
Movement Kinematics and Fractal Properties in Fitts’ Law Task  

by 

Tri Nguyen 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  

Master of Arts  

 

 

 

 

 

 

 

 

 

 

Approved November 2019 by the 

Graduate Supervisory Committee:  

 

Arthur Glenberg, Co-Chair 

Eric Amazeen, Co-Chair 

Polemnia Amazeen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

December 2019  



  i 

ABSTRACT  

   

Fractal analyses examine variability in a time series to look for temporal structure 

or pattern that reveals the underlying processes of a complex system. Although fractal 

property has been found in many signals in biological systems, how it relates to 

behavioral performance and what it implies about the complex system under scrutiny are 

still open questions. In this series of experiments, fractal property, movement kinematics, 

and behavioral performance were measured on participants performing a reciprocal 

tapping task. In Experiment 1, the results indicated that the alpha value from detrended 

fluctuation analysis (DFA) reflected deteriorating performance when visual feedback 

delay was introduced into the reciprocal tapping task. This finding suggests that this 

fractal index is sensitive to performance level in a movement task. In Experiment 2, the 

sensitivity of DFA alpha to the coupling strength between sub-processes within a system 

was examined by manipulation of task space visibility. The results showed that DFA 

alpha was not influenced by disruption of subsystems coupling strength. In Experiment 3, 

the sensitivity of DFA alpha to the level of adaptivity in a system under constraints was 

examined. Manipulation of the level of adaptivity was not successful, leading to 

inconclusive results to this question. 
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CHAPTER 1 

INTRODUCTION 

Fractal property has been reported in many physiological and psychological 

signals. Examples include heartbeat interval, postural sway, reaction time, intralimb 

coordination, team communication, among others. However, what fractal property 

implies about the measured system is still an oft-debated question. In this series of 

experiments, we look at fractal property of movement data obtained from the well-

studied reciprocal tapping task. In Experiment 1, we coupled performance measures with 

fractal parameters to determine whether fractal property characterizes behavioral 

performance. In Experiments 2 and 3, we manipulated the parameters of the reciprocal 

tapping task to test two claims on the meaning of fractal property: that fractal measures 

characterize the degree of coordination or integration of multiple subsystems operating 

on different time scales, and that fractal measures reflect a complex system adapting to 

difficult task demands. 

Fractal property in cognition and behaviors  

Fractal property refers to a set of parameters in dynamic system theory that 

characterizes how a complex system produces dynamic, emergent behaviors. One 

explanation of fractal property suggests that because subsystems in a complex system 

tend to operate on different time scales, time series data of complex systems tend to 

display long-range correlations, indicating that processes on longer time scales are 

interacting with processes on shorter time scales. Fractal analyses therefore focus on 

analyzing changes in variability as a function of scale in time series data. This fractal 
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analysis stands in contrast to traditional analyses where variability is treated as noise that 

interferes with measurement of the mean.  

 Whereas this theoretical framework offers a compelling perspective on how 

cognitive processes and behaviors can be understood, evidence supporting the notion that 

fractal analyses are actually tapping into the cohesiveness of a system have often times 

been correlational in nature. For example, Goldberger et. al. (2002) showed that variation 

in heartbeat intervals of healthy individuals exhibited more pronounced fractal property 

than did interval variability of individual with heart diseases. Similarly, stride interval in 

healthy adults showed more prominent fractal property compared to stride interval in 

individuals with Parkinson’s disease (Hausdorff, 2009). In posture control, research 

showed differential non-linear parameters on posture sway of patients recovering from 

stroke (Roerdink, De Haart, Daffertshofer, Donker, Geurts, & Beek, 2006). Although it is 

possible that these fractal analyses are sensitive to the robustness of the complex 

cardiovascular and sensorimotor systems, many alternative explanations exist.  

 Another related issue concerns how fractal property is interpreted. Van Orden, 

Holden, and Turvey (2003) argued that fractal property reflects the ability of a complex 

system to react and adapt to environmental constraints. Likens, Fine, Amazeen, and 

Amazeen (2015) argued that fractal property depends on the degree of control exerted on 

behavior. Valdez and Amazeen (2008) asserted that fractal property arises from the 

summation of signals originating from subsystems operating on different time scales.  

Dotov, Nie, and Chemero (2010) suggested that fractal property is indicative of the 

coupling strength between various systems, whether intrapersonal, interpersonal, or even 
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human-machine coupling. The wealth of competing explanations for fractal property can 

cause confusion over the interpretation of data and the generation of accurate predictions.  

 The goal of the current study is to examine fractal property of a well-studied 

movement task, the reciprocal tapping task, in order to 1) verify the sensitivity of fractal 

analyses to changes in performance, and 2) differentiate between two common 

interpretations of fractal property: system adaptivity/flexibility and coupling 

strength/coordination between subsystems. For the first question, if fractal measurements 

reflect the well-adapted operation of a complex system, we should see a correlation 

between measured fractal property and traditional indexes of performance. To answer the 

second question, we separately test whether fractal measures respond appropriately to 

manipulations that heavily influence either coupling strength between subsystems, or 

level of system adaptivity. If fractal measures capture the coupling strength between 

multi-scaled processes in a complex system, then disruption to these couplings (such as 

between the visual and the motor system, or between motor planning and motor control) 

will result in deteriorated fractal metrics. However, if fractal measures instead capture the 

degree to which a complex system is flexibly adapting to task constraints, then 

manipulation of the level of adaptation in a system should result in directional changes in 

fractal metrics. 

Goal-directed aiming task 

Woodworth (1899) first brought attention to goal-directed movements as a viable 

window into the cognitive processes underlying movement control. In the subsequent 

centuries since this study was published, researchers have developed several variations of 

the task and several theories on contributing factors influencing movement performance 
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and variability (Elliott, Helsen, & Chua, 2001). Of interest to our purpose is the 

reciprocal tapping task introduced by Fitts (1954). In this task, participants are instructed 

to make several rapid aiming movements, moving back and forth between targets of 

varying distances and sizes. One advantage of using Fitts’ task is that the measures of 

participants’ performance, task difficulty, movement profile, and speed-accuracy 

variability are well studied. Equally important, researchers have documented several 

manipulations of the task that probe the contribution of motor planning, motor control, 

and the visual feedback loop, three subsystems that we will manipulate. This allows us to 

test the hypothesis that fractal analyses are indicative of the integration of multiple 

systems. Last but not least, the continuous movements in this task allow us to generate 

enough time series data for the fractal analyses.  

 Woodworth (1899) first proposed the two-component model for movements 

during a goal-directed aiming task. Each movement consisted of two components: an 

initial impulse phase and a control phase. The initial impulse was associated with 

centralized control and planning, whereas the control phase was associated with online 

adjustments using visual feedback. By manipulating visual information, Woodworth 

(1899) and subsequently Keele and Posner (1968) (also Zelaznik, Hawkins, and 

Kisselburgh, 1983) were able to demonstrate that vision plays a critical role in rapid, 

accurate aiming movements, especially during the rapid online control phase. However, 

Smith and Bowen (1980), using visual feedback delay, and Elliott (1988), using no-vision 

periods prior to the beginning of movement, found that vision can affect the early 

planning phase as well. Separately, motor planning, motor control, and visuomotor 

feedback have all been showed to be important for high performance in goal-directed 
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aiming tasks. Presumably, all three subsystems also need to be well-coordinated to 

produce the desired outcome. 

