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ABSTRACT

Individuals with voice disorders experience challenges communicating daily. These

challenges lead to a significant decrease in the quality of life for individuals with

dysphonia. While voice amplification systems are often employed as a voice-assistive

technology, individuals with voice disorders generally still experience difficulties being

understood while using voice amplification systems. With the goal of developing

systems that help improve the quality of life of individuals with dysphonia, this

work outlines the landscape of voice-assistive technology, the inaccessibility of state-

of-the-art voice-based technology and the need for the development of intelligibility

improving voice-assistive technologies designed both with and for individuals with

voice disorders. With the rise of voice-based technologies in society, in order for

everyone to participate in the use of voice-based technologies individuals with voice

disorders must be included in both the data that is used to train these systems and

the design process. An important and necessary step towards the development of

better voice assistive technology as well as more inclusive voice-based systems is the

creation of a large, publicly available dataset of dysphonic speech. To this end, a

web-based platform to crowdsource voice disorder speech was developed to create

such a dataset. This dataset will be released so that it is freely and publicly available

to stimulate research in the field of voice-assistive technologies. Future work includes

building a robust intelligibility estimation model, as well as employing that model

to measure, and therefore enhance, the intelligibility of a given utterance. The hope

is that this model will lead to the development of voice-assistive technology using

state-of-the-art machine learning models to help individuals with voice disorders be

better understood.
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Chapter 1

INTRODUCTION

The driving force of my dissertation is to help people with voice disorders be better

understood. A voice disorder is characterized by any deviation in voice quality, pitch

or loudness, inappropriate for an individual’s age, gender or cultural backgroundAron-

son and Bless (2009). Communication plays a vital role in a person’s participation in

society Tiwari and Tiwari (2012). Voice disorders often make a significantly negative

impact on an individual’s quality of life Roy et al. (2005). The main driver of this

negative impact is decreased intelligibility—not being able to be fully understood by

communication partners. This decrease in intelligibility significantly impacts an indi-

vidual’s ability to communicate their thoughts, ideas, opinions, emotions, and general

personality. Voice is very easy to take for granted–you don’t realize how important

it is until you are unable to use your voice to communicate. In fact, so much so

that the American’s with Disability Act (ADA) of 1990 qualified communication as

a major life activity. Major life activities and an individual’s ability to partake in

major life activities qualify what defines an individual as having a disability under the

ADA. As such, individuals with voice disorders that significantly affect their ability

to communicate are also individuals with disabilities and are therefore protected by

the ADA.

In 1988 the Technology-Related Assistance for Individuals with Disabilities Act

(Public Law 100-407) defining an assistive technology device as ‘any item, piece of

equipment, or product system, whether acquired commercially off the shelf, modified,

or customized, that is used to increase, maintain, or improve the functional capabil-

ities of individuals with disabilities.’ In the last several decades, there has been a
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significant push to build technologies that help individuals with disabilities, resulting

in the interdisciplinary field of Assistive Technologies. Assistive technologies span

a wide variety of disabilities, from helping provide visual information to individuals

with visual impairments, to a crutch that helps someone with a broken leg move

around more freely. However, assistive technologies for individuals with voice disor-

ders have been historically overlooked. The most relevant work in the field of assistive

technologies to helping individuals with voice disorders the field of communication

aids. Communication aids cover a large body of literature and devices, from low-

tech augmentative, alternative communication (AAC) boards, to speech-generating

devices and automatic recognition of sign language. The general dogma of the field

has trended away from using speech as an input, instead, relying on text/images as

the input into these systems, or gestures such as American Sign Language. While

this is great for individuals who cannot communicate via speech, it overlooks individ-

uals who still can use their voice to communicate, but might not be as intelligible as

individuals with ‘healthy speech’.

1.1 Motivation

Not being able to be understood has far-reaching effects on an individual’s life.

Having a voice disorder often causes individuals to withdraw socially, experience dif-

ficulties in their career, and experience a general decrease in emotional well-being

as characterized by isolation, frustration, stress, anxiety, and depression. In this

dissertation, I make significant strides towards understanding the impact that voice

disorders have on the lives of individuals with dysphonia and identify areas of oppor-

tunity where voice-assistive technologies could be beneficial. I also take a closer look

at what it means to be intelligible, and the many factors that impact the intelligibility

of speech. From there, I evaluate the intelligibility of a wide variety of speech from
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different angles to gain a better understanding of what it means to be understood–

whether by humans or machines. The eventual goal of this work is to build a system

that helps people with dysphonic speech be better understood.

1.2 Contributions

The contributions of this dissertation are as follows:

• A broad survey of the needs of individuals with dysphonia, including areas

of opportunity for voice-assistive technologies to improve the quality of life of

individuals with dysphonia.

• An evaluation of the accessibility and inclusivity of state-of-the-art voice-based

technology

• A more nuanced and in-depth analysis of what it means for speech to be intel-

ligible

• UncommonVoice: the largest publicly-available dataset of dysphonic speech, as

well as accompanying metadataset.

• Design considerations for the development of voice-assistive technologies
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Chapter 2

BACKGROUND AND PREVIOUS WORK

2.1 Voice Disorders

In the United States, it is estimated that 9.4 million adults have trouble using

their voices Bhattacharyya (2014). Of those 9.4 million individuals, it is estimated

that 2 million have a voice disability severe enough to affect their ability to be under-

stood Beukelman and Mirenda (2005). Speech communication can be fundamental to

an individual’s participation in society. Dysphonia—the medical term for disorders of

the voice—can result from alterations in respiratory, laryngeal, or vocal tract mecha-

nisms, improper or inefficient use of the vocal mechanism, psychological distress, or a

combination of these factors Lee et al. (2004). Voice disorders profoundly impact the

quality of life and overall health of individuals with voice disorders often leading to

anxiety, depression, and social isolation Merrill et al. (2011). While treatments and

tools have been developed to help mitigate the symptoms of voice disorders—such as

voice therapy, Botulinum Toxin injections, and voice amplification devices— many

still experience symptoms that lead to a decrease in intelligibility.

2.1.1 A Note On Dysarthria v. Dysphonia

Dysarthria and Dysphonia are often confused. Dysarthria refers to difficulty

speaking that may occur secondary to an injury or neurological disease. Damage to

the musculature responsible for speech can also cause dysarthric speech. Dysarthria

can present from mild to severe depending on the location and severity of the brain

damage. There are several different types of dysarthria. Ataxic dysarthria stems from

4



poor coordination of the speech muscles making speech and volume slow, erratic, and

irregular. In Flaccid dysarthria, the voice is often breathy and has a nasal quality due

to poor control of the soft palate. Spastic dysarthria can sound slow, indistinct, and

monotone while seeming like it is difficult for the speaker to articulate. Individuals

with hyperkinetic dysarthria sound harsh and strained, while hypokinetic dysarthria

presents with a hoarse voice and low volume. It is possible, and common, for indi-

viduals to have multiple types of dysarthrias, something that is referred to as Mixed

dysarthria Lee et al. (2004).

Dysphonia, rather, is characterized by weakness or loss of voice. Dysphonia can

present following a stroke, disease or trauma to the larynx. Dysphonia has more to

do with the functioning of the vocal cords as well as dysfunctioning muscles related

to phonation. The two main types of dysphonia are Organic and Functional. Organic

dysphonia occurs when there is a physical problem with the vocal apparatus such

as laryngitis, or a structural abnormality such as a nodule, tumor, or trauma to the

larynx. Functional dysphonia occurs when the problem isn’t structural, but there is

still a voice problem.

2.1.2 Epidemiology of Dysphonia

Voice disorders affect elderly females far more than any other demographic Adler

et al. (1997); Merrill et al. (2011); Cohen et al. (2012); Patel et al. (2015); Roy et al.

(2005). The prevalence of voice disorders is also highly correlated with certain risk

factors such as the individual’s vocation Roy et al. (2004); Aminoff et al. (1978);

Thibeault et al. (2004); Roy et al. (2005). For example, jobs that ask the individual

to overuse their voice such as teachers, singers, construction workers, sales represen-

tatives, and clergy-members, all have an increased risk of developing a voice disorder.
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There is a relatively large body of literature indicating that there is a strong corre-

lation between depression and anxiety and voice disorders, however, the directional-

ity of this relationship is relatively unexplored Willinger et al. (2005); Elena Nerriere

(2009); Elam et al. (2010). For example, researchers are unsure as to whether the

anxiety/depression increases the propensity for having a voice disorder, or if hav-

ing a voice disorder increases the probability of experiencing anxiety and depressive

symptoms.

2.1.3 Spasmodic Dysphonia

Spasmodic dysphonia (SD), also known as laryngeal dystonia, is a voice disorder

that is characterized by the improper functioning of the muscles that generate a

person’s voice Aminoff et al. (1978). These muscles spasm, in what is referred to

as a laryngospasm, which makes it difficult to speak or breathe. When the spasms

cause the vocal cords to be too tight and overlap, it is referred to adductor spasmodic

dysphonia (ADSD), while if the vocal cords are too loose, and open during the spasms,

it is referred to as abductor spasmodic dysphonia (ABSD).

In ADSD, the voice is often strained, harsh, tight, and tremulous, while being

low in volume and pitch Aminoff et al. (1978). The speech is often interrupted by

irregular breaks and stoppages. In the less common form of SD, ABSD, the voice often

sounds breathy and has a very low volume. This speech is often described as being

a whisper Ludlow et al. (1991). These two types of SD are not mutually exclusive,

some individuals have symptoms of both ADSD and ABSD, which is referred to as

mixed SD.

While there is no known cure for Spasmodic Dysphonia, there are several different

treatment paths for individuals with this voice disorder that have shown to alleviate

or control the symptoms of the vocal spasms on a temporary or long-lasting basis.
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While these do not address the underlying neurological dysfunction, they usually give

enough symptom relief to enable a person to regain control of and improve the quality

of their voice.

2.1.4 Voice Disorder Treatments

The purpose of voice therapy is the improvement of the vocal quality by teach-

ing the patient to use his/her vocal mechanism more efficientlySpeyer (2008). In

a systematic review of the filed, Speyer (2008) found that while many papers have

methodological challenges, and subjective measures are often used, there is a tendency

towards a modest positive effect of voice therapy on dysphonia. While voice therapy

can teach individuals with voice disorders how to use their voice optimally—therefore

somewhat improving the quality of the voice, it generally doesn’t help the individual

fully recover voice function. Voice therapy can also be costly and time-consuming.

Botulinum toxin (Botox TM, also referred to as BTX) injections have proven to be

one of the most popular and effective treatments for individuals with voice disorders—

specifically spasmodic dysphonia Ludlow (1990). BTX is a neurotoxin that acts as a

’blocker’, inhibiting the contraction of muscles. Because SD is caused by involuntary

spasms of the larynx (see 2.1.3), BTX injections into the muscles that spasm has

shown to be an effective way to reduce the number of laryngospasms, which in turn

lowers the acoustic measurement of the fundamental frequency, change in fundamental

frequency and voice-break factor, therefore positively affecting an individual’s voice

quality Zwirner et al. (1991).

Several factors affect the efficacy of BTX injections as a treatment for SD. BTX

can be injected unilaterally or bilaterally (either on the muscle that controls one vocal

chord or the muscles that control both of the vocal cords). For ADSD, generally, the

1Image Source: https://www.dysphonia.org/anatomy.php
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Figure 2.1: Illustration of the Anatomy of the Larynx1

thyroarytenoid muscle–the muscle responsible for closing the larynx–is targeted, while

for ABSD, the posterior cricoarytenoid muscle–the muscle responsible for opening the

larynx–is targeted Benninger et al. (2001). See Figure 2.1 for the location of these

muscles and the general anatomy of the larynx.

The amount of BTX injected is up to the physician and generally involves a process

of trial and error over time, but ranges from 15 to 30 units depending on the severity

of the symptoms. The voice quality improvement afforded by BTX injections lasts

anywhere from 6-12 weeks. Physicians often ‘overshoot’ the amount of BTX they in-

ject for individuals with ADSD, causing the patient to experience a period where their

normally creaky voice sounds breathy. This variation in voice quality over time has

been deemed the colloquially deemed the ‘botox rollercoaster’, the process is shown

in Figure 2.2.
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Figure 2.2: The BTX Treatment ‘Rollercoaster’.

While BTX injections, voice therapy, or a combination of the two have shown to

be a good way to manage the symptoms associated with common voice disorders,

specifically SD, there are still several limitations associated with these treatment

methodologies. For example, BTX injections primarily work for individuals with

ADSD and show much less success in the ABSD population. These injections can also

be costly if the individual’s medical insurance doesn’t cover them, and often patients

need to travel hours to the nearest trained otolaryngologist to receive their injection.

BTX injections also involve a significant amount of guesswork as to the dosage and the

frequency of the injections. This can lead to varying degrees of success and potentially

extended ’breathy’ periods. Once the optimal dosage/frequency is achieved, there is

still generally a week or so period of breathiness after a BTX injection. Despite the

increase in voice quality after a BTX injection, the cost, travel time, and period of

decreased intelligibility due to breathiness just after the BTX injection make BTX

injections a significant inconvenience for some.
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2.1.5 Relevant Acoustic Measures for Dysphonic Speech

Acoustic features such as the fundamental frequency, the standard deviation of

the fundamental frequency, jitter, shimmer, signal-to-noise-ratio have been shown to

change for individuals with ADSD after Botox injections. The fundamental frequency

(F0) of a voice reflects how high or low the pitch of a voice sounds, and is correlated

with the changes in vocal fold tension. Typically adult males have a F0 of from 85

to 155 Hz, while adult females range from 165 to 255 HZ. The standard deviation

of the fundamental frequency (SDF0) is the square root of the variance around the

man fundamental frequency and reflects the variability of F0, and can be used as a

measure of instability in a voice. Jitter is the cycle-to-cycle variation in frequency.

Shimmer is the cycle-to-cycle variation in amplitude. Signal to Noise Ratio (SNR) is

the ratio of energy in the signal versus the noise components also contained in the

acoustic spectrum. These features have been tested in both healthy and dysphonic

speakers and pre-botox dysphonic speakers had significantly higher values for all while

after BTX the SNR and SDF0 were significantly less than before BTX injections for

individuals with ADSD Zwirner et al. (1991).

There have been several acoustic parameters of speech that have been correlated

with a perceived dysphonia severity score, more specifically, the cepstral peak promi-

nence (CPP), the mean ratio of low-to-high frequency spectral energy, and the stan-

dard deviation of the ratio of low-to-high frequency spectral energy Awan et al. (2009).

The CPP is a more reliable measure of dysphonia than other acoustic parameters such

as jitter, shimmer and noise-to-nonharmonic ratio Heman-Ackah et al. (2003).
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2.2 Communication Aids

Communication is a complex process involving the transfer of information between

two participants. There are many points in the communication process where infor-

mation could be lost. For example, if the information is being communicated verbally,

the information could be lost in the creation/production of the signal (speaking), or

the perception of the signal (listening).

There is a range of assistive technologies in the field of communication aids to

enable people with disabilities to have full access to communication: including alter-

native augmentative communication (AAC) devices, speech-generating devices, auto-

matic sign language translation systems, and hearing aids Beukelman and Mirenda

(2005). To help individuals communicate AAC devices provide an interface that dis-

plays a combination of images, words, or phrases that are generally customizable by

the user. The user can select from the vocabulary what they want to say, and the

message will either be displayed on the device or if it’s a speech-generating AAC

device, it will speak the message out loud. This technology is great for individuals

who are unable to speak, however, this may not be ideal for individuals who still

can speak, but who may have problems being understood. These devices also pose

difficulties when the user is trying to communicate in real-time. The process of cre-

ating a message can be time-consuming, therefore interrupting the natural flow of

conversation.

The average human speaking rate is 130-190 words per minute (wpm), while the

average speaking rate of an individual using an AAC device ranges from < 1 wpm to

a max of about 35 wpm Trnka et al. (2009). It has been shown that this speaking rate

can be marginally improved using natural language processing (NLP) techniques to

predict word choice for the user Copestake (1997), however, this increase in speaking
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rate comes at a cost of an increase in cognitive load as individuals have to scan the

list of predictions to select a word that fits their use-case Trnka et al. (2008).

Because the speed of input is an important part of holding a conversation Yuan

et al. (2006), it follows that if a user can use their voice, this ability should be leveraged

in the design of communication aids. For this dissertation, communication aids that

use voice as the input modality are referred to as voice-assistive technologies.

2.2.1 Voice-Assistive Technologies

While the majority of the literature in communication aids focuses on input modal-

ities other than voice, there are several pockets of literature on voice-input devices

as communication aids. Dysarthric speech recognition is one of these areas that

attempts to solve the problem of helping people with speech disorders—primarily

dysarthrias—be better understood. The general methodology here has been to train

an automatic speech recognition (ASR) system on a body of speech from individuals

with speech disorders, using the text output of the ASR system (the transcript of what

was said) as an input into a speech synthesis system which ’speaks’ the transcript in

an intelligible voice.

A potential solution to recognizing significantly different voices is to build per-

sonalized ASR systems that fit individual voices. This methodology has been at-

tempted for the last 30 years, and there has not been significant progress. Of the

dysarthric speech recognizers created, those that use an extremely limited vocabu-

lary (10 digits) achieve around 94% accuracy Hasegawa-Johnson et al. (2006); Green

et al. (2003). Results from systems that use larger vocabularies are extremely varied

from 30.84% Polur and Miller (2006) to 97% recognition rate Sharma and Hasegawa-

Johnson (2010). The highest reported accuracy on the biggest vocabulary using the

least intelligible subjects was 85.05% from Selva Nidhyananthan et al. (2016) using
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recurrent models with Elman backpropagation networks.

However, due to the large variability in testing conditions—the intelligibility of

subjects, the number of subjects, the complexity of the vocabulary, and the different

evaluation metrics—it is very difficult to objectively compare the efficacy of different

algorithms. Very few systems using dysarthric speech recognition have been robust

enough to make it to the commercial market. VoiceItt 2 is one company focusing

on non-standard speech recognition, and while they have several videos showing their

product in action, they have not launched a product beyond the Beta stage yet.

Another potential solution to improving the intelligibility of dysarthric speech is to

adjust certain temporal and acoustic features of the speech. In dysarthric individuals,

it is common for the length of a given utterance to be significantly longer than that of

a healthy speaker. In Bhat et al. (2018), they use a time-delay neural-network-based

denoising autoencoder to adjust dysarthric speech to be recognized by ASR systems.

This paper focused on temporal adaptations using the phase vocoder from Rudzicz

(2013). In Rudzicz (2013), they take a very manual approach to the improvement of

intelligibility by removing repeated sounds, inserting deleted sounds, devoicing the

unvoiced phonemes, and adjusting the tempo and frequency of the speech to improve

the intelligibility of the speech.

In Biadsy et al. (2019), they propose an end-to-end speech conversion model that

normalizes different voices to an intelligible output voice. To achieve this result, for

every input utterance they synthesized speech and set that as the target speech. In

this model, they map an input spectrogram directly to another spectrogram, without

utilizing any other intermediate discrete representation. The network that achieves

this consists of an encoder, spectrogram and phoneme decoders, followed by a vocoder

to synthesize a time-domain waveform. This model can be trained to normalize speech

2http://www.voiceitt.com/
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from speakers with accents, prosodic differences, and speech signals with background

noise into a single canonical speaker–including speech from individuals with speech

disorders.

Empirically, the most commonly used voice-assistive technology is the voice ampli-

fier. There have been several studies that have shown that voice amplification systems

can be effective in decreasing the amount of vocal strain an individual experiences

Morrow and Connor (2011); Roy et al. (2003). This is a good solution for individuals

who primarily have trouble projecting their voice as it allows them to speak softly and

still be heard by their communication partner. However, many individuals with voice

disorders are unhappy with voice amplification systems as the root of the problem

is in the lack of intelligibility of their voice. Amplifying an unintelligible voice still

leads to having difficulties understanding what the speaker says. Another limitation

of voice amplification systems is their design. Many amplification systems require the

use of bulky microphones and speaker systems as shown in figure 2.3. These designs

draw attention away from what the individual is saying and towards the fact that

they are using an assistive technology.

