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ABSTRACT

Societal infrastructure is built with vision at the forefront of daily life. For those with

severe visual impairments, this creates countless barriers to the participation and

enjoyment of life’s opportunities. Technological progress has been both a blessing and

a curse in this regard. Digital text together with screen readers and refreshable Braille

displays have made whole libraries readily accessible and rideshare tech has made

independent mobility more attainable. Simultaneously, screen-based interactions and

experiences have only grown in pervasiveness and importance, precluding many of

those with visual impairments.

Sensory Substituion, the process of substituting an unavailable modality with

another one, has shown promise as an alternative to accomodation, but in recent

years meaningful strides in Sensory Substitution for vision have declined in frequency.

Given recent advances in Computer Vision, this stagnation is especially disconcerting.

Designing Sensory Substitution Devices (SSDs) for vision for use in interactive settings

that leverage modern Computer Vision techniques presents a variety of challenges

including perceptual bandwidth, human-computer-interaction, and person-centered

machine learning considerations. To surmount these barriers an approach called Per-

sonal Foveated Haptic Gaze (PFHG), is introduced. PFHG consists of two primary

components: a human visual system inspired interaction paradigm that is intuitive

and flexible enough to generalize to a variety of applications called Foveated Haptic

Gaze (FHG), and a person-centered learning component to address the expressivity

limitations of most SSDs. This component is called One-Shot Object Detection by

Data Augmentation (1SODDA), a one-shot object detection approach that allows a

user to specify the objects they are interested in locating visually and with minimal

effort realizing an object detection model that does so effectively.
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The Personal Foveated Haptic Gaze framework was realized in a virtual and real-

world application: playing a 3D, interactive, first person video game (DOOM) and

finding user-specified real-world objects. User study results found Foveated Haptic

Gaze to be an effective and intuitive interface for interacting with dynamic visual

world using solely haptics. Additionally, 1SODDA achieves competitive performance

among few-shot object detection methods and high-framerate many-shot object de-

tectors. The combination of which paves the way for modern Sensory Substitution

Devices for vision.

ii



DEDICATION

To my mom, dad, and brother, whose compassion, resolve, and affinity for the un-

known continue to inspire me. To Michelle, whose enterprising passion emboldens

my spirit.

iii



ACKNOWLEDGMENTS

I would firstly like to thank my mentor, advisor and committee chair, Dr. Sethu-

raman (Panch) Panchanathan. His guidance, encouragement, and confidence in me

have continued to remind me of the possibilities that lay ahead. Also, the support

of my committee members Dr. Troy McDaniel, Dr. Hemanth Venkateswara, and Dr.

Heni Amor was critical to my success as a scholar and professional.

I would also like to thank Abhik Chowdhury and Shashank Sharma whose shared

love of hardware and ingenuity made the rapid prototyping of novel interfaces a

pleasure.

I would also like to thank the CUbiC family for their comradery and their spirit of

intellectual freedom. I also want to thank Jay Klein and the APAcT-IGERT group,

whose mission and variety of perspectives challenged me and enriched my academic

journey.

Lastly, I would like to thank Zsolt Kira at the Georgia Tech Research Institute,

Heni Amor at the Interactive Robotics Lab at ASU, and the Smart Products team

at P&G for providing a creative space outside of my home lab.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The Human Visual System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Haptics and Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Sensory Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Advantages and Limitations of Haptics for Sensory Substitution . . . . 15

2.5 General Purpose Sensory Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Language and Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Visual Content Readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Future Trends for Sensory Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Instructional Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Mobility Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Motor Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Social Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Electronic Travel Aids (ETAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Virtual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 General Tools for Interacting with Visual Environments . . . . . . . . . . . 46

4 DEEP REINFORCEMENT LEARNING FOR 3D NAVIGATION. . . . . . . 49

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



CHAPTER Page

4.2 GraphMem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Maze Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 LOW RESOLUTION HAPTIC INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 FOVEATED HAPTIC GAZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.1 Foveated Haptic Gaze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.2 Gaming Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 ONE-SHOT OBJECT DETECTION FOR PERSON CENTERED VI-

SION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 Automatic Object Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vi



CHAPTER Page

7.2.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.3 Training an Object Detection Model . . . . . . . . . . . . . . . . . . . . . . 91

7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . 97

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX

A LEAP MOTION CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B LRHD VIBROTACTILE PATTERNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C IN-HAND OBJECT SEGMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

D SYNTHETIC DATASET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

E PERMISSION FROM CO-AUTHORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

F PERMISSION FROM PUBLISHERS FOR RE-PRINT. . . . . . . . . . . . . . . . . 126

vii



LIST OF TABLES

Table Page

4.1 Model Performance with 95% Confidence Interval . . . . . . . . . . . . . . . . . . . . 60

5.1 Power Consumption of 4x4 LRHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Non-interactive Phase Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Interactive Phase Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Object Detection Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



LIST OF FIGURES

Figure Page

2.1 Diagram of Human Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Cone Sensitivity vs Wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Illustration of Foveation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Angular Acuity of Human Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Electrical, and Haptic Representations of Visual Image . . . . . . . . . . . . . . . 14

2.6 Haptic Representations of Letter “F” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Sliding Haptic Representations of Letter “F” . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Raised Paper Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Wikki Stix Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Monocular Depth Estimation - MegaDepth . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 PHANToM Force Feedback Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Ghostly Master Metaphor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 CUbiC Haptic Belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Discrete Camera Sunglasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 White Cane in Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Low Resolution Haptic Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 ViZDOOM Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 GraphMem Memory Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 GraphMem Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Maze Floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Model Training Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Route Improvement Comparison Between Models . . . . . . . . . . . . . . . . . . . . 60

5.1 LRHI System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 3D Motor Housing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



Page

5.3 Haptic Display on Office Chair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Performance over Time for Interactive Game . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Game Time Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 In-Game Haptic Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Foveated Haptic Gaze Illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 User Study DOOM Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Map of DOOM Scenario for Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Haptic Glove for FHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 FHG System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.7 Haptic Array for Peripheral Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.8 Mean Performance Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.9 Game Metrics over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.10 Accuracy and Shots over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 YOLOV3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Frame Stability Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Object Segmentation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Synthetic Data Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Coordinate Space Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6 Color Space Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.7 Qualitative Comparison: 1-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.8 1SODDA Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Head Mounted Leap Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 Static Haptic Patterns for Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Dynamic Haptic Patterns for Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x

Figure



Page

B.3 Cat-Mouse Game Illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.1 Segmentation of Object in Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.1 Synthetic Dataset Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xi

Figure



Chapter 1

INTRODUCTION

Worldwide, there are over 200 million people who have some kind of vision im-

pairment, Bourne et al. (2017). In the United States alone, there are 7.3 million

adults with blindness according to the Cornell University’s Employment and Disabil-

ity Institute, Nations (1990). These individuals face a disproportionate burden in

participating in the activities of daily life due to social, societal, and infrastructural

barriers. Infrastructural barries are faced early in age, as almost 90% of blind chil-

dren are not taught Braille and thus do not receive access to fundamental reading

and writing education and an estimated 50% of high school students who are blind

drop out before graduation, Jernigan Institute (2009). These educational barriers,

along with the associated stigma, reduce opportunity early on. Employment is an-

other aspect presenting barriers to people with blindness. The National Federation of

the Blind (NFB) estimates that the unemployment rate for people with blindness is

greater than 70%, Jernigan Institute (2009). In 2016, the NFB reported that 27.7%

of blind individuals in the United States live under the poverty line, NFB (2017),

more than double the national poverty rate of 12.7 %, Semega et al. (2017). While

the Americans with Disabilities Act of 1990 made great strides towards equaility, the

data shows that an overwhelming disparity in access to employment still exists. Ad-

ditionally, the increasing ubiquity of technology has in ways exacerbated the inequity.

A survey of teachers of students who are blind found that they spent the majority

of their time instructing on how to become a proficient user of assistive technology,

Thurlow et al. (2001). As computing and technology have become integral to full

participation in society, the reliance on screen-based interfaces has increased. Efforts
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to guide the development of more inclusive environments, such as Universal Design,

Rose et al. (2005), show promise but its principles have yet to see widespread adoption

in the realm of technology.

Apart from efforts to design more inclusively, technological innovations have made

significant improvements in the lives of people with blindness. Most of these advance-

ments can be categorized as methods for delivering visual information to the user using

alternate means. The most salient example of this is the Braille system, invented by

Louis Braille in 1829, which after standardization brought the written word to many

people with blindness. The cane is an even older example of such a tool but used for

navigation. Both of these technologies utilize Sensory Substitution as their mode of

operation. Sensory Substitution (SS) is the process of delivering a signal from the

domain of one sensory modality to an alternative sensory modality. The idea was

introduced and popularized by Dr. Paul Bach-y-Rita in the 1960s. While instances

of Sensory Substitution predate Dr. Bach-y-Rita’s work by centuries, his early work

on vision substitution made waves in the field of neuroscience. This work paired a

blind individual with a video camera and a large haptic interface on a dental chair

which resulted in the blind individual being able to distinguish objects at a distance

using the system.

Any device which makes use of Sensory Substitution to function is called a Sensory

Substitution Device (SSD). SSDs are not limited to substituting for vision, nor are

they limitted to using haptics as a target modality. Researchers are the Eagleman lab,

for example, were successful in substituting hearing with haptics, Eagleman (2014)

and Novich (2015). Researchers at the Neural Rehabilitation Engineering Laboratory

used audition to substitute for vision with their device, the Prosthesis for Substitution

of Vision with Audition (PSVA), Capelle et al. (1998).
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Of all the possible target modalities, haptics has inherent advantages for assistive

technology. The skin is the largest organ on the body, giving the organ versatility

when it comes to design. The plentiful real-estate of the skin allows haptic SSDs to

be designed to impart minimal obstruction to other crucial functions of the senses.

Haptic actuators can be placed on surfaces such as the back, upper arms, or waistline,

locations that are not often used in day-to-day activity. This is not the case with

audition as a modality, as placing anything over the ears obstructs the entirety of

hearing. Additionally, modern attention models of the brain partition perceptual

bandwidth by modality: the relatively unnused nature of the skin as a sensory organ

represents unused perceptual bandwidth via the “Modality Effect”. The skin though

does exhibit some limitations that have hindered its adoption as the defacto target

for general-purpose vision substitution, Spence (2014). This is evidenced by the fact

that few haptic SSDs for vision are in use for interactive environments. While screen-

readers and refreshable Braille displays have enjoyed growing success, WebAIM (Web

Accessibility In Mind) (2015), these modern SSDs are still limited to non-interactive

applications.

Most daily activities are interactive in nature. From finding one’s misplaced keys

to playing a game with friends and family, these activities feature dynamic environ-

ments that change with respect to one’s actions. These activities require exploration

and realtime feedback. Modern haptic SSDs have yet to meet the demands for use

in interactive scenarios. In this last decade progress in the field of Computer Vision,

especially with the rise of Deep Learning, ellicited hope for a great leap in assistive

technology for vision. So far, these solutions have been sparse and of limited use in

interactive scenarios, mostly hindered not by the challenges of Computer Vision but

by usability limitations. To truly capitalize on the advancements in Computer Vision

and develop haptic SSDs that are both general and useful in interactive scenarios, a
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more intuitive interface and Computer Vision methods capable of adapting to a user’s

specific needs are called for. This dissertation introduces Person Centered Foveated

Haptic Gaze, an approach addressing this call, paving the way for modern Sensory

Substitution for vision.

This dissertation is organized in the following manner. Chapter 2 provides back-

ground with regard to the sensory processes of vision and touch, followed by a discus-

sion on the field of Sensory Substitution and Sensory Substitution Devices. Chapter

3 discusses related works with respect to Haptic Sensory Substitution in a variety

of application domains. This chapter concludes with the focus of this dissertation:

Sensory Substitution for interactive applications in the era of Artificial Intelligence.

Chapter 4 explores developments in Deep Reinforcement Learning as applied to visual

navigation and their potential for use in assistive technology applications. Chapter

5 introduces a standardized device and protocol called the Low Resolution Haptic

Interface (LRHI) for communicating spatial information haptically. This chapter also

discusses results from a user study conducted to validate the interface for use as

an general purpose SSD in addition to use in interactive applications. The chapter

concludes with a discussion of the limitations of the device and the need for a more

involved mechanic for active exploration in order for the SSD to be useful in richer

(and more realistic) environments. Chapter 6 introduces this mechanic, Foveated

Haptic Gaze (FHG), a technique which takes inspiration from the foveated nature

of the human visual system that enables haptic SSDs to intuitively convey dynamic

information in interactive domains. The chapter also discusses the results of a user

study, which included both sighted and individuals who are blind as participants, con-

ducted to assess the efficacy of FHG in an interactive 3D game based on DOOM, a

classic first-person shooter game. Finally, the chapter discusses the future direction of

this new branch of interactive SSDs and the barriers that still exist for the technology

4



to be useful in real-world scenarios. Chapter 7 introduces a novel, person-centered

approach to one-shot object detection called 1SODDA as a step towards generalizing

these Sensory Substitution techniques to real-world scenarios. The method leverages

Deep Object Detection techniques and a person-centered data collection and augmen-

tation approach that places the user in control by allowing them to specify objects

of interest for the model to detect. Lastly, Chapter 8 concludes the dissertation with

discussion of the findings and the future direction of modern Sensory Substitution in

tandem with Computer Vision.
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Chapter 2

BACKGROUND

In order to develop assistive technology tasked with communicating vision via

haptics in a principled manner, an understanding of the underlying biological and

cognitive processes for these modalities is necessary. These processes are explored

in this chapter with a focus on the sub-topics most pertinant to the development

of haptic Sensory Substitution Devices for vision. This chapter also includes an in-

depth discussion on Sensory Substitution, its applications, limitations, and promising

directions.

2.1 The Human Visual System

The Human Visual System (HSV) consists of three primary components: they

eye, optic nerve, and visual cortex. The eye focuses incoming light onto the retina

which converts the electromagnetic energy into electrical impulses. These impulses

are carried by the optic nerve to the visual cortex in the brain, where the signal is

processed. Figure 2.1 illustrates the anatomy of the human eye: incoming light is

refracted by both the cornea and lens to create a focused image onto the retina. The

optical axis, or center of the path by which light travels through the eye, is aligned

with the fovea: a portion of the retina corresponding to the center of the field of view.

The retina contains photosensitive cells called photoceptors, which upon absorbing

light generate a neural signal. Humans possess two kinds of photoreceptors: rods and

cones. Rods are highly sensitive cells that can respond to as few photons as one, while

cones require much more light and are responsible for color vision. There are 3 types

of cones roughly corresponding to the wavelengths they are sensitive to: long-wave
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Figure 2.1: Anatomical diagram of the human eye. Adapted from Wikimedia

commons: Schematic diagram of the human eye en.svg, https: // en. wikipedia.

org/ wiki/ File: Schematic_ diagram_ of_ the_ human_ eye_ en. svg

(L), medium-wave (M), and short-wave (S). Their sensitivities are plotted against

wavelength in figure 2.2

The fovea has the highest density of photoreceptors and is populated exclusively

by cones. In addition to the increased density at the fovea, the foveala, a portion

at the center of the fovea, the cells that lay over the photoreceptors in the rest of

the retina are aranged in a manner that prevents obstruction of the light before

reaching the photoreceptors. The increased density of photoreceptors in tandem

with their unobstructed line-of-sight make the foveola the most acute portion of the

retina (illustrated in figure 2.4). The fovea encompasses a mere 1% of the retinal

area and 2 deg of the visual field, while corresponding to 50% of the visual cortex,
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Figure 2.2: Normalized cone sensitivity over the entire visible spectrum. Adapted from

Wikimedia commons: Cone-fundamentals-with-srgb-spectrum.svg, https: // en.

wikipedia. org/ wiki/ File: Cone-fundamentals-with-srgb-spectrum. svg

Krantz (2012), Zhu and Yang (2002). This disproportionate allotment illustrates the

importance of this narrow portion of human vision. Figure 2.1 illustrates the relative

color and spatial acuity in the foveated region versus the rest of the field of view.

After signal travels through a collection of low-level processing circuitry (bipolar cells

and retinal ganglion cells) and finally arrives at the optic nerve where it is sent to

the optical cortex. For a more in-depth description of the HSV, see Hudspeth, A.J.;

Schwartz, James; Siegelbaum, Steven; Kandel, Eric; Jessell (2012).

In addition to progressive resolution of the human visual system, the attentional

mechanisms in human visual processing are also noteworthy. The work by Neisser,

Neisser and Becklen (1975), which was later expounded upon by Simons and Chabris,

Simons and Chabris (1999), on inattentional blindness explored the phenomena that

humans are often unaware of objects in their field of view that are outside of their

attentional focus. In possibly the most famous of these studies, Simons and Chabris

tasked participants to count the number of passes two teams made with a basketball

in a pre-recorded video. While most of the participants had little trouble count-
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(a) (b)

Figure 2.3: (a) Original image of flower (b) Notice the stark difference in visual acuity

in both color and sharpness inside versus outside of the foveated region.

ing the passes accurately, a surprising number (27-58% of participants, depending

on conditions) failed to notice an anamolis event event occuring during the video

(a woman walking through with an umbrella, and even more surprisingly a person

walking through in a full gorilla suit). The phenomena has been reproduced in many

other scenarios; participants in one study even failed to notice an ongoing street fight

during one study, Chabris et al. (2011).

While initially unintuitive, the alternative, that humans perceive and process the

entirety of their visual field simultaneously is even more doubtful. Perceptual band-

width limits have been theorized for many of the modalities (elaborated upon in

section 2.4) in addition to attentional limits. Attention therefore plays an immense

role in visual processing. Simons and Chabris go so far as to assert that “conscious
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Figure 2.4: Visual Acuity vs Angle from Fovea Centralis. Adapted from Wikime-

dia commons: AcuityHumanEye.svg, https: // commons. wikimedia. org/ wiki/

File: AcuityHumanEye. svg

perception seems to require attention”, Simons and Chabris (1999), and make the

observation that when the unexpected event contains visual characteristics similar to

the attended event the participant was more likely to notice the unexpected event.

This observation implies that when primed with a specific task, visual characteristics

that correspond to that task are more salient than those outside of the attended tasks

scope.