  Fractal analyses have previously been used to study the temporal structure of 

variability in rapid goal-directed aiming tasks. Miyazaki, Kadota, Kudo, Masani, and 

Ohtsuki (2001) detected long-range correlations at different kinematics markers across 

trials of a discrete aiming task. The fractal measure was strongest at peak acceleration, 

decreasing in strength at subsequent markers (peak velocity and peak deceleration) in the 

movement. The authors postulated that neuronal-motor coordination led to stronger long-

range correlations at movement’s start, whereas constraints imposed by the target reduced 

fractal property at movement’s end. However, this runs counter to some arguments 

presented above that task constraints, or a system’s adapting to such constraints, increase 

fractal property. Valdez and Amazeen (2008) similarly showed higher fractal property at 

peak velocity when participants were moving at preferred speed than at high speed. The 

authors suggested that at preferred speed, signals from motor planning and motor control 

had time to combine, resulting in long-range correlation in the movement data. At higher 

speed, reliance on online control process abolished coordination between systems so a 

weaker long-range correlation was found. In both studies, a question remains open 

regarding the behavioral outcome of high fractal property. Does higher fractal property 

translate to higher performance? Or to rephrase the question, is coordination between 

systems the optimal strategy for favorable outcome in an aiming task? We attempted to 

answer this question in experiment 1. 
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CHAPTER 2 

EXPERIMENT 1 

In Experiment 1, we tested whether interference between the motor system and 

the visual feedback loop resulted in lower performance and a concurrent reduction of 

measured fractal property. Interference was created by introducing visual feedback delay 

(Elliott, 1988) in a reciprocal tapping task.  

Methods 

Participants 

 Twenty participants (11 males, 9 females) were recruited for the experiment in 

exchange for course credit. Participants were healthy adults with no impairments in 

vision or movement.  

Design 

 Similar to Fitts’ (1954) design, participants were instructed to alternatively tap 

two target areas as often as possible, while still maintaining accuracy. Participants 

performed this task by monitoring a crosshair tracking their movements on a computer 

screen. The delay between the real movement and the on-screen representation was 

manipulated. After a practice trial, each participant performed three randomly ordered 

trials with either no delay, 133ms of delay, or 266ms of delay. Each trial, including the 

practice trial, lasted 4 minutes, with 1 minute of rest in between. 

Apparatus 

 Participants sat in front of a table measuring 70cm x 120cm x 75cm. Their 

dominant hand index finger rested on a marked dot on the table at the beginning of each 

trial. The surface of the table was otherwise unmarked. Projected onto the wall in front of 
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the participant were two 10-cm-wide, vertical target areas, a horizontal line indicating the 

table surface, and a red moving crosshair showing the position of the participant’s index 

finger in vertical and horizontal space. The two target areas were positioned to the left 

and right of the participants. The targets were 1m apart on the projected screen, which 

translated to 30cm of actual movement for the participant. To capture the participant’s 

movement, a single infrared-emitting diode was attached to the tip of the index finger, 

with an Optotrax 3020 motion-capture camera recording the movement at a sampling rate 

of 30Hz. 

 In no-delay trials, the projected crosshair displayed a representation of the current 

position of the diode on the participant’s finger. In the delayed trials, the projected 

crosshair displayed the recorded position of the diode either 133ms or 266ms prior to the 

current position. Since delayed display requires some initial data to be recorded, the 

crosshair in delayed trials switched from live display to delayed display at 500ms into 

each trial. Most of this first 500ms is taken up by startup transience as participants begin 

their trials. 

Procedure 

 At the beginning of every trial, the participant put his or her finger on a marked 

dot located in between the target zones. At the computer’s signal, the participant lifted the 

finger off of the table and attempted to tap the table at the location corresponding to 

target zones projected on the screen. Participants were instructed to alternate between the 

two targets as quickly as possible while still maintaining accuracy. If they missed a 

target, they were encouraged to move on to the next target instead of correcting for 
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errors. There was otherwise no constraint on their speed/accuracy priority. The procedure 

was approved by the Institutional Review Board at Arizona State University. 

Kinematic analysis 

 The side-to-side movement of each participant was extracted from the recorded 

data and analyzed. Prior to any analysis, a 12Hz Butterworth low pass filter was applied 

to the time series. The data was centered and a peak finder algorithm applied to identify 

the furthest points in both left and right directions (peak amplitude) and time position for 

each aiming movement. Time intervals between peak amplitudes were calculated for 

subsequent fractal analysis. Movement distance, movement time, and standard deviation 

of the peak amplitudes were calculated. As outlined by Fitts and Peterson (1964), the 

effective width of the target, as derived from participants’ actual movement, was 

calculated as 4.133 times the standard deviation of peak amplitudes. Then, the effective 

index of difficulty was calculated as 

��� = ���� 	
��� 
���
��� ��������
��������� ����ℎ + 1� 

Participants’ effective index of performance was then calculated as: 

��� =  ���

��� 
���
��� ��
� 

 In the original Fitts’ (1954) experiment, the width of the presented target and the 

distance between targets were used to calculate the index of difficulty of the task given to 

participants. Therefore, every participant shared the same index of difficulty for a given 

version of the task. However, even when all participants were presented with the same 

task, their performance naturally differed. This difference in performance was previously 

only captured by the mean movement time term in the calculation for the index of 
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performance. On the other hand, the effective index of difficulty more accurately 

captured performance and accuracy by using participants’ movement data. Assuming that 

the distribution of peak amplitudes follows a normal distribution, effective width 

represents 96% of possible endpoints around mean peak amplitude, thus giving us an 

approximation of the width of the target as performed by each participant. Likewise, 

mean movement distance gives us an approximation of the distance between targets 

based on each participant’s movement data. Thus, the effective index of difficulty can be 

interpreted as how hard did a participant perform in a given task condition.  

A one-way repeated measures ANOVA was conducted to look at the effect of 

visual feedback delay on mean movement distance, mean movement time, effective index 

of difficulty, and effective index of performance.  

Fractal analysis 

 Detrended fluctuation analysis (DFA; Peng, Buldyrev, Havlin, Simons, Stanley, 

& Goldberger, 1994) was used to detect the presence of long-range correlation within the 

peak intervals time series. DFA measures the power log scaling relationship between 

variability and time scale by dividing the time series into bins of increasingly smaller 

sizes. At each bin size (or time scale), each segment of data is centered, detrended, and 

the RMS residual calculated. The amount of variability at each bin size is plotted against 

bin size in a log-log plot, and a linear regression equation is fitted onto these data. The 

slope of this line indicates the degree to which the variability in the data scale as a 

function of how extended in time the segments are. A slope (alpha) of 0.5 indicates no 

long-range correlation (e.g. white noise), while the slope between 0.5 and 1.0 indicates 
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persistent long-range correlation (e.g., pink noise1) (see Wagenmakers, Farrell, & 

Ratcliff, 2004; Hausdorff et. al., 1995 for an in-depth overview). Because the analysis 

parses out local trends in the data, DFA is advantageous for analyzing non-stationary data 

such as the strongly oscillatory pattern in the current data.  

