146 0.594 -0.474 0.515 -0.053 1.271 0.114 1.245 0.211

N
ov

el

NCD-Lin 0.699 0.572 0.950 0.674 0.466 0.545 1.068 -0.025 1.108 0.296

NAP-Lin 0.587 0.722 0.546 0.750 0.559 0.737 0.509 0.697 0.597 0.527

NAP+NCD 0.558 0.748 0.619 0.496 0.400 0.550 0.767 0.523 0.578 0.740

Human 0.832 0.725 0.871 0.476 1.256 0.550 0.746 0.636 0.979 0.601
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Figure 4.4: Cumulative marginal improvement plot of leave one speaker out corre-
lation with the addition of the most optimal articulatory precision and nasalization
features.

4.3.1 Individual Feature Contributions

I use a simple forward selection algorithm for the LOSO model to identify the

most predictive NAP features. The algorithm identifies the subset of features that

minimizes the cross-validation mean square error between the predicted hypernasality

rating and the clinical hypernasality rating. Features are iteratively added until

the cross-validation loss is no longer decreased. This procedure results in 6 non-

redundant features selected for prediction. This includes the articulatory precision for

T and F and the nasalization for D, B, IY, and AA. Figure 4.4 depicts the marginal

improvement in LOSO correlation as features are added in by decreasing feature

prominence.

35



0.8305

0.8571 0.8597 0.8600

CAP CAP + N(IY) CAP + N(IY,
AA)

CAP + N(IY,
AA, D)

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

LO
SO

 C
or

re
la

tio
n

Feature Combinations
Figure 4.5: Cumulative marginal improvement plot of leave one speaker out corre-
lation with the addition of the most optimal articulatory precision and nasalization
features, and the clinician articulatory precision (CAP).

4.4 Relationship Between Articulatory Precision and Hypernasality

Articulatory precision and hypernasality are tightly linked. Hypernasal speech

results in impaired articulatory precision. However, articulatory impairments can

occur in motor-speech disorders for a variety of reasons. The neurological conditions

I study herein impact several aspects of speech production including, respiration,

voicing, resonance, and articulation. This brings up two important questions:

• Do the features capture changes related to hypernasality that go beyond changes

in articulatory precision?

• Are the features sensitive to changes in articulatory precision that result from

only hypernasality (and not other articulatory impairments resulting from dysarthria)?

In an attempt to decouple articulatory precision from hypernasality, I collect clin-

ical articulatory precision ratings (in addition to the hypernasality ratings) from the

same clinicians. The inter-rater reliability of the ratings was robust, with a Pearson
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correlation coefficient of 0.75 and a mean absolute error of 1.01 on a 7-point scale.

To answer the first question above, and demonstrate that the NAP features cap-

ture information beyond changes in articulatory precision, I use a multiple linear

regression model with clinician-rated articulatory precision alongside our six most

predictive features (N(AA), N(IY), N(B), N(D), AP(T), AP(F)) as independent vari-

ables. The dependent variable is the clinical hypernasality rating. I once again use

the forward selection algorithm on Pearson correlation coefficient to cumulatively se-

lect the most predictive features. The results are depicted in Figure 4.5. As expected,

the subjective AP rating is most predictive as there is significant overlap with hy-

pernasality, and it is selected first. In the presence of this generalized measure of

articulatory precision, it makes sense that AP(T, F), features that are themselves

estimating AP, would not be selected. This reinforces the rationale for their inclusion

in the model. Three nasalization features, N(IY, AA, D), are able to further improve

the correlation of the linear model predictions.

To answer the second question, and demonstrate that our features are sensitive to

hypernasality alone, I evaluate a linear model trained on our full dataset of dysarthric

speech using the six most predictive features predicting hypernasality scores for the

18 speech samples from individuals with cleft lip and palate in our CLP dataset.

The linear hypernasality model trained on our dysarthric speech corpus achieves a

PCC of 0.89 for predicting the adult hypernasality severity, and 0.82 for predicting

the hypernasality level of the children. This provides additional evidence that our

features capture the perceptual quality of hypernasality and not other co-modulating

symptoms.
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4.5 Effectiveness of Forced Alignment

The features I have proposed herein rely on force aligning known transcripts to

dysarthric speech (Yeung et al. (2015)). This can be problematic as coarticulation,

blending, missed targets, distorted vowels, and poor articulation present in severely

disordered speech (Green et al. (2003)) may interfere with the appropriate matching

of dictionary phoneme-word pairs to the realized sounds (Knowles et al. (2018)).

