
Generalized Domain Adaptation for Visual Domains

by

Bhadrinath Nagabandi

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2020 by the
Graduate Supervisory Committee:

Sethuraman Panchanathan, Co-Chair
Hemanth Venkateswara, Co-Chair

Troy McDaniel

ARIZONA STATE UNIVERSITY

May 2020

ABSTRACT

Humans have a great ability to recognize objects in different environments irrespective

of their variations. However, the same does not apply to machine learning models

which are unable to generalize to images of objects from different domains. The

generalization of these models to new data is constrained by the domain gap. Many

factors such as image background, image resolution, color, camera perspective and

variations in the objects are responsible for the domain gap between the training data

(source domain) and testing data (target domain). Domain adaptation algorithms

aim to overcome the domain gap between the source and target domains and learn

robust models that can perform well across both the domains.

This thesis provides solutions for the standard problem of unsupervised domain

adaptation (UDA) and the more generic problem of generalized domain adaptation

(GDA). The contributions of this thesis are as follows. (1) Certain and Consistent

Domain Adaptation model for closed-set unsupervised domain adaptation by align-

ing the features of the source and target domain using deep neural networks. (2)

A multi-adversarial deep learning model for generalized domain adaptation. (3) A

gating model that detects out-of-distribution samples for generalized domain adap-

tation. The models were tested across multiple computer vision datasets for domain

adaptation. The dissertation concludes with a discussion on the proposed approaches

and future directions for research in closed set and generalized domain adaptation.

i

ACKNOWLEDGEMENTS

The submission of my thesis concludes my incredible journey at Arizona State Uni-

versity. I would like to express my gratitude to many wonderful people who helped

me to cross the finish line.

First and foremost, I would like to sincerely thank my advisor, Dr. Hemanth

Venkateswara, for his continuous support. Without his guidance and motivation, the

thesis would not have been possible. I enjoyed an enormous amount of freedom in

working the problems of my interest. I was also consistently backed up financially and

emotionally by him. Dr. Hemanth was very knowledgable, inspiring, approachable,

and truly humble. I would also like to thank my committee member Dr. Sethuraman

Panchanathan and Dr. Troy McDaniel for their support, guidance, and inspiring

conversations.

I’m blessed to have had the opportunity to work with an amazing set of peers. I

would like to thank Raghav, Maunil, Rishab, Piyush, and Andrew for their continuous

support and having many productive conversations. I would also like to thank the

Ph.D. students Bijan, Meredith for sharing their incredible experiences. My time at

ASU would not have been more exciting without the love and support of my friends

Sumanth, Mounika, Karna, Surendra, Vinay, Bryan, Abhik, josh, Michael.

Finally, I dedicate my thesis to my parents, Ramana and Rani, and my sister

Mani for all the years of love and support.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Goals and Motivation . 1

1.2 Contributions . 2

1.3 Dissertation Outline . 2

2 DOMAIN ADAPTATION . 5

2.1 Introduction to Domain Adaptation . 5

2.2 Mathematical Notation. 8

2.3 Datasets for Domain Adaptation in Computer Vision 9

3 LITERATURE SURVEY . 11

3.1 Closed Set Domain Adaptation . 11

3.2 Semi Supervised Learning . 12

3.3 Partial Domain Adaptation . 14

3.4 Open Set Domain Adaptation . 15

3.5 Universal Domain Adaptation . 16

4 CERTAIN AND CONSISTENT DOMAIN ADAPTATION 17

4.1 Domain Adaptation with Semi Supervised Learning 17

4.1.1 Idea Motivation . 18

4.1.2 Domain Alignment . 19

4.1.3 Certainty and Consistency . 21

4.1.4 Rapid-Smooth Coupled Network: . 22

4.1.5 Measure of Certainty: . 23

iii

CHAPTER Page

4.1.6 Consistency Regularization: . 24

4.1.7 Entropy Regularization . 25

4.1.8 Cross Entropy Loss . 26

4.1.9 CCDA Objective Functions . 26

4.2 Experiments & Analysis . 27

4.2.1 Experimented Datasets . 27

4.2.2 Implementation Details . 28

4.2.3 Results . 28

4.2.4 Ablation Studies . 30

4.2.5 Feature Visualization . 31

4.3 Conclusions . 33

5 MULTI ADVERSARIAL GENERALIZED DOMAIN ADAPTATION . . . 34

5.0.1 Introduction . 34

5.0.2 Overview . 35

5.0.3 Label Classifier . 36

5.0.4 Domain Alignment . 38

5.0.5 Known-Unknown Feature Separator . 39

5.0.6 Entropy Minimization . 39

5.0.7 Final Objective . 41

5.1 Implementation Details . 41

5.2 Experiments . 42

5.3 Conclusions . 44

6 GENERALIZED DOMAIN ADAPTATION WITH GATED SMOOTH-

ING . 45

iv

CHAPTER Page

6.0.1 Introduction . 45

6.0.2 Overview . 46

6.0.3 Label Classifier . 47

6.0.4 Domain Alignment . 48

6.0.5 Gating Module . 49

6.0.6 Output Smoothing . 50

6.0.7 Entropy Minimization . 52

6.0.8 Final Objective . 53

6.1 Implementation Details . 54

6.2 Experiments . 55

6.3 Conclusions . 56

7 CONCLUSIONS. 57

BIBLIOGRAPHY. 59

APPENDIX

A PERMISSION STATEMENTS FROM CO-AUTHORS 63

v

LIST OF TABLES

Table Page

4.1 CCDA Experiments with Office-31 Dataset . 29

4.2 CCDA Experiments with Office-Home Dataset . 30

5.1 MAGDA Experiments with Office-31 Dataset . 43

6.1 GDAGS Experiments with Office-31 Dataset . 55

vi

LIST OF FIGURES

Figure Page

2.1 Samples from Office-31 Dataset . 9

2.2 Samples from Office-Home Dataset . 10

4.1 The Certain and Consistent Domain Adaptation (CCDA) Model. 20

4.2 t-SNE Visualization for CCDA on Office-31 . 32

4.3 Effect of Certainity in CCDA on Office-31 . 32

5.1 Multi Adversarial Generalized Domain Adaptation(MAGDA) Model . . 36

6.1 Generalized Domain Adaptation with Gated Smoothing (GDAGS) Model 46

vii

Chapter 1

INTRODUCTION

1.1 Goals and Motivation

Deep neural networks have shown impressive performance on a large number of

computer vision tasks like Image Classification, Object Detection, Image Segmenta-

tion, etc. However, the critical factor behind these performances was the availability

of labeled data. With large amounts of labeled data, complex models with enough

capacities are designed to achieve human-level performances. However, in practice,

it is not always feasible to collect and annotate large amounts of data to sufficiently

train a model for the required task. Moreover, the conventional learning algorithms

trained on one task do not generalize well to a relevant but new task owing to domain

shift Ben-David et al. (2010). It is because all these learning algorithms are trained

with an underlying assumption that the data used for both training and testing are

sampled from the same distribution. For example, Consider you have developed a

model that can classify plants into different categories with very high accuracies.

Then you built an application and deployed the model into smartphones with the

hope to classify plant species captured with those cameras. Does the model classify

these test images with the same accuracy?

Our previous knowledge strongly hints a no. We reason the drop in performance

of the classifier with several factors such as the change in resolution of the camera,

different backgrounds, change in illumination, the difference in intrinsic and extrin-

sic parameters of the camera, photographer’s preferences on shooting angles, etc.

Multiple solutions do exist to counter the performance issues. A simple solution is

1

to collect, annotate, and fine tune the model for all the devices of interest. How-

ever, this solution is infeasible. An alternative approach is to build models that can

adapt to these mismatch between the data distributions and perform the task well.

Domain Adaptation algorithms overcome the domain shift between the source and

target domain to learn a robust mapping that learns only from the source domain

and generalizes to the target domain.

1.2 Contributions

The contributions of the dissertation are as follows.

1. A new semi-supervised learning based approach is proposed for Unsupervised

Domain Adaptation. The model predicts the target label with an exponential

moving average version of the same model.

2. The problem of Generalized Domain Adaptation is introduced. A double dis-

criminator approach to align source and target distributions and at the same

time reject the out-of-distribution samples from the target domain is proposed.

3. A probabilistic approach for Generalized Domain Adaptation is proposed. The

designed architecture introduces a gating module that spits out a probability

for each sample being seen and unseen and aid the classification of seen samples

and rejection of unseen from the target domain.

1.3 Dissertation Outline

The dissertation is structured in the following manner.

Chapter 2 briefly presents the problem of Domain Adaptation. Furthermore,

it outlines a mathematical notation for Domain Adaptation. The mathematical no-

tation clearly describes the source and target domains and is consistent throughout

2

the dissertation. This chapter also introduces the current state of Domain Adapta-

tion in computer vision. Finally, the chapter concludes by describing the challenging

datasets that are being solved in the field of computer vision.

Chapter 3 is a literature survey on Domain Adaptation. It also outlines the research

in other areas that are relevant to Domain Adaptation. Firstly, the survey begins with

some of the recent advances in the Unsupervised Domain Adaptation. The follow-

ing section describes the similarity of Unsupervised Domain Adaptation with semi-

supervised learning and outlines the relevant ideas in semi-supervised learning. The

subsequent section would be an overview of Partial Domain Adaptation followed by

Open-set Domain Adaptation. These two settings slightly relax the assumptions on

label spaces of Closed-Set Domain Adaptation and can be considered as sub problems

of Generalized Domain Adaptation. Finally, the chapter concludes with a review of

the Universal Domain Adaptation from the existing literature.

Chapter 4 describes a deep domain adaptation model based on Rapid-Smooth net-

works that are similar to Mean-Teacher models from semi-supervised learning. The

chapter introduces a Certain and Consistent Domain Adaptation model for Closed-Set

Domain Adaptation. The algorithm trains a pair of models with a unique objective

function to predict the labels for the samples from the target domain. The chapter

also makes a detailed analysis of the results and perform ablation studies to under-

stand the individual contributions of the model. Finally, the chapter concludes with

a comment on the performance of the model and future directions.

Chapter 5 progresses from Closed-Set Unsupervised Domain Adaptation to Gener-

alized Domain Adaptation. The chapter introduces a Multi Adversarial approach for

Generalized Domain Adaptation. The model aligns the source and target distribu-

tions only in the shared label space to adapt to the domain mismatch. Furthermore,

it minimizes the probability of being classified as a source private class and simulta-

3

neously rejects the samples from the target private class as out-of-distribution(OOD)

samples. The chapter displays the results with a couple of experiments and finally

concludes with few comments on the model and future directions of the approach.

Chapter 6 introduces a probabilistic approach for Generalized Domain Adaptation.

The model aligns the source and target distributions only in the shared label space

to adapt to the domain mismatch. Furthermore, the model incorporates a gating

module to predict the probability of a sample being seen and unseen. The predicted

probabilities are used in output smoothing and followed by thresholding to reject

out-of-distribution samples. The following section investigates the approach with a

set of experiments and concludes with observations and future work.

4

Chapter 2

DOMAIN ADAPTATION

2.1 Introduction to Domain Adaptation

The goal of Domain Adaptation is to learn a model that can adapt to the mis-

matches in data distribution and perform better to the tasks in hand. In Domain

Adaptation, there is a source domain and a target domain. The goal in domain adap-

tation algorithms is to overcome the domain shift between the source and the target

domain to learn a robust model that transfers the knowledge from the source domain

to the target domain. Thus, a critical aspect of domain adaptation algorithms is to

learn a mapping that is invariant to domain shift. If the source domain is fully labeled

and the target domain is unlabeled yet assumed to have identical label space between

the source and target domains, the problem is termed as Unsupervised Domain Adap-

tation (UDA). Recent approaches Ganin et al. (2016); Tzeng et al. (2017); Pei et al.

(2018); Long et al. (2015); Venkateswara et al. (2017b); Bousmalis et al. (2017); Deng

et al. (2018); Hoffman et al. (2018) in Unsupervised Domain Adaptation are capable

of producing excellent performance on many domain adaptation tasks Saenko et al.

(2010); Venkateswara et al. (2017b). These methods largely rely on minimizing the

distance between the source and target domains by aligning the feature space with

a distance metric Long et al. (2017b). Other approaches Ganin et al. (2016); Pei

et al. (2018) try to learn domain invariant features using an adversarial domain dis-

criminator. In the former approaches, the source and target features are projected

into a high dimensional space and a statistic criterion is used to minimize the dis-

tance between them. Earlier works utilized Maximum Mean Discrepancy Long et al.