 DFA is commonly used to assess long-range correlation in physiological data. For 

example, Hausdorff et. al. (1995) used DFA to look at the existence of long-range 

correlation in stride interval data. Not only did they find evidence that stride interval data 

exhibited long-range correlation, the authors also demonstrated this type of signal can be 

artificially created by a central pattern generator model wherein each stable pattern (or 

signal frequency) can only transitioned to a limited set of nearby states. This model 

resembles our own motor system, where there is interdependency between several 

processes (such as sensory processing, higher order goal-oriented control, motor 

planning, current muscle states, feedback-based motor control, environmental constraints, 

etc.). Hausdorff et. al. (1995) concluded that the combination of these factors resulted in 

the observed power-law correlation between variability and scale. Jordan, Challis, and 

Newell (2006) also used DFA to look for long-range correlation in stride intervals during 

running. However, the conclusion they drew was that high DFA slope at preferred speed 

reflected greater adaptive control rather than greater coordination of related systems. We 

                                                 
1 Unlike white noise, where the power of every frequency band is the same, pink noise generally has 

high power at low frequencies and low power at high frequencies. The linear power law relationship 

between frequency and power in pink noise signals indicates long range dependency across the entire 

signal. 
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will further test whether DFA slope represents coordination or adaptivity in Experiments 

2 and 3. 

 Similar to kinematic measures, a one-way repeated measures ANOVA was used 

to analyze the effect of visual feedback delay on DFA alpha. 

Results 

 Due to technical errors, one trial from participant number 5 and two trials from 

participant number 8 were lost. Additionally, during trial 3 (at 266ms delay), participant 

14 moved the finger in an anti-phasic pattern with the crosshair, resulting in qualitatively 

different movement pattern as well as an alpha value in the outlier range. Data from this 

trial was excluded from the analysis. 

Mean movement distance 

 The omnibus ANOVA test indicated that there was a significant main effect of 

visual feedback delay on mean movement distance, F (2,32) = 35.92, p < 0.01, as well as 

a significant linear increase in mean movement distance as delay increased, F (1,16) = 

54.98, p < 0.01. Post hoc tests indicated that there were significant differences of mean 

movement distance between all delay conditions (No delay M = 296.94, SD = 2.59; 

133ms delay M = 305.13, SD = 2.55; 266ms M = 311.81, SD = 3.23). As delay increased, 

participants’ mean movement distance progressively got longer.  

Mean movement time 

 The omnibus ANOVA test indicated that there was a significant main effect of 

visual feedback delay on mean movement time, F (2,32) = 45.31, p < 0.01, as well as a 

significant linear increase in mean movement time as delay increased, F (1,16) = 65.64, p 

< 0.01. Post hoc tests indicated that there were significant differences of mean movement 
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time between all delay conditions (No delay M = 29.35, SD = 12.66; 133ms delay M = 

35.74, SD = 12.13; 266ms M = 48.35, SD = 14.33). As delay increased, participants’ 

mean movement time progressively got longer.  

Effective index of difficulty 

 There was a significant effect of delay on participants’ effective index of 

difficulty, F (2, 32) = 6.739, p = .004, as well as a significant linear decrease in effective 

difficulty as delay increased, F (1, 16) = 7.75, p = .013. Post hoc tests showed that the 

effective index of difficulty between no-delay condition (M = 3.05, SD = .14) and 133ms 

delay condition (M = 2.93, SD = .1) was not significantly different (p = .198), but there 

was a significant different between 133ms delay and 266ms delay (M = 2.69, SD = .09) 

as well as between no delay and 266ms delay. As delay increased, the effective difficulty 

of the task as calculated from participants’ movement decreased. Although the task itself 

becomes more difficult as delay increased, participants were behaviorally performing an 

easier version of the task with progressively wider targets, perhaps as a coping 

mechanisms to visual feedback delay. 

Effective index of performance 

 There was a significant effect of delay on participants’ effective index of 

performance, F (2, 32) = 40.46, p < .001, as well as a significant linear decrease in 

effective performance as delay increased, F (1, 16) = 51.34, p < .001. Post hoc tests 

showed that the effective index of performance between no delay (M = .12, SD = .01), 

133ms delay (M = .09, SD = .01), and 266ms delay (M = .06, SD = .01) were all 

significantly different (p ≤ .001).  
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Detrended fluctuation analysis 

 Detrended fluctuation analysis was applied to the peak interval time series. Bin 

sizes started from 256 data points for fast participants, or 128 data points for slow 

participants, with a scaling factor of 2. Mean alpha slope for no delay trials is M = .76, 

SD = .15, for the 133ms delay M = .67, SD = .28, and for the 266ms delay M = .59, SD = 

.21. There was a significant effect of delay on alpha, F (2, 32) = 4.03, p = .027. Linear 

trend analysis was significant (p = .007). Post hoc tests indicated that the alpha slope in 

no-delay trials was significantly higher than in 266ms delay trials (p = .019), but no other 

pairwise comparisons were significant. Overall, the evidence suggested that participants 

exhibited more pink noise signals in the no-delay trials, and more white noise (i.e. 

random noise) signals in the delayed trials. 

Correlation 

 One of the main goal of Experiment 1 was to examine the sensitivity of the DFA 

alpha value and standard performance measure. As such, we performed a correlation test, 

looking at the relationship between alpha slope and the effective index of performance 

(see Figure 1). Two-tailed Pearson’s correlation test showed R = .54, p < .001, indicating 

a moderate positive relationship between the effective index of performance and DFA 

alpha. To account for within-subjects shared variance, we used an MLM model with 

DFA alpha as the outcome, the index of performance as the predictor, and subject number 

as the Level 2 identifier. The model included random effects for the intercept and the 

slope of the index of performance, and an unstructured covariance matrix. The results 

showed an estimated fixed intercept of .39, t (19) = 5.48, p < .001. The estimated fixed 

slope for the index of performance was 3.22, t (18) = 4.43, p < .001. At an index of 
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performance of 0, the average alpha value was .39. For every one point increase in the 

index of performance, the alpha value increased by 3.22. 

Discussion 

 As expected from previous reports, visual feedback delay both interfered with 

speed and accuracy of movement (Smith, 1972; Smith & Bowen, 1980). Increases in 

visual delay linearly increased both mean movement time and mean movement distance. 

Mean index of difficulty and index of performance both decreased linearly with increases 

in delay, indicating that participants were lowering the difficulty of the movement task 

and achieving lower performance overall. Analysis using DFA alpha revealed a similar 

trend. As delay increased, variability in movement showed weaker and weaker indication 

of long-range correlation, transitioning from a more pink noise signal to a more white 

noise (i.e. random) signal. Evidence from the correlation test and the MLM analysis both 

indicated a positive correlation between the index of performance and DFA alpha. The 

evidence presented suggested that DFA analysis was sensitive to changes in behavioral 

performance.  
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CHAPTER 3 

EXPERIMENT 2 

We have showed that DFA alpha slope is sensitive to performance levels. 

