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ABSTRACT

Robotic lower limb prostheses provide new opportunities to help transfemoral am-

putees regain mobility. However, their application is impeded by that the impedance

control parameters need to be tuned and optimized manually by prosthetists for each

individual user in different task environments. Reinforcement learning (RL) is capa-

ble of automatically learning from interacting with the environment. It becomes a

natural candidate to replace human prosthetists to customize the control parameters.

However, neither traditional RL approaches nor the popular deep RL approaches are

readily suitable for learning with limited number of samples and samples with large

variations. This dissertation aims to explore new RL based adaptive solutions that

are data-efficient for controlling robotic prostheses.

This dissertation begins by proposing a new flexible policy iteration (FPI) frame-

work. To improve sample efficiency, FPI can utilize either on-policy or off-policy

learning strategy, can learn from either online or offline data, and can even adopt ex-

iting knowledge of an external critic. Approximate convergence to Bellman optimal

solutions are guaranteed under mild conditions. Simulation studies validated that

FPI was data efficient compared to several established RL methods. Furthermore, a

simplified version of FPI was implemented to learn from offline data, and then the

learned policy was successfully tested for tuning the control parameters online on a

human subject.

Next, the dissertation discusses RL control with information transfer (RL-IT),

or knowledge-guided RL (KG-RL), which is motivated to benefit from transferring

knowledge acquired from one subject to another. To explore its feasibility, knowledge

was extracted from data measurements of able-bodied (AB) subjects, and transferred

to guide Q-learning control for an amputee in OpenSim simulations. This result again

demonstrated that data and time efficiency were improved using previous knowledge.
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While the present study is new and promising, there are still many open questions

to be addressed in future research. To account for human adaption, the learning con-

trol objective function may be designed to incorporate human-prosthesis performance

feedback such as symmetry, user comfort level and satisfaction, and user energy con-

sumption. To make the RL based control parameter tuning practical in real life, it

should be further developed and tested in different use environments, such as from

level ground walking to stair ascending or descending, and from walking to running.
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Chapter 1

INTRODUCTION

1.1 Background of Robotic Lower Limb Prosthetic Control

1.1.1 Robotic Knee Prosthesis

It is reported that there were over 600,000 lower-limb amputees lived in the US

in 2005, and the number is expected to double due to the expected increase in dia-

betes in the coming years [1]. Amputees rely on lower limb prostheses prescribed by

prosthetists to regain some function of the missing limb. These passive devices still

cannot fully replicate intact leg behavior as they are incapable of providing positive

net power during the gait cycle [2], which makes amputee’s mobility and stability

remain substantially limited [3].

Compared to traditional energy-passive prostheses, robotic lower limb prostheses

can provide greater functionalities and more natural gait patterns [4, 5]. A robotic

prosthesis and its wearer can be treated as a human-machine integrated system where

the controller of the prosthesis may adapt to or fight against the human body. Such

interaction or co-adaptation between the two adaptive systems, namely the human

and the learning machine, has been rarely studied. Therefore, it is important yet

challenging to design an adaptive optimal controller to improve the gait performance

of the human-prosthesis system, and make it tolerant to external disturbances and

environmental uncertainties.

The hardware design of the robotic knee prosthesis being used in this study is

identical to [6]. It used a slider-crank mechanism, where the knee motion was driven

by the rotation of the moment arm powered by the DC motor through the ball

1



(a) (b) (c)

Figure 1.1: Three Testing Scenarios in This Work. (a) An Amputee Subject Walking

With Prosthesis; (b) An Able-Bodied Subject Walking With Prosthesis; (c) A Simu-

lated Amputee Subject Walking with Prosthesis. Images Courtesy of NREL At NC

State University.

screw. The prosthetic knee kinematics were recorded by a potentiometer embedded

in the prosthesis. Some major gait events determining phase transitions in the finite

state machine were detected by a load cell. The control system of the robotic knee

prosthesis was implemented by LabVIEW and MATLAB on a desktop PC.

Before performing walking experiments on human subjects, we first validate our

algorithm designs in a simulation platform OpenSim [7, 8]. OpenSim is a widely used

simulator of human locomotion, here it is used for simulating walking patterns of the

human-prosthesis system. In the OpenSim model [9], five rigid-body segments linked

by one degree-of-freedom pin joints were used to represent the human body. The

right knee was treated as a prosthetic knee and controlled by finite state impedance

controller, while the other joints followed prescribed motions.

2



1.1.2 Finite State Impedance Control of Robotic Knee Prosthesis

The finite state impedance controller (FS-IC) [4, 6, 10, 11] is the most commonly

used controller for lower limb prostheses. It prescribes different sets of impedance

parameters to the robotic prosthesis corresponding to different gait phases. Based on

the knee joint movements and ground-leg contact, a gait cycle was divided into four

phases (phase m = 1, 2, 3, 4): stance flexion phase (STF, m = 1), stance extension

phase (STE, m = 2), swing flexion (SWF, m = 3) and swing extension (SWE, m = 4).

Transitions between phases were triggered by the ground reaction force (GRF), knee

joint angle, and knee joint angular velocity measured from the prosthesis.

The learning controller is realized within a well established FSM platform. Specif-

ically, an FSM partitions a gait cycle into four sequential gait phases based on knee

joint kinematics and ground reaction force (GRF). These four gait phases are stance

flexion (STF), stance extension (STE), swing flexion (SWF) and swing extension

(SWE). In real-time experiments, transitions between phases are realized as those in

[6] based on Dempster-Shafer theory (DST). For each phase, the prosthetic system

mimicked a passive spring-damper-system with predefined impedance that matched

the biological knee impedance. The predefined impedance parameters are selected by

the finite state machine and outputted to the impedance controller as

I = [K,B, θe]
T ∈ R3, (1.1)

where K is stiffness, B is damping coefficient and θe is equilibrium position. In other

words, for all four phases there are 12 impedance parameters to activate the knee joint

which directly impact the kinematics of the robotic knee and thus the performance

of the human-prosthesis system. During one of the gait phases, the knee joint torque

T ∈ R is generated based on the impedance control law

T = K(θ − θe) +Bω. (1.2)
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according to the three impedance parameters K, B and θe.

Traditionally, clinicians/prosthetists manually and heuristically tune prosthesis

control parameters for an individual amputee in the clinic/laboratory by adjusting

1 or 2 parameters at a time. The clinician/prosthetist repeats these steps until the

performance of the prosthetic knee reaches a desired level, which is time and labor

intensive. To reduce the labor and time, researchers have tried to guide prosthetic

control by measuring knee stiffness using intact leg models [12, 13, 14], the validity

of which has not yet to be verified. Alternatively, researchers also tried to reduce the

number of control parameters that need to be tuned [15, 16].

To overcome the disadvantages of biomechanical model-based methods, researchers

also used general model-free optimization methods, such as response surface optimiza-

tion [17] and cyber expert system [3], to configure wearable robot control with human

in the loop. Either approach is infeasible because they do not scale well. Therefore,

the prosthesis control problem calls for a design that can automatically adapt to

different user and use environment.

1.1.3 Challenges in Human-in-the-loop Learning Control

• Challenge 1: Control must ensure the stability of the prosthesis and amputee

Improving stability and reducing the risk of falling are primary goals for designing

control strategies for the human-prosthesis system. In this work, the meaning of

stability is twofold. It is achieved not only by the stability of the states of the robotic

system, i.e. the convergence properties of the control strategies, but also by the

predictable behavior from the FS-IC based controller as they are passive within each

gait phase.

• Challenge 2: Control should learn from interacting with a human-prosthesis
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system that has perturbations and uncertainties

Unlike traditional robotic system, more variances and uncertainties are presented in a

human-in-the-loop control problem, which makes learning a suitable control strategies

more challenging.

• Challenge 3: The form of the optimization goal remains an open question

There are many performance measures for gait evaluation, including stability, gait

symmetry, joint kinematics, metabolic energetic cost [18, 19] and human feedback [20].

In this work we used normative knee kinematics as an indicator of good performance

because knee kinematics can provide real-time feedback for learning.

• Challenge 4: Control must adapt to suit the needs of individual users, and adapt

to changes in use environments as well

Gait variations between individual users (inter-person variations) arise due to a num-

ber of factors including the amputee’s limb-lengths, weight, strength, experience,

personal preferences and etc. Gait variations within a single user (intra-person varia-

tions) arise due to fatigue, weight (e.g. with/without a backpack), walking speed and

etc. Therefore the learning controller must automatically adapt to the variations in

a user’s gait.

• Challenge 5: Learning control must be data and time efficient

The learning controller should be data-based, i.e. learn from gait data directly without

modeling the human-prosthesis system. To make the learning controller practical, it

should be data and time efficient so that the learning process can be completed in a

reasonable time frame.
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1.2 Learning and Adaptive Methods for Robotic Control

1.2.1 Reinforcement Learning

To address the challenge of the adaptive and optimal control of lower limb prosthe-

sis, reinforcement learning (RL) approach is a natural candidate. Recently, exciting

new developments in deep RL, such as policy search methods and Deep Q-Network

(DQN), have shed light on those challenges that were once thought nearly impossible

for computers to solve. These methods found impressive success in robotics applica-

tions [21], Atari games [22] and the game of Go [23, 24]. However, the aforementioned

deep RL methods are not yet applied and tested on those problems that training

data is more expensive to collect. The learning controller design considered herein

inherently involves continuous state and control space. Also, the learning controller

needs to meet optimal performance objectives under system uncertainty, measure-

ment noise, and unexpected disturbance. Put it together, deep learning approaches

are not readily suitable for our amputee-prosthesis control problem. Approximate

dynamic programming (ADP) [25, 26] is synonymous to RL especially in controls

and operations research communities, and it has shown great promise to address the

aforementioned challenges.

ADP is based on the idea of approximated solution to the Bellman equation of

the optimal control problem. In recent years, ADP has demonstrated its scalability

when dealing with large-scale and continuous state and control spaces, as well as its

capability of learning from data measurements either in an online or offline manner

[27]-[30]. ADP designs have demonstrated their success with many applications for

continuous state and control problems [31, 32, 33, 34, 35].

In our previous work [36, 30, 37], we demonstrated the feasibility of ADP, specifi-

cally direct heuristic dynamic programming (dHDP), for personalizing powered pros-
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thesis control. The dHDP is based on gradient descent, which is usually slow to

converge [38]. Thus we aim to improve the time efficiency of an ADP algorithm for

the application of prosthesis control optimization that involves amputee users. Sim-

ilarly, an ADP training procedure should be data efficient and be limited to several

minutes of amputees walking with the prosthesis during parameter tuning.

1.2.2 Knowledge Transfer in Reinforcement Learning

Most state-of-the-art RL algorithms are only good at dealing with one task. When

facing a new task, the RL agents need to be retrained for the new task and the previ-

ously learned knowledge is abandoned. This greatly limits RL to achieve generaliza-

tion across tasks and lowers the sample efficiency. Actually, it is very common to find

such examples, that learning is performed under a new but similar environments, in

our daily life. For instance, an agent who already knows how to drive a specific car is

now asked to drive another bigger or smaller car, or an agent skilled in balancing the

inverted pendulum now needs to deal with a shorter or longer pole. It is therefore

of great interest to expand an RL agent’s ability to adapt to a new and similar task,

and the key challenge becomes how to learn and accumulate knowledge, and reuse

such knowledge for a new task.

Transfer learning has established itself as a natural candidate for addressing this

challenge, as it improves the learning in a new task through the transfer of knowledge

from a related task that has already been learned [39]. Knowledge transfer in su-

pervised learning scenarios, which also refereed as domain adaptation, has attracted

much attentions [40, 41, 42]. Superiority of these approaches are verified by standard

benchmarks. However, transfer in RL is still a relatively new topic and insufficiently

explored [43].

Structural knowledge transfer perhaps has found most of its applications reported
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in the literature. Barreto et al. [44] solved the problem where rewards change but

environments remain the same using successor features, a value function representa-

tion that decouples the dynamics of the environment from the rewards. Asadi et al.

[45] proposed a learning architecture which transfers control knowledge in the form of

behavioral skills and representation hierarchy, which separates the subgoals so that

a more compact state space can be learned. In [46], researchers demonstrated that

Schema network is capable to perform zero-shot transfer between tasks where cause-

effect relationship remains unchanged, such as learning to play the breakout game

with different maps. In [47], target apprentice learning is proposed for cross-domain

transfer, e.g. from balancing a cart-pole to balancing a bike.

To take advantage of previously learned knowledge and information, we consider

building a representation for potentially transferable knowledge across subjects. We

consider extracting knowledge from able-bodied (AB) subjects and use that for fu-

ture RL control design for amputee subjects. It is known that transfer learning has

attracted great attention in the machine learning field where it is typically considered

for storing knowledge gained while solving one problem and applying it to a different

but related problem [43]. In the context of general transfer learning in the literature,

our prosthesis parameter tuning problem has the same state and action while the

problem calls for gaining knowledge from tuning parameters for AB subjects (source

task) and using that for tuning parameters for amputee subjects (target task).

1.3 Approaches and Contributions

In Chapter 2, we first propose a policy iteration based adaptive dynamic pro-

gramming algorithm, namely the flexible policy iteration (FPI) algorithm, to learn

the value function and the respective control policy along the trajectory of human-

prosthesis gait pattern evolution. FPI can utilize either on-policy or off-policy data, as
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well as the knowledge of an external critic, and guarantee nonincreasing convergence

of value function to the optimal solution of the Bellman equation. We extensively

evaluated the performance of our proposed algorithm in a well-established locomo-

tion simulator, the OpenSim. Besides introducing a new and flexible reinforcement

learning control approach, by utilizing this learning controller we have obtained new

understanding of human-prosthesis system in terms of a quantitative description of

the redundancy in the control parameter space.

In Chapter 3, we propose an offline policy iteration based reinforcement learning

approach. We successfully designed a reinforcement learning controller realized by

approximate policy iteration to control robotic lower limb prosthesis with human in

the loop. This new prosthesis control design approach is data efficient as it was derived

from offline data collected from interactions between human and prosthesis. We

demonstrated this learning controller for tuning 12 prosthesis parameters to approach

desired normal gait on real human subject.

In Chapter 4, we present a general reinforcement framework KG-RL that learns

with both online experiences and transferred knowledge. First, structural knowledge

represented as a function of state and action is extracted from a source task. Then

a Q-learning based RL algorithm is presented to incorporate the knowledge in Q-

value update. The convergence properties of the proposed method is analyzed. To

implement KG-RL, a actor-critic structure is developed. Extensive experiments using

three simulated classic RL problems verify that KG-RL outperforms its counterpart

without transferred knowledge in terms of sample efficiency.

In Chapter 5, we develop a new KG-QL framework to integrate and transfer knowl-

edge from AB subjects to OpenSim simulated amputee subjects with a common goal

of optimizing impedance parameters for robotic knee prosthesis. Based on experimen-

tal measurements from two AB subjects, we established a knowledge representation
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in the form of a regression model of the human-prosthesis dynamics, and a Q-value

integration of this knowledge for transferring to the target task. We demonstrated

the effectiveness of this KG-QL control framework. Our contribution is not limited

to the demonstration of the feasibility of such transfer learning. It also includes our

proposed RL control design framework that allows for flexible knowledge represen-

tation in the value function or system dynamics or both. In addition, we provided

additional flexibility by allowing for a designer to determine how much information

can be transferred from the source task to the target task.
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Chapter 2

REINFORCEMENT LEARNING CONTROL OF ROBOTIC KNEE WITH

HUMAN IN THE LOOP BY FLEXIBLE POLICY ITERATION

2.1 Abstract

This study is motivated by a new class of challenging control problems described

by automatic tuning of robotic knee control parameters with human in the loop. In

addition to inter-person and intra-person variances inherent in such human-robot sys-

tems, human user safety and stability, as well as data and time efficiency should also

be taken into design consideration. Here by data and time efficiency we mean learning

and adaptation of device configurations takes place within countable gait cycles or

within minutes of time. As solutions to this problem is not readily available, we there-

fore propose a new policy iteration based adaptive dynamic programming algorithm,

namely the flexible policy iteration (FPI). We show that the FPI solves the control

parameters via (weighted) least-squares while it incorporates data flexibly and uti-

lizes prior knowledge. We provide analyses on stable control policies, non-increasing

and converging value functions to Bellman optimality, and error bounds on the iter-

ative value functions subject to approximation errors. We extensively evaluated the

performance of FPI in a well-established locomotion simulator, the OpenSim under

realistic conditions. By inspecting FPI with three other comparable algorithms, we

demonstrate the FPI as a feasible data and time efficient design approach for adapt-

ing the control parameters of the prosthetic knee to co-adapt with the human user

who also places control on the prosthesis. As the proposed FPI algorithm does not

require stringent constraints or peculiar assumptions, we expect this reinforcement
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learning controller can potentially be applied to other challenging adaptive optimal

control problems.

2.2 Introduction

Robotic knee is a type of wearable robot that assists individuals with lower limb

amputations to regain the ability of walking. This human-robot system poses new

challenges to the control of the robotic knee because of a human in the loop. Address-

ing these challenges needs to look beyond traditional control theory and engineering,

as well as existing robotics theory and engineering.

Currently, the most advanced robotic knee control design approaches have several

limitations. An intuitive idea would be to use the intact leg for the robotic knee

to model after [12]. However, the validity of this approach is yet to be verified.

Researchers also used response surface optimization [17] and cyber expert system

[3] methods to configure wearable robot control parameters with human in the loop

in order to overcome the lack of a human-robot system model. These methods are

conceptually sound, however, they do not scale well for the robotic knee control design

problem. It is therefore still an open question as for how to automatically configure

the robotic knee control parameters. Additionally, the nature of the problem requires

the control design to be data and time efficient to benefit prosthesis users.

The reinforcement learning (RL) based adaptive optimal control is naturally ap-

pealing to solve the above described challenges. As is well known, deep RL, including

several policy search methods and Deep Q-Network (DQN), have shown unprece-

dented successes in solving difficult, sequential decision-making problems, such as

those in robotics applications [21], Atari games [22], the game of Go [23, 24] and

energy efficient data center [48]. Yet, it is not obvious that these successes can be

extended to situations where there is no abundance of data and when the problems
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involve continuous state and control variables. RL based adaptive optimal control

approaches, or adaptive/approximate dynamic programming (ADP) [25, 26], is a

promising alternative as they have demonstrated their capability of learning from data

measurements in an online or offline manner in several realistic application problems

including large-scale control problems, such as power system stability enhancement

[27]-[29], and Apache helicopter control [49]-[51]. Note however, those problems do

not have an explicit need of data and time efficiency during learning controller design.

At the heart of the ADP methods is the idea of providing approximating solutions

to the Bellman equation of optimal control problems. In our previous work [36, 30,

37], we demonstrated the feasibility of ADP, specifically direct heuristic dynamic

programming (dHDP) [52], for personalizing robotic knee control. The dHDP is an

online RL algorithm based on stochastic gradient descent, which in its generic form,

is not optimized for fast learning [38]. It is also worth mentioning that, the generic

dHDP without imposing further conditions [53] have not shown its control law to be

stable during learning. It is therefore necessary to take these limitations into design

considerations especially for the current application.

The policy iteration (PI) ADP framework is potentially suitable for our applica-

tions as PI based ADP has been associated with important properties such as data

efficiency [38, 54] and stable iterative control policies [55]-[58]. While the general PI

based methods have improved data efficiency over stochastic gradient methods, they

are still not specifically designed at the data level to be data efficient to incorporate

previous data and prior knowledge in learning.

Experience replay (ER) [59] is a practically effective approach to improving sam-

ple efficiency for off-policy RL methods. In ER, past experiences (samples) generated

under different behavior policies are stored in a memory buffer and selected repeat-

edly for evaluating the approximated value function. Advanced ER techniques such
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as selective experience replay (SER) [60], prioritized experience replay (PER) [61, 62]

and hindsight experience replay (HER) [63] are some of the effective ER techniques

that have helped improve sample efficiency in deep RL. To prevent catastrophic for-

getting, SER strategically selects which experiences will be stored. PER replays the

important samples more frequently where the importance is measured by TD error.

HER learns from failure by substituting the desired goal with the achieved goal and

recomputing the reward function.

The ER idea has also been considered in ADP in different capacities [64]-[68]. It

is shown in [64, 65] that ER can be implemented with Q-learning ADP to improve

sample efficiency, yet neither of these works guarantees stable control policies or

prioritizes samples. ER was also proposed in [66]-[68] to replace the persistence of

excitation (PE) condition. However, the resulting sufficient condition is not practical

as it requires the number of samples to be equal to the number of hidden neural

network nodes, which is also a design parameter.

While there is room for efficient ADP algorithms to achieve data efficiency by

innovative ER designs, prior knowledge should also be incorporated into the rein-

forcement learning process. This long existing idea of utilizing prior knowledge has

until recently focused on specific problem domains. In a multi-agent reinforcement

learning (MARL) setting [69, 70], prior knowledge such as value functions of each

agent were shared to increase the learning speed. Typically, prior knowledge is rep-

resented in the form of policies [71, 72] or an initial value function [73, 74]. However,

they still required expert knowledge in the process, which is difficult to interpret and

encode [74]. Alternatively, previously learned value function can be used to initialize

the RL algorithm. However, there is no analysis on whether the convergence of the

RL algorithm is affected by such initialization.

