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ABSTRACT

Cancer is a worldwide burden in every aspect: physically, emotionally, and fi-

nancially. A need for innovation in cancer research has led to a vast interdisciplinary

effort to search for the next breakthrough. Mathematical modeling allows for a unique

look into the underlying cellular dynamics and allows for testing treatment strate-

gies without the need for clinical trials. This dissertation explores several iterations

of a dendritic cell (DC) therapy model and correspondingly investigates what each

iteration teaches about response to treatment.

In Chapter 2, motivated by the work of de Pillis et al. (2013), a mathematical

model employing six ordinary differential (ODEs) and delay differential equations

(DDEs) is formulated to understand the effectiveness of DC vaccines, accounting for

cell trafficking with a blood and tumor compartment. A preliminary analysis is per-

formed, with numerical simulations used to show the existence of oscillatory behavior.

The model is then reduced to a system of four ODEs. Both models are validated using

experimental data from melanoma-induced mice. Conditions under which the model

admits rich dynamics observed in a clinical setting, such as periodic solutions and

bistability, are established. Mathematical analysis proves the existence of a backward

bifurcation and establishes thresholds for R0 that ensure tumor elimination or exis-

tence. A sensitivity analysis determines which parameters most significantly impact

the reproduction numberR0. Identifiability analysis reveals parameters of interest for

estimation. Results are framed in terms of treatment implications, including effective

combination and monotherapy strategies.

In Chapter 3, a study of whether the observed complexity can be represented

with a simplified model is conducted. The DC model of Chapter 2 is reduced to a

non-dimensional system of two DDEs. Mathematical and numerical analysis explore

the impact of immune response time on the stability and eradication of the tumor,

i



including an analytical proof of conditions necessary for the existence of a Hopf bifur-

cation. In a limiting case, conditions for global stability of the tumor-free equilibrium

are outlined.

Lastly, Chapter 4 discusses future directions to explore. There still remain open

questions to investigate and much work to be done, particularly involving uncertainty

analysis. An outline of these steps is provided for future undertakings.
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Chapter 1

INTRODUCTION

1.1 Immunotherapy

It is a well-established fact that cancer is a worldwide burden. Each year, tens

of millions of new cases are diagnosed and nearly ten million cancer-related deaths

occur. With the staggering need for improvements in treatment, research is ongo-

ing in the search for the next breakthrough. Recently, much attention has been

focused on the potential of immunotherapy, particularly in combination with the

standard treatments: surgery, radiation, and chemotherapy. Excitement surrounding

immunotherapy lies in its use of the body’s innate defenses, as it entices the immune

system to attack cancer cells, infections, and other diseases.

Though immunotherapy is currently a rapidly growing area of cancer research, it

is not a recent medical advancement. It is possible that cancer immunotherapy can be

traced back as early as 2600 BC, as documented in the ancient Egyptian medical text,

the Ebers Papyrus, attributed to the physician Imhotep (Ebbell, 1937). Treatment for

tumors was advised to be “a poultice, followed by incision,” which would undoubtedly

cause infection at the tumor site (Ebbell, 1937). Historical accounts across thousands

of years detailed spontaneous tumor regression, with nearly all accounts involving

regression concomitant with infection, as was the case for Saint Peregrine in the late

13th century (Jackson, 1974). Treatment in the 1700s and 1800s AD largely consisted

of crude immunotherapies inducing deliberate infections.

In the late 19th century, Busch (1868) and Fehleisen (1882) independently noted a

connection between tumor regression and erisypelas infection. Busch (1868) became
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the first to deliberately infect a cancer patient with erysipelas, resulting in shrinkage

of the tumor. Shortly after, unaware of the past work in the field, Coley (1893) noted a

tumor regression in a patient infected with erisypelas and attempted to reproduce the

results by infecting other cancer patients with erisypelas. Observing mixed results

from this attempt, ranging from difficulty inducing infection to patient fatalities,

Coley then developed a vaccine known as “Coley’s toxins” using two killed bacteria,

Streptococcus pyogenes and Serratia marcescens, to produce symptoms of bacterial

infections without actually producing an infection (McCarthy, 2006). Over 1000

patients were reported to experience tumor regression or elimination as a result (Cann

et al., 2002). This foundational work has contributed to Coley being deemed the

“Father of immunotherapy.” Unfortunately during Coley’s lifetime, the subsequent

development of chemotherapy and radiation therapy, along with other factors, caused

immunotherapy to be pushed to the side (Oiseth and Aziz, 2017). The 1980s brought

key discoveries in how the immune system works (Allison et al., 1982), fostering a

vast resurgence of interest in immunotherapy that continues to this day.

1.2 Cancer Vaccines

Cancer vaccines are a form of immunotherapy that train the immune system

to recognize and attack cancer cells. Vaccines treating diseases caused by viruses

or bacteria are regularly preventive, acting to protect the body against contracting

the disease. In a similar manner, there exists a class of preventive cancer vaccines

that protect against development of certain cancers. The United States Food and

Drug Administration (FDA) has approved two preventive cancer vaccines, namely

the human papillomavirus (HPV) vaccine and the hepatitis B virus (HBV) vaccine.

HPV and HBV are known to be associated with several forms of cancer, including

cervical, anal, and liver cancer (Bansal et al., 2016). Thus, by preventing HPV and
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HBV infections, the vaccines additionally inhibit the process that could cause the

development of HPV- and HBV-related cancers.

While preventive cancer vaccines are effective for virus-induced cancers, most can-

cers are not believed to be caused by infections. Thus, a large class of cancer vaccines

studied are categorized as therapeutic vaccines and are administered following the on-

set of cancer. Therapeutic vaccines can act to eliminate residual cancer cells, prevent

tumor recurrence, or stop metastasis. At this point, the FDA has only approved a

single therapeutic cancer vaccine, sipuleucel-T (Provenge R©), though there are count-

less clinical trials currently investigating various others (Kantoff et al., 2010). While

cancer vaccines have shown promise in early clinical trials (Gameiro et al., 2013), a

greater understanding of the immune response following treatment would serve to

increase their efficacy.

1.3 Mathematics in Population Ecology

Mathematics possesses the ability to quantify surrounding phenomena, allowing

researchers to simulate behavior and thereby recognize underlying patterns and prop-

erties. For centuries, mathematics has been utilized as a tool for better understanding

living organisms and how populations change and interact over time. One of the oldest

known mathematical models of population growth dates back to the commencement

of the 13th century, when Pisano (Fibonacci) famously studied how quickly rabbits

could reproduce, with the answer found in the Fibonacci sequence (Pisano, 1202).

Nearly 600 years later, Malthus (1798) thought to model population growth ge-

ometrically and created the exponential law, referred to as the “first principle of

population dynamics” (Berryman, 1997), to describe when growth goes unchecked.

Malthus (1798) additionally theorized that food supply increased arithmetically, and

the geometric increase of a population would eventually exceed the arithmetic pro-
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gression of resources, thereby leading to death from food shortage. Recognizing the

need to account for resource limitations when modeling population growth, as un-

controlled exponential growth is an unreasonable assumption, Verhulst (1838) cited

Malthus’s work as motivation and formulated the highly influential logistic growth

equation, thus developing the first density-dependent model. In his initial findings,

Verhulst (1838) demonstrated the logistic equation agreed with population data from

Belgium, Essex, France, and Russia that spanned periods from late 18th century up

to 1833. Since Pearl and Reed (1920) rediscovered and popularized the equation

with a population growth model of the United States, logistic growth has remained

a commonly used growth term, with applications in fields such as ecology, oncology,

economics, and engineering.

Mathematical modeling further advanced in the 1920s with the introduction of

predator-prey models, as first formulated by Lotka (1920) to describe interactions

between plants and herbivores. Their interactions were found to produce indefinite,

undamped oscillations in both populations. Lotka (1925) developed his analysis in

a more general framework of predator-prey interactions with his classic book, El-

ements of Physical Biology. Additionally, Volterra (1926) independently derived a

predator-prey model, with application to predator and prey fish in the Adriatic Sea

during World War I, similarly concluding the populations would have sustained os-

cillations from their interactions. The predator-prey interactions, now known as the

“Lotka-Volterra model,” represented a shift in several ways, one of which being the

representation of the species’ interactions with the law of mass action, where the re-

sponse from each species is directly proportional to the product of their population

densities.

Not long after, Holling (1959a,b) later expanded upon the Lotka-Volterra model,

considering three main types of functional responses, a term coined by Solomon (1949)
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to describe the relationship between predation rate and prey density. In the Lotka-

Volterra model, the functional response is a linear increase in predation rate as prey

density increases. Taking into account a predator’s eventual loss of appetite, along

with time for prey searching and handling, Holling (1959a,b) described two alterna-

tive functional responses in which the predation rate is a nonlinear function of prey

density, increasing hyperbolically or sigmoidally until eventually reaching a satura-

tion threshold. Different manners of representing species’ interactions has proved

invaluable in mathematical modeling, allowing researchers to better tailor models to

address their specific questions and gain further insight into underlying patterns.

1.4 Mathematical Oncology

Mathematical models have the ability to make sense of complicated interactions

and address key questions, including when and why treatments fail and which compo-

nents are key players in determining treatment response. Though often not originally

developed with the intent of cancer modeling, ecological models have a history of suc-

cessful applications in the realm of mathematical oncology. Mechanisms of ecology

share many similarities with that of cancer biology, such as competition, control, ex-

tinction, invasion, movement, mutations, and predator-prey dynamics, thus allowing

for the adaptation of ecological models to cancer models.

With the growing attention surrounding immunotherapy as a form of cancer treat-

ment, which relies on the interplay between the tumor cells and immune system, there

has been increased interest in tumor-immune models within the realm of mathemat-

ical oncology. Many deterministic models have viewed the tumor-immune system

through the lens of an ecological predator-prey system (Agarwal and Bhadauria, 2013;

Sotolongo-Costa et al., 2003; Kaur and Ahmad, 2014). Though the killing of tumor

cells by immune cells would seemingly be applicable to the Lotka-Volterra model, the
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assumptions of the model do not line up with reality. In a classical predator-prey

model, the predators die in the absence of the prey, and interactions between preda-

tor and prey benefit the predator but are harmful to the prey. Assuming a lack of

immune cell growth in the absence of the tumor cell population would be clearly in-

accurate. Additionally, while tumor cells can trigger production of new immune cells,

the immune cells also experience harmful effects as a result of interactions with tumor

cells. These effects result from the immunosuppressive tumor microenvironment or a

loss of an immune cell’s ability to kill in the future following each interaction (de Pillis

and Radunskaya, 2014).

In a predator-prey approach accounting for the tumor microenvironment and in-

dependent growth of the immune cells, Kuznetsov et al. (1994) used Michaelis-Menten

kinetics, the equivalent of a Holling type II functional response, to model infiltration

of the tumor by the effector cells and mass action to describe the resulting inactivation

of effector cells by the tumor. Their model allowed for capturing and explaining pre-

viously unexplained behaviors, including tumor dormancy, oscillatory behavior, and

“sneaking through,” in which a low burden can escape immune control and rapidly

grow to a large tumor, but larger tumor burdens can be eliminated. Shortly after,

Galach (2003) simplified the Kuznetsov et al. (1994) model by replacing Michaelis-

Menten kinetics with mass action. It was shown that the the “sneaking through”

phenomenon was no longer able to be captured, though the dynamics of dormancy

and tumor escape were maintained.

To understand the impact of immunotherapy on the immune system, Kirschner

and Panetta (1998) explored the tumor-immune system without treatment, then un-

der adoptive cellular immunotherapy and administration of the cytokine IL-2, both

as monotherapies and in conjunction with each other. They were able to establish

conditions needed to produce optimal treatment responses. In recent years, many
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models exploring immunotherapy have been developed to understand tumor-immune

dynamics and aid in improving treatment design (de Pillis et al., 2013; d’Onofrio,

2005; Rutter and Kuang, 2017), with each making conclusions regarding key factors

in cancer eradication.

1.5 Motivation and Goals

The de Pillis et al. (2013) model examines dendritic cell therapy, a form of thera-

peutic cancer vaccine, through a system of nine ordinary differential and delay differ-

ential equations representing dendritic cells, activated and memory T lymphocytes,

and tumor cells. In this work, we seek to build off the work of de Pillis et al. (2013)

and present the evolution of a dendritic cell model and insights from each model it-

eration regarding immune response dynamics following treatment. In Chapter 2, we

reduce the system to four ordinary differential equations. In Chapter 3, we modify

the system to be represented by two delay differential equations.
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Chapter 2

ORDINARY DIFFERENTIAL EQUATION MODEL

2.1 Abstract

Melanoma, the deadliest form of skin cancer, is regularly treated by surgery in

conjunction with a targeted therapy or immunotherapy. Dendritic cell therapy is an

immunotherapy that capitalizes on the critical role dendritic cells play in shaping the

immune response. We formulate a mathematical model employing ordinary differen-

tial and delay differential equations to understand the effectiveness of dendritic cell

vaccines, accounting for cell trafficking with a blood and tumor compartment. We

reduce our model to a system of ordinary differential equations. Both models are val-

idated using experimental data from melanoma-induced mice. The simplicity of our

reduced model allows for mathematical analysis and admits rich dynamics observed

in a clinical setting, such as periodic solutions and bistability. We give thresholds

for tumor elimination and existence. Bistability, in which the model outcomes are

sensitive to the initial conditions, emphasizes a need for more aggressive treatment

strategies, since the reproduction number below unity is no longer sufficient for elim-

ination. A sensitivity analysis exhibits the parameters most significantly impacting

the reproduction number, thereby suggesting the most efficacious treatments to use

together with a dendritic cell vaccine.

2.2 Introduction

Skin cancer is the most common cancer diagnosis in the United States, with

melanoma accounting for approximately 1% of all skin cancer (Siegel et al., 2019).
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Though a small percentage of the diagnoses, melanoma is the deadliest form of skin

cancer and thus causes the majority of skin cancer-related deaths. Over the past 30

years, rapid increases have been seen in the incidences of melanoma (Siegel et al.,

2019). The rise in melanoma has inspired additional research and advancements in

its treatment.

Options for treatment consisted of excision, burning the tumor, amputation, and

extirpation in the mid-late 19th century (Rebecca et al., 2012). Eventually chemother-

apy was introduced, though it did not result in improvements to the overall sur-

vival (Wilson and Schuchter, 2016). The introduction of chemotherapy represented

a greater shift towards treating the internal cause of melanoma, as opposed to sim-

ply alleviating the associated pain. Treatment for melanoma now generally involves

surgery followed by adjuvant therapies, often consisting of targeted therapy and im-

munotherapy. Targeted therapy uses drugs to target proteins, genes, and molecules

which promote cancer growth, while immunotherapy works to enhance the immune

system response against cancer, either through teaching it to react against something

not previously considered foreign, like cancer cells, or releasing it to attack known

antigens, as in the case of immune checkpoint inhibitors (Castiglione and Piccoli,

2006). Compared to previous routine therapies, immunotherapy has shown great

promise for melanoma patients (Domingues et al., 2018).

Dendritic cells (DCs) originate in the bone marrow and are the most potent

antigen-presenting cells (APCs) with a singular ability to initiate naive T cells

(Arabameri et al., 2018). As such, dendritic cell therapy has been employed to take

advantage of the role DCs play in shaping the immune response. In this type of

immunotherapy, immature DCs are extracted from the patient, cultured ex vivo, and

loaded with tumor-associated antigens to become sensitized. Once sensitized and

thereby activated, DCs are then injected back into the patient, where they migrate to
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the lymphoid organs via the bloodstream. Within the lymphoid organs, the activated

(mature) DCs interact with the naive cytotoxic T lymphocytes (CTLs), activating

them and instructing them to proliferate. These activated CTLs, otherwise known as

effector cells, travel to the tumor, where they mount a fight against cells expressing

the tumor-associated antigen. The cancer cells and the immunosuppressive environ-

ment of the tumor are able to inactivate CTLs or induce CTL apoptosis, and the

activated CTLs in turn kill the tumor cells (Aerts and Hegmans, 2013). The immune

system retains a memory response to these formerly encountered antigens through the

existence of memory CTLs, leading to the long-term impacts of immunotherapies.

Human clinical trials involving DC-based vaccines commenced in the 1990s, yield-

ing positive results for patients with melanoma (Nestle et al., 1998), prostate cancer

(Tjoa et al., 1999), and B-cell lymphoma (Hsu et al., 1996). Over 400 clinical tri-

als evaluating DC vaccines are currently being carried out in the United States, of

which 237 are Phase II and 11 are Phase III (U.S. National Library of Medicine,

2018). Since the beginnings of DC-based vaccine-related clinical trials, a number of

malignancies have been tested with the immunotherapy, including intracranial tu-

mors (Liau et al., 2000), multiple myeloma (Ridgway, 2003), renal cell carcinoma

(Wierecky et al., 2006), colorectal cancer (Fong et al., 2001), and cervical cancer

(Ferrara et al., 2003). Furthermore, various treatment strategies, including prophy-

lactic (pre-exposure) dosing, have been studied. Prolonged survival and limited side

effects have been observed in patients with a vast array of tumor types treated with

DC-based vaccines (Ridgway, 2003). Prophylactic dosing with DC-based vaccines,

useful for patients with a high risk of developing cancer, has been observed to ef-

fectively inhibit certain types of cancers when studied in vivo (Markov et al., 2015).

However, the most effective use of the DC vaccine has been shown with combination

treatments. The low toxicity of the DC vaccine greatly adds to its appeal as part
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of a combination therapy and, as such, DC vaccines are often tested in conjunction

with other treatments, such as chemotherapy, immune checkpoint inhibitors, and ra-

diotherapy (van Gulijk et al., 2018). Mathematical models allow for a deeper look

into the behavior of the vaccine and an exploration into what mechanisms lead to

treatment success or failure during these clinical trials, consequently motivating and

informing new clinical trials. Once a greater understanding of the monotherapy is

established, clear extensions would involve incorporating combination treatments to

better comprehend the synergy. Additional insights into these key mechanisms de-

cidedly prove valuable when designing combination therapies.

In this chapter, we explore the dynamics underlying the tumor-immune interac-

tions following continuous and intermittent administration of dendritic cell therapy.

We determine thresholds for tumor existence or eradication. We investigate the exis-

tence of a backward bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation.

We conduct a sensitivity analysis to determine which parameters most strongly in-

fluence the dendritic cell therapy efficacy, followed by a brief identifiability analysis.

Some of the work contained in this chapter has been accepted for publication, with

co-author and journal permissions found in Appendix A and Appendix B respectively.

2.3 Previous and Proposed Models

Immunotherapy treatments, particularly DC vaccines, have been a recent focus of

mathematical modeling efforts. Within the last 15 years, a number of researchers have

examined optimal DC treatment protocols by studying systems of ordinary differential

equations (ODEs) through the lens of various optimal control strategies (Burden et al.,

2004; Cappuccio et al., 2007; Castiglione and Piccoli, 2006; de Pillis et al., 2007;

Ghaffari and Naserifar, 2010). Furthermore, ODEs have been employed recently in

working towards the goal of precision medicine. Gevertz and Wares (2018) sought to
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find a simpler form of an ODE model that would better allow for personalization of the

parameters and individualized fitting, while still maintaining the ability to describe

the data and key biological features for cancer treatment of DC injections and viruses

engineered to infect and kill cancer cells. Additionally, models exploring DC therapy

for melanoma have tested differing dosing strategies using delay differential equations

(DDEs) (Castillo-Montiel et al., 2015; de Pillis et al., 2013; Ludewig et al., 2004).

In hopes of using in silico tests to reduce the economic burden of searching for and

experimenting with new protocols, Castillo-Montiel et al. (2015) studied the question

of how to improve the efficacy of DC treatment through simulating various treatment

strategies and evaluating the sensitivity to changes in parameters.

In studying the effects of DC injections in mice, Ludewig et al. (2004) developed a

delay differential compartment model representing DC and CTL trafficking. In 2013,

de Pillis et al. proposed an extension of the Ludewig et al. (2004) model to explore

tumor response to treatment. We discuss the formulation and main findings of these

two papers. Our proposed model modifies the de Pillis et al. (2013) model, with

several key changes.