However, it remains unclear as to what aspects of the visuomotor system dynamic 

induced this change in fractal property. One hypothesis is that visual feedback delay 

negatively affects both motor control and motor planning. As mentioned, visual 

disruption during different stages of the movement can influence both motor control and 

planning (Keele & Posner, 1968; Elliott, 1988). Since visual delay persisted before, 

during, and after each movement cycle in the current design, it is reasonable to assume 

that the coordination between vision and the motor system was disrupted. If we accept 

previous interpretations of the DFA alpha as an indication that signals from multi-scaled 

processes are coordinating and combining, then such disruption as described would result 

in a signal with weaker fractal property. Experiment 2 tests this hypothesis further by 

introducing additional disruption to the coordination between motor control and planning. 

This perturbation can be induced by blocking vision between the two target areas. 

 There is evidence suggesting that coordination between motor planning and 

control occurs in the middle stages of aiming movement. Valdez and Amazeen (2008) 

found strongest fractal signals at peak velocity, then weaker signals at both the preceding 

(peak acceleration) and following (peak deceleration) kinematic markers. From a signal 

summation perspective, this pattern matches the integration between a decaying motor 

planning signal and a starting motor control signal. Because motor control depends on 

visual information for feedback, blocking vision in the middle region should prevent 

motor control processes from integrating early on in the movement. At the same time, 
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this manipulation should leave both motor planning and motor control processes 

relatively intact, as explained in the next paragraph. The goal of the manipulation is to 

maximally interfere with the signal summation process, while minimizing interference to 

motor planning and motor control processes. 

Early research in motor control have separately showed that both motor planning 

and control can function without vision in the middle of the movement. Carlton (1981) 

reported that accuracy and movement time in aiming movements were not negatively 

impacted even when up to 50% of the first part of movement distance was blocked from 

view, suggesting that vision at early stages of movements were not required for effective 

feedback-based motor control. Similarly, Henson (1978) used eye saccadic data to show 

that secondary saccades, which presumably provide visual information for motor error 

correction, only covered the last 10% of movement distance. Regarding motor planning, 

Carlton’s (1981) results also indicated that motor planning did not rely on vision since the 

entire first half of the movement was blocked with no negative effect on performance. 

However, it is worth noting that the starting position of a movement in discrete aiming 

tasks is fixed. As such, motor planning might not rely on vision as much as with 

reciprocal aiming tasks, where the starting position varies every cycle. 

If DFA alpha measures coordination between multi-scaled processes within a 

system, this visual disruption, which prevents motor planning signals from combining 

with motor control signals until a late stage, will result in an alpha value closer to 0.5 

above and beyond the effect of visual feedback delay. Furthermore, if performance 

depends on a well-coordinated system, we will see further reduction in performance 
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measures despite evidence suggesting that both motor planning and motor control can 

separately function in a discrete aiming task. 

Methods 

Participants 

 Twenty-five participants were recruited for the experiment in exchange for course 

credit. Participants were healthy young adults with no vision or movement impairments. 

Due to technical errors, the data from one trial was lost (participant 19, trial 2). In 

addition, participants moved the crosshair in an anti-phasic pattern in three trials 

(participant 2, trial 3 and 4, and participant 10, trial 6). Data from these trials were 

excluded from the analysis. 

Design 

 Experiment 2 followed a 2x3 design with two within-subject independent 

variables. Similar to Experiment 1, participants alternatively tapped between two target 

areas under three different delay conditions. Additionally, in half of the trials, 40% of the 

area between the two targets was also blocked so that participants could not see the 

crosshair representing their finger’s position in space. Overall, each participant performed 

1 practice trial followed by 6 4-minute trials (one for each of the six conditions in the 2x3 

design) in randomized order. The practice trial had no delay and no visual blocking. 

Apparatus and Procedure 

 The equipment configuration and trial-by-trial procedure in Experiment 2 was 

unchanged from Experiment 1. For trials where vision was blocked, the computer 

automatically shades 40% of the area between the two target zones the same color as the 

crosshair, making movements of the crosshair within this region effectively invisible. 
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When the crosshair comes within 10% of total distance to a target area, the area from the 

10% mark to the midway mark was shaded. This shaded region switched to the opposite 

side when the crosshair got close to the other target area. This way, at the beginning of 

every movement, only the area immediately around the starting position, and half of the 

area near the target were visible.  

Analysis 

 Pre-processing procedures similar to those done in Experiment 1 were applied to 

calculate the kinematic measures as well as the alpha slope from DFA. A two-way 

repeated measures ANOVA was then used to analyze the main effect of visual feedback 

delay and vision block, and any interaction effect on performance measures (mean 

movement distance, mean movement time, effective index of difficulty, and effective 

index of performance) and DFA alpha. Additionally, a correlation test was run to test the 

relationship between DFA alpha and the effective index of performance.  

Results 

Mean movement distance 

 The repeated measures ANOVA indicated that there was a significant main effect 

of visual feedback delay on mean movement distance, F (2,42) = 115.57, p < .001 as well 

as a significant linear increase in mean movement distance as delay increased (no delay 

M = 294.99, SD = 6.05, 133ms delay M = 301.81, SD = 5.29, 266ms delay M = 307.72, 

SD = 7.12, F (1,21) = 146.95, p < .001). Post hoc pairwise comparisons indicated that 

there were significant differences between mean movement times at all delay conditions 

(all p < .001). There was also a significant main effect of vision block on mean 

movement distance, F (1,21) = 8.07, p = .01. Participants in vision block trials (M = 
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302.51, SD = 6.40) moved a longer distance compared to their own performance in full 

vision trials (M  = 300.50, SD = 5.57). There was no significant interaction between 

visual feedback delay and vision block, F (2,42) = .08, ns.  

Mean movement time 

 There was a significant main effect of visual feedback delay on mean movement 

time, F (2,42) = 70.16, p < .001, along with a significant linear increase in mean 

movement time as delay increased (no delay M = 26.23, SD = 7.83, 133ms delay M = 

32.17, SD = 7.81, 266ms delay M = 41.24, SD = 12.12, F (1,21) = 84.23, p < .001). Post 

hoc pairwise comparisons showed that there were significant differences between the 

mean movement times at all delays. The main effect of vision was not significant, F 

(1,21) = 2.65, ns, as was the interaction effect between visual feedback delay and vision 

block, F (2,42) = 1.14, ns. Overall, participants moved slower as delay increased, but 

vision block had no effect on their movement time (with vision block M = 34.00, SD = 

9.19, with full vision M = 32.43, SD = 9.02). 

Effective index of difficulty 

 There was a significant main effect of visual feedback delay on the effective 

index of difficulty, F (2,42) = 45.56, p < .001. Effective index of difficulty linearly 

decreased as delay increased (no delay M = 3.12, SD = .24, 133ms delay M = 2.97, SD = 

.28, 266ms delay M = 2.78, SD = .28, F (1,21) = 100.97, p < .001). Post hoc pairwise 

comparisons showed that there were significant differences between the effective index 

of difficulty at all delays (all p < .001). There was no significant main effect of vision 
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block, F (1,21) = 2.62, ns, or of the interaction effect between visual feedback delay and 

vision block on the effective index of difficulty, F (2,42) = 1.35, ns. Participants 

performed effectively easier movements as delay increased, but did not significantly 

changed movement difficulty as a result of vision block. 

