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ABSTRACT  

   

Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is 

primarily known for its role in egg-yolk formation but also serves functions pertaining to 

immunity, longevity, nutrient storage, and oxidative stress relief. In the honey bee (Apis 

mellifera), Vg has evolved still further to include important social functions that are 

critical to the maintenance and proliferation of colonies. Here, Vg is used to synthesize 

royal jelly, a glandular secretion produced by a subset of the worker caste that is fed to 

the queen and young larvae and which is essential for caste development and social 

immunity. Moreover, Vg in the worker caste sets the pace of their behavioral 

development as they transition between different tasks throughout their life. In this 

dissertation, I make several new discoveries about Vg functionality. First, I uncover a 

colony-level immune pathway in bees that uses royal jelly as a vehicle to transfer 

pathogen fragments between nestmates. Second, I show that Vg is localized and 

expressed in the honey bee digestive tract and suggest possible immunological functions 

it may be performing there. Finally, I show that Vg enters to nucleus and binds to 

deoxyribonucleic acid (DNA), acting as a potential transcription factor to regulate 

expression of many genes pertaining to behavior, metabolism, and signal transduction 

pathways. These findings represent a significant advance in the understanding of Vg 

functionality and honey bee biology, and set the stage for many future avenues of 

research. 
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CHAPTER 1 

INTRODUCTION 

Eusociality represents a major evolutionary transition in history, in which 

individuals forgo direct reproductive output and instead live in colonies of close relatives 

that display separate reproductive and worker castes, cooperative care of young, and 

overlapping generations (Michener 1969a; Crespi and Yanega 1995; Wilson and 

Hölldobler 2005). This phenomenon can be observed in a few crustacean (Duffy 1996) 

and mammalian species (Jarvis 1981; Burda et al. 2000), but it is predominantly found in 

social insects like bees, ants, wasps, and termites (Wilson 1971a). Eusociality has proven 

to be a successful evolutionary strategy for social insects, as they now dominate many 

terrestrial ecosystems in terms of abundance and biomass (King et al. 2013). The 

maintenance and proliferation of social insect colonies requires them to overcome several 

challenges, including the need to combat pathogens, and the need to regulate division of 

labor among nestmates.  

In this first challenge, pathogen defense is required by all organisms, but social 

insect colonies can face heightened pressure owing to their dense populations of 

genetically similar individuals and their homeostatic conditions within the nest (Wilson 

1971a). In response, social insects have evolved “social immunity”, a suite of behavioral 

and physiological phenotypes that impedes pathogen transmission within the colony 

(Traniello et al. 2002; Cremer 2019). This includes allogrooming, removal of dead or 

infected individuals, increasing internal nest temperatures by bodily vibrations to kill 

pathogens (i.e., a “behavioral fever”), and sharing antimicrobial compounds among 

nestmates (Traniello et al. 2002; Cremer et al. 2007; Meunier 2015; Cremer 2019). In the 
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second challenge, division of labor allows for task specialization among workers, which 

enable colonies to efficiently exploit resources and flexibly respond to changing colony 

needs and shifting resource availability (Robinson 1992; Beshers and Fewell 2001). 

Some species create morphologically distinct workers for specific tasks (e.g., major and 

minor ant workers), while others have their workers progress through an age-dependent 

series of tasks, including nest construction, brood rearing, colony defense, and foraging. 

Many of the genetic, physiological, and chemical regulatory mechanisms that control 

worker behavioral development are co-opted from ancient regulatory networks still found 

in solitary animals. For example, shifts from brood rearing to foraging tasks are 

controlled by reproductive regulatory networks, even though the worker caste does not 

typically reproduce (Amdam, Norberg, et al. 2004; Amdam, Csondes, et al. 2006).  

Advances in molecular techniques have increased our understanding and 

appreciation for just how integral some of these ancient regulatory mechanisms have 

been to the evolution of eusocial species. One key player that has critical functions in 

reproduction, social immunity, and division of labor is Vitellogenin (Vg), an ancient and 

highly conserved protein found in nearly all animals (see Background). In this 

dissertation, I use a plethora of molecular biology, imaging, genetic, and bioinformatical 

approaches to uncover novel functions of Vg pertaining to the maintenance of social 

immunity and division of labor in one of the preeminent social insect model systems, the 

honey bee (Apis mellifera). Specifically, I investigate Vg’s role in an immune system 

pathway allowing for the transfer of  immune elicitors (i.e., pathogen fragments) between 

nestmates, and I uncover Vg’s hitherto unknown function as a possible transcription 

factor regulating genes involved in complex phenotypes, including division of labor. 
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BACKGROUND  

Evolutionary transitions do not necessarily require the development of new 

biological processes or novel genes but can instead be achieved by re-organizing the 

regulatory pathways that control already-extant genes. In social insects like honey bees, 

processes and genes that exist in solitary species can undergo selection and lead to the 

emergence of complex phenotypes like social immunity and division of labor (Amdam, 

Norberg, et al. 2003; Amdam, Csondes, et al. 2006). In this regard, much of honey bee 

biology makes sense in light of Vg and how it has evolved over time.    

 

Reproductive functions of Vg 

Vg is a glycolipophosphoprotein, meaning it is a protein with properties of being 

a carbohydrate and a phosopholipid. It was first identified in the late 1960s for its role in 

egg production, where it delivers lipids and other nutrients to the embryo and serves as a 

yolk protein precursor (Pan et al. 1969). Vg is primarily synthesized in non-ovarian 

tissues such as the liver (Wang et al. 2005), adipose tissue (fat) (Brookes 1969; Pan et al. 

1969), or the hepatopancreas (Guan et al. 2016), and then secreted into the blood or 

hemolymph where it can be taken up by the ovaries and other tissues (Noah Koller et al. 

1989; Raikhel and Dhadialla 1992). In insects, Vg is primarily synthesized in the fat 

body, an organ analogous to the vertebrate liver that plays important roles in insect 

nutrition, metabolism, immunology, and pheromone production (Wigglesworth 1988; de 

Oliveira and Cruz-Landim 2003; Oliveira and Cruz-Landim 2006; Wicker-Thomas et al. 

2009; Arrese and Soulages 2010; Makki et al. 2014). Given its central role in egg 

production, Vg is common to nearly every extant egg-laying species. It is part of a large 
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family of proteins known as Large Lipid Transfer Proteins (LLTPs), which are used to 

transport lipids throughout the body (Shikina et al. 2013; Wu et al. 2013). In non-egg-

laying animals such as therian mammals, LLTPs include important cholesterol 

transporters like apolipoprotein-B (ApoB) and microsomal triglyceride transporter (MTP)  

(Babin et al. 1999). LLTPs first evolved roughly 750 million years ago around the time 

that metazoans (animals) first appeared, and multiple studies have shown Vg to be the 

oldest member of this family (Baker 1988a; Hayward et al. 2010). It is unknown whether 

Vg’s original function was for egg production, but regardless, it has had ample time to 

evolve numerous non-reproductive functions.   

 

Non-reproductive functions of Vg 

Some of Vg’s non-reproductive functions pertain to immunity, inflammation, and 

longevity. Vg is a pathogen pattern recognition receptor, allowing it to bind to numerous 

bacterial and fungal pathogens (Zhang et al. 2005; Shi et al. 2006; Li et al. 2008, 2009; 

Liu et al. 2009). It does this my recognizing molecular moieties that are not found in 

animal cells, so called pathogen-associated molecular patterns (PAMPs). These PAMPs 

include lipopolysaccharide and peptidoglycan, which are predominant components in the 

cell walls of Gram negative and Gram positive bacteria, respectively, as well as zymosan, 

a key component of fungal cell walls (Salmela et al. 2015). Once bound to a pathogen, 

Vg can kill pathogens directly, in the case of some bacteria (Li et al. 2009), or it can act 

as an opsonin to guide other humoral components of the immune system to destroy the 

pathogen (Li et al. 2008; Zhang et al. 2011). Vg further helps immune cells in insects by 

transporting the zinc necessary for their proper functioning (Amdam, Simões, et al. 
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2004). Non-cellular pathogens, i.e., viruses, can also be bound by Vg (Garcia et al. 2010; 

Huo et al. 2014; Whitfield et al. 2015), and in some cases neutralized (Garcia et al. 2010). 

Vg also plays key roles in the body’s anti-inflammatory response. Vg expression (the 

gene name for the same protein) is upregulated in response to wounding, and the Vg 

protein binds to phosphatidylserine, a lipid that is exposed on damaged or necrotic cells 

(Havukainen et al. 2013). This helps to protect vulnerable cells from further cellular 

damage and may promote cellular clearance. Vg’s mammalian orthologs, like ApoB, are 

also known to suppress inflammation by binding to necrotic cells (Cho and Seong 2009). 

What’s more, Vg acts as an antioxidant by binding to and neutralizing reactive oxygen 

species, thereby protecting host cells from cellular damage (Seehuus et al. 2006; 

Havukainen et al. 2013; Sun and Zhang 2015a; Salmela et al. 2016). Vg’s anti-

pathogenic, anti-inflammatory, and antioxidant properties, along with its role in nutrient 

storage, are believed to contribute to organismal longevity. For example, honey bee 

queens have very high levels of Vg and live for several years, quite old for an insect, 

whereas the worker caste has much lower levels of Vg and only lives a couple of months. 

Compare this with so-called winter bees, a group of worker bees that live for several 

months inside the hive during the nutritionally barren winter months, and which also 

possess very high titers of Vg (Amdam and Omholt 2002; Amdam, Simões, et al. 2004; 

Amdam, Norberg, et al. 2005a; Seehuus et al. 2006; Corona et al. 2007a; Ihle et al. 2015; 

Münch et al. 2015). Interestingly, Vg’s anti-pathogenic and antioxidant properties are 

seen across a wide array of taxa including fish and coral (Zhang et al. 2005; Li et al. 

2008, 2009; Du et al. 2017), suggesting that such functions evolved early in Vg’s history 

contemporary with its reproductive functions.  
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Protein structure 

Vg’s multifunctionality stem from its ability to bind to numerous different 

ligands, and this ability arises from its biochemical structure. Vg is a relatively large 

protein (~200kDa) that can undergo numerous post-translational modifications like 

glycosylation, phosphorylation, and lipidation, as well as cleavage at various sites in 

different species (Tufail and Takeda 2008). For example, the 180 kDa honey bee Vg is 

cleaved into smaller units  of 150 kDa and 40 kDa (Havukainen, Halskau, Skjaerven, et 

al. 2011). There are several structural domains that are conserved across species, both at 

the sequence and structure level. This includes the N-terminus β-barrel (also known as 

the N-sheet), the α-helical domain, the von Willebrand factor type D domain (VWD) and 

the domain of unknown function (DUF) 1943. The N-sheet contains the purported 

receptor-binding domain as well as a positively charged lipophilic cavity used to 

transport lipids (Havukainen, Halskau, Skjaerven, et al. 2011; Roth et al. 2013), while the 

α-helical domain is known to mediate Vg’s anti-inflammatory actions (Havukainen, 

Halskau, Skjaerven, et al. 2011; Salmela et al. 2016). Both the VWD and DUF1943 

contribute to Vg’s functions as a pathogen pattern recognition receptor and opsonin (Sun 

et al. 2013a). These conserved domains allow for Vg to carry out multiple functions in 

diverse animal taxa. 