2.2 Haptics and Perception

The basis for the perception of haptic stimuli are mechanoreceptors embedded

in the skin. Mechanoreceptors are biological transducers that convert mechanical

stimulation into electrical signals (action/graded potentials) to be transmitted by
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nerves. The human skin contains several kinds: Ruffini Endings which respond to

skin stretching, Merkel Cells which respond to low-frequency stimuli such as points

and edges of objects, Pacinian Corpuscles which respond to vibrations, and Meissner

Corpuscles which detect lateral skin motion, Field Receptors which respond to slow

stroking stimuli, and hair follicle receptors which detect hair movement, Hudspeth,

A.J.; Schwartz, James; Siegelbaum, Steven; Kandel, Eric; Jessell (2012). The prop-

erties of mechanoreceptors must be considered when designing a Haptic SSD.

Pacinian Corpuscles are of specific interest, as they respond to vibration in the

range of 5-1000Hz, and are most sensitive to vibration at 200Hz. It is no coincidence

that the pancake motors used to generate vibration in user devices vibrate close to

this range. The motors used in the LRHI, Fakhri et al. (2019), for example vibrate at

220Hz, Type and Features (2016), very close to peak sensitivity. Pacinian Corpuscles

are also the most sensitive with respect to indentation depth, capable of detecting

skin indentations as small as 0.01 µm, which is magnitudes smaller than the second

closest mechanoreceptor the Messner Corpuscle at 2 µm. The Pacinian Corpuscle

is also a “Rapidly Adapting” mechanoreceptor, meaning it stops firing shortly af-

ter a stimulus stops changing, similar to retinal cells in the human visual system,

Baccus and Meister (2002). Both of these properties are advantages of the Pacinian

Corpuscle as a target for Haptic SSDs as inexpensive and low profile vibration mo-

tors are relatively easy integrate into an SSD. A drawback of the Pacinian Corpuscle

though is a receptive field that is larger than most other mechanoreceptors, as they

lay deeper in the skin (2-3mm deep) and are more sparsely located. Practically this

means localization of vibrations is less precise than that of other stimuli. While the

two-point discrimination threshold of vibrotactile stimulation on a human back is in

the range of 10-11mm, Jones and Sarter (2008), localizing specific stimuli in an array
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of actuators tends to be less precise. Researchers found that using a 3x3 vibrotactile

array on the back with intermotor spacing of 6cm, participants were able to localize

the vibrations at an accuracy of 84%, Lindeman and Yanagida (2003). A more in-

depth study on the perception of vibrotacile arrays on the human back was done by

Jones et al. who developed a 4x4 array with a vertical spacing of 4cm and horizontal

spacing of 6cm. With this higher density array, localization accuracy of individual

motors dropped to 59%, while disciminating haptic patterns was a much easier task.

Participants achieved an accuracy of 95% for haptic pattern recognition, Jones and

Ray (2008). Consequently, for haptic arrays to be placed on the back, the limit for

accurate actuator localization appears to exist between 4-6cm spacing, while the limit

for vibrotactile pattern discrimination remains higher.

Haptic arrays relying on static pressure versus vibration can get away with denser

spacing. The TVSS for example made use of solenoids spaced only 12mm apart,

resulting in an array with 400 total actuators, Bach-Y-Rita et al. (1969). This is

possible due to the smaller receptive fields of the mechanoreceptors targeted by the

solenoids (Merkel Cells). While higher density haptic arrays provide more higher

spatial resolution, the cost, size, and power requirements of solenoids often make

them impractical for Sensory Substitution applications in comparison to vibration

motors. Lower resolution displays may also be completely adequate for applications

conveying information that is general and relative versus specific and absolute, as

those discussed in section 6.

2.3 Sensory Substitution

Sensory Substitution (SS) is the process of delivering a signal from the domain of

one sensory modality to an alternative sensory modality, for example circumventing
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the auditory modality with the haptic modality. The purpose of SS is often to cir-

cumvent an impaired modality via an alternative one so that a person can experience

stimuli from the impaired modality. Formally, we will refer to the modality being

replaced as the source modality and the modality that the signal is being delivered

to the target modality. In other words, Sensory Substitution is a method by which

people who are blind can see by hearing, or people who are deaf can hear via touch.

This revolutionary idea, that people can learn to experience sensations grounded in

one modality via another, was pioneered by the late Dr. Bach-y-Rita in the 1960s.

The notion that the signals eminating from the receptors of one modality can be

interpreted in the brain as stimuli from another domain was novel and spurred the

development of methods and systems in the last four decades harnessing this phe-

nomenon to treat disability, enhance education, and enrich people’s lives.

The objective of a Sensory Substitution Device (SSD) is to transform a signal

from the source domain into a form that can be perceived by the target modality. In

the famous case of Dr. Bach-y-Rita’s TVSS system, the source domain was visual

and the target domain haptics, Bach-Y-Rita et al. (1969). Dr. Bach-y-Rita showed

that people who are blind could, with training, learn to interpret visual stimuli pro-

jected on their back as tactile stimuli using the Tactile Vision Sensory Substitution

device (TVSS). The device consisted of a dental chair, retro-fitted with 400 solenoid

actuators that would press upon the user’s back when seated. The solenoids were

controlled by a camera system that converted images to electrical signals: a bright

portion of an image would result in solenoids pressing against the back of the user in

the corresponding location. This is illustrated in fig. 2.5a, 2.5b, and 2.5c.
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(a) (b) (c)

Figure 2.5: (a) Original image of hand (b) Original image converted into electrical

activations based on the brightness of that portion of the image (c) activations are

converted into solenoid positions to stimulate the skin: solenoids stimulate the skin

in proportion to their activation.

After training, the TVSS allowed user who are blind to recognize household ob-

jects without touching them. These results had massive implications for the field

of neuroscience and that of assistive technology - technology to improve the lives of

people with disabilities, demonstrating that through clever uses of technology sensory

impairments can be circumvented. Researchers later went on to develop Sensory Sub-

stitution Devices (SSDs) to substitute vision with hearing, Meijer (1992), vestibular

with tactile, Bach-y Rita et al. (2005), and hearing for tactile, Novich (2015) with

impressive initial results. While fantastic medical advances in sensory prosthesis such

as the Cochlear Implant (CI), Merzenich et al. (1973) and retinal prosthesis, Caspi

et al. (2009); SSDs provide a great alternative for circumventing the loss of a sensory

modality as surgical procedures are often prohibitively expensive and always invasive.

This dissertation will focus on SSDs with a source modality of vision and a target

modality of haptics, or Haptic SSDs for Vision.
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2.4 Advantages and Limitations of Haptics for Sensory Substitution

The skin is the largest organ on the body, making touch one of the most versatile

modalities to design SSDs for. Designers have a wide range of options with respect to

where to place devices: some SSDs have even been designed for the tongue. Because

of the plentiful real-estate, haptic SSDs can be designed to impart minimal obstruc-

tion to other crucial functions of the senses. For example, haptic actuators can be

placed on places such as the back, upper arms, or waistline, locations that are not

often used in day-to-day activity.

Touch also happens to be underutilized as a communication medium for technol-

ogy. Designing touch-based SSDs has the added benefit of likely not interfering with

other communication mediums to cause sensory overload. A person who is blind for

example is unlikely to accept obstructing their hearing with a vision-to-auditory SSD,

but is more likely to if the target modality is one that is not already being highly

utilized, such as touch. Using haptics not only avoids interfering with a modality

already in use, but may allow for a higher effective cognitive bandwidth due to the

multi-channel nature of adding haptics.

Current models of the human memory and attention system portray the dif-

ferent modalities as semi-independent channels to one’s attention. The Baddeley

multi-channel model for example allocates different sensory inputs unique and semi-

independent subsystems of working memory and independent processing systems for

such each modality, Sweller et al. (2011). Consequently, sensory signals of different

modalities can more effectively make use of the human cognitive bandwidth than

the same information presented to a single modality; this phenomena is called the
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“modality effect”. Sensory overload occurs when the attention system is overwhelmed

and because touch is often underutilized in daily tasks, taking advantage of it can

augment attentional bandwidth while successfully averting sensory overload. For this

reason, the haptic modality has received substantial interest in military (high cogni-

tive load) settings and haptic-vestibular SSDs have been developed for pilots flying

in low-visibility settings, Van Erp and Self (2008).

The sense of touch though does exhibit inherent limitations. One such limita-

tion is the limited information capacity of haptics. It is estimated that the visual

system has a capacity of 4.3 Mbits/second, Jacobson (1951) and the auditory sys-

tem 8 Kbits/second, Homer Jacobson (1950). In comparison, the haptic modality

is estimated to have a mere 600-925 bits/second of capacity, Novich and Eagleman

(2015). This implies an upper bound on the amount of information an SSD can con-

vey through the sense of touch, and consequently an upper bound on the fidelity of

information one can access from a higher-bandwidth modality through haptics. It

was not so minuscule though that users could not use use it to substitute vision and

perform basic vision tasks, Bach-Y-Rita et al. (1969).

While touch allows for a wide variety of locations, sophisticated interaction often

requires multiple tactile actuators to convey complex information. The skin imposes

a minimum spacing requirement between tactors to maintain discernability and this

spacing is a function of the location of the body the tactors are placed as well as

the kind of stimulation (pressure, vibration, temperature, etc) that will be applied.

For example, on the human back the minimum discriminable separation of vibration

stimuli is about 11mm, Eskildsen et al. (1969). Consequently, actuators must often

be adequately spaced out on the body, taking up more space than a device relying
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on a more concentrated modality like vision or hearing. The design of the device and

the signal processing is crucial for effective use and adoption as an SSD and haptic

SSDs can largely be categorized into 3 categories: general purpose (section 2.5), me-

dia readers (section 2.6), and interactive devices (section 3) which are explored in the

following sections.

2.5 General Purpose Sensory Substitution

General purpose Sensory Substitution is intended to circumvent a source modal-

ity via the target modality outright, making it a complete substitute for the source

modality. This is in contrast to application specific SS, where a device or technique

transforms a signal from the source modality into the domain of the target modality

in such a way that is tailored to the application. Oftentimes there exists a tradeoff

between efficiency and generality: the more general an SS method, the more training

is reqiured, while more application-specific methods are often learned more quickly.

The first and likely most famous implementation of general purpose vision sensory

substitution occured in 1969, when Dr. Paul Bach-y-Rita and his team developed the

Tactile Vision Sensory Substitution (TVSS), demonstrating that with a somewhat

long training period (up to 150 hours), users of the device could recognize common

objects as well as motion, gradients, and shadows at a distance, Bach-Y-Rita et al.

(1969) and White et al. (1970). While impressive, the work had a long way to go

towards vision-to-tactile SS that could truly replace vision, let alone be a practical

solution for daily activity. The device was incredibly bulky, having been constructed

from a dental chair, hundreds of solenoids, camera equipment and electrical ampli-

fiers. The device’s resolution was also too low to discern fine detail and long training

17



times were required for proficiency. Furthermore, the system lacked color detection

and sported a field of view was that was narrow and fixed. All of these problems

made it impractical for real-world use such as navigation, reading, etc.

Some of these issues were addressed in later devices. For example the “Rabbit

Display”, developed by the MIT Media Lab, made use of a tactile illusion called

“saltation” in order to increase the effective resolution of a low resolution tactile dis-

play, Tan and Pentland (1997). Saltation (also known as the “cutaneous rabbit”) is

an illusory sensation of touch felt in between the location of where the stimuli was

actually applied to the skin, Geldard and Sherrick (1972) and can be achieved by

timing the stimuli in a specific manner. The authors emphasized that the display

would be useful in conveying direction information to users such as pilots (such as

a vestibular SSD) or to help people with navigation. Because of the low resolution

nature of the display (3x3), it can be inferred that it can be made relatively small

and lightweight, making it a viable option for mobile applications and more socially

acceptable. Saltation can even evoke senation away from the body, Miyazaki et al.

(2010), and may be used in the future to “extend” displays off of the body. The

low-resolution nature of the display though limits the detail that can be conveyed,

even if saltation is employed to increase perceived resolution. Generalizing this tech-

nique to a larger, finer display is not trivial though, as inducing saltation requires

haptic stimuli to be presented to the skin in specific timings and patterns, limiting

the representable patterns of the display and thus the informational content.

Further improving on acuity and portability, researchers in 2001 developed a

Tongue Display Unit (TDU) for vision-to-electrotactile Sensory Substitution applica-

tions. The device converts images from a digital camera into electrical signals that
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are applied to the tongue in a similar manner to how Bach-y-Rita’s TVSS converted

image information into tactile stimulation (illustrated in fig. 2.5c). While uncon-

ventional, the tongue was chosen as the site for the TDU for both its sensitivity to

electric current and density of receptors, making it better suited for discerning fine

details than a user’s back. Researchers showed that users of the Tongue Display Unit

were able to achieve a visual acuity of 20/860 on a standard “Tumbling E” visual

acuity test and 20/430 after 9 hours of training, generalizing much better than the

original TVSS, Sampaio et al. (2001) and Nau et al. (2013).

The same group went on to use the TDU as a rehabilitation device for people

with vestibular conditions affecting their balance, renaming the TDU the BrainPort.

Researchers used the BrainPort to convey balance information to people who had

lost their sense of balance, substituting it with electrotactile stimulation and saw

marked improvements in balance, some users being able to stop using the device en-

tirely while retaining their newfound balance, Bach-y Rita et al. (2005). This group

demonstrated that haptic SSDs can not only be used as sensory substitutes but also

as rehabilitation devices.

With all of these advances since the original TVSS, there are some limitations

that remain untouched such as color distinction and stereo vision. Vision to tac-

tile SSDs also are still cumbersome for practical daily use as the state-of-the-art

implementations (BrainPort) require the display to be in the mouth limiting social

interactions and possibly exacerbating stigma towards users. There has been more

success in general vision substitution with the auditory system as the target modal-

ity. Blind users have even been able to navigate with SSDs such as the “vOICe”,

which stands for “oh I see”, Meijer (1992) and Ward and Meijer (2010), and experi-
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ence color with EyeMusic, Abboud et al. (2014), a system that abstracts images into

tones and sounds of instruments hence the name. The discrepancy in performance

between vision-to-haptic and vision-to-auditory SSDs is likely to do the information

capacity discrepancy being smaller between vision and auditory versus vision and

haptics. Auditory-to-Haptic Sensory Substitution though enjoys a similar advantage

over vision-to-haptic.

Some of the earliest attempts at general auditory-to-haptic SS were made by the

Audiological Engineering Corp in the 1980s. The group designed what are now known

as the Tactaid devices. The devices partition audio data into a varying number of

bands based on the model of Tactaid device; for example, Tactaid VII uses seven bands

and conveys activity in the bands to the user via seven unique vibrotactile actuators.

Researchers evaluated the devices with users who had hearing impairments and found

that users were able to discern syllables and showed “enhanced monosyllabic word

recognition” but users did not report significant subjective improvements in recog-

nition of speech, Karyn et al. (1999). A more recent and more successful method

for auditory-to-haptic SS was developed in 2014 by researchers at Rice University.

Instead of using just seven tactors, researchers developed a suit called the VEST

containing 26 eccentric rotating mass (ERM) motors, developing patterns involving

groups of 9 vibrotactile motors in a square array that conveyed directional “sweeps”.

They found that the spatiotemporal sweep patterns were more distinguishable than

just spatial or static patterns alone. Combining the VEST with speech processing

methods (compressing and converting the speech into haptic patterns), users were

able to discern speech much more clearly than ever before, distinguishing words at

much higher accuracies than with the Tactaid devices, Eagleman (2014) and Novich

(2015). General purpose Sensory Substitution devices explore the limits of percep-
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tion but are rarely ever widely adopted as assistive technology. Instead, application

specific SSDs tend to have more success as practical aids for daily use.

2.6 Media

While the written word enabled mass communication, standard media formats

are not accessible to the entirety of society. People with visual impairments often

have difficulty accessing communication mediums due to their design being reliant

on vision. Haptic SSDs for reading media are designed to convey the information in

media that is visual or text-based to the sense of touch. Examples of this include

devices for reading text, exploring images, and understanding maps, which are all

important for and individual’s education and independence.

2.7 Language and Communication

The most famous, and arguably most successful Sensory Substitution technique

for reading is Braille, the tactile, two column, three row cells of raised dots were

invented by Louis Braille and published in 1829. Alphanumeric characters are con-

verted into tactile representations, where each letter or number is assigned a Braille

code occupying one Braille cell. These cells can be read and written and are the

standard reading and writing system for individuals who are blind in many countries.

It has been shown that after extenstive practice Braille users can achieve a reading

rate of 90wpm, Troxel (1967). Visual reading rates are about 200 words per minute

for comparison. Written text though had to be translated into Braille before it was

accessible and was often bulkier than the original material. Almost a decade and a

half after the invention of Braille, refreshable Braille displays emerged as a solution
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to the size and heft of translated works. Refreshable Braille displays typically consist

of a row of refreshable Braille cells where the dots are controlled by a piezoelec-

tric bimorph cantilever that is activated by an electric potential, Smithmaitrie et al.

(2008). Modern refreshable Braille cells are 2x4 in contrast to the original 2x3 cells,

with the additional 2 dots used for cursor position and other indicators, according to

the American Foundation for the Blind (AFB), Stageberg (2004). Modern refreshable

displays sport between 18 and 84 Braille cells and can interface with computers via

bluetooth, while also utilizing input controls for typing and navigating, Schmidt et al.

(1998), Bucchieri (2013) and Freedom Scientific Inc. (2018). In response to the era of

touchscreens, methods for typing in Braille have been evolved to be compatible with

the flat featureless surfaces of touchscreens, Mascetti et al. (2011). Many touchscreen

consumer devices today allow for Braille typing using solely the display, eliminating

the requirement for additional hardware.

Other less successful methods for tactile communication were developed such as

Vibratese, a tactile language based on vibrations on the body that varied in ampli-

tude and duration to communicate alphanumeric symbols. Invented by F. A. Geldard

in 1957, test subjects trained in Vibratese were able to achieve a reading rate of up

to 60 words per minute using the system, Pasquero (2006). The language never saw

widespread adoption likely due to Braille having already been the standard.