Effective index of performance 

 There was a significant main effect of visual feedback delay on the effective 

index of performance, F (2,42) = 123.76, p < .001. Effective index of performance 

linearly decreased as delayed increased (no delay M = .13, SD = .03, 133ms delay M = 

.097, SD = .02, 266ms delay M = .072, SD = .02, F (1,21) = 161.98, p < .001). Post hoc 

pairwise comparisons showed that there were significant differences between the 

effective index of performance at all delay (all p < .001). There was also a significant 

main effect of vision block, F (1,21) = 6.24, p = .021. Participants in vision block trials 

had lower effective performance (M = .096, SD = .02) than compared to their 

performance in full vision trials (M = .103, SD = .02). There was no significant 

interaction between visual feedback delay and vision block, F = .05, ns.  

Detrended fluctuation analysis 

 Similar to the procedure described in Experiment 1, detrended fluctuation analysis 

was applied to the peak interval time series to calculate the alpha slope. There was a 

significant main effect of visual feedback delay on alpha, F (2,42) = 11.92, p < .001. 

Linear trend test indicated that alpha linearly decreased as delay increased (no delay M = 

.79, SD = .18, 133ms delay M = .73, SD = .14, 266ms delay M = .61, SD = .20, F (1,21) = 
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18.67, p < .001). Post hoc pairwise comparisons showed that alpha slope at 266ms delay 

condition was significantly lower than alpha slopes at 133ms delay or no delay (p = .006 

and p < .001, respectively), and that the difference in alpha slope between 133ms delay 

and no delay approached significance (p = .056). The main effect of vision block on 

alpha was not significant, F (1,21) < .001, ns. Neither was the interaction effect between 

visual feedback delay and vision block, F (2,42) = 2.56, p = .089. Similar to Experiment 

1, the results suggested that participants performed closer to the pink noise threshold 

(alpha of 1.0) at lower delay and closer to the white noise threshold (alpha of 0.5) at 

higher delay. However, there was no difference in alpha slope when we compared vision 

block trials and full vision trials.  

 Since the interaction effect was close to significance, we attempted an exploratory 

analysis of the simple effects of vision on alpha value at each delay conditions. The 

analysis revealed that at no delay, the mean alpha difference between vision block and 

full vision was M = .06, SD = .2, p = .151. At 133ms delay, the mean alpha difference 

was M = -.01, SD = .21, p = .857. At 266ms delay, the mean alpha difference was M = -

.05, SD = .17, p = .165 (see Figure 2). 

Correlation 

 DFA alpha and the effective index of performance was correlated to examine 

whether the relationship we found in Experiment 1 could be replicated. Two-tailed 

Pearson’s correlation test showed R = .49, p < .001, indicating a moderate positive 

relationship between the effective index of performance and DFA alpha. A MLM model 

predicting alpha using the index of performance as a predictor and subject number as the 
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Level 2 identifier was used. The model included random effects for both the index of 

performance and the intercept, and an unstructured covariance matrix. The estimated 

fixed intercept was .44, t (24) = 6.73, p < .001. The fixed slope for the index of 

performance was 2.76, t (24) = 5.16, p < .001. At an index of performance of 0, the 

average alpha value was .44. For every one point increase in the index of performance, 

alpha increased by 2.76 points. 

Discussion 

 Experiment 2 was designed to test whether DFA’s reactivity to performance 

stemmed from a sensitivity to a system’s ability to communicate and coordinate between 

multiple component subprocesses. Using visual feedback delay, we disrupted the link 

between the visual system and the motor system. Using region blocking, we disrupted the 

link between motor control and motor planning, while leaving the core functionality of 

both components relatively unaffected.  

The results replicated findings in Experiment 1. Participants’ alpha value changed 

from closer to 1.0 (pink noise) when performing under no delay to closer to 0.5 (white 

noise) when performing in high delay. This change in alpha also correlated with 

concurrent changes in the effective index of performance, indicating that DFA alpha is 

sensitive to performance.  

When we compare vision block trials and full vision trials, the data from the 

analysis of the effective index of performance suggested that vision block and visual 

feedback delay independently contributed to changes in performance, seemingly driven 

mainly by changes in the mean movement distance. Looking at the analysis on alpha, we 

did not detect any change in alpha as a function of vision blocking despite the reported 
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change in performance. One implication is that DFA alpha is not sensitive to the 

performance measure per se, but rather to a third variable that is also influencing 

performance. Another implication is that this third variable is not the degree to which 

signals from subprocesses in a system can smoothly incorporate. This interpretation runs 

counter to previous research that argued for the coordination/coupling strength position 

(Dotov et. al., 2010; Valdez & Amazeen, 2008). 

However, if we consider the exploratory analysis and observe the mean trends, a 

different picture emerges. No effect of vision block on alpha was detected because this 

effect changed as a function of visual feedback delay. At no delay, participants seemed to 

have higher alpha in vision block trials compared to in full vision trials. At high delay, 

participants seemed to have lower alpha in vision block trials compared to in full vision 

trials. With no delay and blocked vision, perhaps participants were forced to use longer 

range motor planning processes (to overcome the blocked region) and shorter range 

motor control processes (to compensate for the smaller region with vision). The 

combination of these signals could resulted in more pronounced long-range correlation in 

the interval time series. Attempts to employ the same strategy on trials with high delay 

may not be successful due to the additional interference, especially on online visual 

feedback processes. This interpretation would still suggest that alpha is not directly 

sensitive to performance measure, but it would support existing literature on the 

sensitivity of alpha to signal summation in a system.  
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CHAPTER 4 

EXPERIMENT 3 

An alternative interpretation of DFA alpha is that this measure indicates the level 

of flexible adaptivity in a system in response to environmental, or task, constraints (Van 

Orden et. al., 2003; Gorman, Amazeen, & Cooke, 2010). A hallmark of well-functioning 

complex systems is that they are able to adapt to external perturbation, often reorganizing 

into qualitatively distinct stable patterns in doing so. A smoothly operating system has a 

tendency to maintain homeostasis, giving it the ability to resist outside disruption. In 

most circumstances, complex systems are constantly subjected to outside influences. 

These influences cause random variations around the innate system-generated stable 

signal, leading to the type of structured, long-term correlated signals that non-linear 

analyses are designed to detect. Once disrupted, however, the ability of the system to 

maintain stability is compromised, leading to a more random signal. The goal of 

Experiment 3 is to test this hypothesis by manipulating the degree to which the 

visuomotor system adapts to cope with visual feedback delay and examining the effect of 

flexibility on performance and DFA alpha.  

 As reported in Experiment 1, as visual feedback delay increased (i.e. increasing 

disruption in the system), participants’ observed effective index of difficulty decreased. 

We interpreted this as indicating that participants were reducing the level of difficulty in 

the motor portion of the task in response to worsening visual condition. In other words, 

the effective index of difficulty was capturing participants’ adaptation to visual 

perturbation. Manipulation of this index will allow us to examine a system’s performance 

and fractal measure at different levels of adaptivity. If DFA is sensitive to the system’s 
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adaptivity, then lower adaptation levels will have alpha values closer to 0.5 than at higher 

adaptation levels. Adaptation level should also translate to stronger performance. 

 Fitts (1954) originally calculated the index of difficulty based on the width of the 

targets and the distance between the targets to indicate the difficulty of the presented 

version of the task. Fitts and Peterson (1964) later updated this calculation to include 

other variables by using participants’ actual movement data (variability around 

movement end points and mean movement distance). Despite this, the effective index of 

difficulty was still dependent on the parameters of the presented task stimuli. By 

changing the task constraints, namely target width, we can induce changes in the 

observed effective index of difficulty. 