Figure 2.3: An Example of the Voice Amplification System, ChatterVox3

3www.chattervox.com
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2.3 Relevant Speech Processing Techniques

Improving the intelligibility of speech sits at the intersection of several other speech

processing tasks such as speech recognition (speech to text), speaker enhancement

(improving the quality and intelligibility of speech), speech synthesis (text to speech),

and voice conversion (source speech to target speech) Purwins et al. (2019). In work-

ing towards building an intelligibility enhancing system, I will utilize techniques that

have been successful in these other disciplines combined with task-specific domain

knowledge to enhance intelligibility. But before we can work towards enhancing a

metric like intelligibility, we need to be able to quantify that measure whether through

subjective or preferably objective metrics.

2.3.1 Intelligibility and Voice Quality Metrics

Intelligibility is the ability of a speech signal to convey meaning and be understood

by the listener. One way to measure intelligibility is to have a human orthographi-

cally transcribe what they hear Allen (1994). From the ground truth transcript and

the predicted orthographic transcription, the word error rate (WER) can be calcu-

lated. WER takes the sum of substitutions S, insertions I, and deletions D from the

hypothesized word divided by the number of words in the ground truth label N as

shown in 2.1.

WER =
S + I +D

N
(2.1)

Word Error Rate (WER) is used to measure the performance of the ASR systems

Morris et al. (2004). While it may seem counter-intuitive, because of this formulation,

it is possible to obtain a WER that is more than 100%. Although it is not the standard

of the field, sometimes the intelligibility results are shown via the recognition rate

(RR). The RR is calculated by the number of correctly recognized words R divided
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by the total number of words in an utterance N .

RR =
R

N
(2.2)

In the field of speech enhancement, there are many measures of intelligibility and

speech quality, for example, the Speech Intelligibility Index Lee et al. (2019), Short-

Time Objective Intelligibility Taal et al. (2010), and Perceptual Evaluation of Speech

Quality (PESQ) Rix et al. (2001). These metrics were created to measure the effect

of additive noise, and are intrusive—they require both a clean speech sample and a

noisy speech sample that are time-aligned. Intrusive metrics don’t easily translate to

the task of improving the intelligibility of dysphonic as we don’t have easy access to

the ‘clean’ speech let alone time-aligned ‘clean’ speech.

2.3.2 Voice Conversion

While it might seem like speech enhancement would be the most relevant field to

look to guidance on improving the intelligibility of dysphonic speech as the goal of

speech enhancement is to enhance the quality and intelligibility of speech, the field’s

reliance on intrusive metrics—metrics that require a clean and noisy speech sample of

the same length Benesty et al. (2005)—make it minimally relevant to the problem of

improving the intelligibility of voice disorder speech. The problem of improving the

intelligibility of dysphonic speech can be better framed as a voice conversion problem.

In the field of voice conversion, the goal is to convert one voice, the source voice into

another, the target voice Desai et al. (2009); Narendranath et al. (1995). The most

simple form of voice conversion requires parallel corpora of one speaker saying the

same utterances as the other speaker. However, recent techniques have shown that

it is possible to convert speech from one speaker into speech from another speaker

without parallel speech corpora Hsu et al. (2016); Kaneko et al. (2019), and without
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needing to match the lengths of the input and output speech Zhang et al. (2019b).

2.3.3 Latent Representations of Speech

The deep learning revolution has led to neural networks being able to learn useful

data representations in both supervised and unsupervised manners. In computer

vision, it has been shown that neural networks process information in a hierarchical

way—each layer can be interpreted as a feature extractor passing the output on to

the next layer Zeiler and Fergus (2013). These feature extractors have also been

shown to match some properties of the visual cortex Lee et al. (2008). Similarly,

when applied to audio, neural networks have been shown to learn auditory frequency

decompositions in both music Dieleman and Schrauwen (2014) and speech in the

first several layers Jaitly and Hinton (2011). The use of autoencoders, specifically

variational autoencoders (VAEs) to extract a latent representation has become a

popular and successful method of unsupervised feature learning.

Autoencoders work by imposing an information bottleneck, which effectively com-

presses the relevant information into a latent representation from which the original

signal can be reconstructed. The use of variational autoencoders (VAEs) has been

shown to model the generative process of natural speech Chorowski et al. (2019).

Through disentangling the learned latent representations of speech, Hsu et al. (2017b)

demonstrates the ability to modify the phonetic content or the speaker identity for

speech segments without the need for parallel data.

2.4 Remaining Challenges

While there are several relevant treatments of voice disorders, many individuals

still experience some degree of symptoms that harm their ability to communicate

and their general quality of life. Voice-assistive technologies have either focused on
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recognizing dysarthric speech (a range of speech disorders that manifest differently

than voice disorders) or simply amplifying the voice. There is a need for voice-

assistive technologies that improve the voice quality and intelligibility of speech from

individuals with voice disorders. While speech processing has been able to accomplish

a lot with the deep learning revolution, the problem of improving the intelligibility of

voice disorder speech has not received much research attention. While there has been

a lot of work in the speech enhancement field, this field relies heavily on the ability

of the data to be split into time-aligned noisy and clean speech. Unfortunately, in

the problem-space of voice disorder speech, we do not have the luxury of working

with paired clean and noisy speech samples that are time-aligned. This means that

we’ll need to employ techniques such as sequence to sequence models, generative

adversarial networks, and latent representations of speech to solve this problem.
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Chapter 3

INTELLIGIBILITY

3.1 Defining Intelligibility

In this chapter, I will evaluate the existing definitions of intelligibility, and propose

a model of intelligibility that is inclusive of the many factors that play a role in whether

or not speech is understood by a listener.

In many studies, intelligibility is simply defined as the ability of speech to be

understood either by a human or by a computer. While this is a practical working

definition, it fails to capture many of the intricacies and complexities involved in

the process of communication. Intelligibility is affected by many other variables: the

length of an utterance, context, language, accent, the speaker’s voice quality, nasality,

articulation, prosody, age, gender, vocal identity, speaking rate, vowel space area, and

a lot more acoustic features like f0 variability, formant slopes, modulation energies,

residual signal distributions, and cepstral coefficients–all of these are correlated with

intelligibility.

Humans are very good at adapting to different accents and speaking styles, mak-

ing the concept of intelligibility not only relative but also dynamic. The ability of

the receiver also plays a role in intelligibility whether the receiver is a human or a

computer. This ability comes down to what types of speech the receiver is most ‘fa-

miliar’ with, and for both humans and machines, this ability is a dynamic thing that

changes based on the amount of data that the system has been exposed to. Even

with all of these complexities and confounding variables, intelligibility is still used as

a general indicator of communication ability, and as a metric for the diagnosis and

19



treatment of speech and voice disorders in a clinical setting. While several models

of intelligibility have been proposed from different fields–acoustics, signal processing,

speech-language pathology, and performance of voice-based systems–there has yet to

be a unifying and holistic model of intelligibility.

In the clinical setting, the most commonly used intelligibility assessment is the

clinician’s information perceptual estimation of the patient’s speech. It is relatively

easy to see how there has been a notoriously bad inter-rater agreement between

clinicians who rate the intelligibility of individuals with speech and voice disorders Lu

and Matteson (2014). There is a lot of evidence that suggests that auditory-perceptual

judgments are inherently biased, especially for the clinician whose perceptual systems

have adapted to the patient’s speech patterns.

3.2 Acoustic Measures of Intelligibility

Machine learning-based speech processing techniques often rely on the extraction

of standard speech feature sets. In this section, I’ll go through some of the more

common speech feature sets (MFCCs, DWTs, and LPC) and describe the advantages

and disadvantages as well as known sensitivities for each of the most standard speech

feature sets. One of the most common speech input features is mel-frequency cepstral

coefficients (MFCCs). MFCCs try to mimic the human ear where frequencies are non

linearly resolved across the audio spectrum. To accomplish this, the mel filters are

used to symbolize the spatial relationship of the hair cell distribution of the human ear.

The mel frequency scale corresponds to a linear scale below 1 kHz and a logarithmic

scale above 1 kHz. While MFCCs provide good discrimination, are non-linear, and

can capture important phonetic characteristics they are not very robust to noise, and

only consider the power spectrum ignoring the phase spectrum of the speech signal

Cutajar et al. (2013).
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Discrete Wavelet Transforms (DWTs) separate the temporal and frequency infor-

mation in speech signals, analyzing different frequencies with different resolutions.

DWTs are capable of compressing a signal without major degradation but are not

flexible since the same basic wavelets have to be used for all speech signals Anusuya

and Katti (2011).

Linear predictive coding (LPC) is a relatively simple to implement and mathemat-

ically precise time-domain approach that attempts to mimic the resonance structure

of the human vocal tract when a sound is pronounced, obtaining a good source-to-

vocal tract separation. However, LPC is a linear scale that is not necessarily adequate

for representing speech production and perception, and the feature components are

highly correlated with each other Cutajar et al. (2013).

3.3 Speech Intelligibility v Speech Quality v Vocal Quality

The decision to focus on predicting intelligibility over vocal quality came from my

understanding of speech quality from a communication network point of view, not a

clinical point of view. The research that I had been looking into dealt with speech

quality as a measure of the degradation of the speech signal due to lossy compression

or noise from the phone system. The vast majority of these metrics are intrusive, and

the constraints of the problem that I am interested in solving do not lend themselves

to being formulated in a way that we can utilize an intrusive quality metric. There

seems to be overlap in the field of the definitions of quality when relating to a speech

signal. This overlap can be decomposed into speech quality and vocal quality, Voice

quality referring to the perceptual construct having to do with voice disorders while

speech quality focuses on the degradation of a speech signal due noise introduced

throughout the telecommunication system.
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When deciding what quantity to estimate in order to improve the intelligibility, my

understanding of the concept of speech quality as a perceptual measure using intru-

sive metrics in telecommunication systems pushed me towards intelligibility metrics

instead as the essence of intelligibility and lack thereof is the main root cause of the

decrease of quality of life for individuals with voice disorders. Now understanding the

distinction between speech quality and vocal quality, I would consider including the

use of common multidimensional perceptual scales of vocal quality in the values that

we will predict about a given speech utterance.

3.3.1 Clinician-Based Voice Quality Assessments

In 1981, Hirano published the Grade, Roughness, Breathiness, Asthenia, and

Strain (GRBAS) scale to evaluate the auditory-perceptual judgments of vocal qual-

ity. To use GRBAS, a speaker’s voice is evaluated by a clinician on a scale of 0-3

where 0: normal, 1: mild degree, 2: moderate degree, and 3: high degree Hirano and

McCormick (1986). In 2009, an ASHA special interest group met to promote a stan-

dardized approach to evaluating and documenting the auditory-perceptual judgments

of vocal quality and the Consensus Auditory Perceptual Evaluation-Voice (CAPE-V)

assessment was created Kempster et al. (2009). CAPE-V was developed as a tool for

clinical auditory-perceptual assessment of voice with the primary purpose of describ-

ing the severity of auditory-perceptual attributes of a voice problem in a way that can

be communicated among clinicians Kempster et al. (2009). This tool was developed to

promote a standardized approach to evaluating and documenting auditory-perceptual

judgments of vocal quality. In the description of the CAPE-V procedure, the charac-

teristics of the voice are defined as follows Kempster et al. (2009):

• OVERALL SEVERITY: Global, integrated impression of voice deviance.
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• Roughness: Perceived irregularity in the voicing source.

• Breathiness: Audible air escape in the voice

• Strain: Perception of excessive vocal effort (hyperfunction)

• Pitch: Perceptual correlate of fundamental frequency. This scale rates whether

the individual’s pitch deviates from normal for that person’s gender, age, and

referent culture.

• Loudness: Perceptual correlate of sound intensity. This scale rates whether

the individual’s loudness deviates from normal for that person’s gender, age,

and referent culture.

In CAPE-V, speakers are asked to sustain the vowels /a/ and /i/ for 3-5 seconds,

speak 6 short sentences, and spontaneously describe their voice problem, as shown at

the top in Figure 3.1. After the completion of all of these utterances, the above at-

tributes are evaluated by a clinician. The clinician is asked to place a mark somewhere

on the scale between MI (mildly deviant), MO (moderately deviant), SE (severely

deviant). After they have completed their ratings, the clinician is then asked to phys-

ically measure the distance of the line, and the distance from the start to where they

made their mark to get a score out of 100 for each attribute. While this process could

be automated so that the clinician wouldn’t have to pull out their ruler and make

5-7 measurements for each assessment, the process of obtaining a CAPE-V score is a

relatively involved one.

3.3.2 Relationship between Quality and Intelligibility

In speech enhancement systems, it is widely recognized that speech enhancement

algorithms can harm speech intelligibility—while speech enhancement algorithms are
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Figure 3.1: Screenshot of the CAPE-V scale.

proficient at removing background noise and improving the speech quality of an input

signal, the reconstructed signal is often less intelligible than the input signal Xu

et al. (2017); Kim and Loizou (2010). This indicates that the relationship between

speech quality and intelligibility is nonlinear–when speech intelligibility is high, speech

quality can vary across the entire spectrum, while when speech intelligibility is low,

the speech quality is mainly determined by intelligibility Schiffner et al. (2014).

However, the relationship between vocal quality and intelligibility seems to be

more clear, when vocal quality is affected by pathology, intelligibility is negatively af-

fected. For adductor spasmodic dysphonia, in particular, speech from individuals with

SD both pre- and post- BTX injections–speech that has a decreased vocal quality–is

less intelligible than control subjects Bender et al. (2004). It has been shown that

listeners take longer to transcribe speech from individuals with voice disorders, and
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they also are more likely to make mistakes while transcribing voice disorders speech

in comparison to control speech Evitts et al. (2016).

3.3.3 Advantages and Disadvantages of Multidimensional Vocal Quality Scale

One significant drawback of using a multidimensional vocal quality scale like GR-

BAS or CAPE-V is the level of human involvement in collecting quality data. A skilled

clinician is necessary to rate the speech samples. Collecting auditory-perceptual judg-

ments is a costly and time-consuming endeavor that is wrought with inherent bias,

especially when compared to using ASR systems to obtain an estimation of speech

intelligibility. In comparison, this method of intelligibility assessment does not involve

any human annotation and is fast, cheap and objective. However, a more holistic,

standard view of the individual’s voice is provided by auditory-perceptual voice qual-

ity scales like CAPE-V. Having the auditory-perceptual rating from trained clinicians

would be advantageous to have a metric that takes voice quality into account.

3.3.4 Standard Speech Features

Standard speech features for the estimation of vocal quality include jitter, shim-

mer, cepstral peak prominence, signal periodicity, and harmonic noise ratio. These

speech features have shown varying degrees of success in aiding the analysis of patho-

logical speech. Jitter and shimmer are perturbation measures commonly used in the

acoustic analysis of pathological speech. Jitter is a measure of the frequency insta-

bility in a voice, while shimmer is a measure of the amplitude instability. Jitter

and shimmer are shown on a speech signal in Figure 3.2. The ratio of the harmonic

component to noise component (the Harmonic to Noise Ratio) yields information on

the ability of the individual to coordinate source and filter acoustics Teixeira and

Fernandes (2015).
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Both jitter and shimmer can be calculated in several ways, the absolute jitter is

the cycle-to-cycle variation of the fundamental frequency as shown by Equation 3.1.

The relative jitter Jrelative can be calculated as the average absolute difference between

consecutive periods, divided by the average period. Jitter can also be calculated as

the Relative Average Perturbation (JRAP ), the average absolute difference between a

period and the average of it and its two neighbors, divided by the average period. The

last common way to calculate jitter is the Five-Point Period Perturbation Quotient

(JPPQ5), which is computed as the average of it and its four closest neighbors divided

by the average period. Both JRAP and JPPQ5 are expressed as percentages Teixeira

and Fernandes (2015). The JRAP is useful when we want to ignore the physiological

difference in jitter between males and females–males generally have a longer glottal

period than females and have a higher absolute variation. The difference between

males and females is no longer relevant when using JRAP and JPPQ5 as these are

more measures of the local variation.

Jabs =
1

N − 1

N−1∑
i=1

|Ti − Ti−1| (3.1)

Shimmer is expressed as the variability of the peak-to-peak amplitude in decibels

as shown in Equation 3.2 where Ai is the peak-to-peak amplitude and N is the number

of periods. Similarly to jitter, shimmer can also be expressed as relative Shimmer,

three-point Amplitude perturbation quotient, or a five-point amplitude perturbation

quotient Teixeira and Fernandes (2015).

Sabs =
1

N − 1

N−1∑
i=1

∣∣∣∣20 ∗ log
(
Ai+1

Ai

) ∣∣∣∣ (3.2)

The Harmonic to Noise Ratio (HNR) indicates the overall periodicity of the voice

signal by quantifying the ratio between the periodic (harmonic) and aperiodic (noise)
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Figure 3.2: Jitter and Shimmer Perturbations in a Speech Signal.

components. HNR is given by Equation 3.3 where ACV (0) is the autocorrelation

coefficient at the origin consisting of all the energy of the signal, ACV (T ) is the

component of the autocorrelation corresponding to the fundamental period. The

difference between ACV (0) and ACV (T ) is assumed to be the noise energy Boersma

(2000). Harmonic-Noise Ratio (HNR) has been shown to effectively correlate with a

hoarse vocal quality Ferrand (2002); Yumoto et al. (1982).

HNR = 10 ∗ log10
ACV (T )

ACV (0)− ACV (T )
(3.3)

Another acoustic feature that is mentioned a lot in regards to dysphonic speech is

the Cepstral Peak Prominence (CPP). CPP has shown to be a more reliable measure

of dysphonia than jitter, shimmer, and HNR Heman-Ackah et al. (2003). CPP is

a measure of the relative amplitude of the cepstral peak prominence in relation to

the expected amplitude as derived via linear regression. This measure reflects the

degree of regularity or periodicity in the voice signal. Higher CPP values reflect

greater periodicity. In Hillenbrand and Houde (1996), signal periodicity is shown to

be highly correlated with the breathiness quality of speech.

27



3.3.5 Speech Feature Sensitivity in low SNR

Standard speech features are often analyzed by looking at the relationship between

a speech feature and perturbation measures. In Fraile and Godino-Llorente (2014),

the relationship between cepstral peak and perturbation measures is analyzed. There

is an inverse relationship between measures of amplitude, frequency, and noise per-

turbations and the amplitude A1 of the cepstral peak. The dependence between A1

and jitter is more significant than the dependence between A1 and shimmer and noise.

There still exists an inverse relation between shimmer and A1 and noise and A1, so

that with an increase in the standard deviation (σ) of the shimmer or noise, there

will be a decrease in the intensity (dB) or the cepstral peak, however, this decrease

will not be as significant for a similar increase in σ as it would be for jitter. These

results are consistent with Hillenbrand and Houde (1996); Samlan et al. (2013) This

means that should CPP be chosen to use as a speech feature for the estimation of

vocal quality in low SNR, the slight decrease of the intensity of the cepstral peak with

the σ of the noise will have to be accounted for.

In de Krom (1993), the authors demonstrate a major effect of both noise and

jitter on HNR, in that HNR decreases almost linearly with increasing noise levels or

increasing jitter. This indicates that using HNR in low SNR scenarios may not be

the best choice for a speech feature.

In Kreiman et al. (2002), they conduct a clever study that evaluates how jitter,

shimmer, and noise are perceived. In this study, they play a pathological voice for a

listener and ask the listener to adjust different parameters (jitter, shimmer, and noise)

of a synthesized voice to match the characteristics of the pathological voice. They

found that there was no correspondence between jitter and shimmer and the perceived

vocal quality. They argue that jitter and shimmer cannot be used as reliable or valid
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measures of perceived vocal quality. However, the found noise to be a highly salient

perceptual attribute of pathological voices. Listeners’ noise responses varied much

less than their jitter and shimmer responses. This study showed that listeners are

highly insensitive to differences in the amounts of jitter and shimmer in a voice. This

may be due to listeners not being able to differentiate between jitter and shimmer.