5

(2017b), KL-Divergence, Wasserstein distance Shen et al. (2018) as distance crite-

ria. However, recent approaches use an adversarial domain discriminator to separate

the source features from the target features. Furthermore, recent approaches also

introduce a gradient reversal layer. The gradient reversal layer backpropagates the

negative of gradient from the adversarial discriminator to the feature extractor to

learn domain invariant features. Hence, a classifier learned on these domain invariant

features generalizes well to the source and target domains.

Irrespective of these impressive performances, the existing approaches Ganin et al.

(2016); Tzeng et al. (2017); Pei et al. (2018); Long et al. (2015); Venkateswara et al.

(2017b) in the literature are not readily applicable for real-world scenarios because

the approaches make a closed-set assumption. In a closed-set scenario, it is assumed

that the source domain and target domain has identical label space but with a domain

shift, i.e. the categories in the source and target domains are the same. However, in

real-world scenarios, the assumption does not hold all the time. Very often any of

the following scenarios can be encountered. 1) The target domain’s label distribution

is a subset of the source domain’s label distribution. 2) The source domain’s label

distribution is a subset of the target domain’s label distribution. 3) The source and

target domain’s label distribution overlap is unknown.

In the current literature, there is also a line of work that relaxed the closed-set

assumption and aimed towards scenarios 1 and 2. The instances where the target

domain is a subset of the source domain is referred to as Partial Domain Adapta-

tion Cao et al. (2018b); Zhang et al. (2018); Cao et al. (2019). Similarly, Busto et

al.Panareda Busto and Gall (2017) proposed a scenario where the source domain is

a subset of the target domain and named the framework as Open-set Domain Adap-

tation. In this work, they also introduced the idea of an ’unknown’ class i.e., classes

that belong only to the target domain but not to the source domain are referred to as

6

unknown. But, in their work, they assumed the common classes between the source

and target domains are known during training. Saito et. al Saito et al. (2018) fur-

ther relaxed the assumption on the prior knowledge of unknown classes in the source

domain and modified the problem of open-set domain adaptation. Ideas explored in

both the Partial Domain Adaptation and Open-set Domain Adaptation paved the

path for a typical realistic scenario called Generalized Domain Adaptation.

Generalized Domain Adaptation is a realistic and more complicated setting. There

do exist many real-world problems with a fixed and pre-determined label space com-

mon to both the source and target domains. However, a closer observation reveals

that these scenarios are merely special cases of Generalized Domain Adaptation and

the real problems are more often unconstrained in their label spaces. In Generalized

Domain Adaptation, we have a labeled source domain and a related but different tar-

get domain that is unlabeled. However, in this setting, the prior knowledge on their

label spaces is unknown hence termed ’Generalized’. Generalized Domain Adaptation

aims to learn a model from the source domain to generalize it to the target domain

irrespective of the domain gap and the category gap. An additional challenge here is

to classify a target sample if and only if it belongs to one of the source classes and

mark it ’unknown’ when it is an outlier.

Generalized Domain Adaptation has to deal not only with the domain gap but

also the category gap - the difference in label spaces between the source and target

domains. Hence, none of the existing domain adaptation solutions are suitable in this

setting because of the domain gap and category gap in the unlabeled target domain.

As the target label space is unknown, one has no clue about which categories of source

domain have to be aligned with the target domain. Naively aligning the source and

target domains doesn’t help and top of it can cause a negative transfer. Finally,

the literature also shows that out-of-distribution samples tend to be classified as

7

one of the source classes with very high confidence, hence, rejecting those sample

as ’unknown’ is an arduous task. To address Generalized Domain Adaptation, we

propose a novel architecture that overcomes the domain shift and category shift to

learn a robust model that generalizes to the target domain. We implement our model

with novel loss criteria and reweighing mechanisms to learn from the source domain

and generalize it to the target domain.

In the following section, I formalize the idea of Domain Adaptation and introduce

a notation for UDA and GDA that is consistent over the dissertation.

2.2 Mathematical Notation

In Generalized Domain Adaptation setup I consider a source domainDs = {xsi , ysi }nsi=1

with ns sample pairs where xsi ∈ X are images sampled from a space X and ysi ∈ Y

are their corresponding labels from a discrete label space Ys = {1, . . . , Cs}. Thus,

source domain has Cs = |Ys| number of classes. Likewise, let Yt be the label space

of the target domain with Ct = |Yt| number of classes. Let Y = Ys ∩ Yt be the set

of labels common to the source and target domains. Also, I define Ȳs := Ys \ Y and

Ȳt := Yt \ Y to be the set of labels sets private to the source and target domains

respectively. I term Ys as the known categories and Ȳs as the unknown categories. At

the time of training I know Ds, Dt and Ys, but I am not privy to Yt. The goal of the

proposed Generalized Domain Adaptation framework is to predict ŷt for the samples

x̂t ∈ Dt, whose label ŷt ∈ Y .

I borrow the notation commonness(ξ) from the work Universal Domain Adap-

tation You et al. (2019) for the ease of experiments. ξ between the source and the

target domain is defined as the Jaccard distance of the two label sets: ξ := |Cs∩Ct|
|Cs∪Ct| .

From the defined equation it is very clear that Closed set domain adaptation is a

special case of Generalized domain adaptation when ξ = 1. Hence, in Generalized

8

Domain Adaptation, the goal is to design a model that is unaware of ξ but is capable

of performing well on both the source and target domain. In overall, the constraints

in Generalized Domain Adaptation is that the joint distribution of the source and

target are different with Ps(X, Y) 6= Pt(X, Y) and the commonness ξ is unknown.

2.3 Datasets for Domain Adaptation in Computer Vision

Office-31 Saenko et al. (2010) is the common benchmark dataset used to evaluate

domain adaptation algorithms. The dataset consists of about 4650 images from 31

categories of everyday objects. It has 3 domains: Amazon(A), DSLR(D) and We-

bcam(W). The Amazon domain has 2817 images whereas Webcam and DSLR have

only 795 and 498 images respectively. Models are evaluated on the 6 transfer tasks

A →W, D →W, W → D, A → D, D → A and W → A across all the domains.

Here A →W implies, A is the source and W is the target.

Figure 2.1: Samples of Amazon, Webcam and DSLR domains from Office-31 dataset

Office-Home Venkateswara et al. (2017b) is a more challenging dataset with more

than 15,500 images from 65 categories belonging to the following four domains: Art

9

(Ar), Clipart (Cl), Product (Pr) and Real-World (Rw). The image categories are

everyday objects from office and home settings. Similar to the Office-31 experiments,

in Office-Home, models are evaluated on all the 12 transfer tasks Ar → Cl, Ar →

Pr, Ar → Rw, Cl → Ar, Cl → Pr, Cl → Rw, Pr → Ar, Pr → Cl, Pr → Rw,

Rw → Ar, Rw → Cl and Rw → Pr across all the domains.

Figure 2.2: Samples of Art, Clipart, Product, and Real World domains from Office-
Home dataset

10

Chapter 3

LITERATURE SURVEY

3.1 Closed Set Domain Adaptation

I provide a brief survey of statistical and adversarial approaches to domain adap-

tation that are relevant to my work. For a detailed survey of domain adaptation, I

direct the reader to Csurka (2017); Venkateswara et al. (2017a).

A standard procedure to aligning the data distributions of the source and target is

reducing the Maximum Mean Discrepancy (MMD) between source and target features

after projecting them onto a high (infinite) dimensional space Long et al. (2015, 2016);

Venkateswara et al. (2017b). The MMD is a non-parametric measure of the difference

between two distributions. A variation of the MMD criterion is deployed by Long

et al., where they develop a joint MMD using both input features and labels Long

et al. (2017b). Distribution alignment is also achieved by reducing the Wasserstein’s

distance or Earth Mover’s distance between distributions Bhushan Damodaran et al.

(2018); Courty et al. (2017); Shen et al. (2018).

The most popular approach to reduce domain disparity is through adversarial

training. Adversarial training was introduced through the Generative Adversarial

Networks by Goodfellow et al. Goodfellow et al. (2014). Adversarial training in

domain adaptation is a two-network min-max game in which one network tries to

differentiate between the source and target data and the second network tries to

align the two distributions of the datasets. The Domain Adversarial Neural Network

(DANN) Ganin et al. (2016) is a seminal approach that applied adversarial training

to domain adaptation. The DANN has a feature extractor network attempting to

11

extract domain-aligned features and an auxiliary network called the discriminator

that is trained to discriminate between the features of the source and the target.

The feature extractor is trained to make the discriminator perform poorly by negat-

ing the gradient of the discriminator using a gradient reversal layer (GRL). There

have been multiple variations of adversarial training in domain adaptation literature;

maximal domain confusion loss Tzeng et al. (2015), untied feature extractor and dis-

criminator (ADDA) Tzeng et al. (2017) and multiple domain discriminators to enable

fine-grained discrimination of data distributions (MADA) Pei et al. (2018), to name a

few. These approaches apply the adversarial training principle to align feature spaces

between domains.

Apart from aligning feature spaces, adversarial training has also been applied to

align image spaces. Image translation based domain adaptation approaches convert

images from the source domain to the target domain (or vice versa) using adversarial

training Bousmalis et al. (2017); Deng et al. (2018); Hoffman et al. (2018). The

popular DIRT-T model utilizes adversarial training along with enforcing a cluster

assumption with conditional entropy minimization to estimate target labels Shu et al.

(2018). More recent approaches that consider the challenge of differences in label

space between the source and the target also take recourse to adversarial training

to align the domains Cao et al. (2018c); Saito et al. (2018); You et al. (2019). In

this work, I applied the standard version of the DANN Ganin et al. (2016) to reduce

domain disparity.

3.2 Semi Supervised Learning

In the semi supervised learning paradigm there is a small set of labeled data and

a large set of unlabeled data from the same distribution. The goal in SSL is to train

a transductive model that can effectively predict the labels of the target. Recent

12

literature in SSL focuses on Consistency Regularization or Entropy minimization.

Under Consistency Regularization the network is expected to maintain consis-

tent predictions for an image under different augmentations. This is also called the

smoothness assumption. The augmentations can be either in the input space with dif-

ferent stochastic transformations of the input or in the parameter space as in Dropout

Srivastava et al. (2014). An ensemble of perturbations is usually applied to imple-

ment consistency regularization and has shown promising performance Laine and Aila

(2016); Tarvainen and Valpola (2017). Laine et al. Laine and Aila (2016), introduced

two different models implementing consistency regularization. In the Π-model the

unlabeled data is passed through the network twice with different perturbations and

a mean square error between the two predictions is minimized to maintain consis-

tency. In Temporal Ensembling, a moving average of predictions is maintained and

these are considered as training targets for the unlabeled input.

The Mean-Teacher model Tarvainen and Valpola (2017), defines a pair of coupled

identical networks, a Student and a Teacher, where the parameters of the Teacher are

a moving average of the Student’s parameters. The Student network is trained using a

consistency measure (mean-squared loss) between the predictions of the Teacher and

the Student. Other measures like consistent attention Zagoruyko and Komodakis

(2016) and feature correlation using Gram matrix Gatys et al. (2015) have also been

developed for the Mean Teacher setup.

Entropy minimization is the other popular technique which forces the decision

boundary to cut through low density regions of the target and thus generate confident

target predictions Grandvalet and Bengio (2005). The popular DIRT-T approach ap-

plies entropy minimization along with adversarial training for domain adaptation Shu

et al. (2018). In the proposed Certain and Consistent Domain Adaptation (CCDA),

I train a pair of networks, Rapid-Smooth, to output consistent predictions over the

13

target along the lines of Mean-Teacher Tarvainen and Valpola (2017). In addition

the CCDA also ensures certainty in label predictions by minimizing the variance in

predictions across multiple augmentations of a data point Li et al. (2019).

3.3 Partial Domain Adaptation

In Partial Domain Adaptation(PDA) Cao et al. (2018b,a, 2019); Zhang et al.

(2018) setting, the label space of the target domain is a subset of the source domain

i.e. source domain has all the categories of the target domain with some extra classes

that are private to the source domain. The major problem in PDA is the classifi-

cation of target samples into the private classes of the source domain. Unlike the

Closed Set Unsupervised Domain Adaptation, aligning all the features of the source

and target domains are not effective and seldom causes negative transferWang et al.