In this paper, we propose a new, data efficient RL control method, namely the
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flexible policy iteration (FPI). Compared to the existing works with ER discussed

previously [64]-[68], FPI introduces a new approach that integrates the idea of prior-

itized sampling into policy evaluation with its solution obtained from weighted least

squares. Compared to the similar works that incorporates prior knowledge [71]-[74],

FPI provides a new and direct integration of a previous value into the Bellman equa-

tion. It avoids a straight forward use of previous information in the form of initial

policy or initial value, the outcome of which have not been analytically assessed.

Our approach instead lends itself to results with qualitative stability and convergence

properties. In summary, the flexibility of FPI is demonstrated in three-folds. First,

the way it collects and uses data for learning, i.e., data preparation (Table 2.1), is

flexible, as it permits the agent learning from both samples generated from current

policies and previous samples which are generated under different policies. Second,

the way it deals with prior knowledge is flexible as it allows learning from prior knowl-

edge in the form of an externally obtained value function using FPI from previous

data collection experiments. With such a new FPI framework, we still can prove a set

of qualitative properties as guidelines in the design of adaptive optimal controllers.

Third, the implementation of FPI is flexible as the approximate value function can

be obtained by a conventional least-square solution or by a weighted least-square

solution with or without prioritized samples. All three aspects of flexibility can be

customized to meet the user’s needs.

This paper has three major contributions. First, we propose a new, data efficient

and flexible PI method. Second, we prove the qualitative properties associated with

the proposed FPI framework for its stabilizing control laws, convergence of the value

function and achieving Bellman optimality approximately. Third, we provide results

of applying this newly proposed FPI algorithm to an important, and also challenging

problem of human-robot integration, the solution of which cannot be readily obtained
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from well known control theory, control engineering or robotics engineering.

2.3 Human-Robot System

In this study, the RL controller aims at providing control torque adjustments to

a robotic knee in order to help the wearer to regain mobility. We utilize a well-

established finite state impedance control framework (FS-IC) which treats a gait

cycle as four phases to represent different modes of stance and swing [6, 75, 76]:

stance flexion phase (STF, m = 1), stance extension phase (STE, m = 2), swing

flexion (SWF, m = 3) and swing extension (SWE, m = 4) (Fig. 2.2). Transitions

between phases were triggered by the ground reaction force (GRF), knee joint angle,

and knee joint angular velocity measured from the prosthesis. As a dynamic system,

variance in a certain phase will affect the subsequent phases [77]. Fig. 2.1 shows an

FS-IC based human-prosthesis system and how our proposed reinforcement learning

control is integrated into the system. There are two control loops running at different

frequencies. The impedance control (IC) loop generates knee joint torque T at 300

Hz following the impedance control law (2.2). In the FPI based parameter update

loop, for each gait cycle k, state xk is formed using peak knee angle Pk and gait phase

duration Dk measures for each phase m as shown in Fig. 2.2.

2.3.1 Impedance Control Loop

During gait cycle k, for each FS-IC control phase m (m = 1, 2, 3, 4), the impedance

control of the robotic knee involves three control parameters, namely stiffness Km,k,

damping coefficient Bm,k and equilibrium position (θe)m,k. In vector form, the control

parameters are represented as

Im,k = [Km,k, Bm,k, (θe)m,k]
T ∈ R3. (2.1)
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Figure 2.1: Block Diagram of the Human-Robot System With a RL Controlled

Robotic Knee. The Impedance Control Loop (IC Loop) Generates Torque T Accord-

ing to (2.2). The FPI-Based Parameter Update Loop (FPI Loop) Adjusts Impedance

Control Parameters for Each Phase m After Every Gait Cycle k. Four Identical RL

Blocks (m = 1; 2; 3; 4) Are Needed for the Four IC Control Phases.

The prosthetic knee motor generates a knee joint torque T ∈ R from the knee joint

angle θ and angular velocity ω according to the following impedance control law

Tk = Kk(θ − (θe)k) +Bkω. (2.2)

Without loss of generality, we drop the subscript m in the rest of the paper because all

four impedance controllers and their respective FPI blocks share the same structure,

although RL controller for each phase has its own parameters. The FPI controller

then updates the IC parameters (2.1) for the next gait cycle k + 1 as

Ik+1 = Ik + uk, (2.3)

where uk ∈ R3 is the control output from the FPI block.
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2.3.2 Parameter Update Loop by FPI

For each phase m during gait cycle k, the mth FPI controllers was enabled to

update the IC parameters. After each gait cycle k, the peak knee angle Pk ∈ R and

phase duration Dk ∈ R were selected by the feature selection module (Fig. 2.1).

Specifically, peak knee angle Pk is the maximum or minimum knee angle in each

phase, and phase duration Dk is the time interval between two consecutive peaks

(Fig. 2.2). A reference trajectory of the knee joint that resembles a normal walking

pattern is used in this study. Such a reference trajectory is frequently adopted in

FS-IC designs [75, 78]. Subsequently we can also determine target peak angle P
′

k ∈ R

and phase duration D
′

k ∈ R given the reference nominal trajectory (Fig. 2.2). For

RL controller, its state variable xk is defined using peak error ∆Pk ∈ R and duration

error ∆Dk ∈ R as

xk = [∆Pk,∆Dk]
T = [Pk − P

′

k, Dk −D
′

k]
T , (2.4)

and its control uk consists of increments to the IC parameters,

uk = [∆Kk,∆Bk, (∆θe)k]
T . (2.5)

2.4 Flexible Policy Iteration

Consider the human-robot, i.e., the amputee-prosthesis system as a discrete time

nonlinear system with unknown dynamics,

xk+1 = F (xk, uk), k = 0, 1, 2, . . . (2.6)

where action uk of the form described in (2.5) is determined according to policy h as

uk = h(xk). (2.7)

In (2.6), the domain of F (xk, uk) is denoted as D , {(x, u)|x ∈ X , u ∈ U}, where

X and U are compact sets with dimensions of Nx and Nu, respectively. A stage

18



cost function is defined in terms of xk and uk. In the human-robot system under

consideration, F represents the kinematics of the robotic knee, which is affected

by both the human wear and also the RL controller. Because of a human in-the-

loop, an explicit mathematical model as (2.6) is intractable or impossible to obtain.

Established biomechanical principles has provided sufficient conditions on the range

of FS-IC control parameters as safety constraints on the knee joint angles and angular

velocities [37]. Therefore, in our RL control designs, while the states and the controls

are within the bounded set D, human subjects are guaranteed to be practically stable.

Our development of FPI requires the following assumption.

Assumption 1 The system is controllable; the system state xk = 0 is an equi-

librium state of system (2.6) under the control uk = 0, i.e., F (0, 0) = 0; the feedback

control uk = h(xk) satisfies uk = h(xk) = 0 for xk = 0; the stage cost function

U(xk, uk) in xk and uk is positive definite.

Assumption 1 is satisfied in the robotic knee control problem due to our construc-

tion of the system states and RL control (2.3) based on the biomechanics of human

locomotion.

2.4.1 The Policy Iteration Framework

The RL control design objective is to derive an optimal control law via learning

from observed data along the human-robot system dynamics. Consider a control

policy h(xk), we define the state-action Q-value function or the total cost-to-go as

Q(xk, uk) = U(xk, uk) +
∞∑
j=1

U(xk+j, h(xk+j)). (2.8)

Note that the Q(xk, uk) value is a performance measure when action uk is applied

at state xk and the control policy h is followed thereafter. It satisfies the following
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Bellman equation,

Q(xk, uk) = U(xk, uk) +Q(xk+1, h(xk+1)). (2.9)

An optimal control is the one that stabilizes the system in (2.6) while minimizing the

value function (2.8) according to Bellman optimality. The optimal value function is

therefore of the form

Q∗(xk, uk) = U(xk, uk) + min
uk+1

Q∗(xk+1, uk+1) (2.10)

or

h∗(xk) = arg min
uk

Q∗(xk, uk), (2.11)

Q∗(xk, uk) = U(xk, uk) +Q∗(xk+1, h
∗(xk+1)), (2.12)

where h∗(xk) denotes the optimal control policy.

For our design approach to the optimal control problems, we need the control law

to be admissible [55].

Definition 1 (Admissible Control) : A control policy h(x) is admissible with

respect to the value function Q(x, u) (2.8) if h(x) is continuous on X , h(0) = 0 and

it stabilizes system (2.6), and the corresponding value function Q(x, u) (2.8) is finite

for ∀x ∈ X .

To assist our development of the proposed flexible policy iteration (FPI), we sum-

marize the notation and the basic framework of a policy iteration algorithm for dis-

crete time systems next. Consider an iterative value function Q̌(i)(xk, uk) and a con-

trol policy ȟ(i)(xk), the policy iteration algorithm proceeds by iterating the follow two

steps:
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Policy Evaluation

Q̌(i)(xk, uk) =U(xk, uk) + Q̌(i)(xk+1, ȟ
(i)(xk+1)). (2.13)

The above policy evaluation step (2.13) is based on the Bellman equation (2.9).

Policy Improvement

ȟ(i+1)(xk) = arg min
uk

Q̌(i)(xk, uk), i = 0, 1, 2, . . . (2.14)

Motivated by the favorable properties of policy iteration in MDP problems, such

as monotonically decreasing value, and demonstrated feasibility in solving realistic

engineering problems [28, 29], we further develop the policy evaluation step to achieve

data efficiency, easy implementation, and importantly, effectively solving realistic and

complex problems.

2.4.2 Flexible Policy Iteration

We first consider a flexible use of prior information, which we expect to improve

learning efficiency in data and time. Our approach entails a value function V(xk)

which can be obtained from an FPI solution based on past experience such as a

robotic knee control experiment involving the same subject previously. Let V be

positive definite in xk. For i = 0, 1, 2, . . . we define a new cost-to-go Q(i)(xk, uk),

which is an augmented value function constructed by h(i)(xk),

Q(i)(xk, uk) =U(xk, uk) +
∞∑
j=1

U(xk+j, h
(i)(xk+j))

+
∞∑
j=1

αiV(xk+j).

(2.15)

where 0 < αi+1 < αi < 1, for example αi = γi, where 0 < γ < 1. With such an

augmented Q-value formulation, the policy evaluation based on the Bellman equation
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(2.9) becomes:

Policy Evaluation with Augmented Information

Q(i)(xk, uk) =U(xk, uk) +Q(i)(xk+1, h
(i)(xk+1))

+ αiV(xk+1), i = 0, 1, 2, . . . (2.16)

Policy Improvement

h(i+1)(xk) = arg min
uk

Q(i)(xk, uk), i = 0, 1, 2, . . . (2.17)

Remark 1. In (2.16), policy h(i)(x) is the policy being evaluated given the tuple

(xk, uk, xk+1), which means after control action uk is applied at state xk, the system

reaches the next state xk+1. The term V is a value function obtained from a previous

experiment using FPI that represents prior knowledge. Note that both experiments

must share the same cost function constructs.

Solving (2.16) and (2.17) to obtain closed-form optimal solutions Q∗(xk, uk) and

h∗(xk) are difficult or nearly impossible. A value function approximation (VFA)

scheme replaces the exact value function in (2.16) with a function approximator such

as neural networks. Such approximation based approaches to solving the Bellman

equation, or RL approaches, usually utilize an actor-critic structure where the critic

evaluates the performance of a control policy and the actor improves the control policy

based on the critic’s evaluation. Both the actor and the critic work together iteratively

and learning takes place forward-in-time to approximately solve the Bellman equation.

Our next strategy to improve policy evaluation efficiency is to innovatively utilize

experience replay.
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2.4.3 Flexible Sampling with Experience Replay

In policy evaluation (2.16), the value function of Q(i) is to be evaluated with

multiple samples of sk = (xk, uk, xk+1). How many samples to use and how to select

the samples directly impact policy evaluation. We propose the following additional

options to flexibly select the number of samples and/or prioritize the samples in order

to improve policy evaluation.

Let DS = {sk}N of size N be a memory buffer. When realizing experience replay

without abundance of data, it would be natural to perform a policy evaluation of

(2.16) using a newly available sample in conjunction with all those samples already

in the memory buffer DS.

Next, samples in DS can be assigned with different priorities so that the important

samples are more likely to be reused. In this work, the importance of sample sk is

measured by the TD error from a transition [61], which indicates how surprising

or unexpected the transition is: specifically, how far the value is from its next-step

bootstrap estimate.

Let δ
(i)
k be the TD error of sample sk in DS under policy h(i), the rank ζ

(i)
k of

sample sk be obtained from sorting the memory buffer DS according to |δ(i)k | in a

descending order with the largest TD error corresponding to a rank of ζ
(i)
k = 1. Then

each sample sk is assigned a weight ρ̄
(i)
k as

ρ̄
(i)
k =

1

ζ
(i)
k

, for ∀k, (2.18)

and ρ̄
(i)
k can be normalized as

ρ
(i)
k =

ρ̄
(i)
k∑
ρ̄
(i)
k

, for ∀k, (2.19)

where 0 < ρ
(i)
k < 1.
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2.4.4 Approximate Policy Evaluation in FPI

To implement the policy evaluation step (2.16), a function approximator Q̂(i)(xk, uk)

is needed for Q(i)(xk, uk). Here we use a linear-in-parameter function approximation

structure which can readily deal with the prioritized samples described in the previous

subsection:

Q̂(i)(xk, uk) = W (i)Tφ(xk, uk) =
L∑
k=1

w
(i)
k ϕk(xk, uk) (2.20)

where W (i) ∈ RL is a weight vector and φ(xk, uk) : RNx×RNu → RL is a vector of the

basis functions ϕk(xk, uk), k = 1 . . . L. The basis functions ϕk(xk, uk) can be neural

networks, polynomial functions, radial basis functions, etc.

The policy evaluation step (2.16) then becomes

Q̂(i)(xk, uk)

= U(xk, uk) + Q̂(i)(xk+1, h
(i)(xk+1)) + αiV(xk+1).

(2.21)

Substituting (2.20) into (2.21), we have

[φ(xk, uk)− φ(xk+1, h
(i)(xk+1))]W

(i)

= U(xk, uk) + αiV(xk+1).

(2.22)

Equation (2.21) can be seen as an approximated policy evaluation step in terms

of a weight vector that is to be determined from solving L linear equations. At

iteration i, two column vectors X(i) ∈ RN×L and Y (i) ∈ RN , are formed by the term

φ(xk, uk) − φ(xk+1, h
(i)(xk+1)) and U(xk, uk) + αiV(xk+1), respectively, in each row.

In other words, (2.22) can be rewritten as

X(i)W (i) = Y (i). (2.23)
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The TD error δ
(i)
k can be computed as

δ
(i)
k =U(xk, uk) + Q̂(i−1)(xk+1, h

(i)(xk+1)) + αi−1V(xk+1)

− Q̂(i−1)(xk, uk), for i = 0, 1, 2, . . .

(2.24)

Then the weight ρ
(i)
k of the samples can be obtained from (2.19). For i = 0, equal

weights ρ
(0)
k = 1 will be assigned to all samples in DS. When the policy evaluation

with function approximation (2.21) is carried out with sample sk = (xk, uk, xk+1), it

can be weighted by ρ
(i)
k . Hence, the weight vector W (i) can be computed from (2.23)

as a weighted least squares solution using N weighted samples

W (i) = (X(i)T Ψ(i)X(i))†(X(i)T Ψ(i)Y (i))T , (2.25)

where Ψ(i)∈RN is a vector of ρ
(i)
k . Once W (i) is obtained, the approximated value

function Q̂(i)(xk, uk) can be obtained using (2.20).

Table 2.1: Data Preparation and Parameter Settings in Algorithm 1

Setting Description

1
(A) Nb is fixed Fixed

(B) Nb ← Nb + 5 Adaptive

2
(A) N ← Nb Batch mode

(B) N ← N + 1 Incremental mode

3
(A) ρ

(i)
k = 1 No prioritization

(B) ρ
(i)
k from (2.19) With prioritization

4
(A) αi = 0 No prior knowledge

(B) αi = 0.9i With prior knowledge
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Algorithm 2.1 Flexible Policy Iteration (FPI)

Initialization by

Random initial state x0 ∈ X , initial batch size Nb (if in batch mode), memory buffer

DS = ∅, initially admissible control policy h(0).

Data Preparation

1a: (Batch Data Collection) Collect Nb samples {(xk, uk, xk+1)}Nb
from system

(2.6) following policy ĥ(i)at gait cycle k, N ← Nb (Setting 2(A) in Table 2.1).

1b: (Incremental Data Collection) Collect a sample (xk, uk, xk+1) from system

(2.6) following policy ĥ(i), and add it to DS, N ← N + 1 (Setting 2(B) in Table 2.1).

2: (Set Batch Size) Either use a fixed or adaptive Nb (Setting 1 in Table 2.1) if

under batch mode (Setting 2(A) in Table 2.1).

3: (Set Other Parameters) Set ρ
(i)
k (Setting 3 in Table 2.1) and αi (Setting 4 in

Table 2.1).

Policy Evaluation/Update for Iteration i

4: (Policy Evaluation) Evaluate policy ĥ(i) by solving (2.21) for Q̂(i) using all

samples in DS.

5: (Policy Update) Update policy ĥ(i+1) by (2.27) and (2.28).

2.4.5 Policy Improvement in FPI

After the approximated value function Q̂(i)(xk, uk) is obtained, we can get the

next policy h(i+1)(xk) from (2.17) during policy improvement,

h(i+1)(xk) = arg min
uk

Q̂(i)(xk, uk). (2.26)

We employ another linear-in-parameter function approximator ĥ(i+1)(xk) for

h(i+1)(xk),

ĥ(i+1)(xk) = (K(i+1))Tσ(xk), (2.27)
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where K(i+1) is a weight vector and σ(xk) is a basis function vector. The weight vector

K(i+1) is updated iteratively using the gradient of the approximate value function

Q̂(i)(xk, uk),

K(i+1)
j+1 = K(i+1)

j − l
∂Q̂(i)(xk, (K(i+1)

j )Tσ(xk))

∂K(i+1)
j

(2.28)

where l is the learning rate (0 < l < 1), the tuning index j is used for the policy

update within a policy evaluation step.

2.4.6 Implementation of FPI

Algorithm 2.1 and Table 2.1 together describe our proposed FPI algorithm. The

terminating condition in Algorithm 2.1 can be, for example, policy iteration index

i = imax where imax is some positive number, or |Q̂(i)(xk, uk) − Q̂(i−1)(xk, uk)| < ε

where ε is a small positive number. Note that there are four settings in Algorithm

1 (Table 2.1). FPI can run in batch mode or incremental mode (Setting 2). In

batch mode, only samples (of length Nb) generated under the same policy are used

in policy evaluation, thus no sample reuse is allowed in this mode. In incremental

mode, previous samples that are generated under different policies can be reused to

evaluate a new policy. In batch mode, an extra parameter batch size Nb need to be set

(Setting 1 in Table 2.1), while such parameter is not required under incremental mode.

In addition, Setting 3 describes how the priorities ρ
(i)
k of the samples are assigned

and Setting 4 describes how the prior knowledge is used at iteration i through the

parameter of αi .

Note that in batch mode, FPI can choose the number of samples for policy eval-

uation adaptively. FPI starts with a small Nb. A newly generated policy is tested

with one or more gait cycles to determine if the policy can lower the stage cost. If

not, a larger set of samples (e.g. Nb ← Nb + 5) is used.
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This adaptive approach is based on our observations as follows. Given a continuous

state and control problem such as the control of a robotic knee, we constructed a

quadratic stage cost (xk, uk) in (2.51) which is common in control system design. As

a decreasing stage cost can be viewed as necessary toward an improved value during

each iteration, it thus becomes a natural choice for such a selection criterion. For

example, Fig. 2.3 depicts stage cost for the uniformly sampled IC parameter space in

our human-robot application, where the color of each sample point represents a stage

cost. Fig. 2.4 was generated under the setting of (A)(A)(A)(A) in Table 2.1 and

Nb = 20. Fig. 2.4 shows the trajectories of the IC parameters tuned by FPI starting

from some random initial IC parameters. Apparently, the points with minimum stage

cost in Fig. 2.3 coincides with the converging planes found by FPI in Fig. 2.4.

2.5 Qualitative Properties of FPI

For discrete-time nonlinear systems, policy iteration based RL has several im-

portant properties, such as stability, monotonicity of value function, and approach-

ing approximate Bellman optimality [55, 58, 79]. As mentioned before, we intro-

duce a value function term V(xk) to capture prior knowledge. Specifically, we let

V(xk) = min
uk
Q∗(xk, uk), where Q∗(xk, uk) is a final converged value function ob-

tained by applying FPI (Algorithm 1) in a previous experiment. Here we will show

that, unlike previous results that demonstrated empirically the effect of utilizing prior

knowledge, our new means of integrating prior knowledge V into a policy iteration

framework allows us to obtain important stability and optimality related qualitative

properties of FPI.