The authors argue that jitter and shimmer do not perceptually distinguish mild from

severe vocal pathology. This finding shows that jitter and shimmer are not intuitive

perceptual features that distinguish pathological speech, however, other studies have

successfully used jitter and shimmer to computationally recognize pathological speech

Adnene et al. (2003); Dibazar and Narayanan (2002).

In summary, using standard speech features that are correlated in dysphonic

speech in low signal to noise ratios will be tricky. However, it seems like jitter and

shimmer are the least relevant acoustic features in determining whether and to what

degree a voice is dysphonic. Using CPPs as a feature to help determine vocal quality

seems like a relatively promising way to proceed if we need to use a standard speech

feature to capture aspects of vocal quality.

3.4 Defining Intelligibility Multidimensionally

Intelligibility can be constructed as a binary thing: did the listener receive the

information that they needed or not, or a scalar value: to what extent was the

message received. There’s a certain intelligibility threshold–a point where someone

who is originally unintelligible becomes intelligible to a listener. Every listener’s

threshold is slightly different based on their previous experience: what languages are

they familiar with, what kinds of accents do they understand, do they have experience

communicating with individuals with voice disorders, etc. To help a speaker be more

intelligible to communication partners, their intelligibility needs to cross the listener’s
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threshold. This increase in intelligibility can come from either our brain’s natural

tendency to adapt and learn the speech patterns of others, from the speaker’s ability

to adapt how they’re speaking to be better understood, or it could also potentially be

moved towards the intelligibility threshold by the aid of a voice-assistive technology.

There are also instances where the listener might not understand very many of the

words in a sentence, however, whether it was through the context, non-verbal cues, or

other idiosyncrasies of human interaction that the message is still clearly understood.

Variables that affect intelligibility include local acoustic features, global acoustic

features, linguistic data, the language it was spoken in, as well as the listener’s physical

and prior experience with similar speakers. The amount of energy that a listener must

put in is also a significant
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Chapter 4

A QUALITATIVE ANALYSIS OF THE NEEDS OF INDIVIDUALS WITH

VOICE DISORDERS

4.1 Overview

One of the first steps towards the goal of helping people with voice disorders be

better understood was to dig deep into the problem and learn more about how voice

disorders affect the lives of people with dysphonia. To accomplish this, I conducted

two surveys to learn more about the experience of individuals with dysphonia. The

first survey focused on qualitative feedback about the overall effects of voice disorders,

while the second survey focused on and ’double-clicked’ on some of what was found

in the first survey as well as dug deeper into people’s experiences using voice-assistive

technologies.

Individuals with voice disorders often find it difficult to be understood while speak-

ing on the phone, conversing in a noisy environment (restaurants, parties, etc.), or-

dering at a drive-thru and meeting someone new for the first time. Engaging in social

interactions and completing the tasks necessary to acquire, maintain, or advance in

a career become particularly demanding. These trying situations often lead to low

self-esteem and confidence, as well as feelings of isolation, anxiety, frustration, stress,

and sometimes depression.

Individuals with voice disorders work hard to be understood in day-to-day in-

teractions. This affects their social life, their career, and their emotional wellbeing.

When it is difficult to socialize, it is easy to withdraw from social situations and

become isolated. This lack of social interaction can lead to a decrease in self-esteem
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and confidence, much like being consistently overlooked when it comes to obtaining

a promotion in your job. These are all things that individuals with voice disorders

deal with daily, largely because they are not easily understood.

While 88.83% of the respondents have experienced a limitation or a barrier be-

cause of their voice disorder, only 1.75% have used an assistive technology designed

to help them be better understood. Of the respondents, 63.16% indicated that they

would use voice-assistive technology. Very few voice-assistive technologies have been

developed to help people with voice disorders be better understood, despite individu-

als with voice disorders being open and interested in using these kinds of technologies.

This suggests that there are opportunities for innovation in creating voice-assistive

technologies that help to more easily facilitate day-to-day interactions.

4.2 Methodology

Both surveys were administered using Google Forms and were distributed to the

members of the National Spasmodic Dysphonia Association through email and social

media. The inclusion criteria for both surveys was that participants had to be 18

years or older, and self-identify as having a voice disorder. Participants were allowed

to skip any question they did not want to answer. In the first survey, we surveyed

471 participants (386 female, 76 male, and 9 who did not disclose), who have a voice

disorder.

4.2.1 Types of Survey Questions

There were three main types of survey questions that we used to learn more

about the experiences of individuals with voice disorders: open-ended, multiple select,

single select, and Likert-scale questions. Open-ended questions are asked such that

the respondent has an opportunity to write out their thoughts and opinions. In
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multiple select questions, the respondent can select as many answers as they would

like to answer the question. In single-select questions, the respondent must make

a choice and only select one of the provided answers. Likert-scale questions have

the format ‘Please rate the extent to which you agree or disagree with the following

statements’, followed by the statement in question, and then the respondent is asked

to choose between ‘strongly disagree, ‘disagree’, ‘neutral’, ‘agree’, or ‘strongly agree’,

or a number between 1 and 5 where 1 is ‘Strongly disagree’ and 5 is ‘Strongly agree’

as shown in Figure 4.1.

Figure 4.1: Example of a Likert Scale Question

4.3 Initial Voice Disorder Survey

There were three main parts of the first survey. The first section checks that

the participants meet the criteria to participate. The second section asks for details

about the respondent’s voice, while the third section asks questions about what kinds

of technology individuals with voice disorders use. The survey ends with a series of

open-ended questions about how having a voice disorder has impacted their lives.

In the screener section of the survey, we ask participants to acknowledge that they

meet our requirements to take the survey–that they’re more than 18 years old and

have a voice disorder. We also ask for some primary demographic information: their

location (city/state), gender, and age.

In the first part of the survey, we begin to dive into learning more about the

participant’s voice. We ask questions about their voice disorder, including diagnosis,

age of onset, voice description, voice treatment, and efficacy of treatment. We also
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Table 4.1: Survey 1 Part 1: About Your Voice

Question Type

What voice disorder do you have? Multiple select

Do you have a more specific diagnosis for your voice disorder? Open-ended

How long has it been since you’ve been diagnosed with a

voice disorder? Single select

At what age did your voice disorder first develop? Number

How would you describe your voice? Open-ended

What kind of treatment have you received for your voice? Multiple select

“My voice is more easily understood after treatment” Likert

“Most of the time people understand my voice.” Likert

“People are less likely to understand my voice when we first

meet than after I’ve known them for a while” Likert

Which situations do you find it difficult to be understood? Multiple select

ask respondents to identify situations where they find it difficult to be understood.

These questions are shown in more detail in Table 4.3.

In the second section of the survey, expanded on in Table 4.3, we ask individuals

about the technology that they use. This involved non-voice related technology such

as electronic devices (mobile devices, laptop, desktop, etc), and web browsers, as

well as voice recognition systems. We ask about non-voice technology to obtain a

baseline of what kinds of platforms we might develop systems for in the future. We

use this information later in this dissertation to determine what browsers/devices we

developed a data collection system for. Concerning voice recognition systems, we

asked respondents what voice recognition systems they had used, as well as which

ones had worked better than others, and which ones had performed worse than others.
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Table 4.2: Survey 1 Part 2: Technology Use

Question Type

Which electronic device(s) do you use on a daily basis? Multiple select

Which internet browser (s) are you most comfortable

or familiar with? Multiple select

Which voice recognition systems have you used? Multiple select

Are there any voice recognition systems that seem to

recognize your voice better than others?
Multiple select

Are there any voice recognition systems that seem to

recognize your voice worse than others?
Multiple select

“Voice Recognition systems recognize my voice

most of the time:” Likert

“I would use a voice assistive technology that helped

me to be better understood” Likert

We also asked respondents how they felt about using a voice assistive technology that

helped them be better understood.

In the third section of the survey, expanded on in table 4.3, we asked a series of

open-ended questions. These questions revolved around how voice disorders affected

their lives. We asked them to identify any activities that they no longer could par-

ticipate in due to their voice disorder, as well as how their voice disorder has affected

their career, and social life. We also ask them again, to identify any situations that

they’ve found it particularly difficult to be understood. We finish the survey by asking

if they’ve ever faced any discrimination due to their voice disorder and allow them

an opportunity to add anything that they’d like to share.
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Table 4.3: Survey 1 Part 3: Open-Ended Responses

Question Type

How does your voice disorder affect your life? Open-ended

List any activities that you can no longer participate

in due to your voice disorder
Open-ended

What kinds of technologies would you like to see developed

for your voice disorder?
Open-ended

How does your voice disorder affect your social interactions? Open-ended

How does your voice disorder affect your career? Open-ended

Are there any situations in which is is particularly

difficult to be understood? Open-ended

Have you faced any kind of discrimination due to your

voice disorder? Open-ended

Is there anything else that you’d like to add? Open-ended

The National Spasmodic Dysphonia Association was gracious enough to assist

with the recruitment of participants. It is through their support that we were able

to obtain such significant sample sizes, something that is a great feat, especially

considering that Spasmodic Dysphonia is technically a rare disorder.

4.3.1 Initial Voice Disorder Survey Results

We surveyed the needs of individuals with voice disorders to get a better idea of

the effect of voice disorders on people’s lives to identify challenges that could be aided

by the use of voice-assistive technologies. We present the experience of individuals

with voice disorders and analyze the results concerning the challenges experienced

daily.
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The results of the first part of the survey mirrored what has been seen in other

related research on the demographics of individuals with SD Adler et al. (1997); Patel

et al. (2015); Roy et al. (2004): the respondents were primarily female (82.31%), the

average age was 62 ± 11.84 years old, the onset of SD took place on average at the

age of 45 ± 14 years, and 10.30% of the respondents were in the teaching profession.

When asked in an open-ended format ‘How does your voice disorder affect your

life?’, the most prominent responses can be categorized into three distinct groups:

social interactions (41.11%), career (29.33%), and emotional wellness (30.95%). The

coded response rates are shown in Table 4.4. Following these three, other significant

effects of having a voice disorder are reported as not being able to be understood when

using the phone (18.71%), general communication (15.94%), and overall confidence

(11.28%).

4.3.2 Diagnosis and Treatments

The majority of the respondents have a diagnosis of SD (95.6%), while 21.0% have

Vocal Tremor, and 9.4% have Muscle Tension Dysphonia. When asked if they had a

more specific diagnosis (such as ADSD or ABSD), 49 of the respondents reported that

they were diagnosed with ADSD, while 31 individuals reported being diagnosed with

ABSD, and 17 reported having mixed ADSD, and ABSD. These voice disorders are

tightly coupled and exhibit very similar symptoms. As these disorders have similar

causes, and symptoms, it makes sense that they would be treated similarly. The most

common treatment method is Botox injections which 81.6% of the respondents had

been treated with. The second most common treatment is speech therapy of which

65.4% of the surveyed population had participated in. These treatments seem to be

relatively effective as 53.4% of the responses either agreed or strongly agreed with the

statement I would say that my voice is more easily understood after treatment, while
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Table 4.4: Primary Effects of Living with a Voice Disorder.

Response Response Rate

Decreased Social Interations 41.11%

Decreased Emotional Wellness 30.95%

Negative Impact on Career 29.33%

Difficulty Using the Phone 18.71%

Decreased Communication 15.94%

Decreased Confidence 10.85%

when responding to the prompt I would say that most of the time people understand

my voice, only 34.2% of the respondents would agree or strongly agree.

4.3.3 Difficult Situations and Limitations

The survey addressed the idea of difficult situations, barriers, and limitations

through two questions, one close-ended ’choose all that apply’ question, and another

open-ended prompt that asked respondents to ”List any activities that you can no

longer participate in due to your voice disorder.” From these two questions, we have

identified several situations that are particularly difficult for individuals with voice

disorders to participate in. These situations are shown in Table 4.5 in decreasing order

of frequency. The most commonly reported difficult situation was speaking on the

telephone ( 91.4% of respondents), followed by speaking in a noisy environment (87.5%

of the respondents). Ordering food at a drive-thru was reported as one of the most

difficult situations to be understood as 339 respondents indicated (74.3%). Speaking

with a new person was also reported to be difficult by 60.5% of respondents. The least

mentioned difficult situation to be understood is speaking with family and friends,

however, 30.0% still reported having difficulty speaking with family and friends.
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Table 4.5: Situations Identified as Particularly Difficult

Option Response Rate

Speaking on the phone 90.95%

Speaking in a noisy environment 86.55%

Ordering at a drive thru 74.08%

Meeting someone new for the first time 60.88%

Talking with family or friends 28.85%

Stress* 2.69%

When asked to list which activities they no longer participate in because of their

voice disorder, the results were very similar to the results from the close-ended ques-

tion. In the open-ended question, respondents reported the loss of general communica-

tion abilities (32.91%), singing (27.00%), social interactions (23.31%), public speaking

(22.42%), group conversations (21.19%), and teaching (9.21%). Only 11.17% of the

participants responded that they have no limitations from their voice disorder. It fol-

lows that 88.83% of the respondents reported that they have experienced a limitation

or barrier because of their voice disorder.

4.3.4 Social Effects

Not being able to be understood or heard has a significant impact on both the

quantity and quality of social interactions. We asked participants ’How does your

voice disorder affect your social interactions? ’. Of the respondents, 91.65% experi-

enced a decline in the amount and quality of their social interactions. In general, the

responses indicated that social interactions are stressful and difficult for individuals

with voice disorders. So much so that 39.91% of the respondents indicated that they

actively avoid participating in social gatherings.
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In 14.62% of the responses, the reason for avoiding social interactions was reported

to be that these gatherings usually take place in noisy settings. Environments with

a lot of noise make it even more difficult for individuals with voice disorders to be

understood. Gatherings in noisy environments are often frustrating for individuals

with voice disorders because they feel like they are being ignored, overlooked, and

generally disregarded. Another 9.28% of respondents mentioned being embarrassed

by their voice, or fearful of how others would perceive them. Some respondents—

10.44%—reported that having a voice disorder makes it much more difficult to meet

new people. Withdrawing from social engagements can lead to isolation and de-

pression, a scenario that 26 of the respondents (6.03%) acknowledged happening to

them.

A few individuals decided to focus their response on how they cope with the fact

that their voice disorder makes social interactions more difficult. The most common

coping strategy focused on informing the communication partner of their voice dis-

order. Through explaining the condition, the communication partner reportedly is

more likely to give the individual with a voice disorder more time to answer. Other

respondents—6.49%—focused on the opportunity that their voice disorder gave them

to build their listening skills, and be more self-reflective.

4.3.5 Career Effects

Having a voice disorder can have a significantly negative effect on a career. When

asked to respond to the question ’How does your voice disorder affect your career?,’

respondents made it clear that it is difficult to acquire, maintain, and advance in a

career when diagnosed with a voice disorder. Of the responses, 81.22% discussed the

negative effect that their voice disorder has had on their career. Even further, 122

people shared that their careers had ended due to their voice disorder. As reported,
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"I would use a voice assistive technology that helped me to be better understood."

Figure 4.2: Response Rate to the Question ‘I Would Use a Voice Assistive Tech-
nology that Helped me to Be Better Understood’.

28.71% of the respondents have lost a job, or have to retire early because of their

voice. Only eight respondents—1.75%—have used some sort of assistive technology,

namely, an amplifier, to extend their careers.

4.3.6 Emotional Wellness

With fewer social interactions, difficulties finding, keeping and advancing in a

career, and the prevalence of discrimination, it is not difficult to see the connection

between having a voice disorder and a decline in emotional well-being. When asked

to respond to the question ’How does your voice disorder affect your life? ’ 30.95% of

the respondents mentioned one or more of the following: stress, anxiety, frustration,

isolation, or depression.

When asked if the participant had ever experienced discrimination due to their

voice disorder, 59.66% indicated that they had experienced some form of discrimina-

tion because of their voice. Most of this discrimination manifests in people with voice

disorders being overlooked for promotions because of their voice, or not getting jobs

or interviews because of the way they sound.
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Figure 4.3: Responses for ‘Which Voice Recognition Systems Have you Used’.

4.3.7 Technology Usage

Two main pieces of technology usage were asked about in the initial voice disorder

survey: voice recognition system usage, and general device/browser configuration.

Questions were asked about what voice recognition systems respondents had used

as well as if the respondents noticed any voice recognition systems working better

than other voice recognition systems. Most respondents (50%) had not used any

voice recognition systems while of those who had used voice recognition systems,

Apple’s Siri R©was used the most (35.1%), followed by Amazon’s Alexa R©(14.1%),

GoogleNow R©(10.8%), Cortana R©(2.8%), and Dragon Naturally Speaking R©(1.5%).

4.4 Follow-Up Voice Disorder Survey

4.4.1 Limitations to Initial Voice Disorder Survey

There were a few themes that came up in the initial voice disorder survey that

required further evaluation. There were specific things that came up that we didn’t
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know to ask about in the initial survey until we had the results to guide a follow-

up survey. The initial survey asked relatively broad, qualitative questions, and the

follow-up survey dug a little bit deeper to be able to obtain some quantitative data

around the needs of individuals with dysphonia.

One main theme that was continually brought up in the results of the initial

voice disorder survey was the impact of voice disorders on an individual’s emotional

wellbeing. However, we did not ask any specific questions to quantify how many

individuals with SD experience anxiety, depression, isolation, or frustration because

of their voice disorder. Another oversight in the initial survey was that we didn’t

ask them about what voice treatment they used. In the follow-up survey, we added

a few questions about if they use Botox injections or not. We also found that many

people were eager to share their coping mechanisms and pieces of advice as to how

they’ve learned to deal with their voice disorder. After learning more about the

population of individuals with SD in the first survey, we also learned that there’s a big

opportunity to develop voice-assistive technologies, but we didn’t ask any questions

about voice-assistive technologies in the original survey. In the penultimate question

of the initial survey, we asked participants if they’ve ever been discriminated against.

In this question, we were very surprised by how many individuals told stories of

discrimination, particularly in the field of employment. We didn’t specifically ask for

employment status in the original survey, nor did we ask if the respondent had lost

their job or retired early because of their voice. We used the follow-up survey as an

opportunity to obtain more detailed information about these themes that appeared

in the initial voice disorder survey.

In the first part of the follow-up survey, we check to make sure that the respondents

met the criteria of being over the age of 18 and having a voice disorder. After that,

we dive into general questions about their voice, in a very similar manner to how we
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Table 4.6: Survey 2 Part 1: General Questions

Question Type

What voice disorder do you have? Multiple select

Do you regularly receive Botox injections? Yes/No

If so, how often do you receive injections? Open-ended

If you do not receive Botox, why not? Open-ended

Are you able to sing when your voice is at it’s worst? Yes/No

Are you able to sing when your voice is at it’s best? Yes/No

What is your current employment status? Multiple select

Have you ever lost a job because of your voice disorder? Yes/No/Maybe

Did you retire early because of your voice disorder? Yes/No/NA

If you were designing a voice-assistive device,

what functionality and characteristics would it have?
Open-ended

Have you used an assistive technology for your voice? Yes/No/Maybe

asked in the first survey, however adding questions about whether or not they receive

Botox injections for their voice, and if not why they don’t. The full questions in this

section are shown in Table 4.4.1. We also learned in the initial survey that many

individuals with voice disorders are unable to sing. We wanted to obtain a more

quantitative measure of what percent of individuals can sing with a voice disorder,

so we asked if the respondent can sing when their voice is ’bad’ and ’good’. We also

asked respondents to provide their employment status as well as if they have ever lost

a job or retired early because of their voice disorder. We ended the first section of

the survey by asking what functionality and characteristics they would like to see in

a voice-assistive technology as well as if they had used a voice assistive technology

before. If they had used a voice-assistive technology they moved on to the next section
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Table 4.7: Survey 2 Part 2: Voice-Assistive Technology

Question Type

What kind of assistive technology have you used for your voice? Multiple select

Do you still use a voice assistive technology? Single select

Describe how you use the voice assistive technology

(times when it’s useful, times when it is not).
Open-ended

What contributed to you continuing to use the assistive

technology or stopping use of the technology?
Open-ended

“I am satisfied with my experience with assistive technologies” Likert

What would you change about the technologies that

you’ve used? Open-ended

If you were designing a voice-assistive device, what

functionality and characteristics would it have?
Open-ended

Is there anything else that you’d like to add about your

experience with voice-assistive technologies?
Open-ended

about their experience using voice-assistive technologies, however, if they have not

had that experience, they skipped this section and moved on to the effects of voice

disorders section.