(2019b) instead. Therefore, the effect of private classes in the source domain has to

be minimized. Cao et. alCao et al. (2018b) proposed a weighing mechanism that

re-weighs the source domain so that the samples from the common classes have a

higher weight. Thus, both the source and target domains are aligned in the shared

label space using the weighted samples. InCao et al. (2018a), multiple discriminators

are used to estimate class level weights and instance-level weights. Thus, a selective

transfer from the source domain to the target domain is achieved by aligning the fea-

tures in the shared label space. Similar to Cao et al. (2018a), Zhang et al. (2018) used

only 2 discriminators. One of the discriminators provides the probability of a sample

belonging to a shared label space or an outlier class while the other discriminator

aligns the source and target domains in the shared label space. Similarly, Cao et al.

(2019) used an auxiliary label predictor and an auxiliary discriminator to estimate

the weight for each sample depending on its transferability.

Since in Partial Domain Adaptation the source domain has additional categories

14

in its label space, a common approach followed in the existing literature is to down

weigh the private classes of the source domain and align the features of the source

and target domains in their shared label space.

3.4 Open Set Domain Adaptation

In Open set Domain AdaptationPanareda Busto and Gall (2017); Liu et al. (2019);

Saito et al. (2018) the source domain label space is a subset of the target domain label

space i.e. a model trained on the source domain is tested in the real world without

any restriction on the label space. While testing, if an outlier(data points which

are not from the shared label space) is input to the model, it has to be rejected.

The target samples only from the shared label space are to be classified. Busto

et. alPanareda Busto and Gall (2017) was the first to propose open set domain

adaptation. They used an Assign-and-transfer algorithm to map the target samples

to the source classes. Then they trained an SVM for the classification. However,

the drawback of their algorithm is, it requires us to know the source and target

private classes beforehand. Saito et al.Saito et al. (2018) used adversarial training

and explicitly added an extra class ”unknown” in the classification problem. Then,

they extracted and rejected the features of the unknown target class. Lie et al.Liu

et al. (2019) proposed a coarse-to-fine approach to progressively separate the unknown

class features from known class features. In the coarse step, they trained a binary

classifier for each class to obtain the probability of a given sample belonging to that

particular class. Furthermore, a threshold is applied to the probabilities to separate

the features as a known class or an unknown. Finally, a logistic classifier is trained

on these separated samples to finely separate them.

Observe that, the similarity between several approaches from the existing liter-

15

ature is that all the methods selectively align the features of the source and target

domains in the shared label space and reject the out-of-distribution samples. Ad-

ditionally, these methods motive for a more general and realistic problem setting

Generalized Domain Adaptation and provide a path for future research

3.5 Universal Domain Adaptation

The problem highlighted in this dissertation falls into this category. In Generalized

Domain Adaptation, the relationship between the source label space and target label

space is unknown i.e., the source and target domains may or may not have shared

classes but have their private classes. This scenario is more practical as the adapta-

tion is made possible with most of the relevant datasets. In UDAYou et al. (2019), a

non-adversarial domain discriminator is introduced to estimate the domain similarity

for a given sample x. A different sample-level weighing mechanism is introduced for

both the source and target samples. The weighing mechanism uses the normalized

entropy and the domain similarity to down weigh the samples in the source and target

domains that do not belong to the shared label space. Since the class discriminative

information is learned only from the source domain the model is dominated by the

samples from the source domain, to balance the effect, Universal Domain Adaptation

adopts entropy minimization to deliver reliable predictions in both the source and

target domains.

16

Chapter 4

CERTAIN AND CONSISTENT DOMAIN ADAPTATION

4.1 Domain Adaptation with Semi Supervised Learning

In this chapter, I propose a novel deep domain adaptation algorithm that uses

adversarial training Ganin et al. (2016) to align the features of the source and target

domains. I hypothesize that when the source and the target domains are aligned,

domain adaptation is very similar to the idea of semi supervised learning. In the

paradigm of semi supervised learning, a small labeled dataset and a large unlabeled

dataset sampled from the same distribution is available. In domain adaptation, when

the domains are aligned, the labeled source domain and unlabeled target domain

can be compared to labeled and unlabeled data as encountered in semi supervised

learning.

Semi supervised learning (SSL) techniques leverage the unlabeled data in a trans-

ductive manner and use it for training while simultaneously learning from the labeled

data Chapelle et al. (2009). Deep learning based SSL approaches fall under two cate-

gories, Consistency Regularization and Entropy Minimization. The basic assumption

in consistency regularization is that a classifier is expected to output the same class

probability distribution even after it is augmented or deformed by slightly modifying

the pixel content in the input image. This is in line with the smoothness assump-

tion which constraints decision boundaries to vary smoothly. Entropy minimization

approaches force the decision boundaries to pass through low density regions in the

input space so that the model can effectively discriminate between the categories.

This is based on the cluster assumption which is complementary to the smoothness

17

assumption. Hence, in this chapter, I propose a novel approach that combines both

these assumptions when predicting the target labels.

I propose using an adversarial training Ganin et al. (2016) approach to align the

source and target domains. With the domains aligned, I take inspiration from the

Mean Teacher model Tarvainen and Valpola (2017) and propose a new approach

that uses a network pair - Rapid-Smooth - to perform consistency regularization.

Enforcing consistency regularization when the network parameters are nascent can

lead to negative transfer. To counter the negative transfer, I propose using a strategy

to select the samples that the model is ‘certain’ about. The ’Certainty’ is estimated

by measuring the variance in predictions across stochastic perturbations of the input

data Li et al. (2019). Additionally, I enforce a consistency loss on these ‘certain’

samples along with entropy minimization. Finally, considering all the objectives, the

approach is termed as Certain and Consistent Domain Adaptation (CCDA).

The contributions in this work are two fold. (1) align the features of the source and

target domains thereby reducing the domain adaptation problem to a semi supervised

learning (SSL) problem allowing us to avail a rich set of solutions from SSL literature.

(2) develop the CCDA model using principles of adversarial learning, entropy regular-

ization, consistency regularization, and prediction certainty. Finally, I evaluate the

CCDA model on popular benchmark datasets (Office-31 Saenko et al. (2010) and

Office-Home Venkateswara et al. (2017b)) and demonstrate that the CCDA outper-

forms competitive baselines from unsupervised domain adaptation literature.

4.1.1 Idea Motivation

To solve this problem I propose a Certain and Consistent Domain Adaptation

(CCDA) model - a deep neural network that is trained to predict labels for the target

by gradually improving their certainty and consistency over multiple iterations of

18

training. The CCDA takes source and target images as input and extracts image

features by ameliorating the domain discrepancy. The CCDA is a coupled network

system that is modeled after the Mean Teacher Tarvainen and Valpola (2017). I

slightly tweaked the terminology and renamed them as Rapid-Smooth networks to

denote their training strategies. The Rapid-Smooth networks are used to identify the

data samples that have high certainty in their label predictions. These certain data

points are used to drive a consistency loss for training the coupled networks. Besides,

the source data is used to train the CCDA with a cross-entropy loss and the target

data is used to determine the unsupervised entropy loss.

The Rapid network has parameters {θf , θy} and the Smooth network has parame-

ters {θ̄f , θ̄y}, where θf and θ̄f are the parameters of the feature extractor and θy and

θ̄y are the classifier parameters. The CCDA model has a discriminator network with

parameters θd. The CCDA model is trained using mini-batches of source and target

data where each mini-batch consists of source samples Xs = {xsi}Bi=1 and correspond-

ing labels Ys = {ysi }Bi=1 and target samples Xt = {xti}Bi=1. The mini-batch size is 2B

and the number of mini-batches goes from τ = 0 to T . In the following sections, the

chapter outlines the different components of the CCDA and discuss them in greater

detail. The CCDA model is depicted in Figure 4.1.

4.1.2 Domain Alignment

In order to transfer the knowledge from the source domain to the target domain,

one needs to overcome the domain discrepancy between the source and target. I

introduce a domain discriminator network Gd with parameters θd that will ensure

the feature extractors of the Rapid-Smooth networks output features that have very

little to no domain discrepancy between the source and target features. I follow the

adversarial approach proposed in DANN Ganin et al. (2016), to train the CCDA to

19

Figure 4.1: The Certain and Consistent Domain Adaptation (CCDA)
model. The coupled Rapid-Smooth networks have identical architecture
based on ResNet-50. The Rapid network is trained using loss terms
LD (discriminator), LE (entropy), LCE (cross-entropy) and LCR (consistency). The
parameters of Smooth are an exponential moving average (EMA) of Rapid. Random
augmentations of the input η(X) are used to identify input samples with ‘Certain’ pre-
dictions using predictive variance. The indices of these samples are used to estimate
consistency loss (source+target) and entropy loss (target only).

20

align the feature domains. The data is assigned domain labels where d = 1 indicates

the sample belongs to the source and d = 0 is for the target sample. The discriminator

network Gd is trained to distinguish between the source and target features output

from the feature extractor (Gf) of the Rapid network using the domain label for

supervision. The discriminator’s objective function is,

LD(θd, θf) = − 1

ns + nt

∑
x∈{Xs∪Xt}

dlog[Gd(Gf (x))]+(1−d)(1− log[Gd(Gf (x))]), (4.1)

where Gd(Gf (x)), is the output of a sigmoid activation denoting the probability that

x belongs to the source. The parameters of Gd are trained using backpropagation by

minimizing the objective LD which enables the discriminator to distinguish between

source and target features. The Gradient Reversal Layer (GRL) reverses the gradient

−∂LD
∂θf

when modifying the parameters of the feature extractor Gf (see Figure 4.1).

This form of adversarial training ensures the source and target features output from

the feature extractor are indistinguishable to the discriminator thereby assuring do-

main alignment.

4.1.3 Certainty and Consistency

When the distributions of the feature vectors from the source and target are

aligned the data can be viewed as coming from a single distribution. The source data

can be considered as the labeled set and the target data as the unlabeled dataset and

semi supervised learning approaches are applicable in this setting. To further improve

the perdictions on the target samples, I incorporate the unlabeled target data into

the training process by estimating their pseudo-labels. In the absence of supervision,

self ensembling approaches have led the way in skillfully utilizing unlabeled data to

evaluate robust labels for the target with transductive training Laine and Aila (2016);

21

Tarvainen and Valpola (2017). The core idea in these approaches is smoother esti-

mates and consistent predictions across an ensemble induced by multiple random per-

turbations. I model a coupled network pair along the lines of Tarvainen and Valpola

(2017), and induce random perturbations to estimate certain and consistent predic-

tions for the target data. In the following sections, I will discuss the Rapid-Smooth

coupled network followed by the predictive variance procedure to identify data points

with certain and consistent predictions. I then introduce a consistency loss over the

coupled-network predictions of these data points.

4.1.4 Rapid-Smooth Coupled Network:

The Rapid-Smooth network pair is illustrated in Figure 4.1. The model has two

parallel networks, Rapid and Smooth, similar to the Student and Teacher networks

in Tarvainen and Valpola (2017). The networks are so named based on their training

strategies. The Rapid network updates its weights (θf , θy) across every mini-batch of

source and target data. This leads to a noisy weight update when the target labels are

incorrect. On the other hand, the Smooth network only updates its weights (θ̄f , θ̄y)

using an exponential moving average (EMA) of the Rapid network weights. This

results in a relatively smoother weight update which yields significantly better results

Tarvainen and Valpola (2017). If τ denotes the mini-batch index, then the weights of

the Smooth network are updated using,

θ̄f,τ = αθ̄f,τ−1 + (1− α)θf,τ , and (4.2)

θ̄y,τ = αθ̄y,τ−1 + (1− α)θy,τ , (4.3)

where, α is the momentum hyper parameter for the EMA and the Rapid and Smooth

networks are initialized with the same values, i.e., θ̄f,τ=0 := θf,τ=0 and θ̄y,τ=0 := θy,τ=0.

In our bid to deploy the target data for training, the Rapid network could be

22

misguided with incorrect target labels leading to a confirmation bias - a hazard caused

by over-reliance on the incorrect target predictions. To mitigate this effect I propose

a Certain and Consistent loss where I only penalize the inconsistency in prediction

over only those samples on which the model is certain. In the following I will outline

a procedure to identify the data samples that the Smooth network is certain about.