2.3.1 Ludewig et al. (2004) Model

The Ludewig et al. (2004) model was developed to describe the kinetics of the

DC-CTL interaction. Their model formulation considered three main areas: (i) initial

DC distribution, (ii) DC-CTL interaction in the spleen, and (iii) CTL recirculation

between the spleen, blood, and liver. Variables consisted of DCs concentration in

the blood, spleen, liver, and lung (DBlood, DSpleen, DLiver, DLung), DC density in the

spleen (D), activated CTL (Ea), quiescent ‘memory’ CTL (Em), and CTL densities

in the blood, spleen, and liver (EBlood
i , ESpleen

i , ELiver
i ), where i = a denotes activated

CTL and i = m denotes memory CTL. The following equations from Ludewig et al.
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(2004) reflect (i) initial DC distribution:

d

dt
DBlood = − (µBS + µBLi + µBLu + µBO)DBlood︸ ︷︷ ︸

migration

, (2.3.1a)

d

dt
DSpleen = µBS

QBlood

QSpleen

DBlood︸ ︷︷ ︸
migration

, (2.3.1b)

d

dt
DLiver = µBLi

QBlood

QLiver

DBlood︸ ︷︷ ︸
migration

, (2.3.1c)

d

dt
DLung = µBLu

QBlood

QLung

DBlood︸ ︷︷ ︸
migration

−µLuODLung︸ ︷︷ ︸
elimination

. (2.3.1d)

To consider (ii) DC-CTL interaction in the spleen, Ludewig et al. (2004) models as

follows:

d

dt
D = µBS

QBlood

QSpleen

DBlood︸ ︷︷ ︸
migration

− aDD︸ ︷︷ ︸
death

− bDEEaD︸ ︷︷ ︸
death by CTL

, (2.3.2a)

d

dt
Ea = aEa(Enaive − Ea)︸ ︷︷ ︸

homeostasis of naive CTL

+ bp
D(t− τd)Ea(t− τd)
θD +D(t− τd)︸ ︷︷ ︸

proliferation

− ramEa︸ ︷︷ ︸
becoming memory

+ baDEm︸ ︷︷ ︸
activation

, (2.3.2b)

d

dt
Em = ramEa︸ ︷︷ ︸

becoming memory

− aEmEm︸ ︷︷ ︸
death

− baDEm︸ ︷︷ ︸
activation

. (2.3.2c)

To reflect (iii) recirculation of the CTL, Ludewig et al. (2004) employs the subsequent

equations denoted in vector notation:

d

dt
Ei = M(Ei)Ei︸ ︷︷ ︸

migration

+ Ii︸︷︷︸
DC-induced CTL response in spleen

(2.3.3a)

with the densities of the CTL subsets given by

Ei(t) =
[
EBlood
i (t), ESpleen

i (t), ELiver
i (t)

]T
, i = (a,m),
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and the CTL transfer rates represented by the compartmental matrix

MEi =


−µBB µSB(DSpleen) µLB

µBS −µSB(DSpleen) 0

µBL 0 −µLB

 .

Furthermore, Ludewig et al. (2004) defines

µSB(DSpleen) = µ∗SB + ∆µ
1 + DSpleen(t)

θshut
,

and the vector-function Ii(t) = [0, (division− death)Spleen, 0]T .

The initial DC distributions are primarily governed by migration. In modeling the

DC-CTL interaction in the spleen, DCs are governed by migration from the blood

compartment, natural death, and CTL-mediated killing, which is hypothesized to

contribute to the downregulation of adaptive immune responses (Ronchese and Her-

mans, 2001). The activated CTLs are governed by homeostasis, DC-induced prolifer-

ation, differentiation to a memory CTL, and activation of memory cells. The memory

CTLs are then governed by differentiation to become a memory CTL, natural death,

and DC-induced activation. The recirculation of the CTL subsets is modeled by the

migration between compartments and, for the spleen compartment, the DC-induced

response. The function µSB(DSpleen) allows for the capture of a DC-induced ‘trapping’

effect in the spleen, where the retention of T cells in lymph nodes is dependent on

the presence of DCs. Numerical simulations in conjunction with data fitting helped

in identifying influential parameters in the DC-CTL interaction.

2.3.2 de Pillis et al. (2013) Model

In 2013, de Pillis et al. proposed a modification and extension of the Ludewig

et al. (2004) model, most notably by the addition of a tumor compartment. DC

therapy seeks to eradicate tumor cells by exciting a tailored immune response. The
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de Pillis et al. (2013) model captures the dynamics of immune system excitement in

the spleen compartment and the dynamics of eradication in the tumor compartment.

The blood compartment captures transport between the other two. Their model of 9

DDEs and ODEs consisted of DCs in the blood, tumor, and spleen, activated CTLs

in the blood, tumor, and spleen, memory CTLs in the blood and spleen, and tumor

cells. The governing equations of the de Pillis et al. (2013) model are as follows:

d

dt
Dblood = −µBDblood︸ ︷︷ ︸

migration

+µTBDtumor︸ ︷︷ ︸
migration

+ vblood(t)︸ ︷︷ ︸
injection

(2.3.4a)

d

dt
Ea
blood = µSB(Dspleen)Ea

spleen︸ ︷︷ ︸
migration

− µBBE
a
blood︸ ︷︷ ︸

clearance/extravasation

(2.3.4b)

d

dt
Em
blood = µSB(Dspleen)Em

spleen︸ ︷︷ ︸
migration

− µBBE
m
blood︸ ︷︷ ︸

clearance/extravasation

(2.3.4c)

d

dt
Dspleen = MaxD

(
1− e

(
−µBSDblood

MaxD

))
︸ ︷︷ ︸

migration

− aDDspleen︸ ︷︷ ︸
death

− bDEEa
spleenDspleen︸ ︷︷ ︸

death by CTL

(2.3.4d)

d

dt
Ea
spleen = µBSEE

a
blood︸ ︷︷ ︸

migration

−µSB(Dspleen)Ea
spleen︸ ︷︷ ︸

migration

+ baDspleenE
m
spleen︸ ︷︷ ︸

activation

+ aEaSDConEnaive︸ ︷︷ ︸
activation

− aEaSEa
spleen︸ ︷︷ ︸

death

− ramE
a
spleen︸ ︷︷ ︸

becoming memory

+ bp
Dspleen(t− τD)Ea

spleen(t− τD)
θD +Dspleen(t− τD)︸ ︷︷ ︸

proliferation

(2.3.4e)

d

dt
Em
spleen = ramE

a
spleen︸ ︷︷ ︸

becoming memory

− aEmEm
spleen︸ ︷︷ ︸

death

− baDspleenE
m
spleen︸ ︷︷ ︸

activation

+µBSEE
m
blood︸ ︷︷ ︸

migration

− µSB(Dspleen)Em
spleen︸ ︷︷ ︸

migration

(2.3.4f)

d

dt
Ea
tumor = µBB

T

α + T
Ea
blood︸ ︷︷ ︸

tumor recruitment

− aEaTEa
tumor︸ ︷︷ ︸

death

− cEa
tumorT︸ ︷︷ ︸

inactivation by tumor

(2.3.4g)
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d

dt
T = rT

(
1− T

k

)
︸ ︷︷ ︸

growth

− d

(
Eatumor
T

)l
s+

(
Eatumor
T

)lT
︸ ︷︷ ︸

death by CTL

(2.3.4h)

d

dt
Dtumor = mT

q + T︸ ︷︷ ︸
tumor recruitment

−µTBDtumor︸ ︷︷ ︸
migration

− aDDtumor︸ ︷︷ ︸
death

+ vtumor(t)︸ ︷︷ ︸
injection

(2.3.4i)

Murine melanoma data from Lee et al. (2007) was used in calibrating model pa-

rameters. Simulations of tumor growth were validated against the data, then explored

through various dosing strategies. They concluded that even with the most aggressive

dosing regimen, regardless of whether an intratumoral or intravenous injection, DC

treatment could not completely eradicate the tumor after the tumor had already pre-

sented itself. However, if DC treatment was administered before the tumor challenge,

with the fractional tumor kill rate by CTLs sufficiently large, the tumor was able to

be eradicated. Due to the complexity of the model, they were limited in their ability

to do mathematical analysis.

2.3.3 Our Model

Our model is based on the de Pillis et al. (2013) model with several main modifi-

cations. The de Pillis et al. (2013) model captures the interactions between DCs, acti-

vated and memory CTLs, and tumor cells in spleen, blood and tumor compartments.

DC therapy consists of injecting activated DC cells intravenously or intratumorally.

DCs then travel through the blood to the spleen where they stimulate the activation

of CTLs, which in turn travel through the blood back to the tumor to eradicate tu-

mor cells. In the de Pillis et al. (2013) model, the blood is a means of transport for

dendritic cells and effector cells between the spleen and the tumor. The primary fo-

cus of their work involved examining optimal hypothetical DC treatments. From the

perspective of the tumor, the treatment has the net effect of changing the flow of DCs
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and active CTLs into the tumor. Since we are chiefly interested in the effectiveness of

the therapy, it is reasonable to model some of the interactions away from the tumor

compartment implicitly, rather than explicitly. To that end, we introduce a delay to

account for the history of the DCs and CTLs as they travel through the blood to

the spleen. This allows us to model the activation of naive and memory CTLs in the

blood, while implicitly accounting for the fact that activation actually takes place

in the spleen. Our first reduced model (intermediate model) of 6 DDEs and ODEs

captures the movement between two compartments: the blood and the tumor. In

retaining the tumor compartment, the dynamics of excitement and eradication are

thus still accounted for. The model consists of DCs in the blood (Db), DCs in the

tumor (Dt), tumor cells (T ), memory CTLs in the blood (Em
b ), activated CTLs in

the blood (Ea
b ), and activated CTLs in the tumor (Ea

t ), all of which are represented

by the circles in Figure 2.1. We additionally incorporate the effect of competition for

space within the tumor compartment by adding negative feedback on the tumor cell

growth from activated CTLs and DCs, as also shown in Figure 2.1.

The other major change is the choice of functional response for the interactions

between CTLs and DCs. The de Pillis et al. (2013) model assumes naive cells are

activated at a constant rate when DCs are present. To reflect the biology of the

cell-cell interactions better, we instead allow Michaelis-Menten kinetics to govern the

interaction between naive CTLs and DCs. Finally, we assume a constant influx of

activated CTLs from the spleen to the blood. We refer to the resulting model as the

intermediate model. Figure 2.1 provides a diagram of the intermediate model.

The intermediate model is given by the following system:

dDb

dt
= vb(t)︸ ︷︷ ︸

injection

+ µTBDt︸ ︷︷ ︸
migration

−µBTDb
T

KT + T︸ ︷︷ ︸
tumor recruitment

− δDDb︸ ︷︷ ︸
death

, (2.3.5a)
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𝑘
) 

𝐸𝑛 

𝐷𝑖  

Figure 2.1: The Interactions Governing (2.3.5). Dashed Lines Represent a Catalytic Ef-

fect, Flat-Headed Arrows Represent an Inhibitory Effect, and Straight Arrows Connecting

Populations Represent Movement Between Populations, Whether Through Entering a New

Compartment or Becoming Activated/Inactivated. The Circles Represent the Variables of

the System, While Squares Represent Cell Populations Per Day Assumed to Be Constant.

Db, Dt, E
m
b , E

a
b , E

a
t , T, En, and Di Represent DCs in the Blood, DCs in the Tumor, Memory

CTLs in the Blood, Activated CTLs in the Blood, Activated CTLs in the Tumor, Tumor

Cells, the Number of Naive CTLs Activated/Proliferating Per Day, and the Number of

Immature DCs Being Activated Per Day. The µ Parameters Represent Maximum Trans-

fer Rates Between Compartments, δ Parameters Reflect Death of the Cell Populations,

and s Parameters Act As Source Terms. Intratumoral and Intravenous DC Injections Are

Given by vt(t) and vb(t) Respectively. r, k, ct, ce, bm, and ram Reflect the Tumor Cell Growth

Rate, Tumor Cell Carrying Capacity, Maximum Rate Activated CTLs Kill the Tumor Cells,

Maximum Rate Tumor Cells Inactivate CTLs, Maximum Activation/Proliferation Rate of

Memory CTLs by DCs, and Natural Inactivation Rate of Activated CTLs. All Parameter

Values and Descriptions Are Listed in Table C.1.
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dDt

dt
= vt(t)︸ ︷︷ ︸

injection

+Di
T

KT + T︸ ︷︷ ︸
activation

+µBTDb
T

KT + T︸ ︷︷ ︸
tumor recruitment

− µTBDt︸ ︷︷ ︸
migration

− δDDt︸ ︷︷ ︸
death

, (2.3.5b)

dEa
b

dt
= sEa︸︷︷︸

source

+ e−δEaτ
Db(t− τ)En
θn +Db(t− τ)︸ ︷︷ ︸

activation/proliferation

+ bme
−δEaτDb(t− τ)Em

b (t− τ)
θm +Db(t− τ)︸ ︷︷ ︸

activation/proliferation

− ramE
a
b︸ ︷︷ ︸

becoming memory

−µBTEEa
b

T

KT + T︸ ︷︷ ︸
migration

− δEaEa
b︸ ︷︷ ︸

death

, (2.3.5c)

dEa
t

dt
= µBTEE

a
b

T

KT + T︸ ︷︷ ︸
migration

− ce
Ea
t

KEat
+ Ea

t

T︸ ︷︷ ︸
inactivation by tumor

− δEaEa
t︸ ︷︷ ︸

death

, (2.3.5d)

dEm
b

dt
= sEm︸︷︷︸

source

− bme−δEaτ
Db(t− τ)Em

b (t− τ)
θm +Db(t− τ)︸ ︷︷ ︸

activation/proliferation

+ ramE
a
b︸ ︷︷ ︸

becoming memory

− δEmEm
b︸ ︷︷ ︸

death

, (2.3.5e)

dT

dt
= rT

(
1− T + Ea

t +Dt

k

)
︸ ︷︷ ︸

growth

− ct
Ea
t

KEat
+ Ea

t

T︸ ︷︷ ︸
death by CTL

. (2.3.5f)

A description of the model parameters, their values for fitting along with the

related sources from the literature are given in Table C.1. The parameters unable to

be found in literature were fixed using melanoma data from Lee et al. (2007).

The behavior of the DCs moving between the blood and tumor compartments is

captured through Equations (2.3.5a) and (2.3.5b) respectively. The functions vb(t)

and vt(t) are source terms modeling intravenous and intratumoral DC injections. As

functions of time, these source terms allow for numerical testing of dosing strategies.

DC transfer from the blood to the tumor occurs at a maximum rate of µBT , with the

population of tumor cells catalyzing the movement. Once the DCs are sensitized and

loaded with tumor antigens, they leave the tumor to migrate towards the lymphoid

organs via the blood at a maximum rate of µTB to interact with the CTLs. A daily

number of immature DCs, Di, become sensitized and activated as they interact with
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the tumor cells. Following standard practice as in Kirschner and Panetta (1998), the

model assumes Michaelis-Menten kinetics in all immune and tumor-immune interac-

tions. The Michaelis-Menten kinetics allow for a representation of saturated immune

responses and can also capture the effects of only portions of the tumor being able to

interact with the immune cells at a time.

The activated CTLs migrate between the blood and tumor compartments as given

by Equations (2.3.5c) and (2.3.5d). The prolonged interaction between DCs and CTLs

required for activation and the time accounting for their travel from the lymphoid

organs are represented by a delay in interactions between memory and naive CTLs

and DCs. Through these interactions with the DCs, the naive and memory CTLs

are instructed to multiply at maximum rates bn and bm respectively. Following an

absence of contact with the tumor-associated antigen, activated CTLs in the blood

return to a resting memory state at rate ram (Berard and Tough, 2002). We assume

a constant influx sEa of activated CTLs from the spleen to the blood. The presence

of the tumor helps to catalyze the migration of the activated CTLs from the blood

to the tumor at a maximum rate of µBTE. Once in the tumor, the activated CTLs

interact with the tumor, becoming inactivated by the tumor cells at a rate of ce.

Equation (2.3.5e) governs the dynamics of the memory CTLs in the blood. We

assume a constant influx sEm of memory CTLs from the spleen to the blood. Addi-

tionally, the activation of memory CTLs acts as a loss, and inactivation of Ea
b acts as

a source term.

The first term of the right-hand side of Equation (2.3.5f) accounts for tumor

growth. In a variety of models, tumor growth has been modeled with a logistic

(de Pillis et al., 2013; Nikolopoulou et al., 2018), exponential (Portz and Kuang,

2013), power law (Dethlefsen et al., 1968), or Gompertzian (Castillo-Montiel et al.,

2015; Norton, 1988) approach. We assume competition for space from the activated
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CTLs and DCs in the tumor compartment negatively impacts the tumor growth. The

activated CTLs kill the tumor cells at rate ct. By using Michaelis-Menten kinetics to

govern the killing of the tumor cells, we are able to capture the effects of melanoma

being a solid tumor, where immune cells can only contact fractions of the tumor at a

time.
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(a) Intermediate Model (2.3.5)
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(b) de Pillis et al. (2013) Model

Figure 2.2: The Fit to the Data from Lee et al. (2007) with (a) the Intermediate DDE and

ODE Model (2.3.5), and (b) the de Pillis et al. (2013) Model. Mean Relative Errors for the

Fits Are Given in Table 2.3.

To determine the validity of our biological assumptions and simplifications, we

compare our model to the de Pillis et al. (2013) model using the clinical data in Lee

et al. (2007), extracted by means of WebPlotDigitizer (Rohatgi, 2019). The mice

experiments in Lee et al. (2007) examine the tumor volume with and without DC

treatment. All mice were injected with 5 × 105 B16-F10 cells to induce malignant

melanomas. Intratumoral doses ranging from 0 to 21× 105 DCs were administered 6,

8, and 10 days following the B16-F10 cell inoculation. In computing tumor volume,

we assume tumor cells are spherical. We approximate the diameters to be 20 µm, in

accordance with the mean B16-F10 cell diameter recorded in recent measurements
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(Polo-Parada et al., 2017).

The MATLAB solver ode15s is employed in numerically solving the system to

produce Figure 2.2, as well as all figures in this chapter, unless otherwise explicitly

noted. The Nelder-Mead simplex algorithm (Lagarias et al., 1998) is used to find

the free parameters that minimize the mean squared error (MSE) between the model

simulations and the mice data. From Figure 2.2a, we observe our intermediate model

can closely reproduce the experimentally observed tumor reductions from various

doses of DCs. While fitting data does not necessarily validate mathematical mod-

els, the ability of our model to describe clinical data does help justify incorporating

our additional biological details and simplifications. Additionally, we note that even

though the intermediate model is simpler than the de Pillis et al. (2013) model, it is

comparable in terms of fitting, as outlined in Table 2.3 and demonstrated in Figure

2.2.

The solutions of system (2.3.5) should remain non-negative and bounded, as the

model captures the cell populations over time. We establish these properties in the

following.

Proposition 2.3.1 Suppose that vb(t) and vt(t) are smooth, bounded functions of

t, with vb(t) + vt(t) ≤ v. All solutions in R6
+ exist for all t > 0 and are attracted by

the forward invariant compact set

O = {(Db, Dt, E
a
b , E

a
t , E

m
b , T ) ∈ R6

+ : Db +Dt ≤
v +Di

δD
, Ea

b + Ea
t ≤ C0,

Em
b ≤

smE + ramC0

δmE
, T ≤ k},

where C0 = (saE + smE + Ene
−δaEτ )/δmE .

Proof. We first show R6
+ is positively invariant. If not, there exists some t1 > 0

such that Db(t1) = 0, Dt(t1) = 0, Ea
b (t1) = 0, Em

b (t1) = 0, or T (t1) = 0. Since (2.3.5f)
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takes the form Ṫ = TF (Ea
t , Dt, T ), then

T (t1) = T (0)exp
(∫ t1

0
F (Ea

t (s), Dt(s), T (s)
)
ds > 0,

a contradiction. We then examine the case where Ea
t (t1) = 0. Then Ėa

t (t) ≥ −δaEEa
t ,

∀t ∈ [0, t1]. Thus, Ea
t (t1) ≥ Ea

t (0)e−δaEt1 > 0, a contradiction. Similar arguments

extend to the remaining variables, and R6
+ is forward invariant.

By (2.3.5f), it follows that Ṫ ≤ rT (1 − T
k

). Then lim supt→+∞ T (t) ≤ k. Let

D = Db + Dt. Since vb and vt are bounded, there exists a positive constant v such

that Ḋ ≤ v + Di − δDD. Therefore, lim supt→+∞(Db(t) + Dt(t)) ≤ v+Di
δD

. Take

Eb = Ea
b + Em

b , and let C0 = saE+smE+Ene−δ
a
E
τ

δmE
. Since we always have that δaE ≥ δmE by

definition, Ėb ≤ smE +saE+Ene−δ
a
Eτ−δmEEb, and lim supt→+∞(Ea

b (t)+Em
b (t)) ≤ C0. As

Ea
b ≤ C0, then Ėm

b ≤ smE + ramC0− δmEEm
b . Hence lim supt→+∞E

m
b (t) ≤ smE+ramC0

δmE
. As

long as the solutions to system (2.3.5) exist, the inequalities hold. The boundedness

implies the solution exists for all t > 0, and the proof is complete. 2

Having formulated the intermediate model, we go on to make several simplify-

ing assumptions supported by biological observations. Through studying a variety of

species, including both mice (Tough and Sprent, 1994) and humans (Michie et al.,

1992; McCune et al., 2000), the memory T cells have been found to turn over faster

than the naive T cells. We assume this turnover is happening rapidly such that the

memory CTLs are at a quasi-steady state. Additionally, since the model is only in-

tended to assess treatment for a short period of time, we can reasonably assume the

DC movement between the blood and tumor compartments is independent of the

tumor size during the brief period being considered. We simplify the representation

of cell-cell interactions by supposing mass action kinetics as opposed to Michaelis-

Menten. We assume that the proportion of activated CTLs in the tumor, Eat
Eat +Ea

b
,

is approximately constant. This constant ratio allows us to combine (2.3.5c) and
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(2.3.5d) into a single equation for the effector cells, given by (2.3.6c). These as-

sumptions lead to further model reductions and the formulation of the reduced model

(2.3.6), which is analytically tractable.