Another alternative to the refreshable Braille cell called STRESS emerged in

2005. The device uses vertical stacks of piezoelectric plates that deform with an elec-

tric current. The user places their fingers on top of the stack so that their fingers are

perpendicular to the individual piezoelectric plates and the plates bend in response to

applied electric current to create different sensations at the finger tips. Researchers
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saw promising preliminary results in creating “virtual Braille” with the STRESS

device, a 1-dimensional version of Braille, Lévesque et al. (2005). Researchers then

went on to explore more complicated game based use-cases with the technology, Wang

et al. (2006), detailed in section 3.4.

Unfortunately, while technological improvements continue to advance the defacto

tactile communication method Braille, literacy is in decline. The National Federation

of the Blind (NFB) in a 2009 report stated that the Braille literacy rate has dwindled

to less than 10% of individuals who are blind in the United States, Jernigan Institute

(2009). The NFB report states that Braille education is critical to literacy and em-

ployment among individuals who are blind, and while screen-readers have facilitated

computer access their existence likely inhibits Braille adaption. The NFB is calling

for Braille adoption to be elevated in priority for those who teach individuals who are

blind.

One of the issues with Braille though is that non-digital text must be transcribed

before becoming accessible, and in response several technologies emerged to read writ-

ten characters beginning in the 1960s. The Optohapt for example used photosensitive

sensors to detect characters on paper (on a retrofitted typewriter). The characters

were passed through the sensor at a rate of 70 characters per minute creating elec-

trical signals that were sent to vibrating actuators located at 9 spatially dispered

bodily sites, Geldard (1966). During the same period, a competing device proposed

by Linvill and Bliss called the Optacon (OPtical-to-TActile CONversion), was devel-

oped. The device consisted of a capture module (a wand-like device) fitted with an

8x12 array of photosensitive cells can be placed on a page to be read with a user’s

dominant hand. The user then places a finger from their other hand on the actua-
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Figure 2.6: (a) Original image representation of letter F (b) Letter converted into

electrical activations (c) activations converted into solenoid positions to stimulate the

skin.

tor. The actuator is an array of 24x6 pins that the finger rests on that move up and

down in response to signals from the capture module, Bliss et al. (1970). The authors

claimed that a reading rate of 50 wpm could be achived with 160 hours of training.

The researchers behind the TVSS also explored different ways to display letters

using the device instead of visual information, comparing static haptic patterns and

dynamic ones for each letter. Letters were converted to tactile stimuli (illustrated in

fig. 2.6a, 2.6b, 2.6c). They found that a sliding window approach was most success-

ful for accurate letter discimination among participants in a user study, achieving an

accuracy of 51% correct letter discrimination, Loomis (1974). This conclusion (that

spatiotemporal patterns are more discriminable than static ones) has been supported

by later work by the developers of the VEST, Novich (2015) and LRHI, Fakhri et al.

(2019). The sliding window approach only exposed a user to a portion of the letter

at any one moment, but the whole letter would be presented over a duration of 1

second, illustrated in fig. 2.7, imposing a maximum reading rate of 60 characters per

minute (60cpm).
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Figure 2.7: Sliding window presentation of the letter F. A user would be exposed to

the sliding window stimuli over about 1 second.

The TVSS implementation of a character reader seemed like overkill (400 actua-

tors), and with a limit of 60cpm it did not show much promise as a media reading

device. More recently lower resolution displays have been explored for communi-

cating written characters. Researchers developed a low resolution tactor array of 9

vibration actuators placed 3x3 on the back rest of a chair. Representations of letters

were “traced” over the tactors as if the letters were being dynamically “drawn” on

the user’s back. Patterns varried over space and time and participants were able to

achieve an accuracy of 87% for letter and number recognition, Yanagida et al. (2004).

This was vastly higher than the accuracies achieved with the TVSS (51%) with far

fewer actuators. This leads us to believe that for abstract information representation

a more “coded” scheme may be more useful than attempting to reproduce the char-

acteristics of the visual content faithfully. Although the hardware requirements are

vastly reduced and accuracies improved, the dynamic patterns may still be too slow

for use in real time, implying that a different coding scheme similar to Braille may

be more practically useful.

Braille-like devices are still superior it seems when it comes to reading and writing

using haptics and while Braille may be currently in decline, emerging technology in
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the space of refreshable Braille displays has appeared as recently as 2017 in the form

of non-mechanical, air actuated displays in contrast to piezoelectric designs. This

new technology uses fluids to make bubbles in the display as the dots, and it is being

integrated with a traditional touchscreen tablet. This technology appeared in 2017

in the form of the Blitab (a play on words combining “blind” and “tablet”) and is

purported to have 14 rows of 23 6-dot Braille cells, Metz (2017). This 2-dimensional

display paves the way for richer human-computer-interaction and possibly a reemer-

gence of Braille literacy.

2.8 Visual Content Readers

Apart from language systems, there has been growing interest in the development

of haptic devices for understanding traditionally visual information such as images,

graphs, and maps. Students with visual impairments are often at a disadvantage in

academic settings because the content is in an inaccessible format. Even when text

is transcribed or conveyed via a media reading device, images continue to present

a challenge to students and teachers. An intuitive method for representing two-

dimensional information using haptics are “raised paper diagrams”. These diagrams

are often made from “swell paper”, which expands in an oven-like device where it

has been printed on creating a tactile surface, Miller et al. (2011). An example of

such a diagram is illustrated in fig. 2.8a and 2.8b. A similar method for creating 2D

tactile visualizations that allows an end-user to reconfigure a diagram is in the form

of moldable wax-based rods called “Wikki Stix”, shown in fig. 2.9. Users can scan

them with their fingers to feel the features of the visualization. While useful, Wikki

Stix and raised paper diagrams still requires a translation from an original image for

instructional purposes. It is also often difficult to incorporate sufficient information
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(a) (b)

Figure 2.8: (a) Raised paper diagram of a man’s head on white paper (b) The same

diagram viewed close and at an angle. Note that several different heights and thick-

nesses are possible on such diagrams.

density due to the physical limitations of the media. Descriptions are often added by

a teacher or caption to aid in comprehension of the visualizations, but a more elegant

solution has been developed in the form of the Talking Tactile Tablet (T3). The

T3 consists of a tactile diagram that can be felt overlaying a touch sensitive screen.

When a user presses the tactile map they are presented with auxiliary audible in-

formation to complement the tactile map, Landau and Wells (2003). An even more

fleshed out version uses a smartphone and 3D printed overlays to perform a similarly

multimodal experience to the T3, is called TacTILE. Authors of the TacTILE devel-

oped a complete toolchain for the rapid development of such devices, He et al. (2017).

More elaborate attempts to make visual information accessible began appearing

in the late 1990s. Japanese researchers Ikei et al. attempted to convey an image’s

textures via haptics by constructing a 5x10 pin finger display driven by piezoelectric

actuators (similar to refreshable Braille displays). The pins though were not static

like their Braille counterparts, but vibrated at 250Hz at varying amplitudes to mimic

tactile textures. Researchers converted close-up images of textured surfaces such as
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Figure 2.9: Wikki Stix used for conveying visual-spatial information via haptics. They

are flexible and waxy, making them easily configurable and stationary on surfaces.

a bamboo woven basket, thatch basket, painted wall, and a rug to haptic textures

by converting the images to pin intensities on their finger display. A user study re-

vealed that using their technique sighted users were able to correctly identify the

image belonging to the texture being displayed on the finger pad more than 90% of

the time, Ikei et al. (1997). The high recognition accuracies and straight-forward

method for converting images to tactile representations was promising, as generaliz-

ing to other domains would be relatively simple, although no study was performed

with individuals who are blind and thus had no visual reference for the textures they

were experiencing. Ikei’s method worked for any arbitrary texture but had no sense

of “space” that is required to accurately convey most visualizations.

Researchers Wall and Brewster sought to solve this problem in 2006 when they de-

veloped a graphical diagram reading system by integrating the VTPlayer mouse with

a digital drawing tablet and used the stylus to interact with the graph. The VTPlayer

mouse is a computer mouse that is augmented with two 4x4-pin Braille cells. The

user would point on the tablet with the stylus and receive textured information of

what they were pointing at with the VTPlayer on their non-dominant hand. Com-

plementary audio feedback would also be available if the user pressed the buttons on
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the VTPlayer, Wall and Brewster (2006a). Earlier, in 2005, Wall and Brewster per-

formed a psychophysical study comparing the TVPlayer mouse, the WingMan Force

Feedback mouse, and classic raised paper for use in image understanding. They used

a simple line gradient discrimination task: a line was displayed and participants were

asked to disciminate the gradient of the line using the three devices. While the force

feedback mouse outperformed the VTPlayer, the raised paper was superior. Interest-

ingly, the authors surmised that this is likely due to the combination of proprioceptive

and tactile cues that neither the VTPlayer or WingMan mouse provide at the same

time, Wall and Brewster (2006b), which likely led them to develop the 2006 graph

reading system using a stylus as well as the tactile feedback from the VTPlayer mouse.

2.9 Future Trends for Sensory Substitution

Some standout implementations of Haptic Sensory Substitution are Bach-y-Rita’s

TVSS, the BrainPort, and the Eagleman and Novich’s VEST, showing the true raw

representational power of the modality, but they also reveal some limitations. For

the TVSS, long training hours, a chair-based design with many actuators, and lack of

fine details hinder its use in real-world applications. While the BrainPort tackles the

portability and details issues somewhat, it still suffers from the practical concerns of

requiring the display to be placed on a user’s tongue. For auditory substitution, the

VEST is impressive in its ability to convey speech, but other more subtle aspects of

hearing are still missing, such as localization via stereo hearing. Further strides in the

realm of Haptic Sensory Substitution are more likely to arise with clever integrations

with emerging signal processing tools and clever delivery techniques.
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Figure 2.10: (a) Original image of an office (b) depth image from model trained on

the MegaDepth depth dataset, Li and Snavely (2018).

In the realm of vision-to-haptic SS, strides in Computer Vision show promise

for enabling more effective Sensory Substitution. For example, object detection has

made great strides, as well as depth estimation from monocular images. Having access

to both depth and object identities from monocular images could drastically improve

ETAs by allowing ones that rely on depth information to use only a camera instead of

lasers, sonar, infrared, or stereo cameras. Fig. 2.10b illustrates the impressive perfor-

mance of emerging depth estimation models (MegaDepth). The methods underlying

the image understanding applications from section 2.8 utilizing neural networks also

show great promise in augmenting haptic SSD technology. Combining these powerful

models with a proprioceptive and tactile interace would likely lead to a more effective

and meaningful image understanding tool that can be used both in the physical world

but even more so in virtual environments.
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Chapter 3

RELATED WORKS

Sensory Substitution devices for interactive applications are designed to function

in environments that respond or change with respect to the user’s behavior. For

example, playing a video game is interactive while reading a textbook is not. Thus

SSDs for interactive applications must contend with the demands of interactive en-

vironments, that is latency sensitivity, sensory overload, and diverse and dynamic

situations. This section will explore SSDs designed for interactive applications of

mobility and travel, interactive instructional systems, social interactions, and virtual

interactive environments.

3.1 Instructional Systems

Instructional SSDs are those that are intended to be used for learning; more specif-

ically they are intended to be used for learning in dynamic environments that react to

user input, in contrast to media reading SSDs that are intended to be used to convey

information about static sources such as books and illustrations.

3.1.1 Mobility Learning

Sighted people can look up images of a location and quickly acquaint themselves

with the flow of the environment. Unfortunately, those for who images are inacces-

sible do not have such a luxury and can not benefit from the vast amounts of visual

data that is available online. Furthermore, familiarity with an environment is often
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Figure 3.1: Sensable Inc’s PHANToM Desktop, a force feedback device for haptic

applications

more important for people with visual impairments than sighted individuals. To ad-

dress this issue, virtual environments that model locations that are of interest and

allow people with visual impairments to interact with those environments may benefit

people with visual impairments by allowing them to familiarize themselves with the

novel location before visiting in person. These systems are refered to as “Mobility

Training” systems.

On such system developed at the University of Colorado at Colorado Springs is

called MoVE: Mobiltiy Training in Haptic Virtual Environment Semwal (2001). Its

purpose is to enable people who are blind to explore a model of new environments

haptically. The system is iterative, a user explores the virtual model, then explores

the physical location and repeats this process to fine-tune their understanding of the

space, intuitively learning the relationship between the rendered world and the real

world. MoVE uses SensAble Inc’s PHANToM force feedback device, allowing users to
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interact with the virtual environment by poking around with the PHANToM (shown

in fig. 3.1), receiving force feedback when they contact objects. In a preliminary

study, researchers found that user who are blind were quickly able to discriminate

simple virtual objects such as spheres versus planes. While this approach is promis-

ing, the iterative nature has yet to be tested for individuals with visual impairments.

Sharkey et al. devised a more comprehensive approach using a force feedback

joystick, audio feedback, and a “guiding computer agent” to create and explore vir-

tual environments before exploring their real counterparts they were modelled after.

The force feedback encoded information about texture, objects via force-fields, and

structural boundaries while the audio component added descriptions of the scene as

well as of the user’s orientation in space to aid in navigation. They found that users

were able to accurately and quickly learn to navigate in the virtual environment and

when presented with the physical version quickly generalized what they had learned

to the real environment Sharkey et al. (2002). Later came Omero, combining hap-

tic and acoustic feedback with user preferences to learn the layout of new locations

similar to the Skarkey system. Researchers tested the system with people with visual

impairments and received positive subjective feedback; those with really low vision

were not as successful as the system made extended use of visualizations on a monitor

De Felice et al. (2007).

Lahav et al. developed a similar system for cognitive mapping via a multimodal

approach and compared the performance of users who are blind in real-world navi-

gation tasks versus other users who did not have access to the technology, expressing

that users who had access to the technology developed more complete and accurate

cognitive maps of the environment Lahav and Mioduser (2008). Researchers used
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a multisensory virtual environment (MVE) that individuals who are blind could ex-

plore before exploring a physical environment (laid out in the same way). The MVE

provided haptic force feedback and audio feedback of obstacles in the environment.

Researchers found that individuals who are blind and were allowed to use the MVE

developed more complete and accurate cognitive maps of the environment than those

who were not given access to the MVE.

A more realistic approach was designed by Tzovaras et al. in 2009: a mixed real-

ity system for training/educating people who are blind using a virtual white cane via

the CyberGrasp device. Using a virtual white cane, trainees were able to traverse a

life-sized virtual replica of an environment. Researchers enhanced the experience by

providing realistic haptic feedback of cane collisions with virtual objects and realistic

audio feedback Tzovaras et al. (2009). This method provided the most realistic ap-

proach as users employed skills to navigate the real environment almost identically to

the virtual one but may not have been the most effective for generating complete cog-

nitive maps of the environment. A direct comparison of this mixed reality real-scale

method and the non-virtual reality methods above would be a welcome addition to

the literature to unveil specific advantages and disadvantages of the two approaches.

Furthermore, all of these Mobility Training systems require designers to model the

environments beforehand, effectively reducing the pool of available environments to

a small batch. This could possibly be rectified with crowdsourcing and integration

with 2D to 3D modelling techniques.
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3.1.2 Motor Learning

Motor learning is the development of motor skills, and motor learning tools are

tools that aid in the development of such skills. In many motor learning settings

demonstrations make up the majority of the instruction. Visual impairments can

hinder this kind of instruction and haptic SSDs provide a valuable avenue to replace

visual instruction. Motor learning systems may also provide feedback with respect

to a user’s movement in real-time, something that an instructor may not be able to

give. Furthermore, some users may not be receptive to touch-based feedback from an

instructor and may feel more comfortable with a device’s feedback to correct motor

movements. In the absence of an in-person instructor, or when an instructor does not

have time to devote to a single student, an SSD that conveys motor skill information

would be also be useful to most users.

In 2002, Yang et al. designed a suit for VR-based motor learning covering the

torso with a vibrotactile display called POS.T. Wear. Employing a technique called

“Just Follow Me” (JFM), the researchers used the POS.T. Wear to convey move-

ment information of nearby objects to the wearer. The JFM metaphor consists of

a “ghostly master” (illustrated in fig. 3.2) that is overlayed onto the trainee’s body

in the virtual environment. The master will then guide the trainee by performing

the correct movements to be learned by the trainee. Yang et al. used JFM and the

POS.T. Wear to study a user’s obstacle awareness in virtual worlds and later as a

motor learning tool Yang et al. (2002).

A more intuitive haptic motor learning approach called Mapping of Vibrations to

Movement (MOVeMENT) was developed by McDaniel et al. Instead of the ghostly
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master avatar approach in JFM, MOVeMENT seeks to map haptic stimulation to

basic movements of the human body in an intuitive fashion. MOVeMENT is novel

in that it is not application specific and can generalize to almost any motor learning

activity. By targeting basic movements, MOVeMENT is capable of generalizing to

almost any complex movement. Basic movements were developed by dividing the

body via three planes that span three-dimensional space (sagittal, frontal, and hori-

zontal planes). The planes ground the fundamental movements: extension or flexion

is movement that increases or decreases respectively a joint angle in the sagittal plane,

abduction or adduction refers to movement occuring in the frontal plane towards or

away from the sagittal plane (respectively), and pronation or supination is rotation

of a joint angle towards or away from the body from within the horizontal plane. Mc-

Daniel et al. designed haptic patterns to code for these five fundamental movements

and used them as building blocks to describe more complex movements to a user

using a push-pull metaphor to illicit movement in a certain plane. Participants in a

preliminary study found the patterns intuitive and were able to discriminate them

with high accuracy McDaniel et al. (2010).

3.2 Social Interaction

Social interaction is crucial to the well-being of individuals and this of course ap-

plies to people with disabilities. Unfortunately, many disabilities preclude individuals

from equitable inclusion in all aspects of social activity. This can be due to practical

issues or even socially constructed expectations of social interaction. Towards enrich-

ing the lives of people with disabilities by enabling a more equitable social experience,

many researchers have sought to develop systems to rectify some of these inadequacies.
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Figure 3.2: A visualization of the ghostly master metaphor. A trainee (solid) feels

the ghost (transparent) as it moves through the trainee’s body while performing an

instructional movement. Original image from WikiHow (2019).

