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ABSTRACT

Over the past decade, advancements in neural networks have been instrumental

in achieving remarkable breakthroughs in the field of computer vision. One of the

applications is in creating assistive technology to improve the lives of visually im-

paired people by making the world around them more accessible. A lot of research in

convolutional neural networks has led to human-level performance in different vision

tasks including image classification, object detection, instance segmentation, seman-

tic segmentation, panoptic segmentation and scene text recognition. All the before

mentioned tasks, individually or in combination, have been used to create assistive

technologies to improve accessibility for the blind.

This dissertation outlines various applications to improve accessibility and in-

dependence for visually impaired people during shopping by helping them identify

products in retail stores. The dissertation includes the following contributions; (i) A

dataset containing images of breakfast-cereal products and a classifier using a deep

neural (ResNet) network; (ii) A dataset for training a text detection and scene-text

recognition model; (iii) A model for text detection and scene-text recognition to iden-

tify product images using a user-controlled camera; (iv) A dataset of twenty thousand

products with product information and related images that can be used to train and

test a system designed to identify products.
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Chapter 1

INTRODUCTION

1.3 billion people live with some form of visual impairment, with around 250 mil-

lion people who have visual impairment ranging from moderate to complete blindness

and close to 826 million people who have near vision impairment.

People who have such visual impairment, find it incredibly arduous to shop phys-

ically in stores due to their disability resorting to shopping with a friend, relative,

shopping store assistant, creating shopping lists, and giving it to others who would

buy it for them. None of these alternatives improve the accessibility of shopping

for the visually impaired. Hence, such people can resort to not shopping from retail

stores and online stores to do their shopping.

Considering close to one billion people suffer from a varied range of visual im-

pairments that hampers their experience of shopping physically in stores, retails are

losing access to close to 15% of the world’s population. These people constitute a

vast untapped market for retail spaces.

On the other side, online retailers have made huge strides in making their platforms

accessible to virtually anyone who wants to shop. These online retailers have used the

web and the mobile platform to their advantage. Both the web and mobile, provide

accessibility features natively, which makes the online retailers’ website and mobile

apps very easy to navigate for people with different impairments. There also has been

much research into making websites and mobile apps accessible.

This improvement in accessibility, however, has not extended for accessibility in

retail spaces. While they have done lots to improve the experience of a usual customer,
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improvements in terms of making their spaces truly accessible and making shopping

a seamless operation for people with impairments is a far-off dream.

With retail stores facing massive competition from online stores and with increas-

ingly drying footfall and subsequent closure of a lot of retail spaces, making their

stores more accessible to people with impairments may be the strategy that saves

them from fading out of existence.

Recent developments around the world surrounding the pandemic of Covid-19 has

caused people to stock up on daily necessities, food, and emergency utilities. Online

stores have been out of stock of a lot of necessary items. This situation and other

”Acts of God” in history have shown that in certain situations, retail stores are the

only avenue to buy the necessities even if it means standing in a line and waiting to

get our hands on the required products. These situations increase the importance of

making retail stores accessible to everyone involved.

One of the ways the mega retail stores are making their stores more accessible is

with an accompanying mobile app. Retail giants such as Walmart, Target, Costco,

and more have created mobile apps that not only help a customer to shop through the

mobile app and get the goods delivered at home, the app also provides information

that helps the people to shop while visiting one of their retail stores. A few ways

these apps help the users are as follows:

� Ability to scan the product barcode on either the product itself or on the shelf

to get information about the product.

� Search the product inside the app and getting to know the location of the

product inside the store.

� If a product is unavailable in a store, find a store around the location of the

user, in which it is available.

2



Figure 1.1: Images (a) and (b) demonstrate the accessibility feature in the Walmart
app, which identifies the product based on the barcode. Image (c) demonstrates the
feature in Walmart app which shows in which the nearest store is the product located
and in which aisle.

� Keeping track of your receipts so that the customers don’t have to have physical

copies of the receipts with them in case they want to return the product or get

it repaired under warranty.

However, not all retail stores have such accessibility features. A majority of apps

made by retail stores are geared towards making the customer shop through it as an

online store rather than use it as an accessible way to shop in their retail stores.

One of the disadvantages of having only barcodes as the only accessible way of

identifying a product for visually impaired people who are shopping in retail stores

is that the placement of barcodes is different in different products and different even

in the same product with different packaging. Having people move and rotate the

product in all directions trying to scan a barcode with the product on the one hand

and the mobile in another is not an efficient way of tackling this problem and is a

recipe for disaster.
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Microsoft has an app on Google’s Play Store and Apple’s App Store called ”Seeing

AI,” which beeps with higher frequency the closer it thinks you are to a barcode.

After experimenting with it, it doesn’t look like it would solve the problem of making

identifying the product more accessible.

Google search has one very accessible functionality called Google Lens, which helps

in searching what a product is by taking an image of the product and searching the

web-based on the text as well as the features found inside the image. This solution is

very useful in improving the accessibility for visually impaired people while they are

shopping as it helps in identifying the product and removes the burden of looking for

the barcode off the user.

Figure 1.2: Image (a) shows the Google Lens trying to find text on the product.
Once the user clicks on the search button, it identifies the product as shown in Image
(b). Image (c) shows the app shows the search results for the product which show
from where the product can be bought.