Table 2.1: Variables of the Simplified Model (in cells)

Variable Description

Db Dendritic cells in the blood

Dt Dendritic cells in the tumor

E Activated CTLs

T Tumor cells

The variables of the simplified model, their meanings, and their units are listed in

Table 2.1. Parameter values are outlined in Table C.2. The simplified system takes

the following form:

dDb

dt
= vb(t)− µBTDb + µTBDt − δDDb (2.3.6a)

dDt

dt
= vt(t) +DiT + µBTDb − µTBDt − δDDt (2.3.6b)

dE

dt
= sE + cDb − ceET − (ram + δE)E (2.3.6c)

dT

dt
= rT

(
1− T + E +Dt

k

)
− ctET (2.3.6d)

The assumptions that lead to the reduced model are further justified by a fit to

clinical data, as displayed in Figure 2.3.

Despite the reductions made, the model remains able to describe the data from

all four trials with a single set of fixed, biologically reasonable parameters. As the

simplified model is comparable in terms of fitting to both the de Pillis et al. (2013)

model and the intermediate model, as outlined in Table 2.2 and Figures 2.2 and 2.3,

it is worth mathematically studying to extract insights since the complexity of the
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Figure 2.3: The Fit to the Data From Lee et al. (2007) with the Simplified ODE Model

(2.3.6). The Mean Relative Error for the Fit Is Given in Table 2.3.

other models allows for far less analysis.

Table 2.2: Mean Relative Errors for Various Model Formulations

Model Mean Relative Error

System (2.3.5): Intermediate Model (DDE and ODE) 0.204766

System (2.3.6): Simplified Model (ODE) 0.230647

de Pillis et al. (2013) Model 0.291335

2.4 Preliminary Analysis

The analysis that follows is based on the reduced model given by system (2.3.6). In

this Section, we establish basic results of the model like well-posedness, dissipativity,

and the existence of equilibria. In addition, we determine the basic reproduction

number R0. Unless otherwise stated, we assume that all of the parameters of (2.3.6)

are positive.
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Proposition 2.4.1 Suppose that vb(t) and vt(t) are smooth, bounded functions of

t. Then system (2.3.6) is well-posed and point dissipative.

Proof. Let x = (Db, Dt, E, T ) and let φt be the flow of (2.3.6). Writing (2.3.6)

as the vector equation x = f(t, x), since vb(t) and vt(t) are smooth, we have that f

is continuously differentiable and x = f(t, x) is well-posed. By examining the flow

on the boundary, we see that for i = 1, 2, 3, if xi = 0 then (φt(x))i > 0 for t > 0.

The subspace {x ∈ R4|T = 0} is fully invariant. By the previous arguments, the

restriction of this fully invariant to its intersection with the non-negative orthant is

forward invariant. By Grönwall’s inequality, if x4 > 0, then (φt(x))4 > 0.

It follows that Ṫ ≤ rT (1− T
k

). Given T (0) ≥ 0, given ε > 0, there exists t0 such

that T (t) < k + ε for all t > t0. Since vb and vt are bounded, there exist positive

constants C1 and C2 such that if D = Db + Dt, then Ḋ < C1 − C2D for t > t0. It

follows that given ε > 0, there exists t1 > t0 such that D(t) = Db(t) +Dt(t) < C1
C2

+ ε

for all t > t1. Taken together, there exists positive constants C3 and C4 such that

Ė < C3 − C4E for t > t1. Given ε > 0, there exists t2 > t1 such that E(t) < C3
C4

+ ε

for all t > t2. Fix ε > 0 and let C5 = max(k, C1
C2
, C3
C4

) + ε. For any non-negative initial

condition x, there exists t2 > 0 such that φt+t2(x) ∈ [0, C5]4 for all t > 0. Thus,

system (2.3.6) is point dissipative. 2

For the purpose of simplifying the mathematical analysis we make the assump-

tion that vb(t) = vb and vt(t) = vt are constant and non-negative, modeling as if a

continuous dose is being administered through an IV. The next result is the existence

and uniqueness of a tumor-free equilibrium.

Proposition 2.4.2 Let vb(t) = vb and vt(t) = vt be constant and non-negative.

System (2.3.6) admits the unique tumor-free equilibrium E0 = (Db∗, Dt∗, E∗, 0).

Proof. Suppose T = 0, then Ṫ = 0, and (2.3.6a) and (2.3.6b) decouple from (2.3.6)
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to form the planar cooperative system:

Ḋb = vb − δDDb − µBTDb + µTBDt

Ḋt = vt − δDDt + µBTDb − µTBDt,

(2.4.7)

which admits the unique equilibrium (Db∗, Dt∗) given by

Db∗ = µTBvt + (δD + µTB)vb
δD(δD + µBT + µTB) ; Dt∗ = (δD + µBT )vt + µBTvb

δD(δD + µBT + µTB) .

Substituting T = 0 and Db = Db∗ into (2.3.6c) yields

E∗ = se + cDb∗
∼
δE

.

2

The treatment we are considering involves tailoring the immune system to launch

an enhanced response targeting tumor cells. From the perspective of the immune

system in this context, tumor cells can be viewed as similar to an infectious disease.

We borrow the notion of the basic reproduction number from the study of infectious

disease dynamics. The basic reproduction number, denoted R0, is defined as the

average number of secondary infections generated by a single infectious individual in

a totally susceptible population during the lifetime of the infectious individual. In

the present context, the basic reproduction number can be viewed as a ratio of the

proliferation potential of a tumor cell to the strength of a combination of the immune

response and crowding effects. The basic reproduction number can be calculated

using the next generation matrix approach (Diekmann et al., 1990; van den Driessche

and Watmough, 2002).

Proposition 2.4.3 Let vb(t) = vb and vt(t) = vt be constant and non-negative. The

basic reproduction number R0 is given by

R0 = k(
1 + kct

r

)
E∗ +Dt∗

. (2.4.8)
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Proof. Note Ṫ = F(Db, Dt, E, T ) − V(Db, Dt, E, T ), where F represents the new

infections (tumor cells) and V represents the rate of tumor cells leaving the system.

We can then decouple (2.3.6d) from the rest of (2.3.6) when close to the disease-free

equilibrium, E0. Thus dT
dt

= (F − V )T . We then have:

F =
(
∂F
∂T

) ∣∣∣∣∣∣
E0

= r; V =
(
∂V
∂T

) ∣∣∣∣∣∣
E0

= r

k
(E∗ +Dt∗) + ctE∗.

Now the next generation operator FV −1 = k

(1+ kct
r )E∗+Dt∗ . Therefore,

R0 = k(
1 + kct

r

)
E∗ +Dt∗

, (2.4.9)

where E∗ and Dt∗ correspond to the steady states of the activated CTLs and DCs in

the tumor when the system is tumor-free. 2

Remark 2.4.4 Suppose that r is the dominant eigenvalue of the Jacobian of (2.3.6)

evaluated at E0. Then r and R0 − 1 have the same sign. In models of infectious

disease dynamics, it is common that the disease-free equilibrium undergoes a trans-

critical bifurcation as R0 increases through the critical value R0 = 1 resulting in the

emergence of a unique positive equilibrium. However, system (2.3.6) produces more

complicated dynamics. While it is indeed the case that (2.3.6) admits a unique posi-

tive equilibrium when R0 > 1, it may admit two positive equilibria when R0 < 1. We

will see that the existence of these two positive equilibria is the result of a backward

bifurcation in Section 2.5.

Proposition 2.4.5 Let vb(t) = vb and vt(t) = vt be constant and non-negative. If

R0 ≥ 1, then there exists a unique positive equilibrium, E1. For k sufficiently large,

there exists constants C6 and Rcrit such that if ce > C6 and Rcrit < R0 < 1, then in

addition to E1, there exists an additional positive equilibrium, E2.
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Proof. Suppose T ∗ > 0. From (2.3.6a),

D∗b = µTB
δD + µBT

D∗t + vb
δD + µBT

. (2.4.10)

From Ḋt = 0, we have

D∗t = Di(δD + µBT )
δD(δD + µBT + µTB)T

∗ + vt(δD + µBT ) + vbµBT
δD(δD + µBT + µTB) = c4T

∗ +Dt∗. (2.4.11)

Combining (2.4.10) and (2.4.11) yields

D∗b = DiµTB
δD(δD + µBT + µTB)T

∗ + vtµTB + vb(δD + µTB)
δD(δD + µBT + µTB) = c3T

∗ +Db∗. (2.4.12)

From Ṫ = 0, T ∗ = 0 or

E∗ = −(1 + c4)
1 + kct

r

T ∗ + k −Dt∗

1 + kct
r

. (2.4.13)

Recall that for T (0) > 0, after finite time we have 0 < T < k+ε. Therefore, (Ḋb, Ḋt)T

is greater than the monotone planar system (2.4.7). It follows that D∗b > Db∗ − ε in

finite time. Therefore, after finite time Ė > sE + cDb∗ − (
∼
δE + k)E. Thus, we must

have that E∗ > 0.

Substituting (2.4.12) and (2.4.13) into Ė = 0 yields g(T ) = A0T
2 +A1T +A2 = 0

where:

A0 = ce(1 + c4)
1 + kct

r

, (2.4.14a)

A1 = cc3 +
∼
δE(1 + c4)

1 + kct
r

− ce(k −Dt∗)
1 + kct

r

, (2.4.14b)

A2 =
∼
δE

1 + kct
r

(1 + kct
r

)
sE + cDb∗

∼
δE

+Dt∗ − k

 . (2.4.14c)

Note that sgn(A2) = sgn(1−R0). If R0 > 1, then A2 < 0 and g(T ) is a concave

up parabola with g(0) < 0. Therefore, there exists a unique positive solution, T ∗1

of g(T ) = 0 when R0 > 1. In light of equations (2.4.12), (2.4.11) and (2.4.13),
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E1 = (D∗b (T ∗1 ), D∗t (T1), E∗(T ∗1 ), T ∗1 ) is the unique positive equilibrium of (2.3.6) when

R0 > 1.

Now, R0 is monotonically decreasing in sE with limsE→∞R0 = 0. Rewriting

A2 = sE + cDb∗−
∼
δE

k−Dt∗
1+ kct

r

, it is clear that limsE→∞A2 = +∞. Suppose that initially

R0 > 1, as in the previous case. We increase sE until R0 = 1. Then A2 = 0 and

g(T ∗) has two real roots, T ∗ = 0 and T ∗ = −A1
A0

. If

ce > C6 =
1 + kct

r

k −Dt∗

(
∼
δE

1 + c4

1 + kct
r

+ cc3

)
, (2.4.15)

then A1 < 0 and T ∗ = −A1
A0

> 0. By continuity, there exists δ > 0 such that g(T ∗) has

two real distinct positive roots for 1 − δ < R0 < 1. Now consider the discriminant,

D = A2
1 − 4A0A2, of g. If R0 = 1, then D = A2

1 > 0. Since A2 monotonically

increases from zero as we decrease R0 (say by increasing sE), there exists a unique

s1 such that if sE = s1, then A2 = A2
1

4A0
which implies that D = 0. Let

Rcrit = k

(1 + kct
r

) s1+cDb∗
∼
δE

+Dt∗
. (2.4.16)

It follows that if ce > C6, then g(T ∗) has two positive roots T ∗1 > T ∗2 for Rcrit < R0 <

1. Setting Ei = (D∗b (T ∗i ), D∗t (Ti), E∗(T ∗i ), T ∗i ) for i = 1, 2 completes the proof. 2

The next two results are related to the stability of the tumor-free equilibrium,

E0. It was noted in the proof of Proposition 2.4.1 that the subspace {(Db, Dt, E, T ) ∈

R4|T = 0} is fully invariant. Let X2 be the intersection of this fully invariant subspace

with the non-negative orthant. From examination of the flow on the boundary, it

follows that X2 is forward invariant. The following result deals with the stability

of the tumor-free equilibria in X2. At first glance, this result may appear to lack

biological relevance. However, it is critical ground work for later results regarding the

existence or eradication of the tumor.
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Proposition 2.4.6 Let vb(t) = vb and vt(t) = vt be constant and non-negative.

The tumor-free equilibrium is globally asymptotically stable (G.A.S.) in the forward

invariant boundary subspace X2.

Proof. As noted in the proof of Proposition 2.4.2, when T = 0, (2.3.6a) and

(2.3.6b) decouple from system (2.3.6) to form the monotone planar system (2.4.7)

which admits the equilibrium (Db∗, Dt∗). Let D = Db + Dt. Then Ḋ = Ḋb + Ḋt =

v − δDD, where v = vb + vt. Thus, for any D(0) ≥ 0,

lim
t→∞

D(t) = lim
t→∞

Db(t) +Dt(t) = v

δD
.

It follows from application of Theorem 2.2 of Smith (1995), that solutions of (2.4.7)

with non-negative initial conditions converge to (Db∗, Dt∗). Therefore, for any ε > 0,

solutions of (2.4.7) with non-negative initial conditions enter {(Db, Dt) : |Db−Db∗| <

ε} in finite time.

The remaining equation describing the flow in X2 is given by

Ė = sE + cDb −
∼
δEE,

where
∼
δE = ram + δE. For any ε > 0, for any initial data in X2, after finite time

sE + c(Db∗ − ε)−
∼
δEE < Ė < sE + c(Db∗ + ε)−

∼
δEE.

The result follows by the comparison principle. 2

Next we consider the stability of E0 in the in the full space R̄4
+. At this stage, we

are limited to local stability analysis.

Proposition 2.4.7 Let vb(t) = vb and vt(t) = vt be constant and non-negative.

E0 = (Db∗, Dt∗, E∗, 0) is locally asymptotically stable when R0 < 1 and unstable

when R0 > 1.
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Proof. The Jacobian of system (2.3.6) evaluated at the tumor-free equilibrium E0

is given by

J|E0 =



−µBT − δD µTB 0 0

µBT −µTB − δD 0 Di

c 0 −
∼
δE −ceE∗

0 0 0 r
(
1− 1

R0

)


, (2.4.17)

which admits eigenvalues

λ1 = r
(

1− 1
R0

)
;λ2 = −

∼
δE;λ3 = −δD;λ4 = −(δD + µTB + µBT ).

Thus, E0 is locally asymptotically stable when R0 < 1. E0 is unstable when R0 > 1.

2

2.5 Backward Bifurcation and Bistability

In this section we return attention to the possibility of the existence of two posi-

tive equilibria described in Proposition 2.4.5. In Remark 2.4.4 we allude to the fact

that, in epidemiological models, it is typical for a disease-free equilibrium to un-

dergo a transcritical bifurcation with a unique positive equilibrium as R0 increases

through the critical value of 1. Another possibility is that of a backward bifurcation.

Backward bifurcations in epidemiological models have been associated with modeling

assumptions that lead to loops among infected and susceptible classes as a result of

reinfection or waning immunity, for example. Our next result is a proof of the exis-

tence of a backward bifurcation in system (2.3.6), via analysis of the center manifold

and Theorem 4.1 of Castillo-Chavez and Song (2004), reproduced below for conve-

nience. Interestingly, this backward bifurcation relies on the rate that activated CTLs

are inactivated as a result of interacting with tumor cells. One feature of backward

bifurcations in epidemiological models is that they can generally be eliminated by
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assuming mass action, rather than frequency-dependent functional response. Similar

to a tuberculosis model outlined in Gumel (2012), it is possible to exhibit backward

bifurcation in models with mass action functional response, and system (2.3.6) is an

example of that.

Theorem 1 (Castillo-Chavez and Song (2004)) Consider the following general

system of ODEs with a parameter φ :

dx

dt
= f(x, φ), f : Rn × R→ R and f ∈ C2(Rn × R), (2.5.18)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and

assume

A1: A = Dxf(0, 0) =
(
∂fi
∂xj

(0, 0)
)

is the linearization matrix of system (2.5.18)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue

of A and all other eigenvalues of A have negative real parts;

A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v corre-

sponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1
vkwiwj

∂2fk
∂xi∂xj

(0, 0), (2.5.19)

b =
n∑

k,i=1
vkwi

∂2fk
∂xi∂φ

(0, 0). (2.5.20)

The local dynamics of (2.5.18) around 0 are totally determined by a and b.

i. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable, and

there exists a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable and

there exists a negative and locally asymptotically stable equilibrium;
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ii. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0 is

locally asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ� 1, 0 is stable, and a

positive unstable equilibrium appears;

iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stabil-

ity from stable to unstable. Correspondingly a negative unstable equilibrium

becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Rearranging (2.4.9), it follows that

sgn(R0 − 1) = sgn
(
k − E∗ +Dt∗

1− ct
r
E∗

)
.

It is always possible make 1− ct
r
E∗ > 0, by making ct sufficiently small. That is, if

ct < C7 = r

E∗
(2.5.21)

then there exists unique k∗ > 0 such that k = k∗ implies that R0 = 1. In applying

the above theorem, we use k∗ as the bifurcation parameter in place of φ.

Theorem 2 Let vb(t) = vb and vt(t) = vt be constant and non-negative. If R0 = 1

and ct < C7, then there exists C8 > 0 such that system (2.3.6) undergoes a backward

bifurcation at E0 as ce increases through C8.

Proof. We first recall the Jacobian, J , of (2.3.6) evaluated at the disease-free

equilibrium, E0, is given by (2.4.17) where j44 = r
(
1− 1

R0

)
is the only non-zero

entry of J in the fourth row. Since ct < C7, ∃!k∗ > 0 such that k = k∗ implies

R0 = 1. Setting k = k∗, we have that zero is a simple eigenvalue of J , and all
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other eigenvalues have negative real part. Hence, we apply center manifold theory to

analyze the dynamics near k = k∗. The right eigenvector of J associated with the

eigenvalue 0 is given by

w =
[
c3, c4,

cc3 − ceE∗
∼
δE

, 1
]T
,

where c3 and c4 are given in (2.4.12) and (2.4.11), respectively. The left eigenvector

associated to the eigenvalue 0 is given by

v = [0, 0, 0, 1].

Rewrite (2.3.6) as ẋ = f(x, φ), where x and f(x, φ) are vectors in R4 and φ = k.

Following Castillo-Chavez and Song (2004), we compute the following sums:

a =
n∑

k,i,j=1
vkwiwj

∂2fk
∂xi∂xj

(E0, k
∗); b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂φ

(E0, k
∗).

Since v = [0, 0, 0, 1], we need only consider the partial derivatives of f4(x). We then

calculate:

∂f4

∂x1
= 0,

∂f4

∂x2
= − r

k
T,

∂f4

∂x3
= − r

k
T − ctT,

∂f4

∂x4
= r

1−
T +

(
1 + kct

r

)
E +Dt

k

− r

k
T.

Evaluated at (E0, k
∗), the nonzero second order partial derivatives are as follows:

∂2f4

∂x4∂x2
(E0, k

∗) = ∂2f4

∂x2∂x4
(E0, k

∗) = − r
k
,

∂2f4

∂x4∂x3
(E0, k

∗) = ∂2f4

∂x3∂x4
(E0, k

∗) = −
(
r

k
+ ct

)
,

∂2f4

∂x2
4

(E0, k
∗) = −2 r

k
.
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It then follows that

a = w4w2
∂2f4

∂x4∂x2
+ w4w3

∂2f4

∂x4∂x3
+ w2w4

∂2f4

∂x2∂x4
+ w3w4

∂2f4

∂x3∂x4
+ w2

4
∂2f4

∂x2
4

= −c4
r

k
−

cc3 − ceE∗
∼
δE

( r
k

+ ct

)
− c4

r

k
−

cc3 − ceE∗
∼
δE

( r
k

+ ct

)
− 2 r

k
.

To evaluate b, we first compute

∂f4

∂φ
= rT (T + E +Dt)

k2 .

We then find

∂2f4

∂xi∂φ
(E0, k

∗) = 0, i = 1, 2, 3,

∂2f4

∂x4∂φ
(E0, k

∗) = r(E∗ +Dt∗)
k2 .

Thus direct calculation reveals that

a = −2 r
k

(c4 + 1)− 2
(
r

k
+ ct

)cc3 − ceE∗
∼
δE

 ,
b = r(E∗ +Dt∗)

k2 .