I directly evaluate the prevalence of alignment errors generated by our forced

alignment methodology using manually aligned transcripts. Two annotators produced

word- and syllable-level aligned transcripts using the same spelling and phoneme-

word conventions employed in the acoustic model dictionary for all utterances in the

dataset. For each speaker in the dataset, I count word- and phone-level alignment

errors based on the position of the center point of a word or phoneme t′c as assessed by

the forced aligner and the beginning and end of the corresponding word or syllable,

tmin, tmax as assessed by the human transcriber. For each word or phoneme, the error

is counted as te = max(0, tmin − t′c, t
′
c − tmax). This error measure returns 0 if the

center of the phoneme falls within the syllable; otherwise it returns the maximum

error between the center of the automatically aligned phoneme and the start and

end of the manually-aligned syllable. In Figure 4.6 I show the alignment error (in

seconds) against the hypernasality rating to show how alignment error rates progress

as hypernasality increases. The results clearly show that for all but the most severely

hypernasal speakers forced alignment works effectively.

These results also indicate that our objective hypernasality ratings for the most

imprecise speakers are not reliable. While this is a limitation of the approach, it is not

severely limiting. In most cases, clinicians are more concerned with evaluating speak-

ers in the mild-moderate end of the scale where they can monitor disease progress
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Figure 4.6: Plot of average alignment errors per speaker (s) against clinician-rated
articulatory precision at the phone level. Dashed line indicates an average alignment
error of 25 ms.

early or evaluate the effects of an intervention. This is less common for later stages

of disease.

It is interesting to note that, while the alignment is poor, the model still yields

high hypernasality scores for imprecise speakers. Precise alignment for speakers in

this range is simply not possible, manually or otherwise. It’s likely that the poor

hypernasality ratings predicted by the model is driven by the poor alignment itself

(Green and Carmichael (2004)).

39



Chapter 5

DISCUSSION AND CONCLUSIONS

5.1 Feature-Rating Correlations

The NCD features are formulated as a log probability ratio between the expected

class of a given transcript plosive and its nasal cognate. Increasingly positive values

correspond with a higher confidence that the speaker has correctly articulated the

plosive rather than its nasal cognate, and values closer to zero or negative repre-

sent plosives that sound more like their nasal cognate than the intended stop. This

directionality is exhibited as expected in the phoneme-by-phoneme analysis of the fea-

ture, where across speaker classes the NCD of a given phoneme decreases as nasality

increases.

Figure 3.3 shows that the NCD features very clearly separate the control and

severe nasality groups with all phonemes. However, for the voiced phonemes D and B

the moderate and mild means and medians are close and the quartile ranges overlap

considerably. Performance is worst for B, which exhibits both high cross-group overlap

of the quartile ranges and insignificance as a predictor of the subjective hypernasality

scores in the multiple regression analysis.

When considering these inter-phone performance inconsistencies, differences in

the phonetic environments in which the test phonemes appear are noteworthy. In the

five test sentences, T appears 18 times, D 9 times, P 6 times and B only 3 times.

Of these appearances, T has 8 word-internal appearances, 7 word-final appearances,

and 3 word-initial appearances. The phoneme D has 5 word-initial appearances, 3

word-internal appearances, and 1 word-final appearance. The phoneme P has 4 word-
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internal appearances and 2 word-initial appearances, and B exclusively has 3 word-

initial appearances. It is likely that these disparities in overall occurrence and word-

internal occurrence play an important role in explaining the performance disparity.

Additionally, it is important to note that the NCD features are intended to as-

sess a physical phenomenon, the realized allophones, not the underlying phonemes

themselves. The phonetic transcriptions provided for HMM-based ASR systems fall

somewhere between broad phonetic transcriptions and allophonic narrow transcrip-

tions, allowing for possible confusion scenarios. For example, a T may be realized

in English as [t], [R], or [P] depending on phonetic environment. All three could be

compared to [n] (N) in the NCD model even though the glottal stop [P] is unaffected

by VPD and shares no place of articulation with [n].