 

Vg in honey bees 

In honey bees, Vg has evolved still further to include several sophisticated  

functions pertaining to social immunity and the division of labor. First, Vg is a key 

component of a phenomenon called trans-generational immune priming (TGIP). TGIP 
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allows a female that survives a pathogen attack to produce offspring that are more 

resistant to that pathogen. In animals with an acquired immune system, like mammals, 

this can be achieved when pathogen-specific antibodies produced in the mother are 

transferred to her offspring via the placenta or breast milk (Shahid et al. 2002). However, 

animals that only possess an innate immune system, like insects, cannot produce 

antibodies and yet a surviving female can still produce more pathogen-resistant offspring. 

Here, TGIP is achieved when fragments of the destroyed pathogen that contain PAMPs 

(e.g., bits of the cell wall) are transferred into the female’s eggs, where the immune 

system of developing embryos becomes more activated in response (Freitak et al. 2009; 

López et al. 2014a; Knorr et al. 2015). In honey bees, Vg binds to pathogens and carries 

them across the cell membrane into developing eggs via receptor-mediated endocytosis 

(Salmela et al. 2015). Second, Vg is used as an amino acid donor in the production of 

royal jelly, a protein-rich food source with important roles in both social immunity and 

division of labor (Amdam, Norberg, et al. 2003). Royal jelly is a glandular secretion 

produced by a subset of the worker caste known as nurses, who feed it to the queen and 

young larvae. This food not only contains many antimicrobial compounds that protect the 

queen and larvae from disease (Blum et al. 1959; Bíliková et al. 2001; Bachanová et al. 

2002a; Fontana, Mendes, et al. 2004; Klaudiny et al. 2012; Sugiyama et al. 2012; 

Bucekova et al. 2014), but it also alters signaling pathways in larvae that regulate their 

development into either a queen or a worker (Evans and Wheeler 1999). Nurses feed 

royal jelly to all young larvae, but after 3 days, larvae that are switched to a diet of pollen 

and honey develop into workers, while those that continue to be fed royal jelly develop 

into queens. Queens continue to feed exclusively on royal jelly throughout their adult 
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lives (Haydak 1970). Finally, Vg helps regulate behavioral development in the worker 

caste. Workers transition between different tasks as they age, and the timing of these 

transitions is determined, in part, by Vg titers in their haemolymph: Newly emerged 

workers have low Vg titers and spend their first few days cleaning comb cells, but soon 

transition into nurses as their Vg production increases greatly. After a couple weeks, a 

drop in Vg titers and a concomitant increase in juvenile hormone prompt nurses to 

transition into foragers (Amdam and Omholt 2003; Guidugli, Nascimento, et al. 2005; 

Amdam, Csondes, et al. 2006; Nelson et al. 2007; Antonio et al. 2008). Vg titers at 

different developmental stages can also influence other worker behaviors such as their 

responsiveness to sucrose and their foraging preference for nectar or pollen (Amdam, 

Norberg, et al. 2006; Nelson et al. 2007). However, the molecular mechanisms by which 

Vg regulates such behavioral changes are not fully understood.  

 

PURPOSE 

 The purpose of this research project is to discover novel molecular mechanisms 

by which Vg contributes to social immunity and division of labor in honey bees. First, I 

build on research originally undertaken by Schmid-Hempel and colleagues (Sadd et al. 

2005) showing social insects display TGIP, and later expanded upon by my own 

collaborators elucidating Vg’s role in this pathway (Salmela et al. 2015). Here, I uncover 

a potential colony-level immune pathway in honey bees that extends TGIP to include the 

worker caste. Queens have been shown to transfer pathogen particles to offspring 

(Hernández López Javier et al. 2014; Salmela et al. 2015), but these studies involved 

injecting queens with an inoculum and such scenarios do not occur in nature. There are 
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few opportunities for queens to be inoculated naturally because they rarely leave the nest 

(mating flights and swarming events being the exception) and they do not consume the 

potentially-contaminated nectar or pollen collected by foragers. However, queens feed 

exclusively on the royal jelly produced by nurses, and this may serve as a vehicle for 

transferring pathogen particles from workers to queen, or from workers to young larvae 

directly. In this dissertation, I show that nurses that ingest bacteria can transport these 

bacteria from their gut to their glands where royal jelly is produced, and that this 

phenomenon is not observed in nurses with experimentally-reduced vg expression. I also 

show that ingested bacteria are ultimately incorporated into the royal jelly, and that royal 

jelly from nurses fed pathogenic bacteria has higher concentrations of a potent 

antimicrobial peptide. Furthermore, I show for the first time that Vg is localized and 

expressed in worker gut  issue, a key organ in insect immunity, where it may carry out 

antipathogenic and antioxidant functions. 

 Second, I build on recent research showing that Vg-knockdown affects expression 

in thousands of genes (Wheeler et al. 2013), as well as research by my collaborator 

showing Vg capable of entering the nucleus (Salmela et al, submitted). Both of these 

finds suggested that Vg may be entering the nucleus to directly regulate gene expression. 

I make a major new discovery that Vg is able to bind to DNA and potentially serve as a 

transcription factor to regulate genes involved in complex phenotypes, like behavior. I 

show that Vg binds at hundreds of DNA loci, and that the identity of these loci shift as 

workers transition from different tasks like cell cleaning, nursing, and foraging. 

Furthermore, I identify other proteins bound to the Vg-DNA complex, which shed light 

on the gene regulatory networks that Vg may be a part of. 
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SIGNIFICANCE 

 The work presented in this dissertation greatly enhances our understanding of Vg 

multifunctionality and the mechanisms by which it carries out such functions. I make two 

important discoveries regarding a colony-level immune pathway in honey bees, and 

transcriptional regulatory properties of Vg. By understanding how a colony-level immune 

pathway operates in honey bees, researchers can exploit this mechanism to deliver  

“vaccines” to honey bees and make them resistant to deadly and economically costly 

diseases. That is, nurses can be fed with an inert form of a pathogen and deliver it to the 

queen and larvae via royal jelly and thus prime the immune system of future generations. 

This discovery has already been put into action by my collaborators, who are developing 

and marketizing an edible vaccine for honey bees against certain pathogens (Salmela and 

Freitak 2017).  

 The discovery that Vg is a DNA-binding protein and a likely transcription factor 

has the potential to be paradigm shifting in terms of how we understand Vg to regulate so 

many complex phenotypes. We have known that Vg titers are associated with different 

worker task groups, and that it mutually regulates other behavior-related biochemicals 

like juvenile hormone, but we have lacked a clear mechanistic understanding of how it 

regulates behavior on a molecular level. The discoveries outlined in this dissertation 

suggest that Vg may be acting to directly regulate expression of genes related to behavior 

and other phenotypes. In at least a dozen cases, Vg-bound genes are associated with 

differing gene expression levels between different worker task groups, including at least 

one gene known to be critical for division of labor in an ant species (Gospocic et al. 

2017). Many Vg-bound genes play key roles in signal transduction pathways known to 
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affect behavior, as well as important genes in the immune system. Furthermore, this is the 

first documentation of any protein from the LLTP superfamily having DNA-binding 

properties, and given that Vg is a ubiquitous and highly conserved protein across 

metazoan taxa, it may be performing similar functions in a large number of animals. The 

discoveries made here may spur other research to investigate Vg’s gene regulatory 

abilities in other organisms.  

 

APPROACH 

This dissertation utilized a number of methods to further elucidate Vg’s role in 

immunity and gene regulation, including immunohistochemistry, confocal microscopy, 

mass spectrometry, and DNA- and RNA-sequencing. In chapter 2, I sought to determine 

whether ingested bacteria can be transported to the hypopharyngeal glands (the site of 

royal jelly synthesis), and to understand the role that Vg may play in this. To achieve this, 

my collaborators and I fed fluorescently-labelled bacteria to nurse bees and used confocal 

microscopy to detect the bacteria in several tissues: the hypopharyngeal glands, the fat 

body, and the midgut. To understand whether bacteria transport is affected by Vg titers, 

we subjected some of the nurses to RNA-interference (RNAi)-mediated gene knockdown 

by injecting them with double stranded RNA (dsRNA) against a portion of the vg gene. I 

used Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) to 

quantify transcript abundance for vg, as well as a housekeeping gene and other genes that 

could potentially be affected by the dsRNA injection. This chapter has been published in 

The Journal of Insect Physiology, for which I am the first author. My contributions 

included rearing bees and administering a bacterial diet, staining and imaging tissue, 
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providing funds for microscopy work, analyzing image data, performing RT-qPCR 

experiments and statistical analysis, and primary manuscript drafting.  

 In chapter 3, I sought to determine not only whether pathogenic bacteria can be 

incorporated into royal jelly produced by nurses, but also whether pathogen exposure 

leads to higher levels of other immunological proteins in the jelly. To do this, I fed either 

a pathogen diet (containing fluorescently-labelled Paenibacillus larvae) or a control diet 

to small colonies of nurses and harvested the royal jelly they produced. I used fluorescent 

microscopy to detect bacteria in the royal jelly, and used mass spectrometry to determine 

the identity and relative abundance of other constituent proteins in royal jelly samples. 

This chapter is being prepared for submission to the journal PLoS Pathogens, and I am 

the first author. My contributions included experimental design, establishing colonies, 

harvesting royal jelly, performing fluorescent microscopy and analyzing images, 

analyzing mass spectrometry results, and primary manuscript drafting.  

 In chapter 4, I sought to build on a discovery made in chapter 2, namely, that Vg 

appeared to be present in worker midgut tissue. This is an organ critical to initial immune 

response against ingested pathogens, but Vg has not been documented here before. I 

sought to compare and contrast how Vg is localized in this tissue for nurses and foragers, 

and to determine whether vg is transcribed therein. To do this, I used a combination of 

immunohistochemistry, confocal microscopy, and RT-qPCR. This chapter is being 

prepared for submission to the journal Apidologie.  My contributions amount to all 

aspects of experimental design, data collection, statistical analysis, and primary 

manuscript drafting.  