Researchers at Arizona State University for example have developed several SSD

technologies for use in social situations. The “Haptic Belt” (shown in fig. 3.3) paired

with a face detection system conveys the direction and distance of other people during

a social interaction McDaniel et al. (2008). Tactile Rhythm was also explored in order

to convey interpersonal distances to individuals who are blind McDaniel et al. (2009).

These are coarse details of social interactions that are less accessible to people who

are blind, but there are also very important fine details of social interaction that peo-

ple who are blind miss out on too. An example of this would be facial expressions.

At the same lab, researchers developed the “VibroGlove” a glove to convey facial

expressions to people who are blind Krishna et al. (2010). A chair-based approach

was also explored, showing promise of conveying facial expression information via

“Facial Action Units”, a system for describing facial expressions by their structural

parts Bala et al. (2014). This culminated in a project called the Social Interaction

37



Figure 3.3: Haptic Belt developed at the CUbiC Lab at Arizona State University

Rosenthal et al. (2011). The belt was designed to be modular and can be extended

to fit more or fewer tactors connected in series. The location of the tactors can also

be modified by simply sliding them along the belt.

Assistant (SIA), a person-centered SS system that combines active learning computer

vision system with haptic tactors that convey information to users they might oth-

erwise miss Panchanathan et al. (2016). A user would wear a camera similar to the

shown in fig. 3.4a and receive haptic feedback from the camera using devices such as

the VibroGlove and Haptic Belt (fig. 3.3).

3.3 Electronic Travel Aids (ETAs)

Mobility is a crucial component of independence, agency, and wellness. Vision

disabilities account for a large portion of these mobility issues, and it is of no surprise

because navigation itself is a complicated processes requiring visual integration over

time and space and a strong dependence on memory. Researchers have determined

that efficiently storing and recalling the relationship of landmarks in space is essential

to spacial cognition, and thus navigation Monacelli et al. (2003), and because vision

provides a method for establishing landmarks in 3D space it can be inferred that it
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Figure 3.4: (a) Mannequin wearing sunglasses mounted with a pinhole digital camera

(b) close-up of pinhole camera

is heavily reliant on for navigation Ekstrom1 (2015). For this reason, a large number

of SSDs have been developed to aid those with issues navigating. The most popu-

lar Sensory Substitution device for mobility is the “white cane”, shown in fig. 3.5a

and 3.5b. This device is used to transform information that would traditionally be

acquired via vision to the haptic, priopreceptive, and auditory modalities. With the

white cane, users scan the ground in front of them with the cane in sweeping motions

in order to detect obstacles in their path by colliding with them. Users can often

infer not just the existence of an obstacle but also some of the obstacle’s properties

via the tactile effects felt on contact as well as the sound emenating from the collision.

There are though drawbacks to the traditional “white cane” such as the limited

range at which users can detect obstacles. White canes typically have a range of 1.5
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(a) (b)

Figure 3.5: (a) PhD student Bryan Duarte navigating with white cane (b) close-up

of white cane

meters in front of the user. A user must also collide with an object in order to de-

tect it, which can be troublesome if the object is a person, dog, or something fragile.

Users can also miss obstacles with the cane due to gaps in their sweeping pattern.

White canes also can only detect obstacles at or below waist level, leaving the user

vulnerable to obstacles like overhanging tree branches. Researchers have instinctually

sought to improve upon the white cane to remedy some of these issues.

One of the first attempts to augment the white cane was in 1945 with the “Laser

Cane”. This device augmented a traditional cane with three gallium arsenide infrared

laser rangefinders to detect obstacles and dropoffs at different distances. It was ca-

pable of detecting obstacles at several different angles, including an angle pointing

upwards from the handle of the cane, so that users could detect obstacles above their
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waist and avoid tree branches. Haptic and (optionally) audio feedback was delivered

to the user based on the level and distance of a detected obstacle. The device was

developed with continuous feedback from travelers who are blind and was finished in

1974 Benjamin (1974). While such a cane was novel, both laser and battery tech-

nology of the period restricted usage to a mere three hours per charge. The “Laser

Cane” was one of the first attempts to give users information about obstacles before

a collision, but it did so in a very coarse way, giving little information in the way of

bearing (angle with respect to travel).

A method for detecting the bearing of objects was developed in 2002 by Dr. Ro-

man Kuc. The device used two sonar range finders that together are used to infer the

bearing of detected obstacles. Wrist-worn vibration motors vibrate with respect to

the bearing of the obstacle, giving the user distance and direction information Kuc

(2002). Several other “smart” canes were developed. Researchers at the Indian Insti-

tute of Technology performed a study, and found that their ultrasonic “Smart Cane”

increased obstacle awareness, decreased collision prevelance, and increased mean de-

tection distance as compared to traditional white canes in a navigation task Fallis

(2010). Similar attempts at building smart canes are prevalent Menikdiwela et al.

(2013) Ando et al. (2015) and are commonly variants of each other but GHARIEB

and NAGIB (2015) takes the most elaborate approach whereby the cane is equipped

with wheels and “drives” a user around. The device introduces modes such as “goal

finding”, where the device navigates for the user, providing turn by turn directions.

This device though has not been verified by a study.

A more nuanced approach is the caneless ETA, removing altogether the need for

a white cane. One such configuration is called the “Haptic Radar”, a self-contained
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headworn headband augmented with sensors that detects obstacles and intuitively

conveys them to the wearer via haptics. The array of sensors each convey obstacle

distance information for a path emanating from the sensor (there are several circling

the head) Riener and Hartl (1974). Researchers found that participants tasked with

a navigation task navigated more confidently with a Haptic Radar than without

Cassinelli et al. (2014). Caneless systems may be advantages as they may reduce

stigma induced by the iconic white cane. With GPS becoming ubiquitous, turn-by-

turn directions have become life-changing for those needing directional and situational

assistance. Most turn-by-turn directions are conveyed using the device’s screen and

are often accompanied by audio, but haptic solutions may offer a better alternative

to convey this information.

3.4 Virtual

Virtual worlds are a rich part of the modern experience. Whether it be games,

simulations, or educational environments, virtual worlds are becoming commonplace

with the advent of consumer VR and widespread gaming hardware. One of the is-

sues is that most virtual environments are developed with vision being the primary

interaction modality, effectively excluding many individuals from participation. Ac-

cessiblity in games is becoming more and more popular. It is no longer uncommon to

find color-blind friendly settings in games as well as subtitles and other accessibility

features. An example of this in the context of virtual reality is SeeingVR, a suite of

VR tools for making VR environments more accessible to people with low vision Zhao

et al. (2019). Truly non-visual video games though have yet to become mainstream.

While some non-visual video games exist, they are few and far between and almost

always rely solely on audio feedback. Some of the first non-visual video games were

developed for academic purposes such as the Audio-based Environment Simulator
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(AbES) games. AbES is a software suite designed to improve real world navigation

skills for people with blindness Connors et al. (2013). AudioDOOM and AudioZelda

SÁNCHEZ and LUMBRERAS (2009) Mirsky (2009) were developed using AbES.

AudioDOOM is one such AbES game that discritized a 3D environment into voxels

that a user’s avatar (and other entities) can move through via adjacent voxels. Users

could interact with entities such as monsters by fighting them when in the same voxel,

although no aiming mechanics were involved. After playing the game, children were

asked to recreate the virtual environment using legos rendering promising results for

the development of spatial awareness in the virtual world. In AudioZelda, users navi-

gate a college campus collecting items to develop familiarity with the campus’ layout.

A more recent serious game for developing spatial skills is called Hungry Cat Chai

et al. (2019). Researchers designed audio cues users could use for interacting with

3-dimensional maps. The learned layouts were confirmed using physical representa-

tions similar to the validation of learned maps in AudioDOOM. A few examples of

modern video games accessible without vision are FEER, an “Endless Runner” game

Régo (2018) Meyer and Mikesch (2018), Timecrest: The Door, a story-based game

with multiple endings and dynamic storylines DMNagel (2017a) Apple (2015) and A

Blind Legend, a first person fighting game for both PC and Android Dowino (2019).

Timecrest: The Door, is a story game where one’s character has the power to control

time and their decisions alter the course of the story DMNagel (2017b) Inc (2015). A

Blind Legend is an action-adventure game where you fight with a sword and, similar

to Papa Sangre, uses a 3-dimensional sound engine to create realistic and immersive

soundscapesDowino (2019). One of the most popular audio-only video games was

called Papa Sangre and its successor Papa Sangre 2 Barry (2011). While a handful

of games can be played with audio only, the majority of video games and virtual

environments remain inaccessible to individuals who are blind. All of these environ-
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ments were designed to be used without a visual representations from the ground

up. Inversely, there have been a few efforts to make visual environments accessible

via assistive technology. Rich haptic feedback devices may provide solutions to this

problem.

Developers in the Haptics Laboratory of McGill University in 2006 developed a

game of “Memory” using the STRESS2 tactile display Wang et al. (2006), a more

ergonomic version of the original STRESS 1D haptic display Lévesque et al. (2005).

Instead of images or text to memorize, the “cards” consisted of unique haptic patterns,

making for an interesting spin on the classic game of Memory. Likewise, researchers

at Arizona State University designed a 2D spatial game based around the Low Reso-

lution Haptic Display (LRHD), a chair affixed with a 4x4 array of vibrotactile motors.

The point of the game was to find the goal 2D top-down environment. The user’s

position was displayed on the haptic chair as well as the goal using unique vibration

patterns and the user could move in the environment using a computer mouse periph-

eral to find the goal. A study using the game found that users were able to learn how

to play the game quickly and their performance increased markedly as they played

Fakhri et al. (2019). An image of the Low Resolution Haptic Display is shown in fig.

3.6. These games are in contrast to audio-only games as they are haptic-only games.

Several devices and systems have been developed as SSDs for virtual environments.

Some of these SSDs substitute vision for touch, while others substitute virtual touch

for physical touch. For example, in 1998 researchers employed a force feedback joy-

stick called the Impulse Engine 3000 as an interface to virtual textures and objects.

Researchers demonstrated a statistically significant relationship between the virtual

texture’s perceived roughness with the physical analogue and found that participants
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Figure 3.6: The Low Resolution Haptic Display, a 4x4 array of vibration motors

mounted vertically on acoustic foam for compliance and damping Fakhri et al. (2019)

who were blind were more discriminating than sighted ones using their system Colwell

et al. (1998). More complex interaction such as discriminating the angle and identity

of objects proved more difficult to discern with the system. Researchers found simi-

lar results in 1999 using the PHANToM force feedback device (pictured in fig. 3.1)

Jansson et al. (1999). Again, simple textures were rendered convincingly but the tech-

nology was not convincing for object recognition. The primary limitation with these

implementations is that only a single point of contact with the “virtual world” is pos-

sible, making the interactions akin to poking around with your finger in virtual space.

In response to these problems, researchers proposed non-realistic haptic rendering

(NRHR). They argued realistic rendering can be too complicated to parse haptically

and non-realistic haptic rendering can make things simpler, giving researchers the

chance to eliminate distracting details while emphasizing the important information

König et al. (2000). To do this, they mapped 3D models onto 2D planes which they

argued were easier to navigate. The researchers also propose a different method for

guided navigation in virtual environments: a haptic guide. Guiding forces are given

to the user as force vectors placed on the PHANToM’s stylus König et al. (2001).
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Similarly, in 2012 researchers using the VTPlayer Mouse developed and tested direc-

tional cues via the Braille-like cells . Participants found the cues intuitive and easy

to learn Pietrzak et al. (2006). This body of research implies that directional guides

are useful in navigating virtual environments haptically.

Towards navigating virtual environments “naturally”, in 2013 researchers devel-

oped the Virtual EyeCane. The virtual cane gives users an auditory signal with

respect to the closest object the cane is pointed at in the virtual world Maidenbaum

et al. (2013), making this system a Virtual Electronic Travel Aid (VETA), similar to

the first Laser Cane but unhindered by the limitations of rangefinding in the physical

world. A more comprehensive approach was taken by Zhao et al. in 2018 in devel-

opment of the “Canetroller”, which is a virtual cane that gives realistic auditory and

haptic feedback in the virtual world so that people who are blind can translate their

cane skills to VR. The Canetroller realistically simulates cane forces, impact vibra-

tions, and impact sounds Zhao et al. (2018). Besides the EyeCane and Canetroller,

there have not been any significant attempts to make accessible to people with vi-

sual impairments virtual worlds on equal footing, in essence to take a visual world

and present it using an SSD such that they can interact in much the same way as

their sighted counterparts. Virtual worlds by their very nature provide mechanisms

for making them accessible as object detection and semantic segmentation are less

complicated in those environments.

3.5 General Tools for Interacting with Visual Environments

Examples of more modern SSDs include the Social Interaction Assistant, Pan-

chanathan et al. (2016), and the VibroGlove, Krishna et al. (2010), where facial

expressions are identified by the system and relayed to the user via haptics. SSDs
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that make use of the auditory modality have also been developed such as KASPA

(Kay’s Advanced Spatial Perception Aid) Kay (1974), the Sonic Pathfinder, Heyes

(1983), and the EyeCane for virtual environments, Maidenbaum et al. (2014), and

real environments, Chebat et al. (2015). More generally, SSDs towards general vision

substitution such as the “vOICE”, Meijer (1992) and Ward and Meijer (2010), and

EyeMusic, Abboud et al. (2014), abstract images into tones or musical notes and

instruments to convey visual information. Unfortunately, the usability of auditory

SSDs for vision substitution is limited as they obstruct a valuable sensory modality

(hearing) which is often counterproductive to SS, Krishna et al. (2010). Alternatively,

haptic SSDs allow the interface to work without obstructing modalities that are often

also in use while taking part in typical daily tasks.

One of the most exciting developments in this field is the emergence of Computer

Vision methods that are useful for interacting with visual environments. The social

media giant Facebook already performs automatic image captioning on uploaded im-

ages, updating their alt-text dynamically Metz (2016). The explicitly “assistive” apps

Google Lookout and Microsoft Seeing AI give users audio descriptions of scenes cap-

tured on a user’s phone that are intended to aid in understanding their surroundings,

Clary (2018) and Microsoft (2018). Google Lookout describes objects in the scene by

giving audio descriptions such as “Trash can, 12-o’clock”, but allows the user very

little freedom to explore a visual scene in an interactive way. Microsoft’s Seeing AI

is slightly more sophisticated, augmented with the ability to read text, documents,

people, scenes, money, and give illumincation descriptions (color, brightness), Mi-

crosoft (2018). While these methods are incredibly encouraging due to the richness of

information they provide, their not yet real-time interfaces do not promote intuitive

interaction with the visual world. They provide descriptions and summarizations of
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visual content, which while impressive and useful in some contexts, hinder a user’s

agency to explore the visual world deliberately.

One such device that encourages active exploration is the Auditory Night Sight,

Twardon et al. (2013). Researchers developed a system whereby eye-tracking tech-

nology was employed to control what portion of a depth map was relayed via audio to

a user’s ears (tone depicted depth values). The concept of directing attention via the

eyes is compelling: sighted individuals do this intuitively with gaze. But solely pro-

viding point-depth cues does little for scene understanding and peripheral awareness.

To be truly useful for interacting with rich visual environments, a device must provide

real-time feedback, be intuitive and exploratory in nature, and grant the user agency

and focus without sacrificing the expansive situational awareness made possible by

natural peripheral vision. Combining these very powerful image understanding tech-

niques with a proprioceptive and tactile interace would likely lead to a more effective

and meaningful visual environment exploration tool.
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Chapter 4

DEEP REINFORCEMENT LEARNING FOR 3D NAVIGATION

The tradeoff between solving the problem for a user and providing them with

tools to solve such a problem is one of the first design decisions when developing

any assistive technology. For example, a GPS system provides a user a map with a

real-time location, while turn-by-turn navigation systems provide a much richer form

of assistance. This richer form of assistance often increases the size of the population

capable of using a technology, as more of the cognitive load is transfered to the

device. However, the same increase in assistance often necessitates an increase in

system complexity as well as a decrease in agency for the user. To investigate this

tradeoff and the potential of AI-enabled assistive technology to aid in the daily tasks

of people with vision impairments, a method for navigational assistance was explored

in this chapter.

From navigating the rooms and hallways of one’s own residence to navigating a

large city, the cognitive functions involved in negotiating an environment to arrive at

a predetermined destination are delicate, complex, and in many ways innate. Special-

ized components of the brain (head direction cells, place cells, grid cells, and border

cells) have been shown to be integral to navigation, Moser et al. (2015). Although the

ability to navigate endows people with independence and self determination, many

circumstances can lead to complications in navigation, and a surprising number of

people experience such complications. Visual impairments and Alzheimer’s Disease

are just some examples of common conditions known to cause navigation issues,

Duthey (2013) and Monacelli et al. (2003).
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This is of no surprise, as navigation is a complicated processes requiring multisen-

sory integration over time and space and a strong dependence on memory. Efficiently

storing and recalling landmarks and their relationships in space is essential to spacial

cognition, and thus navigation, Monacelli et al. (2003), leading to large disparities in

navigational aptitude, Wolbers and Hegarty (2010). With so many factors affecting

navigational ability, there exists real demand for assistive technology in the space of

navigational aids. While the advent of ubiquitous GPS has already benefited many

with navigational impairments, small scale and indoor navigation remains a challenge.

There does though exist promise in the application of emerging computer vision based

technologies for navigational aids.

Deep Learning (DL) and Convolutional Neural Networks (CNNs) have recently

emerged to solve complex vision-based tasks, Krizhevsky et al. (2012); Karpathy and

Li (2015). In a reinforcement learning setting, these methods have been shown to

learn increasingly complex behavior solely from images, Mnih et al. (2013); Bengio

(2009); Schulman et al. (2015); Mnih et al. (2016), from playing Atari games to con-

tinuous control. This begs the question: can deep reinforcement learning techniques

be employed in assistive technology to aid in navigation? Section 4.1 of this disser-

tation surveys Deep Reinforcement Learning methods suited for the high complexity

of visual navigation, and here a new technique designed for such tasks, GraphMem,

is presented. GraphMem’s performance is compared so some of these methods in a

first-person, vision based navigation task built on the ViZDoom 3D research plat-

form, Kempka et al. (2017), shown in Figure 4.1. The findings provide insight into
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Figure 4.1: Agent’s Point of View in ViZDoom.

the difficulties associated with integrating emerging Artificial Intelligence methods

with assistive technology.