The NCD features tend to be high-variance because they require reliable phoneme-

level alignment to compute; higher frequency phonemes exhibit reduced variability

through averaging. Accordingly, in this study the more frequent phonemes are more

useful predictors of hypernasality. This suggests that future datasets to evaluate

methods like NCD should include a higher frequency of plosive consonants balanced

across the categories, in consistent environments in which the correct allophones are

reliably produced.

The feature-level analyses of the NAP features behave as expected, with the nasal-

ization log likelihood of the phonemes increasing as hypernasality increases, while the

articulatory precision decreases as hypernasality increases (Figure 3.4). Analysis of

Eqns (3) and (4) shows that this makes sense. As hypernasality increases, the voiced

phonemes become more and more like the N class in the acoustic model in Section

3.4. Similarly, as hypernasality increases, the acoustics of the unvoiced phonemes

become less and less like the intended target, therefore the ratio in Eqn (4) decreases.

During the feature selection analysis for NAP in Section 4.1 certain consonants
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appeared prominently. In particular, the nasalization feature for phonemes D, and

B, as well as the articulatory precision of T and F were prominent. T, B, and D are

referred to as a “nasal cognates” in Saxon et al. (2019), as the bilabial consonant B

shares a place of articulation with the bilabial nasal M, the lingua-alveolar consonants

T and D share a place of articulation with the lingua-alveolar nasal N. Leakage

through the nasal cavity will interfere with the production of all of these phonemes,

and in the voiced case, they will sound like their corresponding nasal phonemes. It

is not surprising that the nasalization model is most sensitive to these phonemes

since that model is trained on healthy speech, where the N class consists mostly of

instances in M and N and surrounding vowels.

Through the same analysis, the most prominent vowels selected were AA and

IY. AA is the most open and back vowel in English, whereas IY is the most closed

and fronted. It may be the case that these extreme ends of the vowel chart exhibit

more noticeable patterns of nasalization, either on a perceptual level or just in their

PLP-nasalization feature realization.

5.2 Performance of Estimation Models

The novel models based on NAP and NCD features outperform all estimation

baselines, across all conditions, on both the MAE and PCC metrics. Furthermore, the

NAP and NCD-based hypernasality estimation systems outperform even the trained

human SLP annotators in estimating their own average scores, speakerwise. In the

LOSO condition the MFCC-NN approach outperforms the simpler formant features

in PCC, while the formant feature model does achieve a lower MAE it seems to be

a result of largely predicting the mean, with only a very modest upsloping trend in

Figure 4.3 (a) as opposed to Figures 4.3 (b) and (c) which clearly show upward-sloping

trends.
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Although the novel approaches consistently outperform the baselines, it is note-

worthy that neither the ML- nor SSP-based techniques consistently outperform the

other across various pairs of cross validation condition and metric. For example, the

articulatory inversion-based neural model AINV-NN achieves the best (lowest) MAE

of the baselines in the test-on-Ataxia LODO condition, but also has the worst (lowest)

PCC of the baselines on the same validation split. Furthermore, of the 10 combina-

tions of validation-metric evaluations performed, the best baseline performance is

achieved by SSP-based 5 times, and by ML-based methods the other 5 times, making

an even split. It is noteworthy that in such a volatile problem space, one family of

approaches is able to consistently outperform the others.

In the LODO conditions, the SSP and MFCC-NN models perform unpredictably.

On some disease classes, MFCC-NN outperforms FF, while the opposite is true for

others. By comparison, the NAP achieves consistent performance across all LODO

classes. This suggests that these features are a robust measure of hypernasality,

relatively invariant to the disease-specific co-modulating variables that hinder the

performance of the baselines on the same task. The nasalization features in the

NAP, by virtue of being trained on a large corpus of healthy speech, and targeting a

specific perceptual quality are simultaneously more robust to both the disease-specific

overfitting expected from NN methods such as Vikram et al. (2018) and speaker-to-

speaker variances discussed in the design of the formant-based A1P0 and related

features in Styler (2015), Chen (1997). Articulatory precision features are robust in

a similar way.