4.1.5 Measure of Certainty:

Usually, ensemble methods consider the outputs of the Smooth (Teacher) network

to be sufficiently accurate and apply them to penalize the Rapid (Student) network

for inconsistencies in their outputs when compared to the Smooth network French

et al. (2017); Laine and Aila (2016); Tarvainen and Valpola (2017). At the begin-

ning of the training procedure, when the network parameters are still close to their

random initialization points, there is a chance that the Smooth network is not com-

pletely certain about its predictions. In view of that, I introduced an uncertainty

measure to identify the samples the Smooth network is certain about. I propose

using predictive variance as a metric to estimate the uncertainty and distinguish

between the certain and uncertain samples in the mini-batch Li et al. (2019). Cer-

tainty is the ability of the network to output similar predictions for a data point

x under stochastic data augmentations. I used T different stochastic augmenta-

tions of a data point x denoted by {ηt(x)}Tt=1 during a forward pass through the

Smooth network. The T augmentations for each image are chosen from random flips,

crops, rotation, Gaussian noise addition, and occlusion by removing an image patch.

The output of the network for each augmentation t is a softmax probability vec-

tor Ḡf (Ḡy(x)) = [p(y = 1|ηt(x), θ̄f , θ̄y), . . . , p(y = C|ηt(x), θ̄f , θ̄y)]
>. The goal is to

identify samples with consistent predictions across the T random augmentations. I

therefore gather the T predictions for the sample and estimate the uncertainty of

23

prediction using variance which is calculated as,

µc =
1

T

T∑
t=1

p(y = c|ηt(x), θ̄f , θ̄y), (4.4)

PV =
C∑
c=1

(1

T

T∑
t=1

(
p(y = c|ηt(x), θ̄f , θ̄y)− µc

)2)
. (4.5)

Here, PV stands for predictive variance. With PV as the criteria, I sort all the data

samples in the mini-batch (consisting of both the source and target data samples) in

ascending order. The data sample the Smooth network is most ‘certain’ about comes

first and the least certain data sample comes last in this sorted list. The output of

the predictive variance procedure is a set of indices I({Xs ∪ Xt}, PV, τ) identifying

the source (Xs) and target (Xt) samples that the Smooth network is certain about.

Here, I(X , PV, τ) is the set of indices chosen from dataset X based on the predictive

variance PV and mini-batch index τ . Rather than filtering the list with a threshold

certainty value, I used a sigmoid ramp-up strategy based on the mini-batch number

τ to incrementally identify the samples as ’certain’ from the sorted list. These indices

are used to determine the Consistency regularization and the Entropy loss which is

outlined in the following.

4.1.6 Consistency Regularization:

Consistency regularization is very crucial to leverage the unlabeled target data. It

is applied to ensure the Rapid classifier outputs similar probability distribution com-

pared to the Smooth classifier under different transformations. This is implemented

by penalizing the Rapid network with a consistency regularization term for devia-

tions in the predictions compared to the Smooth network. In order to avoid the rapid

network trying to be consistent with smooth network’s uncertain predictions at the

beginning of training, I apply the consistency loss across the predictions of only those

24

samples the Smooth network is certain about. The certain samples indices are given

by Iτ = I({Xs ∪ Xt}, PV, τ). More formally, the consistency regularization term is

expressed as,

LCR(θf , θy) =
1

|Iτ |
∑
i∈Iτ

∣∣∣∣Gy(Gf (η(xi)))− Ḡy(Ḡf (η(xi)))
∣∣∣∣2
2
, (4.6)

where η(x) is a random perturbation of the input image.

4.1.7 Entropy Regularization

Existing literature demonstrates that a model trained using only source data tends

to be highly confident on the source like samples and less confident on target like sam-

ples Vu et al. (2019). Besides, when the model has not explored the target data space

there is a high probability that the decision boundary of the model passes through high

density regions of the target space which implies target data classification is incor-

rect. In order to ensure a low-density separation between target classes and to utilize

the target data for training, I include an additional loss term entropy minimization

Grandvalet and Bengio (2005); Long et al. (2016); Shu et al. (2018). For a given im-

age x, the softmax output of the Rapid network is Gf (Gy(x)) = [f1(x), . . . , fC(x)]>,

where fj(x) = p(y = j|x, θf , θy) - the probability that image x belongs to class j.

The output Gf (Gy(x)) is a probability vector whose components sum to 1. When the

network has high confidence in prediction the output is similar to a one-hot vector

where all the components of the probability vector are zeros except for one compo-

nent. Such a prediction has zero (low) entropy. When the network predicts that the

input image x belongs to all classes with equal probability, such a prediction has the

highest entropy - the network is not confident about the label. By minimizing entropy

the model i.e., Rapid network is forced to have confident predictions over the target

data. In the early stages of training, the model usually has random predictions on a

25

target sample. Rather than forcing the model to be confident in random predictions,

we identify the target samples the network is certain about using our certainty mea-

sures outlined earlier. Let It,τ = I(Xt, PV, τ) be the indices of the target samples for

which the Smooth network has high certainty predictions for mini-batch index τ . The

entropy regularization loss is then given by,

LE(θf , θy) = − 1

|It,τ |
∑
i∈It,τ

C∑
j=1

fj(xi)logfj(xi). (4.7)

4.1.8 Cross Entropy Loss

Cross entropy is the standard supervised classification loss for multi-class clas-

sification. Rapid network uses the source data in the mini-batch to minimize the

cross-entropy loss over the known labels. If the source images and their correspond-

ing labels in a mini-batch are represented as {Xs,Ys}, the cross entropy loss is given

by,

LCE(θf , θy) = − 1

|Xs|
∑

x∈Xs,y∈Ys

C∑
j=1

1{y = j}logfj(x), (4.8)

where, 1{cond} is an indicator function which is true if the cond is true.

4.1.9 CCDA Objective Functions

The Rapid network is trained with an objective function that brings together

multiple loss terms. The overall objective function brings together the discriminator

loss Equation (6.2), the consistency regularization Equation (4.6), the entropy loss

Equation (6.8) and the cross-entropy loss Equation (6.1). The parameters of the

Rapid network are modified using,

{θ∗f , θ∗y} = argmin
θf ,θy

[
LCE + γLCR + βLE − λLD

]
and (4.9)

{θ∗d} = argmin
θd

[
λLD

]
, (4.10)

26

where, γ, β and λ are hyper parameters that control the importance of individual loss

terms. While Equations (4.9) and (4.10) update the parameters of the Rapid network

and the adversarial discriminator, the parameters of the Smooth network are updated

using the exponential moving average (EMA) as outlined in Equations (4.2), (4.3).

4.2 Experiments & Analysis

The performance of the model is evaluated on two benchmark datasets and com-

pared the results with other competitive domain adaptation algorithms.

4.2.1 Experimented Datasets

Office-31 Saenko et al. (2010) is the common benchmark dataset used to evaluate

domain adaptation algorithms. The dataset consists of about 4650 images from 31

categories of everyday objects. It has 3 domains: Amazon(A), DSLR(D) and We-

bcam(W). The Amazon domain has 2817 images whereas Webcam and DSLR have

only 795 and 498 images respectively. I evaluated the model performance on the 6

transfer tasks A →W, D →W, W → D, A → D, D → A and W → A across all

the domains. Here A →W implies, A is the source and W is the target.

Office-Home Venkateswara et al. (2017b) is a more challenging dataset with more

than 15,500 images from 65 categories belonging to the following four domains: Art

(Ar), Clipart (Cl), Product (Pr) and Real-World (Rw). The image categories are

everyday objects from office and home settings. Similar to the Office-31 experiments,

the model performance is evaluated on all the 12 transfer tasks Ar → Cl, Ar → Pr,

Ar → Rw, Cl → Ar, Cl → Pr, Cl → Rw, Pr → Ar, Pr → Cl, Pr → Rw, Rw

→ Ar, Rw → Cl and Rw → Pr across all the domains.

27

4.2.2 Implementation Details

The pre-trained Resnet-50 He et al. (2016) model from PyTorch Paszke et al.

(2017) is the base neural network i.e., the feature extractor. I removed the original

classifier and added a bottleneck layer of 256 dimensions after the global average

pooling layer. Similar to Long et al. (2017a), a classifier and a domain discriminator

(dimensions 1024-1024-1) are defined after the bottleneck layer. As the classifier

and discriminator are trained from scratch we use 10 times the learning rate that

is used to fine-tune the feature extractor. We use the same learning rate strategy

implemented in Ganin et al. (2016): with ηp = η0
(1+αp)γ

, where p is the training progress

varying between [0, 1], while η0, α and γ are optimized with importance-weighted

cross-validation Sugiyama et al. (2007). The hyperparameters are set as the default

values provided from Ganin et al. (2016) without further fine tuning. To update

the weights, mini-batch stochastic gradient descent with Nesterov as the optimizer

is used. Similar to Long et al. (2017a), a weight decay of 5e − 4 with a momentum

= 0.9 in the optimizer is used. For the Rapid-Smooth network, momentum α for

EMA = 0.999 Tarvainen and Valpola (2017). Also, I followed a sigmoid ramp-up

strategy from Tarvainen and Valpola (2017) to filter the samples on which the model

is confidently certain about.

4.2.3 Results

The results of Certain and Consistent Domain Adaptation model on Office-31

and Office-Home are shown in Table 4.1 and Table 4.2 respectively. All the reported

scores are the classification accuracies for different tasks. I only note the baselines

that are relevant to my work and also report their results for comparison. For a

fair comparison, the accuracies for baselines are directly reported from their original

28

papers. In addition to comparing with competitive baselines, I also compare the full

model (CCDA)’s performance with CCDA-without-predictive-variance (CCDA w/o

PV) and CCDA-without-entropy-and-predictive-variance (CCDA w/o (Ent+PV)).

As reported in Table 4.1, the model outperforms other methods in most of the tasks.

The average performance of the model across all the tasks is also better than the

other approaches. Particularly, in tasks like A → D and D → W, my model has

the highest accuracy. Experiments D → A and W → A have low accuracies across

all methods. This can be attributed to the data imbalance between the source and

target datasets.

Office-Home is a more difficult challenge with more number of domains and cat-

egories. From Table 4.2, it can be seen that the proposed method outperforms the

baselines with a significant margin. Particularly in the transfer tasks Cl → Pr and

Pr → Ar, the improvement is around 10%. In the following transfer learning tasks

Ar → Pr, Cl → Rw, Rw → Ar and Rw → Pr, the CCDA improves over the

best-reported method by a margin of 6%.

Table 4.1: Accuracy of CCDA on Office-31 (ResNet-50)

Method A → W D → W W → D A → D D → A W → A Avg

ResNet He et al. (2016) 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DAN Long et al. (2015) 80.5 97.1 99.6 78.6 63.6 62.8 80.4

RTN Long et al. (2016) 84.5 96.8 99.4 77.5 66.2 64.8 81.6

DANN Ganin et al. (2016) 82 96.9 99.1 79.7 68.2 67.4 82.2

ADDA Tzeng et al. (2017) 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN Long et al. (2017b) 85.4 97.4 99.8 84.7 68.6 70.0 84.3

MADA Pei et al. (2018) 90 97.4 99.6 87.8 70.3 66.4 85.2

CCDA(w/o (Ent+PV)) 83.6 97.4 99.6 80.8 68.1 67.6 82.8

CCDA(w/o PV) 88.1 98.9 99.3 88.1 66.8 66.5 84.6

CCDA 89.5 98.9 99.7 91.4 66.7 66.4 85.4

29

Table 4.2: Accuracy of CCDA on Office-Home (ResNet-50)

Method Ar)Cl Ar)Pr Ar)Rw Cl)Ar Cl)Pr Cl)Rw Pr)Ar Pr)Cl Pr)Rw Rw)Ar Rw)Cl Rw)Pr Avg

ResNet He et al. (2016) 34.9 50 58 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN Long et al. (2015) 43.6 57 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN Ganin et al. (2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.5 76.8 57.60

JAN Long et al. (2017b) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.31

CCDA(w/o (Ent+PV)) 46.3 61.2 70.8 48.3 59.6 60.4 47.2 43.1 68.8 64.7 53.6 77.6 58.5

CCDA(w/o PV) 47.1 67.2 74.1 54.6 68.9 66.9 53.1 49.1 73.6 68.1 57.8 80.6 63.4

CCDA 48.2 67.1 74.6 55.6 71.4 69.3 54.5 48.3 76.5 68.7 58.8 82.5 64.6

4.2.4 Ablation Studies

In the CCDA, the parameters of the Smooth network are an exponential moving

average (EMA) of the weights of the Rapid network. I further conducted a study

to evaluate the advantage of an EMA weight update. I trained the Rapid-Smooth

network without the consistency loss LCR and without the entropy regularization LE,

i.e., the Smooth network is merely an EMA version of the Rapid while the Rapid is

trained with cross-entropy LCE and domain discrimination LD. These results are

depicted in the row CCDA(w/o (Ent+PV)). Note that without the consistency and

entropy regularization, the Rapid network is similar to the DANN. From both the

tables one can observe that the Smooth network performs consistently better than the

DANN leading us to conclude that an ensemble update of the parameters of a network

using EMA is a better update than a regular update. I also want to highlight the

fact that the Rapid-Smooth model does not incur any significant computation cost

as the Smooth network is only an exponential moving average of the Rapid network.