4.1 Related Work

While Deep Q-Networks, Policy Gradients, and other deep reinforcement learning

(DRL) methods, Mnih et al. (2015); Bengio (2009), have achieved super-human per-

formance in many domains, some tasks have remained difficult to solve. Especifically

difficult are problems with long-term temporal dependencies, Santoro et al. (2016),

such as navigation. Efficiently solving a first-person maze, for example, requires the

ability to memorize where one has been before in order to effectively trim the search

space. Failure to do so can result in unnecessary repetition in solving the maze.

Several recent papers have validated the ability of deep networks to make sense

of 3D environments using visual information, specifically with a focus on navigation

tasks. Supervised methods have been developed such as, Gupta et al. (2017), where

authors trained a network to infer space through which a robot may travel unob-

structed, in order to generate a trajectory for navigating the environment. While

there has been success with supervized methods, reinforcement learning paradigms

are of predominant interest to our goal, because agent-environtment interaction is

integral to navigation. Such approaches can be found in the work of Xie et al. (2017),
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where the authors used a double-Q network (D3QN) to achieve obstacle avoidance

and path planning in a reinforcement learning setting. DeepMind also showed in

”Learning to Navigate in Cities Without a Map”, Mirowski et al. (2018), how natural

images can be tamed with CNNs paired with LSTMs in vision-based navigation prob-

lems. Researchers in Zhang et al. (2017) also explored transfer between navigation

tasks, training the model to navigate one environment and subsequently transfering

its learning to a new environment in which the walls and objective have been modified.

This work is similar to RL2, Duan et al. (2016), a model which achieves a sizable

performance increase of 25.5% between the first and second attempts at the same

maze. Our task is similar, but with the added complexity of random start positions

between the first and second attempt at a maze. While RL2 was able to store infor-

mation in its hidden state, it did not make use of addressable external memory. Due

to the complexity of spacial navigation tasks in terms of relational connectivity, we

chose to explore methods with the capacity for more complex computation: Memory

Augmented Neural Networks (MANNs). DeepMind’s work in ”Learning to Navigate

in Complex Environments”, Mirowski et al. (????), used a stacked LSTM model to

solve randomized mazes. While the authors do not employ MANNs in their tests,

they stress their applicability to problems of this complexity.

MANNs, sometimes termed ”Neural Computers”, are characterized by models

utilizing an external and addressable memory space, Graves et al. (2014, 2016). This

allows them to store and recall information relevant to solving problems that require

integrating and processing information over time and space more effectively than stan-

dard recurrent networks. For this reason MANNs trained in a Reinforcement Learning

setting will be the focus of this work. Specifically, we selected the Differential Neu-

ral Computer (DNC), Graves et al. (2016), and TARDIS, Gulcehre et al. (2017), as
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MANNs to compare to our model, GraphMem. As a baseline, we also compare to a

standard feed-forward multilayered perceptron (MLP) and an LSTM Hochreiter and

Urgen Schmidhuber (1997) based model. There has been work on MANNs used in

navigation problems: in Oh et al. (2016), authors used a MANN, similar to a Neural

Turing Machine, Graves et al. (2014). The model was tested in a Minecraft-style

maze with discrete movement, Johnson et al. (2016). Authors also emphasized the

use of memory in reinforcement learning tasks in Heess et al. (2015), demonstrating

the ability of Neural Computers to learn memory-based control tasks. Of these, the

most pertinent to the task discussed in this paper is the ”water maze” task, in which

the agent must first find a hidden objective through random exploration and then

subsequently find it again, taking advantage of memories from the initial exploration.

Taking inspiration from graph-based representations, Sanchez-Gonzalez et al. (2018);

Allamanis et al. (2018), a MANN is proposed here with graph-like external memory,

with the intuition that the spacial connectedness of 3D environments lends itself to

a graph-like representation, hence GraphMem.

4.2 GraphMem

GraphMem is a Memory Augmented Neural Network with novel graph-like exter-

nal memory illustrated in Figure 4.2. The choice of a graph structure for the external

memory was inspired by the notion that the strong spacial connectivity of 3D envi-

ronments would be best represented in memory with strong connectivity. Like most

MANNs, GraphMem takes in an observation xt at time t from the environment and

outputs a distribution on actions at to take at time step t + 1. The magnitude of

the ith element at[i] corresponds to the model’s confidence in that action relative to

all other actions. Observations are transformed into action probabilities by feeding
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the observation into a CNN, producing state representation vector φt ← CNN(xt).

The representation is fed through the Memory Module generating a context vector

ct ← MM(φt). The context vector represents information read from the memory that

is relevant to the current observation. The context vector and state representation

are then both fed to the policy (a fully connect neural network), which outputs ac-

tion probabilities at ← π(ct, φt). When the state representation φt passes through

the Memory Module, the module reads from and writes to the memory, determining

what to store from φt and where to store it. Information can thus be stored to be

recalled when necessary. This process is outlined below.

Figure 4.2: GraphMem’s memory consists of nodes and edges. Information can both

be stored in nodes and edges, encouraging relational reasoning.

GraphMem extends the memory structure of the Neural Turing Machine and its

successors,Graves et al. (2014, 2016); Gulcehre et al. (2017), by modelling external

memory as a fully connected graph, illustrated in Figure 4.2, instead of a sequential

array. In practice, the memory graph consists of two arrays, one containing the node

data and the other containing the edge data. Figure 4.3 illustrates the substructures
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Figure 4.3: Memory architecture: node data array (left), edge data array(right).

of the memory graph. The node array Node ∈ RN×(A+W ) is of size N × (A + W )

where N is the number of nodes, A is the address field size, and W is the word size.

The edge array Edge ∈ RN2×W is of size N2 ×W , each edge connects a distinct pairs

of nodes. The node array’s address field is initialized with unique, sparse random

vectors. The content field is initialized with zeros, as well as the edge array. At each

time step, GraphMem writes to a single graph node and a single graph edge. The

node it writes to is based on a content addressing scheme based on content, while the

edge it writes to must be the edge connecting the node written to during the previous

time step and the node being written to at the current time step. For example, if

GraphMem writes to Node[i] at time t and Node[j] at time t+ 1, the edge it writes to

at time t+1 is Edge[i, j]. The discrete and graph-like addressing forces GraphMem to

discritize its observations and encourages the network to store information relating

observations made in close proximity in both time and space in the edges, an ability

indispensable to modeling 3D environments.
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Similar to TARDIS, Gulcehre et al. (2017), we use the Gumbel Softmax repa-

rameterization trick, Jang et al. (2017), for discrete memory addressing to retain the

ability to differentiate end-to-end. During memory reads and writes, the state rep-

resentation vector φt passes through the Memory Module read/write heads (LSTMs)

resulting in address logits vector wt ← RW(φt). This vector describes the categorical

probabilities of reading from or writing to a specific node. Equations 4.1 and 4.2 de-

scribe how the address logits vector wt is transformed into a one-hot vector mt ∈ RN

describing the memory address of the node to read or write from.

gt ← gumbel(wt) (4.1)

mt = (one hot(argmax(gt))− gt) + gt (4.2)

Equation 4.2 features an argmax and one hot operation, which are not differen-

tiable. To circumvent this, the gradient only flows through gt, the last term, bypassing

(one hot(argmax(gt)) − gt). This estimates the derivative while allowing backprop-

agation through a discrete addressing mechanism. Details of the Gumbel Softmax

function are described in Jang et al. (2017).

4.3 Maze Task

The ViZDoom maze task was designed to reveal how effectively an agent can re-

navigate to a location it has been to before, having started at a new location. Figure

4.4 shows a bird’s eye view of the map and screenshots of the agent’s point of view.

Notice, the maze is not ”simply connected” as it features detached walls that can fool

more simple maze solving algorithms. The goal of this task is to find the ”health pack”

hidden in the maze. Each episode consists of two phases. For each phase the agent

spawns in a random room and must search the maze for a ”health pack”. The agent
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is rewarded, on a per-episode basis, proportionally to the number of steps it takes to

reach the goal (”health pack”). The fewer total steps taken (phase1 + phase2), the

higher the agent’s reward. In both phases of an episode the agent is given the same

maze, so that the agent can make use of what was learned about the maze in Phase

1 when looking for the ”health pack” in Phase 2. It is important to note that the

agent is rewarded in proportion to the summation of steps taken in each phase. The

agent will thus learn to minimize the total number of steps and in no way is directed

to use its memory to optimize the second encounter. At the conclusion of an episode,

both the locations of the ”health pack” and furniture in the rooms is randomized, so

that the agent must learn a policy that memorizes the maze’s composition using its

external memory only. This is to prevent the agent from memorizing the maze using

the parameters of the model, which is slow and poorly replicates a real navigation

scenario.

Figure 4.4: Floorplan of the maze (left) Screenshots of the rooms (middle, right).

The maze environment consists of 9 rooms connected by hallways (shown in Figure

4.4). All of the walls are identical. The only unique features in the rooms are pieces

of ”furniture” placed in the rooms, one piece of furniture per room. The goal is also

placed in a random room at a random offset from the center of the room. This makes

seeing the goal from across the maze non-trivial. Because the hallways are narrower

than the rooms, furniture and the goal are not necessarily visible from another room.
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The agent may also get ”caught” on the walls of the room, so the agent must learn

efficient movement as well as an efficient exploration policy to maximize its reward.

The maze was designed to be non-simply connected, meaning agents that cannot

identify and address loop closures may loop indefinitely.

4.4 Training

We trained all of the models using the Asynchronous Advantage Actor-Critic

(A3C) algorithm, Mnih et al. (2016), which allows for training a model using many

distinct instances of the environment in parallel. Parameter updates from the dis-

tinct instances are applied asynchronously to a master copy of the policy, which is

periodically copied down to the worker copies of the policy that are interacting with

the environment. The gradient is describe in Equation 4.3, with policy π, return

Rt, value function V , and model parameters θ. The model entropy H(π(xt; θ
′)) is

also considered in the gradient to discourage premature convergence to suboptimal

policies (scaled by hyperparameter β = 10−4).

∇θ′ log π(at|xt; θ′)(Rt − V (xt; θv)) + β∇θ′H(π(xt; θ
′)) (4.3)

The models were trained on a 12-core Xeon machine with an Nvidia GTX 1080ti

using TensorFlow 1.3.0, Abadi et al. (2016). Each model was trained for 30 million

time steps (∼ 12 hours). Figure 4.5 shows the training graphs for all models. It is

interesting to note that all models show meager performance until 10-15M time steps

of training. For our tests, the DeepMind implementation of the Differential Neural

Computer was used Graves et al. (2016). The LSTM and MLP models used were

public A3C, Mnih et al. (2016) implementations proven to work on OpenAI Gym

benchmark suite environments, Brockman et al. (2016). A custom implementation of

TARDIS was used as a public version was not available at the time of writing.
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Figure 4.5: Training graphs for all models.

4.5 Results

After training, all models were subjected to 123456 episodes of testing. During

testing, the parameters of the network were frozen by disabling backpropagation and

the models were subjected to the maze environment for evaluation. Figure 4.6 illus-

trates the average number of steps taken by the models in solving the maze tasks

as well as the percentage improvement of steps between Phase 1 and Phase 2 of an

episode. TARDIS and DNC proved to be the fastest models, while GraphMem was

the slowest and the MLP and LSTM remain in middle of the pack. With regards to

leveraging memory, GraphMem saw the greatest percentage improvement (percent-

age difference in number of steps between Phase 1 and Phase 2) of all the models,

followed by LSTM. It is surprising to note that the two other MANNs were unable

to capitalize on having already seen the maze, both models performed about as well

as the memoryless MLP model.
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Figure 4.6: Average steps to goal (left) percent improvement from Phase 1 to Phase

2 (right) both with 95% confidence intervals.

Phase1 µ̄steps Phase2 µ̄steps Steps Sum Improvement

TARDIS 248.92± 2.82 245.67± 2.88 494.59± 4.03 1.29± 1.61%

DNC 312.97± 3.39 314.06± 3.34 627.03± 4.75 -0.36± 1.52%

MLP 414.54± 6.57 412.27± 6.68 826.81± 9.37 0.52± 2.33%

LSTM 364.74± 4.85 353.56± 4.74 718.31± 6.78 3.05± 1.83%

Ours 1060.24± 8.43 938.76± 7.95 1999.00± 11.59 11.45± 1.41%

Table 4.1: Results with 95% Confidence Intervals.

4.6 Conclusion and Future Work

Deep Reinforcement Learning methods were applied to the task of vision-based

navigation in order to assess the viability of high level solutions for indoor navigation

scenarios. While these methods are still in their infancy, this work highlights some

encouraging approaches in Artificial Intelligence towards that goal. Upon reviewing

first-person video of the trained agents (links: LSTM, TARDIS), some behavioral pe-

culiarities are hard to miss. The videos show considerable redundancy in trajectories

and in the case of TARDIS, and odd aversion to turning right preferring inefficient
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270◦ right turns instead. These peculiarities serve as a reminder of the immaturity

of these methods and are a sobering warning against implementing them in assistive

technology for navigation just yet. Additionally, the complexities of real-world indoor

navigation such as changing goals and understanding user intent pose large obstacles

to practical implementation. Consequently, technology that conveys pertinant infor-

mation from the visual world to a non-sighted user via Sensory Substitution is likely

a more effective approach.
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Chapter 5

LOW RESOLUTION HAPTIC INTERFACE

Conveying visual information to a user who is non-sighted necessitates a Sensory

Substitution Device to perform the visual-to-haptic translation. As expounded upon

in section 2.4, the skin provides an ample and flexible communication channel for

SSDs, and a haptic array can be used to convey a variety of types of information.

Most SSDs though are purpose-built, Panchanathan et al. (2016), Krishna et al.

(2010), Eagleman (2014), Novich (2015), and are unfit for scenarios outside of their

intended use-case. To rectify this, the Low Resolution Haptic Interface (LRHI) is

introduced, a general-purpose haptic interface for sensory substitution that abstracts

2D haptic patterns into “Haptic Images”.

While similar haptic displays have been explored in the past, Jones and Ray

(2008), such displays have not been validated for interactive applications in user

studies. In this section a 4x4 instantiation of the LRHI is evaluated in its effectiveness

in conveying abstract information to users as well as for use in interactive applications

in the form of a 2-dimensional video game played without vision. Additionally, a form

factor that improves upon the response of typical eccentric rotating mass vibration

motors as well as a Python interface for haptic displays of this nature are introduced

and made public. The Python library to interface with the LHRI can be found here:

https://github.com/bfakhri/lrhi.

5.1 System Design

Building a general-purpose haptic sensory substitution device required a stan-

dardised and general interface. Towards this, we propose that haptic patterns be
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Figure 5.1: Block diagram of the LRHI. In red Computing Platform. In green Con-

troller. In blue Display

abstracted into “haptic images”, which are essentially two dimensional arrays of hap-

tic intensities and frequencies i, f = H[x, y] analagous to how a visual image can

be modeled as a 2D array of color intensities r, g, b = V [x, y] (RGB model) where

x, y are discrete coordinates relating to space. A series of haptic images can thus

convey moving patterns over time similar to how a series of images becomes a video.

The LRHI is a system that communicates using “haptic images” and converts them

into tactile representations. The LRHI consists of a computing platform which sends

haptic images to be displayed, a controller which intereprets the haptic images and

converts them into anolog signals, and a display which converts the analog signals

into vibrotactile actuation. Figure 5.1 shows a block diagram of the LRHI.

The computing platform can be any USB enabled computer: its role is to generate

the haptic images in a digital and abstract form. The computing platform may take

on a variety of roles in generating the haptic images. In sensory substition applica-

tions for instance, the computing platform converts images from a video stream into

haptic images and sends them to the controller. The actual algorithms for conversion

are left up to the designers. In our incarnation of the LRHI, it communicates with

63



(a) (b)

Figure 5.2: Motor Housing: (a) digital and 3d-printed models (b) vibration axis

the controller by sending 4x4 8-bit haptic images.

The controller consists of an Arduino microcontroller, TLC5940 analog to digital

converter, and a collection of high-current Darlington Transistor Arrays. The Ar-

duino accepts the haptic image and using the TLC5940 converts the haptic image

into 16 analog electrical signals (8-bit PWM). These are transmitted to the transistor

arrays where the signals are amplified and made suitable to drive the display. A full

version of the LRHI would allow haptic images to specify not only an intensity but

also a vibration frequency for each actuator on the display.

Our prototype of the display consists of a 4x4 array of pancake motors housed in

custom 3D printed mounts that orient the motors orthogonal to the user’s back. The

housing is shown in figure 5.2a. This accomplishes two objectives: first, the vibration

axis is made perpendicular to the user’s back (illustrated in figure 5.2b). Second, the

contact point is made smaller. These two objectives increase the perceived intensity

of the vibrations which is especially important when the user is wearing thick cloth-

ing. The motors and housing are mounted on accoustic foam to provide a maleable

surface that adheres to a user’s back and simultaneously transmits minimal intermo-
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Figure 5.3: 4x4 haptic display mounted on an office chair

Current (A) Power(W)

Idle 0.05 0.17

Single Motor 0.10 0.33

1/4 Motors 0.19 0.63

2/4 Motors 0.28 0.92

3/4 Motors 0.34 1.12

4/4 Motors 0.41 1.35

Table 5.1: Power consumption characteristics of the Low Resolution Haptic Display

tor vibration. The haptic display is shown in figure 5.3.