  13 

 In chapter 5, my collaborators and I sought to greatly expand our understanding 

of Vg’s protein structure, its structural response to pathogen challenge, its translocation 

into the nucleus and subsequent DNA binding there, and the classes of genes to which it 

binds in differently aged bees. This study involved over half a dozen researchers 

employing a multitude of molecular, theoretical, and computational methods. For my 

part, I used a method called chromatin immunoprecipitation followed by high-throughput 

sequencing (ChIP-seq), which is the standard approach for examining protein-DNA 

interactions. I then performed a Gene Ontology analysis to look for significant 

enrichment of functional terms for Vg-DNA binding sites in newly emerged and nurse 

bees. This chapter will be submitted shortly to PLoS Biology, and I am listed as the 

second author. In addition to my experimental and analytical contributions, I wrote a 

significant portion of the manuscript and took the lead in the subsequent edits made after 

the first draft. I also provided partial funding to obtain and sequence samples in the ChIP-

seq protocol.  

 In chapter 6, I sought to determine whether Vg-DNA binding could potentially 

regulate gene expression in nurses and foragers, and to determine what other proteins 

may be interacting with Vg at the DNA in a regulatory complex. To do this, I used (1) 

ChIP-seq to map out Vg-DNA binding sites in same-age nurses and foragers, (2) RNA-

seq to measure transcript abundance at these loci, and (3) co-immunoprecipitation paired 

with mass spectrometry to identify other nuclear proteins that are bound to Vg. This 

chapter is in preparation for submission to one of Nature, PNAS, or PLoS Genetics. Apart 

from designing and performing all molecular laboratory experiments, and performing 
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Gene Ontology and other post-hoc analyses after sequencing and mass spectrometry, I 

am also the lead author on this manuscript.  
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CHAPTER 2 

THE ROLE OF VITELLOGENIN IN THE TRANSFER OF IMMUNE ELICITORS 

FROM GUT TO HYPOPHARYNGEAL GLANDS IN HONEY BEES 

Gyan Harwood, Gro Amdam, and Dalial Freitak 

Published in the Journal of Insect Physiology (112) 2019 

 

ABSTRACT 

Female insects that survive a pathogen attack can produce more pathogen-resistant 

offspring in a process called trans-generational immune priming. In the honey bee (Apis 

mellifera), the egg-yolk precursor protein Vitellogenin transports fragments of pathogen 

cells into the egg, thereby setting the stage for a recruitment of immunological defenses 

prior to hatching. Honey bees live in complex societies where reproduction and 

communal tasks are divided between a queen and her sterile female workers. Worker 

bees metabolize Vitellogenin to synthesize royal jelly, a protein-rich glandular secretion 

fed to the queen and young larvae. We ask if workers can participate in trans-generational 

immune priming by transferring pathogen fragments to the queen or larvae via royal jelly. 

As a first step toward answering this question, we tested whether worker-ingested 

bacterial fragments can be transported to jelly-producing glands, and what role 

Vitellogenin plays in this transport. To do this, we fed fluorescently labelled Escherichia 

coli to workers with experimentally manipulated levels of Vitellogenin. We found that 

bacterial fragments were transported to the glands of control workers, while they were 

not detected at the glands of workers subjected to RNA interference-mediated 

Vitellogenin gene knockdown, suggesting that Vitellogenin plays a role in this transport. 
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Our results provide initial evidence that trans-generational immune priming may operate 

at a colony-wide level in honey bees.  
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INTRODUCTION 

 Efficient anti-pathogen defense mechanisms support the survival of individuals. 

Various physiological and behavioral mechanisms have evolved to maximize organismal 

fitness as part of the immune system (Schmid-Hempel 2001). Immune responses must act 

quickly and target bacterial and fungal cells, as well as viruses. In vertebrates, a complex 

antibody-based immunological memory has evolved, which renders individuals and 

initially also their offspring immune to the same pathogen (Hasselquist and Nilsson 

2009). Invertebrates, although lacking antibody-based immunological memory, can prime 

both themselves (Sadd and Schmid-Hempel 2006; Roth et al. 2009; Tidbury et al. 2011) 

and offspring (Little et al. 2003; Sadd et al. 2005; Moret 2006; Freitak et al. 2009; 

Tidbury et al. 2011; López et al. 2014b) against pathogens. The phenomenon is called 

trans-generational immune priming. Trans-generational immune priming occurs by 

females transferring ingested pathogen fragments to their developing eggs, where they 

elicit an immune response in the developing embryo (Freitak et al. 2014). 

We found that Vitellogenin (Vg) may facilitate trans-generational immune priming in 

honey bees, as this protein transports immune elicitors into developing eggs (Salmela et 

al. 2015). Vg is an egg yolk precursor protein, essential in delivering nutrients into the 

eggs of most oviparous species. Moreover, it can bind pathogen-associated molecular 

patterns (PAMPs) (Li et al. 2008, 2009; Liu et al. 2009; Salmela et al. 2015). PAMPs 

include molecular motifs of bacterial and fungal cells like lipopolysaccharides and 

peptidoglycans. The ability of Vg to bind PAMPs, and the protein’s transport into eggs, 

suggests a central role for Vg in immune priming.  
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 Honey bee Vg has evolved to have important social functions (Amdam, Norberg, 

et al. 2003; Nelson et al. 2007). Colonies have a division of labor, with the queen 

responsible for reproduction and sterile workers responsible for colony maintenance. 

Workers further undergo an age-associated behavioral maturation that depends on titers 

of Vg in their blood (haemolymph) (Amdam and Omholt 2003; Guidugli, Nascimento, et 

al. 2005; Nelson et al. 2007). Young workers remain in the nest as nurses to clean cells, 

rear brood, and feed the queen, and have high titers of Vg that peak around age 5-15 days 

(Fluri et al. 1982; Engels et al. 1990). A sharp drop in Vg titers and a concomitant 

increase in juvenile hormone titers prompt workers to transition into foragers and leave 

the nest to collect nectar and pollen (Amdam and Omholt 2003; Nelson et al. 2007). 

Additionally, Vg is used by the nurse bees as an amino acid donor for producing royal 

jelly (Amdam, Norberg, et al. 2003), a protein-rich food synthesized in their 

hypopharyngeal (head) glands that they feed orally to the queen and young larvae 

(Snodgrass 1956). The hypopharyngeal glands express Vg receptors, presumably to allow 

uptake of Vg circulating in the haemolymph (Guidugli-Lazzarini et al. 2008).     

 The immune elicitors used to initiate trans-generational immune priming may 

come from environmental pathogens encountered and ingested by a female. However, 

honey bee queens have limited exposure to environmental pathogens since they reside 

entirely in the nest except for their mating flight (or flights) early in life and possible 

swarming flight later in life (Michener 1969b). For trans-generational immune priming to 

be effective in honey bees, a queen must prime her offspring against pathogens that her 

workers encounter. As we suggested previously (Salmela et al. 2015), queen exposure 

may occur via consuming contaminated food. As queens feed exclusively on worker-
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produced royal jelly (Haydak 1970), this potential pathway would require workers to 

transfer ingested pathogen fragments to their hypopharyngeal glands. Here, we test if that 

requirement can be met by observing whether bacterial fragments fed to workers are 

transferred to their hypopharyngeal glands.  

In this study, we fed heat-killed fluorescently-labelled Escherichia coli particles 

to worker honey bees and used immunohistochemistry to localize Vg and bacterial 

particles in three tissues: the midgut, the fat body, and the hypopharyngeal glands. The 

midgut is where ingested pathogen cells are broken down and potentially absorbed 

through the epithelium (Buchon et al. 2013). The fat body regulates the metabolic and 

immunological state of the organism and plays a central role in immune response (Bulet 

and Stöcklin 2005; Stokes et al. 2015). It is also the primary site of Vg synthesis and 

storage (Pan et al. 1969; Isaac and Bownes 1982; Raikhel and Lea 1983; Bownes 1986). 

We contrasted control workers and RNA interference (RNAi)-mediated Vg-knockdown 

workers to examine what role Vg plays in this pathway. We also measured how Vg RNAi 

affected expression of two other control genes that either share similar sequence 

homology or function as Vg: Vitellogenin-like-C (Salmela et al. 2016) and 

apolipophorin-III (Whitten et al. 2004a; Weers and Ryan 2006), respectively. These 

controls are used to validate the specificity of the double-stranded RNA (dsRNA) used in 

the RNAi protocol, and to ensure that any difference between treatments in E. coli tissue 

localization is due to Vg-knockdown and not due to inadvertent effects to other genes that 

share similar immunological functions as Vg.   

 We found that E. coli particles were transferred to the hypopharyngeal glands of 

control workers, but not to the glands of Vg-knockdown workers. This observation 
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confirms that ingested pathogen fragments can be transported to the production-site of 

royal jelly, and that Vg plays a role in this process in worker bees. As an additional 

finding, we detected Vg protein immunoreactivity in the midgut and hypopharyngeal 

glands of both controls and Vg-knockdowns. This result suggests that these organs can 

maintain Vg stores after the rate of de novo synthesis has been suppressed by RNAi in the 

fat body. 

 

METHODS 

Bees 

 Stock colonies of honey bees were maintained at the Arizona State University 

(ASU) Bee Research Facility in Mesa, Arizona. Frames of sealed brood from two hives 

were placed overnight in a 34°C incubator with 80% relative humidity. Newly emerged 

workers (up to 24 h old) were then secured to a wax-filled dissecting dish with two 

crossed needles and immobilized in a refrigerator. Following oft-used protocols first 

established in Amdam et al. 2003b, bees were next subjected to one of three injection 

treatments: i) a 1 µl injection of 10 ng/µl double-stranded RNA (dsRNA) of the 

vitellogenin (vg) gene to achieve RNAi (N = 89); ii) a 1 µl sham injection of nuclease-

free water (vehicle, Ambion #AM9938) to serve as an injection control (N = 85); or iii) 

no injection to serve as a handling control (N=139). For injection controls, injecting the 

vehicle is a thoroughly established procedure that is frequently performed and widely 

accepted (e.g., (Amdam, Simões, et al. 2003; Guidugli, Nascimento, et al. 2005; Seehuus 

et al. 2006; Antonio et al. 2008; Ihle et al. 2010, 2015; Ament et al. 2011; Wheeler et al. 

2013). Injections were made between for 5th and 6th abdominal segment using a 10 µl 
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Hamilton syringe with a G30 needle (BD). Bees that showed signs of bleeding after an 

injection were discarded and omitted from the experiment. The remaining bees were 

paint marked according to injection treatment and placed in two established host colonies 

at the main ASU campus in Tempe, Arizona. After 7 days we collected 158 bees (32 Vg 

dsRNA-injected, 41 sham-injected, 85 control-handled) and placed them into feeding 

cages (13 x 8 x 7 cm). The cages received 1 of 2 feeding treatments: either 30% sucrose 

in distilled water (control feeding), or the same food but with 0.5mg/mL of E. coli (K – 

12 strain) BioParticles® with Texas Red® conjugate (Molecular Probes #E2863) 

(bacteria feeding). Food was provided in 10 mL aliquots via a 30 mL syringe, which was 

replenished daily. Cages were also provided with water and the bees remained caged in 

the 34°C incubator with 80% humidity for 48 h before being dissected.   