As seen in Figure (1.2), While Google lens works very well to identify different

products, it can be improved further, as is evident from Figure (1.3). Also, from
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Figure 1.3: Image (a) shows the Google Lens App failing to identify a product in
focus.

Figure(1.2), based on the results shown after the product is identified, it seems like

the aim of the tool is to help you buy the product online instead of giving you more

information about the product.

This dissertation looks into making progress in the direction of improving acces-

sibility for the visually impaired by attempting to identify the different products in

front of the person.

1.1 Goals And Motivations

The goal of this dissertation is to propose ways to classify images of products into

different categories and create datasets that can be used to improve the classification.

It seeks to look into different ways classification can be achieved, the advantages and

disadvantages of different solutions, and potential ways of improving the proposed

solutions. It also outlines the different directions for this research in the future.
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1. AI For Good : AI for Good1 was a challenge created by Microsoft in 2019 that

challenged developers, students and data scientists to use AI to tackle some of

society’s greatest obstacles and build a more sustainable and accessible world.

One of the focus of the challenge was to empower people with disabilities by

using AI for hearing, seeing, and reasoning with increased accuracy to help

people with the everyday task.

2. AI for Accessibility : Microsoft has another grand program called AI for Acces-

sibility2 which funds projects that use AI to improve the human capability for

more than a billion people around the world with a disability. A few projects

under this program that have been funded are (i) Making people aware of their

surroundings for visually impaired people using their mobile device’s sensors

and cameras. (ii) Chatbot for people with disabilities.

3. AI for Social Good : This is a social program3 from Google which revolves

around using AI to approach problems to improve the people’s lives.

4. Personal Motivations : As a vegan following the sattvic diet, many food products

don’t follow the dietary restrictions set by the sattvic diet. It is tough to identify

these products without doing sufficient research. Many people also follow similar

diets and don’t have the necessary information while doing their shopping, either

in retail stores or online. A system that helps them identify different products

and shows them if they’re as per their dietary requirements is sorely needed.

1https://www.microsoft.com/en-us/ai/ai-idea-challenge
2https://www.microsoft.com/en-us/ai/ai-for-accessibility
3https://ai.google/social-good/
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1.2 Contributions

The contributions of the dissertation are as follows:

1. A dataset of 60 cereal box categories containing 1000 images to be used for

classification.

2. A trained CNN classifier that classified an image into one of 60 cereal box

categories.

3. A system that takes an image and using scene text recognition with character

recognition classifies the image into 60 cereal box categories.

4. A dataset to improve the scene text detection and recognition models.

5. A dataset of twenty thousand products that contains the name, images, brand,

marketing text, specifications, and nutrition of the products. This dataset would

then be used to test the accuracy of the system designed to identify the products.

1.3 Dissertation Outline

Chapter 2 provides a literature review of papers and technologies used to implement

and deploy the cereal image classifier and scene text recognition based classifier.

Chapter 3 provides an overview of creating a Resnet34 image classifier and its ac-

companying dataset.

Chapter 4 provides an overview of using text detection and scene text recognition

to classify the cereal box images.

Chapter 5 provides an overview of creating a dataset for improving the performance

of scene text detection and recognition models.

Chapter 6 provides an overview of creating a dataset of twenty thousand products

that can be used to measure the accuracy of product identification systems.
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Chapter 2

LITERATURE REVIEW

The field of deep learning and computer vision has come a long way. Open image

datasets such as ImageNet (Russakovsky et al. (2014)), provide a large pool of im-

ages, with more than twenty thousand categories, to train a neural network on and

compare the results with other neural networks. In addition to ImageNet, datasets

such as COCO(Lin et al. (2014)) and Pascal VOC(Everingham et al. (2009)) also

provide images that can be used to train neural networks for tasks such as image

classification, object detection, instance segmentation, semantic segmentation and

panoptic segmentation. An advantage of such challenges is that models trained on

ImageNet, COCO, Pascal VOC or any other open data, can be used as a base for

transfer learning to reduce the amount of time it takes to train a neural network for

other such computer vision tasks.

Along with indispensable libraries such as OpenCV (Bradski (2000)) for achieving

computer vision tasks, libraries to create neural networks with ease have also been a

part of development in this field. Libraries such as Tensorflow (Abadi et al. (2015))

and PyTorch (Paszke et al. (2019)) have been popular in the field of deep learning

with loads of documentation, tutorials, implemented papers and pretrained models,

additional libraries on top of them to achieve additional task available in the open.

One such library on top of PyTorch gaining popularity nowadays is FastAI (Howard

and Gugger (2020)). On top of PyTorch, FastAI includes methods to easily save,

export and load models, implementations of papers which improve the speed and

accuracy of training, visualizing the output of the trained model and much more.

This makes it very easy for a newcomer to jump into the field of deep learning.
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One of the neural network architectures which is really popular to be used for

different computer vision tasks is Residual Networks as mentioned in He et al. (2015).

ResNets of varying depths are being used as backbones in other neural networks made

to accomplish different computer vision tasks. For example, ResNet is used as a

backbone in Mask R-CNN He et al. (2017) to accomplish Instance Segmentation in

image datasets.