In Section 4.1.7, I discussed that a classifier trained only on source data is likely to

misclassify target data as there is a high probability that the decision boundaries cut

30

through high density regions of the target distribution. To validate this hypothesis

I conducted another set of experiments by introducing a penalty over the target

classification using entropy regularization. We expect a low entropy penalty on the

target samples to improve the confidence of the model on target predictions and

force the decision boundaries to pass through low density regions in the target space.

The results obtained by including entropy are in row CCDA(w/o PV). The effect of

entropy regularization significantly boosts the accuracies as seen in both Table4.1 and

Table4.2.

The results of introducing consistency regularization LCR, entropy regularization

LE along with predictive variance (PV) gives us the entire CCDA. The Smooth net-

work can be uncertain on the target predictions at the early stages of training. The

LCR with Certainty ensures that the Rapid network is updated using samples the

Smooth network is ‘certain’ about. The effect of selectively penalizing consistency

between the Rapid and the Smooth network pays rich dividends as seen in the CCDA

row of the tables. I further evaluated the effect of penalizing only certain samples

by comparing the CCDA model to CCDA-without-Certainty (CCDA w/o Certainty),

where I penalize all the samples for consistency. I also compared the test accuracies

of A → D transfer learning task from Office-31 dataset in Figure 4.3. Finally, I ob-

served that the performance of the model with Certainty measure is always smooth

and largely monotonic, whereas the performance of (CCDA w/o Certainty) model is

noisy and converges rapidly with relatively lower accuracy.

4.2.5 Feature Visualization

I visualized the feature space of A → D transfer learning task from the Office-31

dataset. The t-SNE Embeddings are used to visualize the features taken from the

output of the feature extractor. In Figure 4.2, I show the cluster formations of both

31

(a) CCDA w/o (Ent+PV) (b) CCDA

Figure 4.2: The t-SNE visualizations of CCDA w/o (Ent+PV) and CCDA features
for A → D from Office-31 with different classes labeled in different colors.

Figure 4.3: Classification accuracies on A → D comparing CCDA and CCDA w/o
Certainty vs training iterations.

the source and target domain with (CCDA w/o (Ent+PV)) and the final CCDA

model. As expected, the CCDA model forms compact well-defined clusters compared

to the baseline. Also, observe that the clusters in CCDA are wide spread with samples

of the same class held together and samples of other categories spread farther apart.

32

4.3 Conclusions

In this chapter, I discussed the Certain and Consistent Domain Adaptation model.

The core of the model is based on reducing the domain adaptation problem to a

semi supervised learning problem through adversarial domain alignment. I introduce

consistency regularization and entropy regularization with a Certainty measure to

transductively estimate the target labels. Furthermore, I empirically showed that

my model produced competitive results and outperforms state-of-the-art results in

a number of transfer learning tasks across benchmark datasets. I also note that in

some transfer learning tasks, due to domain imbalance (number of source samples

� number of target samples), the model performs poorly. Finally, I believe that by

re-weighting instances can improve the performance in the imbalanced tasks and I

leave it for future work.

33

Chapter 5

MULTI ADVERSARIAL GENERALIZED DOMAIN ADAPTATION

5.0.1 Introduction

In the earlier chapter, a semi-supervised learning based approach for Unsuper-

vised Domain Adaptation was discussed in detail. However, the problem by itself is

biased and impractical because of the underlying assumption. The assumption states

that both the source and target domains are similar in their same label space. To

present the problem realistically, the assumption on the label spaces behind Unsu-

pervised Domain Adaptation is relaxed and variants such as Partial Domain Adap-

tation(PDA) and Open-set Domain Adaptation(open-set DA) are proposed. The

occurrences where the target label space is a subset of the source label space is re-

ferred to as Partial Domain Adaptation Cao et al. (2018b); Zhang et al. (2018); Cao

et al. (2019). Similarly, Busto et al.Panareda Busto and Gall (2017) introduced Open-

set Domain Adaptation, a scenario where the source label space is a subset of the

target label space. Though PDA and Open-DA settings are more realistic than UDA,

one still needs to have prior knowledge of the label spaces of the source and target

domains. Hence, in this chapter, I outline a new problem setting, namely Generalized

Domain Adaptation(GDA). Generalized Domain Adaptation does not require us to

have prior knowledge on the label spaces of source and target domains. GDA also

enables one to perform adaptation between any datasets without any constraint on

the label space.

In this chapter, I propose a Multi-Adversarial Generalized Domain Adaptation(MAGDA).

The proposed model simultaneously aligns the features of the source and target do-

34

mains and also separates the features of the known classes from unknown classes.

Finally, a classifier is trained to learn categorical discriminative features that gen-

eralize to both the source and target domains. In the following sections, I describe

the architecture design and the objective of the model in more detail. Subsequently,

I show some experimental results of the model on the office-31 dataset and finally

conclude the chapter with comments and future directions.

5.0.2 Overview

As shown in the figure 5.1, the model consists of a feature extractor F with param-

eters θf , an adversarial domain discriminator D with parameters θd, an adversarial

known-unknown discriminator U with parameters θu and a classifier G with param-

eters θg. The model takes in samples from both the source and target domains and

extracts features from the feature extractor F . Let xi be an input sample that is

fed into the feature extractor F and F (x) be its corresponding feature vector. The

feature vector is then fed to the classifier that classifies the input into one of the

source categories. A thresholding strategy is applied to the model predictions confi-

dences to reject the out-of-distribution samples. Also, the same feature vector F (x)

is fed to the adversarial domain discriminator and the known-unknown discriminator.

The domain discriminator aligns the features of the source and target domains in the

shared label space while the known-unknown discriminator separates the features of

the known class from the unknown class. In the following subsections, I will introduce

the different components in the proposed model and discuss them in great detail.

35

Figure 5.1: Illustration of the Multi Adversarial Generalized Domain Adaptation
model. The Base CNN Network is the shared feature extractor that takes in both
the source and target images. LL is the cross-entropy loss of the source samples. LE
is the entropy loss minimized over the target logits. LD is the Adversarial Domain
Discriminator that aligns the source and target features in the shared label space.
Finally, LU is the discriminator to separate the features of the known and unknown
classes. The model is trained end-to-end with all the losses. The indices of the
samples are used to distinguish between the samples of the seen and unseen classes
which are necessary for both the discriminators

5.0.3 Label Classifier

In the proposed architecture, the label classifier G with parameters θg is no more a

fully connected layer. Instead, the classifier is a network with multiple binary logistic

classifiers equal to the number of categories in the source domain i.e. a binary logistic

classifier for each class in the source domain. Hence, the number of such classifiers

would be |Cs|. Given an input, the output of the feature extractor F (x) is fed to all

36

the binary logistic classifiers. The loss LL is the sum over Cs logistic outputs that

are all the known categories from the source. These are named as the source logits.

Each of these logistic units feeding into LL is a ’One vs Rest’ binary classifier for the

source data points.

LL(θf , θg) = − 1

|Xs|
∑

x∈Xs,y∈Ys

Cs∑
c=1

yclog(ỹc) + (1− yc)log(1− ỹc) (5.1)

where yc ∈ {0, 1} is the value in one-hot label encoding for that class. ỹc =

G(F (x)) is the prediction of the cth logistic classifier. Cs is the total number of source

categories and |Xs| is the total number of samples in the source domain. On the

estimated probabilities of all the binary logistic classifiers, a thresholding strategy

is performed on all the output predictions. If a sample surpasses the threshold in

at least one of the classes, then it is considered to be a sample of the known class.

However, if the values of the prediction are lower than the threshold τ in all the

binary logistic classifiers then it is considered to be a sample from an ’unknown’ class

and hence rejected. The following equation [5.2] formulates the label classifier more

formally:

Ik(x
t
i) =


1, if

∑Cs
c=1 I{pc(ŷ|xti) > τ} > 1 ∀i ∈ {1, . . . , nt},

0, otherwise

(5.2)

where ŷ = G(F (x) i.e. ŷ is the output prediction from a binary logistic classifier.

τ is the threshold set to choose if a given sample has to be retained or rejected. Ik(x
t
i)

is the index with values {0, 1} and denotes if the sample is retained or rejected. 1

denotes retained and 0 denotes otherwise.

37

5.0.4 Domain Alignment

To transfer the knowledge from the source domain to the target domain the do-

main gap between the source and target domain has to be nullified. I follow the

same approach as described in DANN Ganin et al. (2016) by introducing a domain

discriminator. The domain discriminator D with parameters θd ensures the features

of the source and the target domain are properly aligned. The features F (x) from the

feature extractor is fed into the domain discriminator and trained using the domain

labels. Thus, a domain label d = 0 indicates the samples from the target domain and

d = 1 for the source domain. Using the features and the domain labels the domain

discriminator D is trained to differentiate the features of the source and the target

domain. Thus, the discriminator objective is:

LD(θd, θf) = − 1

ns + nt

∑
x∈{Xs∪Xt}

dlog[D(F (x))] + (1− d)(1− log[D(F (x))]), (5.3)

where d is the domain label and D(F (x)) is the sigmoid output of the domain

discriminator. The discriminator is trained to minimize the loss LD enabling it to

differentiate between the source and the target features. Following the approach of

DANN, we incorporate a parameterless Gradient Reversal Layer(GRL) between the

feature extractor and the domain discriminator. The GRL does not affect the features

in the forward pass but reverses the gradient −∂LD
∂θf

from the discriminator into the

feature extractor. The intuition is that, while the gradients from the discriminator

are useful to distinguish the source and the target domain, a parameter update with

the negative gradient forces the features to be indistinguishable by the discriminator

implying domain invariant.

38

5.0.5 Known-Unknown Feature Separator

Similar to the domain discriminator, I propose using another discriminator to

distinguish between the features of the known and unknown class. Given the extracted

features F (x) from the feature extractor F, the Known-Unknown discriminator U

ensures the features of Known classes are well separated from the features of the

Unknown class. The discriminator acts as a binary classifier and trained to distinguish

between the known and unknown class features using their domain labels. Therefore,

the extracted features F(x) from F are passed to the label classifier and samples are

indexed as a known class or an unknown class. Let It,b = I(f(Xt), τ, b) be the indices

of the target samples for which the network has confident predictions greater than α

for mini-batch index b. The Known-Unknown discriminator takes the features F(x)

as input and the Known-Unknown indexes from equation 5.2 as labels and learns to

differentiate between the features of known and unknown classes.

LU(θu, θf) = − 1

ns + nt

∑
x∈{Xs∪Xt}

dlog[D(F (x))] + (1− d)(1− log[D(F (x))]), (5.4)

where d ∈ {0, 1} corresponds to a sample belonging to a seen class or unseen

class. The labels d is generated from the equation 5.2. The discriminator is trained

to minimize the loss LU enabling it to differentiate between the source and the target

features. However, unlike the domain discriminator, the known-unknown discrimina-

tor has no Gradient Reversal Layer. Hence, the feature extractor learns to produces

the feature that are easily separable.

5.0.6 Entropy Minimization

Existing literature demonstrates that a model trained using only source data tends

to be highly confident on the source like samples and less confident on target like

samples Vu et al. (2019). Besides, when the model is unaware of the target data space

39

there is a high probability that the decision boundary of the model passes through

a high-density region of the target space. Hence, it implies the target data samples

are either misclassified or classified correctly with very low confidence. In order to

ensure a low-density separation between target classes and to utilize the target data

for training, I deploy entropy minimization Grandvalet and Bengio (2005); Long et al.