 

Immunohistochemistry 

 Bees were anesthetized on ice and pinned to a wax-filled dissecting dish. The 

midgut, hypopharyngeal glands, and dorsal fat body were dissected and fixed separately 

in 4% paraformaldehyde for 48 h at 4°C, while the ventral fat body was prepared 

separately to confirm RNAi-mediated gene knockdown. Tissues were washed three times 

in 1X phosphate-buffered saline (PBS) before the midgut and hypopharyngeal glands 

were embedded in agarose gel and sectioned into 100 µm sections using a Leica 

VT1000s vibratome. The fat body was not embedded in agarose, but instead remained 

attached to the cuticle for the staining and washing procedures before being dissected 

from the cuticle and whole-mounted onto a slide. This was for practical purposes, as the 

fat body is a 1-cell thick sheet of tissue that does not require sectioning and would likely 
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be damaged with other processing protocols.  All tissue samples were incubated 

overnight at 4°C in 1X PBS containing 1:1000 polyclonal rabbit-anti-Vg 1° antibodies 

(raised against 180 kDa honey bee vitellogenin; Pacific Immunology, Ramona, CA), 5% 

goat serum (Jackson ImmunoResearch #005-000-121), and 0.1% Triton X-100 (Sigma 

#T8787). Antibody specificity has been tested and confirmed in previous studies 

(Seehuus et al. 2007). Samples were then washed five times before being incubated at 

room temperature for 3 h in 1X PBS containing 1:1000 goat-anti-rabbit 2° antibodies 

conjugated with Alexa Fluor® 488 (Jackson ImmunoResearch #111-545-047), 5% goat 

serum, and 0.1% Triton X-100. The samples were washed three more times before being 

incubated for 15 min at room temperature in 1X PBS containing 1:30000 DAPI 

(Molecular Probes®D1306) and 0.1% Triton X-100. After a final five washes the 

samples were mounted in glycerol on glass slides. We also performed negative staining 

controls on all tissue-types to again confirm the specificity of the 1° antibodies and to 

look for any issues of autofluorescence that may occur in the range of wavelengths 

covered by Alexa Fluor® 488. For this, tissues were prepared and stained exactly as 

described above, except that in the first incubation the tissue was bathed in PBS with goat 

serum and triton but no 1° antibodies. Slides were imaged on a Leica TCS SP5 confocal 

microscope using a 40X oil-immersion objective. We imaged tissues from 22 bees, 

representing 3-4 individuals for all 6 treatments (3 injections treatments x 2 feeding 

treatments).  
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Preparation of dsRNA 

 Double-stranded RNA was prepared as previously described (Amdam, Simões, et 

al. 2003; Guidugli, Nascimento, et al. 2005; Amdam, Norberg, et al. 2006; Nelson et al. 

2007; Antonio et al. 2008; Ihle et al. 2010, 2015). Primers were designed against the 

honey bee vitellogenin gene (GenBank number: AJ517411) cDNA clone AP4a5 and 

fused with the T7 promotor sequence (underlined).  

Forward: 5’ - TAATACGACTCACTATAGGGCGAACGACTCGACCAACGACTT – 

3’.  

Reverse: 5’ – 

TAATACGACTCACTATAGGGCGAAACGAAAGGAACGGTCAATTCC – 3’ 

 

PCR amplification was performed under normal conditions using Illustra™ PuReTaq 

Ready-to-Go™ PCR beads (GE Healthcare # 27955701) and the AP4a5 clone as a 

template. PCR produced a product (excluding the T7 promotor) with a size of 504bp. The 

product was purified using a QIAquick PCR purification kit (Qiagen #28104) and the 

RNA was prepared using a RiboMAX™ Large Scale RNA Production System (Promega 

#P1300). The RNA was then extracted via phenol-chloroform extraction using TRIzol® 

LS reagent (Invitrogen #10296028) and re-suspended in nuclease-free water to a final 

concentration of 10 ng/µl.  

 

RNAi knockdown validation 

 Gene expression was compared using fat body tissue, as this is the primary site of 

vg expression (Pan et al. 1969; Isaac and Bownes 1982; Raikhel and Lea 1983; Bownes 
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1986) and the target tissue for vg RNAi in honey bees (Amdam, Simões, et al. 2003; 

Guidugli, Nascimento, et al. 2005; Amdam, Norberg, et al. 2006; Nelson et al. 2007; 

Antonio et al. 2008; Ihle et al. 2010, 2015). RNA from the ventral fat body was extracted 

with TRIzol® LS reagent and re-suspended in nuclease-free water to a concentration of 

100 ng/µl. A 1-step RT-qPCR was performed in triplicate with an ABI Prism 7500 

(AppliedBiosystems) using a Quantitech SYBR® Green RT-PCR kit (Qiagen #204243). 

Actin was used as a housekeeping gene because it is stably expressed across honey bee 

tissues (Lourenço et al. 2008; Scharlaken et al. 2008) and is commonly used for 

knockdown validation (Amdam, Simões, et al. 2004; de Azevedo and Hartfelder 2008; 

Wang et al. 2012, 2013; Ihle et al. 2015). Data were analyzed using the ∆∆CT method 

(Schmittgen and Livak 2008). The effect of treatment on vg expression was determined 

using a one-way ANOVA, and differences between individual treatment groups were 

calculated with Tukey’s honest significant difference test. Data were log-transformed to 

achieve normality. Analyses were performed in R (v3.3.2). Negative controls (no 

template) were used to rule out DNA contamination. Primer sequences used for RT-

qPCR reactions were as follows: 

Vg Forward: 5’ – GTTGGAGAGCAACATGCAGA - 3’ 

Vg Reverse: 5’ – TCGATCCATTCCTTGATGGT – 3’ 

Actin Forward: 5’ – TGCCAACACTGTCCTTTCTG – 3’ 

Actin Reverse: 5’ – AGAATTGACCCACCAATCCA – 3’ 
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Effect of Vg RNAi on expression of control genes 

RNAi can have unintended consequences by affecting expression of off-target 

genes, thereby confounding the interpretation of results. In these cases, it becomes 

unclear whether the phenomena observed are due to successful knockdown of the target 

gene, or altered expression of some off-target genes. For example, injected dsRNA is 

broken down into small interfering RNAs (siRNAs) that target transcripts with 

complementary sequences, but if the dsRNA lacks sufficient specificity then the resulting 

siRNAs can also knockdown other genes with a similar complementary sequences 

(Jackson and Linsley 2010). To validate the specificity of our vg dsRNA we measured 

expression of vg-like-C, as this vg homolog shares a similar sequence as vg and would 

likely be knocked down if our dsRNA were insufficiently specific (Morandin et al. 2014; 

Salmela et al. 2016). We can validate the specificity of our dsRNA if vg-like-C is equally 

expressed in individuals across all three injection and control treatments. Additionally, 

confounding results in RNAi can arise by the unintended activation of the immune 

system. Injected dsRNA activates the antiviral state in honey bees and alters expression 

of hundreds of genes (Flenniken and Andino 2013). If expression is altered in an immune 

gene with similar functions as vg, then any differing pattern of E. coli tissue localization 

observed between treatment groups could be due to this immune response to dsRNA and 

not due to the Vg-knockdown. ApoLp-III is a good candidate for an off-target immune-

related control gene because of its functional similarity to vg: it performs several innate 

immunity functions including binding many PAMPs (Whitten et al. 2004a; Weers and 

Ryan 2006), it circulates in the haemolymph (Kawooya et al. 1984), it is expressed in the 

fat body (Cole and Wells 1990) and in the hypopharyngeal glands (Corby-Harris et al. 
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2016), and it is present in royal jelly (Han et al. 2011a). We contrasted apoLp-III 

expression in individuals injected with nuclease-free water (sham) and those injected 

with vg dsRNA to confirm that observed patterns of E. coli tissue localization were due to 

the effect of Vg-knockdown and not due to an immunological response to dsRNA. We 

measured vg-like-C and apoLp-III expression using the same procedure described above, 

and used honey bee primer sequences that were previously used and published by other 

(Lourenço et al. 2009; Salmela et al. 2016) 

Vg-like-C Forward: 5’ - AACGCGATCACATCAGTCGT - 3’ 

Vg-like-C Reverse: 5’ - CGTGCCGCCAACAGATATGG - 3’ 

 

ApoLp-III Forward: 5’ - TCTGACAAAGCTGCGAAATC - 3’ 

ApoLp-III Reverse: 5’ - AGTTGCGGCAGTTTGAAGTT - 3’ 

 

RESULTS 

Gene expression 

Individuals injected with vg dsRNA (hereafter referred to as Vg-knockdown bees) 

showed successful vg gene expression knockdown compared with control-handled and 

sham-injected bees (Fig. 2.1A). Treatment groups differed significantly in vg expression 

(1-way ANOVA, F2, 45 = 16.00, p = 5.6E-6). Control-handled bees had significantly 

higher vg expression than both the sham-injected (p=0.026) and Vg-knockdown 

(p<0.001) bees, while sham-injected bees had significantly higher vg expression than Vg-

knockdown bees (p=0.014) (Fig. 2.1A). Injection treatments did not affect expression of 

the first control gene, vg-like-C, as there was no significant difference in expression 
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among bees from any treatment (1-way ANOVA, F2, 44 = 1.28, P = 0.288)(Fig. 2.1B). For 

the second control gene, apoLp-III, there was no difference in expression between 

individuals injected with nuclease-free water (sham) and those injected with vg dsRNA 

(P = 0.151), nor between sham-injected and control-handled individuals (P = 0.830) (Fig. 

2.1C). There were small but significant differences in expression between Vg-knockdown 

and control-handled bees (P = 0.040) (1-way ANOVA, F2,44 = 3.47, P = 0.040).   

 

 

Fig. 2.1: Relative expression levels of three genes following vg dsRNA-injection, sham-

injection, or control-handling. Bar heights represent the mean log10 gene expression level 

of N=16 individuals sampled, while error bars represent ± 1 standard error. Expression 

levels were determined using the ∆∆Ct method. Data were normalized via log-

transformation prior to analysis. Pairs of treatment groups with stars above were deemed 

significantly different from one another via a Tukey HSD test. A: Relative vg expression 

differed significantly between all treatment groups (1-way ANOVA: F2,45 = 16, p<0.001). 
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B: Relative vg-like-C expression did not differ between treatment groups (1-way 

ANOVA, F2, 44 = 1.28, P = 0.288). C: Relative apoLp-III expression significantly differed 

between treatment groups (1-way ANOVA, F2, 44 = 3.47, P = 0.040), but this difference 

was only observed between control-handled and vg dsRNA-injected individuals (P = 

0.040). 