Lemma 1. Let i = 0, 1, ... be the iteration number and let Q(i)(xk, uk) and

h(i)(xk) be updated by (2.16)-(2.17). Under Assumption 1, the iterative value function

Q(i)(xk, uk), i = 0, 1, ..., is positive definite for xk and uk.
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Proof. For i = 0, according to Assumption 1, we have h(0)(xk) = 0 as xk = 0. As

U(xk, uk) is positive definite for xk and uk, we have that
∑∞

j=0 U(xk+j, h
(0)(xk+j)) = 0

as xk = 0, and
∑∞

j=0 U(xk+j, h
(0)(xk+j)) > 0 for any xk 6= 0. Hence∑∞

j=0 U(xk+j, h
(0)(xk+j)) is a positive definite function for xk. Since V(xk) is also

positive definite for xk, according to (2.15), if xk = uk = 0, Q(0)(xk, uk) = 0; if

|xk|+ |uk| 6= 0, Q(0)(xk, uk) > 0, which proves that Q(0)(xk, uk) is positive definite for

xk and uk. Based on this idea, we can prove that the iterative function Q(i)(xk, uk), i =

0, 1, ..., is positive definite for xk and uk.

Theorem 1. Let Assumption 1 hold. Let Q(i)(xk, uk) and h(i) be updated by

(2.16)-(2.17), where h(0) is an admissible control policy. Then, for i = 0, 1, 2, ..., h(i)

stabilizes the system (2.6).

Proof. Consider the case when xk 6= 0, we have U(xk, h
(i)(xk)) > 0 and αiV(xk+1) ≥

0. From (2.16), and i = 0, 1, . . . ,we can get

Q(i)(xk, h
(i)(xk))−Q(i)(xk+1, h

(i)(xk+1))

= U(xk, h
(i)(xk)) + αiV(xk+1) > 0.

(2.29)

Next, consider the case when xk = 0, according to Assumption 1 we can get

h(i)(xk) = 0 and xk+1 = F (xk, h
(i)(xk)) = F (0, 0) = 0. Hence we get U(xk, h

(i)(xk)) =

0 and αiV(xk+1) = 0, which imply Q(i)(xk, h
(i)(xk)) − Q(i)(xk+1, h

(i)(xk+1)) = 0. Ac-

cording to Lemma 1 and Assumption 1, the function Q(i)(xk, h
(i)(xk)) is positive

definite for xk. Then Q(i)(xk, h
(i)(xk)) is a Lyapunov function. Thus h(i) stabilizes

the system (2.6).

Remark 2. Theorem 1 shows that the Lyapunov stability can be guaranteed under

iterative policy h(i)(xk) under the augmented value evaluation of (2.15). Based on

established physiological knowledge of human walking and the biomechanics of knee

joints, we also are able to embed human practical stability into our RL controller

design.
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Theorem 2. Let the value function Q(i)(xk, uk) and the control policy h(i)(xk)

be obtained from (2.16) and (2.17), respectively. Then Q(i+1)(xk, uk) ≤ Q(i)(xk, uk)

holds for i = 0, 1, 2, . . . and ∀(xk, uk) ∈ D.

Proof. For convenience, we will use the following short hand notations in the

derivations, e.g. U(xk, h
(i)) for U(xk, h

(i)(xk)). According to (2.15), we can define

V (xk) as

V (i)(xk) = Q(i)(xk, h
(i)) =

∞∑
j=k

U(xj, h
(i)) + αi

∞∑
j=k

V(xj+1). (2.30)

Based on (2.17), we have

Q(i)(xk, h
(i+1)) = min

uk
Q(i)(xk, uk)

≤ Q(i)(xk, h
(i)). (2.31)

Based on (2.16) we have

V (i)(xk) = Q(i)(xk, h
(i))

≥ Q(i)(xk, h
(i+1))

= U(xk, h
(i+1)) + V (i)(xk+1) + αiV(xk+1)

≥ U(xk, h
(i+1)) + V (i)(xk+1) + αi+1V(xk+1). (2.32)

Hence

V (i)(xk)− V (i)(xk+1) ≥ U(xk, h
(i+1)) + αi+1V(xk+1)

V (i)(xk+1)−V (i)(xk+2)

≥ U(xk+1, h
(i+1)) + αi+1V(xk+2)

...

V (i)(xk+N)−V (i)(xk+N+1)

≥ U(xk+N , h
(i+1)) + αi+1V(xk+N+1). (2.33)
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Summing up the left and the right hand sides of (2.33) respectively,

V (i)(xk)−V (i)(xk+N+1)

≥
k+N∑
j=k

U(xj, h
(i+1)) + αi+1

k+N∑
j=k

V(xj+1),
(2.34)

where N is a positive integer corresponding to gait cycles in this paper. Then,

V (i+1)(xk+N+1) → 0 as h(i+1) is an stablizing control policy as proved in Theorem 1,

and lim
N→∞

(
∑k+N

j=k U(xj, h
(i)) + αi+1

∑k+N
j=k V(xj+1)) = V (i+1)(xk). Hence, (2.34) yields

V (i)(xk) ≥ V (i+1)(xk). (2.35)

According to (2.16) and (2.35), we can obtain

Q(i+1)(xk, uk) = U(xk, uk) + V (i+1)(xk+1)

≤ U(xk, uk) + V (i)(xk+1)

= Q(i)(xk, uk). (2.36)

Theorem 3. Let Assumption 1 hold. Let Q(i)(xk, uk) and h(i) be updated by

(2.16)-(2.17), respectively, where h(0) is an admissible control policy that makes

Q(0)(xk, uk) finite. Then for i = 0, 1, 2, . . . , h(i) is an admissible control policy.

Proof. From (2.15) and Theorem 2 we have

Q(0)(xk, uk) ≥ Q(1)(xk, uk)

= U(xk, uk) +
∞∑
j=1

U(xk+j, h
(1)(xk+j))

+
∞∑
j=1

α1V(xk+j).

(2.37)

As Q(0)(xk, uk) is finite given h(0) is admissible for xk, uk, we have Q(1)(xk, uk) is also

finite for xk, uk, and thus
∑∞

j=1 U(xk+j, h
(1)(xk+j)) < ∞. Given Assumption 1 and

Theorem 1, we can conclude that h(1) is admissible. By mathematical induction, we

can prove h(i) is admissible for i = 0, 1, 2, . . . .
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Theorem 4. Let the iterative value function Q(i)(xk, uk) and the control policy

h(i)(xk) be obtained from (2.16) and (2.17), respectively, and the optimal value func-

tion Q∗(xk, uk) and the optimal policy be defined in (2.10) and (2.11), respectively.

Then Q(i)(xk, uk)→ Q∗(xk, uk) and h(i)(xk)→ h∗(xk) as i→∞, ∀(xk, uk) ∈ D.

Proof. By definition, Q∗(xk, uk) ≤ Q(i)(xk, uk) holds for any i, and from Theorem

2
{
Q(i)(xk, uk)

}
is a non-increasing sequence that is bounded by Q∗(xk, uk). Hence{

Q(i)(xk, uk)
}

must have a limit as i → ∞. Denote this limit as Q(∞)(xk, uk) ,

limi→∞Q
(i)(xk, uk) and h(∞)(xk) , limi→∞ h

(i)(xk). Note that limi→∞ αiV(xk+1) = 0,

take the limits in (2.16) and (2.17) as i→∞,

Q(∞)(xk, uk) = U(xk, uk) +Q(∞)(xk+1, h
(∞)(xk)), (2.38)

h(∞)(xk) = arg min
uk

Q(∞)(xk, uk). (2.39)

The Bellman optimality equation for V (xk) is

V ∗(xk) = min
h(.)

[U(xk, h(xk)) + V ∗(xk+1)] . (2.40)

When i→∞, uk = h(∞)(xk), so from (2.38) and (2.39) we can get

V (∞)(xk) = Q(∞)(xk, h
(∞)(xk))

= min
uk

[
U(xk, uk) +Q(∞)(xk+1, h

(∞)(xk))
]

= min
uk

[
U(xk, uk) + V (∞)(xk+1)

]
. (2.41)

Equation (2.41) satisfies the Bellman optimality equation (2.40), thus V (∞)(xk) =

V ∗(xk). From (2.38) we can obtain

Q(∞)(xk, uk) = U(xk, uk) + V (∞)(xk+1)

= U(xk, uk) + V ∗(xk+1)

= Q∗(xk, uk). (2.42)
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Therefore h(∞)(xk) = h∗(xk) can be obtained from (2.39). The proof is complete.

Next, we consider the case of different types of errors that may affect the Q-

function, such as value function approximation errors, policy approximation errors

and errors from using N samples to evaluate the ith policy during policy iteration.

We show an error bound analysis of FPI while taking into account approximation

errors.

We need the following assumption to proceed.

Assumption 2. There exists a finite positive constant γ that makes the condition

min
uk+1

Q∗(xk+1, uk+1) ≤ γU(xk, uk) hold uniformly on X .

For most nonlinear systems, it is easy to find a sufficiently large number γ to

satisfy this assumption as Q∗(· ) and U(· ) are finite.

Define a value function Q̄(i) as

Q̄(i)(xk, uk) = U(xk, uk) + Q̂(i−1)(xk+1, h
(i)(xk+1))

for i = 1, 2, . . . and Q̄(0) = Q(0). Given the existence of universal approximators,

the total approximation error can be considered finite during a single iteration, and

therefore

ξQ(i) ≤ Q̂(i) ≤ ηQ̄(i) (2.43)

holds uniformly for i as well as xk and uk, where 0 < ξ ≤ 1 and η ≥ 1 are constants,

Q̂(i)(xk, uk) is defined by (2.21) and Q(i) is defined by (2.15).

Theorem 5. Let Assumptions 1 and 2 hold. Let Q̂(i)(xk, uk) be defined by (2.21)

and Q(i) be defined by (2.15). Given 1 ≤ β < ∞ that makes Q∗ ≤ Q(0) ≤ βQ∗ hold

uniformly for xk, uk. Let the approximate Q-function Q̂(i) satisfies the iterative error

condition (2.43). If the following condition is satisfied

η <
γ + 1

γ
, (2.44)
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then the iterative approximate Q-function Q̂(i) is bounded by

ξQ∗ ≤ Q̂(i)

≤
[
ηβ(

ηγ

1 + γ
)i + (1− (

ηγ

1 + γ
)i)

η

1 + γ − ηγ

]
Q∗.

(2.45)

Moreover, as i → ∞, the approximate Q-function sequence {Q̂(i)} approaches Q∗

bounded by:

ξQ∗ ≤ Q̂(∞) ≤ η

1 + γ − ηγ
Q∗. (2.46)

Proof. The left-hand side of (2.45) can be easily obtained according to (2.43) and

Theorem 3.

The right-hand side of (2.45) is proven by mathematical induction as follows.

First, for i = 0, Q̂(0) ≤ ηQ̄(0) = ηQ(0) ≤ ηβQ∗ holds according to (2.43) and the

conditions in Theorem 5. Thus (2.45) holds for i = 0.

Assuming that (2.45) holds for i ≥ 0, then for i+ 1 we have

Q̄(i+1)(xk, uk)

= U(xk, uk) + Q̂(i)(xk+1, h
(i+1)(xk+1))

= U(xk, uk) + min
uk+1

Q̂(i)(xk+1, uk+1)

≤ U(xk, uk) + min
uk+1

PiQ
∗(xk+1, uk+1),

(2.47)

where

Pi = ηβ(
ηγ

1 + γ
)i + (1− (

ηγ

1 + γ
)i)

η

1 + γ − ηγ
. (2.48)
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According to Assumption 2, (2.47) yields

Q̄(i+1)(xk, uk)

≤ (1 + γ
Pi − 1

γ + 1
)U(xk, uk)

+ (Pi −
Pi − 1

γ + 1
)min
uk+1

Q∗(xk+1, uk+1)

=
1

η

[
ηβ(

ηγ

1 + γ
)i+1 + (1− (

ηγ

1 + γ
)i+1)

η

1 + γ − ηγ

]
[
U(xk, uk) + min

uk+1

Q∗(xk+1, uk+1)

]

=
1

η

[
ηβ(

ηγ

1 + γ
)i+1 + (1− (

ηγ

1 + γ
)i+1)

η

1 + γ − ηγ

]
×Q∗(xk, uk).

(2.49)

On the other hand, according to (2.43), there is Q̂(i+1) ≤ ηQ̄(i+1). Thus (2.45) holds

for i+ 1. By mathematical induction, the proof for (2.45) is completed.

Considering (2.43) and (2.45), we can easily obtain

Q̂(∞) ≤ η

1 + γ − ηγ
Q∗ (2.50)

as i→∞. Thus (2.46) holds. The proof is complete.

Remark 3. Condition (2.44) ensures that the upper bound in (2.46) is finite and

positive. When ξ = 1 and η = 1, there is Q∗ ≤ Q̂(∞) ≤ Q∗ according to Theorem 5.

Hence, Q̂(∞) = Q∗. This means when ξ = 1 and η = 1, the sequence of Q̂(i) converges

to Q∗ as i→∞.

2.6 Robotic Knee Impedance Control By FPI

We are now in a position to apply FPI to solving the robotic knee impedance

control parameter tuning problem that originally motivated our development of the

FPI. The results reported here are based on an OpenSim simulation of the human-

prosthesis system where OpenSim (https://simtk.org/) is a widely accepted simulator
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of human movements that was developed and maintained by the National Center for

Simulation in Rehabilitation Research (NCSRR) under the support from the National

Institute of Health. In OpenSim, five rigid-body segments linked by one degree-of-

freedom pin joints were used to represent the human body. Segment lengths, masses,

and other model settings were adopted from the lower limb OpenSim model. To

simulate walking patterns of a unilateral above-knee amputee, the right knee was

treated as a prosthetic knee and controlled by FS-IC, while the other joints in the

model (left hip, right hip and left knee) were set to follow prescribed motions.

The dynamics in the OpenSim walking model are deterministic, which means

identical gait performance can be obtained from the model if the conditions of the

simulations are the same. In fact, the human sensorimotor system is inherently noisy

and highly redundant. Therefore, it is necessary to add noise to the OpenSim model

to realistically evaluate performance of different control algorithms. In Subsection

2.6.3, noise was either generated by a random number generator (the sensor noise

and actuator noise cases in Table 2.3), or by gait-to-gait variances captured from two

amputee subjects walking with prosthesis (case TF1 and TF2 in Table 2.3). For the

latter case, data were collected from another study [80] where the experiments were

approved by the Institutional Review Board at the University of North Carolina at

Chapel Hill, and both amputee subjects provided written, informed consent. During

the experiments, motion of intact joints (intact-side knee, intact-side hip, prosthesis-

side hip) were collected using an 8-camera motion capture system (42 markers, 100

Hz, VICON, Oxford, UK) when amputee subjects were walking at a constant speed

of 0.6 m/s on a treadmill. To applied real gait-to-gait variance in simulation, we first

collected motion of the intact joints within 120 gait cycles from each subject of TF1

and TF2. Deviations to the average joint motions during gait cycles were calculated

and applied to the prescribed joint motions in the OpenSim model accordingly when
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simulating a gait cycle. Because the intact joints were controlled by human, introduc-

ing their variances to the OpenSim model can help represent the actual uncertainty

of the human prosthesis system.

2.6.1 Algorithm and Experiment Settings

We summarize the parameters of the FPI in OpenSim simulations as follows. Al-

gorithm 2.1 was applied to phases m = 1, 2, 3, 4 sequentially. The stage cost U(xk, uk)

is a quadratic form of state xk and action uk:

U(xk, uk) = xTkRxxk + uTkRuuk, (2.51)

where Rx ∈ R2 and Ru ∈ R3 were positive definite matrices. Specifically, Rx =

diag(1, 1) and Ru = diag(0.1, 0.2, 0.1) were used in our implementation. The mini-

mum memory buffer size Nb was 20. During training, a small Gaussian noise (1% of

the initial impedance) was added to the action output uk = h(i)(xk) to create samples

to solve (2.16). The basis functions are φ(xk, uk) = [x(1)2k, x(1)kx(2)k, x(1)ku(1)k,

x(1)ku(2)k, x(1)ku(3)k,x(2)2k, x(2)ku(1)k, x(2)ku(2)k, x(2)ku(3)k, u(1)2k, u(2)2k, u(3)2k,

x(1)2kx(2)k, x(1)2ku(1)k, x(1)2ku(2)k]
T ,where x(1)k denotes the first element of xk, and

so on.

We define an experimental trial as follows. A trial started from gait cycle k = 0

until a success or failure status was reached. At the beginning of each trial, the FS-IC

was assigned with random initial IC parameter I0 as in (2.1). The adaptive optimal

control objective for FPI is to make state xk approach zero, i.e., the peak error ∆Pk

and duration error ∆Dk for all four phases approach zero. We define upper bounds

P u and Du and lower bounds P l and Dl, and their values are identical to those in

[30, Table I]. Specifically, upper bounds P u and Du are safety bounds for the robotic

knee, i.e., |∆Pk| ≤ P u and |∆Dk| ≤ Du must hold during tuning. Lower bounds P l
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and Dl were used to determine whether a trial was successful: the current trial is

successful if |∆Pk| < P l and |∆Dk| < Dl hold for 10 consecutive gait cycles before

reaching the limit of 500 gait cycles; otherwise it is failed. The maximum memory

buffer size N in Algorithm 2.1 was 100. The results in Subsections 2.6.2 and 2.6.3

are based on 30 simulation trials. The success rate was the percentage of successful

trials out of 30 trials.

We used two performance metrics in the experiments: the learning success rate as

defined in Subsection 2.6.1, and tuning time measured by the number of gait cycles

(samples) needed for a trial to meet success criteria. Tuning time also reflects on data

efficiency.

2.6.2 FPI Batch Mode Evaluation

We first evaluated the performance of FPI under its simplest form, the batch mode

where the entire batch (Nb samples) was generated under the policy to be evaluated

(Setting 2(A) in Table 2.1), and neither PER nor prior knowledge was considered.

Table 2.2: FPI Tuner Performance under Batch Mode

Nb Options* Success Rate
Tuning Time

(mean±sd)

20 (Fixed)

(A)(A)(A)(A)

76% (23/30) 93.4±13.6

40 (Fixed) 87% (26/30) 170.5±22.8

100 (Fixed) 100% (30/30) 428.6±52.2

20-40 (Ad.)
(B)(A)(A)(A)

93% (28/30) 107.6±12.4

40-100 (Ad.) 100% (30/30) 268.0±22.5

*refer to Table 2.1. Ad.: adaptive.
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Table 2.2 summarizes the performance of FPI in batch mode with different batch

sizes. In our experiments we observed that the both the success rate and tuning time

rose as more samples (i.e. larger batch size Nb) are used for policy evaluation. Table

2.2 also shows that, under Setting 2(A), adaptive batch mode improves both success

rates and tuning time over fixed batch mode.

Fig. 2.5 was generated under the setting of (A)(A)(A)(A) as in Table 2.1 and

Nb = 20. Fig. 2.5 illustrates converging policies computed according to (2.26).

2.6.3 Comparisons with Other Methods

We now conduct a comparison study between FPI and three other popular RL

algorithms. These RL algorithms include generalized policy iteration (GPI) [31],

neural fitted Q with continuous action (NFQCA) [81] and our previous direct heuristic

dynamic programming (dHDP) implementation [30]. GPI is an iterative RL algorithm

that contains policy iteration and value iteration as special cases. To be specific, when

the max value update index Ni = 0, it reduces to value iteration; when Ni → ∞,

it becomes policy iteration. NFQCA and dHDP are two configurations similar in

the sense that both have features resemble SARSA and temporal difference (TD)

learning. According to [81], NFQCA can be seen as the batch version of dHDP.

To make a fair comparison between FPI and the other three RL algorithms, we

made FPI run under batch mode with neither PER nor prior knowledge involved.

Specifically, results in Table 2.3 were based on an adaptive batch size Nb between 20

and 40 (i.e., Settings (B)(A)(A)(A) in Table 2.1), and results in Fig. 2.6 used a fixed

Nb of either 20 or 40 (i.e., Settings (A)(A)(A)(A) in Table 2.1).

Before the comparison study, we first validated our implementations of GPI,

NFQCA and dHDP using examples from [30, 81, 31], respectively. We were able

to reproduce the reported results in those papers. For GPI, N and Ni were set equal
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to p and Ni as described in [31], respectively. GPI’s critic network (CNN) and the

action network (ANN) were chosen as three-layer back-propagation networks with

the structures of 2–8–1 and 2-8-3, respectively. For NFQCA, N was equivalent to

the pattern set size #D in [81]. For both NFQCA and dHDP, CNN and ANN were

chosen as 5-8-1 and 2-8-3 respectively. Notice that the number of neurons at the

input layers are different, because NFQCA and dHDP approximate the state action

value function Q(xk, uk) while GPI approximates V (xk). To summarize, an effort was

made to make the comparisons fair. For example, FPI’s batch sample size Nb was

equivalent to GPI’s and NFQCA’s N , thus the maximum Nb (FPI), N (GPI) and N

(NFQCA) were all set to 40 gait cycles in Table 2.3.