In the Voice-Assistive Technology Experience section of the survey, we were in-

terested in learning more about the experience of respondents who had used voice-

assistive technologies in the past. The questions used in this section are shown in

Table 4.4.1. We asked respondents who made it to this section what kind of technol-

ogy they have used for their voice, and whether or not they still used the technology.

We asked them to describe how they used the technology–times when it was useful,

and times when it was not. We asked them how satisfied they were with their voice-
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assistive technology as well as what they would change about the technologies that

they have used. We asked them what kind of voice-assistive technology they would

like to see developed, and what characteristics/functionality it would have.

In the Effects of Voice Disorders section of the follow-up voice disorder survey,

we asked many Likert scale questions. The questions asked in this section are shown

in Table ??. These questions focused a lot more on the emotional wellbeing of the

respondent than the effects of voice disorder section in the initial voice disorder survey

did. We also ask a couple of open-ended questions as follow-up questions to the Likert-

scale questions about how their voice disorder has affected their career, social life, and

emotional wellbeing.

Respondents were also asked to respond to a few questions about the mechanisms

that they use to cope with their voice disorder. In the initial survey, there were

several coping mechanisms brought up without specifically asking a question about

coping mechanisms. The follow-up survey asked for more information on the coping

mechanisms mentioned in the initial survey: using alcohol or cannabidiol (CBD),

informing communication partners, or generally decreasing stress and anxiety. The

specific questions asked are shown in Table 4.4.1.

4.5 Follow-Up Voice Disorder Survey Results

In the follow-up voice disorder survey, we obtained 453 responses from individuals

with voice disorders.

4.5.1 General Questions

Voice Disorder Distribution

The distribution of voice disorders was very similar to the distribution from the initial

survey, with the majority of respondents having Adductor Spasmodic Dysphonia
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Table 4.8: Survey 2 Part 3: Effects of Voice Disorders

Questions Type

“Before having a voice disorder, I would describe myself

has having anxiety” Likert

“After having a voice disorder, I would describe myself

as having anxiety” Likert

“Having a voice disorder increases my anxiety” Likert

“Having a voice disorder increases my level of stress” Likert

“Because of my voice disorder, I feel isolated” Likert

“Most of the time, my voice is intelligible to

communication partners” Likert

“After treatment, my voice is intelligible to

communication partners” Likert

“Before having a voice disorder, I was confident in myself” Likert

“After having a voice disorder, I am very confident in myself” Likert

“My voice disorder has negatively impacted my career” Likert

Please describe how having a voice disorder has affected your career Open-ended

“My voice disorder has negatively affected my social life” Likert

Please describe how having a voice disorder has affected

your social life Open-ended

“My voice disorder has negatively affected my emotional wellbeing” Likert

Please describe how having a voice disorder has affected your

emotional wellbeing Open-ended
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Table 4.9: Survey 2 Part 4: Coping Mechanisms

Questions Type

What coping mechanisms have you found useful? Open-ended

When your voice is ’good’, do you tell people about your voice disorder? Open-ended

When your voice is ’bad’, do you tell people about your voice disorder? Open-ended

How does stress affect your voice? Open-ended

Have you used CBD oil as a treatment for your voice disorder?

If so, how has it affected your voice?
Open-ended

How does alcohol affect the symptoms of your voice disorder? Open-ended

(66.4%), followed by Abductor Spasmodic Dysphonia (34.3%), Vocal Tremor (21.1%),

Essential Tremor (14.1%), and Muscle Tension Dysphonia (10.3%).

Botox Injections

We asked respondents if they regularly received Botox injections, and 48.1% of re-

spondents responded ‘Yes’, while the other 51.9% responded ‘No’. We asked those

that received botox injections how frequently they received injections, and the average

of the responses was every 3.8 months. For those who do not receive Botox injections,

we asked them to explain why they don’t use it as a treatment. The primary reasons

cited were that it didn’t sufficiently improve their intelligibility, it was too costly,

the side effects (breathy voice for a while) were not worth it, the temporary nature

of the treatment, or their voice disorder not being severe enough to warrant Botox

injections.
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Singing

In response to the question ‘Are you able to sing when your voice is at its worst?’,

72.3% responded with ‘No’. When asking ‘Are you able to sing when your voice is at

its best?’, the percent of individuals who responded with ‘No’ decreased to 45.3%.

Employment Status

When asked ‘What is your current employment status?’, 49.9% of respondents re-

ported to be retired, 28.4% Employed full-time, 12.3% employed part-time, and 6.7%

were unemployed. In response to ‘Have you ever lost a job because of your voice dis-

order, 71.8% responded ‘No’, 14.4% responded ‘Maybe’, and 13.7% responded ‘Yes’.

In response to ‘Did you retire early because of your voice disorder?’ 44.9% responded

‘No’, 30.3% responded ‘Not retired’, and 24.7% responded ‘Yes’.
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Figure 4.5: Responses to the Question ‘Have you Ever Lost a Job Because of your
Voice Disorder?’.

4.5.2 Voice Assistive Technology Experience

Before splitting the survey up into individuals who have used a voice-assistive

technology and individuals who have not, we asked everyone ‘If you were designing

a voice-assistive device, what functionality and characteristics would it have?’. The

main theme of the responses to this question is that respondents are looking for

technologies to help them be better understood, they want the technology to be

inexpensive, unobtrusive, and flexible.

When asked ‘Have you used assistive technology for your voice?’, 20.5% of respon-

dents responded with ‘Yes’, 3.4% responded with ‘Maybe’, and 76.1% responded with

‘No’. The next question was ‘What kind of assistive technology have you used for your

voice’, 85.4% of the respondents have used a voice amplification system, and 16.5%

indicated that they had used text to speech, 1.9% had used Augmentative Alternative

Communication devices. When asked ‘Do you still use a voice assistive technology?’,

56.2% responded ‘No’, 31.4% responded ‘sometimes’, and 12.4% responded with ‘Yes’.
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Figure 4.6: Responses to the question ‘Did you Retire Early Because of your Voice?’.

When asked to ‘describe how you use the voice assistive technology (times when

it’s useful, and times when it is not)’, the general themes of the responses were that

they used amplification systems when their voice was particularly bad, but it only

helps with volume, not clarity. Some individuals would use text to speech during times

of complete voice rest. Most respondents agree that the voice-assistive technology

that they’ve used has not been very useful and that communication partners still

can’t understand what they’re saying.

Respondents were asked ‘What contributed to you continuing to use the assis-

tive technology or stopping use of the technology’, and in the general themes of the

answers are that either they used the technology when they were at work, but now

are retired, they were put off by the time-delay in conversation, the system was too

cumbersome/inconvenient. In general, there’s a lot of frustration of only improving

the volume, not the vocal quality/clarity.

When asked to rate the extent to which respondents agree or disagree with the

statement ‘I am satisfied with my experience with assistive technologies’, 50.5% of
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respondents either strongly disagreed or disagreed, while only 15.4% of respondents

either strongly agreed or agreed with the statement and 34.0% of the respondents

remained neutral.

The respondents were also asked ‘What would you change about the technologies

that you’ve used’. In general, respondents replied with suggestions that the devices be

smaller, less obtrusive, and improve not only volume but also voice quality. Things

like avoiding wires and feedback were also mentioned. Another thing that seems

important is to minimize the delay in the system to be able to maintain the natural

pace of a conversation.

4.5.3 Effects of Voice Disorders

Much like the initial survey, in the follow-up survey, our goal was to learn more

about the effects of voice disorders on the lives of those affected by dysphonia. In

this section, we asked questions that were more targeted than the initial survey and

dug into more specific aspects of the lives of individuals with dysphonia.

Emotional Wellbeing

One aspect that came up in the initial survey, but that wasn’t specifically asked about

is the emotional wellbeing of individuals with dysphonia. In this survey, respondents

were asked specifically about how their emotional wellbeing has changed between

when they received their diagnosis and now.

Figure 4.7 shows that there is a very clear pattern of respondents strongly disagree-

ing or disagreeing (combined 61.7%) with the statement ‘Before my voice disorder, I

would describe myself as having anxiety’, while strongly agreeing or agreeing (com-

bined 64.6%) with the statement ‘After my voice disorder, I would describe myself

as having anxiety’. The weighted average of the responses to the before statement
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Figure 4.7: Responses to the Likert Question ‘I Would Describe Myself as Having
Anxiety’ Before and After their Voice Disorder Diagnosis.

was 2.26 (where 1 is Strongly Agree and 5 is Strongly Disagree), while the weighted

average of the after statement was 3.82.

When respondents were asked to rate the extent to which they agree or disagree

with the statement ‘Having a voice disorder increases my anxiety, 75.5% of the re-

spondents either strongly agreed or agreed and the weighted average was 4.08. The

same pattern was found when the same question was asked referring to stress rather

than anxiety–76.5% either strongly agreeing or agreeing with a weighted average of

4.16. These results are shown in Figure 4.8.

Respondents were asked to rate how much they agreed/disagreed with the state-

ment ‘Before having a voice disorder, I was very confident in myself.’ and ‘After

having a voice disorder, I am very confident in myself’. The results are shown in Fig-

ure 4.9. Before diagnosis, 76.1% either agreed or strongly agreed with the statement
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Figure 4.8: Responses to ‘Having a Voice Disorder Increases my Level of Stress’
and ‘Having a Voice Disorder Increases my Anxiety’

with a weighted average of 4.15, while after diagnosis, only 22.4% of respondents

agreed or strongly agreed with the statement with a weighted average of 2.60.

Another aspect that was brought up in the responses to the initial survey was a

feeling of isolation. To quantify this feeling, the respondents were asked to rate the

extent to which the agree/disagree with the statement ‘Because of my voice disorder,

I feel isolated’ and 56.7% either strongly agreed or agreed with this statement while

21.7% either strongly disagreed or disagreed (weighted average 3.53).

4.6 Discussion

On a surface level, our investigation into the demographics of individuals with

voice disorders—primarily Spasmodic Dysphonia—align very well with previous work

in the area as Spasmodic Dysphonia occurs more often in women than men and often

onsets in middle age. However, we go into more detail and explore other consequences
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Figure 4.9: Responses to ‘Before Having a Voice Disorder, I was Very Confident in
Myself.’ and ‘After Having a Voice Disorder, I am Very Confident in Myself ’

of having a voice disorder—providing insight into some of the day-to-day experiences

of people with voice disorders in the hopes of making it clear what kinds of tasks

voice-assistive technologies could assist.

4.6.1 Difficult Situations

One of the main outcomes of the initial voice disorder survey is a clear under-

standing of some of the most common situations that are particularly difficult for

individuals with dysphonia to be understood. Individuals with voice disorders often

find it difficult to be understood while speaking on the phone, speaking in a noisy

environment, or meeting someone new for the first time. Because people with voice

disorders find these situations difficult, it is more difficult for them to engage in social

interactions, and complete the tasks necessary to acquire, maintain, or advance in

a career. These difficulties often lead to low self-esteem and confidence, as well as

feelings of isolation, anxiety, frustration, stress, and sometimes depression.
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"Most of the time, my voice is intelligible to communication partners. ".

Figure 4.10: Responses to the Likert Question ‘Because of my Voice Disorder, I
Feel Isolated’

4.6.2 Emotional Impact of Dysphonia

The emotional impact of having dysphonia is something that stood out as a theme

in the initial survey, and that was further quantified in the follow-up survey, more

specifically dealing with changes in levels of anxiety, confidence, and stress before

and after diagnosis. As shown in Figure 4.7, before having a voice disorder, most

respondents would strongly disagree or disagree with the statement ‘I would describe

myself as having anxiety’ before being diagnosed with a voice disorder, however, after

being diagnosed, the majority of respondents would either strongly agree or agree.

This points towards the idea that individuals with voice disorders experience anxiety

secondary to their voice disorder, rather than having anxiety before having a voice

disorder, as was previously thought, however, is purely directional.

In Figure 4.8, the responses to the statement ‘Having a voice disorder increases

my stress’ and ‘Having a voice disorder increases my anxiety’ were very similar. In
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general, the surveyed population either strongly agreed or agreed with both state-

ments. The increased levels of stress and anxiety have a significant impact on an

individual’s mental health and emotional wellbeing.

Figure 4.9 shows the responses to the statement ‘I was/am very confident in

myself’ both before and after diagnosis with a voice disorder. Before diagnosis, most

respondents strongly agree or agree with the statement, however, after diagnosis,

the responses lean more towards strongly disagree/disagree. This change denotes a

general decrease in confidence due to the development of a voice disorder.

Anxiety, stress, and confidence are all key parts of an individual’s emotional and

mental health. The development of a voice disorder has shown to have a strong

negative impact on most individual’s levels of stress, anxiety, and self-confidence.

4.6.3 Social Impact of Dysphonia

Decreased intelligibility makes being social very difficult. Many individuals with

voice disorders report feeling isolated and frustrated by not being able to maintain the

same social life that they were able to before being diagnosed with a voice disorder.

When it is difficult to socialize, it is easy to withdraw from social situations and

become isolated.

4.6.4 Career Effects of Dysphonia

Individuals with voice disorders often find it difficult to find, keep, and advance

in a career. The results show that 24.7% of all respondents (40% of respondents who

are retired) retired early due to their voice disorder, and 28.1% of respondents (125

people) report that they either have lost a job because of their voice, or they suspect

that they lost a job because of their voice. These results demonstrate that being
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able to find, maintain, and advance in a career with a voice disorder is difficult

due primarily due to the decreased intelligibility of individuals with dysphonia.

4.6.5 Voice-Assistive Technologies

Despite 89.0% of respondents reporting that they experience some kind of barrier

on a day-to-day basis due to their voice disorder, only 20.5% have used assistive

technology for their voice, and only 2.9% (13 individuals) reported continued use of a

voice-assistive technology. Very few voice-assistive technologies have been developed

to help people with voice disorders be better understood, however, individuals with

voice disorders are open to using voice-assistive technologies that help them be better

understood. This suggests that there are opportunities for innovation in creating

voice-assistive technologies that help to facilitate these day-to-day interactions and

help mitigate the social, career, and emotional impact of having a voice disorder.

4.6.6 Treatments/Coping Mechanisms

While 48.1% of the respondents regularly receive BTX injections at an average

frequency of every 3.8 months, many are still unsatisfied by the treatment options.

BTX injections work very well for some individuals but others are frustrated by the

period directly following an injection where their voice may be extra breathy or tight

(as the dosage of BTX is tweaked). Some individuals find the process painful, and

for others, it is too expensive and time consuming to continue.

Respondents shared many different ways that they cope with their voice disorder.

These coping strategies range from adjusting social expectations and avoiding places

with loud background noises, to having a glass of wine at dinner for the alcohol to

relax their voice a little bit. There have been anecdotal discussion around the use of

CBD oil to help treat voice conditions, however, there is currently no data to support

58



this claim, and when asked in the survey, many of those who had tried to use CBD

for their voice disorder reported no difference in their voice.

4.7 Conclusions

We conducted a survey that evaluated the potential for assistive technologies in

the domain of voice disorders. In two joint investigations, 471 and 453 individuals

with voice disorders were surveyed respectively leading to the conclusion that there is

a significant need for voice-assistive technologies. The experience of individuals with

voice disorders concerning existing voice-based technologies and opportunities for the

development of new assistive-technologies is presented. From these findings, new

research directions are proposed that focus on creating voice-assistive technologies

for individuals with dysphonia.

Here are a few particularly impactful quotes from the surveys:

I have amazing, thought-provoking, earth-changing things to say. I would

love if someone could help me make it as easy as it is for everyone else to

say them.

Your voice is you. Your intelligence, emotions, and abilities all come

through in your voice. . . without it you become invisible.

People don’t hear me even when I try. I miss being heard.

I hate all the pressure to use voice-activated systems. They don’t work for

me, and it’s just aggravating to be told by a computer that I need to repeat

an answer.

One of the biggest challenges with this disorder is hardly anyone knows

what it is. It’s not like walking with a cane or having a recognized disorder,
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like blindness where people will respond with kindness and helpfulness. For

most people this disorder is off-putting. The worst is on the phone with

people who don’t know me, such as when I have to call an agency, make an

appointment, get information, etc. I’ve had to put up with some hurtful

comments. And voice response calls (”say ’placing an order’) on the phone

are next to impossible.

Coming at a crucial time in my development as an adult, (age 19) and

being undiagnosed for 6 years, untreated for 12 and then poorly understood

throughout my life, SD has been about as impactful as a serious spinal cord

injury causing quadriplegia. Except quadriplegia is better understood.
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Chapter 5

EVALUATING THE ACCESSIBILITY OF VOICE-BASED TECHNOLOGIES

5.1 Accessibility of ASR Systems

Speech that is less intelligible due to a neuromuscular disorder is referred to as

dysarthric speech. The speech of individuals with dysarthria is highly variable—

speech may be slurred; have nasal, strained, or hoarse vocal quality; and vary in

tempo, rhythm, or volume of speech production. This wide breadth of articulatory

differences makes recognizing and understanding dysarthric speech a challenging prob-

lem. People with voice disorders will often be able to communicate quite clearly with

those who are close to them: family, friends, caregivers, however, they will be sig-

nificantly less intelligible to unfamiliar communication partners Borrie et al. (2012).

This creates a social barrier which prevents some individuals with voice disorders

from fully participating in their community Cooper et al. (2009).

With the popularization of products like Amazon Alexa R©, Google Home R©, and

Voice Assistants like Siri R©, Cortana R©, and Google Now R©, speech is being used

now, more than ever, as a means of digital interaction. Automatic speech recognition

can be used for a variety of assistive contexts, such as computer interactions and

phone-based interactions. However, individuals with voice disorders generally cannot

obtain satisfactory performance with commercially available ASR systems Young and

Mihailidis (2010); Rosen and Yampolsky (2000). To address this problem, many

researchers have developed specific, robust, dysarthric speech recognition systems

to varying degrees of success. Dysarthric speech recognition is a difficult problem

to solve due to two main factors: the immense variability in the speech produced
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by individuals with dysarthrias, and the relatively small datasets available to model

dysarthric speech and train robust recognition models.

It is colloquially known that current off-the-shelf speech recognition packages do

not recognize pathological speech as well as they recognize ‘normal’ speech. To inves-

tigate this hypothesis the accessibility of two off-the-shelf speech recognition systems

was evaluated on both control and pathological speech (using the dysarthric speech

datasets UASPEECH Kim et al. (2008), and TORGO Rudzicz et al. (2012)), and

later a collection of datasets from speech with a wide range of intelligibility including

data collected in noisy conditions, and speech from individual’s with accents.

5.1.1 Previous Work

A potential solution to recognizing significantly different voices is to build person-

alized ASR systems that fit individual voices. This methodology has been attempted

for the last 30 years, and there has not been significant progress. Of the dysarthric

speech recognizers created, those that use an extremely limited vocabulary (10 dig-

its) are able to achieve around 94% accuracy Hasegawa-Johnson et al. (2006); Green

et al. (2003). Results from systems that use larger vocabularies are extremely varied

from 30.84% Polur and Miller (2006) to 97% recognition rate Sharma and Hasegawa-

Johnson (2010). The highest reported accuracy on the biggest vocabulary using the

least intelligible subjects was 85.05% from Selva Nidhyananthan et al. (2016) using

recurrent models with Elman backpropagation networks. However, due to the large

variability in testing conditions—the intelligibility of subjects, the number of sub-

jects, the complexity of the vocabulary, and the different evaluation metrics—it is

very difficult to objectively compare the efficacy of different algorithms.