 

Histology 

Despite this effect of RNAi-mediated vg knockdown, bees from all treatments 

showed positive signal for Vg protein in their midguts (Fig. 2.2). Moreover, bees from all 

treatments that were fed fluorescently labelled E. coli particles showed uptake of label 

into their midgut. Bees subjected to the control feeding (Fig. 2.2M-N) did not show this 

signal. The Vg and E. coli particles appeared in close proximity or even overlapped in a 

few instances, but mostly the two signals were separate.   
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Fig. 2.2: Midguts of E. coli-fed and control-fed workers. The organs were sectioned 

longitudinally, and each set of images shows a collection of epithelial cells protruding 

into the lumen. Cell nuclei are stained blue with DAPI, E. coli particles are stained red 

with Texas Red, and Vitellogenin protein is stained green with Alexa 488. White 

scalebars are 100 µm in length. Yellow arrows indicate examples of positive E. coli 

signal. A-D: representative samples of control-handled bees fed with E. coli; E-H:  
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representative samples of sham-injected individuals fed with E. coli; I-L: representative 

samples of Vg-knockdown individuals fed with E. coli; M-N: representative sample of a 

control-handled individual fed with a control diet; O-P: representative sample of Vg 

control staining (incubated with Alexa 488, but without Vg 1° antibody). 

 

As expected, fat body from control-handled and sham-injected bees showed 

positive Vg signal while that from Vg-knockdown bees showed little to no signal (Fig. 

2.3). Honey bee fat body contains two cell types, trophocytes and oenocytes, with the 

former the site of Vg synthesis and the latter performing lipid metabolism functions (see 

section 4)). Trophocytes can be identified by their large irregularly-shaped nuclei, while 

oenocytes have smooth round nuclei. Positive signal for Vg was restricted to trophocytes 

and absent in oenocytes. Bees from all treatment groups that were fed E. coli particles 

showed positive fluorescent E. coli signal in their fat body. The particles appeared in both 

the trophocytes and oenocytes, located on the cell membrane or in the cytoplasm (Fig. 

2.3). We observed small granular structures in the oenocyte cytoplasm that faintly 

autofluoresce in the same Texas Red channel as the E. coli , but these spots were 

substantially dimmer that the positive E. coli signal. These granules are likely fat droplets 

that are known to autofluoresce (Fletcher et al. 1973; Clokey and Jacobson 1986; Le et al. 

2010) (see section 4).  
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Fig. 2.3: Fat body cells of E. coli-fed and control-fed workers. Each sample shows a 

collection of the two cell-types found in the honey bee fat body, the trophocytes (with 

large, irregularly shaped nuclei) and the oenocytes (with rounded, smooth nuclei). Cell 

nuclei are stained blue with DAPI, E. coli particles are stained red with Texas Red, and 

Vitellogenin protein is stained green with Alexa 488. White scalebars are 50 µm in 

length. Yellow arrows indicate examples of positive E. coli signal. A-D: representative 
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samples of control-handled bees fed with E. coli; E-H:  representative samples of sham-

injected individuals fed with E. coli; I-L: representative samples of Vg-knockdown 

individuals fed with E. coli; M-N: representative sample of a control-handled individual 

fed with a control diet; O-P: representative sample of Vg control staining (incubated with 

Alexa 488, but without Vg 1° antibody). 

 

Bees from all treatments showed positive signal for Vg in their hypopharyngeal 

glands, even Vg-knockdown bees. E. coli particles, however, were observed in the glands 

of control-handled and sham-injected bees, but not in the glands of Vg-knockdown bees 

(Fig. 2.4). The E. coli signal was mostly confined to the surface of the glands but was 

also observed in the collecting duct leading away from the glands (Fig. 2.4C-D). In 

several instances, E. coli and Vg appear to co-localize in the glands, which resolve as 

yellow pixels in the micrographs (e.g., Fig. 2.4 B, D, & F).   
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Fig. 2.4: The hypopharyngeal glands of E. coli-fed and control-fed workers. Within each 

acinus, cell nuclei are stained blue with DAPI, E. coli particles are stained red using 

Texas Red, and Vitellogenin protein is stained green with Alexa 488. White scalebars are 

50µm in length. Individuals from the control handling and sham-injection treatments 

showed positive signal for E. coli in their glands (A-H) but individuals that received an 

injection of Vg dsRNA lacked E. coli signal in their glands (I-L). A-D: representative 
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samples of control-handled bees fed with E. coli; E-H:  representative samples of sham-

injected individuals fed with E. coli; I-L: representative samples of Vg-knockdown 

individuals fed with E. coli; M-N: representative sample of a control-handled individual 

fed with a control diet; O-P: representative sample of Vg control staining (incubated with 

Alexa 488, but without Vg 1° antibody). 

 

DISCUSSION 

This experiment has demonstrated two aspects of honey bee worker physiology 

not previously known. First, ingested bacterial fragments are transported to workers’ 

hypopharyngeal glands, and second, this phenomenon is absent or greatly diminished 

when vg expression is down-regulated with RNAi (Fig. 2.4). Hypopharyngeal glands are 

an intriguing destination for bacterial fragments because of the important social function 

the glands play in food production by workers (Snodgrass 1956; Patel et al. 1960; 

Amdam, Norberg, et al. 2003). The hypopharyngeal glands absorb Vg in the 

haemolymph and appear to metabolize the protein into amino acids that are used during 

the synthesis of royal jelly (Amdam, Norberg, et al. 2003; Seehuus et al. 2007). Workers 

feed this protein-rich jelly to the queen and young larvae (Snodgrass 1956). In this way, 

the hypopharyngeal glands use Vg much the same way that some other insects use Vg to 

produce trophic eggs (Amdam, Norberg, et al. 2003), which are non-viable eggs laid by 

females to nourish young offspring or to boost overall reproductive output (Engels et al. 

1990; Brian 2012). Converting Vg into royal jelly instead of trophic eggs is a novel 

adaptation of honey bees and may have allowed for more efficient brood rearing 

(Amdam, Norberg, et al. 2003). Our current work further suggests that this route of social 
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nutrient transfer incorporating immune elicitors could facilitate more efficient protection 

of honey bee brood via mechanisms of trans-generational immune priming. 

The bacterial fragments that we observe at the glands of control-handled and 

sham-injected workers may be part of a trans-generational immune priming pathway 

whereby nestmates share immunological signals via food secretions. This could occur in 

a couple of ways. Firstly, bacterial fragments may be transported with Vg across the 

gland membrane and incorporated into royal jelly and then orally transferred directly to 

larvae or to the queen. As we suggested previously (Salmela et al. 2015), one potential 

source of pathogen exposure for queens is through ingesting contaminated food. It is well 

documented that female insects that ingest bacteria transport the pathogens from their 

midgut to their ovaries for trans-generational immune priming (Freitak et al. 2009; Knorr 

et al. 2015). The same pathway would operate for honey bee queens, except their food 

(with bacterial fragments) would come from worker-produced royal jelly. Alternatively, 

the bacterial fragments may remain along the gland membrane and initiate a molecular 

signal cascade that produces an immune response, perhaps influencing specific products 

secreted in the royal jelly. Royal jelly contains several components with immunological 

functions, including defensin1 and major royal jelly protein 3 (Blum et al. 1959; Fujiwara 

et al. 1990a; Okamoto et al. 2003; Fontana, Mendes, et al. 2004; Vucevic et al. 2007; 

Romanelli Alessandra et al. 2011; Klaudiny et al. 2012; Sugiyama et al. 2012; Bucekova 

et al. 2017). Possibly, the presence of bound bacterial fragments on the gland surface can 

induce more of such immunomodulators to be incorporated into the jelly. New 

experiments are required to determine whether bacterial fragments that bind to honey bee 
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hypopharyngeal glands are incorporated into jelly and/or induce changes to jelly 

composition.  

The second key finding of this study is that E. coli is present at the glands of 

control-handled and sham-injected bees, but not detected at glands of Vg-knockdown 

bees. This finding suggests that Vg may be an E. coli transporter in this pathway. That 

Vg binds to E. coli is well established (Shi et al. 2006; Li et al. 2008; Tong et al. 2010; 

Salmela et al. 2015), and we have shown previously that Vg is necessary and sufficient to 

transport E. coli into the ovaries (Salmela et al. 2015). Vg binds to a substantial array of 

different ligands, including both gram-negative and gram-positive bacteria (Shi et al. 

2006; Li et al. 2009; Tong et al. 2010; Zhang et al. 2011; Salmela et al. 2015), fungal 

cells (Li et al. 2008), viruses (Huo et al. 2014; Whitfield et al. 2015), damaged and 

apoptotic host cells (Havukainen et al. 2013), reactive oxygen species (Nakamura et al. 

1999; Seehuus et al. 2006; Havukainen et al. 2013), and zinc (Amdam, Simões, et al. 

2004). Moreover, these binding abilities are conserved in Vitellogenins across disparate 

taxa, including insects (for review, see (Salmela and Sundström 2017)), fish (for review, 

see (Sun and Zhang 2015a), (Zhang et al. 2015)), and corals (Du et al. 2017), suggesting 

that a variety of binding abilities evolved early in Vg’s evolutionary history. Strong 

binding ability stems from Vg’s molecular structure, and includes a positively charged 

region in the protein’s α-helical domain (Havukainen et al. 2013). In nurse-age bees like 

those used in this experiment, Vg makes up 30-50% of all haemolymph proteins (Engels 

and Fahrenhorst 1974; Fluri et al. 1982), which would provide ample binding-opportunity 

for E. coli that is digested and enters the haemolymph. 
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That E. coli is not detected at the glands of Vg-knockdown bees is likely due, at 

least partly, to a reduction in Vg molecules in the haemolymph available to bind E. coli. 