(2016); Shu et al. (2018). For a given image x, the softmax output of the network

is G(F (x)) = [f1(x), . . . , fC(x)]>, where fj(x) = p(y = j|x, θf , θg) - the probability

that image x belongs to class j. The softmax output G(F (x)) is a probability vector

whose components sum to 1. When the network has high confidence in its prediction,

the output is similar to a one-hot vector where all the components of the probability

vector are zeros except for one component. Such a prediction has zero entropy. When

the network predicts the input image x with equal probability for all the classes it is

trained with, such a prediction has the highest entropy - the network is not confident

about the label. By minimizing entropy the model is forced to be confident over

its predictions on a given target data sample x. In the early stages of training, the

pseudo labels generated by the model are not as expected. And forcing the model to

be confident on these uncertain pseudo labels can hurt the performance of the model.

Hence, to alleviate this effect I use a ramp function to adjust the weight assigned to

the entropy loss in the overall objective. The ramp function initially assigns a lower

weight but gradually increases the weight assigned to the entropy loss. Also, this is

in line with the intuition, as the model training progresses the pseudo labels are more

accurate and forcing the model to be confident on these labels would only improve

the performance.

The entropy regularization loss is then given by,

LE(θf , θg) = − 1

|Xt|
∑
x∈Xt

C∑
j=1

fj(xi)logfj(xi). (5.5)

40

5.0.7 Final Objective

The network is trained with a unique objective function that brings together all

loss terms discussed in the above sections. The overall objective function brings

together the discriminator loss Equation (6.2) which aligns the source and target

domains, the known-unknown discriminator loss Equation (5.4), the Entropy mini-

mization loss Equation (6.8) and the logistic loss Equation from the multiple binary

classifiers (5.1). The parameters of the network are modified using,

{θ∗f , θ∗y} = argmin
θf ,θy

[
LL + γLU + βLE − λLD

]
and

{θ∗d} = argmin
θd

[
λLD

]
,

{θ∗u} = argmin
θu

[
λLU

]
,

(5.6)

where, γ, β and λ are hyper parameters that controls the weight assigned to each loss

term.

During inference, the outputs of the multiple binary logistic classifiers are com-

pared with the threshold τ as described in 5.2. If a sample exceeds the threshold in

at least one of the binary classifiers then the sample is retained else it is rejected. In

the end, only the samples retained are classified into one of the source categories and

the rejected samples are labeled as unknowns.

5.1 Implementation Details

I use the pre-trained Resnet-50 He et al. (2016) model from PyTorch Paszke et al.

(2017) package as the base neural network. I further removed the classifier from

the network and added a bottleneck layer of 256 dimensions after the global aver-

age pooling layer. Similar to the approaches in Long et al. (2017a); Wang et al.

(2019a); Cao et al. (2019, 2018b), I defined a domain discriminator after the bottle-

41

neck layer. Unlike other approaches, I incorporated multiple binary logistic classifiers

instead of a fully connected layer for the classification. The number of binary clas-

sifiers defined would depend on the number of categories in the source domain and

the domain discriminator is of dimensions 1024-1024-1. In addition, I also add a

Known-Unknown discriminator with dimensions the same as domain discriminator.

The Known-Unknown discriminator is also defined after the bottle-neck layer and

in parallel to classifier and Domain discriminator. As the classifier and the discrim-

inators are trained from scratch I used a learning rate that is 10 times of what is

used to fine-tune the feature extractor. I use the same learning rate strategy imple-

mented in Ganin et al. (2016): with ηp = η0
(1+αp)γ

, where p is the training progress

varying between [0, 1], while η0, α and γ are optimized with importance-weighted

cross-validation Sugiyama et al. (2007). I also set the default values provided from

Ganin et al. (2016) without further fine tuning. To update the weights of the full net-

work, I used mini-batch stochastic gradient descent with Nesterov as the optimizer.

Similar to Long et al. (2017a); Wang et al. (2019a), I added a weight decay of 5e− 4

with momentum = 0.9 in the optimizer. A threshold of τ = 0.9 is used in the binary

classifier to index a sample as known or unknown.

5.2 Experiments

The results of the proposed approach are shown in Table 5.1. The initial set of

experiments is mostly performed on the office-31 dataset particularly on the task A

→W. As it is preliminary work and the experiments are still in the early stage, The

results are not compared with the Universal Domain Adaptation work. However, the

baseline performances are reported to analyze the gain in the performance using the

proposed approach.

We use the Multi Adversarial Generalized Domain Adaptation approach to esti-

42

Table 5.1: Accuracy of MAGDA on Office-31 using (ResNet-50). The experiments
include using both the discriminators. The experiments listed are the performance on
A→W with a commonness=0.5 between the source and target domain as discussed
in equation 5.6.

Method Accuracy closed-label acc. rejection acc.

w/o k-unk discriminator (iter 1000) 82.5 81.3 83.7

w/o k-unk discriminator (iter 5000) 71.3 73.1 69.6

GDA with pseudo labels (iter 1000) 83.5 - -

GDA with pseudo labels (iter 5000) 81.23 - -

GDA with correct labels (iter 1000) 86.17 - -

GDA with correct labels (iter 5000) 83.3 - -

GDA w/o MSE (iter 1000) 85.1 84.9 85.3

GDA w/o MSE (iter 5000) 80.1 86.9 73.3

GDA & MSE (iter 1000) 87.6 86.3 88.9

GDA & MSE (iter 5000) 81.1 89.3 72.9

mate the performance on the target data.

From Table 5.1, one can interpret the performance of Multi Adversarial General-

ized Domain Adaptation. For each method, the performances are compared at two

different stages during training. I observed a common trend in all these approaches.

As the training progresses, the number of samples that are correctly classified from the

shared label space increases. On the other hand, the number of out-of-distribution

samples or outliers that are classified as one of the source categories is increasing.

Furthermore, the experiments show that the out-of-distribution samples are classified

into the source of private classes instead of rejecting them. Thus, with the exper-

iments, I conclude that with a strong weighting mechanism that down weighs the

source private classes can certainly help in improving the performance. Regarding

rejecting out-of-distribution samples there was no particular trend observed in the

43

predictions.

5.3 Conclusions

In this chapter, the aim was to propose a practical and challenging domain adap-

tation scenario called Generalized Domain Adaptation. I further outlined the funda-

mental challenges in the proposed framework and presented a novel approach Multi-

Adversarial Generalized Domain Adaptation. The proposed method was not highly

successful in rejecting the outliers, however, it provides an early direction of research

towards the Generalized Domain Adaptation. I will further discuss the directions for

future research. The features of images from known classes and unknown classes are

not well separated due to the absence of priors in the target domain. Hence, using the

pseudo labels effectively can act as a proxy for the absent priors. Finally, the private

classes of the source domain are hurting the performance of the model in rejecting

outliers. Hence, the knowledge of the pseudo labels with an ideal weighing function

must be included to assign a higher weight to the classes in the shared label space and

also down weigh the classes that are private to the source domain. An architectural

design choice or effective use of pseudo labels of the target samples can play a key

role in Generalized Domain Adaptation.

44

Chapter 6

GENERALIZED DOMAIN ADAPTATION WITH GATED SMOOTHING

6.0.1 Introduction

The previous chapters discuss the major constraint behind Unsupervised Domain

Adaptation and also outlines the ideas of Partial Domain Adaptation and Open-

set Domain Adaptation, variants that are more realistic than UDA. I also discussed

the idea of Generalized Domain Adaptation and proposed a model Multi-Adversarial

Generalized Domain Adaptation in the previous chapter. However, rejecting out-

liers a.k.a out-of-distribution sample is a fundamental aspect in Generalized Domain

Adaptation. Aligning the features in the shared label space to avoid negative transfer

requires one to know the priors on the source and target domains. But it is forbidden

in the case of GDA. In other words, aligning the features requires one to reject the

outliers so that the model is forced to align with only the in-distribution samples.

Similarly, weighing the source classes with the pseudo labels of the target samples

and using only the samples of higher weight source classes will enable us to align the

domains in the shared space.

Hence, in this chapter, I proposed a novel approach that smooths out the predicted

output probability of the classifier on outliers in a probabilistic manner. Hence, a

simple thresholding based rejection strategy is sufficient to reject the outliers. The

proposed approach is named as Generalized Domain Adaptation with Gated Smooth-

ing(GAMDA) to be consistent with the idea. The proposed model aligns the features

of the source and target domains only in their shared label space to avoid any negative

transfer from the source domain to the target domain. The proposed work introduces

45

Figure 6.1: Illustration of the Generalized Domain Adaptation model with Gated
Smoothing. The Base CNN Network is the feature extractor that takes in both the
source and the target images. CE is the cross-entropy loss of the source samples. E
is the entropy loss minimized over the target logits. D is the Adversarial Domain
Discriminator loss that aligns the source and target features in the common label
space. The black box before the feature extractor takes in the clean images and
generates adversarial images. Both the clean and adversarial images are used to
train gating module. Depending upon the p(seen) or p(unseen) the predictions are
smoothed. The model is trained end-to-end with the final objective function.

a gated module to smoothen the predictions on outliers. Finally, a classifier is trained

to learn categorical discriminative features that generalize to both the source and

target domains and simultaneously reject the outliers. In the following subsections,

I describe the architecture design and the objective of the approach in more detail.

Subsequently, I show experimental results of the proposed model on the office-31

dataset and finally conclude the chapter with comments and future directions.

6.0.2 Overview

As shown in figure 6.1, the model consists of a feature extractor, domain dis-

criminator, gating module and a label classifier. Let F be the feature extractor with

parameters θf ., an adversarial domain discriminator D with parameters θd, a gating

46

module U with parameters θu and a classifier G with parameters θg. The model

initially takes in the samples from both the source and target domains as input and

extracts features from the shared feature extractor F . Let xi be an input sample

that is fed into the feature extractor F and F (x) be its corresponding feature vec-

tor. The feature vector F (x) is fed to the domain discriminator to align the source

and target domains in their shared label space. Simultaneously, the label classifier

is also fed with the feature vector to output a probability distribution over all the

source categories for the given sample. Likewise, the gating module also takes in the

feature vector as input and estimates the probability of the sample from a seen class.

Using the gating module, the estimated probabilities are applied as a filter on the

output predictions of the label classifier. If the probability of seen is high, then the

probabilities of the classifier are more sharpened. Similarly, if the probability of the

unseen is high, then the outputs are smoothed. Additionally, a thresholding strategy

is applied to the normalized outputs to reject the out-of-distribution samples. Finally,

the pseudo labels of the target samples are utilized to reweigh all the source classes

to minimize the effect of private classes of source domain on the target samples.

6.0.3 Label Classifier

The label classifier G in Generalized Domain Adaptation with Gated Smoothing

with parameters θg is a linear fully connected layer with the number of outputs equal

to the number of categories in the source domain. The feature vector x from the

feature extractor is fed into the label classifier to produce a score corresponding to

each class for the given sample. I then apply a softmax activation to normalize the

output scores to a probability distribution that sums to 1.

The loss LL for the normalized outputs of the label classifier is the standard Cross

entropy loss used for multi-class classification. The label classifier uses the features of

47

source data in mini-batches to minimize the cross-entropy loss over the ground truth

labels from the source domain. If the source images and their corresponding labels

in a mini-batch are represented as {Xs,Ys}, the cross entropy loss is given by,

LCE(θf , θy) = − 1

|Xs|
∑

x∈Xs,y∈Ys

C∑
j=1

1{y = j}logfj(x), (6.1)

where, 1{cond} is an indicator function which is true if the cond is true.