One of the added benefits of the proposed approach over the baseline methods

is the direct interpretability of the individual NAP and NCD features. While it is

not immediately clear how MFCC features or formant-based features are expected to

change with different hypernasality levels, the proposed features are easy to interpret;
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this stems directly from their design as likelihood ratios comparing known classes of

phonemes.

In spite of its robustness the NAP and NCD likelihood ratio technique has limita-

tions. Most limiting is its reliance on aligned transcripts to perform the estimation.

The results shown in this paper were based on forced alignment. This is always pos-

sible when the ground truth transcript is known but is not feasible for spontaneous

speech. The robustness of the model comes from the fact that it is trained on a large

corpus of healthy speech; however, this training also induces a bias in the model.

As the feature selection results show, the model is adept at detecting hypernasal

speech from phonemes that look similar to nasals in healthy speech; however it is

impossible to capture nasalization acoustic patterns for unvoiced speech since these

sounds never occur in healthy speech (and hence cannot be captured in our model).

As a result, I use articulatory precision as a proxy for nasalization for these sounds.

Increased hypernasality typically implies reduced articulatory precision, but the con-

verse is not necessarily true. As such, it is possible for speakers to exhibit reduced

precision for other reasons than hypernasality. As I showed with the CLP speech

experiments, when the reduction in articulatory precision is due to hypernasality, the

model generalizes out-of-disease quite well.

5.3 Conclusions and Summary

In this thesis, I proposed a set of acoustic modelling features as an objective

and noninvasive proxy for hypernasal speech. All seek to model various explainable

aspects of perceptual hypernasality. They leverage a data-driven approach to learn-

ing expert-designed features on healthy speech that capture perceptible elements of

velopharyngeal dysfunction in hypernasal speech.

The NCD features are motivated by the simple observation that alveolar stops T

44



and D map to the alveolar nasal N and the bilabial stops P and B map to bilabial

nasal M when the energized column of air is shunted into the nasal passage during

speech production. The feature is measured by first training an acoustic model on

healthy speech and, for a test speaker, evaluating the likelihood ratio between the

plosives and their respective nasal cognates. For healthy speakers that exhibit no

signs of hypernasality, this ratio is large and decreases with increasing levels of hy-

pernasality. This is confirmed on speech samples from 75 speakers diagnosed with

different dysarthria subtypes and exhibiting varying levels of hypernasality. The re-

sults show that the features are strongly correlated with clinical perception. The

variability of the NCD features, driven by the differences in representation of B, D,

and P, motivated the design of a more robust feature set that could analyze the full

set of phonemes present in the phonetically rich standard read stimuli provided to

the 75 speakers.

This more robust system became the Nasalization-Articulation Precision (NAP)

features. I demonstrated that these features, when evaluated on disordered speech,

track the expected trends in perceptual hypernasality ratings, and can be used with

ridge regression to estimate a clinician-rated hypernasality score more accurately

than several representative baseline methods. Additionally, I demonstrated that the

NAP algorithm predictions for hypernasality rating generalize across diseases with

significantly less loss in accuracy than existing approaches. This implies that the

NAP features are a robust method for estimating hypernasality in dysarthria.

A limitation of this approach, and articulatory precision estimation techniques

more generally, is a reliance on known transcripts with which alignment may be per-

formed. Neural models for directly assessing articulatory precision from raw speech

audio is a promising future research direction—such models could provide the simul-

taneous identification of and precision assessment of phonemes on the fly, and provide
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downstream representations that could drive characterization of hypernasality with-

out relying on reading as a stimulus, or known transcripts for assessment.

However, in spite of these limitations, the NAP and NCD-based linear hyper-

nasality estimation models significantly outperform all evaluated baselines, including

the human annotators themselves. In other words, this approach to robustly and ob-

jectively modeling hypernasality achieves superhuman performance in both accuracy

and difference assessment, and achieves state-of-the-art results in generalization across

both machine learning- and statistical signal processing-based baselines. Systems ap-

plying these principles may one day drive the deployment of objective, scalable, and

interpretable speech-based telemedicine metrics. These metrics stand to improve di-

agnostic performance and clinical outcomes for patients exhibiting the early stages of

neurological disease.
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