However, this is likely an incomplete explanation, as Vg titers are reduced but not 

eliminated by RNAi: In a previous study by our group using the same Vg-knockdown 

and control protocols, 10-day old Vg-knockdowns had an 80% reduction in median Vg 

titers compared with nurse controls (1.89 µg/µL and 9.24 µg/µL, respectively) (Nelson et 

al. 2007). An additional contributing factor to E. coli absence at the glands of Vg-

knockdowns is likely Vg’s lower binding affinity to E. coli than other ligands. As we 

showed previously, honey bee Vg has a lower binding affinity to E. coli than to the honey 

bee pathogen Paenibaccilus larvae, a gram-positive bacteria responsible for American 

foulbrood disease (Salmela et al. 2015). Vg also has lower binding affinity to 

lipopolysaccharide than to peptidoglycan (Salmela et al. 2015). Lipopolysaccharide 

comprises the outer membrane of gram-negative bacteria like E. coli (Beveridge 1999) 

and is absent in gram-positive bacteria, while peptidoglycan is present in both bacterial 

types but is substantially more abundant in gram-positive bacteria (Salton and Kim 

1996). Vg may have higher binding affinity to peptidoglycan because it is common to 

both bacterial types and thus represents a more general bacteria marker. Alternatively, 

this higher binding affinity to peptidoglycan may result from selective pressures on Vg to 

combat specific gram-positive bacterial diseases such as American foulbrood and 

European foulbrood (Melissococcus plutonius). These diseases are not only deadly 

(Morse and Flottum 1997), but they are also the only widespread bacterial pathogens that 

target developing honey bee larvae (Evans and Schwarz 2011). In contrast, E. coli is not a 

honey bee pathogen. It was used as a model in this study because it is can be reliably 
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labeled. Thus, it is not expected that selection has acted on Vg to confer effective binding 

to this bacterium. Vg’s lower binding affinity for E. coli coupled with reduced Vg 

abundance in the haemolymph after vg RNAi may explain why E. coli is not detected in 

the glands of Vg knockdowns. For control-handled and sham-injected bees, Vg is 

available in abundance, allowing it to still effectively transport the labeled bacterial 

particles to the glands.  

Alternatively, E. coli’s lack of detection at glands of Vg-knockdown workers may 

reflect changes in worker physiology. Typically, Vg-knockdown results in workers 

prematurely transitioning from nurses to foragers (Nelson et al. 2007; Antonio et al. 

2008). Foragers no longer need to produce royal jelly to feed larvae, so their 

hypopharyngeal glands begin to atrophy (Milojevic 1940; Huang and Robinson 1996; 

Amdam, Aase, et al. 2005). This process may result in fewer Vg receptors, or receptors 

capable of binding bacterial fragments, being present along the gland membrane. This 

altered membrane interface, with fewer transport- or binding-opportunities for E. coli, 

could explain why we do not see E. coli particles at the glands of Vg knockdowns. This 

alternative interpretation implies that there can still be sufficient Vg to transport labeled 

bacterial fragments to the glands of Vg knockdowns. Future molecular studies of the 

hypopharygeal glands are required to test this possibility. 

Another alternative explanation is that E. coli’s presence or absence at the glands 

is not due to Vg-knockdown, per se, but instead due to off-target effects of injecting 

dsRNA. These off-target effects might arise from using insufficiently specific vg dsRNA 

that knocks down other genes with sequence homology to vg, or from an immunological 

response to dsRNA that alters expression of other genes which may facilitate E. coli 
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transport. However, these alternative explanations seem unlikely based on the data 

presented here. First, the vg dsRNA appears to be highly specific, as the homologous 

control gene vg-like-C showed no difference in expression among all treatment groups. 

This further reduces the likelihood that genes analogous to vg would be subject to off-

target RNAi effects. Second, there was no difference in expression of apoLp-III between 

bees that received a sham injection (nuclease-free water) and those that received a vg 

dsRNA injection, suggesting that exposure to dsRNA per se does not alter expression of 

this functional control gene. ApoLp-III circulates in the haemolymph and can bind to the 

PAMPs of E. coli cell walls (Weers and Ryan 2006), and so could theoretically transport 

E. coli to the hypopharyngeal glands. However, E. coli is only visible at the glands of 

sham-injected individuals and not vg dsRNA-injected individuals, despite these treatment 

groups expressing similar levels of apoLp-III. Therefore, it is unlikely that apoLp-III is 

involved in E. coli transport to the glands. Finally, Vg and E. coli appear to co-localize in 

some instances at the glands, where the red pixels of E. coli and the green pixels of Vg 

overlap to resolve into yellow pixels (Fig. 2.4 B, D, & F). This may indicate the Vg-

bacteria complex interacting with Vg receptors on the gland surface, and lends further 

support to the argument that Vg plays a central role in bacteria transport to the glands.  

In addition to the main findings, this study also made several intriguing 

observations that warrant further research. While we were not able to determine the role 

of Vg in transporting labeled E. coli particles from gut lumen to hemocoel, Vg was 

observed in the epithelial cells lining the midgut interior of all the treatments (Fig. 2.2). 

These are the most predominant cells in the insect midgut and are responsible for 

digestion and absorption (Dow 1987; Buchon et al. 2013). They extend from the basal 



  40 

lamina in towards the lumen and secrete digestive enzymes and the peritrophic 

membrane, a chitinous material that protects the cells from abrasion and damage from 

ingested food (Brandt et al. 1978; Lehane 1997; Hegedus et al. 2009; Lehane and 

Billingsley 2012). They also produce and secrete antimicrobial peptides (AMPs) and 

reactive oxygen species (ROS) (Ha et al. 2005; Buchon et al. 2009, 2013; Kumar et al. 

2010) into the lumen in response to ingested pathogens. However, an excessive immune 

response damages the epithelial cells, which are quickly replaced by midgut stem cells 

that proliferate and differentiate (Micchelli and Perrimon 2006; Ward et al. 2008; Buchon 

et al. 2013). Given what we know about Vg’s properties, there may be several functions it 

performs in this organ. For example, Vg may intercept and destroy pathogen cells in the 

midgut, owing to its ability to bind to many pathogens (Li et al. 2008, 2009; Liu et al. 

2009; Salmela et al. 2015) and its bactericidal properties (Li et al. 2009; Tong et al. 2010; 

Zhang et al. 2011). It may also act as an opsonin when bound to pathogens and recruit 

other immunological factors to destroy the pathogen (Li et al. 2008, 2009; Liu et al. 2009; 

Zhang et al. 2011). Additionally, Vg is an antioxidant, and it has ability to recognize and 

bind to damaged host cells and protect them from further ROS damage (Havukainen et al. 

2013). In this capacity, Vg may serve to protect epithelial cells from the host’s own 

immunological arsenal and prolong their life until they can be replaced by the 

differentiating stem cells. Midgut cells express vg (Harwood & Amdam, unpublished) 

and more Vg is likely absorbed from the haemolymph, as the midgut expresses low levels 

of the Vg receptor (Guidugli-Lazzarini et al. 2008).  

In the fat body, bees from all bacteria feeding treatments showed positive E. coli 

signal. Again, we were unable to link presence or absence of immune elicitors to Vg, as 



  41 

we did not account for Vg circulating in the haemolymph, and high levels of Vg in fat 

body may be insensitive to RNAi treatments in some individuals. The fat body regulates 

the metabolic and immunological status of the organism by monitoring the haemolymph 

(Chapman 1998; Oliveira and Cruz-Landim 2006; Arrese and Soulages 2010). It lines the 

abdominal cuticle surrounding the digestive tract and is well-positioned to detect digested 

pathogens that enter the haemolymph. It stores and releases lipids, proteins, and 

carbohydrates (Chapman 1998, reviewed in de Oliveira and Cruz-Landim 2006), and 

plays a key role in immunity by producing many AMPs (Bulet and Stöcklin 2005; Stokes 

et al. 2015). Our data show E. coli particles to be associated with both of the two honey 

bee fat body cell types: trophocytes and oenocytes. Trophocytes possess large irregularly 

shaped nuclei and regulate metabolism (Chapman 1998), and are also the primary site of 

Vg synthesis (Pan et al. 1969; Isaac and Bownes 1982; Raikhel and Lea 1983; Bownes 

1986). Oenocytes possess rounded nuclei and contain highly developed smooth 

endoplasmic reticulum in their cytoplasm (Martins et al. 2011; Martins and Romalho-

Ortigao 2012). They perform functions in lipid metabolism (Gutierrez et al. 2007), and as 

such, contain lipid droplets (Gutierrez et al. 2007; Kühnlein 2011; Brasaemle and Wolins 

2012; Makki et al. 2014). They are also involved in cuticle formation (Wigglesworth 

1988), hormone production (Wicker-Thomas et al. 2009), and detoxification of 

xenobiotics (Lycett et al. 2006; Martins et al. 2011). In this latter function, they express 

many key immune genes, including cytochrome p450, dehydrogenase, catalase and 

lysosome P (Martins et al. 2011). Our results do not explain the role of effects of E. coli 

binding to the fat body cells in honey bees, but it may be interacting with pattern 
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recognition receptors as part of the innate immune response to trigger the production of 

AMPs and other defenses. 

We also found Vg inside the hypopharyngeal glands, consistent with previous 

findings (Seehuus et al. 2007). A novel finding here is that Vg remains in the 

hypopharyngeal glands even after Vg knockdown (Fig. 2.4), and the same pattern is 

observed in the midgut (Fig. 2.2). The reason for this pattern remains unclear. The Vg 

receptors in both the hypopharyngeal glands and midgut may be very efficient at 

extracting Vg from the haemolymph, even after RNAi knocks down the Vg titer to a low 

level. Alternatively, Vg may only be slowly metabolized in the hypopharyngeal glands of 

Vg-knockdown workers, which are known to transition from nursing to foraging 

activities (Nelson et al. 2007; Antonio et al. 2008). Foragers do not synthesize royal jelly, 

and an associated reduction in the consumption of Vg could lead to a reduced turnover 

and prolonged presence of Vg in the glands. 

 Overall, this study demonstrates that ingested bacterial fragments are transported 

to the hypopharyngeal glands of worker honey bees, and that Vg likely plays a role in this 

transport.  We cannot conclude whether bacterial fragments are secreted directly into 

jelly or whether they only bind to the gland surface to elicit an immune-related response 

by the glands. But either mechanism could result in trans-generational immune priming 

aimed at protecting the brood. This protection could occur by workers feeding bioactive 

components (bacteria fragments or immune-related molecules) to the queen, or 

potentially also via direct feeding of the brood, which receive jelly during the first days of 

larval life (Haydak 1970). Both mechanisms can be interpreted as an adaptation for a 

social insect colony to respond to pathogen threats in real-time.  
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CHAPTER 3 

ROYAL JELLY AS A VEHICLE IN TRANSFERING BACTERIAL FRAGMENTS 

BETWEEN NESTMATES 

Gyan Harwood, Heli Salmela, Dalial Freitak, Gro Amdam 

 

ABSTRACT 

Social immunity is a suite of behavioral and physiological traits that allow colony 

members to protect one another from pathogens and includes the oral transfer of 

immunological compounds between nestmates. In honey bees, royal jelly is a glandular 

secretion produced by a subset of workers that is fed to the queen and young larvae, and 

which contains many antimicrobial compounds. A related form of social immunity, 

transgenerational immune priming (TGIP), allows queens to transfer pathogen fragments 

into their developing eggs where they are recognized by the embryo’s immune system 

and induce higher pathogen-resistance in the new offspring. These pathogen fragments 

are transported by vitellogenin (Vg), an egg-yolk precursor protein that is also used by 

nurses to synthesize royal jelly. Therefore, royal jelly may serve as a vehicle to transport 

pathogen fragments between nestmates. To investigate this, we recently showed that 

ingested bacteria are transported to nurses’ jelly-producing glands, and here, we show 

that pathogen fragments are incorporated into the royal jelly. Moreover, we show that 

consuming pathogen cells induces higher levels an antimicrobial peptide found in royal 

jelly, defensin-1.  
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INTRODUCTION 

Royal jelly has long fascinated biologists because of the key role it plays in caste 

development in honey bees. This glandular secretion is produced by a subset of the 

worker caste known as nurses and fed to the queen throughout the duration of her 

development and adult life, while worker-destined larvae are fed royal jelly for the first 3 

days of their lives before being switched to a more pollen-based diet (Townsend and 

Lucas 1940; Johansson 1955; Haydak 1970). As analytical chemistry methods advanced, 

scientists began to study the nutritional components of royal jelly and found it contained 

many pathogen-killing compounds that protect the queen and young larvae from disease  

(Blum et al. 1959; Fujiwara et al. 1990a; Okamoto et al. 2003; Fontana, Mendes, et al. 