6.0.4 Domain Alignment

To transfer the knowledge from the source domain to the target domain the do-

main gap between the source and target domains has to be nullified. I take the same

approach as described in DANN Ganin et al. (2016) by introducing a domain dis-

criminator. The domain discriminator D with parameters θd ensures the features of

the source and the target domain are properly aligned. The features F (x) from the

feature extractor is fed into the domain discriminator and trained using the domain

labels. Thus, a domain label d = 0 indicates the samples from the target domain and

d = 1 for the source domain. Using the features and the domain labels the domain

discriminator D is trained to differentiate the features of the source and the target

domain. Thus, the discriminator objective is:

LD(θd, θf) = − 1

ns + nt

∑
x∈{Xs∪Xt}

dlog[D(F (x))] + (1− d)(1− log[D(F (x))]), (6.2)

where d is the domain label and D(F (x)) is the sigmoid output of the domain

discriminator. The discriminator is trained to minimize the loss LD enabling it to

differentiate between the source and the target features. Following the approach of

DANN, we incorporate a parameterless Gradient Reversal Layer(GRL) between the

feature extractor and the domain discriminator. The GRL does not affect the features

in the forward pass but reverses the gradient −∂LD
∂θf

from the discriminator into the

48

feature extractor. The intuition is that, while the gradients from the discriminator

are useful to distinguish the source and the target domain, a parameter update with

the negative gradient forces the features to be indistinguishable by the discriminator

implying domain invariant.

6.0.5 Gating Module

The gating module is one of the key components of the proposed approach that

is discussed in the current chapter. The module takes in the feature vector F (x) as

input and outputs a scalar between 0 and 1 i.e. the probability of the input sample

belonging to a seen class. The goal is to train the gating module with examples from

both the seen and unseen classes. Hence, when the feature vector of a new test sample

is fed to the gating module, it estimates the probability of the sample belonging to the

seen classes(shared label space) more reliably. However, training the gating module

is a very challenging task because we are unaware of the samples from the unseen

classes.

To overcome this problem, I propose to train a gating module with adversarial

samples of given mini-batch samples. I hypothesize that, in the absence of data from

the unseen classes, one can use the adversarial samples to distinguish between the

seen and unseen classes. I consider the original samples in a mini-batch as the samples

from the known class and the generated adversarial samples as the samples from the

unknown class. For a given mini-batch, I generated an equal number of adversarial

samples and then trained the gating module. In the initial set of experiments, I

applied the Fast Gradient Signed Method(FGSM) attack on every image in the mini-

batch to generate adversarial samples. Finally, in every iteration with a mini-batch of

original samples and adversarial samples, I trained the gating module to differentiate

49

between the samples of seen and unseen classes.

xadv = x+ ε sign(∇xJ(x, y)) (6.3)

where x is the clean input image, y is the true label for the input image, xadv is

the adversarial image corresponding to the input image, ∇xJ is the gradient of the

model’s loss function with respect to the original input pixel vector x. ε is a tunable

hyperparameter that controls the amount of noise to be added to the input image.

With the adversarial samples, I trained the gating module with a logistic loss

to distinguish between the in-distribution and the out-of-distribution samples. The

assumption being the clean original samples as the in-distribution samples and the

adversarial samples as the out-of-distribution samples. Hence, we expect the gating

module to estimate the probability of seen or unseen reliably for a given target sample.

CU(θf , θu) = − 1

|Xs|
∑
x∈Xs

ylog(ỹ) + (1− y)log(1− ỹ) (6.4)

where y ∈ {0, 1} is the ground truth label and ỹ = U(F (x)) or U(F (x̃)) is the

prediction of classifier on original or adversarial images. y = 1 if the classifier is

trained with a clean original batch of image whereas y = 0 if the classifier is trained

with adversaries.

6.0.6 Output Smoothing

Output smoothing is one of the key concepts of the proposed approach. With out-

put smoothing, the out-of-distribution samples that are predicted as one of the source

categories with very high confidence are flattened out. Thus, with the thresholding

strategy, the out-of-distribution samples are rejected more reliably. The smoothing

approach is formally defined as follows:

50

p(y|x; θ) =
∑

q∈{s,u}

p(y, q|x; θ) (6.5)

p(y) = p(s) p(y|s) + p(u) p(y|u) (6.6)

where p(s) is the probability of the sample from a seen class. p(u) = 1 − p(s)

is the probability of the sample from an unseen class. And, p(y|s) is the estimated

probability of the sample assuming it is from a seen class and similarly p(y|u) is to

unseen. The probabilities p(s) and p(u) is obtained using the gating module as dis-

cussed in the previous section. p(y|s) implied that it belongs to a seen class, which

means p(y|s) is a probability distribution over all the source categories because the

source categories are the seen classes. The key challenge here is to estimate p(y|u)

because the model has no information regarding the unseen classes and estimating a

probability distribution over unseen classes is not possible. I propose an alternative

solution to estimating a probability distribution over unseen classes. Ideally, if a sam-

ple is from an unseen class but passed through the model to estimate the probability

over the seen classes then it should be equiprobable over all the source categories

because it does not belong to any of the source categories. With this intuition, I

define p(y|u) as a uniform distribution with the probability

p(y|ci) =
1

|Cs|
(6.7)

for each class over all the source categories. where ci is the ith category in the source

domain and |Cs| is the total number of categories in the source domain.

Hence, If a given sample belongs to any of the source classes, then p(y|s) > p(y|u)

implies the softmax predictions are dominant in p(y). However, if the given sample

belongs to an unseen class i.e. an out-of-distribution sample then p(y|u) > p(y|s)

which means the over-confident softmax predictions are smoothed with the uniform

51

distribution values. Thus, smoothing avoids the out-of-distribution samples to be

classified as a source class with high confidence and assists the model by rejecting

them. Therefore, the set threshold can easily reject the samples from the unseen

classes.

6.0.7 Entropy Minimization

Existing literature demonstrates that a model trained using only source data tends

to be highly confident on the source like samples and less confident on target like

samples Vu et al. (2019). Besides, when the model is unaware of the target data space

there is a high probability that the decision boundary of the model passes through

a high-density region of the target space. Hence, it implies the target data samples

are either misclassified or classified correctly with very low confidence. In order to

ensure a low-density separation between target classes and to utilize the target data

for training, I deploy entropy minimization Grandvalet and Bengio (2005); Long et al.

(2016); Shu et al. (2018). For a given image x, the softmax output of the network

is G(F (x)) = [f1(x), . . . , fC(x)]>, where fj(x) = p(y = j|x, θf , θg) - the probability

that image x belongs to class j. The softmax output G(F (x)) is a probability vector

whose components sum to 1. When the network has high confidence in its prediction,

the output is similar to a one-hot vector where all the components of the probability

vector are zeros except for one component. Such a prediction has zero entropy. When

the network predicts the input image x with equal probability for all the classes it is

trained with, such a prediction has the highest entropy - the network is not confident

about the label. By minimizing entropy the model is forced to be confident over

its predictions on a given target data sample x. In the early stages of training, the

pseudo labels generated by the model are not as expected. And forcing the model to

be confident on these uncertain pseudo labels can hurt the performance of the model.

52

Hence, to alleviate this effect I use a ramp function to adjust the weight assigned to

the entropy loss in the overall objective. The ramp function initially assigns a lower

weight but gradually increases the weight assigned to the entropy loss. Also, this is

in line with the intuition, as the model training progresses the pseudo labels are more

accurate and forcing the model to be confident on these labels would only improve

the performance.

The entropy regularization loss is then given by,

LE(θf , θg) = − 1

|Xt|
∑
x∈Xt

C∑
j=1

fj(xi)logfj(xi). (6.8)

6.0.8 Final Objective

The network is trained with an objective function that brings together multi-

ple loss terms. The overall objective function brings together the discriminator loss

Equation (6.2) which aligns the domains, the gating loss Equation (6.6), the Entropy

loss Equation (6.8) and the cross-entropy loss Equation (6.1). The parameters of the

network are modified using,

{θ∗f , θ∗y} = argmin
θf ,θy

[
LCE + γLU + βLE − λLD

]
and (6.9)

{θ∗d} = argmin
θd

[
λLD

]
, (6.10)

where, γ, β and λ are hyper parameters that control the importance of individual

loss terms.

However, notice that though there is no loss term for the output smoothing, it

plays a major role in rejecting the outliers. During, inference the outputs of the label

classifier are smoothed using the probabilities estimated from the gating classifier.

Finally, the samples which surpass the threshold are selected and classified into one

of the source classes. However, the samples which failed to pass the threshold are

rejected and labeled ’unknown.’

53

Ik(x
t
i) =


1, if max{pc(ŷ|xti)} > τ ∀i ∈ {1, . . . , nt},

0, otherwise

(6.11)

where ŷ = G(F (x) i.e. ŷ is the smoothed output prediction. τ is a threshold

hypoerparameter set to choose if a sample has to be retained or rejected. Hence, all

the samples that have the value of Ik(x
t
i) = 0 are rejected and the remaining samples

are classified into one of the source categories.

6.1 Implementation Details

I use the pre-trained Resnet-50 He et al. (2016) model from PyTorch Paszke et al.

(2017) package as the base neural network. I removed the existing classifier from the

network and add a bottleneck layer of 256 dimensions after the global average pooling

layer. Similar to the approaches in Long et al. (2017a); Wang et al. (2019a); Cao et al.

(2019, 2018b), I added a label classifier and domain discriminator after the bottleneck.

Both the label classifier and the domain discriminator are fully connected layers with

dimensions (1024-1024-1). Additionally, the gating module is also implemented as

a 2 layer fully connected neural network with dimensions (256-256-1). We set a

threshold τ = 0.9 to reject the out-of-distribution samples. As the classifier and

the discriminator are trained from scratch I used 10 times the learning rate that is

used to fine-tune the feature extractor. I followed the same learning rate strategy

as implemented in Ganin et al. (2016): with ηp = η0
(1+αp)γ

, where p is the training

progress varying between [0, 1], while η0, α and γ are optimized with importance-

weighted cross-validation Sugiyama et al. (2007). I used the default values provided

from Ganin et al. (2016) without further fine tuning. To update the weights of the full

network, I used mini-batch stochastic gradient descent with Nesterov as the optimizer.

Similar to Long et al. (2017a); Wang et al. (2019a), we use a weight decay of 5e− 4

54

with momentum = 0.9 in the optimizer.

6.2 Experiments

The results of the proposed approaches are shown in Table 6.1. The initial set

of experiments is conducted mostly on the office-31 dataset particularly on the task

A → W. As it is preliminary work and the results are unsuccessful, I do not com-

pare the results with Universal Domain Adaptation. However, I report the model

performance to analyze the results achieved with the proposed technique. I conduct

a few experiments on the GDA setting using Generalized Domain Adaptation with

Gated Smoothing. Notice that, the core idea of approach relies on the working of

the gated module. If the gating module can estimate the p(seen) and p(unseen)

reliably the out-of-distribution sample rejection will be reliable. Hence, we conduct

our preliminary experiments to analyze the performance of the gating module.

Table 6.1: Accuracy of GDAGS on Office-31 using (ResNet-50). The experiments
include using both the FGSM attack and the one pixel attack for the gating mod-
ule(GM). The experiments listed are the performance on A → W with a common-
ness=0.5 between the source and target domain. The experiment values are the
p(seen) on average across all the samples given the inputs to the gating module are
out-of-distribution samples

Method p(seen)

GM with FGSM (iter 500) 96.7

GM with FGSM (iter 2500) 92.9

GM with FGSM (iter 5000) 90.2

GM with FGSM (iter 10000) 97.3

GM with One-pixel attack (iter 2000) 95.4

From Table 6.1, it can be observed that the gating module doesn’t predict the

outlier with higher unseen probabilities. It is because there are no out-of-distribution

samples available to train the binary classifier. However, I proposed that using adver-

sarial samples as out-of-distribution samples may be a workaround. My preliminary

55

experiments show that only a handful of outliers are predicted as out-of-distribution

samples but the rest are predicted as the samples from the shared label space.

Hence, in this section, I have outlined the results from my preliminary experiments

on the proposed approach. I would like to state that the experiments were neither

exceptional nor produced state-of-the-art results, however, these experiments have

raised many fundamental questions and meaningful insights that require us to address

for solving the problem of Generalized Domain Adaptation.

6.3 Conclusions

I described a probabilistic approach for Generalized Domain Adaptation in this

chapter. The proposed method was not very successful in predicting the probability

of being seen or unseen for a new target sample. In a real-world scenario, it is often

the case of Generalized Domain Adaptation where one does not have any knowledge

on the priors. Hence, I firmly believe that the proposed approach can open up many

new ideas for solving a very important problem. The current approach discussed in

the chapter does not reject the out of distribution samples adequately. Hence, more

effort is required on understanding the concept of out-of-distribution and building

the classifiers that can classify the in-distribution and the out-of-distribution sam-

ples. Also, classifying the out-of-distribution samples as an additional ’other’ class or

rejecting the samples with lower or equal confidences over the in-distribution classes

are ideas worth exploring. Finally, the effect of the private classes from the source

distribution on the samples of the target distribution has to be minimized. A clever

way of reweighing the source classes such that the shared classes are given higher

weights are worth exploring.