Methods 

Participants 

 Twenty-four participants were recruited into the experiment in exchange for class 

credit. Participants were young, healthy adults with no visual or movement impairments. 

Two participants (number 9 and 17) failed to follow instructions and were not included in 

the analysis. Participants in two trials performed the task using an anti-phasic movement 

pattern (participant 1, trial 7, and participant 14, trial 9). Additionally, data for one trial 

was lost due to technical error (participant 18, trial 4). These three trials were not 

included in the analysis. 

Design 

 Experiment 3 followed a 3x3 within-subject ANOVA design. Similar to previous 

experiments, participants performed a reciprocal tapping task under 3 delay conditions in 

randomized order. After these trials were completed, participant’s effective indices of 
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difficulty at each delay levels were calculated. Participant then repeated each delay 

condition two more times. However, instead of performing the same task, participants 

was given a modified task that reflected an enhanced or attenuated level of adaptivity. 

For example, a modified task at high delay might have a smaller target size to simulate 

the level of movement difficulty previously seen in an easier low delay trial. The order of 

the 6 subsequent trials was also randomized. Overall, participants performed 9 4-minute 

trials and 1 practice trial.  

Apparatus and Procedure 

 The equipment configuration and trial-by-trial procedure in Experiment 3 were 

unchanged from Experiment 1. Each participant’s effective index of difficulty was 

calculated immediately after each of the first three standard trials. The differences 

between observed indices in different delay conditions were added to or subtracted from 

observed value to create new effective indices of difficulty that simulate scenarios where 

participants’ adaptivity was above or below the observed level. An elevated effective 

index of difficulty would imply that a participant was not adequately compensating to a 

given task difficulty (by performing simpler movement). Thus, to induce a higher 

effective index of difficulty, the target width would need to be narrowed. Conversely, a 

lowered effective index of difficulty would imply overcompensation, and would need to 

be implemented with wider target width. 

The displayed target width was calculated based on the effective width using the 

new effective index of difficulty. The effective width eW j when a participant was 

overcompensating at delay j was calculated as: 
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���_�� =  ��
2"#$%_&' − 1 

For example, the effective width in a delay 2 trial (133ms) needed to simulate an 

overcompensated trial was: 

���_�� =  ��
2"#$)_&' − 1 

The displayed target width was then adjusted proportional to the calculated eW : observed 

eW ratio. For a detailed example, refer to the Appendix. 

Analysis 

 Pre-processing procedures similar to those done in experiment 1 were applied to 

calculate the kinematic measures as well as the alpha slope from DFA. As a manipulation 

check, the effect of width manipulation on effective width and effective index of 

difficulty in simulated trials were compared to the observed index using a one-way 

ANOVA to verify that trials of the same level of difficulty had similar reported indices, 

regardless of delay condition. Then, a two-way repeated measures ANOVA was used to 

analyze the main effects of visual feedback delay and adaptivity on both performance 

measures and DFA alpha. Because standard baseline trials were not randomized with 

simulated trials, the main effect analyses will only look at under-compensated versus 

over-compensated trials. Once again, the DFA alpha was correlated with index of 

performance. 

Results 

Manipulation checks 

 Target width was adjusted based on each participant’s performance in the 

standard baseline trials. On average, under-compensated trials had target widths that were 
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10.5%, 11.1%, and 23.5% smaller than baseline at no delay, 133ms delay, and 266ms 

delay respectively. Over-compensated trials had target widths that were 7%, 17.6%, and 

18.4% larger than baseline at no delay, 133ms delay, and 266ms delay respectively. A 

one-way ANOVA was used to examine whether the width adjustment had an effect on 

participants’ effective width and effective index of difficulty. There was no significant 

effect of width adjustment on effective width, F (2,42) = .12, ns (baseline M = 47.93, SD 

= 10.14, under-compensated M = 47.86, SD = 20.52, over-compensated M = 49.08, SD = 

15.6). Similarly, there was no significant effect of width adjustment on participants’ 

effective index of difficulty, F (2,42) = .52, ns (baseline M = 2.91, SD = .26, under-

compensated M = 2.97, SD = .43, over-compensated M = 2.91, SD = .45). The width 

adjustment manipulation was not successful at altering participants’ movement 

properties, and more specifically, their effective index of difficulty. Since a causal 

relationship between changes in target width and participants’ effective index of 

difficulty could not be established, under-compensated and over-compensated trials will 

be renamed narrow and wide trials for simplicity and clarity of interpretation.  

Mean movement distance 

 A 2 (width: narrow and wide, baseline not included) x 3 (visual feedback delay: 

no delay, 133ms delay, and 266ms delay) repeated measures ANOVA was used to test 

for the main effects and the interaction between width and delay on mean movement 

distance. There was a significant main effect of delay on mean movement distance, F 

(2,36) = 111.55, p < .001 (no delay M = 292.29, SD = 5.96, 133ms delay M = 298.39, SD 

= 6.57, 266ms delay M = 305.75, SD = 6.80). Similar to Experiment 1 and 2, as delay 

increased, participants’ movement distance increased. There was also a significant main 
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effect of width on movement distance, F (1,18) = 11.51, p < .001 (narrow M = 300.21, 

SD = 6.23, wide M = 297.41, SD = 6.39). Participants went longer distance with narrow 

targets compared to wide targets. The interaction effect was not significant, F (2,36) = 

2.02, ns. 

Mean movement time 

 A 2x3 repeated measures ANOVA was used to test for the main effects and the 

interaction between width and delay on mean movement time. There was a significant 

main effect of visual feedback delay on movement time, F (2,36) = 57.59, p < .001 (no 

delay M = 29.30, SD = 21.77, 133ms delay M = 35.58, SD = 20.67, 266ms delay M = 

43.73, SD = 25.10). As delay increased, participants’ movement time got longer. There 

was also a significant main effect of width on movement time, F (1,18) = 11.19, p = .004 

(narrow M = 37.70, SD = 22.88, wide M = 34.70, SD = 21.96). Participants took longer to 

move between targets when the targets were narrow compared to when the targets were 

wide. The interaction effect was not significant, F (2,36) = 1.01, ns. 

Effective index of difficulty 

 A 2x3 repeated measures ANOVA was used to test the main effects and the 

interaction term of delay and width on the effective index of difficulty. There was a 

significant main effect of visual feedback delay on the effective index of difficulty, F 

(2,36) = 31.97, p < .001 (no delay M = 3.15, SD = .51, 133ms delay M = 2.99, SD = .44, 

266ms delay M = 2.78, SD = .36). In accord with results from the one-way ANOVA 

reported above, there was no effect of width on the effective index of difficult, F (1,18) = 

1.09, ns (narrow M = 3.00, SD = .43, wide M = 2.95, SD = .45). The interaction effect 

was also not significant, F (2,36) = 1.78, ns.  
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Effective index of performance 

 A 2x3 repeated measures ANOVA was used to test the main effects and the 

interaction term of delay and width on the effective index of performance. There was a 

significant main effect of visual feedback delay on the effective index of performance, F 

(2,36) = 131.61, p < .001 (no delay M = .13, SD = .03, 133ms delay M = .10, SD = .03, 

266ms delay M = .08, SD = .03). There was also a significant effect of width on the 

effective index of performance, F (1,18) = 9.31, p = .004 (narrow M = .098, SD = .03, 

wide M = .11, SD = .03). The interaction effect was not significant, F (2,36) = .504, ns. 