In addition to an image classifier, this disseration also works on creating a classifier

using scene text detection and recognition techniques. Character Region Awareness

for Text Detection or CRAFT, Baek et al. (2019b), is used to detect text in an

image. The parts of image with text are then extracted and given as an input to a

TPS-ResNet-BiLSTM-Attn model as developed by Baek et al. (2019a). This model

reads the text inside the image segments and retuns the text as output.

Modern tools such as Jupyter notebooks, visual studio code, Anaconda make it

easy to write, debug and run python programs. Python libraries such as FastAPI,

uvicorn make the task of creating RESTful apis simple and straightforward. In this

disseration FASTAPI is used to create a RESTful API that serves the cereal classifier

and the scene text classifier model. To consume the RESTful APIs and to demonstrate

that this disseration can be incorporated in real world scenarios, I created a mobile

app using a cross platform framework known as Flutter. Flutter makes it very easy

to write the code once and run it on all the major app platforms such as Android,

iOS, Web, Windows, Mac and Linux. There are ports of Flutter which allow it to

run on embedded systems such as Raspberry Pi as well.
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Chapter 3

CEREAL CLASSIFIER

The objective here is to Create a deep convolutional neural network that can clas-

sify the photo of cereal boxes into one of the 60 predefined categories. We added one

additional category called ‘None’ which would capture all the images not belonging

to any of the cereal boxes.

3.1 Creating A Dataset

A deep neural network would require sufficient images of the cereal boxes to train

it to classify 60 different cereal boxes. The different sources of images that I used

were Google Images, Online Store Images and manually taken images. A detailed

explanation of each technique and their associated challenges is described in detail in

the following sections.

3.1.1 Google Images

Initially, I decided to use Google Images to download the images of the cereal

boxes. The following are the steps I took to download the images:
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� I used node.js and the puppeteer library to automate the search for images of

a particular cereal box on Google Images.

� Using the puppeteer library, I extract the URLs of the images displayed on the

Google images. The number of URLs I extract is 100.

� Once all the URLs have been extracted, I download the images and save them

to a folder corresponding to the name of the cereal.

� If the downloaded image is less than 512x512, I remove it from the dataset.

As shown in Figure (3.1), Even though downloading images for a particular food

item using Google Image can be easily automated, I faced the following problems

with the above approach:

� Quality of Image is not always as to what I required for the classification task.

� Images of the cereal box from all around the world, with different packaging, is

also mixed in with the desired Images.

� Images not of the cereal box were also in the mix of the downloaded images.

� Images with multiple cereal boxes of the same company in the same image.

Hence, while using this approach, the work required to improve the dataset after

the images have been downloaded is a lot. The number of good images that we get

from this approach is also very low.

3.1.2 Online Store Listing

Walmart.com is an excellent source for product information such as the name of

the company making the product, the weight/volume/size, the ingredients, the nu-

trition information of the product and other meta-information such as the marketing
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writeup and reviews about the product. It also houses high-quality images of the

product from different angles for a lot of products as shown in Figure (3.2).

I extracted the information from Walmart.com for the 60 cereal boxes using the

following steps:

� Using node.js and puppeteer go to the URL of the cereal box on Walmart.com.

� Once the page has been fully rendered, extract the title, price, marketing

writeup, ingredients, additional info table, nutrients, and image URLs from

the page using puppeteer library.

� Download the images from the URLs gathered from the previous steps.

� Save the images and the JSON file containing the product information in a

folder with the name corresponding to the name of cereal.

The naming convention for the folder of the cereal box is as follows:

{company_name}-{cereal_name}

3.1.3 Manually Taking Images

The previous method of scraping data from Walmart.com is great for extract-

ing information about the product. However, even with both the previous method

combined, we don’t have enough images to train a neural network.

I decided to get more images of the 60 cereal boxes by going to the Walmart store

and capturing it myself. I took 10 images of each cereal box where 5 images are of

the cereal box sitting on the shelf and 5 images are of the cereal box being held in

the hand as shown in Figure (3.3).
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3.1.4 Compiling The Images

All the valid images from the above three steps are compiled and saved in their

respective folder. Please refer to Table (3.1) for Image counts for different cereal

boxes.

Category Name Count of Images

cascadian farm organic− cinnamon crunch 18

cascadian farm organic− fruit nut granola 15

general mills− apple cinnamon cheerios 15

general mills− blueberry cheerios 15

general mills− cheerios cinnamon oat crunch 14

general mills− cheerios whole grain oats 41

general mills− chocolate cheerios 17

general mills− chocolate lucky charms 14

general mills− chocolate peanut butter cheerios 14

general mills− chocolate toast crunch 14

general mills− cocoa puffs 12

general mills− cookie crisp 14

general mills− corn chex 14

general mills− drumstick classic vanilla 14

general mills− fiber one 14

general mills− fiber one hone clusters 14

general mills− french toast crunch syrup cinnamon 15

general mills− golden grahams 14

general mills− honey nut cheerios 38
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general mills− honey nut cheerios medley crunch 15

general mills− honey nut chex 14

general mills− lucky charms 14

general mills−maple cheerios 15

general mills− raisin nut bran 14

general mills− rice chex 15

general mills− very berry cheerios 14

general mills− wheaties 12

great value− bran flakes 18

great value− raisin bran 15

kashi− goplay honey almond flax crunch 12

kashi− gorise original 12

kashi− organic blueberry clulsters 12

kelloggs− all bran original 12

kelloggs− chocolate frosted flakes 13

kelloggs− corn flakes 22

kelloggs− froot loops 9

kelloggs− froot loops marshmallows 12

kelloggs− frosted flakes 45

kelloggs− frosted mini wheats original 11

kelloggs− krave chocolate 12

kelloggs− pop tarts cereal 13

kelloggs− raisin bran 23

kelloggs− raisin bran crunch 13
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kelloggs− rice krispies 41