Table 2.3 shows a systematic comparison of the four algorithms under various

noise conditions. Artificially generated noise and noise based on variations of human

subject movement profiles were used in the comparisons. To be specific, sensor noise

and actuator noise are uniform noise that are added to the states xk and actions

uk, respectively. In the last two rows, human variances collected from two amputee

subjects TF1 and TF2 were introduced to the simulations, which would affect the

states xk. Under all noise conditions, FPI outperformed the other three existing

algorithms in terms of both success rate and tuning time.

Fig. 2.6 compares the root-mean-square errors (RMSEs) between target knee

angle profile and actual knee angle profile using FPI, GPI and NFQCA. Note that

when we used a parameter setting of (N = 40, Ni = 5) in GPI [31] which is in the

typical range that has been tested, the RMSE increased after a few iterations. Also

note from Fig. 2.6 that, GPI may achieve a similar performance as the FPI but it

required a sample size of N = 200, which is much higher than FPI’s case.
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2.6.4 FPI Incremental Mode Evaluation

We now evaluate FPI under incremental mode to further study FPI’s data and

time efficiency. Both PER and learning from prior knowledge, two of the innovative

features of FPI, can be employed in this mode.

To obtain prior knowledge V in (2.15) for the last row result in Table 2.4, we

trained an FPI agent for just one trial in OpenSim under the same settings as those

in the first row of Table (2.2) (Settings (A)(A)(A)(A) in Table 2.1 and Nb = 20).

Then prior knowledge V is obtained from V(xk) = min
uk
Q̂∗(xk, uk) where Q̂∗(xk, uk)

the final approximate value function after Algorithm 1 is terminated.

Table 2.4: FPI Tuner Performance under Incremental Mode

Configuration Options* Success Rate
Tuning Time

(mean±sd)

ER (A)(B)(A)(A) 83% (25/30) 134.4±21.6

PER (A)(B)(B)(A) 83% (25/30) 127.6±25.8

PER+Prior

Knowledge
(A)(B)(B)(B) 90% (27/30) 103.3±15.1

*refer to Table 2.1. ER: Experience Replay; PER: Prioritized Experience Replay.

Table 2.4 summarizes the performance of FPI in incremental mode under three

different configurations. ER or PER reutilized past samples from the current trial

for policy iteration (Settings 2(B) in Table 2.1). The first configuration is the ER

case without sample prioritization, i.e., ρ
(i)
k = 1 for all k. The second configurations

prioritized the samples before performing the policy evaluation. In both the first and

the second configurations (the first two rows in Table 2.4), no prior knowledge was

used, i.e., V(xk) = 0 for all xk. The third configuration (the third row in Table 2.4)
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utilized both prioritized samples and prior knowledge. The prior knowledge V(xk)

was obtained from training FPI with a previous trial. In Table 2.4, the success rate

increases from 83% to 90% as the algorithm gets more complex with PER and prior

knowledge. The results also suggest that the introduction of sample prioritization

and prior knowledge improves the data efficiency. Note that if the maximum number

of gait cycles was extended from 500 to 1000, then the success rate of all simulation

results in Table 2.4 will be 100%.

A statistical summary of a 30 randomly initialized trials based on the condition in

row 1 of Table 2.4 is provided in Fig. 2.2 (bottom half panel). As shown, after tuning,

the proposed FPI algorithm successfully reduced gait peak and duration errors.

2.7 Conclusion

We have proposed a new flexible policy iteration (FPI) algorithm aimed at pro-

viding data and time efficient parameter tuning for the control of a robotic knee

with human in the loop. The FPI incorporates previous samples and prior knowl-

edge during learning using PER and an augmented policy evaluation. Our results

not only show qualitative properties of FPI as a stabilizing controller and that it

approaches approximate optimal solution, but also include extensive simulation eval-

uations of control performance of FPI under different implementation conditions. We

also compared FPI with other comparable algorithms, such as dHDP, NFQCA and

GPI, which further demonstrates the efficacy of FPI as a data and time efficient learn-

ing controller. The FPI under batch mode performed better than other comparable

algorithms, and FPI became more efficient when utilizing (prioritized) experience re-

play and previous knowledge. Even though our application does not render itself as

a big data problem, but our results show that FPI has the capability of efficiently

working with a tight data budget.

43



Figure 2.2: Top Half: Illustration of the Four Phases of a Gait Cycle: The Red

Circles on the Target Profile (Red Curve) Indicate the Peak Angle Features of the

Four Respective Phases (STF, STE, SWF, SWE). Bottom Half: Before-and-After

FPI Tuning of Knee Profiles of 15 Randomly Selected Trials. The Blue Bars Are the

RMSEs between the Initial Knee Angle Profiles and the Target Knee Profile, and the

Yellow Bars Are the RMSEs between the FPI Tuned Knee Profiles and the Target

Profile.
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(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Figure 2.3: The Stage Cost in Peak Error and Duration Error As in Equation (2.51).
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(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Figure 2.4: Illustration of the Converging Process of the IC Parameters During FPI

Tuning: From Randomly Initialized IC Parameters (Four Trials for Illustration Here,

Shown in Blue Squares) to the Final Parameters (Shown in Red Dots), Which Are

Fitted With a Regression Response Surface.
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(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Figure 2.5: Converging Policy Vector [∆K,∆B,∆θe]
T .
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Figure 2.6: Comparison of the RMSEs Between Controlled Knee Profiles and Target

Profiles Using FPI, GPI and NFQCA Under the Same Stage Cost (2.51).
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Chapter 3

OFFLINE POLICY ITERATION BASED REINFORCEMENT LEARNING

CONTROLLER FOR ONLINE ROBOTIC KNEE PROSTHESIS PARAMETER

TUNING1

3.1 Abstract

This paper aims to develop an optimal controller that can automatically provide

personalized control of robotic knee prosthesis in order to best support gait of individ-

ual prosthesis wearers. We introduced a new reinforcement learning (RL) controller

for this purpose based on the promising ability of RL controllers to solve optimal

control problems through interactions with the environment without requiring an

explicit system model. However, collecting data from a human-prosthesis system is

expensive and thus the design of a RL controller has to take into account data and

time efficiency. We therefore propose an offline policy iteration based reinforcement

learning approach. Our solution is built on the finite state machine (FSM) impedance

control framework, which is the most used prosthesis control method in commercial

and prototypic robotic prosthesis. Under such a framework, we designed an approx-

imate policy iteration algorithm to devise impedance parameter update rules for 12

prosthesis control parameters in order to meet individual users’ needs. The goal of the

reinforcement learning-based control was to reproduce near-normal knee kinematics

during gait. We tested the RL controller obtained from offline learning in real time

experiment involving the same able-bodied human subject wearing a robotic lower

limb prosthesis. Our results showed that the RL control resulted in good convergent

1THIS CHAPTER IS BASED ON A CO-FIRST AUTHORED PAPER [70] WITH MINHAN LI.
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behavior in kinematic states, and the offline learning control policy successfully ad-

justed the prosthesis control parameters to produce near-normal knee kinematics in

10 updates of the impedance control parameters.

3.2 Introduction

The robotic prosthesis industry has experienced rapid advances in the past decade.

Compared to passive devices, robotic prostheses provide active power to effciently

assist gait in lower limb amptuees. Such active devices are potentially beneficial

to amputees by providing the capability of decreased metabolic consumption during

walking [83, 84], improved performance while walking on various terrains [85, 86],

enhanced balance and stability [87], and improved adaptability to different walking

speed [88]. In term of control for robotic prostheses, although several ideas [12, 89]

have been proposed in recent years, the most commonly used approach in commercial

and prototypic devices is still the finite state machine (FSM) impedance control [90,

5, 6].

The FSM impedance control framework requires customization of several impedance

parameters for individual users in order to accommodate different physical conditions.

This requirement currently poses a major challenge for broad adoption of the pow-

ered prosthesis devices because of the following reasons. For robotic knee prosthesis,

the number of parameters to be configured is up to 15 [6, 11]. However, in clinical

practice, only 2-3 parameters are practically feasible to be customized by prosthetists

manually and heuristically. This procedure is time and labor intensive. Researchers

have attempted alternative ways to manual tuning. To mimic the impedance nature

of biological joint, intact leg models were studied to estimate the impedance parame-

ters for the prosthetic knee joint [76, 91, 92]. Yet, the accuracy of these models have

not been validated. Our group developed a cyber expert system approach to finding
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Figure 3.1: Overview of Offline Reinforcement Learning Controller Design and Online

Human Subject Testing. (a) The Offline Training Process (Algorithm 1). (b) The

Online Testing Process. (c) Target Knee Profile (Dash Curve) and Current Knee

Profile (Blue Curve).

the impedance parameters [3]. This method is promising because of its model-free

nature, however, its high demands for knowledge of experienced prosthesis tuning ex-

perts impedes its application in the real world. Most recently, some studies proposed

to take into account the human’s feedback in the optimization for the parameter con-

figuration and demonstrated the promise. However, these methods still have some

limitations, such as hard to extend for configuring high dimensional parameters [19]

or imposing a prerequisite on the dataset which has to cover all users’ preference [93].

In fact, the process of configuring impedance parameters can be formulated as

a control problem of solving optimal sequential decisions. Because of the ability to

autonomously learn an optimal behavior through interactions rather than explicitly

formulate a detailed solution to a specific problem, the reinforcement learning (RL)

based control design becomes a natural candidate when it comes to addressing the

aforementioned challenges of configuring robotic knee prosthesis to meet individual

needs. Recently, RL was successfully applied to solving robotic problems that involve

sophisticated and hard-to-engineer behaviors. In most of these successful applica-
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tions, policy search methods were at the center of the development [94, 95, 21, 96].

For example, Gu [96] developed an off-policy deep Q-function based RL algorithm

to learn complex 7 DoF robotic arm manipulation policies from scratch for a door

opening task. Vogt [97] presented a data-driven imitation learning system for learn-

ing human-robot interactions from human-human demonstrations. However, deep RL

based methods may not be appropriate in some biomedical applications such as the

human-prosthesis control problem under consideration. One primary reason is that

training data involving human subjects are usually not easily acquired or expensive to

collect. Additionally, experimental session involving human subjects usually cannot

last more than one hour because of human fatique and safety considerations. Putting

it together, we are in need of a reinforcement learning controller that can adapt to

individual conditions in a timely and data efficient manner.

In our previous study [30, 37], we developed an actor critic RL controller, namely

direct heuristic dynamic programming (dHDP) [52] to the robotic knee prosthesis pa-

rameter tuning problem. By interacting with the human-prosthesis system and under

the same FSM impedance control framework, dHDP learned to reproduce near-normal

knee kinematics. Though the dHDP showed its promise, it still took a relatively long

time to complete the learning process. It took about 300 gait cycles or about 10 min-

utes of walking to achieve acceptable walking performance [37]. Moreover, because

it is an online learning algorithm, it has not been developed to take advantage of

existing offline data. Therefore, the problem calls for a more time efficient and data

efficient solution.

To this end, we introduce an innovative, approximate policy iteration based re-

inforcement learning controller. Compared to the previous dHDP approach, it has

several advantages. First, it enjoys several important properties of classic policy itera-

tion algorithm such as convergent value functions and stable iterative control policies
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[29, 58]. Second, it is reported that policy iteration has higher data and time effi-

ciency than general gradient descent based methods [38]. Third, as we aim to show

in this paper that our policy iteration based RL approach can learn from offline data

to fully utilize historical data. As such, this learning controller can potentially be

expanded to solve more complex problems that require an integration of both online

and offline data.

The objective of this study is to develop and evaluate the feasibility of a policy

iteration based learning control for personalizing a robotic prosthesis. In our previous

study [98], we conducted a simulation study to indicate the potential of the proposed

idea. Our approach is based on that in [29], which is further developed in this study to

provide real time control for a real physical robotic prosthesis with human in the loop.

The real human-prosthesis system is rich in unmodeled dynamics and uncertainties

from environment and human. Especially, the human variances and consequent im-

pact on the prosthetic knee and the human-prosthesis system have made controlling

the robotic prosthesis more challenging than those problems encountered in humanoid

robots or human-robot interactions to jointly perform a task such as picking up a box.

This is because the human-prosthesis system interact and evolve seamlessly at an al-

most instantaneous time scale, i.e., a potentially out-of-control parameter adjustment

in the prosthesis can result in system instability almost immediately, which is much

less tolerant than a human-robot system.

In this chapter, for the first time, we successfully designed a reinforcement learn-

ing controller realized by approximate policy iteration to control robotic lower limb

prosthesis with human in the loop. This new prosthesis control design approach is

data efficient as it was derived from offline data collected from interactions between

human and prosthesis. We demonstrated this learning controller for tuning 12 pros-

thesis parameters to approach desired normal gait on real human subject.
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3.3 Human-Prosthesis Integrated System

3.3.1 Finite State Machine Framework

Fig. 5.1 illustrates reinforcement learning controlled prosthesis in a human-prosthesis

integrated system. The learning controller is realized within a well established FSM

platform. Specifically, an FSM partitions a gait cycle into four sequential gait phases

based on knee joint kinematics and ground reaction force (GRF). These four gait

phases are stance flexion (STF), stance extension (STE), swing flexion (SWF) and

swing extension (SWE). In real-time experiments, transitions between phases are real-

ized as those in [6] based on Dempster-Shafer theory (DST). For each phase, the pros-

thetic system mimicked a passive spring-damper-system with predefined impedance

that matched the biological knee impedance. The predefined impedance parameters

are selected by the finite state machine and outputted to the impedance controller as

I = [K,B, θe]
T ∈ R3, (3.1)

where K is stiffness, B is damping coefficient and θe is equilibrium position. In other

words, for all four phases there are 12 impedance parameters to activate the knee joint

which directly impact the kinematics of the robotic knee and thus the performance

of the human-prosthesis system. The knee joint torque T ∈ R is generated based on

the impedance control law

T = K(θ − θe) +Bω. (3.2)

The four target points (red markers) and four control points (black markers) in

Fig. 5.1(c) provide state information for the learning controller to generate optimal

control. The chosen points were the maximum or minimum points within each phase,

so they could characterize basic knee movements. To approach the normal gait, target

points were set to resemble the corresponding points in normative knee kinematics
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measured in able-bodied individuals [99].

Specifically, one learning controller is designed for one phase under the FSM frame-

work. Without loss of generality, our following discussion involves only one of the four

phases. In each phase, peak error ∆P ∈ R and duration error ∆D ∈ R are defined as

the vertical and horizontal distance between the corresponding pair of control point

and target point. Then the state x of the RL controller are formed using ∆P ∈ R

and ∆D ∈ R as

x = [∆P,∆D]T . (3.3)

Correspondingly, the action u is the impedance adjustment ∆I,

u = ∆I. (3.4)

Additional insights and construct on the FSM framework and the peak/duration

errors can be found in [30].

3.4 Offline Reinforcement Learning Control Design

3.4.1 Problem Formulation

In this paper, we consider the integrated human-prosthesis system as a discrete-

time nonlinear system (5.1),

xk+1 = F (xk, uk), k = 0, 1, 2, . . . (3.5)

uk = π(xk) (3.6)

where k is the discrete time index that provides timing for each impedance control

parameter update, xk ∈ R2 is the state vector x at time k, uk ∈ R3 is the action

vector u at time k, F is the unknown system dynamics, and π : R2 → R3 is the

control policy.
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To provide learning control of the prosthesis within system (5.1), we formulate an

instantaneous cost function U(x, u) in a quadratic form as

U(x, u) = xTRxx+ uTRuu (3.7)

where Rx ∈ R2×2 and Ru ∈ R3×3 are positive definite matrices. We use (3.7) to

regulate state x and action u, as larger peak/duration error as in (3.3) and larger

impedance adjustment as in (3.4) will be penalized with a larger cost.

The infinite horizon cost function Q(xk, u) is defined as

Q(xk, u) = U(xk, u) +
∞∑

j=k+1

γj−kU(xj, π(xj)) (3.8)

where γ is a discount factor. Note that the Q(xk, u) represents the cost function when

action u is applied at state xk, the system (5.1) then reaches xk+1 and follows the

control policy π thereafter.

The optimal cost function Q∗(xk, u) satisfies the Bellman optimality equation

Q∗(xk, u) = U(xk, u) + γQ∗(xk+1, π
∗(xk+1)) (3.9)

where the optimal control policy π∗(xk) can be determined from

π∗(xk) = arg min
u

Q∗(xk, u). (3.10)

Policy iteration is used to solve the Bellman optimality equation (3.9) iteratively

in this study. Policy iteration has several favorable properties such as convergence

guarantee and high efficiency [29], which make it a good candidate for configuring

a robotic knee with human in the loop. Starting from an initial admissible control

π(0)(xk), the policy iteration algorithm evolves from iteration i to i + 1 according

to the following policy evaluation step and policy improvement step. Note that for

offline training, a zero output policy is sufficient to be an initial admissible control.
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Policy Evaluation

Q(i)(xk, u) = U(xk, u) + γQ(i)(xk+1, π
(i)(xk+1))

i = 0, 1, 2, . . . (3.11)

Policy Improvement

π(i+1)(x) = arg min
u

Q(i)(x, u), i = 0, 1, 2, . . . (3.12)

Equation (3.11) performs an off-policy policy evaluation, which means the action

u need not to follow the policy being evaluated. In other words, u 6= π(i)(xk) in

general. This makes it possible to implement (3.11) and (3.12) in an offline manner

using previously collected samples and thus achieve data efficiency. Solving (3.11)

and (3.12) requires exact representations of both cost function and control policy,

which is often not tractable in robotic knee configuration problem where continuous

state and continuous control are involved. In Subsect. 3.4.2, we circumvent this issue

by finding an approximated solution for (3.11) using offline data.

3.4.2 Offline Approximate Policy Iteration

For implementation of the policy evaluation equation (3.11), we used a quadratic

function approximator to approximate the cost function Q(i)(x, u) in the ith iteration

as

Q̂(i)(x, u) =

x
u


T

S(i)

x
u

 =

x
u


T S(i)

xx S
(i)
xu

S
(i)
ux S

(i)
uu


x
u

 (3.13)

where S(i) ∈ R5×5 is a positive definite matrix and S
(i)
ux , S

(i)
xx , S

(i)
xu and S

(i)
uu are subma-

trices of S(i) with proper dimensions. The quadratic form of (3.13) corresponds to

the instantaneous cost function U(x, u) in (3.7).

To utilize offline data with the approximated cost function (3.13), samples are

formulated as 3-tuples (xn, un, x
′
n), n = 1, 2, 3 . . . N, where n is the sample index and
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N is the total number of samples of the offline dataset. The 3-tuple (xn, un, x
′
n)

means that after control action un is applied at state xn, the system reaches the

next state x′n. In other words, xn
un−→ x′n is required to formulate a sample, but x′n

needs not to equal to xn+1 and un does not need to be on-policy, i.e. following a

specific policy. Notice that k represents a sequential time evolution associated with

gait cycle, but n does not need to follow such an order because offline sample n

and n + 1 may come from two different trials. Hence, collecting offline samples is

much more flexible than collecting online learning samples. Having an offline dataset

D = {(xn, un, x′n), n = 1, 2, 3 . . . N}, we can perform the following approximate policy

evaluation step according to (3.11),

Q̂(i)(xn, un) = U(xn, un) + γQ̂(i)(x′n, π
(i)(x′n)). (3.14)

Solving (3.14) for Q̂(i)(xn, un) is equivalent to solving for S(i). In other words, based

on (3.13), the policy evaluation (3.14) can be converted to the following convex opti-

mization problem with respect to S(i),

minimize µTnS
(i)µn − γ(µ′n)TS(i)µ′n − U(µn)

subject to S(i) � 0

(3.15)

where µn = [xTn , u
T
n ]T and µ′n = [x′n

T , π(i)(x′n)T ]T .After obtaining the S(i) and Q̂(i)(xn, un),

we can update policy based on

π(i+1)(xn) = arg min
un

Q̂(i)(xn, un) (3.16)

which is an approximate version of (3.12). In practice, constraints on actions are

added to keep actions within a reasonable range (TABLE 3.1). As a result, policy

update (3.16) can be converted to a quadratic programming problem,

minimize Q̂(i)(xn, un)

subject to u− 6 un 6 u+

(3.17)
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Table 3.1: Bounds on the Actions

Gait Phase K (N ·m/deg) θe (deg) B (N ·m·s/deg)

STF [−0.1, 0.1] [−1, 1] [−0.001, 0.001]

STE [−0.1, 0.1] [−1, 1] [−0.001, 0.001]

SWF [−0.01, 0.01] [−2, 2] [−0.001, 0.001]

SWE [−0.01, 0.01] [−1, 1] [−0.001, 0.001]

where u− and u+ are the lower bound and upper bound of acceptable action, re-

spectively. The values of u− and u+ can be found in TABLE 3.1. We used convex

optimization [100] to solve (3.15) and (3.17).

Algorithm 5.1 summarizes the implementation of the offline approximate policy

iteration algorithm.