This is not the first paper to evaluate the efficacy of off-the-shelf ASR systems

on non-normative voices. Most recently, Orozco-Arroyave et al. (2016) evaluated the
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performance of Google’s R©cloud-based ASR system on speech from individuals with

Parkinson’s Disease in three different languages. However, speech from individuals

with dysarthrias has not been tested since 2010 Young and Mihailidis (2010); Rosen

and Yampolsky (2000). In the last eight years, there have been significant improve-

ments in ASR systems largely from the application of different deep neural network

models to the domain—namely long short-term memory systems (LSTMs) Hinton

et al. (2012); Baker et al. (2009); Deng et al. (2013) as well as distance measures such

as the connectionist temporal classification (CTC) Graves et al. (2006). We predict

that when these off-the-shelf ASR systems are tested with dysarthric speech, the sys-

tem that uses deep neural networks will outperform the system that uses generative

models.

5.1.2 Robust Speech Recognition

Most of the robust speech recognition research has focused on making speech

recognition systems robust to background noise such as bustling traffic, or a crying

baby. These kinds of noise are what we refer to as uncorrelated noise—meaning that

there is no correlation between the speech and the noise. The dogma of the field of

robust speech recognition is to take a dataset, add noise to it, and then reconstruct

the original utterance from the noisy data. This has led to many good results as can

be seen in Wang et al. (2015); Pang and Zhu (2015); Donahue et al. (2017). However,

we suggest that there is a need for a stronger focus on what we refer to as correlated

noise—i.e., noise that comes from the voice itself. Much of the noise-robust ASR

literature revolves around the central assumption that the noise is uncorrelated with

the speech. In many cases, this is not a safe assumption, such as when dealing with

accented speech or speech from individuals with voice disorders.

63



5.1.3 Motivation

In order to obtain a clearer picture of how well state-of-the-art voice-based tech-

nologies recognize speech from individuals with voice disorders, a series of experiments

were conducted where the performance of two different ASR systems was compared

between dysarthric and control speech.

5.2 Methods

5.2.1 Experiments

The performance of the two ASR systems was tested using the two datasets de-

scribed above—TORGO and UASPEECH. Each dataset was fed to the ASR systems,

and the word error rate (WER) was calculated from the resulting prediction, as shown

in figure 5.1. Carnegie Mellon University’s Sphinx Open Source Recognition (Sphinx),

and Google Speech Recognition were used as the ASR systems to test. Sphinx uses a

combination of HMMs and GMM models to recognize speech while Google reportedly

uses an LSTM based network. Unfortunately, we must treat these two ASR systems

as black boxes, and rather than directly compare their architectures, we will use them

as benchmarks for how the field has progressed in the last ten years, as it has shifted

from generative models to deep neural network models.

We predicted that the Google model would have a lower WER than the Sphinx

model for both control and dysarthric speech and that the dysarthric speech would

have a higher WER than the control speech.
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Figure 5.1: Experimental Setup to Test the Accessibility of Two ASR Systems

5.2.2 Datasets

UASPEECH

The Universal Access Speech (UASPEECH) dataset from the University of Illinois

Kim et al. (2008) was published in 2008 and consists of speech samples from 15

individuals with dysarthrias, and 13 age and gender-matched control voices. The

vocabulary used in UASPEECH consists of command words (up, left, down, right,

etc.), common words (the, and, I, you, etc.), the phonetic alphabet (alpha, bravo,

charlie, etc.), digits 1-10, and 300 uncommon words. There are a total of 765 words for

each speaker, three repetitions of each of the commands, letters, digits, and common

words, and only one instance of the 300 uncommon words per speaker. The speech

from UASPEECH was collected using a ’beep’ sound to segment the instances of

speech, and because of this, there is a lot of silence in the dataset.
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TORGO

The University of Toronto’s TORGO database is a database of acoustic and articula-

tory speech from speakers with dysarthria Rudzicz et al. (2012) which was created in

2012. This dataset consists of speech samples from 8 individuals with dysarthria and

7 control voices. For our use case, we did not use the articulatory data, and just fo-

cused on the speech. The vocabulary of TORGO consists of non-words (vowel sounds,

phoneme repetitions, etc), short words (computer command words, words from the

Frenchay Dysarthria Assessment Enderby (1983), words from the word intelligibility

section of the Yorkston-Beukelman Assessment of Intelligibility of Dysarthria Walshe

et al. (????), the 10 most common words in the British National Corpus, and all of

the phonetically contrasting pairs of words from Kent et al. (1989). The dataset also

contains both restricted sentences and unrestricted sentences. Unrestricted sentences

are recorded from asking an individual to freely describe an image rather than reading

from the screen.

Performance Measures

Word Error Rate (WER) is used to measure the performance of the ASR systems

Morris et al. (2004). WER takes the sum of substitutions S, insertions I, and deletions

D from the hypothesized word divided by the number of words in the ground truth

label N . While it may seem counter-intuitive, because of this formulation, it is

possible to obtain a WER that is more than 100%.

WER =
S +D + I

N
(5.1)

A slightly less common performance metric used in the ASR literature is the Word

Accuracy Rate (WAcc). This is defined in equation 5.2, where WER is as defined in
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Table 5.1: Difference Between ASR Performance on Control and Dysarthric Speech

Dysarthric Control % Diff

WER 136% 74% 59%

equation 5.1 and R = N − (S+D), which refer to the number of correctly recognized

words.

WAcc = 1−WER =
N − S −D − I

N
=
R− I
N

(5.2)

In creating the UASPEECH dataset, the authors tested how well the dataset could

be understood by humans. To do this they calculated the recognition rate of each

dysarthric speaker to correspond to the percent intelligibility. They calculated the

recognition rate as the number of correctly recognized words R, divided by the total

number of words.

RR =
R

N
(5.3)

To compare the performance of both ASR systems to the human intelligibility

baseline recognition rate, we calculated the recognition rate of both ASR systems.

This recognition rate is used to assess how well these ASR systems model human

intelligibility.

5.3 Results

5.3.1 ASR Performance

When the performance of the two chosen ASR systems was evaluated, as expected,

Google ubiquitously achieved a lower WER than Sphinx. The WER of the control

speech was lower than the dysarthric speech on all test cases as shown in Table 5.1.

Table 5.2 shows that Sphinx had an 84% larger WER than Google when the dysarthric

speech was evaluated, and 74% larger when control speech was tested. Sphinx had
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Table 5.2: ASR System Performance on Control and Dysarthric Speech

Sphinx Google

Dysarthric 126% 43%

Control 63% 20%

a 55% larger WER in dysarthric data than control, and there was a 44% difference

between the WER of the control and dysarthric speech when using Google.

5.3.2 ASRs as a Model of Human Intelligibility

Figure 5.2 demonstrates the correlation between human recognition rate and what

the ASR systems were able to correctly recognize. Each speaker from the UASPEECH

database was tested using human listeners to establish a level of intelligibility. These

percent recognition rates for each speaker are compared to the human recognition rate

reported in Kim et al. (2008). The numbers on the x-axis correspond to a speaker,

and the y-axis is the recognition rate. Humans consistently perform better than both

Google and Sphinx in recognizing dysarthric speech, and Google outperforms Sphinx.

When a simple linear regression is performed, the correlation coefficient values for the

trend lines show similar patterns: 0.958 for human, 0.920 for Google and 0.765 for

Sphinx.

5.4 Discussion

In general, the results were as expected: models that employ deep neural networks

(as Google does) perform better on both control and dysarthric speech compared to

models that use generative strategies (like HMMs and GMMs). Dysarthric speech

is recognized less often than control speech. Our analysis demonstrates that ASR

systems do not provide robust speech recognition to individuals with voices that fall
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Figure 5.2: Three Different Models of Intelligibility of Dysarthric Speech: Sphinx,
Google and Human

outside the range of ’normal’ voices. Humans perform the best at recognizing speech

from individuals with dysarthria, while the more advanced models of speech and

langauge used in Google’s speech recognition system perform better than the HMMs

used in CMU’s Sphinx.

Part of the reason that these error values are so large is that the average length

of the utterances Nσ = 1.56 is very small. Often times, individuals with dysarthrias

will speak slowly or add breaths between syllables. The models tested do not seem

to be robust to this kind of noise. Often times, in dysarthric speech the speech is

staccato and slow. These systems often interpret these pauses or changes in tempo

as the beginning of new words, and thus the WER of the word is often greater than

one. With Nσ being so small, any language model that the ASR systems have built

are able to be used. This also could lead to an increase in WER.

ASR systems have room for improvement to be robust to both correlated and
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uncorrelated noises. Should these improvements be made, ASRs would be a more

inclusive an accessible tool for individuals with voice disorders. Through creating

such a system, not only will individuals with speech disorders be able to be better

understood by ASR systems but in general ASR systems will be more robust to

complex noise. This is a great example of universal design—the explicit needs of

individuals with disabilities become the implicit needs of the general population.

Creating inclusive ASR systems for individuals with dysarthria will only help to make

ASR systems more robust and widely applicable in real-world settings Panchanathan

et al. (2016). The following areas will be essential in building these robust systems.

5.4.1 Datasets

The datasets used to train ASR systems need to be more inclusive of differ-

ent voices than the current datasets. As shown in Table 5.3, there are three main

dysarthric speech datasets that are used. The total number of hours of dysarthric

data is around 58 hours of speech with very high variation. However, one dataset

of normative speech, Switchboard, has 260+ hours of speech data. Comparatively,

the three dysarthric speech datasets seem insignificant when compared to the size of

normal speech corpora. The lack of sufficient training data for disordered speech is a

bottleneck for the field. With the collection and publication of more data, we expect

to create systems that are more robust to complex types of noise, both correlated and

uncorrelated. One potential way to get more data is to create it. In the last three

years, Generative Adversarial Networks Goodfellow et al. (2014) have shown that

they have the power to generate lots of data from a distribution. In order to augment

the existing dysarthric data that we have, we may need to collect more dysarthric

data to get a better idea of the distributions.
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Table 5.3: Overview and Comparison of Available Datasets

Dataset Sub Data Type Utterances Hours

Menendez-Pidal et al. (1996) 11 Audio Sentences 17.5

Kim et al. (2008) 19
Audio,

Visual
Isolated words 18

Rudzicz et al. (2012) 7

Audio,

Visual,

Articulatory

Non-words,

Isolated words,

Sentences

23

Godfrey et al. (1992) 543 Audio Conversations 260+

5.4.2 Benchmarking Tests

In order to create systems that are fully robust, a standard benchmark test will

need to be created. Ideally, a standard test of how robust a model is to different

voices should be used to measure the performance of new ASR systems. One of the

biggest problems with the field of dysarthric speech recognition is that there is not a

consistent, objective way to compare the performance of different algorithms.

5.4.3 Domain Adaptation

There seems to be great potential for domain adaptation techniques to make ASR

systems more robust to correlated noise. The goal of domain adaptation is to optimize

a model that is trained on a source distribution Ds to also perform well for a target

distribution Dt. In the case of making ASR systems more robust to different voices,

Ds would be the normal speech corpora that ASR systems are trained on, and Dt

would be the datasets that have data from individuals with speech disorders. Domain

adaptation and transfer learning show a lot of promise in making ASR systems more

inclusive of different voices.
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5.4.4 Robust Models

With the collection and creation of more data and the application of domain adap-

tation techniques between normative speech and disordered speech, significantly more

robust models will be created. These systems could also benefit from the application

of a person-centered model. By fine-tuning the machine learning architectures to

better understand the speaker’s voice, the model can be made more robust. The ap-

plication of other cutting-edge machine learning techniques, coupled with more data

and benchmarking tests should lead to a system that is inclusive of all voices.

5.5 Say What? Intelligibility Metadataset

In an expansion of the work on evaluating the accessibility of voice-based technolo-

gies, I analyzed the performance of the same two ASR systems on three other datasets:

Mozilla’s Common Voice 1 , TIMIT Garofolo et al. (1992), and the Speech Accent

Archive Weinberger (2013). The goal of adding the evaluation of more datasets is

to obtain a better understanding of how intelligibility is encoded in speech. By only

working with pathological speech, the data that resulted was biased towards poorly

intelligible speech. By adding large datasets of speech from control speakers, es-

pecially speech from datasets like Common Voice, where the data is collected in a

distributed, crowdsourced manner, causing some level of noise in the data, the ex-

pectation is to learn a more robust model of intelligibility. The process of collecting

‘Say what?’, the intelligibility dataset is shown in figure 5.3. The goal of this work

was to have a dataset of speech intelligibility information that is representative of a

wide range of types of speech.

1https://voice.mozilla.org
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Figure 5.3: The Process of Collecting the ‘Say What?’ Intelligibility Metadataset.

5.5.1 Metadatset Collection

Two different ASR systems were used to obtain this metadata: Google Speech

Recognition and CMUSphinx Open Source Speech Recognition. Google Speech Recog-

nition uses deep neural networks while CMUSphinx uses hidden Markov models to

achieve its speech recognition. Figure ?? shows the relatively straightforward process

of obtaining the data. The speech files were fed into the two ASR systems to obtain

the prediction of what was said. Then, using the transcript, the WER was calculated

and recorded, along with the number of substitutions, insertions, deletions, and the

time taken to obtain the results. The time is included to provide a comparison for

alternative techniques such as estimation models that may operate faster.

5.5.2 Metadataset Analysis

While many utterances are understood by the ASR systems, there is enough vari-

ability in the metadataset to find some interesting patterns. In Table 5.4, the type
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Figure 5.4: The Average WER Per Dataset Included in the Metadataset.

of data, and number of speakers per dataset are shown. As one would expect, the

pathological datasets TORGO and UASpeech have the fewest speakers (27) and the

highest average WER (1.16). In Figure 5.4 a bar chart shows the average WER

per dataset. The dataset with the smallest average WER is TIMIT (0.09), while

the Accent database (0.33) and Common Voice (0.20) sit somewhere in the middle.

This distribution of WER is what we would expect. Obtaining the WER from these

datasets was a slow process, it took on average 1.87 seconds per utterance, and 0.33

seconds per word for a total of 513533.93 seconds of continuous computation to obtain

the WER data that is included in this dataset–that’s almost 6 full days of continuous

computation.

5.6 Conclusions

This work introduced a new metadataset of WER labels for several popular speech

datasets spanning a wide intelligibility range. With the goal of stimulating research

into modeling intelligibility, the resulting transcripts from two different ASR systems
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Table 5.4: Metadetaset Metadata

Dataset Type Speakers

TORGO/UASPEECH path 27

Accent accented 2140

CommonVoice average 33,541

TIMIT average 630

Total 36338

and an analysis of the number of substitutions, insertions, deletions, and total words

in the predicted transcript were collected.
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Chapter 6

EXPERIMENTS WITH DYSPHONIC SPEECH

6.1 Intelligibility Estimation using SayWhat? Metadataset

In an effort to estimate the intelligibility of an utterance, we decided to use a

state-of-the-art model for estimating speech quality– Quality-Net Fu et al. (2018).

We created Intellinet, our implementation of Quality-Net to test its ability to predict

intelligibility data in the form of estimating the WER. Quality-Net consists of a

bidirectional LSTM layer with 100 nodes followed by two fully connected linear layers

with 50 nodes each, one linear layer, and then a global averaging layer. The output

of the last layer is the global average of the frame-level predictions which is the

utterance-level WER prediction. As input into the network, we used spectrograms

extracted from TIMIT to replicate Quality-Net. We selected a random subset of

TIMIT (4200 utterances) to use as the training set and split the rest into a validation

set (1049 utterances) and test set (1049 utterances).

6.1.1 Results

Much like the results seen in Quality-Net, our model quickly converges after

around 500 iterations, however, unlike Quality-Net, our model converges to the global

average of the labels rather than learning the mapping between the utterances and

Table 6.1: Performance of Intellinet in Comparison to Quality-Net

MSE LCC SRCC

Quality-Net 0.1225 0.9054 0.9065

Intellinet 0.023 0.023 0.007
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the WER. This difference in performance is demonstrated in figure 6.1. In Figure

6.1A, the results from Quality-Net show the predicted PESQ scores compared to the

true PESQ scores, and Figure 6.1B shows the predicted WER compared to the true

WER. The PESQ predictions line up relatively along the line y=x, while the predicted

WER is only predicting the global average of the data, and the Linear Correlation

Coefficient (LCC) for Quality-Net’s predictions is 0.9054, indicating a very strong

correlation between the true PESQ value and the predicted PESQ. The Spearman’s

Rank Correlation Coefficient (SRCC) is 0.9065 for Quality-Net reinforcing the idea

that there is a strong correlation between the true and predicted values. However,

when we plot the results from the intelligibility data, we see roughly a horizontal

line right around where the global average of the WER is, an LCC of 0.023 and an

SRCC of 0.007. Both the LCC and SRCC for the intelligibility data are very close

to zero, which indicates that there is no correlation between the true WER and the

predicted WER. The mean squared error of the intelligibility network is lower than

Quality-Net’s but this doesn’t say much.

6.1.2 Discussion

Using the same network as Quality-Net and the same features from TIMIT, we

were unable to replicate the success of Quality-Net with the task of predicting the

WER instead of PESQ. While intelligibility and quality may seem like superficially

similar concepts, a state of the art model for estimating quality is ill-suited for as-

sessing intelligibility. There are a variety of reasons this might be the case.

Linguistic context is very important for understanding intelligibility. Realization

difficulties become exhibited in varying phonemes for various reasons when consid-

ering disordered speech and accented speech. Word errors in ASR systems often

involve the mischaracterization of one word to another as a result of the complicated
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Figure 6.1: (A) Quality-Net’s Performance. (B) Intellinet’s Performance

interaction of internal language models and acoustic models. Out of domain acoustic

patterns produced by disordered or accented speakers lead to incorrect classification

calls made by the ASR model. This means that Quality-net’s focus on frame-level

details of the speech acoustics will miss broad patterns on a word-level scale – the

sort of short-term spectral artifacts in low-quality compressed speech are in no way

similar to the broader, more complicated patterns of difficult-to-understand natural

speech.
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The intelligibility model that was built trains and converges but learns no useful

WER prediction capabilities. Integrating linguistic data acquired solely from a speech

signal and learning broad patterns or acoustics across words and the propensity for

an ASR system to make errors from only WER counts is a very tall order for a simple

neural network. Much more work in this area is necessary.

6.1.3 Conclusions

After attempts to predict intelligibility using models that were successful in pre-

dicting speech quality failed, the conclusion was made that modeling intelligibility

is a nontrivial task that requires novel approaches unrelated to quality assessment

methods. From this data, we can conclude that intelligibility and quality are encoded

significantly differently in speech. The complexity of intelligibility and the diversity of

reasons intelligibility difficulties can arise mean that significantly more complicated

models integrating local acoustic, global acoustic, and linguistic data are probably

necessary to model it adequately. Once such a model is created many clinical and

educational applications will be available. We hope that a direct speech intelligibil-

ity estimation system requiring no transcripts and no ‘gold’ examples will drive new

applications in clinical, educational, and research settings.

6.2 Intelligibility Detection

As a simplification of the task discussed above in 6.1, the goal of building an

intelligibility detection model is to predict whether or not an utterance would be

recognized by an ASR system. The goal of building this experiment was to build an

error detection model that quickly predicts whether or not speech is intelligible to an

ASR system–the first step towards building a system that improves the intelligibility

of speech.
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Table 6.2: Performance of ASR Systems on Dysphonic Speech

Voice Type S I D WER

Control 0.56 0.05 0.15 0.09

Dysphonic 1.84 0.15 9.96 0.28

Figure 6.2: ROC Chart and Confusion Matrix for Error Detection Model.

To test the performance of state-of-the-art ASR systems on speech from individ-

uals with spasmodic dysphonia, we collected a small dataset of speech samples from

individuals with SD. For this experiment, the same dataset described in 6.3.1 was

used to represent speech from individuals with SD. This dataset was fed through an

ASR system and the resulting ASR performance is shown in Table 6.2. This measure

of intelligibility was used to determine whether or not an ASR system would make

an error on a given utterance or not.

The same model that was used to estimate the intelligibility was trained on the

error detection data. The model achieved 85% accuracy after 100 epochs. The results

of this set of experiments are shown in the confusion plot and ROC chart in Figure 6.2.