kelloggs− special k chocolatey delight 12

kelloggs− special k fruit yogurt 12

kelloggs− special k original 39

kelloggs− special k protein 12

kelloggs− special k red berries 35

kelloggs− special k vanilla almond 13

none 84

post− cocoa pebbles 12

post− fruity pebbles 13

post− great grains crunchy pecan 13

post− honey bunches of oats almonds 10

post− oreo os 13

post− sour patch kids 13

quaker − simply granola oats honey almonds 12

quaker − simply granola oats honey raisins almonds 12

total − whole grain flakes 14

Table 3.1: Number Of Images For In Cereal Categories

3.2 Training A Neural Network

3.2.1 Selecting A Deep Learning Framework

The deep learning landscape has a lot of different frameworks that one can use

to train a CNN classifier. While TensorFlow and PyTorch were more than capable
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of implementing such a classifier, I selected the Fast.ai framework. Fast.ai is built on

top of PyTorch and has the following advantages:

� Intuitive API for loading data

� Helper functions to visualize the training data, debugging the model, visualize

the result and much more.

� It has implementations of papers which improve the speed of training and for

fine tuning the model.

� It has powerful data augmentation utilities which use the GPU to augment data

which reduces the time it requires for data augmentation on the fly.

� Since the framework is built on top of PyTorch, all the advantages of using

PyTorch apply to Fast.ai.

3.2.2 Selecting A Backbone For The Neural Network

The criteria for selecting a backbone were as follows:

� The cereal classifier model should be performant on CPUs.

� The ImageNet pretrained weights for the backbone should be available.

� The resulting network should have a top 1 accuracy of >90%.

Resnets are a powerful backbone network for a classification task. ResNet50 scores

81% top 1 accuracy in the ImageNet image classification task. task by transferring

the learnings of ImageNet onto our own model. Hence, I selected ResNet34 to train

the model initially since the current problem only has 60 categories to predict and

check the results.
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3.2.3 Data Augmentations

The following augmentation techniques were applied to the dataset:

� Random Rotation between -90 to 90

� Random Zooming in Image between 1 to 1.2

� Random Lightning and Contrast Change

� Random Symmetric Warping

Each of the above transformations are applied with the probability of 0.75 onto

the image. Figure (3.4) shows an output of data augmentation techniques on one

single cereal box image.

3.2.4 Training The Model

Once the dataset is in place, the backbone selected and the augmentations con-

figured, the next step would be to train the model.

Using Transfer Learning To reduce the time to train the model, we use a

ResNet model pretrained on the ImageNet dataset, remove the last layer of the down-

loaded model and add our own last layer corresponding to the number of cereal classes

for which we’re trying to train the model.

Freezing Layers During Training Since we’re using a model pretrained on

ImageNet, it has already learned to detect a good amount of features that can be

reused to detect the cereal classes. However, our last layer is just random weights

initially before we start training our model. So initially we can freeze all layers except

the last and train only the last layer.

Using Variable Learning Rate Once we reach an accuracy where the last layer

cannot be improved further, we can unfreeze all the layers so that they all can be
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used for training and train the model further. However, since the initial layers have

learned features, training all the layers with the same learning rate can potentially

overfit the model. Hence, we can train the last layer with a higher learning rate and

the other layers can be trained with a lower learning rate.

3.2.5 Results

The model achieved classification accuracy of 96%.

3.3 Deploying The Model

To deploy the cereal image classifier, we would need to export the model so that it

can run on the server without the need of additional model training code. To create

a system that a user can use to run to classify cereal boxes, we would need to create

two additional systems that would allow the user to interact with the trained model.

3.3.1 Creating An Api

First system that needs to be developed to allow the user to interact with the

trained model is to create a RESTful API that serves the cereal classifier. It does not

have to be a RESTful API as any other Remote Procedure Call (RPC) methods can

be used to create a service that allows interacting with the model.

I created a RESTful API service using FASTAPI python framework. The following

is the API signature of the endpoint that uses the cereal classifier to classify the

images.
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PATH: /cc

HTTP METHOD: POST

BODY TYPE: multipart/form-data

BODY:

- file: string($binary)

RESPONSES:

SUCCESS:

STATUS CODE: 200

STRUCTURE: {"category_name": "string"}

3.3.2 Creating A Flutter App

To be usable by an end user, I needed a way to create an app or a website that

could allow the user to capture an image and get the classified category back.

Flutter framework allows creating a mobile app that can also be run as a website

and as a desktop app as well.

Figure (3.5) shows how the app operates.

3.3.3 Putting It All Together

Connecting all the above systems, we end up with a solution that a user can use

to classify a cereal box image into one of 60 cereal box categories.

Figure (3.6) shows how the entire system architecture and the flow of data.

3.4 Conclusion

While an image classifier reaches high levels of classification accuracy, we face the

following problems when running it in production.
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� Adding any new category to the model, means that the model needs to be

retrained.