Algorithm 3.1 Offline Approximate Policy Iteration

Input: training dataset D = {(xn, un, x′n), n = 1, 2, . . . ,N}

Output: optimal cost function Q̂∗(x, u) and policy π∗(xk)

for i = 1, 2, . . . , imax

Get S(i) from (3.15) and Q̂(i)(x, u) from (3.13)

Get policy π(i+1)(x) from (3.17)

end for

return Q̂∗(x, u) = Q̂(i)(x, u) and π∗(x) = π(i+1)(x)

3.4.3 Implementation of Offline Policy Training

The offline training data including N = 140 pairs of the (xn, un, x
′
n) tuples came

from two separate experiments invovling the same human subject using the same

prosthesis device. The whole data collection process took 29 minutes to complete.
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Figure 3.2: The Frobenius Norm of the Difference between Two Successive S Matrices.

(a) STF. (b) STE. (c) SWF. (d) SWE.

During data collection, the prosthesis impedance parameters were controlled by the

dHDP based RL approach that we investigated previously [30]. Note, however, that

the dHDP was used to only provide some control to the prosthesis or in other words,

dHDP was an enabler of the data collection session. That is to say that the data

were drawn from the online learning process of the dHDP RL controller rather than

generated by a well-learned policy. During data collection, the state xn and next

state x′n in each pair of sampled tuples were averaged by 7 gait cycles conditioned on

the same action un. In addition, prior to applying Algorithm 5.1, all samples were
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normalized into the range between −1 and 1 to avoid ill-conditioning issues during

application of convex optimization to achieve admissible control policies.

The discount factor γ was set to 0.8. The termination condition of the Algorithm

5.1 was set as a maximum of imax = 100 iterations. The weight matrices of state and

action were specified as Rx = diag(10, 1) and Ru = diag(1, 1, 1), respectively. They

were specified to make the peak error dominating the cost. Because, compared to the

duration error which is partially controlled by human behaviors (e.g. heel-strike or

toe-off timing), the peak error is more sensitive to the parameter changes. Moreover,

as a factor determining gait performance, the peak error is more important than the

action taken in our settings. Yet, we still need to take the duration error as one of the

monitored states in the controller, because the controller has to adjust parameters

to keep the duration error in a reasonable range. Otherwise, human users cannot

stabilize the duration error by themselves.

To evaluate the convergence of the trained policies, we investigated the changes of

S matrix in the approximate cost function Q̂ over the entire offline training process

for each phase. As a measure of element-wise distance regarding two matrices, the

Frobenius norm of the difference between two successive matrices
∥∥S(i+1) − S(i)

∥∥
F

was adopted to quantify the changes. As Fig. 3.2 shows, the norm value of the

difference reduced fast when the training process started off for each phase, and they

all approached zeros within 10 iterations. The result indicates that the approximated

cost function as well as the policy was convergent and optimal given the training

dataset. It took about 5 minutes to perform the offline training until reached the

convergence.
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3.5 Online Human Subject Testing Experiments

3.5.1 Experimental Protocol and Setup

The offline trained policy was implemented on the online able-bodied subject

testing experiments. The male subject was the same one from whom we collected

the offline training data. He was involved with informed consent. The experimental

protocol was approved by the Institutional Review Board (IRB) of University of North

Carolina at Chapel Hill. During the experiment, the subject wore a powered knee

prosthesis and walked on a split-belt treadmill at a fixed speed of 0.6 m/s without

holding handrails.

The entire experiment consisted of three sessions with different sets of initial

impedance parameters for the prosthetic knee. The three sets of parameters were

randomly selected, yet initially feasible to carry on policy iteration. The subject

experienced 40 updates of the impedance control parameters for each phase of the

FSM during a single experiment session. To reduce the influence of noises intro-

duced by human variance during walking, the update period (i.e., the time index k

in (5.1)) was set as 4 gait cycles (i.e., the states were obtained as an average of every

4 gait cycles). The proposed offline policy iteration based RL controller was used

to automatically update impedance control parameters online such that actual knee

kinematics approached predefined target points. At the beginning and at the end of

each session, the subject had two stages of acclimation walking corresponding to the

initial and final set of parameters, respectively. Each stage consisted of 20 gait cycles.

The measured knee kinematics in the corresponding acclimation were averaged out

to contrast the before-after effects of the proposed controller.

The robotic knee prosthesis used in this study was described in [6]. This prosthe-

sis used a slider-crank mechanism, where the knee motion was driven by the rotation
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of the moment arm powered by the DC motor through the ball screw. The pros-

thetic knee kinematics were recorded by a potentiometer embedded in the prosthesis.

Some major gait events determining phase transitions in the finite state machine

were detected by a load cell. The control system of the robotic knee prosthesis was

implemented by LabVIEW and MATLAB in a desktop PC.

3.5.2 Performance Evaluations

Measures of knee kinematics were obtained at the beginning acclimation stage and

at the ending acclimation stage during each session. These measurements reflect how

the prosthetic knee joint moved when it interacted with the human subject before

and after experiencing the control parameter update. By comparing the respective

errors with respect to target points, the performance of the RL controller in a human-

prosthesis system can be assessed.

While knee kinematic measures provide a quantitative evaluation of controller

performance in terms of reaching desired gait target points, it is also necessary to

consider an acceptable error range for the kinematic states. This is because the

inherent human variance during walking. Our experiments indicate that when the

peak errors and duration errors are within 2 degrees and 2 percent range of the target

values, respectively, the human subject would not feel any discomfort or insecure

while walking. Therefore, in our study, we adopted those error bounds.

3.5.3 Experimental Results

As Fig. 3.3 shows, the knee kinematics of the initial acclimation stages were

different in three different sessions and distant from the target points, especially the

peak angle errors. Clearly, after the impedance parameters were adjusted by the

proposed RL controller, knee kinematics of the final acclimation stages approached
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Figure 3.3: Comparisons of Knee Kinematics for Before and After Impedance Param-

eter Tuning Using Three Set of Initial Parameters.

the target points. Specifically, the averaged absolute values of the peak errors over

the three sessions deceased from 4.18± 3.28 degrees to 0.56± 0.47 degrees for STF,

from 4.33± 0.44 degrees to 1.11± 0.66 degrees for STE, from 4.92± 3.78 degrees to

0.14± 0.04 degrees for SWF and from 3.21± 1.23 degrees to 0.25± 0.23 degrees for

SWE. The results indicate that offline policy iteration based RL controller is able to
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Figure 3.4: Evolution of States ((a) Peak Error and (b) Duration Error) As Impedance

Parameters Were Updated.

reshape the prosthetic knee kinematics to meet the target points from different initial

parameter settings.

Fig. 3.4 illustrates the evolution of peak errors and duration errors during the

experimental session under the first set of initial parameters corresponding to the

first result in Fig. 3.3. Since similar results were obtained from other experiment

sessions, hereafter we only present the result from the first session as an example. All

four phases experienced reduction in the peak angles errors at the end . Specifically,

the peak error decreased from 5.8 degrees to −0.2 degrees for STF, from 3.8 degrees

to −1.5 degrees in the STE phase. For SWF and SWE, they dropped from 7.4 degrees

to 0.18 degrees and from −4.4 degrees to 0.05 degrees respectively.

The duration errors were insignificant, i.e., they were within the range of two

percent of one gait cycle, and they remained within the range over the entire session.

There are two considerations in this study. First, the duration time is controlled

partially by human behavior, or in other words, the effect of controller on this state

at the prosthetic knee is not the exclusively decisive factor. Second, given the previous
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consideration, we placed more emphasis on the peak error than the duration error as

reflected in the weighting matrix Rx in the quadratic cost measure.

The state errors at the final stage are mostly within the bounds of 2 degrees and

2 percent, respectively. These errors remained within bounds thereafter the first 10

parameter update cycles (40 gait cycles, about 1.3 minutes). Compared to the state

errors achieved by dHDP [30], the offline policy iteration based RL controller achieved

comparable performance with small errors (i.e. ±2 degrees, ±2 percent), but with

less time to adjust the impedance control parameters. Specifically, it took dHDP 10

minutes of experiment (300 gait cycles) to achieve comparable state errors.

Note that the peak errors from the STF and the STE phases are usually asso-

ciated with more oscillations than the other two swing phases as the state errors

approach zeros (from the 10th update to the 40th update). In addition, as illustrated

in Fig. 3.5, the impedance parameters exhibited different change patterns during the

experimental sessions. It is apparent that the impedance parameters during swing

phases converged in the first 20 updates and remained stationary thereafter. How-

ever, the impedance parameters exhibited somewhat oscillatory patterns during the

stance phases. It is actually not surprising when we see the different patterns in

the above. As can be understood, the stance phases involve direct interactions and

thus directly affected by the ground, the human subject and the robotic prosthesis

(for example, loading induced variation). Such varying interactions would introduce

more perturbations to the prosthesis and result in oscillations. Whereas the swing

phases are less likely to be affected by these factors and thus the state errors during

these phases appear more stationary. Under the above discussed disturbances, the RL

controller responded by making adjustments when it observed discrepancies between

target and actual states. This unique phenomena is a result of us dealing with an

inherently co-adapting human-prosthesis system.
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3.6 Conclusion and Future Work

We developed a new data efficient and time efficient approximate policy iteration

RL controller to optimally configure impedance parameters automatically for robotic

knee prosthesis. The learning controller was trained offline using historical data and

then the learned control policy was applied for online control of the prosthetic knee.

Our experimental results validated this new approach and showed that it reproduced

near-normal knee kinematics for the robotic knee prosthesis. Our results proved that

the offline policy iteration based RL controller is a promising new tool to solve the

challenging parameter tuning problems for the robotic knee prosthesis with human

in the loop.

In this paper, we only collected one subject’s data to train the offline policy

and tested it on the same subject. Further studies need to be done to investigate

whether the outcome of the proposed method can be generalized or transferred to

other subjects. In addition, our future work will extend the current design to facilitate

further online control policy adjustment. We believe such an integrated approach

will facilitate even broader range of human-prosthesis integrated behavior to address

changes in environment, task, and human condition.
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Chapter 4

REINFORCEMENT LEARNING CONTROL WITH INFORMATION

TRANSFER

4.1 Abstract

Recently, the class of temporal difference (TD) learning and value function based

reinforcement learning (RL) algorithms are receiving much attention. However, these

RL agents usually need to relearned from scratch when the model changes, or when

a new task is presented, which greatly hinders their successful applications to our ev-

eryday life. In this paper, the problem of integrating structural transferred knowledge

into RL is investigated. Here we develop a reinforcement learning control framework

with information transfer (RL-IT) is developed by introducing data-based transferred

knowledge into regular RL process. Realizing by regular Q-learning, the convergence

of the algorithm is proved and the influence of the adaptive parameter is analyzed.

The transferred knowledge is defined in a value function-like form which can be either

obtained from previously learned agents or from data analysis and heuristics. Trade-

off between the transferred knowledge and the current value function is achieved by an

adaptive parameter. To implement the algorithm, a actor-critic neural network (NN)

structure is developed. We evaluated the performance of the RL-IT algorithm using

three classic problems, including the windy gridworld problem, the inverted pendu-

lum cart-pole balancing problem and the human-prosthesis control problem. Results

suggested that RL-IT outperformed the regular RL (without knowledge) in these

three different tasks, and RL-IT is promising for learning for models with variations

and for similar but new task.
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4.2 Introduction

Machine learning is based on the idea that systems can learn knowledge directly

from data, identify patterns by constructing statistical model and make decisions with

minimal human intervention. Machine learning technologies have already achieved

significant success in many applications including computer vision [101], game-playing

AI [22, 24, 102] and robotic control [103, 104]. Traditional machine learning methods

assume that training data and testing data are drawn from the same domain, such

that the feature space and data distribution are the same [105, 106]. However, in

many real-world scenarios, this assumption does not hold. For example, in indoor

WiFi localization, it is very expensive to calibrate a localization model in a large-

scale environment, as the WiFi signal strength may be varies with time, device or

spaces. To reduce the re-calibration effort, we might want to adapt a localization

model trained in one time period (the source domain) for a new time period (the

target domain), or to adapt the localization model trained on one mobile device

(the source domain) for a new mobile device (the target domain). However, the

distributions of WiFi data collected over time or across devices may be very different,

hence transfer learning (domain adaptation) is needed [107]. When it is expensive

or impossible to re-collect the needed training data to rebuild the models, transfer

learning between task domains would be much desirable.

Transfer learning (TL) attempts to improve on traditional machine learning by

transferring knowledge learned in one or more source tasks and using it to improve

learning in a related target task. TL is first established and widely used in supervised

learning scenarios, where it also being referred as domain adaptation [40, 41, 42].

Pan and Yang [105] gave a systematic review of the works in TL under the paradigm

of supervised learning (SL), especially for for classification, regression and clustering
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problems that are related more closely to data mining tasks. According to [105],

a domain consists of a feature space and a marginal probability distribution of the

feature space; a task consists of a label space and an objective predictive function.

As such, TL can be categorized under three sub-settings, inductive TL, transductive

TL and unsupervised TL, based on different situations between the source and target

domains and tasks. In the inductive TL setting, the target task is different from the

source task, no matter when the source and target domains are the same or not. In

the transductive TL setting, the source and target tasks are the same, while the source

and target domains are different. Finally, in the unsupervised TL setting, similar to

inductive TL setting, the target task is different from but related to the source task.

However, the unsupervised TL focus on solving unsupervised learning tasks in the

target domain, such as clustering, dimensionality reduction and density estimation .

In this case, there are no labeled data available in both source and target domains in

training.

Although TL has gain much success in supervised learning, transfer in RL is

still a relatively new topic and insufficiently explored [43]. Traditional RL need to

restart from scratch whenever the task changes, even when similar problems have been

already solved or domain knowledge is available. The number of samples needed is

often large and even prohibitive in real-world problems. To address these drawbacks,

transfer RL has been proposed. There are several related names for transfer RL, such

as lifelong RL [108] and reward shaping [69]. In general, transfer RL is motivated by

reducing the number of samples needed in a new task via reutilizing previously learned

knowledge, which is similar to transfer in SL. However, because of the principles of

RL and SL are different, there are several important differences between transfer in

RL and transfer in SL. In RL, state and action are the counterpart terms for feature

in SL. As such, similar to SL where a domain consists of a feature space and its
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distribution, the domain in RL can be defined as a combination of a state-action

space and its distribution. Specifically, such a distribution can be expressed in the

form of a system model, which relates both state and action. On the other hand, a

task in SL consists of a label space and its prediction function. Similarly, a task in RL

can be defined by a reward function as it relates to the goal of a RL agent, which is

to maximize the accumulated rewards. However, according to the conventions of the

transfer RL community, a task typically covers all components in RL, including state

and action space, system function and reward function. Formal definitions of task

and transfer learning under RL paradigm are given in Definitions 1 & 2. For transfer

in single agent RL, past knowledge is transferred from previous task(s) to a similar

task at hand, while for transfer for multi-agent RL (MARL), transferred knowledge

not only comes from previously learned tasks, but also from more experienced agents

in the same task [109, 110]. In this work,we will focus on transfer in single agent RL

only.

Methods of transfer in RL can be categorized according to the forms of transferred

knowledge, such as instance (sample), value function, policy, reward and environment

(system model) [111]. Instance transfer is the most simple version of transfer algo-

rithm, where the RL agent collects samples coming from different source tasks and

reuses them in learning the target task. For example, the transfer of trajectory sam-

ples can be used to simplify the estimation of the action value function [112]. Policy

shaping [113] is a special case of value function based transfer [114, 44], where human

expert serves as an external critic to tell the RL agent whether its move is “right”

or “wrong”. Authors of [115] proposed a method that uses the past policies as a

probabilistic bias where the learning agent faces three choices: the exploitation of

the ongoing learned policy, the exploration of random unexplored actions, and the

exploitation of past policies. Yet, many of these techniques involve the use of low level
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information obtained in the source task by a RL agent, which may not be transferable

to or incompatible with the agent learning in the new task, as the RL algorithms used

in source and target task may differ in many ways.

Reward shaping methods provide prior knowledge to an agent through additional

rewards [116, 117, 118, 119]. By incorporation of domain knowledge in RL via reward

shaping, the training speed of a RL agent can be significantly improved [117]. How-

ever, to make the reward shaping signal become informative, expert knowledge and

significant engineering effort is required [116]. To make the reward shaping process

more autonomous, authors of [117, 118] designed a reward shaping method which

has two separate representations: a Markov problem-space representation for rein-

forcement learning that differs for each task, and an agent-space representation that

does not. The second representation is used to learn a shaping function that can

provide value predictions for novel states across tasks. However, choosing an appro-

priate agent-space remains a difficult problem, and no analytical guarantee is provided

whether or not it would not biased the final learning outcomes.

Unlike the above approaches, we propose a new knowledge transfer framework for

the single task transfer problem where both the source task and target task have the

same state and action variables. We built a knowledge representation via a value

function obtaining by supervised learning into the RL update, and the knowledge

transfer schedule results in a diminishing influence of previous knowledge which si-

multaneously allowing for increased attention to learning of the target task on hand.

In this paper we realize our framework by a Q-learning algorithm with value function

approximation. The main contributions of this paper are summarized as follows.

1. A flexible knowledge transfer framework for RL is proposed where the rep-

resentation of the transferred knowledge can be either a value function or a

regression model or both. It can be obtained in a data-driven manner or from
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expert knowledge.

2. The amount of transferred knowledge into a new task can be programmed in a

convenient way to address different applications needs.

3. Convergence analysis is provided for the proposed framework.

4. Comparisons and experiments with several classic RL problems are conducted,

which verify the sample efficiency by our proposed RL-IT framework.

The structure of this paper is organized as follows: We describe the proposed frame-

work of RL-IT in Section 4.3, and discuss its convergence properties in Section 4.4.

Section 4.5 details the implementation. Experimental results with three classic RL

problems are shown in Section 4.6, followed by discussion and conclusion in Sections

4.7 and 4.8.

4.3 Reinforcement Learning Control with Information Transfer

4.3.1 Transfer Reinforcement Learning

First, we give a definition of the task being discussed in this paper.

Definition 1. (Task) A task T consists of state space X , action space U , a

joint probability distribution over the state-action space P (X ,U), a system function

F (X ,U), a stage reward/cost function R(X ,U). A task T can be denoted by T =

{X ,U , P (X ,U), F (X ,U), R(X ,U)}.

We now give a unified definition of transfer learning in the RL paradigm.

Definition 2. (Transfer Reinforcement Learning) Given a source task TS, a

target task TT , transfer reinforcement learning aims to help improve the learning of

the optimal policy h∗ for TT using the knowledge in TS, where TS 6= TT .
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In the above definition, a task is a tuple T = {X ,U , P (X ,U), F (X ,U), R(X ,U)}.

Thus the condition TS 6= TT implies that there is at least one of the five components

in TS and TT are different.

4.3.2 Reinforcement Learning Control for Nonlinear Discrete-Time Systems

Consider an nonlinear discrete-time system of the form

xk+1 = F (xk, uk), k = 0, 1, 2, . . . (4.1)

where xk ∈ Rn is the state and uk ∈ Rm is the control vector. Let x0 be the initial

state. The system function F (xk, uk) is continuous for ∀xk, uk and F (0, 0) = 0. Hence,

x = 0 is an equilibrium state of system (4.1) under the control u = 0. Assume that

the system (4.1) is stabilizable on a prescribed compact set Ω ∈ Rn.

Definition 3. (Stabilizable System) A nonlinear dynamical system is said to be

stabilizable on a compact set Ω ∈ Rn, if for all initial states x0 ∈ Ω, there exists

a control sequence u0, u1, . . . , ui ∈ Rm, i = 0, 1, . . . , such that the state xk → 0 as

k →∞.

It is desired to find the control law uk = π(xk) which minimizes the infinite horizon

cost function given by

J(xk, uk) =
∞∑
j=k

γj−kR(xj, uj), (4.2)

where R is the stage cost function, R(0, 0) = 0, R(xj, uj) ≥ 0 for ∀xj, uj, and γ is the

discount factor with 0 < γ < 1.

Assumption 1. The system is controllable, and the function F (xk, uk) is Lips-

chitz continuous for ∀xk, uk; the system state xk = 0 is an equilibrium state of system

(4.1) under the control uk = 0, i.e., F (0, 0) = 0; the feedback control uk = h(xk)

satisfies uk = h(xk) = 0 for xk = 0; the stage cost function U(xk, uk) in xk and uk is

positive definite.
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For optimal control problems, the designed feedback control must not only stabi-

lize the system on Ω but also guarantee that (4.2) is finite, i.e., the control must be

admissible.

Definition 4. (Admissible Control) A control π(x) is said to be admissible with

respect to (4.2) on Ω if π(x) is continuous on a compact set Ωπ ∈ Rm, π(0) = 0, π

stabilizes on Ω, and for ∀x0 ∈ Ω, J(x0, u0) is finite.