Then b is always positive and a > 0 if and only if

ce > C8 = 1
E∗

(
∼
δE

(
1 + c4

1 + ctk
r

)
+ cc3

)
. (2.5.22)

The statement follows from application of Theorem 4.1 in Castillo-Chavez and Song

(2004), given in Theorem 1. 2

This backward bifurcation consists of two codimension-one bifurcations, a saddle

node bifurcation together with a transcritical bifurcation. By tuning the vertex of

the degree 2 polynomial for T ∗, we can reduce the region of bistability associated

with the backward bifurcation and even eliminate it by making the saddle node and

transcritical bifurcation points to coincide. In this case, we have a pitchfork-like
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bifurcation. We may further perturb the vertex into the infeasible region, T ∗ < 0,

where bistability exists in a mathematical sense, but has no biological meaning. The

critical value where the two bifurcation points collide and result in a pitchfork-like

bifurcation corresponds to making A1 = 0. From (2.4.14b) A1 = 0 if and only if

cc3 +
∼
δE(1 + c4)

1 + kct
r

− ce(k −Dt∗)
1 + kct

r

= 0,

which, when R0 = 1, is equivalent to

cc3 +
∼
δE(1 + c4)

1 + kct
r

− ceE∗ = 0 ⇐⇒ a = 0.

Figure 2.4 illustrates the cases where a > 0, a = 0 and a < 0.

Each bifurcation diagram is produced in MATLAB, examining the stability of the

analytical solutions for the equilibria by way of the Jacobian. The parameter vb is

varied to produce a range of R0 and explore corresponding stability switches. The

diagrams are found in agreement with results generated by the bifurcation analysis

software package XPPAUT (Ermentrout, 2002). The stability of the various branches

of equilibria is determined by Theorem 4.1 of Castillo-Chavez and Song (2004). Since,

k −Dt∗

1 + kct
r

=

((
1 + kct

r

)
E∗ +Dt∗

)
R0 −Dt∗

1 + kct
r

,

we may view C6 as a decreasing function of R0 with C6|R0=1 = C8 and C6 > C8

when R0 < 1. Then R0 = Rcrit corresponds to the saddle node bifurcation point and

R0 = 1 corresponds to the transcritical bifurcation point. Together this results in the

following Corollary. Figure 2.5 illustrates the bistability indicated in the Corollary.

Corollary 2.5.1 Suppose the assumptions of Theorem 2 hold. Then system (2.3.6)

exhibits bistability for Rcrit < R0 < 1.

The next result describes the conditions for the global stability of the tumor-free

equilibrium. We only consider the case in which the system exhibits a backward

bifurcation and a pair of positive equilibria for Rcrit < R0 < 1.
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Figure 2.4: Backward Bifurcation (a), Pitchfork-Like Bifurcation (b) and Transcritical Bifur-

cation (c) of the Tumor-Free Equilibrium E0, with H: Hopf Bifurcation, SN: Saddle-Node

Bifurcation, TC: Transcritical Bifurcation, and P: Pitchfork-Like Bifurcation. The Blue

Lines Represent Stable Equilibria, While the Red Lines Represent Unstable Equilibria.

Theorem 3 Suppose that the conditions of Theorem 2 hold. Then there exists

C9 > 0 such that if R0 < C9, then the tumor-free equilibrium is G.A.S.

Proof. By hypothesis, Corollary 2.5.1 implies that system (2.3.6) admits two

distinct positive equilibria for Rcrit < R0 < 1. By construction, the choice of s1
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Figure 2.5: Bistability Exhibited As Initial Tumor Burden Increases with a Fixed vb =

6.2× 103. We Take vt = 0, µBT = 9.826× 10−9, µTB = 0.0011, δD = 0.34, Di = 0.001, sE =

0.1, c = 3.205, ce = 10−4, ram = 0.01, δE = 0.1155, r = 0.3994, k = 109, ct = 3.5 × 10−6,

Satisfying the Condition (2.5.22) Needed for a Backward Bifurcation.

used to formulate Rcrit in (2.4.16) guarantees that when R0 = Rcrit, the discriminant

D = A2
1 − 4A0A2 = 0. Thus, if R0 < Rcrit, or equivalently, sE > s1, then E0 is the

only equilibrium of (2.3.6). We will proceed using comparison arguments. To that

end, it is necessary to assume that

sE > s2 =
(∼
δE + cek

)
k −Dt∗

1 + kct
r

− cDb∗. (2.5.23)

Let s∗E = max(s1, s2)

C9 = k

(1 + kct
r

) s
∗
E+cDb∗
∼
δE

+Dt∗
. (2.5.24)

Now consider the flow of (2.3.6) when T (0) > 0. From (2d), Ṫ < rT
(
1− T

k

)
.

Therefore, for any ε > 0, there exists t0 > 0 such that T (t) < k + ε, for all t > t0.

Similarly, equations (2.3.6a) and (2.3.6b) are greater than or equal to the planar

system (2.4.7) so that for any ε > 0, there exists t1 > t0 such that Db(t) > Db∗ − ε
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and Dt(t) > Dt∗ − ε, for all t > t1. It follows that, for any ε > 0, for t > t1,

Ė > sE + c(Db∗ − ε)− E(
∼
δE + ce(k + ε)).

For ε > 0, the equilibrium of the linear equation on the right hand side of the

inequality is
se + c(Db∗ − ε)
∼
δE + ce(k + ε)

.

Thus, for ε > 0, there exists t2 > t1 such that

E(t) > sE + cDb∗
∼
δE + cek

− ε,

for all t > t2.

Since R0 < C9, we have sE > s∗E and
(1+ kct

r
) sE+cDb∗
∼
δE+cek

+Dt∗

k
> 1. Fix

ε1 = 1
2

(1 + kct
r

) sE+cDb∗
∼
δE+cek

+Dt∗

2 + kct
r

− k

2 + kct
r

 .
Then, for t > t2,

Ṫ < rT

1−
T + (1 + kct

r
)
[
sE+cDb∗
∼
δE+cek

− ε1

]
+Dt∗ − ε1

k

 < 0.

For t > t2, T (t) is decreasing and bounded below. Thus, limt→∞ T (t) = α < ∞.

By Barbalat’s Lemma, limt→∞ Ṫ = 0. Since sE > s∗E ≥ s1, the only possibility is

α = 0. The omega limit set of the initial point x0 with T (0) > 0 contains a point in the

forward invariant boundary set, X2, described in the comments preceding Proposition

2.4.6. By the Proposition 2.4.6, the omega limit set of any point in X2 is the singleton

{E0}, so {E0} ⊂ ω(x0). If ω(x0) contains a point other than E0, then it would have

to have T > 0, since E0 is G.A.S in X2. However, this is a contradiction of the fact

that limt→∞ T (t) = 0. Thus, ω(x0) = {E0}. 2
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Remark 2.5.2 By the definition of s∗E, we have C9 ≤ Rcrit, with equality when

s1 ≥ s2. Conditions for the positivity of (s1−s2) have proven elusive. The difficulty is

in the requirement that ce > C6, since C6 depends on all of the remaining parameters,

either directly or through dependence on c3 and c4. In the case that s1 < s2, we

have C9 < Rcrit, suggesting that perhaps Rcrit is not a sharp threshold. However,

numerical experiments suggest the stability of E0 for R0 < Rcrit even when s1 < s2.

It remains an open question to close the gap between C9 and Rcrit in the case that

s1 < s2.

An important clinical consideration resulting from a backward bifurcation is its

implication for treatment strategies. As Theorem 3 implies, in the case of a back-

ward bifurcation, more aggressive intervention strategies are required to eradicate the

tumor. Namely, if the conditions of Theorem 2 hold and a conservative treatment

strategy is designed to have the effect of reducing R0 below 1, the tumor will not

be eradicated. However, Db∗ and Dt∗ are monotonically increasing in both vb and

vt. If we view these constants as the average load of injected DCs, this implies more

aggressive treatment strategies can reduce R0 below any positive threshold.

It has been found clinically that response rates for DC vaccines are two to three

times higher in the adjuvant setting when compared to the metastatic setting (Bol

et al., 2016a). In an adjuvant setting, the tumor burden is already lessened by pre-

vious treatments. Additionally, it has been observed that DCs are insufficient as

a monotherapy in treating advanced melanoma, yielding < 10% improvements in

objective response rates. This behavior corresponds qualitatively to what might be

expected in the bistable region described above.
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2.6 Numerical Analysis

2.6.1 Hopf Bifurcation and Periodic Solutions

In addition to a backward bifurcation, numerical experiments indicate the exis-

tence of Hopf bifurcations leading to periodic solutions to system (2.3.6). First, fix

our choice of parameters. If we view R0 as a function of r, then it is an increasing

function of r, since
d

dr
R0(r) = k2ctE∗

((r + kct)E∗ +Dt∗)2 > 0.

Next, we numerically compute the eigenvalues of the Jacobian evaluated at E1. We

do this as we vary r from 0.005 to 7 by increments of 1× 10−3.
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Figure 2.6: Eigenvalues of the Jacobian of (2.3.6) Evaluated at E1 As r Varies from 0.005

to 7 in Increments of 0.001 with vb = vt = 0, µBT = 1.272 × 10−5, µTB = 0.0011, δD =

0.34, Di = 0.00126, sE = 0.01189, c = 0.127, ce = 9.42 × 10−14,
∼
δE = 0.1255, k = 109, and

ct = 0.0035.
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Plotting the eigenvalues in the complex plane we see that a complex conjugate pair

crosses from the left half-plane to the right half-plane at approximately r = 0.233.

This indicates a supercritical Hopf which we can detect via numerical integration of

(2.3.6). The same conjugate pair of eigenvalues cross back at approximately r = 6.806.

Thus, the periodic orbit either disappears, or there is a second subcritical Hopf. The

plot of the eigenvalues as we vary r is generated in R and presented in Figure 2.6.

While the existence of purely imaginary eigenvalues shown in Figure 2.6 is necessary

for the existence of a Hopf bifurcation, the numerical proof of a Hopf bifurcation

is established by the confirmation of Figure 2.4 through XPPAUT’s continuation

package, AUTO (Ermentrout, 2002). An analytical proof of the Hopf bifurcation for

system (2.3.6) remains an open question.

Remark 2.6.1 (Bogdanov-Takens bifurcation) Recall the pitchfork-like bifur-

cation illustrated in Figure 2.4. The bifurcation on the branch equilibria with T < 0

is a Hopf bifurcation. The close proximity of a pitchfork-like bifurcation and Hopf bi-

furcation in the parameter space suggests the possibility of a Bogdanov-Takens (BT)

bifurcation. Since we insist that all parameters other than vb and vt are strictly pos-

itive, the Jacobian evaluated at E0, given in (2.4.17), can have at most a single zero

eigenvalue. However, if we let
∼
δE = 0, J admits a double zero eigenvalue. In the

case of a BT, the magnitude of periodic orbits around equilibria on the positive and

negative branches increase until the birth of homoclinic connections form from the

equilbrium at T = 0. Then a periodic orbit appears which contains all three equi-

libria in its interior (in normal form with interior in the sense of a Jordan curve, cf.

Kuznetsov (1998, p. 329)). However, in our system, the equilibrium with T = 0 is in

the fully invariant set {(Db, Dt, E, T ) ∈ R4|T = 0}. Therefore, once homoclinic orbits

appear, they persist even as the magnitude of oscillations continues to increase. Some
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numerical experiments, as in Figure 2.7, suggest the presence of a homoclinic connec-

tion from E0 to itself as the magnitude of oscillatory solutions increases. In order to

study the BT, we must consider the limit as
∼
δE → 0. However, lim∼

δE→0
E∗ =∞. It

may be possible to make a change of variables ( 1
E∗
→ 0 as

∼
δE → 0). A full analysis

of a possible BT bifurcation is beyond the scope of this chapter.

Figure 2.7: Projection of Limit Cycle in R3 When vb = 0, vt = 0, µBT = 9.826×10−9, µTB =

0.0011, δD = 0.34, Di = 0.001, sE = 5 × 103, c = 3.205, ce = 9.42 × 10−14, ram = 0.01, δE =

0.1155, r = 0.9, k = 5× 1012, and ct = 3.5× 10−6. Simulations Run for t = 2000 Days.

Oscillatory dynamics between the tumor and the immune system suggest periodic

relapses in the tumor approximately every few months given r, the tumor growth

rate, sufficiently high. Biologically, naturally occurring periodic oscillations in tumor

size have been seen in various types of cancers (Fortin and Mackey, 1999). In Figure

2.7, the dynamics are shown to slow down as the periodic limit cycle approaches

the tumor-free saddle E0. Administering an appropriate amount of DC treatment

during the period of an increasing tumor can sufficiently perturb the DC and CTL

populations to shift to the decreasing tumor phase of the limit cycle. Dosing schedules

could then be designed to perturb the system every few months to maintain the tumor
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at low levels.

2.6.2 Dosing Strategies

To consider a clinically relevant treatment, we consider a discrete treatment case

by running simulations up to 600 days. We first standardize the time between in-

jections while varying the dose amount, followed by standardizing the total dosage

amount while varying the frequency of injection. Figure 2.8a displays the tumor cell

response to various dose amounts given every 100 days over the course of 600 days,

with DC doses ranging from 2 × 107 to 8 × 107 cells. Larger doses respond more

positively, increasing the periods of tumor remission. With a large enough dose, tu-

mor eradication is possible. Figure 2.8b depicts the amount of tumor cells when the

total intravenous DC dose given over the 600 days is 4.5×108 with injections ranging

from every day to every 150 days. If the entire dose is given on Day 1, without a

follow-up treatment, the tumor aggressively grows to carrying capacity, as shown in

Figure 2.8c.

Together our simulations suggest larger, less frequent doses are more efficient in

eradicating the tumor compared to the smaller, more frequent doses, though follow-up

treatment is necessary to maintain control of the tumor. Unlike the majority of cancer

treatments, toxicity has been determined to be a minimal issue for DC treatments, as

flu-like symptoms are often the most adverse effect of DC vaccines. The low toxicity

of DC vaccines allows higher, less frequent doses suggested by our model to be feasible

in practice.
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Figure 2.8: Tumor Response Shown with Respect to Various Doses and Timings. (a)

Intravenous Injections of 2× 107 to 8× 107 Cells Given Every 100 Days for 600 Days. (b)

Total DC Dose of 4.5×108 Injected Intravenously over 600 Days, with Injection Times from

Every Day to Every 150 Days. (c) Entire DC Dose Injected Intravenously on Day 1.

2.7 Sensitivity and Identifiability Analysis

2.7.1 PRCC

To better understand the main drivers of R0 and its sensitivity to parameter

uncertainties, as it is a critical value in determining tumor eradication or escape,
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we utilize the Partial Rank Correlation Coefficient (PRCC) method, where 1,000,000

Latin hypercube samples (LHS) are taken for each parameter distribution. As there

is uncertainty in parameter estimates, we assume a uniform distribution for all the

ranges given in Table C.2. For the parameters without ranges, we consider uniform

distributions for ranges around 10−3 to 103 times the fixed values. In Figure 2.9a, we

employ uniform sampling for all parameters. To avoid under-sampling in intervals

where the parameter values are very small, we use a log-uniform distribution, thus

sampling on a logarithmic scale when the max/min > 103, with results shown in

Figure 2.9b. All codes for generating the PRCC plots are written in MATLAB.

The PRCC method reflects the correlation between R0 and parameters. PRCC

values range from -1 to 1, where -1 indicates the parameter is highly negatively

correlated with R0, and 1 signifies the parameter is highly positively correlated with

R0. Figure 2.9a gives the principal parameters influencing R0 to be vb, ram, ct, and

c. The natural inactivation rate of CTLs (ram) has the most significant positive

effect on R0, while the intravenous dose amount (vb), kill rate of tumor cells by

activated CTLs (ct), and the activation/proliferation rate of CTLs (c) are similarly

negatively correlated. The different methods of sampling lead to different results,

as Figure 2.9b shows ct, vt and vb to be most significant, thus losing ram and c and

gaining vt, the intratumoral dose amount. Combining results, ram, vb, ct, c, and vt

are significant, where ram is positively correlated with R0, and vb, ct, c, and vt are

negatively correlated.

Thus, for R0 to be low enough such that the tumor-free equilibrium is the only

stable equilibrium, a high DC dosage amount, whether intravenous vb or intratumoral

vt, or treatments targeting a decrease in ram or an increase in ct or c would be most

effective. In particular, this suggests a treatment to prolong the activation period for

exhausted cells or to reactive exhausted effector cells, such as an immune checkpoint
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Figure 2.9: Sensitivity Analysis Is Conducted Using the PRCC Method, Where 1,000,000

Latin Hypercube Samples Are Taken for Each (a) Uniform and (b) Log-Uniform Param-

eter Distributions. Combining Results, ram, vb, ct, c, and vt Are Significant, Where ram Is

Positively Correlated with R0.

blockade, would be advantageous to combine with DC therapy. A rising interest

in this combination over the last decade has led to the conception of various Phase

I/II clinical trials researching a combined DC vaccine with an immune checkpoint
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blockade, with results still being awaited (Versteven et al., 2018).

2.7.2 Parameter Identifiability

Effective parameter identification is necessary in enhancing the predictive capabil-

ity of any model. As often the case for mechanistic models, our model is limited by its

many parameters and sparse data. While the PRCC provides an initial glimpse into

the sensitivity of model output to parameters, it is necessary to conduct an identifia-

bility analysis to understand fully the impact of the parameterization. Identifiability

analysis is widely discussed in literature (Raue et al., 2009; Brun et al., 2001) and

addresses two main problems: parameter identification given the data and model

structure selection. As with most mechanistic models, available clinical or labora-

tory data poses a challenge in identifying model parameters. Identifiability analysis

answers the question of whether it is possible to determine the values of unknown pa-

rameters and is categorized into two classes: structural and practical identifiability.

Structural non-identifiability occurs when a unique optimal value for the parameter

cannot be estimated, indicating a problem in the model structure selection. Problems

with the type and quality of data are addressed when studying practical identifiability.

A first assessment of identifiability is done by examining the correlation between

model parameters with a correlation matrix, an approach proposed by Rodriguez-

Fernandez et al. (2006) for testing practical identifiability in nonlinear dynamic mod-

els. The correlation matrix provides a sense of the pairwise relationships between

model parameters. A high correlation between two parameters indicates that the

change to model output resulting from a change in a model parameter can nearly

be compensated when the other parameter is appropriately changed, thus suggesting

the two parameters cannot be separately estimated. The correlation matrix of the
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parameter estimates takes the form of the following symmetric matrix:

R =



r11(θ̂1, θ̂1) r12(θ̂1, θ̂2) . . . r1m(θ̂1, θ̂m)

r21(θ̂2, θ̂1) r22(θ̂2, θ̂2) . . . r1m(θ̂2, θ̂m)
...

rm1(θ̂m, θ̂1) rm2(θ̂m, θ̂2) . . . rmm(θ̂m, θ̂m)


,

where rij (i, j = 1, 2, . . . ,m and −1 ≤ rij ≤ 1) is the correlation coefficient between

parameter estimates θ̂i and θ̂j, with the parameter estimates θ = [θ̂1, θ̂2, . . . , θ̂m]T

following from fitting the model to data.

Despite providing a quantitatively good fit to the data, the correlation matrix of

the estimates given in Figure 2.10 suggests the model parameters are all poorly identi-

fiable, as the magnitude of each correlation coefficient is above 0.8. It is important to

note that Figure 2.10 displays rounded values, and the only pairs of parameters with

a correlation coefficient of exactly 1 or -1 are ct and c, ct and Di, ct and µTB, µBT and

δD, and c and µTB, indicating a need to fix these parameters prior to estimation or

to reparameterize the model. Though the correlation matrix provides a glimpse into

the identifiability of the parameters, a clear drawback is in its assessment of strictly

pairs of parameters.

There then remains a need to understand interactions between all possible param-

eter combinations, which can be accomplished by way of the collinearity indices, as

proposed by Brun et al. (2001). To do so, we first construct a dimensionless sensitivity

matrix S = {sij} with

sij = ∂yi
∂θj
·
wθj
wyi

, i = 1, 2, . . . , n j = 1, 2, . . . ,m.

with yi as an output variable, θj a parameter, wyi the scaling of yi, and wθj the scaling

of θj. The normalized matrix S̄ contains the sensitivity matrix columns corresponding
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Figure 2.10: Correlation Matrix for All Parameters.

to the parameters in the subset and has its columns defined as

s̄j = sj
||sj||

, j = 1, 2, . . . ,m.

The collinearity index γ assesses the degree of linear dependence of k ≤ m columns

of S̄ and is defined as

γ = 1√
λk
,

with λ given as the smallest eigenvalue of S̄k
T
S̄k and S̄k being an n× k submatrix of

S̄ with its columns as the parameters in the subset of interest (Brun et al., 2001).
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In addition to allowing for analysis of all parameter combinations, the collinearity

index yields itself to a clear interpretation of how parameters can compensate for

changes made by other parameters. Omlin et al. (2001) outlines how the collinearity

index γ indicates 1−1/γ of the model output changes caused by shifting one parameter

can be compensated by an appropriate change of the other parameters. Thus, the

threshold of 20 indicates 95% of the change in results caused by shifting one parameter

can be compensated by appropriately changing the other parameters. High values

of the collinearity index indicate poor practical identifiability of the parameter set.