� If categories of products keep getting added, the size of the models would keep

increasing reducing their portability. The accuracy and speed of inference of

the models would also decrease.

� An image classification model is susceptible to inaccuracies when trying to clas-

sify products having similar packaging.

Hence, we need a system that can classify products with high accuracy, does not

need to be retrained every time a new product is added to the dataset and is highly

portable.

The code, the dataset and the trained model for this project can be down-

loaded from the GitHub Project Page (https://github.com/aksharpatel47/accessible-

shopping).
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Figure 3.1: Searching for Kellogs Raisin Bran on Google Image Search does not
give accurate image results that can be used without verification. The red highlights
incorrect search results.
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Figure 3.2: Online store Listings showing images of the a cereal box.

Figure 3.3: Example of images gathered manually for a cereal box category.
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Figure 3.4: An example of how one single image is augmented using different tech-
niques such as Rotation, Zooming, Lightning, Warping with values of predefined range
applied with a probability of 0.75.

23



Figure 3.5: Taking an image of the product, the app sends the image to the server,
which returns the name of the category of the product which the system predicted.
This category is displayed on the next screen.

Figure 3.6: Taking an image of the product, the app sends the image to the server,
which returns the name of the category of the product which the system predicted.
This category is displayed on the next screen.

24



Chapter 4

SCENE TEXT CEREAL CLASSIFIER

Since a simple Convolutional Neural Network (CNN) classifier is ill suited for

my usecase, I needed to find another way to classify an image into 60 cereal box

categories. One technique that can be used to reduce the problem of having to train

a new model every time a new product is added to the model is to make a multi-class

classification model. This model would have different category names such as:

� Name of the brands that make the cereal e.g. Kellogs, Post

� Different types of cereals e.g. Raisin Bran, Red Berries

� Shape of the packaging e.g. Box

� Quantity of cereal in the box e.g. 12oz

� Special labels for the cereals e.g. Vegan, Gluten Free

This would allow the model to learn new products without the need to create a

completely new model. However, if a new label needs to be added for a new product

I want to classify, a new model needs to be trained with an additional label. Since,

this technique cannot be used to scale the solution to thousands of products, a new

system needs to be implemented that can accurately classify not only the 60 cereal

box categories but tens of thousands of products without the need to train the system

everytime a new product needs to be added.

Taking inspiration from Google Lens App, I decided to try to classify cereal box

categories using the text recognized from the input image and using the individual

words to identify its cereal box category.
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4.1 Dataset

The dataset that I used for the scene text cereal classifier, is the same dataset

which I used in the cereal classifier from chapter 3. In the initial system, I didn’t

train any model, but used pretrained models of state of the art neural networks.

Hence, all the images from the cereal classifier are part of the validation dataset for

the new system.

Since, I did not retrain the models, the accuracy of the implemented system would

become a baseline to measure any improvements to any layer of the system.

Table (3.1) shows the count of number of images for each category of cereals.

4.2 Detecting Text

The first part of the new system for classifying the cereals is detecting which parts

of the image contains text.

The neural network designed by Baek et al. (2019b), namely Character-Region

Awareness for Text Detection, is used to detecting text in images of cereal boxes.

This neural network uses VGG as a base network and predicts the region score and

affinity score of the characters detected on the image. The region score predicted by

the model shows the 2D Gauassian probability distribution of a detected character.

The affinity score shows the 2D Gaussian probability distribution of two characters

being part of the same word. Figure 4.1 shows the region score and affinity score

outputs by CRAFT network.

Using the utilities provided by Baek et al. (2019b), I convert the region scores and

the affinity scores into polygons. Figure (4.2) shows the detections being converted

into polygons. Ideally, each polygon contains one word. The reason for using polygons
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Figure 4.1: CRAFT when given an image as an input, identifies the region and
affinity scores of the text found in images.

is so that the image section inside the polygon that image can be cropped, extracted

and used as input for text recognition systems.

4.2.1 Successful Detections

Figure (4.3) shows parts of images where the CRAFT model is successful in iden-

fying the text as part of individual words.

4.2.2 Failing Detections

An failing detection is where the RAFT model does not identify the text in the

image or identifies multiple words as a single word in the image. Figure (4.4) shows

parts of image where the CRAFT model failed.

The reason we consider multiple words identified by the CRAFT model as failure

is because the scene text recognition only identifies one word of all the words inside

the polygon. This means we loose information when this happens.

27



Figure 4.2: Using the Region and Affinity scores, CRAFT provides utilities to
convert them into polygons. I used those polygons and converted them into a format
that can be visualized using the labelme tool.

4.2.3 Rotating The Polygons

The polygons identifying the detected words, while having 4 vertices, are not

always rectangles and also not always completely horizontal on the image. Figure

(4.2) shows the words at an angle as detected on the image.

To extract the region of the image inside the polygon, I first compute a rectangle

that tightly fits the polygon. This rectangle might not yet be completely horizontal.

If I compute a bounding box for the rectangle without rotating the rectangle to

be completely horizontal, the resulting bounding box and subsequently the cropped
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Figure 4.3: Shows parts of image which the CRAFT successfuly identified as single
words.