Note that (4.2) can be written as

J(xk, uk) = R(xk, uk) + γJ(xk+1, uk+1). (4.3)

According to Bellman’s optimality principle, the optimal cost function J∗(xk, uk)

satisfies the action dependent discrete-time (DT) HJB equation

J∗(xk, uk) = R(xk, uk) + γmin
uk+1

J∗(xk+1, uk+1). (4.4)

Besides, the optimal control π∗ can be expressed as

π∗(xk) = arg min
uk
J∗(xk, uk). (4.5)

By substituting (4.5) into (4.4), the DT HJB equation becomes

J∗(xk, uk) = R(xk, uk) + γJ∗(xk+1, π
∗(xk+1)). (4.6)

where J∗(xk, uk) is the value function corresponding to the optimal control policy

π∗(xk). This equation reduces to the Riccati equation in the LQR case, which can be

efficiently solved. In the general nonlinear case, the HJB cannot be solved exactly.

In the following subsections, we apply the Q-learning algorithm to solve for the

value function J∗(xk, uk) of the HJB equation (4.6).

4.3.3 Q-Learning

The Q-learning based value iteration algorithm is a method to solve the DT HJB

online.
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In the Q-learning algorithm, one starts with an initial value, e.g., Q(0)(x, u) = 0,

and then solves for u0 as follows:

u0 = π0(xk) = arg min
uk
Qi(xk, uk).

Once the policy π0 is determined, iteration on the value is performed by computing

Q(1)(xk, uk) = R(xk, uk) + γQ(0)(xk+1, π0(xk+1)).

The Q-learning value iteration scheme, therefore, is a form of incremental opti-

mization that requires iterating between a sequence of action policies πi determined

by the greedy update

πi(xk) = arg min
uk
Qi(xk, uk) (4.7)

and a sequence Qi(xk, uk) ≥ 0 where

Qi+1(xk, uk) = R(xk, uk) + γQi(xk+1, πi(xk+1)) (4.8)

with initial condition Q(0)(xk, uk) = 0. Note that i is the value iteration index,

whereas k is the time index. Combining (4.7) and (4.8), we have

Qi+1(xk, uk) = R(xk, uk) + γmin
uk+1

Qi(xk+1, uk+1). (4.9)

Note that, as a value iteration algorithm, Q-learning does not require an initial sta-

bilizing gain. This is important, as stabilizing gains are difficult to find for general

nonlinear systems.

The Q-learning algorithm results in an incremental optimization that is imple-

mented forward in time and online. Note that, unlike the case for policy iterations,

the sequence Qi(xk, uk) is not a sequence of cost functions and is therefore not a

sequence of Lyapunov functions for the corresponding policies πi(xk) which are, in

turn, not necessarily stabilizing.
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4.3.4 Obtaining Prior Knowledge by Supervised Learning

The mathematical model of the system 4.1 is unknown. To proceed forward, we

need to extract transferable knowledge from the task, such as system, task objective

and etc. Here we introduce an data mining (supervised learning) approach to extract

knowledge from prior task samples in the form of (xk, uk, xk+1). We first obtain an

regression model F given samples of (xk, uk, xk+1):

xk+1 = F(xk, uk), (4.10)

where xk+1 ∈ Rn is the next state and F is the regression model. Note that F can be

a linear regression model or an nonlinear regression model such as random forest or

Gaussian regression model. Expert knowledge on system F (4.1) can help in choosing

a proper regression model for F .

After the regression model F is obtained, we can now formulate an value function

of Q′(xk, uk) based on F(xk, uk). The form of Q′ is also related to the the stage

reward or cost in RL. For example, Q′ can be formulated as a quadratic form such

that Q′ ≥ 0:

Q′i(xk, uk) = αix
2
k+1 = αi(F(xk, uk))

2. (4.11)

Note that here the form of Q′ was manually defined and was not unique, and αi is a

ratio that satisfies 0 ≤ αi ≤ 1, αi+1 ≤ αi and αi → 0 when i→∞. . As shown later,

knowledge represented in Q′ can be adopted by the designer at a preferred rate.

4.3.5 Reinforcement Learning Control with Information Transfer

Based on (4.7) and (4.8), we now propose a reinforcement learning control with

information transfer which is initialized by Q0(xk, uk) = 0.

πi(xk) = arg min
uk

[Qi(xk, uk) +Q′i(xk, uk)] (4.12)
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Qi+1(xk, uk) = R(xk, uk) + γ[Qi(xk+1, πi(xk+1))

+Q′i(xk+1, πi(xk+1))]

(4.13)

where Q′i is a arbitrary positive semi-definite function that represents previously

learned knowledge. Combining the above two equations, we have

Qi+1(xk, uk) = R(xk, uk) + γmin
uk+1

[Qi(xk+1, uk+1)

+Q′i(xk+1, uk+1)].

(4.14)

Note that (4.7)-(4.9) are a special case for (4.12)-(4.14) when Q′i = 0.

4.4 Properties of Reinforcement Learning with Information Transfer

4.4.1 Properties of the proposed algorithm without approximation error

The convergence analysis provided here is an extension of those given in [120, 121].

The QL update in (4.14) will generate a sequence of iterative Q-value func-

tion {Qi(xk, uk)}. In this section, the convergence of the KG-QL algorithm will be

proved by showing the sequence {Qi(xk, uk)} converges to the optimal value function

J∗(xk, uk). Before starting, the following Lemmas are required.

Lemma 1. Let {µi} be be any arbitrary sequence of control laws and {πi} be the

control laws as in (4.7). Define Qi as in (4.8) and define Λi as

Λi+1(xk, uk) = R(xk, uk) + γ[Λi(xk+1, µi(xk+1))

+Q′i(xk+1, µi(xk+1))].

(4.15)

If Q0(·) = Λ0(·) = 0, then Qi+1(xk, uk) ≤ Λi+1(xk, uk),∀i.

Proof. It can be derived by noticing that Qi+1 is the result of minimizing the

right-hand side of (4.8) with respect to the control input uk+1, while Λi+1 is a result

of an arbitrary control input.

Lemma 2. Let the sequence {Qi} be defined as in (4.8). If the system is control-

lable on Ω and Q′(0, 0) = 0,there is an upper bound Y such that 0 ≤ Qi(xk, uk) ≤ Y, ∀i.
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Proof. Let η(xk) be any admissible control law, and let Z0(·) = 0, and Zi is

updated by

Zi+1(xk, uk) = R(xk, uk) + γ[Zi(xk+1, η(xk+1))

+Q′i(xk+1, η(xk+1))]

(4.16)

Z1(xk, uk) = R(xk, uk) + γQ′i(xk+1, η(xk+1)) (4.17)

Let Zi(xk, η) = Zi(xk, η(xk)) be a shorthand notation. Noticing the difference

Zi+1(xk, uk)− Zi(xk, uk)

= γ[Zi(xk+1, η) +Q′i(xk+1, η)]

− γ[Zi−1(xk+1, η) +Q′i−1(xk+1, η)]

= γ[Zi(xk+1, η)− Zi−1(xk+1, η) +Q′i(xk+1, η)−Q′i−1(xk+1, η)]

≤ γ(Zi(xk+1, η)− Zi−1(xk+1, η))

≤ γ2(Zi−1(xk+2, η)− Zi−2(xk+2, η))

...

≤ γi(Z1(xk+i, η)− Z0(xk+i, η))

= γiZ1(xk+i, η), (4.18)
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we can obtain

Zi+1(xk, uk)

≤ γiZ1(xk+i, η) + Zi(xk, uk)

≤ γiZ1(xk+i, η) + γi−1Z1(xk+i−1, ) + Zi−1(xk, uk)

= γiZ1(xk+i, η) + γi−1Z1(xk+i−1, η)

+ γi−2Z1(xk+i−2, η) + Zi−2(xk, uk)

= γiZ1(xk+i, η) + γi−1Z1(xk+i−1, η)

+ γi−2Z1(xk+i−2, η) + . . .+ γZ1(xk+1, η) + Z1(xk, η),

=
i∑

j=0

γjZ1(xk+j, η).

(4.19)

According to (4.17),

Zi+1(xk, uk)

≤
i∑

j=0

γj[R(xk+j, uk+j) + γQ′0(xk+j, η)]

≤
∞∑
j=0

γj[R(xk+j, uk+j) + γQ′0(xk+j, η)]

(4.20)

Since η(xk) is an admissible control input, i.e., xk → 0 and thus Q′0(xk, η(xk))→ 0 as

k → ∞,and the sequence of {R(xk+j, uk+j)}and {Q′0(xk+j, η)}are bounded by some

positive real numbers, i.e. 0 ≤ R(xk+j, uk+j) ≤ Y1, 0 ≤ Q′0(xk+j, η) ≤ Y2,there exists

finite Y1 and Y2 such that

∞∑
j=0

γjR(xk+j, uk+j) ≤
∞∑
j=0

γjY1 ≤ Y1, ∀i, (4.21)

∞∑
j=0

γj+1Q′0(xk+j, η) ≤
∞∑
j=0

γj+1Y2 ≤ Y2, ∀i. (4.22)

Let Y = Y1 + Y2. By using Lemma 1, we get

Qi+1(xk, uk) ≤ Zi+1(xk, uk) ≤ Y, ∀i, (4.23)
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so the proof is completed.

Based on Lemmas 1 and 2, we now present the convergence proof of the Q-value

function sequence.

Theorem 1. Define the sequence {Qi} as in (4.8) with Q0 = 0, and the control

law sequence {πi} as in (4.7). The learned knowledge Q′(xk, uk) ≥ 0. Then, we can

conclude that {Qi} is a nondecreasing sequence satisfying Qi ≤ Qi+1,∀i.

Proof. Define a new sequence {Φi} as

Φi+1(xk, uk) =R(xk, uk) + γ[Φi(xk+1, πi+1(xk+1))

+Q′i+1(xk+1, πi+1(xk+1))]

(4.24)

where Φ0 = Q0 = 0. Now we show that Φi(xk, uk) ≤ Qi+1(xk, uk). Note that we use the

shorthand notation in the following proof, e.g. Φi(xk+1, πi+1) = Φi(xk+1, πi+1(xk+1)).

First, we prove that it holds for i = 0. Since

Q1(xk, uk) = R(xk, uk) + γQ′0(xk+1, π0) (4.25)

Q1(xk, uk)− Φ0(xk, uk) = R(xk, uk) + γQ′0(xk+1, π0)

≥ 0,

(4.26)

we have

Φ0(xk, uk) ≤ Q1(xk, uk). (4.27)

Second, we assume that it holds for i − 1, i.e., Φi−1(xk, uk) ≤ Qi(xk, uk),∀xk. Then,

for i, from (4.13) and (4.24), we get

Qi+1(xk, uk)− Φi(xk, uk)

= γ[Qi(xk+1, πi)− Φi−1(xk+1, πi)] ≥ 0 (4.28)

i.e.,

Φi(xk, uk) ≤ Qi+1(xk, uk). (4.29)
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Thus, the above equation is true for any i by mathematical induction.

Furthermore, according to Lemma 1, we know that Qi(xk, uk) ≤ Λi(xk, uk). Com-

bining with (4.29), we have

Qi(xk, uk) ≤ Φi(xk, uk) ≤ Qi+1(xk, uk) (4.30)

which completes the proof.

According to Lemma 2 and Theorem 1, we can obtain that {Qi} is a monotonically

non-decreasing sequence with an upper bound, and therefore, its limit exists. Here,

we define it as limi→∞Qi(xk, uk) = Q∞(xk, uk) and present the following theorem.

Theorem 2. Let the cost function sequence {Qi} be defined as in (4.13). Then,

its limit satisfies

Q∞(xk, uk) = R(xk, uk) + γmin
uk+1

Q∞(xk+1, uk+1) (4.31)

Proof. For any uk+1 and i, according to (4.8), we can derive

Qi(xk, uk) ≤R(xk, uk) + γ[Qi−1(xk+1, uk+1)

+Q′i(xk+1, uk+1)]

(4.32)

Combining with

Qi(xk, uk) ≤ Q∞(xk, uk), (4.33)

which is obtained from (4.30), we have

Qi(xk, uk) ≤R(xk, uk) + γ[Q∞(xk+1, uk+1)

+Q′i(xk+1, uk+1)],∀i.
(4.34)

Let i→∞, then Q′i → 0. We can obtain

Q∞(xk, uk) ≤ R(xk, uk) + γQ∞(xk+1, uk+1). (4.35)
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Note that in the above equation, uk+1 is chosen arbitrarily, thus, it implies that

Q∞(xk, uk) ≤ R(xk, uk) + γmin
uk+1

Q∞(xk+1, uk+1). (4.36)

On the other hand, since the cost function sequence satisfies

Qi+1(xk, uk) =R(xk, uk) + γmin
uk+1

[Qi(xk+1, uk+1)

+Q′i(xk+1, uk+1)]

(4.37)

considering (4.33), we have

Q∞(xk, uk) ≥R(xk, uk) + γmin
uk+1

[Qi(xk+1, uk+1)

+Q′i(xk+1, uk+1)], ∀i.
(4.38)

Let i→∞, then Q′i → 0. Then we can obtain

Q∞(xk, uk) ≥ R(xk, uk) + γmin
uk+1

Q∞(xk+1, uk+1). (4.39)

Based on (4.36) and (4.39), we can conclude that (4.31) is true. The proof is complete.

Theorem 3. Let limi→∞Qi(xk, uk) = Q∞(xk, uk) = J∗(xk, uk) and limi→∞ πi(xk) =

π∞(xk) = π∗(xk), then the iterative Q-value and the policy convergent to the optimal

value J∗ and optimal policy π∗as defined in (4.4) and (4.5),

Q∞(xk, uk) = J∗(xk, uk), (4.40)

π∞(xk) = π∗(xk). (4.41)

Proof. According to Theorem 2 and the relationship between (4.12) and (4.13),

we have

Q∞(xk, uk) = R(xk, uk) + γmin
uk+1

Q∞(xk+1, uk+1)

= R(xk, uk) + γQ∞(xk+1, π∞(xk+1))

(4.42)
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and

π∞(xk) = arg min
uk
Q∞(xk, uk). (4.43)

Observing (4.42) and (4.43), and then (4.4) and (4.5), we can find that (4.40) and

(4.41) are true.

4.4.2 Properties of the proposed algorithm with approximation errors

The following analyses extends the results of [122, 123] to the action-dependent

value function (Q-value function), discounted (0 < γ < 1), zero initial value function

(Q0(xk, uk) = 0) and with information transfer case.

Considering approximation errors in (4.12)(4.13), starting from Q̂0(xk, uk) = 0,

for i = 0, 1, 2, . . . , we have

π̂i(xk) = arg min
uk

[Q̂i(xk, uk) +Q′i(xk, uk)] + ρi(xk) (4.44)

Q̂i+1(xk, uk) = R(xk, uk) + γ[Q̂i(xk+1, πi(xk+1))

+Q′i(xk+1, πi(xk+1))] + %i(xk, uk)

(4.45)

where ρi(xk) and %i(xk, uk) are finite approximation error functions of the iterative

control and Q-value function, respectively. For convenience of analysis, for ∀i =

0, 1, ..., we assume that ρi(xk) = 0 and %i(xk, uk) = 0 for xk = 0 and uk = 0.

Considering approximation errors, we generally have π̂i(xk) 6= πi(xk), Q̂i+1(xk, uk) 6=

Qi(xk, uk), i = 0, 1, ..., and the convergence property in Theorem 1-3 for accurate case

becomes invalid. Hence, in this subsection, a new convergence criteria will be estab-

lished considering approximation errors in each iteration, which makes the iterative

Q-value function converge to a finite neighborhood of the optimal one.

Define the target Q-value function as

Γ′i (xk) = min
uk

{
U (xk, uk) + γ[Q̂i−1(xk+1, uk+1) +Q′i−1(xk+1, uk+1)]

}
(4.46)
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and

Γi (xk) = min
uk

{
U (xk, uk) + γQ̂i−1(xk+1, uk+1)]

}
where Q̂0(xk, uk) = Γ0(xk, uk) = 0. For i = 0, 1, 2, . . . ,there exist finite constants

υ ≥ 1 and τ ≥ 1 that makes

Q̂i(xk, uk) ≤ υΓ′i(xk, uk) ≤ υτΓi(xk, uk). (4.47)

hold uniformly. Let σ = υτ , it becomes

Q̂i(xk, uk) ≤ σΓi(xk, uk). (4.48)

Hence, we can give the following theorem.

Theorem 4. Let xk ∈ Rn be an arbitrary controllable state and Assumptions 1–4

hold. For i = 0, 1, ..., let Γi (xk) be expressed as and Q̂i(xk, uk) be expressed as (4.45).

Let 0 < λ <∞ and 1 ≤ δ <∞ be both constant that make

J∗(xk+1, uk+1) ≤ λU(xk, uk) (4.49)

hold uniformly. If there exists 1 ≤ σ <∞ that makes (4.47) hold uniformly, then we

have

Q̂i(xk, uk) ≤ σ

(
1 +

i∑
j=1

λjσj−1(σ − 1)

(λ+ 1)j

)
J∗(xk, uk) (4.50)

where i, j = 0, 1, ....

Proof. The theorem can be proved by mathematical induction. First, let i = 0.

Then, (4.50) becomes

Q̂0(xk, uk) ≤ σJ∗(xk, uk). (4.51)

This can be obtained as Q̂0(xk, uk) ≡ 0 ≤ J∗(xk, uk) ≤ σJ∗(xk, uk). Therefore, the

conclusion holds for i = 0.
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Next, let i = 1. According to (4.46), we have

Γ1 (xk, uk) = min
uk

{
U (xk, uk) + γQ̂0(xk+1, uk+1) + γQ′0(xk+1, uk+1)

}
≤min

uk
{U (xk, uk) + γσJ∗(xk+1, uk+1)}

≤min
uk
{
(

1 + λ
σ − 1

λ+ 1

)
U (xk, uk)

+ γ

(
σ − σ − 1

λ+ 1

)
J∗ (xk+1, uk+1)}

=

(
1 + λ

σ − 1

λ+ 1

)
min
uk
{U (xk, uk) + γJ∗ (xk+1, uk+1)}

=

(
1 + λ

σ − 1

λ+ 1

)
J∗ (xk, uk) .

(4.52)

Note that in the derivation above, γJ∗(xk+1, uk+1) ≤ J∗(xk+1, uk+1) ≤ λU(xk, uk)

holds given According to (4.47), we have

Q̂1(xk, uk) ≤ σ

(
1 + λ

σ − 1

λ+ 1

)
J∗ (xk, uk) (4.53)

which shows that (4.50) holds for i = 1.

Assume that (4.50) holds for i = l − 1, where l = 1, 2, . . . . Then, for i = l, let
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c =
∑l−1

j=1
λj−1σj−1(σ−1)

(λ+1)j
, d = λl−1σl−1(σ−1)

(λ+1)l
, we have

Γl (xk, uk) = min
uk

{
U (xk, uk) + γQ̂l−1(xk+1, uk+1)

}
≤min

uk
{U (xk, uk) + γσ (1 + λc) J∗(xk+1, uk+1)}

≤min
uk
{U (xk, uk) + γσ (1 + λc) J∗(xk+1, uk+1)}

≤min
uk
{(1 + λc+ λd)U (xk, uk)

+ γ [σ (1 + λc)− c− d] J∗(xk+1, uk+1)}

=

(
1 + λ

l−1∑
j=1

λj−1σj−1(σ − 1)

(λ+ 1)j
+ λ

λl−1σl−1(σ − 1)

(λ+ 1)l

)

min
uk
{U (xk, uk) + γJ∗(xk+1, uk+1)}

=

(
1 +

l∑
j=1

λjσj−1(σ − 1)

(λ+ 1)j

)
J∗(xk, uk).

(4.54)

Then, according to (4.47), we can obtain (4.50), which proves the conclusion for

i = 0, 1, ....The proof is complete.

Theorem 5. Let xk ∈ Rn be an arbitrary controllable state and Assumptions 1–4

hold. Suppose Theorem 4 holds for ∀xk ∈ Rn. If for 0 < λ <∞ the inequality

1 ≤ σ ≤ λ+ 1

λ
(4.55)

holds, then as i → ∞, the iterative performance index function Q̂i(xk, uk) in (4.45)

is uniformly convergent to a bounded neighborhood of the optimal performance index

function J∗(xk, uk), i.e.,

lim
i→∞

Q̂i(xk, uk) = Q̂∞(xk, uk) ≤ σ

(
1 +

λ(σ − 1)

1− λ(σ − 1)

)
J∗(xk, uk). (4.56)

Proof. According to (4.54) in Theorem 4, we can see that for j = 1, 2, . . . . the
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sequence
{
λjσj−1(σ−1)

(λ+1)j

}
is a geometric series. Then, (4.54) can be written as

Γi (xk, uk) =

(
1 +

λ(σ−1)
(λ+1)

(
1− ( λσ

λ+1
)i
)

1− λσ
λ+1

)
J∗(xk, uk). (4.57)

As i→∞, if 1 ≤ σ ≤ λ+1
λ

, then (4.57) becomes

lim
i→∞

Γi (xk, uk) = Γ∞ (xk, uk) ≤
(

1 +
λ(σ − 1)

1− λ(σ − 1)

)
J∗(xk, uk). (4.58)

According to (4.47), let i→∞, we have

Q̂∞(xk, uk) ≤ σΓ∞(xk, uk). (4.59)

From (4.58) and (4.59), we can obtain (4.56). The proof is complete.