Overall, as delay increased and width decreased, participants’ performance got worse. 

Detrended fluctuation analysis 

 Similar to Experiment 1 and 2, detrended fluctuation analysis was applied to peak 

intervals data series. The repeated measures ANOVA results indicated that there was a 

significant main effect of delay on DFA alpha, F (2,36) = 3.45, p = .043 (no delay M = 

.80, SD = .19, 133ms delay M = .76, SD = .2, 266ms delay M = .69, SD = .23). As delay 

increased, DFA alpha moved further away from 1.0 (pink noise ) and closer to 0.5 (white 

noise). The difference between DFA alpha in narrow trials and DFA alpha in wide trials 

approached significance, F (1,18) = 3.25, p = .088 (narrow M = .73, SD = .19, wide M = 

.77, SD = .17). The interaction effect was not significant, F (2,36) = .49, ns. The mean 

trend suggested that participants performed closer to 1.0 (pink noise) in wide trials than 

they did in narrow trials. 

Correlation 

 We correlated DFA alpha with participants effective index of performance. The 

Pearson’s Correlation test matched results found in Experiment 1 and 2, R = .51, p < 



  31 

.001. There was a moderate positive correlation between alpha and the effective index of 

performance. A MLM model predicting alpha using the index of performance as a 

predictor and subject number as the Level 2 identifier was used. The model included 

random effects for both the index of performance and the intercept, and an unstructured 

covariance matrix. The estimated fixed intercept was .51, t (21) = 6.79, p < .001. The 

fixed slope for the index of performance was 2.65, t (21) = 4.46, p < .001. At an index of 

performance of 0, the average alpha value was .51. For every one point increase in the 

index of performance, alpha increased by 2.65 points. 

Discussion 

 The goal of Experiment 3 was to test the hypothesis that fractal analysis such as 

the DFA measures a system’s ability to flexibly adapt to changing environment. By 

changing the width of the target areas in the reciprocal tapping task, we aimed to 

manipulate level of adaptivity in the visuomotor system in response to visual feedback 

delay, as conveyed by the effective index of difficulty. This manipulation would then 

allow us to examine whether system flexibility is one of the underlying causes of changes 

in DFA alpha values.  

The manipulation checks indicated that the width manipulation was not 

successful. As seen in Table 1, when target width was reduced to simulate participants 

not adequately compensating for task difficulty, the observed effective index of difficulty 

largely matched our target values. However, when target width was increased to simulate 

a scenario where participants compensate more than what we observed in baseline trials, 

we instead found that the effective index of difficulty stayed at baseline level or even 

increased. In other words, participants were not decreasing the difficulty of the task they 
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performed even when there was an option to do so. One simple explanation could be that 

participants had gained a level of automaticity with the baseline target width so they 

performed at this level whenever possible. In narrow width trials, successful completion 

of the task required them to change their movement parameters to a higher difficulty. 

However, in wide width trials, they could perform the baseline level of difficulty and still 

satisfy the requirement of the test. Regardless, the reduction in the range of effective 

indices of difficulty negatively impacted the statistical power of the experiment. 

The results once again replicated the principal finding of Experiment 1, namely 

that DFA alpha was closer to pink noise when delay was low, and closer to white noise 

when delay was high. This indicated that movement variability at low delay showed 

strong presence of long-term correlation, relative to movement variability at high delay. 

DFA alpha also moderately correlated with the index of performance, signaling that 

fractal analysis of variability was sensitive to some aspect of behavioral performance. 

 When comparing participants’ performance between narrow trials and wide 

trials, the results indicated that performance was higher in wide target trials. This result is 

consistent with a wealth of literature on the reciprocal tapping task. In terms of DFA 

alpha, the direction of the means suggested that movement variability in wide target trials 

might be closer to pink noise than in narrow target trials. Considered alongside the partial 

success of our manipulation, this pattern of data appeared promising. However, we 

clearly need a more effective manipulation to arrive at a conclusive answer to this 

hypothesis.  
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CHAPTER 5 

CONCLUSION 

In this series of experiments, we explored the possibility of analyzing movement 

variability as a way to measure generalized performance in movement task. In 

Experiment 1 and subsequent replications, we established that the alpha exponent, as 

derived from applying detrended fluctuation analysis to the peak interval time series of a 

reciprocal tapping task, showed sensitivity to participants’ performance.  

More specifically, we showed that as delay in visual feedback increased, DFA 

alpha linearly decreased between 1.0 and 0.5. Concurrently, we observed a linear 

decrease in various performance measures. As delay increased, participants were making 

longer movements, moving slower, performing less demanding movements, and showing 

lower index of performance. Finally, the index of performance moderately correlated 

with DFA alpha. These results established a clear causal effect of visual feedback delay 

on both performance and on the temporal structure of variability in participants’ 

movements. This connection between behavioral performance and variability structure 

adds to a body of evidence that have often relied on comparisons across age groups or 

patient populations (Stergiou & Decker, 2011). DFA alpha’s sensitivity to performance 

also opens up the possibility of using fractal analyses to assess traditionally difficult-to-

measure skills such as musical performance, skilled tool use (see Bril, Rein, Nonaka, 

Wenban-Smith, & Dietrich, 2010), or any non-speed skills (skills in which the speed of 

execution is not the primary predictor of performance). 

Furthermore, recall that DFA alpha of 0.5 indicates a lack of long-range 

correlation, whereas an alpha of 1.0 indicates persistent long-range correlation in the time 
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series. The results showed that participant’s movement variability at low delay were 

closer to 1.0, and movement variability at high delay were closer to 0.5. These findings 

suggested that there were inherent structure and interdependency nested within the 

movement variability in the “normal” (low delay) condition, and that this temporal 

structure was disrupted when a time lag was introduced into the system. Experiments 2 

and 3 examined in greater details the effect of disruption on movement variability and 

performance. 

In Experiment 2 and 3, we tested two major interpretations of the DFA alpha 

value by manipulating the task environment of the reciprocal tapping task. In Experiment 

2, we examined whether DFA alpha changes as a function of the degree to which 

subcomponent signals in a system can be smoothly combined. By blocking a portion of 

the task space, we presumably prevented signals from motor control and motor planning 

processes from combining early in the movement. The results showed that alpha was not 

affected by vision blocking, which implied that smooth integration of subcomponent 

signals was not a major driver of DFA alpha value. This account contradicts previous 

works supporting this view. An alternative explanation involving the interaction between 

vision blocking and visual feedback delay can explain the pattern of the data, and will 

need to be further examined in subsequent experiments. 

In Experiment 3, we examined whether DFA alpha changes as a function of the 

degree to which a system can flexibly adapt to changing task environment. By 

manipulating the effective index of difficulty in each trial (through manipulation of the 

target width), we simulated conditions in which participants either under-compensated or 

overcompensated for the task difficulty. Unfortunately, our manipulation was only 
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partially successful. However, the pattern of data appeared to support the notion that 

flexible adaptation to a task environment has an impact on DFA alpha value.  