56

Chapter 7

CONCLUSIONS

The dissertation aims to solve the problem of Domain Adaptation by providing

effective ways to overcome the domain shift between the training and testing distribu-

tions. In the first section, the dissertation outlines the goals and motivation describing

it’s importance. Then I formally describe the problem statement with mathematical

notation and point out the fundamental problems. The dissertation then introduces 3

different approaches, one approach to solve the sub problem of UDA and 2 approaches

for GDA. We first introduced the Certain and Consistent Domain Adaptation to pro-

vide a solution through a different perspective for the Closed-set Domain Adaption.

The dissertation then progresses to solve Generalized Domain Adaptation and outlines

two approaches Multi-Adversarial Generalized Domain Adaptation and Generalized

Domain Adaptation with Gated Smoothing. The highlight of the dissertation is that

it aims to solve the practical problem of Generalized Domain Adaptation. General-

ized Domain Adaptation doesn’t rely on the assumption of shared label space hence

there is no hard constraint that limits it to deploy in the real world.

Similar to many other academic works, the research ideas presented in this thesis

ask more questions than it answers. Some of the questions are aligning the marginal

distributions alone, the source and target distributions are aligned? How can one dis-

tinguish between an in-distribution sample and an out-of-distribution sample? How

do you counter the negative transfer when aligning the marginal distributions in the

presence of out of distribution samples? Is aligning the marginals instead of joint

distributions the right thing? Why do deep neural networks classify anomalies as one

of the classes with a very high probability? The datasets used for evaluation do they

57

contain sufficient variations and are large enough?

Finally, the dissertation concludes by describing some future directions of research.

The first and foremost thing in all modern machine learning models is the data.

More challenging datasets are required, datasets that contain more images to learn

and many domains for transfer tasks are required. Aligning only marginal distribu-

tions does not align the source and target domains well, hence ways to align Joint

distributions are needed to be explored. However, the target domain is entirely un-

labeled which makes it more challenging to align. A good understanding of out-of-

distribution(OOD) has to be studied. Approaches to distinguish out-of-distribution

samples when there are no available examples of OOD.

58

BIBLIOGRAPHY

Ben-David, S., J. Blitzer, K. Crammer, A. Kulesza, F. Pereira and J. W. Vaughan,
“A theory of learning from different domains”, Machine learning 79, 1-2, 151–175
(2010).

Bhushan Damodaran, B., B. Kellenberger, R. Flamary, D. Tuia and N. Courty, “Deep-
jdot: Deep joint distribution optimal transport for unsupervised domain adapta-
tion”, in “Proceedings of the ECCV”, pp. 447–463 (2018).

Bousmalis, K., N. Silberman, D. Dohan, D. Erhan and D. Krishnan, “Unsupervised
pixel-level domain adaptation with generative adversarial networks”, in “CVPR”,
pp. 3722–3731 (2017).

Cao, Z., M. Long, J. Wang and M. I. Jordan, “Partial transfer learning with selective
adversarial networks”, in “Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition”, pp. 2724–2732 (2018a).

Cao, Z., L. Ma, M. Long and J. Wang, “Partial adversarial domain adaptation”,
in “Proceedings of the European Conference on Computer Vision (ECCV)”, pp.
135–150 (2018b).

Cao, Z., L. Ma, M. Long and J. Wang, “Partial adversarial domain adaptation”, in
“Proceedings of the ECCV”, pp. 135–150 (2018c).

Cao, Z., K. You, M. Long, J. Wang and Q. Yang, “Learning to transfer examples for
partial domain adaptation”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 2985–2994 (2019).

Chapelle, O., B. Scholkopf and A. Zien, “Semi-supervised learning (chapelle, o. et al.,
eds.; 2006)”, IEEE Transactions on Neural Networks 20, 3, 542–542 (2009).

Courty, N., R. Flamary, A. Habrard and A. Rakotomamonjy, “Joint distribution op-
timal transportation for domain adaptation”, in “NeurIPS”, pp. 3730–3739 (2017).

Csurka, G., “A comprehensive survey on domain adaptation for visual applications”,
in “Domain Adaptation in Computer Vision Applications”, pp. 1–35 (Springer,
2017).

Deng, W., L. Zheng, Q. Ye, G. Kang, Y. Yang and J. Jiao, “Image-image domain
adaptation with preserved self-similarity and domain-dissimilarity for person re-
identification”, in “The IEEE Conference on CVPR”, (2018).

French, G., M. Mackiewicz and M. Fisher, “Self-ensembling for visual domain adap-
tation”, arXiv preprint arXiv:1706.05208 (2017).

Ganin, Y., E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand and V. Lempitsky, “Domain-adversarial training of neural networks”, The
Journal of Machine Learning Research 17, 1, 2096–2030 (2016).

59

Gatys, L. A., A. S. Ecker and M. Bethge, “A neural algorithm of artistic style”, arXiv
preprint arXiv:1508.06576 (2015).

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio, “Generative adversarial nets”, in “Advances in
NeurIPS”, pp. 2672–2680 (2014).

Grandvalet, Y. and Y. Bengio, “Semi-supervised learning by entropy minimization”,
in “Advances in NeurIPS”, pp. 529–536 (2005).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “Proceedings of the IEEE conference on CVPR”, pp. 770–778 (2016).

Hoffman, J., E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros and T. Dar-
rell, “CyCADA: Cycle-consistent adversarial domain adaptation”, in “Proceedings
of the 35th ICML”, vol. 80, pp. 1989–1998 (2018).

Laine, S. and T. Aila, “Temporal ensembling for semi-supervised learning”, arXiv
preprint arXiv:1610.02242 (2016).

Li, Y., L. Liu and R. T. Tan, “Certainty-driven consistency loss for semi-supervised
learning”, arXiv preprint arXiv:1901.05657 (2019).

Liu, H., Z. Cao, M. Long, J. Wang and Q. Yang, “Separate to adapt: Open set domain
adaptation via progressive separation”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition”, pp. 2927–2936 (2019).

Long, M., Y. Cao, J. Wang and M. I. Jordan, “Learning transferable features with
deep adaptation networks”, arXiv preprint arXiv:1502.02791 (2015).

Long, M., Z. Cao, J. Wang and M. I. Jordan, “Domain adaptation with randomized
multilinear adversarial networks”, CoRR abs/1705.10667 (2017a).

Long, M., H. Zhu, J. Wang and M. I. Jordan, “Unsupervised domain adaptation with
residual transfer networks”, in “Advances in NeurIPS”, pp. 136–144 (2016).

Long, M., H. Zhu, J. Wang and M. I. Jordan, “Deep transfer learning with joint
adaptation networks”, in “ICML-Volume 70”, pp. 2208–2217 (2017b).

Panareda Busto, P. and J. Gall, “Open set domain adaptation”, in “Proceedings of
the IEEE International Conference on Computer Vision”, pp. 754–763 (2017).

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga and A. Lerer, “Automatic differentiation in PyTorch”, in “NIPS
Autodiff Workshop”, (2017).

Pei, Z., Z. Cao, M. Long and J. Wang, “Multi-adversarial domain adaptation”, CoRR
abs/1809.02176, URL http://arxiv.org/abs/1809.02176 (2018).

Saenko, K., B. Kulis, M. Fritz and T. Darrell, “Adapting visual category models to
new domains”, in “ECCV”, pp. 213–226 (Springer, 2010).

60

http://arxiv.org/abs/1809.02176

Saito, K., S. Yamamoto, Y. Ushiku and T. Harada, “Open set domain adaptation by
backpropagation”, in “Proceedings of the ECCV”, pp. 153–168 (2018).

Shen, J., Y. Qu, W. Zhang and Y. Yu, “Wasserstein distance guided representa-
tion learning for domain adaptation”, in “Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018”, pp. 4058–4065 (2018).

Shu, R., H. H. Bui, H. Narui and S. Ermon, “A dirt-t approach to unsupervised
domain adaptation”, arXiv preprint arXiv:1802.08735 (2018).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, Journal
of Machine Learning Research 15, 1929–1958 (2014).

Sugiyama, M., M. Krauledat and K.-R. MÃžller, “Covariate shift adaptation by im-
portance weighted cross validation”, JMLR 8, May, 985–1005 (2007).

Tarvainen, A. and H. Valpola, “Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results”, in
“Advances in NeurIPS”, pp. 1195–1204 (2017).

Tzeng, E., J. Hoffman, T. Darrell and K. Saenko, “Simultaneous deep transfer across
domains and tasks”, in “Proceedings of the IEEE ICCV”, pp. 4068–4076 (2015).

Tzeng, E., J. Hoffman, K. Saenko and T. Darrell, “Adversarial discriminative domain
adaptation”, in “IEEE CVPR”, pp. 7167–7176 (2017).

Venkateswara, H., S. Chakraborty and S. Panchanathan, “Deep-learning systems for
domain adaptation in computer vision: Learning transferable feature representa-
tions”, IEEE Signal Processing Magazine 34, 6, 117–129 (2017a).

Venkateswara, H., J. Eusebio, S. Chakraborty and S. Panchanathan, “Deep hashing
network for unsupervised domain adaptation”, in “CVPR”, pp. 5018–5027 (2017b).

Vu, T.-H., H. Jain, M. Bucher, M. Cord and P. Pérez, “Advent: Adversarial entropy
minimization for domain adaptation in semantic segmentation”, in “CVPR”, pp.
2517–2526 (2019).

Wang, X., L. Li, W. Ye, M. Long and J. Wang, “Transferable attention for domain
adaptation”, in “AAAI Conference on Artificial Intelligence (AAAI)”, (2019a).

Wang, Z., Z. Dai, B. Póczos and J. Carbonell, “Characterizing and avoiding negative
transfer”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 11293–11302 (2019b).

You, K., M. Long, Z. Cao, J. Wang, and M. Jordan, “Universal domain adaptation”,
in “The IEEE Conference on CVPR”, (2019).

Zagoruyko, S. and N. Komodakis, “Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer”, arXiv
preprint arXiv:1612.03928 (2016).

61

Zhang, J., Z. Ding, W. Li and P. Ogunbona, “Importance weighted adversarial nets
for partial domain adaptation”, in “CVPR”, pp. 8156–8164 (2018).

62

APPENDIX A

PERMISSION STATEMENTS FROM CO-AUTHORS

63

Permission for including co-authored material in this dissertation was obtained
from co-authors, Prof. Sethuraman Panchanathan, Dr. Hemanth Venkateswara and
Andrew Dudley.

64

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Goals and Motivation
	Contributions
	Dissertation Outline

	DOMAIN ADAPTATION
	Introduction to Domain Adaptation
	Mathematical Notation
	Datasets for Domain Adaptation in Computer Vision

	LITERATURE SURVEY
	Closed Set Domain Adaptation
	Semi Supervised Learning
	Partial Domain Adaptation
	Open Set Domain Adaptation
	Universal Domain Adaptation

	CERTAIN AND CONSISTENT DOMAIN ADAPTATION
	Domain Adaptation with Semi Supervised Learning
	Idea Motivation
	Domain Alignment
	Certainty and Consistency
	Rapid-Smooth Coupled Network:
	Measure of Certainty:
	Consistency Regularization:
	Entropy Regularization
	Cross Entropy Loss
	CCDA Objective Functions

	Experiments & Analysis
	Experimented Datasets
	Implementation Details
	Results
	Ablation Studies
	Feature Visualization

	Conclusions

	MULTI ADVERSARIAL GENERALIZED DOMAIN ADAPTATION
	Introduction
	Overview
	Label Classifier
	Domain Alignment
	Known-Unknown Feature Separator
	Entropy Minimization
	Final Objective

	Implementation Details
	Experiments
	Conclusions

	GENERALIZED DOMAIN ADAPTATION WITH GATED SMOOTHING
	Introduction
	Overview
	Label Classifier
	Domain Alignment
	Gating Module
	Output Smoothing
	Entropy Minimization
	Final Objective

	Implementation Details
	Experiments
	Conclusions

	CONCLUSIONS
	BIBLIOGRAPHY
	PERMISSION STATEMENTS FROM CO-AUTHORS