Remark 1. Theorem 5 provides a convergent condition for the approximated Q-

value function Q̂i(xk, uk). Because of the existence of approximation errors, Q̂i(xk, uk)

is not necessary larger or smaller than Γi (xk, uk). If there exists a 0 < σ < 1 that

satisfies (4.48), there must exist some σ ≥ 1 that also satisfies (4.48). Since 0 < σ < 1

is just a special case of σ ≥ 1, here we will consider only the situation for σ ≥ 1.

4.5 Implementation of Reinforcement Learning Control with Information Transfer

In this section, we discuss the implementation of the proposed knowledge guided

QL algorithm for different types of applications based on whether the state-action

space is discrete or continuous. For discrete state-action space such as finite state

MDPs, Q-learning can be performed using exact Q-values which are stored in a

Q-table. For continuous state-action space, actor-critic structure is developed to

implement the adaptive QL algorithm. The actor and critic NNs are employed to ap-

proximate the Q-function and the control policy, respectively. The critic NN (CNN)

weights are updated with a modified gradient decent method with additional func-

tion that captured the prior knowledge, and the actor NN (ANN) weights are updated

based on the critic NN.
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4.5.1 Exact Q-Learning using Q-Table

Consider the simple case for finite state MDP when the state and action spaces

are small enough for the value functions to be represented as tables. In this tabular

case, exact solutions, i.e. the optimal value function and the optimal policy, can often

be found exactly by updating the values in the The proposed algorithm works similar

to QL in this case, except that it follows a different equation (4.14) for updating the

Q-values.

4.5.2 Actor-Critic Neural Networks

For the case where the state space is continuous, the proposed RL-IT method is

implemented using an actor-critic structure.

Critic Neural Network

The CNN consisted of three layers of neurons, namely the input layer, the hidden

layer and the output layer. For the input layer, it took the state xk ∈ R4× 1 and the

action uk ∈ R3×1 as inputs. The output of CNN, denoted by Q̂(xk, uk), approximates

the the total cost-to-go value function Q(xk, uk),

Q̂(i)(xk, uk) = W
(i)
c2 ϕ(W

(i)
c1

 xk

uk

), (4.60)

where W
(i)
c1 is the weight matrix between the input layer and the hidden layer, and

W
(i)
c2 is the weight matrix between the hidden layer and the output layer. And ϕ(·)

is the tangent sigmoid activation function,

ϕ(v) =
1− exp(−v)

1 + exp(−v)
. (4.61)
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The hidden layer output is

hc1 = ϕ(vc1) = ϕ(W
(i)
c1

 xk

uk

). (4.62)

The prediction error ec,k ∈ R of the CNN can be written as

e
(i+1)
c,k = R(xk, uk) + γ[Qi(xk+1, π

(i)(xk+1))

+Q′i(xk+1, π
(i)(xk+1))]−Qi+1(xk, uk)

(4.63)

To correct the prediction error, the weight update objective was to minimize the

squared prediction error Ec,k, denoted as

E
(i+1)
c,k =

1

2
(e

(i+1)
c,k )2. (4.64)

The weight update rule for the CNN was a gradient-based adaptation given by

W (i+1)
c = W (i)

c + ∆W (i+1)
c (4.65)

The weight updates of the hidden layer matrix Wc2 were

∆W
(i+1)
c2 = lc

[
−
∂E

(i+1)
c,k

∂W
(i+1)
c2,k

]
= lc

[
−
∂E

(i+1)
c,k

∂e
(i+1)
c,k

∂e
(i+1)
c,k

∂Q
(i+1)
k

∂Q
(i+1)
k

∂Wc2,k

]
. (4.66)

Here we used the short handed notation Q
(i+1)
k for Qi+1(xk, uk).

The weight updates of the input layer matrix were Wc1 were

∆W
(i+1)
c1 = lc

[
−
∂E

(i+1)
c,k

∂W
(i+1)
c1,k

]

= lc

[
−
∂E

(i+1)
c,k

∂e
(i+1)
c,k

∂e
(i+1)
c,k

∂Q
(i+1)
k

∂Q
(i+1)
k

∂hc1

∂hc1
∂vc1

∂vc1
∂Wc2,k

] (4.67)

where lc > 0 is the learning rate of the CNN.
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Action Neural Network

The ANN consisted of three layers of neurons with two layers of weights, and it takes

in the state xk ∈ R4× 1 from the system and output the actions uk ∈ R to perform

control actions to the system:

uk = ϕ(W
(i)
a2 ∗ ϕ(W

(i)
a1 xk)), (4.68)

where W
(i)
a1 and W

(i)
a2 are the weight matrices, and ϕ(·) was the tan-sigmoid activation

function of the hidden layer and output layer. One major difference between the

structures of ANN and CNN is that, there is no tan-sigmoid activation function on

the output layer of CNN, while there is one on the output layer of ANN.

Under our problem formulation, the objective of adapting the ANN is to mini-

mizing the absolute value of the approximated total cost-to-go Q̂(i)(xk, uk) and make

it close to 0. The weight update rule for the ANN was to minimize the following

performance error:

E
(i+1)
a,k =

1

2
(Q̂(i+1)(xk, uk))

2. (4.69)

Similarly, the weight matrix was updated based on gradient descent:

W (i+1)
a = W (i)

a + ∆W (i+1)
a (4.70)

The weight updates of the hidden layer matrix Wa2 are

∆W
(i+1)
a2 = la

[
−
∂E

(i+1)
a,k

∂W
(i+1)
a1,k

]
. (4.71)

The weight updates of the input layer matrix Wa1 are

∆W
(i+1)
a1 = la

[
−
∂E

(i+1)
a,k

∂W
(i+1)
a1,k

]
. (4.72)

The above ANN and CNN weight updates and the memory guided QL imple-

mentation is summarized in Algorithm 1. The weights of both ANN and CNN were

initialized with uniformly distributed random numbers between −1 and 1.
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4.6 Experimental Results

4.6.1 Windy Gridworld

Fig. 4.1(a) shows a rectangular “windy gridworld” representation of a simple

finite MDP, which is adopted from [124] and [125]. Each cell in the grid corresponds

to a state. There are four actions can be taken at each cell: north, south, east,

and west, which deterministically cause the agent to move one cell in the indicated

direction. If the agent takes an action that would take it off the grid, its location

will remain unchanged. All actions result in a reward of 0, except those that move

the agent towards the goal state. Notice that there are arrows drawn in the "windy"

states, where the agent experiences an extra "push" action that makes it move one

step towards the indicated wind direction. For example, if the agent is in a windy

state with south wind (pointing upward) and executes an action to right, the agent

will end up move right one cell but also another one upward. As a result, the agent

moves diagonally upward to the right. Fig. 4.1(b) shows an optimal policy (path)

corresponds to the windy gridworld in Fig. 4.1(a), and the actual movements are

affected by the wind.

We limited the maximum number of time steps in each episode to 30. At the

beginning of each episode, the agent starts from the "Start" state and moves around

according to some policy until it reaches a maximum of 30 steps or it reaches the goal

state. Reward is −0.1 everywhere except that of the goal state is 10.

To test the idea of RL-IT we changed the wind as shown in Fig. 4.1(c), and

changed the location of the goal state and size of the grid world as in Fig. 4.1(d). In

the first case, the nine windy cells ranging from (2,3) to (4,5) each have a probability

of 0.2 to become a wind-less cell (here (a, b) means ath row and bth column, counting

from the top-right corner). In the second case, the size of the map was extended from
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(a) (b)

(c) (d)

Figure 4.1: The Windy Gridworld Problem. (a) Original Gridworld, (b) Optimal

Path for the Original Gridworld, (c) Change Wind, (d) Change Map Size and Goal.
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(a) (b)

Figure 4.2: Comparison of Average Episode Reward of 10 Episodes. (a) Change

Wind, (b) Change Size and Goal, the Shaded Area Indicates the Range of Data in

the 10 Episodes.

a 5× 6 map to a 7× 8 map, meanwhile, the goal state was randomly chosen from cell

(5,5), (5,6), (6,5), (6,6).

This wind grid-world problem can be solved by Q-learning. The Q-learning algo-

rithm here used a tabular form to store the Q-values, and followed a ε-greedy explo-

ration with ε = 0.1. The learning rate was 0.1 and the discount rate γ = 0.9. The Q′

values in this experiment was obtained from running the tabular form Q-learning on

the original problem (Fig. 4.1(a)), then Q′ table was used as the knowledge to guide

the updates in the Q-values when a new task of “change wind” or “change size and

goal” was presented.

The result in Fig. 4.2 shows the average episode reward of 10 episodes with

changed wind or changed size and goal. Here the term episode reward means the

total reward the agent actually collected in an episode. In both scenarios, with trans-

ferred knowledge, the Q-learning agents outperformed the ones without transferred
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(a) (b)

Figure 4.3: Schematic Drawings of the Second and the Third Example Studied in

This Work. (a) Inverted Pendulum Cart-Pole Balancing Problem. (b) Prosthesis

Control Problem With Human in the Loop.

knowledge. Specifically, in the first scenario “changed wind”, the average numbers

of episodes experienced before reaching an episode reward of 8.5 are 22.4, 32.6 and

115.4 for original QL, RL-IT with α0 = 0.5 and RL-IT with α0 = 0.8 respectively.

Correspondingly for the second scenario “changed size and goal”, the three numbers

are 53.2, 65.2 and 102.1 respectively. Notice that in Fig. 4.2 there are some cases

where the episode reward are less than 0 at the early stage, and this implies that the

agent failed to reach goal state during an episode.

4.6.2 Inverted Pendulum Cart-pole Balancing Problem

The inverted pendulum cart-pole model (Fig. 4.3(a)) is a classic problem in control

theory and is often used as a benchmark for testing control strategies. The cart-pole

system studied in this paper is the same as the one in [52], except that the control

force that pushes or pulls the cart is continuous rather than binary.
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This cart-pole model has four state variables: 1) position of the cart on the track;

2) angle of the pole with respect to the vertical position; 3) cart velocity; 4) angular

velocity of the pole. We adopted the settings from [52] where a run consists of a

maximum of 1000 consecutive episodes. It is considered successful if the last trial

(trial number less than 1000) of the run has lasted 600 000 time steps. Otherwise,

if the controller is unable to learn to balance the cart-pole within 1000 trials (i.e.,

none of the 1000 trials has lasted over 600 000 time steps), then the run is considered

unsuccessful. In our simulations, we have used 0.02 s for each time step, and a trial

is a complete process from start to fall. A pole is considered fallen when the pole is

outside the range of [−12°, 12°] and/or the cart is beyond the range of [−2.4, 2.4] m

in reference to the central position on the track.

In Fig. 4.3(a), the default value of the half-pole length l is 0.5 m. We first ob-

tained the structural transferred knowledge Q′ from the cart-pole model with default

value of l using linear regression x̄k+1 = F(x̄k, ūk). Here x̄k ∈ R2 consisted of angle

and angular velocity of the pole, in other words, two of the four state variables. The

action variable ūk ∈ R was the force applied on the cart. Sample pairs of (x̄k, ūk, x̄k+1)

were obtained by performing Monte-Carlo sampling on the cart-pole model, and the

regression model F was built using these sample pairs. Then the transferred knowl-

edge Q′ was computed based on x̄k+1. Here we simply let Q′ = 0.01x̄2k+1 and its values

corresponds to x̄k while ūk are kept unchanged are shown in Fig. 4.4(a). Apparently,

the Q′ values are higher when the pole angle θ and pole angular velocity ω share

the same sign. For example, when close to the point at θ = −0.2 rad and ω = −1

rad/s, and also the point at θ = 0.2 rad and ω = 1 rad/s, the corresponding Q′ values

are large, which indicates higher costs for these states. Note that the formulation of

the transferred knowledge Q′ relied on heuristics, and Q′ is partial knowledge of the

problem rather than complete knowledge as only partial state (two of the four state
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(a) (b)

Figure 4.4: Regression Based Q′ Values. (a) Inverted Pendulum Cart-Pole Balancing

Problem. (b) SWF Phase of Prosthesis Control Problem With Human in the Loop.

variables) is considered in Q′.

With the regression result as a transferred knowledge Q′, RL-IT was employed

to find optimal solution for the target tasks with various half pole length, e.g. half

pole length l = 0.3 m, 0.4 m, 0.5 m, 0.6 m, 0.7 m. Fig.4.5 shows that RL-IT needs

fewer episodes and samples to find the optimal solution, compared to the original

Q-learning algorithm.

4.6.3 Human-Prosthesis Simulation

We used OpenSim [126], a widely used human movements simulation platform, to

simulate level-ground walking dynamics of the human-prosthesis system. Fig.4.3(b)

shows the OpenSim lower limb walking model. In this model, five rigid-body seg-

ments linked by one degree-of-freedom pin joints were used to represent the human

body. The right knee was treated as a prosthetic knee and controlled by finite-state
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(a) (b)

Figure 4.5: Comparison for the Cart-Pole Balancing Problem. (a) Number of

Episodes Before Success. (b) Number of Samples Before Success.

impedance controller (FS-IC), while the other joints followed prescribed motions. The

FS-IC divides a gait into four phases, in each of the four phases the torque at the

prosthetic knee is determined by the impedance control law,

T = K(θ − θe) +Bω. (4.73)

where K,B and θe are the impedance parameters: K is stiffness, B is damping

coefficient and θe, is equilibrium position. After each gait cycle, the differences (errors)

between the measured knee angle profile and the target knee profile at the feature

points are computed and treated as the state of the ADP controller. The adjustments

to the three impedance parameters are the action. More details about this task, that

a RL agent is used to tune the prosthetic knee impedance parameters, can be found

in [30, 37].

Similar to the cart-pole balancing task, we first collected sample pairs of (x̄k, ūk, x̄k+1)

from the OpenSim model with a body weight ratio of 0.1. Here k is the index

of gait cycle,x̄k ∈ R is peak angle at gait cycle k, and ūk ∈ R3 is the adjust-
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(a) (b)

Figure 4.6: Comparison for the OpenSim Human-Prosthesis Walking Problem. (a)

Number of Episodes Before Success. (b) Number of Samples Before Success.

ments to the three impedance parameters. The regreesion model F can be found

using regressions:x̄k+1 = F(x̄k, ūk). Then Q′ can be computed based on heuristic

formulation based on F as Q′(x̄k, ūk) = Q(x̄k+1) = Q(F(x̄k, ūk)). Here we let

Q(x̄k+1) = x̄2k+1. The values of Q′(x̄k, ūk) that is formulated in this way are vi-

sualized in Fig. 4.4(b).

With the regression result as a transferred knowledge Q′, RL-IT was employed to

find optimal solution for the target tasks with various body weight ratios, e.g. body

weight ratio equals 0.08, 0.09, 0.10, 0.11 and 0.12. Fig.4.6 shows that RL-IT needs

fewer episodes and samples to find the optimal solution, compared to the original

Q-learning algorithm.

4.7 Discussion

In this paper, we developed a new RL-IT framework to perform reinforcement

learning with online data as well as transfer knowledge from another similar task.
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The transferred knowledge can be obtained either from offline historical data us-

ing regression, or from another trained RL agent. We tested our proposed method

with three classic RL problems, including windy gridworld, inverted pendulum and

a human-prosthesis simulation model. These three problems cover various scenarios

ranging from discrete state/action space to continuous state/action space. The sim-

ulation results of the three problems validated this new approach and showed that it

is more time and sample efficient compared to the naive learner.

Compared to the existing and related works such as reward shaping methods [117,

118] or experience replay [67, 127, 128], we provided a systematic framework RL-IT to

utilize transferred knowledge as the regular reinforcement learning agent is learning

simultaneously. To be specific, we provided a more complete analytical guarantee on

the convergence of the proposed framework. It is showed that with the transferred

knowledge, the new agent can still reach an optimal solution monotonically.

The flexibility of RL-IT is presented in three different levels. First, it allows for

a flexible knowledge representation Q′ in the value function or system dynamics or

both. Second, additional flexibility can be achieved by a transfer ratio as designers are

allowed to determine how much information can be transferred from the source task

to the target task. Third, can be extend to other RL algorithms. Third, our RL-IT

control framework focus transfer learning problems that involve the same states and

controls. Thus, it can be integrated with other TD-based methods such as SARSA

and value iteration, as well as their deep learning variants, to name a few.

The issue of negative transfer is remain an open question in the study of transfer

learning. A successful transfer relies on the transferred knowledge is applicable in

both source task and target task, otherwise noise will accumulate during learning

iterations can lead to negative transfer which can adversely affect performance when

more training data is used. We did not specify any specific technique to address
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negative transfer, therefore, the results reported in this paper also relied on proper

selection of source task and training task.

4.8 Conclusion

In this paper, we present general reinforcement framework RL-IT that learns

with both online experiences and transferred knowledge. First, structural knowledge

represented as a function of state and action is extracted from a source task. Then

a Q-learning based RL algorithm is presented to incorporate the knowledge in Q-

value update. The convergence properties of the proposed method is analyzed. To

implement RL-IT, a actor-critic structure is developed. Extensive experiments using

three simulated classic RL problems verify that RL-IT outperforms its counterpart

without transferred knowledge in terms of sample efficiency. In our future work, we

plan to extend the results to real robotic experiments with human in the loop.
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Chapter 5

KNOWLEDGE-GUIDED REINFORCEMENT LEARNING CONTROL FOR

ROBOTIC LOWER LIMB PROSTHESIS

5.1 Abstract

Robotic prostheses provide new opportunities to better restore the lost functions

than passive prostheses for transfemoral amputees. But controlling a prosthesis de-

vice automatically for individual users in different task environments is an unsolved

problem. Reinforcement learning (RL) is a naturally promising tool. For prosthesis

control with a user in the loop, it is desirable that the controlled prosthesis can adapt

to different task environments as quickly and smoothly as possible. However, most

RL agents learn or relearn from scratch when the environment changes. To address

this issue, we propose the knowledge-guided Q-learning (KG-QL) control method as

a principled way for the problem. In this report, we collected and used data from two

able-bodied (AB) subjects wearing a RL controlled robotic prosthetic limb walking

on level ground. Our ultimate goal is to build an efficient RL controller with reduced

time and data requirement and transfer knowledge from AB subjects to amputee sub-

jects. Toward this goal, we demonstrate its feasibility by employing OpenSim, a well-

established human locomotion simulator. Our results show the OpenSim simulated

amputee subject improved control tuning performance over learning from scratch by

utilizing knowledge transfer from AB subjects. Also in this paper, we will explore the

possibility of information transfer from AB subjects to help tuning for the amputee

subjects.
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5.2 Introduction

The rapid development of robotic prostheses in both research and commercial

products brings them closer to real-life scenarios. Compared to passive devices,

robotic lower limb prostheses promise to provide better functions to restore nat-

ural gaits for amputees, such as decreased metabolic consumption [83], improved

adaptation to various terrains [85, 86] or walking speed [88], and enhanced balance

and stability [87]. In robotic lower limb prosthetics, finite state impedance control

(FS-IC) [90, 6] is still the most common approach in both prototypes or commercial

devices. However, in order to maximize the performance for each user, there are a

large number of control parameters in these devices need to be tuned by experienced

clinicians.

Reinforcement learning allows learning from interacting with the environment to

generate suitable actions while maximizing a performance reward in a particular sit-

uation. Learning can take place under different formulations of a problem, including

learning directly from data without requiring an explicit mathematical description of

the environment and the interacting dynamics between the controller and the envi-

ronment. This has given RL an expanded domain of control applications beyond the

capacity of traditional control theory and practice. There have been several successful

demonstrations of RL applications to solving challenging robotic control problems.

Among those, deep RL methods attracted most attentions. For example, Nair et al.

[129] employed deep deterministic policy gradients (DDPG) for a robotic arm block

stacking task with sparse reward. The authors of [130] proposed deep latent policy

gradient (DLPG) for learning locomotion skills. However, deep RL based methods

may be not suitable for biomedical applications such as the human-prosthesis con-

trol problem being discussed in this paper, because training data involving amputee
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subjects are usually difficult to acquire and expensive to collect. Additionally, exper-

imental sessions involving human subjects usually cannot last more than one hour

because of human fatigue and safety considerations. To tackle this challenge, we

proposed several sample-efficient and easy-to-implement RL methods in our previ-

ous works [30]-[131] allowing for directly learning from data. In our application of

prosthesis control, it is very common that the robotic prosthesis need to be adapted

for a new user. However, these RL methods, as well as most existing RL methods,

are designed to learn from scratch whenever a new task or new model is presented,

and thus not readily capable of storing and transferring knowledge gained from one

subject to another.

It is therefore of high priority that the RL agent is designed to be training time and

sample efficient when tuned for a new user. To take advantage of previous knowledge

and information, we consider building a representation for potentially transferable

knowledge across subjects. In the current study, we consider extracting knowledge

from able-bodied (AB) subjects and use that for future RL control design for amputee

subjects. It is known that transfer learning has attracted great attention in the

machine learning field where it is typically considered for storing knowledge gained

while solving one problem and applying it to a different but related problem [43]. In

the context of general transfer learning in the literature, our prosthesis parameter

tuning problem has the same state and action while the problem calls for gaining

knowledge from tuning parameters for AB subjects (source task) and using that for

tuning parameters for amputee subjects (target task).