Both the collinearity plot and correlation matrix are produced using the R package

Flexible Modeling Environment (FME) (Soetaert and Petzoldt, 2010).

Figure 2.11: Collinearity Plot for All Parameters. The Red Line Corresponds to a Threshold

of 20 for the Collinearity Index.

Figure 2.11 displays the collinearity indices for all sizes of parameter subsets, in-
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cluding the parameters fixed during the original parameter estimation, and indicates

a subset larger than two parameters cannot be identified strictly on the available tu-

mor volume data. When testing the full set of 11 parameters, taking ram + δE = δ̃E,

the collinearity is too large to fit all the parameters to data. Subsets that are identi-

fiable, setting the threshold of 20 for the collinearity indices, are listed in Table 2.3.

From the list, we observe that each parameter is represented in an identifiable subset.

As Brun et al. (2001) similarly concludes, the collinearity indices then suggest that

a pairwise correlation matrix alone is insufficient for making conclusions regarding

identifiability, as we would have naively concluded that all parameters were poorly

identifiable. When coupled with the collinearity indices, it is revealed that the high

collinearity of the triples and the full parameter set lead to high elements of the

correlation matrix, not merely the pairwise relationship between parameters.

Within the pairs, the highest collinearity indices are given as follows: c and µTB

(105405.0), ct and Di (7343.9), µBT and δD (4264.2), µTB and ct (3850.1), ct and c

(3717.2), Di and µTB (2698.1), and c and Di (2630.8). Adding ct, Di, or µTB to a

parameter set has the effect of dramatically increasing the collinearity index. The

index for {r, δ̃E} is 2.747, which increases to 482.41 for {r, δ̃E, ct}. By the PRCC, we

additionally know the model output is highly sensitive to ct. Fixing this parameter

prior to parameter estimation will lead to more consistent parameter estimates.

Though many of the model parameters are significantly correlated, these param-

eters do not necessarily have a strong biological relationship. Instead, this indicates

changes need to be made to the formulation of the model or estimation to reflect

their separate impacts on the data. If separate, significant impacts of these model

parameters are biologically known, the identifiability analysis indicates collecting data

regarding the CTL or DC populations would be beneficial in decorrelating the pa-

rameters, as the available tumor volume data is insufficient for capturing the separate
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Table 2.3: Collinearity Indices for Identifiable Parameter Subsets

Parameter Subset γK

sE, Di 3.665217

sE, µBT 3.582261

sE, c 3.660364

sE, δD 3.584072

sE, ce 3.262577

sE, δ̃E 3.555876

sE, ct 3.663904

sE, µTB 3.660485

sE, k 4.244452

sE, r 11.601526

r,Di 2.810441

r, µBT 2.762569

r, c 2.807659

r, δD 2.763618

r, ce 2.572128

r, δ̃E 2.747225

r, ct 2.809711

r, µTB 2.807729

r, k 3.129791

ce, k 13.563424

effects of parameters. Further work in overcoming the non-identifiability of model pa-

rameters is outlined in Chapter 4.

54



2.8 Discussion

We present a simple, autonomous, biologically meaningful mathematical model

which accounts for observations found in the clinical setting. The reduced model is

analytically tractable and admits rich dynamics. We have proven the existence of

a backward bifurcation, given numerical evidence of a Hopf bifurcation, and given

thresholds, C9 and 1, for the combination parameter, R0, that guarantee the elim-

ination (R0 < C9) or existence (R0 > 1) of the tumor in the case of a continuous

treatment. Since R0 decreases asymptotically to 0 as the treatment intensity (cap-

tured by vb and vt) increases, our model suggests that there is some level of treatment

that will eradicate the tumor. Now R0 increases without bound with the proliferation

rate of tumor cells. Therefore, our model suggests, if treatment is limited, aggressive

cancers will continue to exist. In a subspace of the parameter space, the model ex-

hibits bistability in the region Rcrit < R0 < 1. This suggests that more aggressive

treatment strategies may be required than would be expected in the absence of the

bistability.

As noted in Remark 5.1, there exists a double zero eigenvalue if we allow
∼
δE = 0.

This suggests the possibility of a Bogdanov-Takens (BT) bifurcation. The close prox-

imity of pitchfork-like and Hopf bifurcations illustrated by numerical simulations and

shown in Figure 2.4 provide further evidence of a possible BT bifurcation. It is known

that a BT bifurcation may give rise to a homoclinic orbit. For our analysis, we assume

that vt and vb are non-negative and all other parameters are positive. Therefore, there

is no BT in the relevant parameter space. Nevertheless, simulations suggest that sys-

tem (2.3.6) admits a homoclinic orbit connecting the tumor-free equilibrium to itself.

In the absence of this homoclinic connection, it is possible to show that the system

is uniformly strongly persistent when R0 > 1. However, an analytic proof of the ex-
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istence of this homoclinic connection and precise conditions for its existence remain

open questions.

A sensitivity analysis using the PRCC method via LHS reveals the main drivers of

R0 that will most effectively lowerR0, thereby improving the efficacy of the treatment.

We conclude the natural inactivation rate of CTLs (ram) is most positively correlated

with R0, while the intravenous dose amount (vb), intratumoral dose amount (vt), kill

rate of tumor cells by activated CTLs (ct), and the activation/proliferation rate of

CTLs (c) are negatively correlated. An increased DC treatment, whether intratumoral

or intravenous, in conjunction with a treatment targeting a decrease in ram or an

increase in ct or c would yield optimal results. Analysis regarding the critical sub-

threshold of R0, Rcrit, reveals the tumor inactivation rate of CTLs (ce) is important

in the threshold sufficient for tumor eradication. Treatments to decrease ce would

similarly prove beneficial as a combination treatment. Immune checkpoint blockades

would act to decrease ram and their combination with DC therapies is the subject of

many ongoing clinical trials.
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Chapter 3

DELAY DIFFERENTIAL EQUATION MODEL

3.1 Abstract

We formulate a tumor-immune interaction model with constant delay to capture

the behavior following application of a dendritic cell therapy. The model is vali-

dated using experimental data from melanoma-induced mice. Through theoretical

and numerical analysis, the model is shown to produce rich dynamics, such as a Hopf

bifurcation and bistability. We provide thresholds for tumor existence and, in a spe-

cial case, tumor elimination. Our work indicates a sensitivity in model outcomes

to the immune response time. We provide a stability analysis for the high tumor

equilibrium. For small delays in response, the tumor and immune system coexist at

a low level. Large delays give rise to fatally high tumor levels. Our computational

and theoretical work reveals there exists an intermediate region of delay that gener-

ates complex oscillatory, even chaotic, behavior. The model then reflects uncertainty

in treatment outcomes for varying initial tumor burdens, as well as tumor dormancy

followed by uncontrolled growth to a lethal size, a phenomenon seen in vivo. Analytic

analysis suggests efficacious treatments to use in conjunction with the dendritic cell

vaccine. Additional analysis of a highly aggressive tumor additionally confirms the

importance of representation with a time delay, as periodic solutions are strictly able

to be generated when a delay is present.
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3.2 Introduction

Since their landmark discovery by Steinman and Cohn (1973), dendritic cells

(DCs) have been hailed as the most potent antigen-presenting cells with the singu-

larly efficient ability to initiate and coordinate immune responses. Their critical role in

linking the adaptive and innate immune responses has made DCs an attractive candi-

date in cancer treatments. The first clinical trial testing a DC-based immunotherapy

was published in 1996, in which four patients with follicular B-cell lymphoma were

infused with antigen-pulsed DCs (Hsu et al., 1996). As a result of patients responding

in measurably favorable manners, a substantial number of clinical trials studying DC

vaccines have been and continue to be conducted. In this form of immunotherapy,

DCs are extracted from the patient and sensitized with tumor-associated antigens.

The activated DCs are injected into the patient, where they interact with and activate

naive and memory T cells in the lymphoid organs. Following exposure to the tumor-

associated antigen, the T cells become activated and differentiate into cytotoxic T

lymphocytes (CTLs), also known as effector cells, which migrate to the tumor and

mount a fight.

DC vaccination studies have recently resulted in the approval of new government-

approved cancer treatments. In 2010, sipuleucel-T (Provenge R©) became the first DC-

based therapy approved by the FDA (Kantoff et al., 2010). Sipuleucel-T was shown to

yield an increase in overall survival of 4.1 months and an improvement of 8.7% in the 3-

year survival probability for men with metastatic castration-resistant prostate cancer.

Seven years later, the Indian government agency (CDSCO - Central Drugs Standard

Control Organization) approved the DC-based vaccine APCEDEN R© for treatment

of prostate, ovarian, non-small cell lung carcinoma, and colorectal cancer (Kumar

et al., 2017). The recent federal approval of these DC vaccines rekindled interest in
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DC research, though excitement waned as the clinical results proved unsatisfactory.

Much of the ineffective behavior has been attributed to the immunosuppressive tumor

microenvironment (Bol et al., 2016b). Interest in enhancing the immune response of

DC vaccines has given rise to many clinical trials and mathematical modeling efforts

(Castillo-Montiel et al., 2015; Gevertz and Wares, 2018; Kronik et al., 2010; Ludewig

et al., 2004; Portz and Kuang, 2013; Rutter and Kuang, 2017).

Ordinary differential equations (ODEs) are extensively used in mathematical mod-

eling to better understand various life processes, such as cell interactions (Kuznetsov

et al., 1994; Nikolopoulou et al., 2018), disease transmission (Korobeinikov, 2006; Li

et al., 2001), and predator-prey relationships (Hsu, 1978; Kuang and Beretta, 1998).

Implicit in ODE models is the assumption that reaction times are instantaneous. As

such, these models are often unable to capture much of nature’s true complexity, as

they are approximations of reality. Delay differential equations (DDEs) reflect natu-

rally occurring delays, such as the binding time required for cell activation, and thus

exhibit more interesting and realistic dynamics.

In Chapter 2, we formulated and analyzed a system of four ODEs describing the

interactions between DCs in the blood, DCs in the tumor, effector cells, and tumor

cells as DC therapy was administered. This model system was motivated and based

on the earlier work of de Pillis et al. (2013). The simplified system in Chapter 2 is

given by

Ḋb = vb(t)− µBTDb + µTBDt − δDDb, (3.2.1a)

Ḋt = vt(t) +DiT + µBTDb − µTBDt − δDDt, (3.2.1b)

Ė = sE + cDb − ceET − (ram + δE)E, (3.2.1c)

Ṫ = rT (1− (T + E +Dt)/k)− ctET, (3.2.1d)

where Db, Dt, E, and T respectively denote DCs in the blood, DCs in the tumor,
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effector cells, and tumor cells. The µ parameters reflect transport between compart-

ments, while vb and vt reflect intravenous and intratumoral dosing. The meanings of

the remainder of the parameters are reflected in Table C.2.

Though strictly consisting of ODEs, our model was able to produce complex

dynamics, including oscillatory behavior and bistability. The existence of bistability

suggested more aggressive treatments were needed than would otherwise be expected,

and the mathematical analysis revealed thresholds that guaranteed tumor elimination

or existence. Motivated by this work, we seek to gain additional insights by further

reducing the system and introducing delay.

The primary aim of this chapter is to investigate how incorporating the more real-

istic delay in interactions influences the dynamics of the system. In doing so, (3.2.1) is

first reduced in two stages. By assuming a constant proportion of DCs in the blood,

we collapse the DCs in the blood and tumor into a single equation. Through the

introduction of delay, we account for the time it takes for activated CTLs to become

effective in killing tumor cells. Numerical experiments, including a justification using

clinical data and bifurcation diagrams, reveal the model remains capable of represent-

ing complex tumor-immune behavior. A quasi-steady state assumption is employed

to further reduce the model to a system of two DDEs. The model is again justified

using clinical data. Following non-dimensionalization, mathematical analysis reveals

the existence of periodic solutions and stability switches. Numerical experiments con-

firm the results of the mathematical analysis and demonstrate the sensitivity to the

immune system response time. The limiting case when the immunosuppressive tumor

environment is neutralized is analytically explored. Furthermore, the limiting case in

which the death rate of effector cells by tumor cell interactions far exceeds the natural

death rate is analyzed both numerically and analytically.

The chapter is organized in the following manner. A description of the intermedi-
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ate model formulation along with supporting numerical experiments and preliminary

analysis is given in Section 3.3. The formulation and preliminary analysis of the

reduced model is provided in Section 3.4. A thorough analysis of the interior equi-

libria stability and corresponding numerical experiments are provided in Section 3.5.

The stability of the boundary equilibria is provided in Section 3.6. The special case

when the tumor is highly aggressive is explored in Section 3.7. The main results are

outlined and discussed in Section 3.9.

3.3 Intermediate Model

In order to better study the effect of a delayed immune response, we make several

simplifying assumptions to reduce system (3.2.1) and allow for a more mathematically

tractable model. Since our focus is no longer on different dosing techniques, there

is no longer a need to represent the intratumoral and intravenous dosing as separate

terms. We collapse the DCs into a single equation, assuming the proportion of DCs

in the blood, Db
Db+Dt

is approximated by the constant α. Additionally, we assume the

DC therapy takes τ units of time to become effective, i.e. the effector cells take τ

units of time following activation to kill tumor cells. Thus, the activation of naive

and memory effector cells is assumed to occur at time t− τ . Since activated effector

cells die at a rate of δ̃E, the probability of survival for the effector cells is given by

e−δ̃Eτ during this period of delay. The assumptions give rise to the following model:

Ḋ = v(t) +DiT − δDD, (3.3.2a)

Ė = sE + c̃e−δ̃EτD(t− τ)− ceET − δ̃EE, (3.3.2b)

Ṫ = rT

(
1− T + E + (1− α)D

k

)
− ctET, (3.3.2c)

where c̃ = cα and we assume the initial values are

E(0) ≥ 0, T (0) > 0, D(θ) ≥ 0 for θ ∈ [−τ, 0]. (3.3.3)

61



Parameter values of system (3.3.2) are specified in Table 3.1.

Table 3.1: Parameters of System (3.3.2)

Para. Description Value Ref.

Di Rate of immature DCs be-

ing activated by tumor

3.4946× 10−4/day Fitted

δD Natural death rate of DCs 0.34/day

[.116,.5]

Dickman

et al. (2020)

sE Source of activated CTLs 2.83× 10−3cells/day Fitted

c Activation/proliferation

rate of CTLs

0.016001/day Fitted

α Proportion of DCs in blood 0.2778 Fitted

ram Inactivation rate of acti-

vated CTLs

0.002/day

[4× 10−4 − 1.2]

Dickman

et al. (2020)

δE Natural death rate of acti-

vated CTLs

0.1155/day Dickman

et al. (2020)

τ Time from activation to

killing tumor cells

0.744912 days Fitted

ce Max inactivation rate of

activated CTLs by tumor

cells

5.539× 10−14/(cells×day)

[9.42× 10−14 − 10−3]

Dickman

et al. (2020)

r Tumor cell growth rate 0.39/day

[0.17− 0.69]

Dickman

et al. (2020)

k Tumor cell carrying capac-

ity

109 cells Dickman

et al. (2020)
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ct Max rate activated CTLs

kill tumor cells

3.5× 10−5/(cells×day)

[0− 1]

Dickman

et al. (2020)

The biological assumptions are justified by the fit to clinical data displayed in

Figure 3.1, as system (3.3.2) is capable of capturing the behavior of the melanoma-

induced mice data from Lee et al. (2007) with a single set of biologically reason-

able parameters. Data from Lee et al. (2007) reflects the average tumor volume of

melanoma-induced mice treated with 0, 1× 105, 7× 105, or 21× 105 DCs on days 6,

8, and 10. The fit to the data remains comparable to that of Chapter 2. Numeri-

cal experiments seen in Figure 3.2 indicate the reduced model continues to give rise

to interesting dynamics, such as oscillatory behavior and the presence of a singular

Hopf bifurcation, as in the original ODE model given by (3.2.1). Figure 3.2 and the

remainder of the figures in this chapter are generated using MATLAB’s built-in dde

solver dde23.
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Figure 3.1: Fit to Lee et al. (2007) Data for (3.3.2).

In this section, we confirm the solutions to system (3.3.2) are biologically mean-

ingful through establishing positivity and boundedness given appropriate initial con-
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Figure 3.2: Bifurcation Diagrams and Phase Portraits for Intermediate Model (3.3.2), Con-

sistent with Behavior Seen in Dickman et al. (2020) and Reflection of Oscillatory Behavior

and Hopf Bifurcation.

ditions.

Proposition 3.3.1 Every solution of system (3.3.2) with initial conditions (3.3.3) is

positive and bounded.

Proof. Suppose there exists t0 such that T (t0) = 0 and T (t) > 0 for t ∈ [0, t0). By

64



(3.3.2c), we have

T (t0) = T (0)exp
(∫ t0

0
F (E(s), T (s))ds

)
> 0,

a contradiction. Thus, T (t) > 0 for t ∈ [0,∞). Similarly, suppose there exists t1 such

that D(t1) = 0 and Ḋ(t1) ≤ 0. Then (3.3.2a) gives Ḋ(t1) = v(t) + DiT (t1) > 0, and

a time t1 assuredly does not exist. Hence, D(t) > 0 for all t > 0. The positivity of E

similarly follows.

By (3.3.2c), it follows that Ṫ ≤ rT (1 − T
k

). Then lim supt→∞ T (t) ≤ k. Given

ε > 0, there exists t2 > 0 such that T (t) < k + ε for all t > t2. By (3.3.2a), we

have that Ḋ < v(t) + Dik − δDD for t > t2. Therefore lim supt→∞D(t) ≤ C1, where

C1 := max{D(0), (v(t) + Dik)/δD}. Given ε > 0, there exists t3 > t2 such that

D(t) < C1 + ε for all t > t3. For t > t3 + τ , (3.3.2b) gives

Ė ≤ c̃e−δ̃Eτ (C1 + ε)− ceE(k + ε)− δ̃EE

≤ c̃e−δ̃Eτ (C1 + ε)− δ̃EE.

Hence, lim supt→∞E(t) ≤ C2, where

C2 := max{E(0), c̃e−δ̃Eτ (C1 + ε)/δ̃E}.

Given ε > 0, there exists t4 > t3 + τ such that E(t) < C2 + ε for all t > t4. 2

3.4 Preliminary Analysis: Simplified Model

As the turnover for dendritic cells is much quicker than that of the effector cells

(Granucci and Zanoni, 2009; Ludewig et al., 2004), a quasi-steady state assumption

can be applied to D. The system (3.3.2) then reduces to the simpler system given by

Ė = sE + c̃e−δ̃Eτ (ṽ + D̃iT (t− τ))− ceET − δ̃EE, (3.4.4a)
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Figure 3.3: Fit to Lee et al. (2007) Data for (3.4.4).

Ṫ = rT

(
1− T + E + (1− α)(ṽ + D̃iT )

k

)
− ctET, (3.4.4b)

where ṽ = v
δD
, D̃i = Di

δD
. The simplifications can again be justified through the fit to

the Lee et al. (2007) data, as shown in Figure 3.3, where the fitting is comparable to

all previous model formulations.

Non-dimensionalization, taking t̄ = rt, Ē = E
k
, T̄ = T

k
, mathematically reduces

the number of parameters. In the remainder of the paper, we will then consider the

dimensionless system

Ė = β + e−δτ (γ + ρT (t− τ))− ηeET − δE, (3.4.5a)

Ṫ = T (1− (T + E + ν + µT ))− ηtET, (3.4.5b)

where β = sE
rk
, γ = c̃ṽ

rk
, δ = δ̃E

r
, ρ = c̃D̃i

r
, ηe = cek

r
, ν = (1−α)ṽ

k
, µ = (1 − α)D̃i, ηt =

ctk
r
, τ̄ = rτ are the dimensionless, positive parameters (with the exception of γ = ν =

0 when no DC therapy is administered), and we drop the bars from variables and

parameters. Values of the dimensionless parameters computed from the parameters

of system (3.4.4) are given in Table 3.2.
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Table 3.2: Parameters of System (3.4.4)

Parameter Value

β 7.39× 10−12

δ 0.3277

ρ 1.45× 10−5

ηe 2.46× 10−4

µ 6.46× 10−4

ηt 9138.38

τ 0.382

Positivity and boundedness of the dimensionless system (3.5.11) can similarly be

proven as before. The tumor-free equilibrium is given by (E0, T0) = ((β+γe−δτ )/δ, 0).