The haptic display consumes 50mA in an idle state with a maximum consumption

of 412mA when all motors are at full power (energy consumption summarized in table

5.1). During the non-interactive portion of the user study, the LRHI had a mean

power consumption of 0.73W . During the interactive portion of the study the LRHI

showed a mean power consumption of 0.56W .
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5.2 User Study

In order to assess the LRHI’s potential as an SSD, a preliminary user study with

8 participants was performed to explore its ability to convey information through

haptics. The study consisted of a non-interactive and an interactive component. The

non-interactive portion consisted of 3 phases wherein participants were introduced to

a finite set of haptic patterns during “familiarization” (being exposed to each indi-

vidual pattern only once) and were asked to recall those patterns during “testing”.

During the non-interactive testing portion of the study participants were given

the option to repeat the pattern if they were not confident in their assessment. Phase

1 consisted of static patterns (Top Left, Bottom Right, etc). Phase 2 consisted of

patterns that vary across space and time (Left to Right, Top to Bottom, etc). Phase 3

is similar to Phase 2, but users were asked to recall how fast the pattern was displayed

(Left to Right - Fast, Top to Bottom - Slow, etc) in addition to the original pattern

identity (Left to Right). The patterns increased in complexity in each subsequent

phase, beginning with simple single-motor patterns to patterns that move through

space and time. Participants were given the option to repeat a pattern if they were

not confident in their initial assessment. The patterns for each phase are illustrated

and described in section B.

In order to assess the LRHI’s potential in interactive environments, we designed

a completely haptic, cat-mouse game to play (illustrated in figure B.3). The user

plays as a cat, and the goal is to find a mouse. The cat is presented on the haptic

display as a solid vibration, while the mouse is a pulsing vibration. Participants used

a computer-mouse to control the position of the cat on the haptic display, leading it
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Non-interactive Repeat % Error %

Phase 1 1.13% 0.92%

Phase 2 1.46% 0.83%

Phase 3 2.60% 3.12%

Total 1.73% 1.62%

Table 5.2: Results for Non-interactive Phase

towards the mouse - the goal being to catch the mouse as quickly as possible. The

duration between the beginning of the game and capturing the mouse was recorded,

each participant playing 60 games in total (results shown table 5.3). Increasing per-

formance in this game (decreasing game time) was intended to show that participants

were in fact able to learn to use the LRHI to interact with dynamic environments.

5.3 Results

For the non-interactive portion of the study, participants were able to identify

the patterns with considerable accuracy. Phase 1, which included static patterns

only did not significantly differ in accuracy over Phase 2 (dynamic patterns). Only

when participants were asked to discern both the pattern and the speed at which

it was presented did performance suffer slightly. Results are compiled in table 5.2 -

participants were able to achieve an aggregate accuracy of 98.38%.

For the interactive portion of the study (illustrated in figure B.3), participants

were able to capture the mouse in 4.81 seconds on average, and showed a significant

performance increases the longer they played. A comparison of the first third of the
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Interactive Avg StdDev

Total 4.81 s 2.99 s

First 3rd 6.64 s 3.23 s

Last 3rd 4.40 s 2.78 s

Table 5.3: Results for Interactive Phase in game times: Lower is better.

Figure 5.4: Normalized mean game times of all study participants over time.

gaming session (first 20 games) and the last third as well as total performance can be

seen in table 5.3. Figure 5.4 illustrates the participants’ performance over time.

5.3.1 User Feedback

Overall, feedback was positive regarding the playability of the game with the

display. Participants reported the display being strong and vibrations clear and easily

felt through clothing, one user even stated that the vibrations were too strong. On

the critical end, some participants reported that the mouse was sometimes confused

with the cat in the game, especially if they were instantiated near each other. In this

scenario, the player would find themselves attempting to move the wrong entity and
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(a) (b)

Figure 5.5: Histograms of the game times color coded by participant. (a) Stacked

game times (b) Individual game times

resulted in a significantly longer game (lower performance). This is echoed in the

data: a histogram of the game times (figure 5.3.1) shows that almost all participants

had a game or two in the ∼ 15 second range, even the most performant participants.

This confusion could possibly be mitigated by coupling a vibration pattern on the

hand syncronized with the vibration pattern of the entity they are controlling.

5.4 Conclusion and Future Work

In conclusion, a general purpose haptic interface for Sensory Substitution in in-

teractive settings was introduced and evaluated with a user study. The performance
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of the interface with respect to non-interactive scenarios was shown to be in-line with

similar haptic displays, Jones and Ray (2008). Additionally, the performance in in-

teractive settings is promising: participants were able to consistently improve their

gameplay during the first 35 games and subjective user feedback was encouraging.

The results bode well for the application of the LRHI for other spatial interactive

scenarios, as participants were able to intuitively grasp the spatial nature of the cat-

mouse game. The occasional confusion between the cat and mouse entities in the game

described in section 5.3.1 though imply a limit to the complexity of entities shown

spatially on the display: the display is well suited to conveying spatial information

but not necessarily so for a variety of entity types. For this reason, generalizing to 3

dimensions will likely requires a more intricate solution in order to effectively convey

the pertinant visual information in the more-complex 3D visual environment and the

real-world.
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Chapter 6

FOVEATED HAPTIC GAZE

Virtual worlds are becoming ubiquitous as digital technology permeates society,

with augmented and virtual reality being the latest and most immersive manifesta-

tions. Unfortunately, the visual domain is central to most virtual worlds, making

them inaccessible to people with visual impairments. People with visual impairments

already face accessiblity hurdles when using technology but virtual worlds remain one

of the most inaccessible mediums. Two competing approaches exist to correct this

dilemma. Designers of virtual worlds develop the environments with accessibility in

mind in the first approach. Secondly, accessiblity engineers develop tools to make ex-

isting virtual environments accessible. While the first approach is gaining traction and

public awareness, developers of virtual environments seem to have been excused of this

responsibility as accessible virtual environments remain extraordinarily scarce. The

second approach has the potential to affect many existing environments. An example

of the effectiveness of the second approach is screenreader technology. Screenreaders

made digital text and many of the invaluable capabilities of smartphones accessible

to millions of people with visual impairments. Additionally, tools that aid in the

understanding of 3-dimensional virtual worlds would be best poised to generalize to

real-world visual problems faced by people with visual impairments.

In this vein, this chapter describes the development and assessment of a transfor-

mative technology for interacting with 3D visual environments entirely through hap-

tics. “Foveated Haptic Gaze” (FHG) is a concept embracing the characteristics of the

human visual system that make it so well-suited for interacting with 3-dimensional

environments (elaborated upon in section 2.1. FHG makes use of an attentional
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mechanism similar to foveated vision that allows users to focus on objects while si-

multaneously allowing for peripheral awareness. Foveated Sensory Substitution has

also been explored by Capelle et al. (1998), who developed a vision-to-audition SSD

with a higher resolution portion of the field of view in the center. These researchers

did not though separate the peripheral and attentional portions of vision as with

FHG. This combination gives users the ability to explore an environment in detail

while maintaining broader situational awareness, making “Foveated Haptic Gaze” one

of the only vision-to-haptic interfaces flexible enough to generalize to the real world.

To validate this approach, a first-person shooter game based on Doom was devel-

oped as well as a working prototype of the Foveated Haptic Gaze system. The system

was then evaluated in a user study with both individuals that are sighted and individ-

uals with visual impairments for usability and effectiveness as an SSD for interactive

tasks. Seeking to develop an approach that is useful to people with limited or no

sighted priors, the user study measured the in-game performance of both populations

to understand the effects sighted priors may have on the effectiveness of FHG.

6.1 Method

Human gaze is characterized by aligning the optical axis of the eye to whatever

in the visual field one is interested in. The optical axis also happens to be aligned

with the fovea, an area of the retina featuring the highest density of photosentitive

receptors, Hudspeth, A.J.; Schwartz, James; Siegelbaum, Steven; Kandel, Eric; Jessell

(2012). Gazing is thus directing one’s visual attention by aligning the most acute

portion of the retina with whatever is of interest. The rest of the retina is responsible

for peripheral vision, enabling a wide (up to 220◦ horizontally) spatial awareness in

direct spatial relation to one’s focus, Szinte and Cavanagh (2012). Thus the human
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(a) (b) (c)

Figure 6.1: (a) Original image of room (b) Objects of interest highlighted (c) Corre-

sponding motor array activations

visual system has the capacity for high resolution as well as expansive field-of-view

thanks in part to foveated vision.

6.1.1 Foveated Haptic Gaze

We borrow the concept of foveated vision to develop a biologically inspired haptic

implementation called Foveated Haptic Gaze (FHG). In the same way sighted in-

dividuals gaze with their eyes by pointing their foveas at objects of interest, using

our system individuals with visual impairments can gaze in a visual environment by

pointing their hand at objects of interest (an illustration can be seen in figure 6.1.1).

The user wears a purpose built haptic glove (shown in figure 6.1.3) and when they

point their hand at an object, details of the object are haptically conveyed via the

glove equiped with vibration motors on the finger tips. This provides an analog to

the high-resolution fovea, while a back-mounted haptic display (shown in figure 6.7a),

Fakhri et al. (2019), endows the user with peripheral awareness (Haptic Peripheral

Vision) of their entire field-of-view. The system thus partitions a user’s experience

into two channels: one for high-fidelity and one for wide field of view. The back dis-

play alerts the user to the presence and coarse location of objects (obstacles, doors,

persons, etc) while pointing a hand towards these objects provides the user with finer
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(a) (b) (c)

Figure 6.2: User’s hand position determines where they are gazing: (a) Gazing at

leftmost plant (b) Gazing at middle plant (c) Gazing at rightmost plant

details of the object, such as the object’s identity (e.g. “door”, “person”, etc). To

integrate these two systems so that a user can relate the position of their haptic gaze

with their haptic peripheral vision, the system displays the position of their gaze

with respect to their field-of-view on the back display. Practically, a user feels on

their back where objects are and where their gaze currently is, moving their hand

to align these indicators is essentially gazing at the object. This is akin to noticing

an object in your periphery then gazing at it for more details. In order to capture

a user’s “Haptic Gaze” (where the user is pointing their hand), a Leap Motion Con-

troller was used. See appendix section A for design considerations using this device.

To illustrate the effectiveness of our approach we created a gaming environment with

which participants can interact with rich 3D spatial situations.

6.1.2 Gaming Environment

The First-Person Shooter (FPS) genre of video games was a natural choice for test-

ing the system’s efficacy because FPSs offer a realistic simulation of the first-person

experience as well as mechanics like aiming and shooting that require keen visuospa-

tial awareness to play effectively. The game DOOM is one of the most iconic and

modded FPS games in existence, making it our choice for developing experimental
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Figure 6.3: Doom Environment featuring a “Hell Knight” monster on the left and

explosive barrel on the right.

environments using the ViZDoom platform. ViZDoom, Kempka et al. (2017), en-

abled us to develop visually rich, low-overhead, and responsive DOOM environments

for use in our experiments. A system that can empower users to effectively play a

game like DOOM has the best chances of generalizing to real-world interactive visual

environments. Figure 6.3 shows an image of the environment from the first person

perspective.

We designed a level consisting of 10 connected rooms. The player runs through

the rooms encountering monsters and explosive barrels (shown in figure 6.3). Figure

6.4 shows a top-down view of the rooms: there are 11 monsters and 5 explosive

barrels randomly positioned in the rooms, with more monsters/barrels occuring in

later rooms. The objective is to shoot as many monsters as possible while not shooting

the explosive barrels. The player’s score is the difference between the number of

monsters killed and the number of explosive barrels shot: score = monsters−barrels.

A user willl feel the presence and position of monsters or barrels in their field of view

on their back via the haptic display. To ascertain whether the objects are monsters

or barrels, the user must gaze over the object with their hand.
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Figure 6.4: Bird’s eye view of the (abridged) game map used in the study. The full

map consisted of 10 interconnected rooms.

6.1.3 System Design

A user wears a glove equiped with a button and vibration motors on the finger

tips (shown in figure 6.1.3). The vibration motors convey information about what

the user is gazing at, and in the case of our hallway game, reveal to the user whether

they are gazing at a monster or a barrel. The user’s hand position is tracked with

a Leap Motion Controller, and the 3D coordinates of the hand are mapped onto the

field of view of the player’s avatar. The location of objects in the avatar’s field of view

is extracted from the ViZDoom environment and is mapped, along with the user’s

gaze position, onto the haptic display on the user’s back. A diagram of the whole

system can be seen in figure 6.6 and a video demonstration of gameplay is available

using the link: https://youtu.be/59-l8B2Xq4E.

6.1.4 Experimental Design

Five participants with visual impairments and ten sighted participants were re-

cruited for the user study. At the beginning of the study, participants were acquainted

with the hardware they would be using: haptic display (chair), haptic glove, and Leap

Motion Controller. Participants were then introduced to the concept of FHG by

performing an introductory exercise that activated the Leap Motion Controller and
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(a) (b)

Figure 6.5: (a) Pancake motors and button (highlighted) on haptic glove (b) Image

of the back of the glove with motor driving hardware shown

Figure 6.6: Diagram of experimental setup. The ViZDoom game engine sends an

entity map to the haptic display (red) to be felt by the user. The hand’s movements

are tracked by the Leap Motion Controller and its position is converted to gaze

coordinates on the avatar’s field of view. If the gaze intersects with any entities their

identity is sent to the glove (blue). If the user presses the trigger button on the glove a

shoot signal is sent to the ViZDoom environment and the avatar fires in the direction

the user is gazing.
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haptic display only. The participant’s hand was tracked and displayed on their back

using the haptic display and participants were encouraged to acquaint themselves

with the limits of their field of view. The purpose of this exercise was to illustrate the

mechanics of the gazing mechanism e.g. moving one’s hand to the left moved their

gaze to the left on their back. Next they were introduced to the concept of Haptic

Peripheral Vision.

Users’ avatars were placed in a room in the ViZDoom environment populated by

one monster and one explosive barrel on either size of their field of view. The haptic

chair relayed the locations of the monster and barrel to them by pulsating on their

backs (see figure 6.1c). The location of their gaze was also conveyed by the haptic

display via a solid vibration; consequently users learned to gaze towards the objects

in the room by aligning the gaze vibrations with the pulsating “entity” vibrations

on their back. Upon placing their gaze over one of the entities (monster or barrel),

the identity of the entity was conveyed to the user via the glove’s vibration motors

in a coded manner. Users were instructed to discriminate a “monster pattern” and

“barrel” pattern. After exploring the room by gazing over the entities, participants

were instructed to shoot both entities. When the barrel is shot it explodes and creates

a load explosion sound while shooting the monster results in a triumphant “winning”

sound. These are the only audio cues in the whole game other than rhythmic game

music.

After this explaination, participants were asked if they were comfortable with

the interface and objective and were given the chance to enter the demo room once

again, after which the experiment began. Participants entered the hallway game

environment described in section 6.1.2 and illustrated in figure 6.4 to score as many

points as possible. Participants were asked to play 7 games (each taking about 1.5
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(a) (b)

Figure 6.7: (a) Haptic display on office chair (b) Closeup of motor array

minutes to complete) and their performance as well as auxiliary metrics (shots fired,

hits, misses) were recorded during their gameplay.

6.2 Results

To assess playability as well as any differences in usability between sighted and

users with visual impairments, we measured a player’s score throughout every game

played. On average, sighted users obtained higher scores although the majority of

users with visual impairments also clustered towards the center of the sighted perfor-

mance distribution shown in figure 6.8a. Both populations saw an initial increase in

performance although sighted individuals maintained an upward trajectory slightly

longer while participants with visual impairments leveled off sooner. Figure 6.8b il-

lustrates their performance over time. The theoretical maximum score is 11 as there

are 11 monsters to destroy, although their positioning often makes them difficult to

destroy due to their brief visibility.

To assess a player’s ability to make decisions on-the-fly, they were instructed to

avoid shooting explosive barrels, as it would negatively impact one’s score. These

mistakes as well as good hits and complete misses were recorded on a per-game basis.

Players overal made few mistakes, many averaging below one mistake per game (figure
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(a) (b)

Figure 6.8: (a) Normal distribution fit to the performance of both participant popu-

lations averaged over all trials (b) Performance over time averaged over participants

6.9b), indicating that the glove feedback was clear and intuitive: as a ratio of mistakes

to good shots (monsters killed), most players stayed below 1/10.

Participants with visual impairments initially missed less than sighted partici-

pants, trending upwards throughout the trials eventually ending slightly higher than

sighted participants (figure 6.9a) . Inversely, sighted participants missed more often

from games 1 through 5, but during the last two games ended with slightly fewer av-

erage misses. These trends imply that participants with visual impairments tended to

approach the game more cautiously than sighted individuals, becoming more comfort-

able as games went on while their sighted counterparts were more cavalier to begin

with and reigned in their enthusiasm as the games progressed. This is supported

by the total shot counts per trial figure, plotted in figure 6.10b, where it can be

seen that sighted participants initially took many more shots than those with visual

impairments.

Both sets of participants performed similarly with regards to accuracy (hits over

total shots taken per game) as illustrated in figure 6.10a. Players achieved an accuracy

between 70 − 80% during the first 5 games, indicating that the aiming and gazing

80



(a) (b) (c)

Figure 6.9: (a) Misses per trial (b) Shots that hit a barrel per trial: mistakes made

by participants by shooting an entity they were instructed not to shoot (c) Ratio of

enemies killed to explosive barrels (mistakes) over trial. There is a large variance in

performance initially for participants with visual impairments that quickly dwindles

as the participants learn from their mistakes.

(a) (b)

Figure 6.10: (a) Accuracy over time (hits / shots taken) averaged over all participants

in each populaiton (b) Total shots taken per trial, averaged over all participants in

each population
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mechanics of the system were usable for real-time interactions. Interestingly, sighted

players’ accuracy rose to touch 90% during the last two games, in tandem with their

dip in misses (figure 6.9a).

6.3 Conclusion and Future Work

Results from our user study indicated the playability of the Doom game was

maintained without vision as most participants were able to achieve respectable per-

formance metrics and accuracies. This was supported by positive subjective user

feedback with regards to the system design. Differences in performance between test

groups were small, boding well for our approach having only slight sighted usability

bias. A more extensive analysis is required to rule out a sighted performance bias

and may inform design decisions to make the approach even more intuitive to people

without vision. The results also indicate that individuals with visual impairments

approached the game more cautiously, becoming less cautious over time while sighted

participants approached the game with less caution and became slightly more cautious

over time. Consequently, future approaches may benefit from designs that encourage

confidence inspiring exploration. Furthermore, the presentation of peripheral vision

information (Haptic Peripheral Vision) can likely be improved. The accuracy as-

sessments indicate that foveated gaze feedback worked well, while destroying all 11

monsters remained difficult for both populations, as brief appearances of monsters

were sometimes missed. A higher resolution haptic back display or one with wider

back coverage such as the HaptWrap, Duarte et al. (2019), may mitigate this by

providing more salient peripheral awareness feedback.