 

 



  36 

REFERENCES 

Bril, B., Rein, R., Nonaka, T., Wenban-Smith, F., & Dietrich, G. (2010). The role of 

expertise in tool use: Skill differences in functional action adaptations to task 

constraints. Journal of Experimental Psychology: Human Perception and 

Performance, 36(4), 825-839. 

 

Carlton, L. G. (1981). Processing visual feedback information for movement control. 

Journal of Experimental Psychology: Human Perception and Performance, 7(5), 

1019-1030. 

 

Dotov, D. G., Nie L., & Chemero, A. (2010). A demonstration of the transition from 

ready-to-hand to unready-to-hand. PloS ONE, 5(3). 

 

Elliott, D. (1988). The influence of visual target and limb information on manual aiming. 

Canadian Journal of Psychology, 42, 57-68. 

 

Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth’s (1899) two-

component model of goal-directed aiming. Psychological Bulletin, 127(3), 342-

357. 

 

Fine, J. M., Likens, A. D., Amazeen, E. L., & Amazeen, P. G. (2015). Journal of 

Experimental Psychology: Human Perception and Performance, 41(3), 723-737. 

 

Fitts, P. M. (1954). The information capacity of the human motor system in controlling 

the amplitude of movement. Journal of Experimental Psychology, 47(6), 381-391. 

 

Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. 

Journal of Experimental Psychology, 67, 103-112. 

 

Goldberger, A. L., Amaral, L. N., Hausdorff, J. M., Ivanov, P. C., Peng, C. K., & Stanley, 

H. E. (2002). Fractal dynamics in physiology: Alterations with disease and aging. 

Proceedings of the National Academy of Science, 99(1), 2466-2472. 

 

Gorman, J. C., Amazeen, P. G., & Cooke, N. J. (2010). Team coordination dynamics. 

Nonlinear Dynamics Psychology and Life Sciences, 14(3), 265-289. 

 

Hausdorff, J. M. (2009). Gait dynamics in Parkinson’s disease: Common and distinct 

behavior among stride length, gait variability, and fractal-like scaling. Chaos: An 

Interdisciplinary Journal of Nonlinear Science, 19(2). 

 

Hausdorff, J. M., Peng, C-K., Ladin, Z., Wei, J. Y., & Goldberger, A. L. (1995). Is 

walking a random walk? Evidence for long-range correlations in stride interval of 

human gait. Modeling in Physiology, 78(1), 349-358. 

 



  37 

Henson, D. B. (1978). Corrective saccades: Effects of altering visual feedback. Vision 

Research, 18, 63-67. 

 

Jordan, K., Challis, J. H., & Newell, K. M. (2006). Long range correlations in the stride 

interval of running. Gait and Posture, 24, 120-125. 

 

Keele, S. W., & Posner, M. I. (1986). Processing of visual feedback in rapid movements.  

Journal of Experimental Psychology, 77, 155-158. 

 

Miyazaki, M., Kadota, H., Kudo, K., Masani, K., & Ohtsuki, T. (2001). Fractal 

correlation of initial trajectory dynamics vanishes at the movement endpoint in 

human rapid goal-directed movements. Neuroscience Letters, 3, 173-176. 

 

Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. 

(1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 

1685-1689. 

 

Roerdink, M., De Haart, M., Daffertshofer, A., Donker, S. F., Geurts, A. C. H., & Beek, 

P. J. (2006). Dynamical structure of center-of-pressure trajectories in patients 

recovering from stroke. Experimental Brain Research, 174, 256-269. 

 

Smith, W. M. (1972). Feedback: Real-time delayed vision of one’s own tracking 

behavior. Science, 176, 939-940. 

 

Smith, W. M., & Bowen, K. F. (1980). The effects of delayed and displaced visual 

feedback on motor control. Journal of Motor Behavior, 12(2), 91-101. 

 

Stergiou, N., & Decker, L., M. (2011). Human movement variability, nonlinear 

dynamics, and pathology: Is there a connection? Human Movement Science, 30, 

869-888. 

 

Valdez, A. B., & Amazeen, E. L. (2008). Using 1/f noise to examine planning and control 

in a discrete aiming task. Experimental Brain Research, 187, 303-319. 

 

Van Orden, G. C., Holden, J., & Turvey, M. T. (2003). Self-organization of cognitive 

performance. Journal of Experimental Psychology General, 132, 331-350. 

 

Wagenmakers, E-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/f 

noise in human cognition. Psychonomic Bulletin Review, 11(4), 579-615. 

 

Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 

3, 1-119. 

 

Zelaznik, H. N., Hawkins, B., & Kisselburgh, L. (1983). Rapid visual feedback 

processing in single-aiming movements. Journal of Motor Behavior, 15, 217-236. 



  38 

APPENDIX A 

EXAMPLE OF CALCULATIONS USED TO ADJUST TARGET WIDTH IN 

EXPERIMENT 3 
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To demonstrate the steps taken to calculate the target widths used in Experiment 3, we 

will use the data from Participant 1 as an example. After performing the first 3 standard 

trials (at 3 delay conditions), the participant’s effective indices of difficulty at no delay, 

133ms delay, and 266ms delay were 2.76, 2.49, and 2.18, respectively. We start by 

calculating the difference between the indices: 

�1 = 2.76 − 2.49 = 0.27 

�2 = 2.49 − 2.18 = 0.31 

 Using these differences, we calculate the target effective index of difficult in 

simulated trials. At no delay, the target for effective indices of difficulty for under-

compensated and over-compensated trials equal the baseline plus or minus D1, 

respectively: 

���2_34 = 2.76 + �1 = 3.03 

���2_5� = 2.76 − �1 = 2.49 

 At high delay, the calculations for target effective indices of difficulty are 

identical, except D2 is used instead of D1. At moderate delay (133ms), under-

compensated target is calculated as baseline at moderate delay plus D1, whereas over-

compensated target is calculated as baseline minus D2. 

 Next, we calculate the target effective width of the simulated trials. For example, 

the target effective width of the over-compensated trial at no delay is: 

��2_�� = 6$7
�89:7_&';2 = �<=.�2

�).>?;2 = 61.98  

Given the observed effective width at no delay is 49.38, the width of the target 

areas in the over-compensated trial at no delay will be increased by 61.98/49.38 = 1.26 

times.  
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Figure 1. Scatterplots showing the relationship of the effective index of performance and 

DFA alpha. A – Experiment 1; B – Experiment 2; C – Experiment 3. 
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Figure 2. DFA alpha as a function of visual feedback delay and vision block.  
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Effective index of 

difficulty 
No delay 133ms delay 266ms delay 

Under-compensate 
Target: 3.11 

Observed: 3.15 

Target: 3.05 

Observed: 3.06 

Target: 2.99 

Observed: 2.81 

Baseline Observed: 3.05 Observed: 2.99 Observed: 2.73 

Over-compensate 
Target: 2.99 

Observed: 3.16 

Target: 2.73 

Observed: 2.94 

Target: 2.47 

Observed: 2.75 

 

Table 1. Effective index of difficulty (EID) by visual feedback delay (no delay, 133ms, 

and 266ms) and condition (under-compensate, baseline, and over-compensate). Target: 

EID calculated after based on each participant’s performance in baseline trials. Target 

width is adjusted based on Target EID. Observed: EID as calculated from participant’s 

movement data.  

 