Through the next generation matrix approach (Diekmann et al., 1990; van den Driess-

che and Watmough, 2002), the basic reproduction number can be calculated as

R0 = 1
(1 + ηt)E0 + ν

, (3.4.6)

viewing the tumor cells as an infectious disease, as in Chapter 2. Biologically, the

basic reproduction can be interpreted as the ratio of the proliferation potential of a

tumor cell to the strength of the immune response and crowding effects. We will see

that the system (3.5.11) admits two positive equilibria when R0 < 1, thus remaining

consistent with the existence of a backward bifurcation observed in the Chapter 2.

Proposition 3.4.1 If R0 ≥ 1, then there exists a unique positive equilibrium, E1.

For ν sufficiently small, there exist constants C3 and Rcrit such that if ηe > C3 and

Rcrit < R0 < 1, then there exists a positive equilibrium E2, in addition to E1.
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Proof. Suppose T ∗ > 0. From Ṫ = 0, we have T ∗ = 0 or

E∗ = − 1 + µ

1 + ηt
T ∗ + 1− ν

1 + ηt
. (3.4.7)

Recall that when T (0) > 0, we have 0 < T < 1
1+µ + ε after finite time. Thus,

Ė > β + e−δτ
(
γ + ρ

1 + µ

)
−
(

ηe
1 + µ

+ δ
)
E

after finite time, and it must follow that E∗ > 0.

Substituting (3.4.7) in Ė = 0 yields g(T ) = A0T
2 +A1T +A2 = 0 where

A0 = ηe(1 + µ)
1 + ηt

,

A1 = ρe−δτ − ηe(1− ν)− δ(1 + µ)
1 + ηt

,

A2 = β + γe−δτ − δ(1− ν)
1 + ηt

.

(3.4.8)

Given all parameters are positive, clearly A0 > 0. Additionally, we note that sgn(A2)

= sgn(1−R0). By Descartes’ Rule of Signs, there exists a unique positive solution, T ∗1

of g(T ) = 0 when R0 > 1. Thus, the system (3.4.5) has a unique positive equilibrium

E1 = (E∗(T ∗1 ), T ∗1 ) when R0 > 1.

When R0 < 1, there is the possibility of having a second interior equilibrium,

E2 = (E∗(T ∗2 ), T ∗2 ). In order for there to be two interior equilibria, as shown in Figure

3.5, we must have R0 < 1 and A1 < 0. By Descartes’ Rule of Signs, there exists either

two positive equilibria or zero. For two positive equilibria to exist, it is necessary to

have A1 < 0 and A2
1−4A0A2 > 0. Similar to the 4D system (3.2.1) given in Dickman

et al. (2020), ηe can be chosen sufficiently large, taking

ηe > C3 = ρ(1 + ηt) + δ(1 + µ)
1− ν , (3.4.9)

such that A1 < 0 for all τ ≥ 0. When R0 = 1, then A2 = 0, and g(T ∗) has two

real roots, T ∗ = 0 and T ∗ = −A1
A0

. By continuity, there exists a δ > 0 such that
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Figure 3.4: Discriminant and a Scaled A1 As a Function of R0. As Necessary for the

Existence of Both E1 and E2, the Discriminant Is Positive and A1 < 0 for a Range of

R0 ∈ (Rcrit, 1).

g(T ∗) admits two real distinct positive roots for a range of R0 ∈ (1 − δ, 1). Now,

R0 is monotonically decreasing in β, and A2 is monotonically increasing in β. Then

there exists a unique β∗ such that when β = β∗, then A2 = A2
1

4A0
and the discriminant

A2
1 − 4A0A2 is zero. Let

Rcrit = 1
(1 + ηt)β

∗+γe−δτ
δ

+ ν
. (3.4.10)

Then if ηe > C3, g(T ∗) admits two positive roots T ∗1 > T ∗2 for R0 ∈ (Rcrit, 1). Denote

Ei = (E∗(T ∗i ), T ∗i ) for i = 1, 2. 2

Figure 3.4 confirms the analytical findings, since both conditions necessary for the

existence of two positive equilibria hold. With ηe chosen sufficiently large thenA1 < 0,

and A2
1 − 4A0A2 > 0 holds when R0 ∈ (Rcrit, 1).

Figure 3.5 clearly illustrates how the interior equilibria both depend on τ . For

lower τ , E0 exists, but neither interior equilibria are feasible. Increasing τ shifts the

E nullcline down and allows for the existence of the interior equilibria E1 and E2. A
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Figure 3.5: The E (Blue) and T (Red) Nullclines of (3.4.5) as τ Increases. As τ Increases,

the Value of R0 Falls in the Following Ranges: R0 < Rcrit,Rcrit < R0 < 1,R0 = 1, and

R0 > 1.

further increase to the delay causes the intermediate equilibrium E2 to coincide with

E0 at a finite τ , corresponding to R0 = 1. The condition Rcrit < R0 < 1 required for

two equilibria is thus shown to only be satisfied for finite τ . Though E2 is not feasible

for a higher value of τ , the interior equilibrium E1 remains feasible as τ → +∞.

Thus, for ηe sufficiently large such that ηe > C3, there always exists at least

one positive equilibrium root when R0 ≥ Rcrit. Additionally, the second interior

equilibrium only exists when the delay τ and other parameters are chosen such that

Rcrit < R0 < 1. When conducting analysis, it will therefore be critical to keep track

of how the feasibility of interior equilibria changes as τ or other parameters vary.
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3.5 Stability of Interior Equilibria

3.5.1 No Delay

To understand the effects of delay on system (3.4.5), we first establish the stability

of the equilibria when there is no delay. Without delay, the system is given as follows:

Ė = γβ + ρT − ηeET − δE, (3.5.11a)

Ṫ = T (1− (T + E + ν + µT ))− ηtET, (3.5.11b)

where γβ = γ+β. Figure 3.6 depicts the nullclines and equilibria when the conditions

Rcrit < R0 < 1 and A1 < 0 are satisfied for the existence of two interior equilibria.

2 4 6 8 10 12 14 16

10
-5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.6: The E (Blue) and T (Red) Nullclines of (3.5.11), Where Rcrit < R0 < 1 and

A1 < 0. Parameter Values Are Taken to Follow from Calculations Using Table 3.2, with

the Exception of γ = 4.621× 10−5, ρ = 5.56× 10−6, ηe = 1.3055, and ν = 0.00206.

We determine the local stability of the interior equilibria through a geometric

approach.
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Theorem 4 If Rcrit < R0 < 1 and ηe > C3 are satisfied for the existence of E1 and

E2 (the intermediate tumor), the interior equilibria of (3.5.11), then E1 is stable, and

E2 is unstable.

Proof. Through geometric arguments, we can deduce the signs of the Jacobians

evaluated at E1 and E2 respectively as:

J1 = J|E1 =

− −

− −

 J2 = J|E2 =

− −

− −


Thus tr(J1) < 0 and tr(J2) < 0, and we need to determine the signs of the determi-

nants. Let Ė ≡ g(E, T ) and Ṫ ≡ h(E, T ). Implicitly differentiating g(E, T ) = 0 and

h(E, T ) = 0, we can respectively conclude dT
dE

= −gE
gT

and dT
dE

= −hE
hT

. Since the slope

of the T nullcline is greater than the slope of the E nullcline at E1, then −hE
hT

> −gE
gT
.

We know det = gEhT − gThE. We can then conclude det(J1) > 0. Similarly, since

the slope of the E nullcline is greater than the slope of the T nullcline at E2, then

−hE
hT

< −gE
gT
, and det(J2) < 0. 2

More aggressive treatment than standard is then required to decrease R0 sufficiently

outside the region of bistability. Reducing the strength of the immunosuppressive

microenvironment would increase the efficacy of the DC vaccines, as ηe is derived

from the inactivation rate of CTLs by the tumor (ce), and sufficient reduction of

ηe eliminates the region of bistability. Agents to inhibit immunosuppressive factors,

such as anti-interleukin-10 (anti-IL-10) and anti-transforming growth factor-β (anti-

TGF-β), would then be suitable candidates for combination therapies (Cheever and

Higano, 2011).
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3.5.2 Linear Stability of Interior Equilibria

In this section, we study the linear stability of the interior equilibria, E1, E2,

assuming the conditions ηe > C3 and Rcrit < R0 < 1 hold such that both interior

equilibria, are feasible. However, we again note that the condition Rcrit < R0 < 1 can

only be satisfied up to a finite value of τ , as R0 monotonically increases in τ , thereby

causing the intermediate equilibrium E2 to lose its feasibility, as depicted in Figure

3.5. Hence, it is necessary to keep track of the feasibility of the equilibria during any

analysis.

Let us first linearize (3.4.5) at the interior equilibrium (E∗, T ∗). Setting x =

E − E∗, y = T − T ∗, where x, y are small, gives

x′ = ρe−δτy(t− τ)− (ηeT ∗ + δ)x− ηeE∗y, (3.5.12a)

y′ = (1− (T ∗ + E∗ + ν + µT ∗))y − (1 + ηt)T ∗x

− (1 + µ)T ∗y − ηtE∗y. (3.5.12b)

If we take solutions to be of the form (x, y) = (c1, c2)eλt, then non-trivial solutions

exist if and only if the characteristic equation F (λ, τ) = 0, where

F (λ, τ) = λ2 + ((µ+ ηe + 1)T ∗ + δ)λ+ ((µ+ 1)(ηeT ∗

+ δ) + (ηt + 1)(ρe−(δ+λ)τ − ηeE∗))T ∗.
(3.5.13)

The characteristic equation (3.5.13) can alternatively be expressed in the following

form:

P (λ, τ) +Q(λ, τ)e−λτ = 0, (3.5.14)

where P (λ, τ) = λ2 +A(τ)λ+ C(τ) and Q(λ, τ) = B(τ)λ+D(τ) with

A = (µ+ ηe + 1)T ∗ + δ, (3.5.15a)

B = 0, (3.5.15b)
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C = ((µ+ 1)(ηeT ∗ + δ)− (ηt + 1)ηeE∗)T ∗, (3.5.15c)

D = (ηt + 1)ρe−δτT ∗. (3.5.15d)

Note that the characteristic equation (3.5.14) involves delay not just in the e−λτ term,

but in several other places as well, since T ∗ and E∗ depend on τ . Since our model

(3.4.5) has delay dependent parameters, there is increased complexity in analyzing

the system. Analytical results for systems with delay independent parameters have

been thoroughly studied (Kuang, 1993) and result in clean, explicit calculations, such

as the exact values of τ where stability switches occur. We apply the approach from

Beretta and Kuang (2002) for studying these challenging characteristic equations

which analyzes the stability switches via computational means, as exact values of τ

where these switches occur cannot be analytically found.

In order to apply the technique of Beretta and Kuang (2002), we must verify the

following properties hold for all τ ∈ R+:

(i) P (0, τ) +Q(0, τ) 6= 0,∀τ ∈ R+0;

(ii) If λ = iω, ω ∈ R, then P (iω, τ) +Q(iω, τ) 6= 0, τ ∈ R;

(iii) lim sup|λ|→∞
∣∣∣∣Q(λ,τ)
P (λ,τ)

∣∣∣∣ : |λ| → ∞,Reλ ≥ 0} < 1 for any τ ;

(iv) F (ω, τ) := |P (iω, τ)|2 − |Q(iω, τ)|2 for each τ has a finite number of zeros.

(v) Each positive root ω(τ) of D(ω, τ) = 0 is continuous and differentiable in τ

whenever it exists.

We first have P (0, τ) + Q(0, τ) = C + D. By assumption, property (i) is es-

tablished, implying λ = 0 is not a root of (3.5.13). Now P (iω, τ) + Q(iω, τ) =

−ω2 + iω(A + B) + C + D 6= 0, satisfying property (ii). Clearly property (iii)
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holds, as lim sup|λ|→∞
∣∣∣∣Q|(λ,τ)
P (λ,τ)

∣∣∣∣ = 0. Additionally, we can clearly see that F (ω, τ) :=

|P (iω, τ)|2 − |Q(iω, τ)|2 has a maximum of four roots, since

|P (iω, τ)|2 = ω4 + (A(τ)2 − 2C(τ))ω2 + C(τ)2,

|Q(iω, τ)|2 = B(τ)2ω2 +D(τ)2,

thus satisfying property (iv). Let (ω0, τ0) be an arbitrary point in its domain such that

F (ω0, τ0) = 0. Then we see that Fω and Fτ exist and are continuous in a neighborhood

of (ω0, τ0). Additionally, Fτ (ω0, τ0) 6= 0. Then by the Implicit Function Theorem, we

have property (v) holds. Since the five properties hold, we can then apply the results

from Beretta and Kuang (2002).

As the roots of the characteristic equations are functions of delays, a stability

switch may occur, where the stability of the equilibrium changes as the delay increases.

If a stability switch occurs, we know (3.4.4) has a pair of conjugate pure imaginary

roots λ(τ) = ±iω(τ), ω(τ) ∈ R+ which crosses the imaginary axis at some τ = τ ∗,

and a Hopf bifurcation occurs.

To find the value of τ ∗ where a stability switch may occur, without loss of gener-

ality, we let λ(τ) = iω(τ). Substitution of λ = iω into (3.5.13) yields the following:

−ω2 + ((µ+ ηe + 1)T ∗ + δ)iω + ((µ+ 1)(ηeT ∗ + δ)

+ (ηt + 1)(ρe−(δ+iω)τ − ηeE∗))T ∗ = 0.
(3.5.16)

By using Euler’s formula eiθ = cos θ + i sin θ, we simplify and solve for the real and

imaginary parts to obtain

− ω2 + ((µ+ 1)(ηeT ∗ + δ)− (ηt + 1)ηeE∗)T ∗

= −(ηt + 1)ρe−δτ cos(ωτ)T ∗,

ω((µ+ ηe + 1)T ∗ + δ) = (ηt + 1)ρe−δτ sin(ωτ)T ∗.

(3.5.17)
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Then ω must be a solution of

ω4 + ω2((η2
e + (µ+ 1)2)T ∗2 + 2ηe(ηt + 1)E∗ + δ)T ∗

+ δ2) + ((µ+ 1)(ηeT ∗ + δ)− (ηt + 1)ηeE∗)2T ∗2

= ((ηt + 1)ρe−δτT ∗)2.

(3.5.18)

Using (3.5.15) to rewrite (3.5.18), we reach

F (ω, τ) := ω4 + ω2(A2 − 2C) + (C2 −D2) = 0, (3.5.19)

with its roots as

w2
± = 1

2{(2C − A
2)±∆1/2}, (3.5.20)

where ∆ = (2C − A2)2 − 4(C2 −D2). We know ω2
− is always negative, as

A2 − 2C = (µ+ 1)T ∗2 + (ηeT ∗ + δ)2 + 2(ηt + 1)ηeE∗T ∗ > 0.

If ω2
+ < 0, a real ω does not exist and there are no stability switches. We can see

there exists one real solution ω > 0 if and only if

(C +D)(C − D) < 0. (3.5.21)

By Theorem 4, C+D > 0 at E1 and C+D < 0 at E2. Since D ≥ 0, we can deduce

C < 0 at E2, making C − D < 0 at E2. Thus, a real ω does not exist, and there are

no stability switches for E2. It then follows that E2 is unstable for all τ ≥ 0. The

sign of C − D proves more challenging to evaluate for E1. Therefore, for a stability

switch to exist for E1, the following additional condition is needed:

C − D < 0. (3.5.22)

Since a real ω exists for E1 when C − D < 0, the characteristic equation (3.5.13)

has a pair of simple and conjugate pure imaginary roots λ = ±iω. By application

of Theorem 4.1 of Beretta and Kuang (2002), we prove this complex conjugate pair
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of eigenvalues crosses the imaginary axis, ensuring a stability switch for E1 when

C − D < 0.

Assume I ⊆ R+0 is the set where ω(τ) > 0 is a root of (3.5.19). For any τ ∈ I,

we use (3.5.17) to define the angle θ(τ) ∈ [0, 2π] as follows:

sin θ(τ) = ωA
D
, cos θ(τ) = ω2 − C

D
. (3.5.23)

For τ ∈ I, we have the relationship

ω(τ)τ = θ(τ) + 2nπ, n ∈ N0.

From (3.5.23), we see

θ(τ) = arccot
(
ω2 − C
ωA

)
. (3.5.24)

If the conditions hold for an imaginary solution to exist, making ω feasible for τ ∈ I,

then we have the continuous and differentiable sequence of functions I → R:

Sn(τ) = τ − θ(τ) + 2nπ
ω(τ) . (3.5.25)

The characteristic equation (3.5.13) has a pair of simple conjugate pure imaginary

roots λ = ±iω(τ ∗) at τ ∗ ∈ I when Sn(τ ∗) = τ ∗ − τn(τ ∗) = 0 for some n ∈ N0. By

application of Theorem 4.1 in Beretta and Kuang (2002), the following theorem then

holds.

Theorem 5 Suppose ηe > C3 and Rcrit < R0 < 1. For each interior equilibrium

(E∗, T ∗), define C = ((µ + 1)(ηeT ∗ + δ)− (ηt + 1)ηeE∗)T ∗ and D = (ηt + 1)ρe−δτT ∗.

Assume C + D 6= 0. Then E2 is unstable for all τ ≥ 0. If C < D, the characteristic

equation about E1 admits a pair of simple conjugate pure imaginary roots λ(τ ∗) =

±iω(τ ∗) at τ ∗ ∈ I, I ⊆ R+0, which crosses the imaginary axis from left to right if

δ(τ ∗) > 0 and from right to left if δ(τ ∗) < 0, where

δ(τ ∗) := sgn
{
dRe λ
dτ

∣∣∣∣∣
λ=iω(τ∗)

}
= sgn

{
dSn(τ)
dτ

∣∣∣∣∣
τ=τ∗

}
, (3.5.26)
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and Sn(τ ∗) = 0 for some n ∈ N0.

We determine the direction of the roots crossing the imaginary axis by evaluating

δ(τ ∗) := sgn
{
dRe λ
dτ

∣∣∣∣∣
λ=iω(τ∗)

}
= sgn

{
Re

(
dλ

dτ

)−1 ∣∣∣∣∣
λ=iω(τ∗)

}
.

We compute (
dλ

dτ

)−1

= 2λ+A−Dτe−λτ
Dλe−λτ −D′e−λτ − (A′λ+ C ′) . (3.5.27)

By the characteristic equation (3.5.14), we have

e−λτ = −λ
2 +Aλ+ C

D
. (3.5.28)

Substituting (3.5.28) into (3.5.27) yields(
dλ

dτ

)−1

=
− 2λ+A
λ2+A+C − τ

λ+ A′λ+C′
λ2+Aλ+C −

D′

D

.

Evaluating at λ = iω(τ ∗), we have

sgn
{
Re

(
dλ

dτ

)−1 ∣∣∣∣∣
λ=iω(τ∗)

}

= sgn
{
ω2[D2 +A′(C − ω2)−AC ′] + ωω′[D2τ ∗ +A(C − ω2) + 2ω2A]

}
.

As the sign is complex to determine analytically, we computationally determine

whether the roots cross the imaginary axis and a stability switch for E1 exists as

τ increases, recalling the relationship

sgn
{
Re

(
dλ

dτ

)−1 ∣∣∣∣∣
λ=iω(τ∗)

}
= sgn

{
dSn(τ)
dτ

∣∣∣∣∣
τ=τ∗

}
.

by Theorem 5.

We consider two scenarios to demonstrate the impacts of the delay τ and ρ on E1.

Recall ρ is the only parameter in system (3.4.5) that is dependent on c, the activa-

tion/proliferation rate of CTLs, when there is not a constant DC dose applied (v = 0).
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The stability of the system is demonstrated when the CTL activation/proliferation

rate is low, intermediate, and high. Figure 3.7, Figure 3.10, and Figure 3.12 depict

the functions S0(τ), S1(τ), and S2(τ) as defined above. For both scenarios, C −D < 0

up to a finite τ , such that real ω exists and Theorem 5 can be applied.

Figure 3.7: Plots of S0(τ), S1(τ), and S2(τ) When ρ = 8× 10−4 and All Other Parameters

Are Given As in Table 3.2. The Vertical Line Provides the Endpoint for the Existence

Interval for S0(τ), When C −D < 0 Is No Longer Satisfied. E1 Is Asymptotically Stable for

τ ∈ [0, τ01) ∪ (τ02,∞) and Unstable for τ ∈ (τ01, τ02).
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Figure 3.8: Bifurcation Diagrams for System (3.4.5), with Parameters As in Figure 3.7.

79



0.5 1 1.5 2 2.5

10
-4

0.05

0.1

0.15

0.2

0.25

0.3

(a) By τ01: τ ∈ [0, τ01)

0.5 1 1.5 2 2.5

10
-4

0.05

0.1

0.15

0.2

0.25

0.3

(b) By τ01: τ ∈ (τ01, τ02)

0.5 1 1.5 2 2.5

10
-4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) τ ∈ (τ01, τ02)

2 4 6 8 10 12

10
-5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) By τ02: τ ∈ (τ01, τ02)
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(e) By τ02: τ ∈ ((τ02,∞) ∩ I)
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Figure 3.9: Phase Portraits of System 3.4.5, Confirming Regions of Stability and Instability Suggested by Figure 3.7. Parameters

Are Given As in Figure 3.7.