2004; Vucevic et al. 2007; Romanelli Alessandra et al. 2011; Sugiyama et al. 2012). The 

transfer of anti-pathogenic compounds between nestmates is a form of social immunity, a 

suite of behavioral and physiological traits that help colony members protect one another 

from pathogens (Cremer et al. 2007). A related form of social immunity, 

transgenerational immune priming (TGIP), has also garnered much attention over the past 

decade (Sadd et al. 2005; Moret 2006; Freitak et al. 2009, 2014; Zanchi et al. 2011; 

López et al. 2014b; Knorr et al. 2015; Salmela et al. 2015). Here, female insects that 

survive a pathogen attack can transfer pathogen fragments to their eggs and produce 

offspring that are more disease-resistant. These pathogen fragments contain pathogen-

associated molecular patterns (PAMPs), structural components found in the cell walls of 

non-animal cells, which trigger an immune response in the developing offspring. While 

TGIP has been  demonstrated in honey bees, the studies relied on injecting queens with 

an inoculum and this presented a problem: how would a queen be inoculated with 
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pathogens under natural conditions given that she feeds exclusively on royal jelly and has 

no opportunity to consume potentially-contaminated nectar and pollen collected by her 

foragers? A major discovery by our group hinted at a new possible pathway. Queens 

transfer pathogen fragments into their eggs using vitellogenin (Vg)(Salmela et al. 2015), 

an egg-yolk precursor protein that is also used by nurses to synthesize royal jelly 

(Amdam, Norberg, et al. 2003). Thus, honey bees may use royal jelly as a vehicle for 

transferring pathogen fragments between nurses and queens and larvae as part of a 

colony-level immune pathway. In our first step to elucidating this pathway, we showed 

that nurses that ingested bacteria were able to transfer it from their midgut to their jelly-

producing glands, and that knocking down vg expression impeded this process (Harwood 

et al. 2019). Now, we seek to determine whether nurses that ingest bacterial pathogens 

can incorporate them into their royal jelly, and whether ingesting pathogens also 

increases the concentration of other antimicrobial components in the royal jelly.  

Understanding immune pathways in honey bees is not only important for the field 

of organismal biology, but also for human food security. Honey bees are the premier 

insect pollinator in agriculture, adding at least $15 billion annually to the value of crops 

in the United States alone (USDA press release).  However, high annual colony losses 

continue to plague American beekeepers (USDA honey bee health report 2019), owing to 

multiple stressors like pesticide exposure and poor nutrition. But bee pests and pathogens 

are also a major contributor and are often detected in colonies that have perished (USDA 

honey bee health report 2019). These pathogens include a multitude of bacteria, fungus, 

and viruses, many of which have no pharmacological treatments. Understanding how 
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social immunity mediates pathogen infections could allow for more comprehensive 

treatment regimes and help reduce the disease burden that contributes to colony losses.  

It is important to understand how mechanisms of social immunity complement the 

immunological defenses present in individual bees. Honey bees have several layers of 

defense, starting with structural barriers like a water-tight cuticle that block pathogen 

entry (Moret and Moreau 2012). Pathogens that are ingested will end up in the midgut, 

the organ responsible for digestions and absorption, and here they face another physical 

barrier called the peritrophic matrix (Brandt et al. 1978; Lehane 1997; Hegedus et al. 

2009). This is a chitinous substance secreted from the midgut epithelial cells that acts as a 

sieve to block out large particles like pathogen cells from being absorbed. If pathogens 

breach these physical barriers, they are detected by pathogen pattern recognition 

receptors that activate several cellular and humoral immune responses. Cellular defenses 

can include phagocytosis by hemocytes (Lavine and Strand 2002; Evans and Spivak 

2010; Marringa et al. 2014), while humoral responses can include the production of 

melanin to encapsulate foreign particles (González‐Santoyo and Córdoba‐Aguilar 2012) 

and the production of antimicrobial peptides that directly kill pathogens (Bulet et al. 

1999; Bulet and Stöcklin 2005; Evans et al. 2006). The melanization response is induced 

when bee venom serine protease (Bi-VSP) activates the phenoloxidase cascade that leads 

to the production of melanin (Choo et al. 2010). Antimicrobial peptides, such as lysozyme 

and defensin-1, are induced following activation of the Toll or Immune Deficiency (IMD) 

pathways (De Gregorio et al. 2002).   
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Despite a robust anti-pathogen arsenal, honey bees actually possess fewer 

immune related genes than solitary bee species (Evans et al. 2006), thanks largely to the 

evolution of social immunity. Royal jelly contains many of these enzymes and peptides 

just discussed, including Bi-VSP, lysozyme, and defensin-1, as well as glucose oxidase, 

which produces hydrogen peroxide that also kills pathogens (Fujiwara et al. 1990b; 

Fontana, Mendes, et al. 2004; Furusawa et al. 2008; Han et al. 2011b; Romanelli 

Alessandra et al. 2011; Fujita et al. 2012). This sterilized food is particularly important 

for the most vulnerable colony members, the young larvae, whose immune defenses are 

still developing. For example, young larvae have lower levels of pro-phenoloxidase 

(Chan and Foster 2008; Chan et al. 2009) (important in the melanization cascade) and 

antimicrobial peptides (Chan and Foster 2008), and their still-maturing midgut and 

peritrophic matrix leaves their midgut epithelium vulnerable to breach (Yue et al. 2008; 

Garcia‐Gonzalez and Genersch 2013; Riessberger-Gallé et al. 2016). As a result, larvae 

are vulnerable to some diseases that are fairly innocuous for adults. This includes 

American foulbrood, caused by the spore-forming Gram-positive bacteria Paenibacillus 

larvae (Hansen and Brødsgaard 1999; Genersch 2010). American foulbrood infection is 

not only lethal for colonies, but costly for beekeepers because spores are resilient and 

remain viable for years, meaning beekeepers are forced to destroy infected hives. Thus, 

larvae stand to benefit from food supplemented with compounds that kill pathogens, or 

with pathogen particles that can elicit immune priming.  

In this study, our aim was twofold. First, we sought to determine whether nurses 

that consume American foulbrood vegetative cells could incorporate pathogen fragments 

into their royal jelly, and second, to determine if this induces higher levels of immune 
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proteins found in royal jelly. To this end, we fed nurses with fluorescently-labelled and 

heat-killed P. larvae cells and examining the royal jelly they produced thereafter. We 

used fluorescent microscopy to confirm the presence of bacteria cell fragments in the 

royal jelly, and mass spectrometry to compare the proteomic profile of royal jelly from 

challenged and control colonies. In particular, we tested the hypothesis that royal jelly 

from challenged colonies would be higher in the immune proteins  glucose oxidase, bi-

SVP, lysozyme, and defensin-1.    

 

METHODS 

Culturing pathogenic bacteria  

 Vegetative cells of P. larvae were obtained from the Göteburg University culture 

collection and cultured under normal bacteria growing conditions. Briefly, cells were 

suspended in MYPG broth and kept at 37°C overnight in a shaking incubator, before 

being plated on MYPG agar and left to incubate for 1 week at 37°C. When enough 

bacteria were grown, vegetative cells were harvested and suspended in 1X phosphate 

buffered saline (PBS), before being heat-killed in an autoclave. The resulting non-viable 

bacteria cells were then conjugated to a fluorescent dye using pHrodo™ Red 

Phagocytosis Particle Labeling Kit (Invitrogen #a10026) following the manufacturer’s 

instructions. Once dyed, P. larvae cells were suspended in 1X PBS  to a concentration of 

10 mg/mL and stored at 4°C until ready for use.  
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Bees and feeding experiment 

 Naturally-mated European honey bees were maintained in standard Langstroth 

hive boxes at the University of Helsinki on the Vikki campus in Finland. These standard 

Langstroth hives served as donors for smaller queenless colonies housed in mini mating 

nuc hives. To establish these smaller queenless colonies, a section of brood comb 

containing 1-day-old larvae and measuring 12 cm x 12 cm was excised from the donor 

hive and transferred into a mini mating nuc box. Roughly 100-200 nurses were also 

transferred from the same donor hive and placed in the mini mating nuc. Nurses were 

identified as those individuals that were seen entering brood cells and feeding larvae in 

the donor hive. In total, N = 6 small queenless colonies were established, each from a 

separate donor hive. The colonies were made queenless so as to stimulate nurses to 

produce more royal jelly in an effort to make a new queen (Sahinler and Kaftanoglu 

1997). The nurses and young larvae were sealed in the mini mating nuc boxes for 3 days 

and provided with a 30% sucrose solution in a syringe-feeder suspended from the ceiling. 

N = 3 colonies received a control diet, while N = 3 had fluorescently-labeled P. larvae 

added to their sucrose to a final pathogen concentration of  0.6 mg/mL. Control and 

pathogen-laced diets were replenished with fresh food daily. After 3 days, newly 

deposited royal jelly was harvested from the brood combs of each colony, and divided 

into 1 of 2 workflows. 

 

Fluorescent microscopy 

Royal jelly from each comb was transferred into 200 µl reaction tubes. To 

estimate the volume of jelly obtained from each hive, we pre-filled 30 reaction tubes with 
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increasing volumes of water ranging from 1 to 30 µl and had two observers 

independently and blindly assess which water volume matched the royal jelly volume. In 

all 6 cases, each royal jelly sample received the same volume estimate from both 

observers. Next, each royal jelly sample was diluted with 1X PBS to a final concentration 

of 10% by volume and vortexed. Samples were then applied to a hemocytometer and 

examined under a Leica DM6000 fluorescent microscope. On the hemocytometer, the 

field of view is evenly divided into 9 sections, and we made observations on 5 sections in 

total: the 4 corner sections, and the center section. This allowed us to calculate the 

concentration of fluorescent particles per µl of royal jelly. We used the following 

formula, 𝐶 =  (𝑃 ÷  [𝑆 × 𝑉 ])  × 𝐷, where C is the concentration of fluorescent particles 

per µl of royal jelly, P is the total number of positive fluorescent particles observed in 

each sample, S is the total number of squares observed on the hemocytometer (N=5), V is 

the volume of each square observed on the hemocytometer (0.1 µl), and D is the dilution 

factor of the royal jelly (10x dilution). All samples were observed under identical 

microscope settings.  