As shown in the confusion plot, the model was more likely to predict false positives

than false negatives.
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6.2.1 Discussion

Upon closer evaluation of the output of the intelligibility detection model, while

the model seems to perform well, with an accuracy of 85%, it seems like the model

just learned to apply a threshold based on utterance length. The longer the utterance,

the more likely it is that an error is made in the utterance. The model seems to find a

cutoff point x for an utterance length where it predicts every utterance shorter than

x as intelligible, and every utterance greater than x as unintelligible.

6.3 Voice Disorder Classification

6.3.1 Dysphonic Speech Dataset

I collected a small sample of data to work with from individuals with Spasmodic

Dysphonia, to be able to better understand how SD speech differs from control speech

and what makes it less intelligible. I collected this small dataset of 10 speakers in-

person at the 2018 National Spasmodic Dysphonia Association’s Annual Symposium.

I set up a small recording station and had individuals who volunteered to record

speech samples walk through a few prompts. Each individual was asked to read

several sentences from TIMIT, as well as few paragraphs that are commonly used in

the speech pathology field, they were also asked to describe images to obtain some

spontaneous speech.

Currently, the voice disorder data that we have to work with consists of 10 speakers

saying 24 utterances each. This is a small dataset that makes up less than 1.5 hours

of speech. To guarantee a balanced dataset, I randomly selected 10 speakers from

the Voice Conversion Tool Kit Veaux et al. (2017) and pulled 24 random utterances

from each of the 10 selected speakers. This data serves as the control speech data.

For the noisy control speech condition, I added random Gaussian noise to a different
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10 random speakers and different 24 random utterances per speaker. The dataset for

this question is comprised of 720 utterances, 240 from individuals with SD, 240 from

control speech, and 240 from control speech with added noise. These are the three

classes that the voice disorder detection model was trained with.

6.3.2 Voice Disorder Classification Experiment

For preprocessing, 80-dimensional log-melspectrograms were calculated for each

utterance with 12.5 ms of overlap, and 50 ms frame length. These spectrograms were

computed with a 1024 point STFT. The output of the model is encoded as a one-hot

vector where the classes are ‘0: dysphonic’, ‘1:control speech + noise’ and ‘2:control

speech’.

The model that I used to train this classification system is based on the model

that we had used for Moore et al. (2019). It consists of a bidirectional LSTM layer

with 100 nodes followed by two fully connected linear layers with 50 nodes each and

a 3-dimensional output as there are three classes to predict. The predictions were

made by taking the index of the max of the output. The model was trained using

cross-entropy loss and stochastic gradient descent with a learning rate of 0.001 and a

momentum of 0.9. Dropout was applied to the bidirectional LSTM layer with p = 0.2.

ReLU activations were used for the main network followed by a Sigmoid activation

for the final prediction.

6.3.3 Results and Discussion

As is shown in Figure 6.3, the model performed relatively well for this constrained

task. Our model achieves 87.5% accuracy on this small test dataset. Most of the er-

rors were made by mistaking control speech for dysphonic speech. This makes sense

as there were a couple of speakers in the SD dataset who had just had a botox injec-
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Figure 6.3: The Confusion Matrix For Dysphonic Speech Classification

tion and it was more difficult to perceive their dysphonia. I believe that I might have

made this classification problem too much of a ‘toy’ example by not taking a sophisti-

cated approach in adding noise to the noisy speech. The classification model achieved

97.9% accuracy in classifying the control+noise condition, while it was 83% and 81%

accurate on classifying the control speech and SD speech respectively. Expanding this

classification problem to dysphonic voice in comparison to other speech-based disor-

ders could be an interesting follow-up study. For these experiments to be successful,

it’s important that datasets that represent individuals with voice disorders be not

only collected but also made freely and publicly available.
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Chapter 7

UNCOMMONVOICE DATASET

7.1 UncommonVoice Overview

UncommonVoice was created to build a dataset that helped better represent indi-

viduals with voice disorders in current voice-based technologies. Inspired by the work

done at Mozilla in Common Voice 1 , a large, freely-available, crowdsourced dataset

with speakers from all over the world. Common Voice was created as a high-quality,

publicly-open dataset of voice data, with the goal of teaching machines how real peo-

ple speak. Mozilla also built an open-sourced speech recognition system called Deep

Speech, which is trained using Common Voice. While Common Voice has made great

strides towards making large volumes of speech data readily available for hobbyists or

researchers to jump in and start playing with the data, Common Voice still is made

of up mostly healthy speakers. After evaluating the state-of-the-art automatic speech

recognition systems in Section 5.1, we concluded that these voice-based technologies

are not inclusive of different voices.

The creation of UncommonVoice seeks to freely and publicly provide speech sam-

ples of individuals with voice disorders to fuel the research of improving the acces-

sibility of voice-based technologies as well as providing a platform for voice-assistive

technologies to be built off of. There currently does not exist a publicly available

dataset of voice disorder speech, and as such, UncommonVoice is a significant contri-

bution to the field.

1https://voice.mozilla.org/
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7.2 ‘In the Wild’ Dataset Considerations

Crowdsourcing is defined as the practice of obtaining needed services, ideas, or

content by soliciting contributions from a large group of people and especially from

the online community. Crowdsourced datasets are notoriously noisy due to logistical

and technical issues during data collection, as well as not being able to control vari-

ables that would be controlled if the dataset were collected on-site such as recording

instrument type, background noise, distance from the microphone, etc. In the crowd-

sourced speech acquisition dataset that we propose, Uncommon Voice, we are relying

on the participants to classify their voice and follow the speech recording instructions.

We have proactively built-in functionality to help reduce the number of logistical and

technical issues and have attempted to make the web interface as usable as possible.

UncommonVoice is unique in that the goal isn’t necessarily to collect ‘perfect’

data. One of the advantages of collecting a crowdsourced dataset is that you obtain

realistic data from the environment where the resulting machine learning models will

be used. By training in the test environment, machine learning models can better

anticipate and deal with noisy signals. Uncommon Voice is also expected to have

more noise than other similarly sourced datasets as the voices that we are collecting

have voice disorders and the signal is inherently less clear. The first step in reducing

the amount of post-processing and cleaning necessary for creating an ‘in the wild’

dataset is building in functionalities to help reduce the number of unsuitable speech

samples.

In McGraw et al. (2010), only 65% of the data that was collected in a crowd-

sourced manner was usable in comparison to 90% usable data when it was collected

in a controlled manner. The authors directly attribute this decreased yield of high-

quality recordings to the lack of training the crowdsourced speakers received. They
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theorize that the more training an individual receives, the better the quality of the

data that is collected. To this end, UncommonVoice has a video walkthrough of

the data collection process as well as a document that provides a walkthrough of

the data collection system. UncommonVoice also has a troubleshooting document to

help users troubleshoot common issues like browser permissions, presence/absence of

a camera/microphone, which browser they are using, etc. A support email address

and phone number will also be provided so that should participants need support.

The data collection tool also has built-in functionalities such as a ‘Review’ option—-a

button that is available for users to press and hear the recorded speech to make sure

that it is valid, and sounds how they want it to.

Before developing ways to automate the process of removing erroneous speech

data, it is important to evaluate the potential types of errors in a crowdsourced speech

acquisition dataset. When recording prompted speech there are three main types

of issues that result in unsuitable data: garbage audio, low-quality recordings, and

speaker errors Parent and Eskenazi (2011). Garbage audio consists of recordings that

are empty, clipped, have insufficient power or are incorrectly segmented. Low-quality

recordings have a low signal-to-noise ratio due to poor equipment or large background

noise. Speaker errors are when users misspeak the prompts either maliciously or

accidentally. In UncommonVoice, as participants are asked to record three different

kinds of prompts (read speech, image descriptions, and non-words) one potential

speaker error is reading the non-word prompt (‘Please hold ‘e’ as in leap) rather than

following the instructions. We also expect clipping to happen as well as the presence

of background noise. These are errors that through the design and development of

UncommonVoice, we hope to have done our best to mitigate, but will also do our

best to recognize these errors when they are made.
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7.3 Design and Development of UncommonVoice

7.3.1 UncommonVoice Data Collection System Features

The UncommonVoice data collection website was implemented with the goal of

it to be as convenient as possible for users to provide speech samples. This included

building out a feature that allows users to stop at any point in the collection process,

should they need a break, etc, the data collection tool saves their spot. The next

time the user logs in, the system will ask if they’ve received a Botox Injection (if

they receive BTX therapy) since they last recorded speech samples, and if so get a

date, but then it will launch them right back where they left off. This feature was

implemented after the realization that it may not be convenient for everyone to collect

the speech in one sitting. Throughout the entire dataset collection process, it was

made clear to participants that participation was voluntary, and that they could skip

any tasks at any time, except for the screener question asking if they were 18 years

or older.

To help users get a better idea of the goal of UncommonVoice and how to operate

the data collection system, a video was made detailing both the overall goal and the

specific instructions of how to use the interface. These videos served as useful tools

for the participants. Should the participants run into any issues, an FAQ page was

available as well, and demonstrated how to troubleshoot common issues like denying

the browser permission to record audio or video.

7.3.2 UncommonVoice Design Limitations

One significant limitation of the data collection tool is that there is a subset of

browser/device combinations that the UncommonVoice data collection system is not

compatible with. While the data collection system works for Desktops and Laptops
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Table 7.1: Device/Operating System/Browser Configurations for UncommonVoice

Device Operating System Browsers

Desktop/Laptop Windows Firefox, Chrome, Opera

Desktop/Laptop Linux/Ubuntu Firefox, Chrome, Opera

Desktop/Laptop Mac Firefox, Chrome, Opera

Mobile Android Firefox, Chrome

that use Firefox, Chrome, or Opera, the data collection tool does not support Safari

or any Apple mobile browsers. In Table 7.1, the configurations that were compatible

with UncommonVoice are shown.

7.4 Dataset Collection Process

The process of contributing data to UncommonVoice includes 5 main steps: the

pre-collection survey, and then four main speaking tasks. These tasks are outlined in

more detail in the following sections.

7.4.1 Pre-Collection Survey

Before the voice sample recordings, users were asked to provide some demographic

information about themselves, as well as provide more information about their voices.

The exact questions asked to participants are shown in 7.4.1. There was some condi-

tional logic involved in this survey such that individuals who answered that they were

younger than 18 years old were redirected to a disqualification page, and individuals

who indicated that they did not have a voice disorder were routed directly to begin

the data collection process as the rest of the questions were not relevant to them.

The last two questions asked the respondent to rate how clear their voice is on a scale

from ‘Not clear at all’ to ‘Very clear’, and to rate how easy it is for them to speak on
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Table 7.2: UncommonVoice Pre-Collection Survey

Question Answer Type

Are you 18 years or older? Yes/No

Are you a native English speaker? Yes/No

Do you have a voice disorder? Yes/No

What voice disorder do you have? Multiple Select

Do you regularly receive Botox injections? Yes/No

When was your last injection? Date

How often do you normally receive injections? Number

How would you describe your voice today? Multiple Choice

How would you rate your voice quality in terms of clarity? Rating Scale

How easy is it for you to speak? Rating Scale

a scale from ‘Very difficult’ to ‘Effortless’.

7.4.2 Multimodality

Before beginning the recording process, users were given the choice to either pro-

vide audio-only or both audio and visual (video) data. It was made clear that should

they choose to provide video data, the visual portion would not be shared publicly,

however, the audio would. Upon making a selection between providing audio-only

or audio-visual speech samples, the interface for which is shown in Figure 7.1, the

speakers were then asked to begin the recording process.

7.4.3 Tasks

The UncommonVoice data collection process consists of 4 different tasks. The

design decision to keep the order of the tasks the same between users, but to randomize
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Figure 7.1: Screenshot of the Media Selection Section of UncommonVoice.

the presentation of stimuli within each task was made to obtain the highest value data

first as there was an expectation for some of the participants to drop-off mid data

collection. To control for–or at least be able to measure– any ordering effects due to

this decision, Tasks 1 and 4 contain the same tasks so that the data exists to measure

any change in vocal quality throughout the data collection process.

Task 1: Non-words Round 1

The first task that users were asked to complete is holding vowels for 5 seconds. The

respondents were asked to hold the corner vowels, so /a/, /u/, /ae/, and /i/. To

make sure the task was clear, a target word was provided so that the speaker knew

what sound they should be holding–for example for /ae/, we asked them to hold

/ae/ as in ‘nap’. The goal behind this task was to be able to calculate vocal quality

measures. The participants were also asked to repeat ‘puh-tuh-kuh’ as many times

as possible in 5 seconds to obtain the speaker’s diadochokinetic rate as described in

Portnoy and Aronson (1982).
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Figure 7.2: Screenshot of UncommonVoice Task 2, Read Prompts from TIMIT

Figure 7.3: Screenshot of UncommonVoice Task 3, Image Description

Task 2: Read Sentences

In the second task, we asked users to read sentences that were randomly selected

from TIMIT Garofolo et al. (1992). We asked the user to read 84 different TIMIT

sentences. These sentences were randomly presented to avoid any ordering effect. To

be able to calculate a speaker’s CAPE-V as in Kempster et al. (2009), speakers were

also asked to read the sentences involved in the calculation of the CAPE-V score.
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Task 3: Image Descriptions

In the third task, we asked users to describe three different images in their natural

way of speaking. We chose to include an image description task to have some speech

that wasn’t directly read.

Task 4: Non-words Round 2

In the final task, we asked users to repeat the non-words tasks that they completed

in Task 1 again. The purpose of this is to measure any change in vocal quality over

the duration of the tasks.

7.5 UncommonVoice Results

While UncommonVoice is still open for collecting speech samples from individuals

with or without voice disorders, the majority of the data collection has taken place.

7.5.1 UncommonVoice Demographics

Currently, UncommonVoice consists of 4,184 speech recordings from 52 individuals–

approximately 7.5 hours of data. Of those individuals, 39 (75%) of the individuals

who recorded speech are female, while the other 13 (25%) are male. Of the individ-

uals who contributed speech samples, 35 (67%) of them have a voice disorder, while

the other 9 (17.3%) do not. Of the individuals who have a voice disorder, 15 (35%)

of the individuals who provided speech samples regularly receive BTX injections as a

treatment for their voice disorder, while the other 28 individuals with voice disorders

(65%) do not regularly receive BTX injections as a treatment. The respondents were

also asked to disclose whether or not they were native English speakers. In response

to this question, 44 (84.6%) indicated that they are native English speakers while the

other 8 (15.4%) were not.
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Figure 7.4: Distribution of UncommonVoice Speech Data with Regard to Vocal
Quality.

In the pre-voice-recording survey, participants who acknowledged having a voice

disorder were asked to rate ‘How would you rate your voice quality in terms of clarity’,

on a scale from ‘Not at all clear’ (1) to ‘Very clear’ (4), and the average rating was a

2.34 ± 1.12. Participants were also asked to rate ‘How easy is it for you to speak’ on

a scale from ‘Very difficult’ (1) to ‘Very easy’ (4). The average rating for the speaking

effort was 2.44 ± 1.16.

Respondents with voice disorders were asked to classify their voice into one of the

following categories: tight/creaky, breathy, modal (normal), or combination (breathy

and tight). Figure 7.4 shows the distribution of the files in UncommonVoice with

regard to the participant’s self-reported vocal quality.

7.5.2 UncommonVoice Acoustic Analysis

In Figure 7.5, the difference between control and dysphonic speech when pro-

ducing /ae/ is shown. The waves that are evident in the bottom melspectrogram

are indicative of the ’choppier’ glottal pulse, and lack of control that characterizes
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Figure 7.5: Melspectrograms of the Vowel /ae/ for Control (top), and Dysphonic
(bottom).

dysphonia.

To learn more about the acoustics behind dysphonic speech, several different

acoustic features were calculated for the speech recordings in UncommonVoice. Based

on previous literature, the features most often correlated with dysphonia were the

Cepstral Peak Prominence, jitter, shimmer, harmonic noise ratio, and the variability

of the fundamental frequency. For all utterances, these acoustic features were col-

lected, and the results were analyzed with regard to whether or not an individual had

a voice disorder as well as the intelligibility of the speaker.

Vowel Space Area

Another common acoustic measure focused more on the articulatory precision of

an individual with the Vowel Space Area (VSA) Sandoval et al. (2013); Jacewicz
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Figure 7.6: Histogram of Change in the VSA Over Recording Process. Control is
Shown by ‘0.0’, Dysphonia is shown by ‘1.0’.

et al. (2007). Due to how UncommonVoice was designed, the ability to measure

the articulatory precision at the beginning of the recording process as well as the

articulatory precision at the end of the recording process was afforded should the

speaker make it through all of the prompts and record all four vowels in the first

round and last round. In Figure 7.6, the results of the change in VSA from the

beginning of the recording process to the end of the recording process is shown. On

the left, the histogram of the change in VSA is shown for speakers without a voice

disorder, while on the left the histogram of the change in VSA is shown for speakers

with a voice disorder.

7.5.3 UncommonVoice Intelligibility Analysis

It was expected that as is consistent with previous results such as those in Section

5.1, the dysphonic speech would have a larger WER than the control speech. The

results of the intelligibility analysis are shown in Table 7.3. On average, when fed

into an ASR system, the ASR system recognized more words correctly in the control

speech (7.46) than the dysphonic speech (6.35). There were more substitutions in

the dysphonic speech (1.35) compared to the control speech (1.02). There were on

average 0.45 insertions per utterance for dysphonic speech, while only 0.07 insertions
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Table 7.3: Analysis of the Intelligibility of Control and Dysphonic Speech in Un-
commonVoice

Voice Type Correct S I D WER

Control 7.46 1.02 0.07 0.29 0.15

Dysphonic 6.35 1.35 0.45 1.07 0.32

per utterance in control speech. The deletions showed a similar pattern with 0.29

average deletions per utterance for control speech and 1.07 average deletions per

utterance for dysphonic speech. Overall, the WER for the control speech was 0.15,

while the WER for the dysphonic speech was more than double that at 0.32. It

is worth noticing that dysphonic speech seems to be recognized more successfully

than dysarthric speech. The most common error that the ASR system made when

transcribing dysphonic speech was substituting words, followed by deleting words.

To better understand what acoustic features might be correlated with the intelligibility–

or in this case, the proxy for intelligibility that is the WER–the extent to which each

acoustic feature is correlated with WER was investigated.

The most highly correlated feature with WER was the duration of the speech

sample. This result is very similar to the result observed in 6.2. The Pearson Cor-

relation Coefficient between the CPP and WER is 0.75, and the distribution of the

duration of the utterance and the wer is shown in Figure 7.7.

The second most highly correlated acoustic feature was the cepstral peak promi-

nence (CPP). This result was what we expected to find, as the CPP has been demon-

strated to be a viable predictor of dysphonia in previous work Heman-Ackah et al.

(2003); Samlan et al. (2013). The Pearson Correlation Coefficient between the CPP

and WER is 0.6, and the distribution of the two features is shown in more detail in

Figure 7.8.

The other features that were evaluated–jitter, shimmer, hnr, and f0–all showed
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Figure 7.7: Correlation Between Average WER Per Speaker and Average Duration.

relatively low correlation with the WER for a given utterance.

7.6 Discussion

UncommonVoice is the first dysphonia dataset made freely and publicly available.

As such, it is a significant contribution to the field and hopefully will fuel future

research into improving the intelligibility of voice-based technology as well as the

development of voice-assistive technologies. While still growing, UncommonVoice has

52 speakers–a volume that is unheard of in publicly available speech disorder datasets

such as TORGO and UASPEECH which have a combined 27 speakers. However,

where UncommonVoice falls a bit short is in the depth of the data for each speaker.

As this dataset was collected in a distributed manner, the decision was made to keep

the task of recording speech to be as quick and easy as possible. While this constrained

97



Figure 7.8: Correlation Between Average WER Per Speaker and Average CPP.

the total hours of data that were recorded in UncommonVoice to currently around

7.5 hours of data, this decision is also part of what led UncommonVoice to have as

many speakers as it does.

The VSA for speakers in UncommonVoice was calculated and interestingly, for

individuals with voice disorders, there seems to be an increase in VSA from the

beginning of the recording session to the end. This is the opposite outcome from

what we expected, as we expected the VSA to decrease due to vocal fatigue. This

increased VSA could indicate that a ‘warm-up’ period for individuals with dysphonia

could lead to articulatory gains.