Structural knowledge transfer perhaps has found most of its applications reported

in the literature. Barreto et al. [44] solved the problem where rewards change but

environments remain the same using successor features, a value function representa-

tion that decouples the dynamics of the environment from the rewards. Asadi et al.
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[45] proposed a learning architecture which transfers control knowledge in the form of

behavioral skills and representation hierarchy, which separates the subgoals so that

a more compact state space can be learned. In [46], researchers demonstrated that

Schema network is capable to perform zero-shot transfer between tasks where cause-

effect relationship remains unchanged, such as learning to play the breakout game

with different maps. In [47], target apprentice learning is proposed for cross-domain

transfer, e.g. from balancing a cart-pole to balancing a bike.

Unlike the above approaches, we propose a new knowledge transfer framework for

the class of problems that transfer from a source task to a target task while main-

taining the same state and control problems. We built a knowledge representation

from AB subjects into the Q-learning update, and the knowledge transfer schedule

results in a diminishing influence of previous knowledge which simultaneously allow-

ing for increased attention to learning of the target task on hand. Specifically, we

first collected data from AB subjects, then we built regression models on these data,

which then became transferred knowledge to guide a Q-learning process, namely our

proposed knowledge guided Q-learning (KG-QL) process. Our method introduces

two new advances from the existing transfer learning methods. First, we provided

a flexible framework where the representation of the transferred knowledge can be

either a value function or a regression model or both. Second, the amount of trans-

ferred knowledge into a new task can be programmed in a convenient way to address

different applications needs.

The structure of this paper is organized as follows: Section II discusses the control

framework of human-prosthesis system, the regression based transfer learning method,

and the proposed framework of KG-QL for parameter tuning. Experimental results

using OpenSim simulations are shown in Section III followed by discussion and future

directions in Section IV.
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5.3 Methods

5.3.1 Finite State Impedance Control of Human-Prosthesis System

From the perspective of a RL agent, the integrated human-prosthesis system can

be treated as a nonlinear dynamic system of the form

xk+1 = F (xk, uk), k = 0, 1, 2, . . . (5.1)

where k is the discrete time index or gait cycle in this study, xk ∈ R2 is the state

vector, uk ∈ R3 is the action or control vector, and F describes the intrinsic human-

prosthesis system dynamics of how a new state at k + 1 evolves from a current state

and control at k. Specifically, state xk is defined as the differences (errors) between

the measured knee angle profile and the target knee profile at the feature points. The

target knee profile is identical to those normative knee kinematics reported in [99].

In Fig. 5.1(c), for each of the four phases there is a pair of such feature points with

black and red markers, where their vertical and horizontal differences are peak error

∆Pk ∈ R and duration error ∆Dk ∈ R, respectively:

xk = [∆Pk,∆Dk]
T . (5.2)

The RL controller is realized within an established FS-IC platform. In FS-IC, a

complete gait cycle is divided into four sequential gait phases based on knee joint kine-

matics and ground reaction force (GRF) by a finite state machine (FSM). These four

gait phases are stance flexion (STF), stance extension (STE), swing flexion (SWF)

and swing extension (SWE). In real-time experiments, phase transitions are realized

as those in [6] based on Dempster-Shafer theory (DST). In each phase, the pros-

thetic system mimics a passive spring-damper-system with a group of three predefined

impedance parameters as

Ik = [Kk, Bk, θe,k] ∈ R3, (5.3)
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where Kk is stiffness, Bk is damping coefficient and θe,k is equilibrium position. In

other words, for all four phases there are 12 impedance parameters in total with one

RL controller being designed for one phase under the FS-IC framework. Without loss

of generality, our following discussion on the RL controller design approach applies to

all four phases, and therefore, we utilize only one of the four phases. The knee joint

torque T ∈ R is generated based on the following impedance control law

Tk = Kk(θ − θe,k) +Bkω. (5.4)

Correspondingly, the action uk of the RL agent is defined as adjustments ∆Ik to the

impedance parameters Ik,

uk = ∆Ik = [∆Kk,∆Bk,∆θe,k]. (5.5)

5.3.2 Human Gait Data Collection

To perform knowledge transfer from a source task to a target task, first we need to

obtain the transferable knowledge, which can be represented in the form of raw data,

policy, value function, or others. Here we define a function Q′(xk, uk) to store such

information for transfer. It takes state and action as input to generate the state-action

value function or Q-value function Q(x, u) as in the RL literature. Although Q′ can

be a previously learned Q-value function from a RL agent, it can also be represented

in other forms. In this work, we construct Q′ using regression model based on the

source task data.

Source task data was collected from two AB participants (both male, 25-35 years

old) while walking at a constant speed of 0.6 m/s on a split-belt treadmill with force

platforms embedded within each belt. All participants provided written informed

consent prior to participating according to protocols approved by the Institutional

Review Board at North Carolina State University. A certified prosthetist aligned the
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robotic knee prosthesis for each subject. The AB subjects used an L-shape adaptor

(with one leg bent 90 degrees) to walk with the robotic knee prosthesis (Fig. 5.1(a))

[37].

The gait data used in this study includes a total of N = 1120 pairs of state-action

tuples (xk, uk) from the two AB subjects (AB1: 480 pairs, AB2: 640 pairs) using the

same prosthesis device. During data collection, the prosthesis impedance parameters

were controlled by the dHDP based RL approach that we investigated previously

[37]. Note that the dHDP was only to provide some control to the prosthesis instead

of providing optimal control to achieve a performance measure. In other words,

the data were drawn from the online learning process of the dHDP RL controller

rather than generated by a well-learned policy to provide sufficient exploration of the

control policy space. Actually, a RL controller is not unique for data collection. Any

sampling method is acceptable as long as it sufficiently samples the control parameter

space, and it maintains practical stability of the human-prosthesis system. Note that

during data collection, the impedance parameters Ik were updated every seven gait

cycles, and state xk was averaged by the seven gait cycles conditioned on the same

impedance parameters Ik. That is to say, to reduce step-by-step variability in feature

measurements, the time index k here corresponds to every seven gait cycles.

5.3.3 Extracting Knowledge from Human Gait Data

We performed linear regression to establish a relationship between prosthesis

impedance parameters and the human-prosthesis system kinematics as follows,

xk+1 = F(xk, uk) = F(zk) = β0 + β1zk + e, (5.6)

where xk+1 ∈ R2 is the next state, β0 ∈ R is the intercept, β1 ∈ R2×5 is the regression

coefficient (or the slope), zk = [xk, uk] ∈ R5 is the predictor variable formed by the
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current state xk and action uk, and e ∈ R2 is the error term. Least-square solution

of the coefficients β0 and β1 can be found using the (xk, uk, xk+1) tuples. Equation

(6) characterizes the human-prosthesis system qualitatively because when a controller

enables the human-prosthesis system to generate improved locomotion performance,

we generally observe that |xk+1| ≤ |xk|.

After the regression model F is obtained, we can formulate Q′(xk, uk) based on

F(xk, uk). How Q′ is formulated also relates to the the stage reward or cost in RL. In

our work, we set the stage cost variable rk = 0 for success and rk = 1 for failure (see

(5.9)), which implied that the goal for the RL agent was to minimize the total cost-

to-go. Accordingly, inspired by LQR control objective function, Q′ was formulated

as a quadratic form such that Q′ ≥ 0,which was consistent with rk ≥ 0 and Qi ≥ 0

(Qi is the the iterative Q-value function defined in (5.14) and (5.15)):

Q′ = 0.02x2k+1 = 0.02(F(xk, uk))
2. (5.7)

Note that here the form of Q′ was manually defined and was not unique. The ratio of

0.02 was set manually to make Q′ within a comparable range of the stage cost rk. As

shown later, knowledge represented inQ′ can be adopted by the designer at a preferred

rate. Fig. 5.2 Illustrates kinematics and Q-values as knowledge representations.

5.3.4 Knowledge Guided Reinforcement Learning

We have introduced how the transferred knowledge Q′ is obtained through regres-

sion. Now we can move onto the online learning process of the RL agent as shown

in Fig. 5.1(b). We call this RL algorithm a knowledge-guided Q-learning algorithm

(KG-QL) because when the Q-learning agent is determining a best action for the next

step, its decision is guided and biased by the transferred knowledge Q′.

At time index k, the RL agent starts from state xk and takes the action uk. Then
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Algorithm 5.1 Knowledge Guided Q-Learning (KG-QL) for prosthesis control with

a human in the loop

Input: Transferred knowledge Q′ from a source task

Initialization: Initialize actor NN and critic NN with random weights. Loop for

each episode:

Random initial state x0;

Loop for each step k:

Generate uk from xk according to actor NN (ε-greedy).

Take action uk, observe cost rk and next state xk+1.

Update actor weights to minimize the actor prediction error(5.21)(5.22).

Update critic weights to minimize the critic prediction error (5.23)(5.24).

xk+1 ← xk

Until xk is terminal

it ends up at the next state xk+1, and receives a cost rk. This process repeats for

k = 1, 2, ... until a terminal state is reached. The total cost-to-go function or value

function is defined as

J(xk, uk) =
∞∑
j=k

γj−krk, (5.8)

where rk = r(xk, uk) is the stage cost, and γ is the discount factor with 0 < γ < 1.

In our work, we defined rk as

rk = r(xk, uk) =


0, if xk+1 is a success state

1, if xk+1 is a failure state

0.01, otherwise

(5.9)

In this work, a success state is defined as when the state is in the target range, and a

failure state is defined as the state is out of the safety range. Further details can be

found in 5.4.1.
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Equation (5.8) can be written as

J(xk, uk) = rk + γJ(xk+1, uk+1). (5.10)

According to Bellman’s optimality principle [132], the optimal cost function J∗ sat-

isfies the action dependent discrete time Hamilton–Jacobi–Bellman (HJB) equation

J∗(xk, uk) = rk + γmin
uk+1

J∗(xk+1, uk+1). (5.11)

Besides, the optimal control π∗ can be expressed as

π∗(xk) = arg min
uk
J∗(xk, uk). (5.12)

By substituting (5.12) into (5.11), the discrete time HJB equation becomes

J∗(xk, uk) = rk + γJ∗(xk+1, π
∗(xk+1)). (5.13)

For a Q-learning agent, we have the following actor-critic structure,

πi(xk) = arg min
uk
Qi(xk, uk), (5.14)

Qi+1(xk, uk) = rk + γQi(xk+1, πi(xk+1)), (5.15)

where i is the iterative index, πi and Qi are the iterative control policy and iterative

Q-value function, respectively. Combining (5.14) and (5.15), we have

Qi+1(xk, uk) = rk + γmin
uk+1

Qi(xk+1, uk+1). (5.16)

Accordingly, the knowledge-guided form of Q-learning can be written as

πi(xk) = arg min
uk

[Qi(xk, uk) + αiQ
′(xk, uk)], (5.17)

Qi+1(xk, uk) = rk + γ[Qi(xk+1, πi(xk+1))

+ αiQ
′(xk+1, πi(xk+1))],

(5.18)
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where Q′ is an arbitrary positive semi-definite function that represents previously

learned knowledge, and 0 ≤ αi ≤ 1 is a weighting factor such that αi+1 ≤ αi, and αi →

0 when i → ∞. Here we simply let αi be a uniformly decreasing sequence of

0.5,0.49,0.48,...,0 as i increases. Combining the above two equations, we have

Qi+1(xk, uk) = rk + γmin
uk+1

[Qi(xk+1, uk+1)

+ αiQ
′(xk+1, uk+1)]

(5.19)

5.3.5 Actor-Critic Implementation

The proposed KG-QL method was implemented by an actor-critic structure [125,

25]. Specifically, (5.17) was implemented by an actor, and (5.18) was implemented

by a critic. Both actor and critic were feed-forward neural networks (NN) with one

hidden layer (5-6-1 for the critic, and 2-6-3 for the actor). The critic has the state xk

and the action uk as inputs, and outputs an approximation of the Q-value function,

denoted by Q̂(xk, uk). The actor has state xk as inputs, and outputs the control

action uk. The actor used a tangent sigmoid activation function ϕ(v) in both the

hidden layer and output layer,

ϕ(v) =
1− exp(−v)

1 + exp(−v)
(5.20)

where v is the input vector for the activation function. Note that −1 < ϕ(v) < 1. For

the critic, it also used the same tan-sigmoid function ϕ(v) in its hidden layer. But it

used a linear activation function φ(v) = v in its output layer.

During training, the actor and critic back-propagated their performance error to

updated their weights. The prediction error of the actor ea,k ∈ R is to realize (5.17),

ea,k = Q̂i(xk, uk) + αiQ
′(xk, uk). (5.21)

Then the squared error Ea for the actor is

Ea =
1

2
e2a,k. (5.22)

114



The prediction error of the critic ec,k ∈ R is the temporal difference (TD) error of

(5.18),

ec,k = rk + γ[Q̂i(xk+1, πi(xk+1))

+ αiQ
′(xk+1, πi(xk+1))]− Q̂i+1(xk, uk)

(5.23)

which is the difference between the left-hand side and right-hand side of (5.18). To

correct the prediction error, the weight update objective was to minimize the squared

performance error Ec,

Ec =
1

2
e2c,k. (5.24)

(a) (b)

Figure 5.2: Knowledge Extraction and Representation Based on AB Human Subjects.

Data Shown Here is from the SWF Phase. (a) The Regression Model in (5.6). (b)

Knowledge Representation in the Form of Q′ in (5.7).

5.4 Results

Here we demonstrate how knowledge obtained from previous experiences at a

source task can be transferred to a target task where in this study, we extracted
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(a) (b)

Figure 5.3: Knee Angle Profiles. (a) Before Tuning (b) After Tuning

knowledge from AB subjects and transferred such knowledge to a target task, which

is an OpenSim simulated amputee subject.

5.4.1 OpenSim Experiment Setup

The OpenSim lower limb walking model (Fig. 5.1(a)) used in this work is adopted

from [9] and identical to the one in [30]. We defined a target range of ±1° and ±0.01

s for peak error ∆Pk and duration error ∆Dk, respectively. Only if for all four phases

both |∆Pk| < 1° and |∆Dk| < 0.01s were met then we said the state xk was in the

target range. If |∆Pk| or |∆Dk| are greater than some preset values, then state xk

was out of the safety range and the control system resets to the default position of

initial impedance parameters to ensure human subject safety. More details about the

target range and safety range can be found in our previous work [30, Table I]. An

episode is the process from learning step k = 0 until termination which can either be

that the state xk enters the target range for 10 consecutive gait cycles or runs out

116



(a) (b)

(c) (d)

Figure 5.4: Evolution of States in the Four Gait Phases (a) Phase STF (b) Phase

STE (c) Phase SWF (d) Phase SWE.
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of safety range. If terminated, the state xk was reset with the initial impedance and

initial state as the next episode began. Each OpenSim session consisted of multiple

episodes with a total of maximum 500 gait cycles.

The common parameters used in the OpenSim experiment are listed as follows

except those mentioned elsewhere. The discount factor γ was set to 0.95, the initial

NN weights for both actor and critic were uniformly distributed between −1 and 1.

5.4.2 Knowledge Representation Results

Fig. 5.2 depicts the regression results data from two AB subjects in the SWF

phase. In Fig 5.2(a), the z-axis is the next peak error ∆Pk+1, which is the first

element of the next state xk+1. Its values were obtained from the linear regression

model (5.6) by varying one of the state variable peak error ∆Pk and one of the

action variable ∆θe,k, while other state and action variables remain unchanged. We

can learn how the next peak angle θk+1 may change from Fig 5.2(a). For example,

suppose ∆Pk = −5°. If ∆θe,k = −2°, then ∆Pk+1 < −5° according to Fig 5.2(a). Vice

versa, if ∆θe,k = 2°, then ∆Pk+1 > −5°. So 2° may be a better choice than −2° for

∆θe,k in this case, as it makes the deviation of the next peak error ∆Pk+1 smaller.

Fig 5.2(b) shows the values of Q′ which are computed from (5.7). Q′ has a minimum

value 0 at (0, 0). Larger Q′ value indicates greater cost, which is unfavorable by the

RL agent.

5.4.3 Results of Reinforcement Learning with Knowledge Transfer

Fig. 5.3 shows the knee kinematics with different initial impedance parameters

in the 10 simulation sessions were distant from the target profile, especially the peak

angle errors. Clearly, after the impedance parameters were adjusted by the proposed

RL controller, knee kinematics of the final acclimation stages approached the target
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Figure 5.5: Comparison of Root-Mean-Square Error (RMSE) for the With Knowledge

Guide Case and the Without Knowledge Guide Case.

points. Specifically, the averaged absolute values of the peak errors over the three

sessions deceased from 1.23° ± 0.77° to 0.36° ± 0.32° for STF, from 3.13° ± 0.31°

to 0.52° ± 0.24° for STE, from 5.53° ± 0.89° to 0.63° ± 0.68° degrees for SWF and

from 2.72° ± 1.67° to 0.12° ± 0.25° for SWE. The results indicate that the proposed

knowledge guided QL controller is able to adjust the prosthetic knee kinematics to

reproduce the target knee profile under different initial conditions.

Fig. 5.4 illustrates the evolution of the state, i.e. peak errors ∆Pk and duration

errors ∆Dk, during the experimental session under one of the sets of initial parame-

ters. Since similar results were obtained from other experiment sessions, hereafter we

only present the result from the first session as an example. Because all four phases
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were tuned simultaneously, the parameter changes in one phase would affect its sub-

sequent phases. In Fig. 5.4, notice that the sharp edges on the curves indicate the

impedance parameters being reset to their initial values, because failure occurred.

In this example episode, the KG-QL agent was able to reduce all peak errors and

duration errors to zero after approximately 150 gait cycles.

Fig. 5.5 illustrates the averaged root-mean-square error (RMSE) of the gait knee

profile over the 10 experimental sessions. With the transferred knowledge from AB

subjects, the RMSE of the proposed KG-QL algorithm drops faster than the QL

without knowledge transfer, i.e., learning with αi = 0 in (5.18). Our proposed KG-

QL achieved a RMSE performance less than 1° after only 100 gait cycles, however,

Q-learning without knowledge transfer can only achieved similar performance after

about 400 gait cycles. Fig. 5.4 and Fig. 5.5 show that the target task time was

significantly reduced with knowledge transfer.

5.5 Discussions and Conclusions

We developed a new KG-QL framework to integrate and transfer knowledge from

AB subjects to OpenSim simulated amputee subjects with a common goal of opti-

mizing impedance parameters for robotic knee prosthesis. The knowledge for transfer

can be obtained offline using historical data, aka, from AB subjects in our study, to

facilitate online reinforcement learning for amputee subjects. Our OpenSim simula-

tion results validated this new approach and showed that our new scheme can help

restore near-normal knee kinematics, in a time and sample-efficient manner compared

to the naive learner. Our results suggested that the proposed KG-QL controller is a

promising new framework when performing the cross-subject learning for the robotic

knee prosthesis with human in the loop. Our demonstrated effectiveness of transfer

learning from AB subjects to OpenSim simulated amputee subject may be due to
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the fundamental principle guiding human gaiting. Or in other words, the underlying

physiology and physics represented in the relationships from impedance parameters

in the FS-IC to knee joint torque and further to locomotion, should be preserved in

both AB subjects and the OpenSim simulated amputee subjects, where in the latter

case, the forward dynamics model should capture such relationships.

Based on experimental measurements from two AB subjects, we established a

knowledge representation in the form of a regression model of the human-prosthesis

dynamics, and a Q-value integration of this knowledge for transferring to the target

task. We demonstrated the effectiveness of this KG-QL control framework. Our

results show that, with transferred knowledge, QL was able to reach a comparable

performance in the target task of an OpenSim simulated subject, but saving at least

60% of the learning time.

Our contribution is not limited to the demonstration of the feasibility of such

transfer learning. It also includes our proposed RL control design framework that

allows for flexible knowledge representation in the value function or system dynamics

or both. In addition, we provided additional flexibility by allowing for a designer

to determine how much information can be transferred from the source task to the

target task.

Our KG-RL control framework provides a principled way to solving transfer learn-

ing problems that involve the same states and controls. Thus, it can be integrated

with other TD-based methods such as SARSA and value iteration, as well as their

deep learning variants, to name a few. In our future work, we would like to test this

method on human amputee subjects using knowledge from AB subjects.
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Chapter 6

CONCLUDING REMARKS

This thesis focus on improving data efficiency of RL control on robotic lower limb

prostheses. This goal is achieved from two aspects. 1) Flexible policy iteration based

RL algorithm (Chapter 2) achieves data efficiency by reusing prior knowledge from

the same task and by a batch learning scheme, and 2) when cross-subject knowledge is

available, KG-RL can use such knowledge to guide a regular learning process. Results

demonstrate the efficiency of both methods.

In the future, we will explore other options of performance goals, such as gait

symmetry, stability, and user feedback. Taking these measures into considerations

for the optimization of the robotic prosthesis, we may reach a better accepted opti-

mization goal which reflects the performance of the whole human-prosthesis system,

rather than a kinematic trajectory of the robotic knee.
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