Figure 4.4: While CRAFT is generally very good at identifying text if it exists in
the image, the model generally makes a mistake when it identifies multiple words as
a single word in the image.

region would contain a lot more area of the image than it is required as shown in

Figure (4.5). Looking at the bounding boxes, it becomes clear that we need a better

way to crop the polygons which tightly capture the detected text.

Using OpenCV, I calculated the angles that the rectangles need to be rotated for

to make the rectangle horizontal. The complete image along with the rectangle is
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Figure 4.5: When using bounding box to crop the image segments, we extract more
information than required. As seen in the above images, since it captures more text
than required, it increases the probability of the text recognition model misclassifying
the image segment

then rotated by this angle and the region under the rectangle is extracted as shown

in Figure.

4.3 Scene Text Recognition

Detecting text in an image brings the solution one step closer to classifying the

image. Next, I needed to recognize the text inside the detections in the previous

section so as to be able to use the recognized words to classify the cereal boxes.

As per Baek et al. (2019a), I used a form of Convolutions Recurrent Neural Net-

work (CRNN) to extract features from the sections of image with text, using a Con-

volutional Neural Network (CNN) and reconfiguring the extracted features using Re-

current Neural Networks (RNN) accurately predict the sequence of words. Baek

et al. (2019a) suggest using a four step Scene Text Recognition (STR) framework

that transforms the image into text.

As suggested by Baek et al. (2019a), to get the best accuracy, I used Residual

Networks (ResNet) to extract visual features from the image and Bi-Directional Long
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Figure 4.6: When using bounding box to crop the image segments, we extract more
information than required. As seen in the above images, since it captures more text
than required, it increases the probability of the text recognition model misclassifying
the image segment

Short Term Memory Network (BiLSTM) to predict the sequence of the recognized

characters.

The following subsections demonstrate the situations where the model works and

where the model fails.

4.3.1 Successful Inputs

When the input to the scene text recognition model is a word, the model is very

accurate in identifying the text in the input. Table (4.1) shows image segments with

its predicted output text where the model succeeded.
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Table 4.1: Scene Text Recognition Success Examples

Image Predicted Text

sweetened

create

free

with

post

4.3.2 Failing Inputs

The Scene Text Recognition model fails when the input has multiple words or if

the input does not capture the entirety of the word. A few examples are shown in

Table (4.2).

4.4 Searching For The Product

At this point in the system, we have the text that the scene text recognition,

TPS-ResNet-BiLSTM-Attention, model from the previous section recognized from

the text sections detected in the image by CRAFT model from Section (4.2).

The next step in the system is to classify the input image into one of 60 categories

using the recognized words. The system ranks the cereal categories for an image

based on the number of word found in the data about a cereal category. The detailed

explanation of this process is in the following subsection.
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Table 4.2: Scene Text Recognition Failing Examples

Image Predicted Text

snownsture

0

the

contralized

4.4.1 Ranking Cereal Categories

To classify an image into cereal categories, we assign weights to the cereal cate-

gories based on the number of partial word matches in the data of a cereal. Algorithm

(4.4.1) details the ranking process:

4.5 Putting It All Together

If we consider the system developed in this chapter a blackbox, it works similar

to the cereal classifier developed in Chapter (3). This system still takes an image as

an input and returns the category of the image as classified by the system.

However, the internals of this system are much more complicated than the cereal

classifier from Chapter (3). Figure (4.7) shows the entire architecture and flow of the

implemented system.
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Algorithm 1 Classify Image Text into Cereal Box Category

n← number of categories

category names

categories info

detected words← scene text recognition output

category weights← [0, 0, 0...0]

for wordindetected words do

for i← 0, n do

category name← categorynames[i]

category info← categoriesinfo[i]

if wordpartialmatchescategory name then

category weights[i]← category weights[i] + 5

end if

if wordpartialmatchescategory info then

category weights[i]← category weights[i] + 1

end if

end for

end for

sorted indexes← −argsort(category weights)

return category names[sortedindexes[0]]
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4.5.1 Serving Via Api

In the RESTful API developed during Chapter (3) using FastAPI python frame-

work, I add one more endpoint to serve our new system.

The signature of the new endpoint is given below.

PATH: /stcc

HTTP METHOD: POST

BODY TYPE: multipart/form-data

BODY:

- file: string($binary)

RESPONSES:

SUCCESS:

STATUS CODE: 200

STRUCTURE: {"category_name": "string"}

4.5.2 Mobile App

In the mobile app developed during Chapter (3) using the Flutter cross platform

mobile app framework, I add one more page in the app which takes an image of the

product in front of the user, uploads the image to the POST/stcc/ endpoint of the

API.

Figure (4.8) shows the app in action.

4.6 Conclusion

Using Text Detection and Scene Text Recognition to classify images into cereal

box categories worked as intended. The advantages of using this technique are:
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� Adding a new product to the classification catalog is as simple as adding infor-

mation about the product.

� Adding a new product does not mean we need to retrain the entire system.

� The entire system is modular. This means, we can replace parts of the entire

system would benefit from the updated module without needing to rewrite the

entire system.

� Result of the classification can be attributed properly unlike the cereal classifier.

However, we saw that CRAFT model and TPS-ResNet-BiLSTM-Attn model can

be improved further. In the next chapter I discuss about creating a dataset that can

help improve these models further.