When evaluating acoustic features that correlate with intelligibility (as measured

by the WER of an utterance determined by an ASR system), the duration of the

utterance was shown to be the most highly correlated feature that was explored.

98



While the idea that the duration of an utterance is important as the WER is inversely

proportional to the total number of words in an utterance–as the total number of

words increases, there are more opportunities for mistakes (insertions, deletions, or

substitutions) to be made. A longer duration utterance doesn’t necessarily equate

more words in the utterance–it could also be caused by the speaker using a slower

speaking rate. While the duration of the utterance may be indicative of a higher word

error rate, this kind of correlation isn’t particularly useful when attempting to obtain

a more robust model of intelligibility that takes into account speech differences seen

in conditions such as dysphonia.
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Chapter 8

DESIGN CONSIDERATIONS FOR VOICE-ASSISTIVE TECHNOLOGY

8.1 Person-Centered Design

Person-centered multimedia computing (PCMC) is a paradigm that is sensitive

to a specific user, task, and environment, leading to a shift in perspective from the

population’s needs to the individual’s needs. This design paradigm starts with an

individual, focusing on the individual’s needs and specific problems that an individual

encounters daily, and then adapts to a broader population through integration and

adaptation.

Individuals with voice disorders often have specific requirements that necessitate a

personalized, adaptive approach to multimedia computing. To address this challenge,

our proposed approach places emphasis on understanding the individual user’s needs,

expectations, and adaptations toward designing, developing, and deploying effective

multimedia solutions. The first step towards making a person-centric intelligibility

support tool is gathering user input. While I have completed two online surveys of

the experience of individuals with voice disorders, I want to conduct a focus group

to discuss the needs and problems encountered in daily life of individuals with voice

disorders. From these discussions, I hope to create a set of requirements for developing

technologies for individuals with voice disorders.

In an ideal system, a user would speak into the input device of their choice, and

the output would say exactly what they said in their voice, but a more intelligible

version. To achieve such a system, it seems like we would need to have paired data,

a less intelligible speech sample and a more intelligible speech sample from the same
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voice. While usually in the dysphonia space this ask is unrealistic, for individuals with

spasmodic dysphonia, it isn’t necessarily that hard to imagine collecting a dataset

that has paired samples from the same speaker where one sample is significantly more

intelligible than the other because of the botox cycle. Botulinum toxin injections help

decrease the number of larynogospams in the voice, therefore making the speaker’s

voice more intelligible for some time. Collecting a longitudinal dataset of speech from

throughout the speakers’ botox cycle could lead to the collection of a dataset that has

paired samples between an individual’s ‘bad’ voice and ‘good’ voice. However, if we

are unable to achieve enough data to make this sort of ideal system work, a person-

centered design consideration to include would be enabling the individual to choose

their output ‘voice’—the gender, pitch, accent, etc. Allowing an individual flexibility

and options in the output voice makes this technology adaptable and flexible.

In person-centered multimedia computing, accessibility is woven into the design

process through evaluating the person, the task, and the environment, and how the

constraints of having a disability affect all of these factors. A person-centered solu-

tion uses tools like flexible inputs, multimodal outputs, user awareness, automated

guidance, customizability, morphable interfaces, and content sensitivity to enable the

user to adapt and integrate the technology to obtain a solution Panchanathan et al.

(2012). There are two important processes from which a solution can be applied to

multiple contexts: the processes of adaptation and integration. In taking a person-

centered approach to the design of an intelligibility support tool, we will incorporate

flexible inputs, customizability, modularity and morphable inputs and outputs. Given

these attributes, this system will be able to adapt to many contexts and users will

be able to integrate this process into their daily lives to help improve their quality of

life.

Many different types of microphones could be used to capture the user’s speech.
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Each microphone has it’s own set of affordances that lead to different user experiences.

Figure 8.1 shows a few different microphone input options. A Bluetooth headset that

includes a microphone could be used as shown in Figure 1a, or a microphone that

plugs into the phone and can be directed towards where the speech is coming from

as shown in 1b. Another option is a Bluetooth lapel microphone as shown in 1c.

Depending on the situation, and the individual’s personal preference, they will have

the ability to select the input modality that best fits their preference, environment,

and task. The user will also have the ability to input text if they prefer to type

rather than speak. Enabling the user to choose the input modality and tool makes

the system highly adaptable and able to be integrated into the user’s daily life.

Figure 8.1: Different Audio-Input Options for Voice Assistive Technologies

Another way that this system is person-centric is in its morphable and multimodal

output. The user will have the ability to choose what hardware they would like the

output to be played on as well as what modality (either speech or text). For example,

take one of the scenarios that have been reported in our initial survey: Susan has
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SD and her husband is hard of hearing, and they would like to go out to eat at

a restaurant. However, with the additional background noise, it is very difficult to

understand Susan for the waiter, and even harder for her husband to understand her.

In this scenario, Susan could use the speech intelligibility support tool by selecting

her input, and output modality. In this case, it might work well for Susan to use

a lapel microphone and have the output speech played to a set of headphones that

her husband could use to cancel out the background noise and turn up the volume

of Susan’s output speech. When the waiter comes around to take their order, Susan

could switch the output modality to either a portable Bluetooth speaker, the phone’s

internal speaker, or even use text to communicate her order to the waiter. Eventually,

a feature that could be useful in this scenario, as well as many others, is using the

background noise to select a reasonable output volume given the situation.

In another scenario gathered from speaking with individuals with voice disorders,

a different individual with a voice disorder described her experience to me at an

SD support group meeting. In her experience, she will completely lose her voice for

months on end occasionally with no warning. For this individual, the option to use

text input would be a very helpful feature.

A non-person-centered approach to improving the intelligibility of voice disor-

der speech would most likely result in far less flexible technology that would not

help individuals with voice disorders be understood to the best of their abilities.

Without involving the user in the development of this technology, I would not have

known about the two situations above where users need intelligibility support. A

non-person-centered system would likely result in a one-input, one-output speech-to-

speech system. This system would fail to be useful in the above scenarios, as well as

many other scenarios–for example if a user was in a quiet environment or required

a little bit of privacy, having the option to output the speech as text would also be
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quite advantageous for situations when it might be more convenient for the user to

not user their own voice as an input.

Since person-centered technologies are inherently designed with an individual user

in mind, they can sometimes be a bit rigid and inflexible. Technology developed using

PCMC guarantees accessibility, usability, and often optimality for an individual. This

granular level of design comes at the price of rendering the technology inflexible to-

ward the broader audience. However, the Social Interaction Assistant Panchanathan

et al. (2016) and the Autonomous Training Assistant Tadayon et al. (2016) provide

examples of person-centric technologies that while inspired and designed to meet

the explicit needs of an individual, also meet the implicit needs of a much broader

audience through methods of adaptation and integration.

8.2 Designing Voice-Assistive Technology From Survey Results

8.2.1 Use and Design of Voice-Assistive Technologies

As part of the surveys described in 4, when asked to respond to the statement ’I

would use a voice assistive technology that helped me to be better understood ’ on a five-

point scale between strongly disagree, and strongly agree, 63.16% of the respondents

indicated that they would be willing to use an assistive technology that helped them

to be better understood, the results from this question are shown in Figure 4.3.

To get a better idea of what kinds of technologies individuals with voice disorders

are interested in having developed, we asked the question ’What kinds of technologies

would you like to see developed for your voice disorder? ’. In general, the respondents

had a strong preference for speech-based technologies (67.42%) rather than text-based

(9.63%). As mentioned above, the only voice-assistive technology that exists today

for individuals with voice disorders is an amplifier. As this is what people are most
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Table 8.1: Responses to the Question “What Kind of Technologies Would you Like
to See Developed for Your Voice Disorder?”

Response Response Rate

Better amplification system 19.55%

Improve phone-based interactions 15.86%

Better automatic speech recognition systems 9.63%

Better text-to-speech systems 9.63%

Speech smoothing device 9.35%

familiar with, it makes sense that the response ’a better amplifier’ was a frequent

answer (19.55%), followed by the answer ’I’m not sure’ at 16.43% of the respondents.

The next most prevalent answer was that they wanted technology to be developed to

help them be better understood on the phone with 15.86% of the respondents. This

answer is followed by ’better automatic speech recognition systems’ (9.63%), ’better

text to speech systems’ (9.63%), and ’speech smoothing device’ (9.35%). Of course,

many people just wished to see a cure developed (7.65%), and others hoped to see

the development of better and less invasive treatments (7.37%). One thing that was

consistent across most answers was that these individuals just want their ’normal’

voice back. They want to be able to be understood without the stress of worrying

about what their voice will sound like, and if they will be understood or judged. On

top of these ideas, there was an emphasis that whatever technology will be developed

should be both unobtrusive and affordable.

Voice-assistive technologies should take into account the user’s preferences as de-

scribed in Section 8.2.1. Technologies should be focused on helping individuals with

voice disorders be better understood while being unobtrusive and affordable. It was

made clear through this survey that individuals with voice disorders would much

rather communicate through speech-based systems than text-based systems, and as
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such future, voice-assistive technologies should focus on using speech as the input

rather than text. As the average age of individuals with SD is 62 years old, any

voice-assistive technologies that are developed must be inherently user-friendly.

By improving the intelligibility of individuals with voice disorders we can help

them be better understood and help put them in a better position to fully participate

in social interactions, acquire, maintain, and advance their careers, and in general,

maintain a better quality of life.

106



Chapter 9

CONCLUSIONS

9.1 Contributions

The contributions of this dissertation are all centered around the development

of more accessible technologies for individuals with voice disorders. As outlined in

Section 1.2 the contributions of this dissertation are as follows:

• A broad survey of the needs of individuals with dysphonia, including areas

of opportunity for voice-assistive technologies to improve the quality of life of

individuals with dysphonia.

• An evaluation of the accessibility and inclusivity of state-of-the-art voice-based

technology

• A more nuanced and in-depth analysis of what it means for speech to be intel-

ligible

• UncommonVoice: the largest publicly-available dataset of dysphonic speech, as

well as accompanying metadataset.

• Design considerations for the development of voice-assistive technologies

9.2 A Broader Definition of Intelligibility

While on the surface, the concept of intelligibility seems deceivingly simple–the

ability of speech to be understood–it is inherently more complicated than this defini-

tion makes it seem. Intelligibility is both a relative and dynamic concept, continually
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changing based on the ability of the listener and the speaker. Intelligibility can be

represented as either a scalar concept–the extent to which the message was received,

or a binary concept–whether or not the message was received. Many external factors

affect the construct of intelligibility from the native language of the speaker/listener,

to the non-verbal cues and context provided by the surroundings. Communication is a

multimodal and messy interaction, and as a measure of communication, intelligibility

should also reflect these intricacies.

9.2.1 A Qualitative Evaluation of Dysphonic Needs

The first contribution is a deep understanding of the experience of individuals with

voice disorders through two surveys. In the first survey, particularly difficult situations

for individuals with voice disorders including speaking on the phone, ordering at a

drive-thru, communicating in a noisy environment, and meeting someone new for

the first time. This survey also provided some directional guidance as to areas that

required further questions to get a broader view of the experience of individuals with

voice disorders. In the follow-up survey, questions developed from the initial survey

such as more details about the emotional impact of having a voice disorder as well as

the impact of having a voice disorder on employment and careers. In general, these

surveys found that having a voice disorder significantly impacts most individual’s

social life, emotional wellbeing, and career. Often individuals with voice disorders

experience isolation, frustration, stress, and anxiety.

The second survey also helped to get a better idea of what experience individuals

had with assistive technologies as well as what kinds of characteristics and function-

ality they would be looking for in assistive technology. While 89% of our respondents

recognize having some sort of limitation or barrier due to their voice disorder, and

20% of these individuals have used assistive technology before, only 3% of individuals
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continue to use assistive technology to mitigate these barriers. From this data, we

can conclude that the existing voice-assistive technologies are not meeting the needs

of the population of individuals with dysphonia.

9.2.2 Accessibility and Inclusion of ASR Systems

Currently, state-of-the-art voice-based technologies do not recognize voice disor-

der speech with the same accuracy that it does control speech. This performance

difference creates barriers for individuals with disabilities and implies that today’s

voice-based technologies are not inclusive or accessible for individuals with voice dis-

orders. From the data used to assess the performance of these ASR systems, we

created SayWhat? a metadataset that consists of intelligibility data for a wide range

of speech–from control speech, accented speech, to voice disorder speech. This dataset

was published to provide more data to help build more robust models of intelligibility.

9.2.3 UncommonVoice

The crowdsourced collection of speech from 52 individuals, 35 of whom have a

voice disorder for a combined 7.5 hours of speech data is a significant contribution

to the field. Dysphonic speech datasets exist, however, most of them sit behind the

barrier of a clinic and are not readily accessible for research purposes. By making

UncommonVoice available to researchers, we expect to fuel research in the field of

voice-assistive technologies. UncommonVoice is still accepting speech contributions,

and we hope to continue to collect speech from individuals with voice disorders.

9.2.4 Voice-Assistive Technology Design Considerations

From the need-finding surveys discussed above, this dissertation builds out a few

guidelines for the development of voice-assistive technology such that these devices
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meet the needs of individuals with dysphonic speech. The main guidelines are: if a

user can speak, they would rather speak than write out what they are saying, devices

need to be affordable, and devices need to be as unobtrusive and flexible as possible.
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Chapter 10

FUTURE WORK

10.1 Uncommon Voice Extensions

10.1.1 Other Intelligibility Measures

There are still a few steps that need to be completed for UncommonVoice to be

as useful as possible to the research community. The first of these steps is obtaining

human intelligibility data–by using Amazon Mechanical Turk to get orthographic

transcriptions of the data as well as a rating of how difficult it was for the listener to

understand what was being said, and the time taken for the listener to complete the

transcription. UncommonVoice also contains the sentences necessary for clinicians to

provide a CAPE-V score. CAPE-V is a voice quality measurement that is commonly

used in the realm of speech-language pathology and is described in more detail in

3.3.1. Having more measures of vocal quality and intelligibility will lead to a more

well-rounded and accurate picture of the intelligibility of dysphonic speech.

10.1.2 Automatic Dataset Cleaning

There are a few different possible approaches to automate cleaning the dataset. In

previous work McGraw et al. (2010) proposes using an automatic speech recognition

system in the loop to evaluate the utterance as it is collected to recognize speaker

errors. While this is a good idea, in theory, automatic speech recognition systems

(ASRs) do not perform very well of speech from individuals with voice or speech

disorders Moore et al. (2018). Instead, we could set a threshold for which if the

WER is higher than the average WER from the given ASR system’s performance
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on dysphonic speech, then we could flag these samples as potentially unusable and

manually review flagged samples. If we implement this into the existing system, we

could also provide some sort of live feedback—-for example, asking a participant to

move closer to the microphone—to help get the participant back on track.

To identify speech samples that have been clipped, we could write a script to check

for silence on either end of the speech. If there is not a small amount of silence before

the speech and after the speech, clipping has likely occurred. To identify and flag

low-quality signals, we could employ one of several unintrusive speech quality metrics

Falk et al. (2005); Santos et al. (2014); Gray (2000) and set a threshold for which if

a given speech sample falls above or below (depending on the directionality of the

metric) a given threshold it will be flagged for further review. Integrating these results

could lead to a ranking of samples that need to be manually reviewed. For example,

if a speech sample was flagged as having an above-average WER, low-quality and

potentially clipped, it would be on the top of the list of samples to manually review.

In doing so, we prioritize severely unusable speech samples for manual review and

hopefully remove the least usable data from the dataset.

Another approach to automating the process of quality control for Uncommon

Voice is to use Amazon’s Mechanical Turk (AMT) (an online crowdsourcing tool where

workers are paired with Human Intelligence Tasks and are paid in micro currency as

low as $0.005 per task). In this case, we could present the speech samples to an

AMT worker and ask them to transcribe the speech, as well as provide a Mean

Opinion Score (MOS) rating the quality of the speech, and their confidence in their

transcription. Speech samples that receive a low-quality rating or a transcription

that is vastly different than the expected prompt would be flagged for manual review

and removal from the dataset. Having multiple workers review each speech sample

would also enable us to employ standard merging/voting algorithms like ROVER to
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identify inter-rater reliability and be even more confident about flagging particular

speech samples for manual review.

The main advantage of using the human-in-the-loop feedback such as the feedback

obtained by AMT is that you are collecting actual human perceptual data. However,

sometimes AMT transcriptions can be difficult to interpret or score because of human

tendencies to misspell words, use truncated abbreviations for words, and/or insert

punctuation. These human errors may or may not be related to the intelligibility or

quality of the speech, and that distinction is difficult to tease out. AMT also has

a cost associated with it, while the objective methods mentioned above are all free

(except the use of an external ASR system, however, this cost is relatively negligible).

10.1.3 Machine Learning Experiments with UncommonVoice

There are a few models that would be particularly interesting to use Uncom-

monVoice to build. There are so many different tasks that could be completed using

machine learning and UncommonVoice. For example, fine-tuning an automatic speech

recognition system with UncommonVoice is expected to lead to a speech recognition

system that is more tolerant of speech from individuals with voice disorders. Pre-

dicting intelligibility and severity of the voice disorder is also a potential task that

UncommonVoice could be used for. Being able to automatically obtain a rating of

severity of a voice disorder is a potential application of machine learning using Uncom-

monVoice. Voice disorder classification is also a potential task that UncommonVoice

could be used for.

10.2 Machine Learning to Improve Intelligibility

To meet the needs of users with voice disorders, I am proposing the implemen-

tation of an intelligibility improving speech support tool. This system will take in
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speech from an individual with a voice disorder and with a reasonably low-latency

output speech that is more intelligible than the input speech. In my proposal, I laid

out a few different road maps to potentially building a system like this based on cur-

rent literature in the voice-conversion field as well as closely related fields. In voice

conversion, there are several state-of-the-art methodologies of achieving an effective

voice conversion system. Several different parameters define most voice conversion

systems, mainly dealing with the number of input and output voices, as well as the

structure of the data that was used to train the model. For example, there are many-

to-many voice conversion systems with either parallel or non-parallel speech corpus

inputs. The most simplistic voice conversion system consists of a parallel one-to-one

corpus of speech. A voice conversion system trained on a parallel one-to-one corpus

of speech would be very limited. It would only be able to convert from the source

voice to the target voice.

10.2.1 Voice Conversion Techniques

Within the last few years, there have been several significant developments in

the field of voice conversion. Voice conversion models that use non-parallel data for

many-to-many conversions are now state-of-the-art, and several different generative

modeling techniques are used. Voice conversion is a somewhat more difficult and

nuanced task than speech enhancement in that voice conversion must function on a

sequence-to-sequence level. Voice conversion data do not have the luxury of having

equal, time-aligned lengths for the source and target speakers. A few years ago,

it wasn’t uncommon to see a voice conversion system using Dynamic Time Warping

followed by a Gaussian Mixture Model, however, now advanced generative techniques

are utilized. Generative Adversarial Networks are a popular choice among researchers

working on voice conversion tasks Kameoka et al. (2018); Hsu et al. (2017a); Kaneko
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et al. (2019). While Kameoka et al. (2018) uses a relatively vanilla GAN formation,

Hsu et al. (2017a) uses Variational Autoencoder as the generative model within the

GAN, and Kaneko et al. (2019) uses a Cycle-GAN, employing the cycle-consistency

loss to make sure that it is possible to recreate not only the target from the source

but also the source form the target. Autoencoders are another popular choice when

it comes to implementing a voice conversion system partially due to the ability of an

autoencoder to come up with latent representations of a speaker’s identity Hsu et al.

(2017a). Pascual et al. (2018) Serrà et al. (2019)

The minimum criteria for creating a voice conversion system to use as a speech

support tool is a many-to-one voice conversion system similar to the one demonstrated

in Biadsy et al. (2019). In Biadsy et al. (2019), they take a relatively unique ‘voice

normalization’ approach and create a many-to-one parallel corpus by synthesizing

the speech from the target speaker. Using a ‘single canonical speaker’s they call it–

inherently improves the intelligibility of the speaker’s voice by converting the speech

into the target speech. This is the only other current paper that is attempting to

do something similar to what I am proposing in this work. In another similar work,

the authors of Pascual et al. (2017) reimplement the speech enhancement generative

adversarial network (SEGAN) as a voice conversion system that takes alaryngeal–

whispered–speech, and converts it into voiced speech Pascual et al. (2018) through

only a few small changes to the SEGAN network.