80



Figure 3.7 illustrates the case of the low activation/proliferation rate of the CTLs

(ρ small). The function S0(τ) is shown to have roots at τ01 and τ02, with τ01 < τ02. For

the choice of parameters, no real roots exist for Sn(τ) when n > 0. The behavior of S0

indicates E1 is asymptotically stable, loses its stability for τ ∈ (τ01, τ02), then regains

its stability as the delay increases. The switches in stability suggested by Figure 3.7

are confirmed through bifurcation diagrams in Figure 3.8 and phase portraits depicted

in Figure 3.9. A Hopf bifurcation occurs when S0 initially crosses the τ axis and the

characteristic equation about E1 admits two roots with positive real part.

Figure 3.10: Plots of S0(τ), S1(τ), and S2(τ) When ρ = 8× 10−2 and All Other Parameters

Are Given as in Table 3.2. The Vertical Line Provides the Endpoint for the Existence

Interval for S0(τ). E1 Is Asymptotically Stable for τ ∈ [0, τ01) ∪ (τ02,∞) and Unstable for

τ ∈ (τ01, τ02), with Added Instability for τ ∈ (τ11, τ12).

Figure 3.10 depicts the case of a intermediate activation/proliferation rate of CTLs

(ρ intermediate). Similar to Figure 3.7, E1 loses stability and regains it as τ increases.

However, there additionally exists a region in Figure 3.10 such that an additional pair

of unstable eigenvalues appears. We define aperiodic behavior to be when there exist

two pairs of eigenvalues with positive real parts. Thus, when τ ∈ (τ11, τ12), there

are two pairs of characteristic roots of the characteristic equation about E1 with

positive real parts, giving a region of increased instability and aperiodic behavior
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(d) By τ11: τ ∈ (τ11, τ12)
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(e) By τ12: τ ∈ (τ11, τ12)

0.5 1 1.5 2

10
-4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) By τ12: τ ∈ (τ12, τ02)
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(g) By τ02: τ ∈ (τ12, τ02)
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(h) By τ02: τ ∈ ((τ02,∞)∩ I)
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Figure 3.11: Phase Portraits of System 3.4.5, Confirming Regions of Stability, Instability,

and Added Complexity Suggested by Figure 3.10. Parameters Are Given As in Figure 3.10.

prior to E1 eventually regaining its stability. The number of eigenvalues with positive

real parts jumps by two as the Sn curves increase across the τ axis, making E1

more unstable, and decreases by two as the Sn curves decrease across the τ axis,

lessening the complexity. Similar to computational results outlined in Gourley and

Kuang (2004), when τ increases such that τ /∈ I and real ω is no longer feasible,

the eigenvalues of the characteristic equation become real and negative. Thus, the
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interior equilibrium E1 continues to exist and be asymptotically stable when real ω

is no longer feasible. E1 is then asymptotically stable for τ ∈ [0, τ01) ∪ (τ02,∞) and

unstable for τ ∈ (τ01, τ02), with added instability for τ ∈ (τ11, τ12), as confirmed by

the phase plots in Figure 3.11.

Figure 3.12: Plots of S0(τ), S1(τ), and S2(τ) when ρ = 8 and All Other Parameters Are

Given As in Table 3.2. The Vertical Line Provides the Endpoint for the Existence Interval for

S0(τ). E1 Is Asymptotically Stable for τ ∈ [0, τ01)∪ (τ02,∞) and Unstable for τ ∈ (τ01, τ02),

with Added Instability for τ ∈ (τ11, τ12) and Chaotic Behavior for τ ∈ (τ21, τ22).

Figure 3.12 considers the case of a high activation/proliferation rate of CTLs

(ρ large). For (τ21, τ22), the characteristic equation about E1 admits three pairs of

eigenvalues with positive real parts, which we define as chaotic behavior. The regions

of chaos and oscillatory behavior reflect how different initial tumor burdens can have

drastically distinct outcomes, as seen in practice.

Eliminating the assumption C+D 6= 0, there remains one critical case to consider.

83



Critical Case: C +D = 0

In the critical case of C +D = 0, Theorem 5 is no longer valid, and we must analyze

the stability in a different way. When C +D = 0, it follows that

A2 = −ρ
2(1− e−δτ )2 +A2

1
4A0

,

and E2 is only feasible when τ = 0 and E2 and E1 coalesce into a single equilibrium.

The characteristic equation (3.5.14) reduces to λ2 +A(τ)λ + C(τ) + D(τ) = 0 when

τ = 0. With the roots given by λ = −A(τ) < 0 and λ = 0, the interior equilibrium

E1 = E2 is stable. When τ > 0, application of results from Kuang (1993, p. 79-80)

prove E1 loses its stability for τ > A(τ)
D(τ) .

3.6 Stability of Boundary Equilibrium

In the subsequent analysis, we seek to understand the necessary conditions for

tumor elimination, and thus we examine the local and global stability of the boundary

equilibrium.

Proposition 3.6.1 The boundary equilibrium E0 is locally asymptotically stable

when R0 < 1 and unstable when R0 > 1.

Proof. The Jacobian evaluated at the boundary equilibrium E0 = (γβ/δ, 0) given

by

J|E0 =

−δ ρ− ηeE0

0 1− ν − (ηt + 1)E0

 (3.6.29)

admits the eigenvalues

λ1 = −δ;λ2 = 1− 1
R0

.

E0 is then unstable when R0 > 1 and locally asymptotically stable when R0 < 1. 2
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The next result establishes the thresholds for the global stability of the tumor-free

equilibrium. We only consider the case when the immunosuppressive environment of

the tumor is neutralized, corresponding to ηe = 0.

Theorem 6 Let ηe = 0. If R0 < 1, then limt→∞(E(t), T (t)) = ((β + γe−δτ )/δ, 0).

Proof. By (3.4.5), we have

Ė = β + e−δτ (γ + ρT (t− τ))− δE,

Ṫ = T (1− (T + E + ν + µT ))− ηtET

when ηe = 0. Since R0 < 1, 1− ν < (1 + ηt)E0, where E0 = (β + γe−δτ )/δ.

We first consider the case when there exists a t1 > 0 such that E(t1) ≥ E0. We

claim if E(t1) ≥ E0, then E(t) ≥ E0 for t > t1. Otherwise there exists a t2 ≥ t1 such

that E(t2) = E0 and Ė(t2) ≤ 0. At t = t2,

Ė(t2) = β + e−δτ (γ + ρT (t2 − τ))− δE0

= ρe−δτT (t2 − τ) > 0,

a contradiction. Thus, it follows that E(t) ≥ E0 for t > t1. We then have for all

t > t1,

Ṫ ≤ T (1− ν − (1 + µ)T − (1 + ηt)E0)

≤ T (1− ν − (1 + ηt)E0).

Thus T (t) ≤ T (0) exp{(1 − ν − (1 + ηt)E0)t} for t > t1, and limt→∞ T (t) = 0. By

definition, for any ε > 0, there is a tε > t1 such that for t > tε, T (t) < ε. Hence for

t > tε,

Ė < β + γe−δτ + ρe−δτε− δE,

implying lim supt→∞E ≤ (β + γe−δτ + ρe−δτε)/δ. Additionally,

Ė ≥ β + γe−δτ − δE.
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Then we have lim inft→∞E ≥ (β + γe−δτ )/δ. Thus, it follows that limt→∞E(t) =

(β + γe−δτ )/δ.

We next consider the case when there exists a t3 > 0 such that E(t) < E0 for

t > t3. Note that E is monotonically increasing when E(t) < E0, as

Ė = β + e−δτ (γ + ρT (t− τ))− δE

= ρe−δτT (t− τ)− δ(E − E0).

We must have a positive constant E1 ≤ E0 such that limt→∞E(t) = E1. Indeed, we

must have E1 = E0. Otherwise

Ė = ρe−δτT (t− τ)− δ(E − E0) > δ(E0 − E1)

which implies that for t > t3. E(t) > E(t3)+δ(E0−E1)(t−t3) and limt→∞E(t) =∞,

a contradiction to the assumption that E(t) < E0 for t > t3. Recall that 1 − ν <

(1 + ηt)E0. Hence there is an ε1 > 0 such that 1 − ν < (1 + ηt)(E0 − ε1). Since

limt→∞E(t) = E0, there is a t4 > 0 such that for t > t4, E(t) > E0 − ε1. It is

easy to see that ˙T (t) ≤ T (1 − ν(1 + ηt)E(t)) < T (1 − ν − (1 + ηt)(E0 − ε1)). Let

c1 = 1−ν−(1+ηt)(E0−ε1) < 0. Then ˙T (t) < c1T (t). Thus, we have limt→∞ T (t) = 0.

The proof of the theorem is complete. 2

The immunosuppressive nature of the tumor microenvironment has been attributed

to unmet expectations in DC vaccine behavior (Ahmed and Bae, 2014). Inhibiting

the immunosuppressive factors through a combination treatment allows for less DC

vaccines to be necessary for tumor elimination.

3.7 Special Case: δ = 0

In highly aggressive tumors, the death of the effector cells is dominated by the

interaction with the tumor cells. We analyze the equivalent scenario in the following
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two sections, where δ = 0. The system (3.4.5) becomes

Ė = γβ + ρT (t− τ)− ηeET, (3.7.30a)

Ṫ = T (1− (T + E + ν + µT ))− ηtET, (3.7.30b)

where γβ = γ + β.

We first establish stability when τ = 0, as it is necessary for understanding the ef-

fects of incorporating delay. In the second section, we extend these results to consider

when τ > 0.

3.7.1 No Delay

With δ = τ = 0, system (3.7.30) reduces to

Ė = γβ + ρT − ηeET, (3.7.31a)

Ṫ = T (1− (T + E + ν + µT ))− ηtET. (3.7.31b)

A boundary equilibrium is no longer feasible. Hence the interior equilibria, E1

and E2, are the only possible equilibria, where E2 corresponds to the intermediate

tumor given when T ∗ = −A1−
√
A2

1−4A0A2
2A0

. Here, A0,A1, and A2 are given by (3.4.8)

with δ = τ = 0.

The characteristic equation λ2 + a1λ+ b1 = 0 with

a1 = (µ+ ηe + 1)T ∗, (3.7.32a)

b1 = (ηe(µ+ 1)T ∗ − ηe(ηt + 1)E∗ + ρ(ηt + 1))T ∗

= (1 + ηt)(2A0T
∗ +A1)T ∗ (3.7.32b)

admits the eigenvalues

λ1,2 = 1
2

(
−a1 ±

√
a2

1 − 4b1

)
. (3.7.33)
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Hence the stability of the equilibria depends on ∆ = a2
1 − 4b1. The stability and

existence of the equilibria are examined in the following five cases.

Case 1: b1 = 0

We first must examine whether b1 = 0 is feasible for both real, positive equilibria. By

(3.7.32b),

T ∗ =
−A1 ±

√
A2

1 − 4A0A2

2A0
= − A1

2A0

when b1 = 0. Hence b1 = 0 iff A2
1 = 4A0A2, and E1 and E2 coalesce into a single

equilibrium. Since λ1 = 0 and λ2 < 0 when b1 = 0, the equilibrium E1 = E2 is stable.

Case 2: b1 < 0

Note that b1 < 0 when

T ∗ =
−A1 ±

√
A2

1 − 4A0A2

2A0
< − A1

2A0
.

Thus b1 < 0 is only feasible for E2. By (3.7.33), λ1 > 0 and λ2 < 0, and E2 is

unstable. Therefore, positive E1 is not feasible, and E2 is unstable when b1 < 0.

Case 3: 0 < b1 <
a2

1
4

From b1 = (1 + ηt)(2A0T
∗ +A1)T ∗ > 0, we have

T ∗ =
−A1 ±

√
A2

1 − 4A0A2

2A0
> − A1

2A0
,

a contradiction for E2. Thus, positive E2 is not feasible when b1 > 0. To examine

the existence of E1, we see the inequality

b1 = (1 + ηt)(2A0T
∗ +A1)T ∗

<

((
1 + ηt

2 + µ(1 + ηt)
4ηe

)
A0 + η2

e + µ+ 1
4

)
T ∗2 = a2

1
4
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holds if and only if

A1 <
c2

c1

√
A2

1 − 4A0A2,

where
c1 = 1

4 + c11,

c2 = −3
4 + c11,

c11 = µ

8ηe
+ η2

e + µ+ 1
8(1 + ηt)A0

.

(3.7.34)

Now it must be that

c11 = µ

8ηe
+ η2

e + µ+ 1
8(1 + ηt)A0

= η2
e + (1 + µ)2

8ηe(1 + µ) ≥ 1
4 ,

else (ηe − (1 + µ))2 < 0, a contradiction. Since A1 < 0 and A0,A2 > 0, then the

inequality
c2

c1

√
A2

1 − 4A0A2 ≥ −
√
A2

1 − 4A0A2

> −
√
A2

1 = −|A1| = A1

(3.7.35)

holds, and the existence of E1 is satisfied when 0 < b1 <
a2

1
4 . Then E1 is asymptotically

stable, as λ1, λ2 < 0. Thus, positive E2 is not feasible, and E1 is asymptotically stable

when 0 < b1 <
a2

1
4 .

Case 4: b1 = a2
1

4

As shown in the previous case, positive E2 is not feasible since b1 > 0. Now b1 = a2
1

4

when

A2
1

(
1− c2

1
c2

2

)
= 4A0A2,

with constants c1, c2, c11 given by (3.7.34). Then

T ∗ = −
A1 +

√
A2

1 − 4A0A2

2A0
= − A1

2A0

(
1− |c1|
|c2|

)
,

and T ∗ > 0 only when |c2| > |c1|, since A0 > 0 and A1 < 0. By definition, c1 > 0.

Suppose c2 > 0. Then |c2| > |c1| yields −3
4 + c11 >

1
4 + c11, a contradiction. Now
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suppose c2 < 0. Then |c2| > |c1| gives 1
4 > c11, a contradiction, as shown in Case 3.

Thus, neither positive E1 nor positive E2 are feasible when b1 = a2
1

4 .

Case 5: b1 >
a2

1
4

By Case 3, positive E2 is not feasible since b1 > 0. Now b1 >
a2

1
4 when

A1 >
c2

c1

√
A2

1 − 4A0A2,

with constants c1, c2, c11 given by (3.7.34). As shown in Case 3, we must have c11 ≥ 1
4 .

Thus, we have

A1 >
c2

c1

√
A2

1 − 4A0A2

≥ −
√
A2

1 − 4A0A2

> −
√
A2

1 = −|A1| = A1,

a contradiction. Thus, neither E1 nor E2 are feasible when b1 >
a2

1
4 .

We can summarize the preceding results in the following theorem.

Theorem 7 For the system (3.7.31), the following statements are true, with a1, b1

given by (3.7.32).

(1) E1 is only feasible when 0 ≤ b1 <
a2

1
4 . E2 is only feasible when b1 ≤ 0.

(2) If b1 = 0, then E1 and E2 coalesce into a single stable equilibrium.

(3) If b1 < 0, then E2 is unstable.

(4) If 0 < b1 <
a2

1
4 , then E1 is asymptotically stable.
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3.7.2 With Delay

The previous results lend themselves to an extension to determine the impact

on the stability when τ > 0. We first linearize (3.7.30) at the interior equilibrium

(E∗, T ∗). Setting x = E − E∗, y = T − T ∗, where x, y are small, gives

x′ = ρy(t− τ)− ηeT ∗x− ηeE∗y, (3.7.36)

y′ = −(1 + ηt)T ∗x− (1 + µ)T ∗y. (3.7.37)

Thus a non-trivial solution of the form (x, y) = (c1, c2)eλτ exists if and only if

G(λ, τ) = 0, with

G(λ, τ) = λ2 + (µ+ ηe + 1)T ∗λ+ ηe((µ+ 1)T ∗

− (ηt + 1)E∗)T ∗ + ρ(ηt + 1)T ∗e−λτ .
(3.7.38)

The characteristic equation (3.7.38) can be written in the simpler form

λ2 + αλ2e−λτ + aλ+ bλe−λτ + c+ de−λτ = 0, (3.7.39)

with
α = 0; a = (µ+ ηe + 1)T ∗; b = 0;

c = ηe((µ+ 1)T ∗ − (ηt + 1)E∗)T ∗; d = ρ(ηt + 1)T ∗.
(3.7.40)

Recall, purely imaginary roots λ = iω of the characteristic equation indicate possi-

bilities of stability switches. Suppose λ = iω is a root of the characteristic equation

(3.7.39). This assumption yields

−ω2 + aiω + c+ de−iωτ = 0,

where the real and imaginary parts are respectively given by
−ω2 + c+ d cosωτ = 0,

aω − d sinωτ = 0.
(3.7.41)
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Thus,

ω4 + (a2 − 2c)ω2 + c2 − d2 = 0.

Its roots are

ω2
± = 1

2

(
(2c− a2)±

√
(a2 − 2c)2 − 4(c2 − d2)

)
. (3.7.42)

By (3.7.40),

a2 = 2ηe(µ+ 1)T ∗2 + (µ+ 1)2T ∗2 + η2
eT
∗2

> 2ηe(µ+ 1)T ∗2 − ηeE∗T ∗(ηt + 1) = 2c.

Since a2 > 2c, ω2
− will always be negative. Additionally, it always holds that a, d > 0,

but sgn(c) is unknown and dependent on parameter choice. We examine several cases

via application of Theorem 3.1 in Kuang (1993, p. 77), which is reproduced below for

convenience.

Theorem 8 (Kuang (1993)) Consider the following second order real scalar linear

neutral delay equation:

d2x(t)
dt2

+ α
d2x(t− τ)

dt2
+ a

dx(t)
dt

+ b
dx(t− τ)

dt
+ cx(t) + dx(t− τ) = 0, (3.7.43)

where τ, α, a, b, c, d are real constants, and the corresponding characteristic equation

is given by

λ2 + αλ2e−λτ + aλ+ bλe−λτ + c+ de−λτ = 0. (3.7.44)

In (3.7.43), assume |α| < 1, c + d 6= 0, and a2 + b2 + (d − αc)2 6= 0. The number of

different imaginary roots with positive (negative) imaginary parts of (3.7.44) can be

zero, one, or two only.

(1) If there are no such roots, then the stability of the zero solution does not change

for any τ ≥ 0.
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(2) If there is one imaginary root with positive imaginary part, iω+, an unstable

zero solution never becomes stable for any τ ≥ 0. If the zero solution is asymp-

totically stable for τ = 0, then it is uniformly asymptotically stable for τ < τ0,1,

and it becomes unstable for τ > τ0,1. Define τ0,1 = θ1
ω+

, with 0 ≤ θ1 < 2π, and

cos θ1 = −abω
2
+ + (c− ω2

+)(d− αω2
+)

b2ω2
+ + (d− αω2

+)2 ,

sin θ1 = −(d− αω2
+)aω+ − bω+(c− ω2

+)
b2ω2

+ + (d− αω2
+)2 .

(3) If there are two imaginary roots with positive imaginary part, iω+ and iω−, such

that ω+ > ω− > 0, then the stability of the zero solution can change a finite

number of times at most as τ is increased, and eventually it becomes unstable.

Case 1: |c| > d

Suppose |c| > d. Then the right-hand side of (3.7.42) is always negative. By The-

orem 8, the stability of (E∗, T ∗) does not change for any τ ≥ 0. As the stability is

unchanging, we determine the stability of (E∗, T ∗) when τ = 0.
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Figure 3.13: The Positive Equilibrium E1 Is Asymptotically Stable for All τ ≥ 0. Parame-

ters Are Chosen Such That |c| > d and c > 0.
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If c < 0, then c + d < 0. By Theorem 7, E2 is unstable and the only positive

equilibrium for the system (3.7.30) when τ = 0. If c > 0, then c + d > 0. It follows

from application of Theorem 7 that E2 is not feasible, and E1 is asymptotically stable

for all τ ≥ 0, as depicted by Figure 3.13.

Case 2: |c| < d

Suppose |c| < d. Evaluating (3.7.42) yields

ω2
± = 1

2

(
− (a2 − 2c)︸ ︷︷ ︸

>0

±
(

(2c− a2)2︸ ︷︷ ︸
>0

+4 (d2 − c2)︸ ︷︷ ︸
>0

)1/2)
.

Hence, there exists one imaginary root λ = iω with a positive imaginary part for

the characteristic equation (3.7.39). Since ω− is always negative, we never have two

imaginary roots with positive imaginary part. When τ = 0, by Theorem 7, E1 is

asymptotically stable and E2 is not feasible since c+ d > 0.

Define

τ0,1 = θ1

ω+
,

where 0 ≤ θ1 ≤ 2π. Theorem 8 gives that E1 is uniformly asymptotically stable for

τ < τ0,1 and unstable for τ > τ0,1. By (3.7.41),

cos θ1 = −
(
c− ω2

+
d

)
; sin θ1 = aω+

d
.