The code for the implemented system can be downloaded from the GitHub Project

Page (https://github.com/aksharpatel47/accessible-shopping).
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Figure 4.7: The image shows the architecture of the entire scene text classifier
system.
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Figure 4.8: Mobile App that takes the image of the product in front of the user,
sends it to the restful api and displays the category of the item classified.
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Chapter 5

DATASET FOR SCENE TEXT RECOGNITION

After analyzing the system implemented in Chapter (4), we find that if the inputs

to the classifying algorithm mentioned in Algorithm (4.4.1 are faulty, the classification

fails to return the correct cereal category.

The two biggest pain points of the output of text detection and recognition models

were:

1. Polygon of a text detection not tightly fitting the detected word.

2. Inaccurate recognition of text inside an image.

5.1 Improving Text Detection

As mentioned in Baek et al. (2019b), CRAFT uses weak supervised learning. It

uses word level labels along with word length to learn the region and affinity scores.

Hence, to improve CRAFT, I needed to create a dataset with improved word level

labels.

To create a dataset that can improve CRAFT or any other text detection or

recognition system, I improved the labels of text detection on each and every image

in the dataset. The methodology adopted to improve the labels is simple: make the

polygon labeling the text detection as tightly fitted as possible. Figure shows the

before and after of an image with labels improved.
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Category Name Count of Text

Labels

cascadian farm organic− cinnamon crunch 1136

cascadian farm organic− fruit nut granola 1072

general mills− apple cinnamon cheerios 854

general mills− blueberry cheerios 980

general mills− cheerios cinnamon oat crunch 700

general mills− cheerios whole grain oats 2464

general mills− chocolate cheerios 1359

general mills− chocolate lucky charms 898

general mills− chocolate peanut butter cheerios 851

general mills− chocolate toast crunch 873

general mills− cocoa puffs 461

general mills− cookie crisp 781

general mills− corn chex 473

general mills− drumstick classic vanilla 543

general mills− fiber one 787

general mills− fiber one hone clusters 532

general mills− french toast crunch syrup cinnamon 833

general mills− golden grahams 590

general mills− honey nut cheerios 2166

general mills− honey nut cheerios medley crunch 1592

general mills− honey nut chex 637

general mills− lucky charms 611
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general mills−maple cheerios 990

general mills− raisin nut bran 1057

general mills− rice chex 611

general mills− very berry cheerios 1557

general mills− wheaties 424

great value− bran flakes 765

great value− raisin bran 767

kashi− goplay honey almond flax crunch 705

kashi− gorise original 506

kashi− organic blueberry clulsters 462

kelloggs− all bran original 512

kelloggs− chocolate frosted flakes 518

kelloggs− corn flakes 562

kelloggs− froot loops 414

kelloggs− froot loops marshmallows 625

kelloggs− frosted flakes 876

kelloggs− frosted mini wheats original 508

kelloggs− krave chocolate 770

kelloggs− pop tarts cereal 496

kelloggs− raisin bran 1267

kelloggs− raisin bran crunch 690

kelloggs− rice krispies 1204

kelloggs− special k chocolatey delight 575

kelloggs− special k fruit yogurt 660
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kelloggs− special k original 942

kelloggs− special k protein 402

kelloggs− special k red berries 1102

kelloggs− special k vanilla almond 595

none 3076

post− cocoa pebbles 581

post− fruity pebbles 649

post− great grains crunchy pecan 916

post− honey bunches of oats almonds 330

post− oreo os 488

post− sour patch kids 492

quaker − simply granola oats honey almonds 863

quaker − simply granola oats honey raisins almonds 901

total − whole grain flakes 789

Table 5.1: Number Of Text Detection Labels In Cereal

Categories

5.2 Improving Text Recognition

To create a dataset that can improve Scene Text Recognition, I needed to improve

the predictions of the TPS-ResNet-BiLSTM-Attn model. This meant going about

each and every text detection image and verify the text recognition prediction of that

image.
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A way to uniquely identify each instance of the label is to keep the information

of (i) Category Name (ii) File Name (iii) Coordinates of the polygon fitting the text

detection.

I added the above mentioned information into a json string with structure:

{

"category": "...",

"file_name": "...",

"points": [...],

"text": "..."

}

The text key in the json data has the corrected text output. The above json string

is then encoded into a base64 string and this string is set as the name of the file of

the text detection cropped image.

5.3 Conclusion

The above two datasets, text detection and recognition dataset, provide accurate

labels which can be used to improve scene text recognition neural networks and

systems.

Both the datasets can be downloaded from the GitHub Project Page

(https://github.com/aksharpatel47/accessible-shopping).
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Figure 5.1: As shown in the above image, I added labels where the CRAFT model
did not find text so that text detection models can be improved using the new dataset.

44



Chapter 6

20K PRODUCT DATASET

To accurately measure the performance of the system developed in Chapter (4),

I needed to test its performance on a lot more products than 60 categories.

To increase the number of categories I needed the following information of new

products:

1. High Quality Images of the Product

2. Name of the Product

3. Name of Brand which manufactures the product

4. About info of the product

5. Health Labels on the product

6. Warning labels on the product

7. Ingredients

8. Specifications of the product

9. Nutrition Information of the Product

To truly test the system on scale, I decided to create a dataset of twenty thousand

products with the above described details and images.