10.2.2 Intelligibility Optimized Model

In this approach, a WER estimation model is utilized to enhance the intelligibility

of speech. After training a successful WER estimation model, we would use this

network as a component of the loss function of an end-to-end voice conversion model

that takes in voice disorder speech and outputs more intelligible speech. In this model,
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the ‘mentor’ network being incorporated into the loss function of the generative model

could be one or a combination of a few different models learned from the intelligibility

data as discussed above, or it could be a multitask learning system that makes several

predictions about the input utterance.

Figure 10.1: Overview of the Intelligibility Optimized Model.

The first step of building this intelligibility optimized model is building an intel-

ligibility estimation model. This estimation model is trained on spectrogram inputs

paired with an automatic speech recognition system’s word error rate of the given ut-

terance. The goal of this model is to quickly and efficiently estimate the intelligibility

of a given speech sample. Using an automatic speech recognition system to obtain the

actual WER of a given speech sample is too time-intensive, taking on average 1.87

seconds per utterance, while the inference step in the intelligibility estimation model

takes 0.000129 seconds per utterance. While estimating the WER of a given speech

utterance may compromise the accuracy, the decreased computation time makes inte-

grating a prediction about the intelligibility of a speech sample into the optimization

of a neural network possible.

Once we have a reliable intelligibility estimation model trained, we will integrate

this estimation model into an intelligibility enhancement model which is largely based

on sequence-to-sequence voice conversion models.

Voice conversion models consist of three main parts, the data pre-processing,

acoustic modeling, and speech synthesis from the output of the acoustic model. For
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Figure 10.2: Overview of the Intelligibility Estimation Model Used in Moore et al.
(2019)

each of these sections, there are several different options to build out an intelligibility

enhancement model.

As far as pre-processing, the most common input into voice conversion systems is a

log-melspectrogram. In Biadsy et al. (2019); Wang et al. (2017); Zhang et al. (2019b),

log-melspectrograms are used as inputs into model. In the current implementation,

I chose to use 80-dimensional log-melspectrograms from speech sampled at 16000

Hz with 12.5 ms overlap, a Hann window, and a 1024 point SFTP. While there

are advantages to using raw-audio like avoiding confounding variables that standard

speech features are sensitive to, see description from Chapter 3.3, and recently there

have been models that have gotten close to state-of-the-art that are trained on raw-

audio Serrà et al. (2019), using raw-audio does not seem like the smartest input to

use for a system that requires as real-time of predictions as possible.

Adversarial Learning Based Enhancement

We propose an adversarial learning framework to enhance the intelligibility of dyspho-

nic speech. The standard Generative Adversarial Network (GAN) model Goodfellow

et al. (2014), generates data from noise inputs z sampled from a distribution Pz(z). A
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vanilla GAN consists of a generator neural network G that takes z ∼ Pz(z) as input

and generates G(z) which tries to imitate real data x ∼ Pdata(x). The GAN also

has a discriminator neural network D which tries to distinguish between real data x

and generated fake data G(z). The adversarial framework with G and D competing

against each other aligns the distributions of G(z) and x.

Figure 10.3: Proposed Adversarial Learning System for Generating Intelligible
Speech.

We propose to apply an adversarial framework to generate control/target speech

from dysphonic speech. Computer vision literature outlines related frameworks for

applications in domain adaptation and image translation Isola et al. (2016). In our

model shown in figure 10.3, the generator is the Intelligible Speech Generator network

which is made up of an encoder network, a bottleneck layer, and a decoder network.

This system will take melspectrograms from dysphonic speech and control speech as

input.

min
G

max
D

= Ex∼Pdata(x)[log(D(x|y))] + Ez∼Pz(z)[log(1−D(G(z|y)))] (10.1)

The discriminator learns to distinguish between ‘real’ data (the intelligible speech),

and the generated data (enhanced speech). We also propose using a variation of the

Conditional GAN (CGAN) Mirza and Osindero (2014) as a way to embed domain

knowledge about vocal quality and intelligibility into the network, potentially in the
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form of a perceptual quality assessment that has been conducted by a clinician. This

conditional information is denoted in equation 10.1 as y.

10.2.3 Multimodal Intelligibility Improvement

The majority of the approaches to speech processing use only audio input despite

the propensity for audio to be compromised by external noise. Alternative sources of

information are becoming more readily available with the increasing use of multimedia

data in everyday communication. The primary alternative source of information used

in speech is vision, as it is naturally used in human speech processing.

Humans process the world in a multimodal way, often relying on visual informa-

tion in their perception of speech. The perceptual integration of vision and hearing

is demonstrated through the McGurk effect—an auditory illusion where the auditory

component of one sound is paired with the visual component of another sound, lead-

ing to the perception of a third sound McGurk and MacDonald (1976). This effect

demonstrates that visual information is an important part of how humans recognize

and perceive speech. In noisy settings, humans routinely exploit the audio-visual na-

ture of speech to selectively suppress the background noise to be better able to focus

on the target speaker Zekveld et al. (2008).

It follows, then, that adding visual information to a speech processing model would

add information to the system and help the model better perform speech processing

tasks. There have been several papers that have focused on using the visual modality

to better accomplish speech processing tasks such as source separation Wang et al.

(2005), speech enhancement Afouras et al. (2018); Hou et al. (2017); Gabbay et al.

(2017), and speech recognition Cooke et al. (2006). In general, for both humans and

computers, bimodal perception leads to better speech understanding than auditory

perception alone Tiippana et al. (2004); Rosenblum (2008); Mroueh et al. (2015). The
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visual modality enhances the performance of speech processing when compared with

auditory-only speech processing.

While currently, the proposed model of speech intelligibility enhancement focuses

on using only the auditory modality, combining audio and visual modalities for the

enhancement of the intelligibility of the speech seems like a promising endeavor. A

multimodal approach to intelligibility enhancement of dysphonic speech would rely

on both audio and visual information. To implement such a model, we would need

to have a corpus of audio-visual speech from individuals with voice disorders. While

not mandated, in the data collection process of UncommonVoice (the dataset that

I am collecting as part of my dissertation), the user has the option of contributing

video samples as well as audio samples. While we don’t expect a large majority of

the participants to choose to contribute video as well as speech, we hope to collect at

least some audio-visual dysphonic speech samples in the coming months.

Audio-Visual Speech Models

The first step of any audio-visual intelligibility enhancement model would be to pre-

process the data, on top of the normal audio pre-processing, this would also include

using existing algorithms to recognize the bounding box of the lips and cropping the

lips out of the images. The Viola-Jones algorithm is commonly used to locate the lips

on a face Wang (2014). These cropped sections are generally resized to be of equal

size and are generally recolored as well. Once the images are cropped, resized and

color-corrected, they would then be used as input into a deep neural network.

One major challenge of pre-processing is making sure that the audio and visual

elements are precisely aligned. Any misalignment can be extremely disruptive–just

think about when a video lags and the audio and visual components are out of sync.

The effect of mismatched visual features is evaluated in Hou et al. (2017). They find
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that speech that was enhanced with speech signals that were paired with incorrect

lip feature sequences lacked the detailed structures that were otherwise preserved

incorrectly matched audio and visual features.

Integrating heterogeneous information streams is a challenging task. When, and

how, to fuse modalities is still up for debate in the literature. In Hou et al. (2017), they

use deep convolutional neural networks as an audio-visual encoder-decoder network in

which audio and visual data are first processed using individuals convolutional neural

networks, and then later fused into a joint network to generate enhanced speech.

This is an example of late-fusion, as the two modalities are fused after being input

into independent networks. In Papandreou et al. (2009), they recognize that sensory

information is often fused dynamically. That is, humans adapt which multimedia

channel they pay the most attention to based on environmental conditions. For

example, having a conversation in an environment with a lot of background noise

will lead a person to focus more on the visual modality of speech than normal. The

authors propose an adaptive algorithm for multimodal fusion that takes into account

the uncertainties of the different modalities.

In the case of audio-visual speech enhancement, the task of enhancing speech is

simplified as in post-processing they can add noise and obtain a clean and noisy speech

signal. In these speech enhancement paradigms, paired clean and noisy speech and

visual samples are input into their respective networks based on the modality (e.g.

an audio network and a visual network as shown in Figure ??, and the output of

these networks is merged in the fusion network. The output of the fusion network is

enhanced speech and reconstructed mouth images. The loss function that they use

to train this audio-visual speech enhancement network is just the mean-squared error

(MSE) between the clean and noisy audio plus the reconstruction loss of the mouth

images which is multiplied by a scaling factor µ. he number of image frames and
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audio frames is forced to be equal and the number of frames is represented in 10.2

by K. In equation 10.2, Y represents the audio output, Ŷ being the clean audio,

and Y representing the predicted audio. In this equation, X and X̂ represent the

reconstructed and original visual inputs respectively.

min
θ

(
1

K

K∑
i=1

||Ŷi − Yi||22 + µ||X̂i −Xi||22

)
(10.2)

To adapt this model to train a multimodal intelligibility improving system, the

first step would be to obtain intelligibility data. This data can be obtained from an

objective measure of intelligibilitySantos et al. (2014); Gray (2000), from subjective

measures of intelligibility Streijl et al. (2016), or a combination of the two. We would

need to build a dataset that has pairs of clean and noisy speech. In this case, noisy

speech would refer to pathological speech while clean speech can either be synthesized

speech or if the individual’s voice has a cyclic property (such as the BTX cycle in

individuals with Spasmodic Dysphonia), it could be speech from the individual during

a ‘good voice’ period.

There are a few adjustments that we would need to make to the model used in Hou

et al. (2017) to change the task of the model from enhancing/denoising the speech

to improving the intelligibility of the speech. The first step would be to turn the

model into a sequence-to-sequence model as the length of the clean and noisy speech

is not going to be the same. Sequence-to-sequence models have been employed in

audio processing models, particularly voice conversion models quite often Zhang et al.

(2019b,a); Narayanan et al. (2019); Tanaka et al. (2018); Weiss et al. (2017). Most of

these seq2seq voice conversion models rely on an encoder-decoder system that takes

in melspectrograms from the source speaker and output melspectrograms from the

target speaker. In Sadeghi et al. (2019) they take a multimodal approach to speech

enhancement, however, they use a conditional variational autoencoder to enhance the
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speech. A model similar to this could potentially be implemented for the intelligibility

improvement.

Usability of a Multimodal Intelligibility Enhancement System

If an audio-visual intelligibility model were to be implemented, the user experience

would significantly change. Rather than just using a microphone as the input to

the system, the user would also have to take a video of their face. While this has

become a more common paradigm of interacting with technology (SnapChat, Insta-

gram, FaceTime and other Video Chat/live streaming tools), there still exist some

social boundaries that would make taking a video of oneself somewhat uncomfortable.

Adding a visual element also adds another layer of interaction that could potentially

complicate the application and make it less usable. Adding visual data will also likely

increase the latency of acquiring the intelligibility enhanced speech. These usability

considerations would have to be tested before deciding one way or another. The

amount of intelligibility improvement from incorporating the visual modality would

need to be evaluated with users to see if it would be worth the extra inconvenience

of needing to have a video of their face to have their intelligibility improved.

I hypothesize that it all depends on whether the speech can be improved above

the intelligibility threshold with audio alone. As this is the main goal of this project,

if the speech can be improved by using either the native microphone, or a Bluetooth

microphone (either attached at the ear, lapel, or phone), I would expect users to

choose the simpler form of input. However, if audio didn’t cut it as the only input

source and failed to improve the speech to the point where it was understood, then I

would expect users to be willing to take a video of their face while they are speaking

to be better understood. I also would expect a system that required visual input to

be used less often as intelligibility support than a system that requires only audio
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input. These expectations would have to be tested in a usability test before making

these conclusions, however.

In summary, while multimodal learning can produce potentially superior perfor-

mance compared to audio-only intelligibility improvement, adding the visual modality

to the model will increase the dimensionality of the input data, and make the model

more complex. We expect that this complexity will increase the latency to obtain a

prediction, as well as increase the social barrier of using an intelligibility support tool

as it is more socially invasive. Using an audio-only system provides lower dimension-

ality and a less invasive input modality in practice, however, the performance of the

system will be potentially inferior to a system that fuses both audio and visual data.

10.3 Next Steps to Build Person-Centered Voice-Assistive Technologies

As we are taking a person-centered approach to building an intelligibility support

tool, involving the end-user in the development of the system is incredibly important.

The first step of this has been completed through a series of online surveys evaluating

the experience of individuals with voice disorders.

The next step in developing this technology through inclusive design is to run a

focus group of individuals with voice disorders and talk about how an intelligibility

support tool might be implemented in their daily lives. In this focus group, different

forms of input and output will be presented to the group, and a discussion will be

had about the preferences and requirements of an intelligibility support tool to make

it optimally useful. In this focus group we will also discuss the importance of factors

like the naturalness of the voice, whether or not the output voice sounds like them,

the importance of latency and maximum amount of latency that is acceptable, and

what kinds of wearables would be most acceptable. We will also ask the focus group

participants to discuss the predetermined scenarios that are particularly difficult for
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individuals with voice disorders and will ask them to rank these situations in order

of increasing difficulty. Results from this focus group will drive the development of

specific requirements of the intelligibility support tool. Depending on how the focus

group goes, we may potentially ask users to run a diary study over a week and detail

their experiences communicating. This would give a window into what it’s like to

live with a voice disorder and will provide insight into even more situations where we

should prove our speech support device.

After these requirements are built out into a mobile application that improves

the intelligibility of the user, we will run a series of usability tests to evaluate the

usability of the device. In this study we will test each of the scenarios that we

found to be particularly difficult for individuals with voice disorders: talking on the

phone, speaking in environments with background noise, ordering something at a

drive-thru, and meeting someone new. It turns out that all of these scenarios can be

experienced at your local Starbucks, so to run these usability tests, I intend to partner

with Starbucks. The following sections explain how I would test the usability of the

intelligibility support tool in the given particularly difficult situations. As mentioned,

the order of these usability tests would depend on the results of the prior focus

group, and we would start with the task that was identified as the most important

to individuals with voice disorders.

10.3.1 The Starbucks Intelligibility Challenge

For this usability test, we would recruit individuals with voice disorders from the

Phoenix area and work with a local Starbucks location. The first phase of the usability

study would be a short pre-interview, where we would ask the user to input what their

Starbucks order was to use as the groundtruth, as well as ask them standard questions

about their voice and how their voice affects their life, and their previous experiences
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Table 10.1: The Voice Handicap Index 10 Rosen et al. (2004). The Frequency Scale
is 0: Never, 1: Almost Never, 2: Sometimes, 3: Almost Always, 4: Always

Situation Frequency

My voice makes it difficult for people to hear me 0 1 2 3 4

People have difficulty understanding me in a noisy room 0 1 2 3 4

My voice difficulties restrict my personal and social life 0 1 2 3 4

I feel left out because of my voice. 0 1 2 3 4

My voice problem causes me to lose income. 0 1 2 3 4

I feel as though I have to strain to produce voice. 0 1 2 3 4

The clarity of my voice is unpredictable. 0 1 2 3 4

My voice problem upsets me 0 1 2 3 4

My voice makes me feel handicapped 0 1 2 3 4

People ask, ”What’s wrong with your voice?” 0 1 2 3 4

ordering at drive-thrus. Here we will obtain a baseline for the questions that we

will ask in the post-interview. I plan on using the Voice Handicap Index-10 Rosen

et al. (2004), shown in Table 10.1. The VHI-10 is comprised of statements that many

people with voice disorders have used to describe their voices and the effects of their

voices on their lives. VHI-10 is often used to get a base assessment of the individual’s

quality of life and how their voice affects their quality of life. The main task of this

usability study will be for the participant to place a drive-thru order at Starbucks

in two conditions, one with the intelligibility support tool, and one without. The

conditions would be counterbalanced to avoid any ordering effect (pun intended).

To complete the first task, we would ask the participant to drive their car, the re-

searcher would either ride along or set up a recording device (both audio and visual) to

capture the interactions between the driver (the individual with a voice disorder) and

the cashier. To assess this interaction, there are several things that we would look for:
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asking the driver to repeat themselves or generally asking for clarification, any errors

in the order that they received (as depicted by the receipt and the difference between

the ground truth and the order on the receipt). Between each condition, we would ask

the participant a series of reflection questions in a post-interview. These questions

would relate to their satisfaction with using the device, the difficulty of completing

the task, and things they generally found good, bad, surprising or confusing.

For the second study, we will repeat the first task, however rather than going

through the drive-thru, the individual will be asked to order coffee inside of the

Starbucks, where there is lots of background noise–other conversations, music, coffee

grinders, and steamers. This interaction will be video recorded and the interaction

will be assessed similarly as the drive-thru study. We will look for any trouble being

understood by the barista, either in the form of the barista asking for clarification or

for the individual to repeat themselves. We will also check the accuracy of the order.

We will also conduct a post-interview, where the participant will be asked to reflect

on their interaction and ask them the same quantitative rating scale questions as we

will ask after the drive-thru task.

To avoid any adaptation to the participant’s voice by the barista, we will make sure

that a different barista takes the individual’s order, and we will make sure that the

order is different between the two conditions. We will shoot to have 5-10 participants

for each study, and will work with Starbucks so that they know what is going on, and

so that we have the approval to record the interactions. Both of these studies will

be completed in person, and I will recruit participants through the local Spasmodic

Dysphonia support group.

This study covers three of the four situations that were identified in need-finding

surveys: ordering at a drive-thru, speaking in noise, and meeting someone new. This

just leaves speaking on the phone for evaluation.
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10.3.2 Speaking on the Phone

From the initial need-finding survey, we have received two main complaints from

individuals with voice disorders about speaking on the phone. The first is not being

understood by auto-attendant systems, and the second is generally not being able

to be understood by other people on the phone. In this study, we will test the

intelligibility of individuals with voice disorders when speaking to an auto-attendant

(machine), and when speaking to another person. The speaker will complete this

study under two conditions, once without an intelligibility support tool, and once

with an intelligibility support tool.

To test the auto-attendant feature, we will use a combination of Zoom and Amazon

Connect. We will build an auto-attendant system using Amazon Connect. The

participant will have a scheduled time to call into a Zoom session and from the

Zoom session, we will have them call the auto-attendant. This means that we will

be able to listen to their interaction with the auto-attendant. The first task will be

for them to provide a fake account number (that we will provide via email before the

study). We will use Amazon Connect’s automatic speech recognition to transcribe

the account number. From this, we will be able to calculate an error rate between

the true account number and the transcription of the account number. We will also

have the auto-attendant ask a couple of simple questions, for example, ‘What is your

favorite color?’, ‘How old are you?’, etc. This will give us a baseline estimation of

how auto-attendants understand dysphonic speech.

Integrating the speech support system into a phone call may prove difficult. If we

can integrate the speech support system into a Voice Over Internet Protocol (VOIP)

service, we will test the intelligibility of the participant in two different conditions,

one with the speech support tool, and one without. The user will be given a series of
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‘messages’ to provide over the phone. These will be practical prompts like ‘Harvey

has a dance recital at 9:30 am on the 15th of June, 2020.’ or other scenarios that

have enough information to be slightly complicated, however, are still very realistic

situations to be communicating over the phone about. We will ask the participant

to call a phone number that we provide, and we will have a standard listener on the

other end of the line transcribing the message. We will try to keep the interaction

between the speaker and the listener as realistic and natural as possible by allowing

the listener to ask for clarification. The interactions will be recorded and analyzed

similarly to the Starbucks intelligibility challenge with pre- and post-interviews.

The next step after any usability issues are identified in the above studies will be

to have a group of Beta testers download the application and use it for a week while

asking them to do a diary study detailing their interactions using the speech support

tool.
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