To generalize to the real world, it is imperative that the system be capable of

detecting objects in images that the user has deemed “of interest”. In virtual en-

vironments, bounding boxes for entities are often conveniently available, as is the
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case in ViZDOOM. Real-world visual scenes almost never offer the same convenience.

Coupling Foveated Haptic Gaze with a computer vision method for learning person

specific “objects of interest” would allow the system to be generalize to a variety of

real-world scenarios.
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Chapter 7

ONE-SHOT OBJECT DETECTION FOR PERSON CENTERED VISION

Object Detection methods have come a long way in a short amount of time, seeing

exponential-like growth in performance during the last decade Zou et al. (2019). Cur-

rent methods feature both high mAP as well as high framerates on modern hardware:

performance has reached a point such that applying these techniques to real-time

interactive use-cases is within reach. A particularly straightforward and beneficial

use for these methods is aiding those with visual impairments find objects in their

surroundings more effectively. In order for this to be practical, the methods must be

capable of detecting objects users are actually interested in. Often a user is interested

not in finding any item of a certain class, but a specific item of that class. In other

words, a user is not likely interested in finding any water bottle, but instead their

water bottle. If a user with a visual impairment is looking for their bottle, using an

object detection model trained on the COCO dataset with class “bottle” is not of

much use: figure 7 illustrates this conundrum.

Training an object detection model for a new object of interest, such as the bottle

featured in figure 7.1a would require the user to generate a dataset large enough to

train the model. Few-shot methods reduce the number of training samples for the

novel class needed, but they still require hand labeled images of the novel class. This

of course is impracticle and such an effort would likely overcome the convenience a

personal object detector would provide to a person with a visual impairment. This

begs the question: can modern object detection methods achieve competitive perfor-

mance on user-defined objects of interest with minimal user effort? In this section

a data collection and augmentation method called 1SODDA (1-Shot Object Detec-
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(a) (b)

Figure 7.1: (a) User specified “object of interest” bounded in white box (b) Output of

YOLOv3 trained on the COCO dataset: notice the non-specificity of the attribution

of class “bottle”

tion by Data Augmentation) that attains competitive performance with minimal user

effort is introduced.

7.1 Literature Review

Currently the most competitive object detection methods are region-based meth-

ods. Region-based object detection methods such as RCNN, Girshick et al. (2014),

employ a “region proposal generator” which generates region proposals in images.

In RCNN, those regions are reshaped and fed to a convolutional neural network to

extract a feature vector describing the region. This feature vector is used to train a

single linear SVM for each class. This method proved highly accurate, achieving a

mAP of 53.3% on the VOC 2012 dataset, becoming the state-of-the-art method in

2014. While highly accurate, the method is computationally expensive mostly due to

the number of region proposals considered by the network (about 2000 per image):

inference on a single image can take as long as 47 seconds on a modern GPU. For

use-cases where real-time feedback is necessary such as searching for an object in a
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visual environment, this is too slow. These speed issues were partially addressed by

Girshick with a version of RCNN called Fast-RCNN, Girshick (2015). In Fast-RCNN,

the input image is passed first through a CNN to give a feature map. Region propos-

als are then made on the feature map instead of the original image and pooled using

a region-of-interest (RoI) pooling layer to give a fixed size feature vector for each

RoI. These feature vectors are then sent to a fully connected portion of the network

to predict the classes and final bounding boxes. Performing the region proposals in

the feature space saves significant computation: the author claimed a speed up of

10-100x for inference. Even faster approaches such as You Only Look Once (YOLO),

Redmon et al. (2016), where the bounding boxes, classes, and confidence scores are

predicted from a single pass of the network. YOLO resembles an autoencoder, with

an encoder and decoder network, but the decoder predicts bounding boxes, classes,

and confidences instead of the pixels of the input. The latest, most accurate, and

fastest manifestation of YOLO is YOLOv3, Redmon and Farhadi (2018), which par-

titions the prediction into 3 scales (small, medium, large) so that the bounding boxes

of very small or very large objects are predicted more accurately. YOLOv3 achieves

respectable mAP on the COCO dataset, at 55.3% at 35 frames per second. While

these object detection methods boast great performance (some versions of these mod-

els are capable of running on mobile platforms), they require immense datasets with

many training examples of each target class to train. To be useful for finding specific

objects of interest with minimal user effort though, a one-shot learning approach must

be taken.

Few one-shot learning methods for objects detection have been explored before,

Biswas and Milanfar (2014), with some success. More recently, deep methods for

one-shot learning have become available such as RepMet, which employs a distance

learning framework on top of standard object detection models to render competitive
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mAP in one-shot scenarios (42.2%), Karlinsky et al. (2019). To newer methods have

emerged as promising approaches to few-shot learning for object detection: meta-

learning and fine-tuning. Meta-learning methods seek to learn and exploit the struc-

ture and relationships within and between classes to perform a task. An example

of this was proposed by Fan et al. (2019), which uses a model similar to a Siamese

Network, Koch et al. (2015). A similar method employs a “re-weighting module”

which modifies vectors given by a shared feature extractor given a query image, Kang

et al. (2020). Fine-tuning approaches can be partitioned into two categories: jointly

fine-tuning and entire model fine-tuning, Wang et al. (2020). In “jointly fine-tuning”

approach the model trained on a mixture of samples from the novel and base classes.

Similarly, an “entire model fine-tuning” is characterized by first training the model

on the base classes and afterwards training on a balanced dataset of base classes and

novel classes. The most competitive fine-tuning method to date is a refinement of

the “entire model fine-tuning” approach, called “two-stage fine tuning”, introduced

by Wang et al. (2020). This method initially trains a model on the base classes and

in the second stage trains solely the last layer on a balanced combination of novel

and base class data. Two-Stage Fine-Tuning achieves state-of-the-art performance on

most of the few-shot object detection benchmarks, Wang et al. (2020).

These one-shot learning methods still require at least one hand annotated im-

age. To be most useful in a person-centered context the ideal method automatically

generates the single data sample used in the one-shot learning scenario. None of

these techniques have that capacity. In this chapter a unified, minimal effort one-

shot learning method for object detection based on a novel data collection technique

paired with a synthetic dataset generation process is proposed. This method can be

used to learn an object detector for personal objects for which no publically available

annotated datasets exist.
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7.2 Method

In this section a method for generating a synthetic dataset from a single object

useful for training an object detection model is described. The method entails su-

perimposing the object onto a variety of backgrounds to generate a corpus of images

with corresponding bounding boxes. Data augmentation strategies are then employed

so the model can generalize to conditions not captured in the original image of the

object. Generating such a dataset requires an image of the object-of-interest pro-

vided by the user along with a bounding box. Requesting that a user with a visual

impairment hand-label an image of an object is impractical, so instead a method for

automatic object segmentation from a video stream was developed for this purpose.

7.2.1 Automatic Object Segmentation

The data collection process is designed such that a user must simply position

a stationary camera, start the process, and place an object into the field of view.

Capturing the object works by detecting moments of stability in the video stream

and inferring those moments to be frames before and after the introduction of an

object. A stability curve and corresponding frame captures are shown in figure 7.2.1.

Stability is measured as the aggregate difference between the current frame and a

moving average of the previos 10 frames.

Soon after the stream has begun, a frame is captured once stability in the frame is

detected (figure 7.3a). A user then places on object in front of the camera, prompting

large differences between frames. Another frame is captured after stability returns

(7.3b). This process is plotted against frame stability over time in figure 7.2.1.

After the frames are captured, the object is segmented by the system. The result-

ing “before” and “after” images are diffed(see figure 7.3c) and thresholded on lightness

88



(a)

Figure 7.2: Frame stability over time. (a) corresponds to the first frame captured

(figure 7.3a), (b) indicates when the introduction of the object was detected (c)

indicates when the last “after” image was captured (figure 7.3b).

(see figure 7.3d) to create an image mask. To determine a value for a threshold, the

algorithm performs a sweep of different threshold, starting with a threshold result-

ing in 0% of the pixels are thresholded and moving up until 97% of the pixels are

thresholded. The threshold is chosen at the point between which the largest change

in thresholded pixels is obtained. The thresholded image produces a binary mask

of pixels that have changed between frames. From this mask, bounding boxes are

infered by constricting the image iteratively from the four directions. The sides of

the images constrict the image until 95% of the binary mask remains, creating a
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(a) (b) (c) (d)

(e) (f)

Figure 7.3: (a) Image before object is introduced (b) Image after object is introduced

(c) Difference image between “before” and “after” images (d) Thresholded difference

image (e) Bounding box applied to image mask by constricting all sides (f) Object

after automatic segmentation and cropping has been applied

bounding box containing only the object that was introduced, see figure 7.3e. The

image is cropped along the bounding box and the binary mask is applied to the “af-

ter” image to generate a masked object that can be artificially placed in other images

to generate a synthetic dataset (see figure 7.2.1). For a visual demonstration of this

method, see the following video example link: bottle, ruler, wallet, shoe. This image,

corresponding to figure 7.3f, will be refered to as the masked object image.

7.2.2 Data Augmentation

Data augmentation strategies have been shown to significantly increase the ef-

ficacy of object detectors trained on limited data, Zoph et al. (2019). Due to the

minimal effort mandate of this approach, leveraging the limited data that is available
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(a) (b)

Figure 7.4: (a) Original image of a counter (b) Masked object image placed onto the

original image to create a synthetic data sample.

is essential. To generate the synthetic dataset on which to train an object detection

model, a variety of data augmentation strategies are applied to the masked object

image such as rotation and perspective transforms (shown in figure 7.2.2) as well

as color space tranforms (shown in figure 7.2.2). The transformed images are then

placed in random locations and at random scales in a corpus of “background images”

which undergo randomized data augmentation as well. The bounding box labels of

the object are inferred from the position of the masked object image in the back-

ground image after all transformations have been applied and the synthetic images

and labels together make up the synthetic training set. A batch of a synthetic dataset

can be seen in section D.

7.2.3 Training an Object Detection Model

To validate this approach, an object detection model was trained against the

synthetic dataset. The model chosen was YOLOv3, Redmon and Farhadi (2018),

based on the original YOLO model for both its respectable performance in both

speed and mAP. A preliminary dataset with ground truth was collected containing

two “objects of interest”, a water bottle and a set of keys, to validate this approach.
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(a) (b) (c)

Figure 7.5: Coordinate space augmentations (a) Original “background image” (b)

Rotation (c) Perspective

(a) (b) (c)

Figure 7.6: Color space augmentations (a) Hue (b) Saturation (c) Lightness

7.3 Results and Discussion

The following results are derived after training YOLOv3 with 1SODDA for 1

hour (2000 training steps). Table 7.1 compares the performance of several few-shot

learning methods on a single training sample to 1SODDA. True Positives for Mean

Average Precision (mAP) calculations are detections with an Intersection over Union

(IoU) greater than 0.5. The methods compared are YOLO with joint, fine-tuning,

and fine-tuning of the full model, Redmon et al. (2016), Low-Shot Transfer Detec-

tor (LSTD), Chen et al. (2018), applied to YOLO, and Few-Shot Object Detection

via Feature Reweighting FSOD(RW), Kang et al. (2020). It is important to note

that these results between this method and other few-shot learning methods are not
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Method Novel Set 1 Novel Set 2 Novel Set 3

YOLO-joint 0.0 0.0 1.8

YOLO-ft 3.2 8.2 8.1

YOLO-ft-full 6.6 12.5 13.0

LSTD(YOLO) 6.9 9.9 10.9

LSTD(YOLO)-full 8.2 11.4 12.6

FSOD(RW) 14.8 15.7 21.3

1SODDA (Ours) 45.1± 1.04

Table 7.1: Comparison of performance, mAP (%), between few-shot object detection

methods for single-shot learning on the COCO dataset. Originally reported by Kang

et al. (2020). Performance of 1SODDA is reported with a 95% confidence interval

(n=200).

completely comparable, due to the novel data collection method 1SODDA employs

that gives a rough segmentation mask instead of purely bounding boxes. This is a

richer labeling scheme but requires less effort that traditional hand labelling using the

Automatic Object Segmentation approach. Even so, 1SODDA performs very well in

comparison to other few-shot methods, outperforming all of them by tens of mAP

points. Although not a true comparison because different training and testing sets

were used, the performance of 1SODDA is even comparable to high framerate non-

few-shot object detection methods such as the original YOLOv3 and SSD300, Liu

et al. (2016).

For a video demonstration of the trained model’s performance, see the following

link: video demo. A qualitative comparison of 1SODDA with YOLOv3 trained on

COCO with only the “bottle” class enabled, is shown in figure 7.7. The proposed
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method detects the novel object in a variety of scenarios while YOLOv3+COCO

often misses the object altogether. While the YOLOv3+COCO model impressively

generalizes the “bottle” class, the non-specificity makes the outputs unsable for a

person-specific application. Failure cases of 1SODDA are shown in figure 7.3.

In conclusion, an approach for training any object detection model to detect user-

specified objects with minimal effort called 1SODDA was introduced. Additionally,

a hand labelled dataset to validate this approach was collected for two user-specified

objects, a water bottle and keys. The performance of this one-shot learning approach

on the validation dataset is especially promising, significantly outperforming other

few-shot methods (in one-shot mode), although not on the same validation data. Fu-

ture work includes collecting a larger (with more “objects of interest”) dataset for

a more direct comparison between few-shot methods and standard object detection

methods on the COCO object detection standard. Direct comparisons cannot be

made without a large corpus of same-instance object data. Additionally, improving

the data augmentation process using GANs to photorealistically blend object and

background images may also prove useful. Combining 1SODDA with other few-shot

methods, such as two-step fine-tuning may also improve performance. Moreover, inte-

grating this method with sensory substitution methods such as Foveated Haptic Gaze

to facilitate visually finding objects for people with visual impairments to generalize

FHG to real-world applications.
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Figure 7.7: Left: Original Image, Middle: Pretrained YOLO model with class “bottle”

of COCO dataset, Right: 1SODDA
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(a) (b) (c)

Figure 7.8: (a) Missattribution of class failure (b) Missattribution of class failure (c)

Failure to detect bottle.
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Chapter 8

CONCLUSION AND FUTURE DIRECTIONS

The Person-Centered object detection method, paired with Foveated Haptic Gaze,

has the potential to reap the benefits of the advances in Computer Vision in the last

decade for use in Sensory Substitution Devices. With self-driving cars and auto-

mated medical diagnostics on the horizon, it is unthinkable that the methods behind

these technologies are not yet viable for enriching the lives of people with visual im-

pairments. Attempts so far have just grazed the surface of possiblity, showcasing

impressive uses of Computer Vision, but their applicability to real-world scenarios

is hindered by their rigid nature, lack of person-centeredness, and inefficiencies in

real-time interactive environments.

To address these limitations, an intuitive and biologically inspired method for

interacting with dynamic visual environments (both virtual and real-world) called

Personal Foveated Haptic Gaze was introduced. This approach is composed of two

primary components, Foveated Haptic Gaze and a 1-shot object detection method

called 1SODDA. Foveated Haptic Gaze and the hardware components used to make

it viable such as the Low Resolution Haptic Interface were validated in interactive

scenarios via user studies featuring interactive games, both 2-dimensional and 3-

dimensional. These methods are predicated on the fact that the visual environment

can be parsed in a meaningful way to detect objects of interest in the scene. For

these methods to generalize to the real-world, one without ground truth labels, the

minimal effort and person-centered approach to realizing object detection models,

1SODDA, was introduced. This method allows a user to employ off-the-shelf and

state-of-the-art object detectors to detect specific objects of interest. While direct
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comparisons between 1SODDA and few-shot object detectors is not possible without

a large corpus of single-instance bounding box annotated images, the performance of

1SODDA on a small dataset collected for this purpose is especially promising. The

popular YOLOv3 model was trained with 1SODDA, achieving significantly higher

mAP50 scores than other modern few-shot methods. Paired with Foveated Haptic

Gaze this becomes Person Centered Foveated Haptic Gaze, and has the potential

to be used by people with visual impairments to find and interact with objects of

their choosing for which there are no labelled datasets available for, bringing forth a

new generation of Haptic Sensory Substitution Devices for Vision which adapt to the

needs of the user and harness modern techniques in Artificial Intelligence.

Future work includes performing a large scale user study to assess the effective-

ness of PCFHG in a non-virtual setting. Such a study would involve participants

with blindness as well as sighted participants, whereby their performance in finding

their own objects in a visually crowded space are compared with and without ac-

cess to PCFHG. Future work to improve the experience also involves unsupervised

and semi-supervised approaches to the learning component. Given ego-centric video,

learning the visual characteristics of the objects a person uses most may be done in

a completely unsupervised manner. Hand detection techniques and datasets such as

EgoHands, Bambach et al. (2015), could be leveraged to support these efforts. The

unsupervised approach could reduce the effort required by the user even more, remov-

ing the need for a user to identify and submit to the system objects of interest. An

example of this method is illustrated in section C. Furthermore, to increase the intu-

itiveness of the system, haptic codes for the objects could be proposed by the system

and assigned to objects that are commonly used. These methods, coupled with the

advances in mobile computing, will hopefully endow users with visual impairments

with more independence and agency in the visual world.
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Lévesque, V., J. Pasquero, V. Hayward and M. Legault, “Display of virtual braille
dots by lateral skin deformation: feasibility study”, ACM Transactions on Applied
Perception 2, 2, 132–149 (2005).

Li, Z. and N. Snavely, “MegaDepth: Learning Single-View Depth Prediction from
Internet Photos”, Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition pp. 2041–2050 (2018).