In the following sections, I go into how I went about to creating the data.
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6.1 Getting The Data

In similar fashion of getting data for the cereals, I used Walmart.com as a source

for getting data for the twenty thousand different products. An example of a product

page on Walmart.com can be seen in Figure (6.1)

6.1.1 Creating Product Category List

To automate the process of extracting data from Walmart.com, I created a text

file containing a list of 46 different categories I wanted to find products of on Wal-

mart.com.

The automated data extraction tool that I wrote, created a managed chrome

browser, with 46 different tabs, each tab dedicated to a single category. In each tab,

my script opens a search page for the said category.

6.1.2 Extracting Product List

Once all the tabs have opened their respective category search page, the script

goes on to create a list of links of the product pages on the Walmart.com. Once the

script has collected all the links on one page, it automatically goes to the next page

and continues collecting the links. The script collects first 600 products returned for

a particular category search.

6.1.3 Extracting Product Information

After completion of the previous step, the number of links I had collected had

reached twenty four thousand. Once, I had the links, I wrote an automated script

which initializes another managed chrome browser and opens multiple tabs that can

be controlled through the script. Each open tab, navigates to the collected product
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page links and once the page has loaded completely, the script extracts the necessary

information, mentioned at the start of this chapter, from the page and saves it as a

json file inside the product named folder.

Figure shows product listing page of an example product with important infor-

mation highlighted.

With all the production information downloaded, I wrote a python script that

reads all the json files, puts together a list of images to be downloaded, downloads

them and saves them in their respective product folder.

6.2 Improving The Dataset Quality

Since I automated the creation of such a huge dataset, it is bound to contain

products with missing information. For the proposed system to work, the more

information it has to classify the products the better.

6.2.1 Missing Images

Of all the products whose information I have collected, there are some who don’t

have any images associated with them. Since the number of such products are small,

I decided to ignore such products.

6.2.2 Images Without Text

To validate if the system is able to identify the product just from the downloaded

images, the system needs images from which text can be extracted from it. Products

where the images contain no text, cannot be tested or validated by the system. Hence,

I decided to ignore such products.
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6.2.3 Images With Incomplete Information

Just as we cannot validate products having images without text, validating prod-

ucts ,which have text in image but the textual information is insufficient to identify

the product, is also difficult. However, since there is some information available, I de-

cided not to remove such products from the datasets, but to move them to a separate

folder called difficult.

The methodology of selecting products for the difficult folder was as follows:

1. Run Scene Text Recognition on All the Images

2. Find products where the word count inside images <10.

3. Use the Jupyter Notebook to review the product information and mark it as

difficult if required.

4. Move all the difficult marked products to a separate difficult folder.

6.3 Conclusion

In this chapter, I discussed about creating a dataset with twenty thousand prod-

ucts containing product images and information. This dataset would then be used

to check the performance of a classification/search system developed on the basis of

scene text recognition.

The dataset can be downloaded from the GitHub Project Page

(https://github.com/aksharpatel47/accessible-shopping).

48



Figure 6.1: The image shows listing of Kellogs Raisin Branch Crunch cereals on
Walmart.com. The data extractor uses the information available in various sections
of the product page to create a product category in the output dataset.
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APPENDIX A

USING FLUTTER FOR ACCESSIBLE APP DEVELOPMENT
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While implementing the dissertation, when the decision came to select a frame-
work for creating an app that the end users can use to interact with the implemented
system, the following criterias were used to evaluate different frameworks and toolkits.

� The framework should follow write once run anywhere philosophy

� It should be sufficiently performant

� It should have a working camera module

� It should have a working filesystem / file picker module

� There should be a possibility of calling C++ code and native system modules
from the framework

� Creating a UI using the framework should be a trivial task.

Using the above mentioned criterias, I narrowed my search to Flutter and React
Native.

Based on the direction that the Flutter framework is taking, Dartlang being a
statically typed language, and the introduction of the Foreign Function Interface
(FFI) system in Dartlang which enables calling C++ code from dart, I decided to
implement the mobile app using Flutter.
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APPENDIX B

IMPROVING INFERENCE TIMES
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In the systems developed in the different chapters, the inference is run on the
server where the model is served through a RESTful API. However, this appoach has
its disadvantages such as:

� It has to upload an entire high quality image taken from the camera of phones.
This increases the latency of the system.

� In places where there are no or bad internet connections, the app becomes
useless.

These disadvantages can be resolved by implementing the following two methods.

RUNNNING THE MODELS ON THE APP

PyTorch has released libraries that allows PyTorch based models to run on the
mobile phones. It also has libraries where it can run the models on the desktops. In
addition to PyTorch, there are runtimes such as ONNX, Bai et al. (2019), which allow
running PyTorch based models after converting them into ONNX format. ONNX also
has a web library which enables running models on the web.

This is particularly important as when the user captures an image, instead of
waiting for the server to classify the image, accessible information extracted from the
text about the product can be given straight to the user while waiting for the server
to accurately identify the product.

RUNNING INFERENCE CLOSER TO THE USER

There might be situations where running the model on the device of the user
might not be feasable. This might be due to:

� The user device not having enough space to save the model.

� Model utilizing and draining battery of the user device.

In such situations, Retail stores can install a device such as Raspberry Pi along
with Intel Compute Stick for inference on the edge of their network, usually at the
location of their stores, on which the users can connect and run inference on the
captured images.
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