Thus, the bifurcation point occurs when

τ0,1 = θ1

ω+
= −

arccot
(
c−ω2

+
aω+

)
ω+

. (3.7.45)

Figure 3.14 illustrates the loss of stability as τ increases.
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Figure 3.14: The Positive Equilibrium E1 Is Uniformly Asymptotically Stable for τ < τ0,1 =

4.32 and Unstable for τ > τ0,1 = 4.32. The Parameters Are Chosen Such That |c| < d.

Case 3: |c| = d

Suppose |c| = d. Evaluating (3.7.42) gives

ω2
± = 1

2

(
(2c− a2)± (a2 − 2c)

)
.

Thus ω2
− < 0 and ω2

+ = 0. Suppose c > 0. Then c+ d > 0, and Theorem 7 gives that

E1 is the only positive equilibrium and is asymptotically stable when τ = 0. Now if

the stability of E1 changes at some τ > 0, the characteristic equation (3.7.39) admits
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a root λ = u + iv with u > 0 for some τ > 0. Suppose (3.7.39) admits a complex

root λ with positive real part. Substituting λ = u+ iv in the characteristic equation

(3.7.39) yields

u2 − v2 + 2iuv + au+ iav + c+ de−uτ (cos vτ − i sin vτ) = 0.

The real and imaginary parts are respectively given by:
u2 − v2 + au+ c+ de−uτ cos vτ = 0,

2uv + av − de−uτ sin vτ = 0.
(3.7.46)

Squaring and adding (3.7.46) yields

(u2 − v2 + au+ c)2 + (2uv + av)2 = d2e−2uτ . (3.7.47)

Since u > 0 and τ ≥ 0 by assumption, it follows that d2e−2uτ ≤ d2. Therefore

(u2 − v2 + au+ c)2 + (2uv + av)2 − d2 ≤ 0. (3.7.48)

With c, u > 0, a2 > 2c, and |c| = d, expanding (3.7.48) gives

(u2 − v2)2︸ ︷︷ ︸
>0

+ 4u2v2︸ ︷︷ ︸
>0

+ 2au3︸ ︷︷ ︸
>0

+ 2auv2︸ ︷︷ ︸
>0

+ (a2 + 2c)u2︸ ︷︷ ︸
>0

+ (a2 − 2c)v2︸ ︷︷ ︸
>0

+ 2acu︸ ︷︷ ︸
>0

+ c2 − d2︸ ︷︷ ︸
=0

≤ 0,

a contradiction. Thus, it follows that all roots of (3.7.38) have nonpositive real parts.

As λ(τ) = 0 is clearly never a root of (3.7.39) when c > 0 and |c| = d, then E1 is

asymptotically stable for all τ ≥ 0, as shown in Figure 3.15.

We now suppose c < 0. Then |c| = d implies c+ d = 0. By Theorem 7, E1 = E2,

and the equilibrium is stable. To determine if the stability remains the same for all

τ ≥ 0, follow the assumption in Kuang (1993, p. 79-80) and let τ > a
d
> 0. Consider

the following function:

F (λ, τ) = λ2 + aλ+ c+ de−λτ . (3.7.49)

96



0 100 200 300 400 500

0.125

0.13

0.135

0.14

0.145

0.15

0 500 1000 1500 2000

0.125

0.13

0.135

0.14

0.145

0.15

Figure 3.15: The Positive Equilibrium E1 Is Asymptotically Stable for All τ > 0. Parame-

ters Are Chosen Such That |c| = d and c > 0.

Clearly, F (0, τ) = 0 and limλ→∞ F (λ, τ) = ∞. Additionally, there exists a N > 0

such that if λ ≥ N,F (λ, τ) ≥ 0. We also have

∂F (λ, τ)
∂λ

= 2λ+ a− dτe−λτ . (3.7.50)

Then ∂F (0,τ)
∂λ

= a − dτ < 0, since τ > a
d
by assumption. Then when τ > a

d
, there

exists a δ(τ) > 0 such that when 0 < λ ≤ δ(τ), F (λ, τ) < 0. Thus, there must exist

a λ∗ with δ(τ) < λ∗ ≤ N such that F (λ∗, τ) = 0, making (3.7.38) have a positive

root. Hence, when c < 0 and |c| = d, the equilibrium E1 = E2 is stable for τ < a
d
and

unstable for τ > a
d
, as displayed in Figure 3.16.

The preceding results are summarized in the following theorem.

Theorem 9 For the system (3.7.31), the following statements are true, with a, b, c, d

given by (3.7.40).

(1) If |c| > d, E2 is unstable and the only feasible equilibrium for τ ≥ 0 when

c < 0. For c > 0, E1 is asymptotically stable and the only feasible equilibrium

for τ ≥ 0.
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Figure 3.16: Parameters Are Chosen Such That |c| = d and c < 0. The Positive Equilibrium

E1 = E2 Is Stable for τ < a
d and Unstable for All τ > a

d ≈ 3.6.

(2) If |c| < d, E1 is the only feasible equilibrium and is uniformly asymptotically

stable for τ < τ0,1 and unstable for τ > τ0,1, where τ0,1 is calculated by (3.7.45).

(3) If |c| = d, E1 is asymptotically stable and the only feasible equilibrium for τ ≥ 0

when c > 0. For c < 0, E1 = E2, and the equilibrium is stable when τ < a
d
and

unstable when τ > a
d
.

When the tumor is highly aggressive, a less rapid immune response (represented

by delay) can lead to a loss of stability for a tumorous equilibrium, indicating a loss

of tumor control by the immune system. The instability initially reflects a period of

tumor growth, followed by uncertainty in tumorous outcomes.

3.8 Health Care Implications

The reduction to a system of two equations yields a model simple enough to

allow for clinical use, yet complex enough to produce rich dynamics. Three values,

the activation and proliferation rate of CTLs, the time for activated CTLs to kill

tumor cells, and the inactivation rate of CTLs by the tumor, are key in driving the
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complexity, and the importance of taking their measurements should therefore be

emphasized to health care professionals. In evaluating these parameters, as many

of the other parameters are commonly known from past experiments, health care

workers would then be able to determine which parameter space the tumor falls in

and what would accordingly be the best course of treatment. Additionally, the model

results suggest to clinicians which combination treatments would be best-suited to

pair with DC vaccines. For any patient, treatment to increase the speed at which

activated CTLs leave the spleen to kill tumor cells would be a wise combination, as

a quick response time results in tumor control, where the tumor is maintained at a

low level. When CTLs are activated at a lower rate, the immune response has more

flexibility in response time as opposed to when CTLs are activated at a rapid rate,

where only a small window of response time results in tumor control. Additionally,

treatment to lessen the immunosuppressive environment of the tumor allows for the

use of less DC therapy to eliminate the tumor, with the model providing a threshold

to guarantee tumor elimination.

3.9 Discussion

The underwhelming results of DC-based clinical trials have led to greater testing of

DC vaccines in combination treatments to enhance efficacy. In order to understand

when the vaccine will perform most effectively, it is necessary to understand the

interactions of tumor and immune cells under different conditions. Mathematical

models allow for exploration of these interactions and can aid clinicians in designing

better suited monotherapy and combination treatments.

We propose a simple mathematical model which is capable of exhibiting complex

dynamics. We incorporate a constant time delay to represent the time for the immune

system to respond to the tumor. We have analytically and numerically proven the
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conditions necessary for the existence of a Hopf bifurcation and provided a threshold

to ensure tumor existence (R0 > 1). Our reduced model is capable of exhibiting bista-

bility in the region Rcrit < R0 < 1. Numerical experiments suggest the threshold for

tumor elimination is R0 < Rcrit < 1. In the special case when the immunosuppres-

sive tumor microenvironment is neutralized (ηe = 0), less DC treatment is necessary,

with the model (3.4.5) guaranteeing tumor elimination for R0 < 1. Combination

treatments pairing DC vaccines with agents to block or neutralize immunosuppres-

sive factors, such as anti-IL-10 and anti-TGF-β, would improve the efficacy of the DC

vaccine response, lessening the amount of treatment needed for tumor elimination.

The model outcomes are shown to be sensitive to the time delay. While larger

delays are commonly known to destabilize a system through a Hopf bifurcation, our

model exhibits richer dynamics than what is commonly observed. Instead of re-

maining unstable following the Hopf bifurcation, our model regains its stability for

a sufficiently large delay. Additionally, our model may produce regions of increased

complexity, where the equilibrium becomes increasingly unstable and can even lead

to chaotic outcomes (three pairs of complex conjugate eigenvalues with positive real

part).

Analytical work and numerical experiments additionally reveal the activa-

tion/proliferation rate of CTLs (captured by ρ) to be critical in the dynamics of

the system (3.4.5). When the activation/proliferation of CTLs is low (ρ small), the

immune system can control the tumor cells for small τ , allowing for coexistence of

both populations at a low level. As the delay increases, a Hopf bifurcation introduces

oscillatory dynamics for a window of τ . Further increase of τ leads to a return to a sta-

ble positive steady state, where a high level of tumor coexist with a low level of CTLs.

Taking ρ to be larger, the oscillatory dynamics persist for a wider region of delay and

gain added complexity before regaining stability. These complex, aperiodic regions
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reflect the clinically relevant variability in treatment outcomes dependent on initial

tumor burden. Furthermore, the oscillatory behavior represents the phenomenon of

tumor dormancy for long periods of time, suddenly followed by tumor reappearance

and growth to a lethal size for unknown reasons, which has been demonstrated in vivo

(Prehn, 1972) as well as in a variety of mathematical models (Grossman and Berke,

1980; Kuznetsov et al., 1994).x In all cases, when the time for the immune system

to respond is too long, the effector cells are unable to control the tumor cells at a

low level, and the tumor cells increase to a fatally high level for all initial conditions,

aligning with biological intuition.

An analysis of the system when effector cell death is dominated by the interaction

with the tumor cells (δ = 0) reveals an increased delay is strictly shown to have a

destabilizing effect on the high tumor burden steady state, when conditions allow for

a change in the stability. The system with δ > 0 exhibits large delays stabilizing and

intermediate delays destabilizing the high tumor burden steady state. Biologically

this makes sense, as when the immune system takes too long to respond then there is

less resistance to tumor growth, and the tumor will persist. The results highlight the

importance of incorporating delay in mathematical models to capture these dynamics

and clinically measuring the delay to evaluate the best course of treatment.
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Chapter 4

FUTURE WORK

While our models provide insights into the biology of DC vaccines, there remains

further work to be done. Underlying this work is the question of whether the outlined

conditions and results are satisfied in a clinical or laboratory setting, as the various

iterations of the model have parameters with unknown ranges, some of which, as

a result of non-identifiability issues discussed in Section 2.7.2, cannot be estimated

uniquely with the available data. A main challenge in the process of model formu-

lation lies in correctly parameterizing naturally occurring systems. Parameters are

often unknown in value and require estimation with data, which poses a challenge

when there is inevitable noise in the data, nonlinearity in the model, or the param-

eters are structurally or practically non-identifiable. Though optimization methods

are commonly utilized in parameter estimation, they generally prove unsuited for

overcoming problems with non-identifiability. Sampling-based Markov Chain Monte

Carlo (MCMC) algorithms act as an effective solution without requiring removal of

non-identifiable parameters, though many alternative methods exist for addressing

these difficulties as well (Cao et al., 2008; Zhan et al., 2014).

In Bayesian parameter estimation methods, parameters are categorized as random

variables and their posterior distributions are estimated through experimental data.

MCMC methods are often used in sampling these parameter distributions. Ballnus

et al. (2017) outlined a comparison of various MCMC algorithms with single- and

multi-chain approaches, including Delayed Rejection Adaptive Metropolis (Haario

et al., 2006), Adaptive Metropolis (Haario et al., 2001), and Parallel Hierarchical

Sampling (Rigat and Mira, 2012), evaluated against systems with features such as
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Hopf bifurcations and bistability. Results from Ballnus et al. (2017) and an additional

comparison performed by Valderrama-Bahamóndez and Fröhlich (2019) suggest a

parallel MCMC approach would be a promising approach for establishing credible

intervals for model parameters in future work. Parallel MCMC algorithms are used

to cover larger portions of the parameter space at a time (Valderrama-Bahamóndez

and Fröhlich, 2019). The parameters’ credible intervals can then be densely sampled

and propagated through the model to construct prediction confidence intervals as

well. Though Bayesian credible intervals require specifying prior distributions for the

parameters that pulls upon external information, noninformative priors can be used

when little information is known, as is the case with several of the parameters in our

models, in which the parameters are assigned uniform distributions with large ranges.

Further open questions exist in each chapter that would additionally be worth

exploring in the future. In Chapter 2, open analytical work includes investigating

the existence of a Hopf bifurcation, the local stability of the tumorous equilibria,

and the existence of the Bogdanov-Takens bifurcation. Additionally, we can explore

the tumor-free and tumorous basins of attraction in more detail, better visualizing

the relationship between the parameter space and the basins of attraction, thereby

determining what range of parameter values and doses are necessary to fall within

each basin. Finally, the presence of a singular Hopf bifurcation should be studied in

greater depth, including establishing a deeper understanding of the transition near

the bifurcation point. Current work is being done to examine a generalized version of

the model to firmly establish what is necessary for driving the existence of interesting

features, such as backward bifurcations and periodic solutions.

We can then extend and simplify our model in various ways. We can first simplify

the model and reduce the parameters to account for problems in identifiability. An

extension of the model could reflect a combination of treatments, the common course
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of action when employing DC therapies. Furthermore, the metastasis of melanoma

can be studied through the incorporation of additional tumor compartments. By

modeling multiple tumor compartments simultaneously, we can examine the effects

on distant tumors when the primary tumor is treated. Finally, we can explore the

effects of incorporating an exhausted effector group. As the tumor inactivates the

CTL, a conservation occurs wherein, instead of being eliminated from the system,

a group of exhausted effectors is formed that can later be activated again to fight

the tumor. We can determine whether these biologically relevant inclusions allow for

additional insights.

In Chapter 3, there are similarly many open questions that can be explored in the

future, including but not limited to providing more clearly biological interpretations

of the established conditions. Primarily, we seek to determine whether the global

stability of the interior equilibrium E1 can be found analytically. Additionally, we

can investigate the relationship between the roots of the Sn(τ) functions, the period,

and the amplitude, employing an asymptotic analysis similar to that of Campbell

et al. (2009). While we represented a constant delay in the response of the immune

system, other modes of incorporating delay would be worth exploring in future work.

With innate delays present in additional cellular dynamics, such as the binding time

required for activation, we could examine whether incorporating a second discrete de-

lay would be significant in the system behavior. Though less frequent, mathematical

models of tumors with two discrete delays have been studied (Gosh et al., 2017; Lin

and Wang, 2012; Piotrowska, 2008). While the Beretta and Kuang (2002) method

employed in this article has allowed for evaluating one-delay systems with delay de-

pendent coefficients, an efficient method for evaluating a two-delay system with delay

dependent coefficients remains an open problem (Lin and Wang, 2012). Alternatively,

we could assume the tumor cell growth rate is dependent on its population size τ units
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before. The different representations are worth comparing to foster a more complete

understanding of the tumor-immune dynamics under dendritic cell therapy.
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Tables C.1 and C.2 provide the parameters for the intermediate model (2.3.5) and
simplified model (2.3.6) respectively from Chapter 2. Reasonable values were decided
upon through a literature review. Uncertain parameters were estimated through a
fitting to the murine data in Lee et al. (2007).
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Table C.1: Parameters of the Intermediate Model (2.3.5)

Para. Description Value Reference
vb(t) Intravenous DC dose amount Range: [0− 1010] cells de Pillis et al. (2013); Lee et al. (2007)
µTB Maximum transfer rate of DCs from

tumor to blood
0.0011/day de Pillis et al. (2013)

vt(t) Intratumoral DC dose amount Range: [0− 1010] cells de Pillis et al. (2013); Lee et al. (2007)
µBT Maximum transfer rate of DCs from

blood to tumor
1.0016× 10−5/day Fit to Lee et al. (2007)

KT Value of tumor cells for half-max
DC recruitment

105 cells Kirschner and Panetta (1998)

δD Natural death rate of DCs 0.341/day
Range: [.116,.5]

de Pillis et al. (2013); Granucci and
Zanoni (2009); Ludewig et al. (2004)

Di Number of immature DCs being ac-
tivated by tumor per day

1001.6 cells/day Fit to Lee et al. (2007)

sEa Source of activated CTLs 1.0076× 10−4 cells/day Fit to Lee et al. (2007)
δEa Natural death rate of activated

CTLs
0.1155/day
Range: [0.00970− 0.1199]

de Pillis et al. (2013); Ludewig et al.
(2004)

τ Time accounting for history of den-
dritic cells (travel from spleen)

0.3038 days Fit to Lee et al. (2007)

Ẽn Number of naive CTLs contributing
to primary clonal expansion

8× 104 cells Fagnoni et al. (2000)

bn Maximum activation/proliferation
rate of naive CTLs by DCs

1.00118× 10−2/day Fit to Lee et al. (2007)

En = Ẽnbn Maximum number of naive CTLs
being activated and proliferating
per day

800.944 cells/day Calculated

θn Threshold in DC density for half-
maximal proliferation/activation of
naive CTLs

1001.26 cells Fit to Lee et al. (2007)

bm Maximum activation/proliferation
rate of memory CTLs by DCs

0.01/day Ludewig et al. (2004)

θm Threshold in DC density for half-
maximal proliferation/activation of
memory CTLs

102.015 cells Fit to Lee et al. (2007)
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ram Inactivation rate of activated CTLs 0.01/day Ludewig et al. (2004)
µBTE Maximum rate of CTL recruitment

to tumor from blood
5.7/day de Pillis et al. (2013)

ce Maximum rate activated CTLs are
inactivated by tumor cells

9.42× 10−12/day
Range: [9.42× 10−12 − 10−3]

Kronik et al. (2010); Kuznetsov et al.
(1994); Wilkie and Hahnfeldt (2013)

KEat
Value for half-max activated CTL
toxicity

5007.11 cells Fit to Lee et al. (2007)

sEm Source of memory CTLs 1.0013× 10−3 cells/day Fit to Lee et al. (2007)
δEm Natural death rate of memory CTLs

in blood
0.0903/day
Range: [0.065− .0903]

Gossel et al. (2017); Ludewig et al. (2004);
Westera et al. (2013)

r Tumor cell growth rate 0.3954/day
Range: [0.17− 0.69]

de Pillis et al. (2013); Eikenberry et al.
(2009); Kuznetsov et al. (1994); Lai and
Friedman (2017)

k Tumor cell carrying capacity 1.0× 109 cells de Pillis et al. (2013)
ct Maximum rate activated CTLs kill

tumor cells
0.35/day
Range: [0-1]

de Pillis et al. (2013); Kirschner and
Panetta (1998)
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Table C.2: Parameters of the Simplified Model (2.3.6)

Para. Description Value Reference
vb(t) Intravenous DC dose amount Range: [0− 1010] cells de Pillis et al. (2013); Lee et al. (2007)
µBT Transfer rate of DCs from blood

to tumor
5.9096× 10−4/day Fit to (Lee et al., 2007)

vt(t) Intratumoral DC dose amount Range: [0− 1010] cells de Pillis et al. (2013); Lee et al. (2007)
µTB Transfer rate of DCs from tumor

to blood
0.0011/day de Pillis et al. (2013)

δD Natural death rate of DCs 0.34/day
Range: [.116,.5]

de Pillis et al. (2013); Granucci and
Zanoni (2009); Ludewig et al. (2004)

Di Rate of immature DCs being ac-
tivated by tumor per day

6.2292× 10−4/day Fit to Lee et al. (2007)

sE Source of activated CTLs 4.9348× 10−4 cells/day Fit to Lee et al. (2007)
c Activation/proliferation rate of

CTLs
6.4253× 10−3/day Fit to Lee et al. (2007)

ce Maximum rate activated CTLs
are inactivated by tumor cells

5.539× 10−14/(cells×day)
Range:[9.42× 10−14 − 10−3]

Kronik et al. (2010); Kuznetsov et al.
(1994); Wilkie and Hahnfeldt (2013)

ram Inactivation rate of activated
CTLs

0.002/day
Range: [4× 10−4 − 1.2]

Ludewig et al. (2004)

δE Natural death rate of activated
CTLs

0.1155/day
Range: [0.00970− 0.1199]

de Pillis et al. (2013); Ludewig et al.
(2004)

r Tumor cell growth rate 0.39155/day
Range: [0.17− 0.69]

de Pillis et al. (2013); Eikenberry et al.
(2009); Kuznetsov et al. (1994); Lai and
Friedman (2017)

k Tumor cell carrying capacity 109 cells de Pillis et al. (2013)
ct Maximum rate activated CTLs

kill tumor cells
0.001/(cells×day)
Range: [0-1]

de Pillis et al. (2013); Kirschner and
Panetta (1998)
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