Lindeman, R. W. and Y. Yanagida, “Empirical studies for effective near-field haptics
in virtual environments”, Proceedings - IEEE Virtual Reality 2003-Janua, 287–
288 (2003).

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu and A. C. Berg, “SSD:
Single shot multibox detector”, in “Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics)”, vol. 9905 LNCS, pp. 21–37 (2016).

Loomis, J. M., “Tactile letter recognition under different modes of stimulus presen-
tation”, Perception & Psychophysics 16, 2, 401–408 (1974).

Maidenbaum, S., S. Levy-Tzedek, D. R. Chebat and A. Amedi, “Increasing accessi-
bility to the blind of virtual environments, using a virtual mobility aid based on
the ”EyeCane”: Feasibility study”, PLoS ONE 8, 8 (2013).

106

https://psych.hanover.edu/classes/sensation/chapters/Chapter 3.pdf
https://psych.hanover.edu/classes/sensation/chapters/Chapter 3.pdf
http://doi.acm.org/10.1145/1753846.1754031
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


Maidenbaum, S., S. Levy-Tzedek, R. Namer-Furstenberg, A. Amedi and D. R.
Chebat, “The effect of extended sensory range via the eyecane sensory substi-
tution device on the characteristics of visionless virtual navigation”, Multisensory
Research 27, 5-6, 379–397 (2014).

Mascetti, S., C. Bernareggi and M. Belotti, “TypeInBraille: A Braille-based Typing
Application for Touchscreen Devices”, in “The proceedings of the 13th interna-
tional ACM SIGACCESS conference on Computers and accessibility”, pp. 295–296
(Dundee, Scotland, UK, 2011).

Mazuryk, T., M. Gervautz and K. Smith, “Virtual Reality History,
Applications, Technology and Future”, Digital Outcasts 63, ISlE,
92–98, URL http://www.sciencedirect.com/science/article/pii/
B9780124047051000066{%}5Cnhttp://linkinghub.elsevier.com/retrieve/
pii/B9780124047051000078{%}5Cn{%}22http://www.cg.tuwien.ac.at/
research/publications/1996/mazuryk-1996-VRH/{%}22,{%}7D{%}5Cnhttp:
//citeseerx.ist.psu.edu (2013).

McDaniel, T., S. Krishna, V. Balasubramanian, D. Colbry and S. Panchanathan,
“Using a haptic belt to convey non-verbal communication cues during social inter-
actions to individuals who are blind”, HAVE 2008 - IEEE International Workshop
on Haptic Audio Visual Environments and Games Proceedings , October, 13–18
(2008).

McDaniel, T., D. Villanueva, S. Krishna and S. Panchanathan, “MOVeMENT: A
framework for systematically mapping vibrotactile stimulations to fundamental
body movements”, HAVE 2010 - 2010 IEEE International Symposium on Haptic
Audio-Visual Environments and Games, Proceedings pp. 13–18 (2010).

McDaniel, T. L., S. Krishna, D. Colbry and S. Panchanathan, “Using tactile rhythm
to convey interpersonal distances to individuals who are blind”, CHI Extended
Abstracts pp. 4669–4674, URL https://dl.acm.org/citation.cfm?id=1520718
(2009).

Meijer, P. B., “An Experimental System for Auditory Image Representations”, IEEE
Transactions on Biomedical Engineering 39, 2, 112–121 (1992).

Menikdiwela, M. P., K. M. Dharmasena and A. M. S. Abeykoon, “Haptic based walk-
ing stick for visually impaired people”, 2013 International Conference on Circuits,
Controls and Communications, CCUBE 2013 pp. 1–6 (2013).

Merzenich, M. M., R. P. Michelson, C. R. Pettit, R. A. Schindler and M. Reid, “Neural
Encoding of Sound Sensation Evoked by Electrical Stimulation of the Acoustic
Nerve”, Annals of Otology, Rhinology & Laryngology 82, 4, 486–503 (1973).

Metz, C., “Facebook’s AI Is Now Automatically Writing Photo
Captions”, https://www.wired.com/2016/04/facebook-using-ai-write-
photo-captions-blind-users/, URL https://www.wired.com/2016/04/
facebook-using-ai-write-photo-captions-blind-users/ (2016).

107

http://www.sciencedirect.com/science/article/pii/B9780124047051000066{%}5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B9780124047051000078{%}5Cn{%}22http://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/{%}22, {%}7D{%}5Cnhttp://citeseerx.ist.psu.edu
http://www.sciencedirect.com/science/article/pii/B9780124047051000066{%}5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B9780124047051000078{%}5Cn{%}22http://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/{%}22, {%}7D{%}5Cnhttp://citeseerx.ist.psu.edu
http://www.sciencedirect.com/science/article/pii/B9780124047051000066{%}5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B9780124047051000078{%}5Cn{%}22http://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/{%}22, {%}7D{%}5Cnhttp://citeseerx.ist.psu.edu
http://www.sciencedirect.com/science/article/pii/B9780124047051000066{%}5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B9780124047051000078{%}5Cn{%}22http://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/{%}22, {%}7D{%}5Cnhttp://citeseerx.ist.psu.edu
http://www.sciencedirect.com/science/article/pii/B9780124047051000066{%}5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B9780124047051000078{%}5Cn{%}22http://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/{%}22, {%}7D{%}5Cnhttp://citeseerx.ist.psu.edu
https://dl.acm.org/citation.cfm?id=1520718
https://www.wired.com/2016/04/facebook-using-ai-write-photo-captions-blind-users/
https://www.wired.com/2016/04/facebook-using-ai-write-photo-captions-blind-users/


Metz, R., “BLITAB”, https://www.technologyreview.com/s/603336/this-500-tablet-
brings-words-to-blind-users-fingertips/, URL https://www.technologyreview.
com/s/603336/this-500-tablet-brings-words-to-blind-users-fingertips/
(2017).

Meyer, I. and H. Mikesch, “FEER the Game of Running Blind”,
http://www.feer.at/index.php/en/home/, URL http://www.feer.at/index.
php/en/home/ (2018).

Microsoft, “Seeing AI”, https://www.microsoft.com/en-us/ai/seeing-ai, URL https:
//www.microsoft.com/en-us/ai/seeing-ai (2018).

Miller, I., A. Pather, J. Milbury, L. Hathy, A. O’Day and D. Spence, “Guidelines and
Standards for Tactile Graphics, 2010”, http://www.brailleauthority.org/tg/web-
manual/index.html, URL http://www.brailleauthority.org/tg/web-manual/
index.html (2011).

Mirowski, P., M. K. Grimes, M. Malinowski, K. M. Hermann, K. Anderson,
D. Teplyashin, K. Simonyan, K. Kavukcuoglu, A. Zisserman and R. Hadsell,
“Learning to Navigate in Cities Without a Map”, URL http://arxiv.org/abs/
1804.00168 (2018).

Mirowski, P., R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu and D. London, “LEARNING TO NAVI-
GATE IN COMPLEX ENVIRONMENTS”, URL https://arxiv.org/pdf/1611.
03673.pdf (????).

Mirsky, S., “Playing by Ear”, Scientific American 300, 3, 29–29 (2009).

Miyazaki, M., M. Hirashima and D. Nozaki, “The ”Cutaneous Rabbit” Hopping
out of the Body”, Journal of Neuroscience 30, 5, 1856–1860, URL http://www.
jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3887-09.2010 (2010).

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning”,
arXiv preprint 48, arXiv:1602.01783v1 [cs.LG], 1–28, URL http://arxiv.org/
abs/1602.01783 (2016).

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and
M. Riedmiller, “Playing Atari with Deep Reinforcement Learning”, Arxiv URL
https://www.cs.toronto.edu/{~}vmnih/docs/dqn.pdf (2013).

Mnih, V., K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg and
D. Hassabis, “Human-level control through deep reinforcement learning”, Nature
518, 7540, 529–533, URL http://dx.doi.org/10.1038/nature14236 (2015).

108

https://www.technologyreview.com/s/603336/this-500-tablet-brings-words-to-blind-users-fingertips/
https://www.technologyreview.com/s/603336/this-500-tablet-brings-words-to-blind-users-fingertips/
http://www.feer.at/index.php/en/home/
http://www.feer.at/index.php/en/home/
https://www.microsoft.com/en-us/ai/seeing-ai
https://www.microsoft.com/en-us/ai/seeing-ai
http://www.brailleauthority.org/tg/web-manual/index.html
http://www.brailleauthority.org/tg/web-manual/index.html
http://arxiv.org/abs/1804.00168
http://arxiv.org/abs/1804.00168
https://arxiv.org/pdf/1611.03673.pdf
https://arxiv.org/pdf/1611.03673.pdf
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3887-09.2010
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3887-09.2010
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://www.cs.toronto.edu/{~}vmnih/docs/dqn.pdf
http://dx.doi.org/10.1038/nature14236


Monacelli, A. M., L. A. Cushman, V. Kavcic and C. J. Duffy, “Spatial dis-
orientation in Alzheimer’s disease: The remembrance of things passed”, Neu-
rology 61, 11, 1491–1497, URL https://pdfs.semanticscholar.org/e957/
14321d7fb821b421f2897496ccd1d10fed60.pdf (2003).

Moser, M.-B., D. C. Rowland and E. I. Moser, “Place cells, grid cells, and memory.”,
Cold Spring Harbor perspectives in biology 7, 2, a021808, URL file:///tmp/
mozilla{_}pauli0/ColdSpringHarbPerspectBiol-2015-Moser-.pdf (2015).

Nations, U., “Disability Statistics Compendium”, URL http://www.
disabilitystatistics.org/ (1990).

Nau, A., M. Bach and C. Fisher, “Clinical Tests of Ultra-Low Vision Used to Evaluate
Rudimentary Visual Perceptions Enabled by the BrainPort Vision Device”, Trans-
lational Vision Science & Technology 2, 3, 1, URL http://tvst.arvojournals.
org/Article.aspx?doi=10.1167/tvst.2.3.1 (2013).

Neisser, U. and R. Becklen, “Selective looking: Attending to visually specified events”,
Cognitive Psychology 7, 4, 480–494 (1975).

NFB, “Blindness Statistics — National Federation of the Blind”, Tech. rep., Na-
tional Federation of the Blind, Baltimore, Maryland, URL https://www.nfb.org/
resources/blindness-statistics (2017).

Novich, S. D., “Sound-to-Touch Sensory Substitution and Beyond”, URL https:
//scholarship.rice.edu/handle/1911/88379 (2015).

Novich, S. D. and D. M. Eagleman, “Using space and time to encode vibrotactile in-
formation: toward an estimate of the skin’s achievable throughput”, Experimental
Brain Research 233, 10, 2777–2788 (2015).

Oh, J., V. Chockalingam, S. Singh and H. Lee, “Control of Memory, Active Percep-
tion, and Action in Minecraft”, arXiv:1605.09128 [cs] URL http://arxiv.org/
abs/1605.09128{%}5Cnhttp://www.arxiv.org/pdf/1605.09128.pdf (2016).

Panchanathan, S., S. Chakraborty and T. McDaniel, “Social Interaction Assistant:
A Person-Centered Approach to Enrich Social Interactions for Individuals with
Visual Impairments”, IEEE Journal on Selected Topics in Signal Processing 10, 5,
942–951 (2016).

Pasquero, J., “Survey on communication through touch”, McGill Centre for Intel-
ligent Machines 6, August, 1–28, URL http://scholar.google.com/scholar?
hl=en{&}btnG=Search{&}q=intitle:Survey+on+Communication+through+
Touch{#}0 (2006).

Pietrzak, T., I. Pecci and B. Martin, “Static and dynamic tactile directional cues ex-
periments with VTPlayer mouse”, in “Proceedings of the Eurohaptics conference”,
pp. 63–68 (Paris, France, 2006).

109

https://pdfs.semanticscholar.org/e957/14321d7fb821b421f2897496ccd1d10fed60.pdf
https://pdfs.semanticscholar.org/e957/14321d7fb821b421f2897496ccd1d10fed60.pdf
file:///tmp/mozilla{_}pauli0/Cold Spring Harb Perspect Biol-2015-Moser-.pdf
file:///tmp/mozilla{_}pauli0/Cold Spring Harb Perspect Biol-2015-Moser-.pdf
http://www.disabilitystatistics.org/
http://www.disabilitystatistics.org/
http://tvst.arvojournals.org/Article.aspx?doi=10.1167/tvst.2.3.1
http://tvst.arvojournals.org/Article.aspx?doi=10.1167/tvst.2.3.1
https://www.nfb.org/resources/blindness-statistics
https://www.nfb.org/resources/blindness-statistics
https://scholarship.rice.edu/handle/1911/88379
https://scholarship.rice.edu/handle/1911/88379
http://arxiv.org/abs/1605.09128{%}5Cnhttp://www.arxiv.org/pdf/1605.09128.pdf
http://arxiv.org/abs/1605.09128{%}5Cnhttp://www.arxiv.org/pdf/1605.09128.pdf
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Survey+on+Communication+through+Touch{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Survey+on+Communication+through+Touch{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Survey+on+Communication+through+Touch{#}0


Redmon, J., S. Divvala, R. Girshick and F. Ali, “(YOLO) You Only Look Once”, in
“Computer Vision and Pattern Recognition (CVPR)”, (Computer Vision Founda-
tion, Las Vegas, Nevada, 2016), URL http://pjreddie.com/yolo/.

Redmon, J. and A. Farhadi, “YOLO v.3”, Tech. rep., University of Washington, URL
https://pjreddie.com/media/files/papers/YOLOv3.pdf (2018).
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Figure A.1: Leap Mounted on VR Headset

The Leap Motion’s field of view (FOV) is 150 deg degrees wide and 120 deg de-
grees deep. This is not largely different that the 180 deg by 180 deg degree FOV of
the human visual system Mazuryk et al. (2013). In that field of view, the effective
frustrum begins 25mm from the device and ends 600mm from the device for a total
of 8 cubic feet of interaction volume Alex Colgan (2014). While this does seem large,
it does place some limits on the positioning of the sensor, since a typical adult arm-
span is 2.1 inches greater than their height Barstow and Rerucha (2015), resulting in
a single-arm span of 3 feet.

Other limitations to consider are bright direct sunlight can affect the Leap Mo-
tion (Leap does not gaurantee performance outside), as well as occlusion from other
limbs and clothing. Mounting the Leap to a headset (similar to how it is done in
VR applications, see figure A.1), would be the best option for ensuring the field of
view is unobstructed while maintaining a common coordinate space with the camera
(also mounted on the headset). Mounting the Leap on a chest-mount or a belt-mount
would reduce the weight of the headset which could be cumbersome, but has the
added difficulty of occlusions from clothing (stray shirts), and other objects such as
tables. To validate Foveated Haptic Gaze, the Leap Motion was placed on the table
in front of the user to avoid the complexities involved in wearables.
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The vibratactile patterns used in the LRHI study Fakhri et al. (2019) are shown
in figures B.1, B.2 and B.3. Patterns for Phase 1 are static, they do not change over
time. Patterns in Phase 2 and 3 though (shown in figure B.2) do evolve over time.
The illustration shows how the patterns evolve over time (left to right). The first four
patterns (Left-to-Right, Right-to-Left, Top-to-Bottom, and Bottom-to-Top) have 4
states while the last two (Out-to-In and In-to-Out) only have two states. In Phase 2,
the patterns lasted a total of 1 second, while in Phase 3 they lasted either 0.6 seconds
or 1.4 seconds depending on the speed. In Phase 2 participants were asked to recall
what pattern they had experienced and in Phase 3 they were asked what pattern they
had experienced as well as how fast the pattern was presented (Slow, Fast).

Figure B.1: User Study Patterns for Phase 1: Patterns in this phase do not change
over time. They remain static. A red motor in this illustration represents a motors
on at full power, while a blue motor represents a motor that is completely inactive
(off). Participants were asked to recall what pattern they are experiencing after being
subjected to the pattern for 1 second.

In the last phase of the LRHI study (the interactive phase), participants played a
two dimensional game depicted in figure B.3. The user plays as a cat that is displayed
on the Low Resolution Haptic Display whose goal is to find a mouse. The game is
played completely on the haptic display, the user is not given any visual cues. A
successful game occurs when the cat finds the mouse (as shown by the arrows). The
game is timed: the participant is told to find the mouse as fast as possible. The user
controlls the cat using a computer mouse peripheral and the cat moves on the haptic
display with respect to the participant’s mouse movements.
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Figure B.2: User Study Patterns for Phases 2 and 3: Patterns in these two phases were
dynamic, meaning they evolve over time. A red motor in this illustration represents
a motors on at full power, while a blue motor represents a motor that is completely
inactive (off).
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Figure B.3: Illustration of cat-mouse game for The interactive Phase: This is a game
where the user plays a cat (green) that has to find a mouse (red). It is depicted
visually in the top row. The bottom row depicts the activation of motors on the
haptic display. A red motor represents a “pulsating” motor while a green motor is a
statically vibrating motor, these represent the mouse and cat respectfully.
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(a) (b) (c)

(d) (e)

Figure C.1: (a) Original image of a hand holding an object (b) Hand segmentation
applied to image (c) Inferred depth-map of image (MegaDepth) (d) Thresholded
depth-map in a predefined range over and under the depth at the center of the hand
(e) Object masked: logical and between hand segmentation and thresholded depth
map

Figure C illustrates a naive method for segmenting an object being held from
egocentric images. The method requires several components: a hand detection mod-
ule, hand segmentation module and a depth inference module. The hand detection
and segmentation module can be combined, as bounding boxes can be inferred from
segmentation masks. Segmenting the objects is performed as follows. The hand de-
tection module produces a bounding box around the hand while a hand segmentation
module produces a mask for any hands in the image (see figure C.1b). The depth
inference module then produces a depth-map from the image (see figure C.1c). This
depth-map is then thresholded using a predefined range with the center of the range
defined as the depth at the center of the bounding box of the hand (see figure C.1d).
Finally, a segmentation mask for the object in the hand is produced by performing a
logical and operation between the thresholded depth-map and the hand segmentation
mask. This is illustrated in figure C.1e.
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Figure D.1: Samples from the synthetic dataset generated from two objected having
undergone the automatic segmentation process. These objects are a water bottle and
keys.
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