The camera was set at 16 bit resolution (Waters 2009), which yields a brightness 

intensity value ranging from 0 – 65535. To identify positive fluorescent signals in our 

pathogen-diet samples, we first needed to establish a baseline level of background noise, 

above which we could determine whether a signal was real fluorescence or merely an 

artefact. To do this, we examined the intensity values from each image of our control-diet 

samples, and in each we subtracted the minimum intensity value from the maximum 

intensity value to obtain a range of background noise (Waters 2009). We then compared 

all of our control-diet sample images to obtain a mean and standard deviation of the range 
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of background noise. Thereafter, we deemed any signal we observed in our pathogen-diet 

samples as being a positive fluorescent signal above background noise if it was at least 3 

standard deviations (p≤0.01) above the mean background intensity range. The mean 

background intensity range was 329 ± 264 (mean ± s.d.), giving us a positive fluorescent 

intensity threshold of 1121.  

 

Sample preparation for proteomics analysis 

 The royal jelly samples were diluted by addition of 150 µl 8 M urea and 

sonicated in a water bath. The protein concentration was adjusted to 2.1 mg/ml using the 

Bradford assay with final volume of 100 µl. Cystein bonds were reduced with 45mM 

dithiothreitol (#D0632 Sigma-Aldrich, USA) for 20 min at 37°C and alkylated with 0.1M 

iodoacetamide (#57670 Fluka, Sigma-Aldrich, USA) at room temperature. Samples were 

digested by adding 0.75 µg trypsin (Sequencing Grade Modified Trypsin, V5111, 

Promega) for overnight at 37°C. After digestion peptides were purified with C18 

microspin columns (Harvard Apparatus) according to the manufacture’s protocol. The 

dried peptides were reconstituted in 30 µl 0.1% trifluoroacetic acid (TFA) in 1% 

acetonitrile (ACN), buffer A. 

 

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) 

 The analysis was carried out on an EASY-nLC1000 (Thermo Fisher Scientific, 

Germany) connected to a Velos Pro-Orbitrap Elite hybrid mass spectrometer (Thermo 

Fisher Scientific, Germany) with nano electrospray ion source (Thermo Fisher Scientific, 

Germany). The LC-MS/MS samples were separated using a two-column setup consisting 
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of a 2 cm C18-Pepmap trap column (Thermo Fisher Scientific, Germany), followed by 15 

cm C18-Pepmap analytical column (Thermo Fisher Scientific, Germany). The linear 

separation gradient consisted of 5% buffer B (0.1% TFA acid in 98% acetonitrile) in 5 

min, 35% buffer B in 60 min, 80% buffer B in 5 min and 100% buffer B in 10 min at a 

flow rate of 0.3 µl/min. 6 ul of sample was injected per LC-MS/MS run and analyzed. 

Full MS scan was acquired with a resolution of 60 000 at normal mass range in the 

orbitrap analyzer and followed with CID –MS2 top 20 most intense precursor ions with 

in ion trap (energy 35). Data was acquired using LTQ Tune software.  

 

Protein identification 

 In a shotgun proteomics approach, proteins are enzymatically digested into 

smaller peptides, and these peptides are then matched to proteins in an annotated genome. 

Some of these peptide sequences may be shared by several proteins, while some are 

unique to just a single protein in the proteome. Our analysis yielded a total of 496 protein 

hits containing at least 1 peptide spectrum match (PSM) and 1 unique peptide. To further 

rule out false positives we only considered proteins with at least 2 unique peptides as 

being reliable protein hits, as has been done in other royal jelly proteomics studies 

(Zhang et al. 2014; Hu, Bezabih, et al. 2019), and in part because experimental variation 

in sample preparation steps affects most greatly the least abundant proteins in mass-

spectrometric samples (Zhang et al. 2010). Proteins were annotated to the Amel_4.5 

honey bee genome, and we used Uniprot and Genbank to confirm their identities and 

functions. We then compared the abundance of 4 immune-related proteins in control-diet 
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and pathogen-diet royal jelly: Glucose oxidase, venom serine protease (Bi-VSP), 

lysozyme, and defensin-1.  

Statistical analysis 

To evaluate the abundance of immune-related proteins between control-diet and 

pathogen-diet royal jelly, we compared the peptide spectrum match values (PSM) of our 

chosen proteins. We used non-parametric Wilcoxon Rank Sum tests to address our 

limited sample size (N=3 per treatment). We used one-tailed comparisons as our planned 

hypotheses predicted that these select immune proteins would be upregulated in royal 

jelly from pathogen-fed colonies. Fold-changes in protein abundance were calculated as 

(PSM [pathogen] – PSM [control]) / PSM [control]. All analyses were performed in R 

(version 3.5.2). 

 

RESULTS 

Pathogen fragments in royal jelly 

 We found that royal jelly samples from all pathogen-diet colonies contained 

particles that fluoresced at significantly higher intensity than our established background 

fluorescent threshold, suggesting that the bacterial fragments were incorporated into the 

royal jelly. No control-diet royal jelly samples contained particles that surpassed this 

threshold (Fig. 3.1). On average, pathogen-diet colonies had 88.3 ± 23.6 (mean ± s.d.) 

fluorescent particles per µl of royal jelly (N=3) while control fed colonies had 0 

fluorescent particles per µl of royal jelly (N=3) (Fig. 3.1). 
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Fig. 3.1: Fluorescent and brightfield micrographs of royal jelly samples from control-diet 

(a) and pathogen-diet (b) treatments observed on a hemocytometer. All samples were 

prepared together using identical protocols and observed under identical microscope 

settings using a Leica DM6000. Dark images in the left-hand columns are taken with a 

TRITC laser to identify fluorescence in the Texas Red wavelength, while images on the 

right-hand columns are brightfield images of the same area to show the deposition of 

royal jelly on the hemocytometer. Positive fluorescent spots (white arrows) were only 

observed in the pathogen-diet samples (b) and not in the control-diet samples (a).  
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Proteomics 

  We found a total of 496 protein hits, and of these, 44 had at least 2 unique 

peptides assigned to them (Table 3.1). The most abundant proteins in all samples were 

major royal jelly proteins, as was expected. In general, the proteins we observe in our 

samples are quite consistent with other recent proteomics studies on royal jelly (Furusawa 

et al. 2008; Han et al. 2011b; Fujita et al. 2012, 2013; Zhang et al. 2014; Hu, Bezabih, et 

al. 2019), but there are a few proteins identified in this study that have not been reported 

elsewhere. These include: Transferrin, an iron transport molecule (Kucharski and 

Maleszka 2003) that is also found in honey bee venom gland tissue (Peiren et al. 2008); 

Serpin-5, a serine protease inhibitor known to regulate proPO activation in other insects 

(Li, Ma, et al. 2016); Artichoke, a chemosensory protein with functions in larval 

locomotion in Drosophila melanogaster (Andrés et al. 2014); and NPC2-like, a 

cholesterol transporter with implied alloparental functions in honey bees (Thompson et 

al. 2006). We also found 3 additional proteins in our pathogen-diet royal jelly samples: 

Glutathione peroxidase, Peptidyl-prolyl cis-trans isomerase, and an uncharacterized 

protein (LOC725202). These proteins were also found in our control-diet samples, but 

they failed to meet our criteria of having 2 unique peptides (Table 3.1).  
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Table 3.1: List of proteins found in royal jelly of control-diet and pathogen-diet samples. 

Columns for control-diet and pathogen-diet peptide spectrum match values (PSM) 

display the mean across3 samples, ± 1 standard deviation. Fold change is the relative 

change in pathogen-diet PSM compared to control-diet PSM ([pathogen – control] / 

control). Columns for the number of unique peptides show the mean across 3 samples.  

 

Accession 

Control-

Diet 

PSM 

Pathogen-

Diet PSM 

Fold 

Change 

Control-

Diet 

Unique 

Peptides 

Pathogen-

Diet 

Unique 

Peptides 

Protein Name 

GB55205 
1115.3   

[±227.1] 

905.7   

[±99.4] 
-0.19 39 34.33 Major Royal Jelly Protein 1 

GB55204 
526.7   

[±147.3] 

441.7   

[±40.3] 
-0.16 23.33 20.33 Major Royal Jelly Protein 3 

GB55212 
304.3   

[±77.5] 

257.7   

[±43.4] 
-0.15 32.67 30 

Major Royal Jelly Protein 2 

precursor 

GB55206 
170.7   

[±62.9] 

238.3   

[±37.5] 
0.4 27 26.67 Major Royal Jelly Protein 4 

GB45796 
293.3   

[±124.1] 

213.0   

[±14.2] 
-0.27 2.67 2.33 

Uncharacterized protein 

(LOC727045) 

GB44549 
169.7   

[±11.3] 

158.7     

[±9.0] 
-0.06 30 29 Glucose oxidase 

GB55208 
160.0   

[±25.2] 

134.0   

[±10.0] 
-0.16 18 15.67 

Major Royal Jelly Protein 5 

precursor 

GB55213 
134.0   

[±20.9] 

125.0   

[±6.5] 
-0.07 25 23.33 

Major Royal Jelly Protein 7 

precursor 

GB43247 
120.0   

[±29.2] 

99.0   

[±50.1] 
-0.18 31.33 27.33 Alpha-glucosidase 

GB41428 
48.0   

[±17.7] 

80.7   

[±6.9] 
0.68 3.67 3.33 Defensin-1 

GB53578 
44.0   

[±9.4] 

54.3   

[±7.7] 
0.23 19.67 20 Glucosylceramidase 

GB55207 
52.0   

[±5.7] 

52.0   

[±5.4] 
0 11 10.67 

Major Royal Jelly Protein 6 

precursor 

GB55209 
42.0   

[±5.7] 

41.7   

[±6.8] 
-0.01 8.67 9 Uncharacterized protein 

GB43908 
49.7   

[±2.4] 

41.3   

[±3.3] 
-0.17 40.67 32.33 

Aldhedyde oxidase / 

Xanthine dehydrogenase 

GB44548 
37.3   

[±5.0] 

38.3   

[±6.1] 
0.03 20.33 19.33 

Glucose dehydrogenase 

isoform X1 
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GB48020 
15.3   

[±1.2] 

22.0   

[±8.8] 
0.43 10.33 8.67 Uncharacterized protein 

GB48969 
13.7   

[±0.9] 

19.3   

[±6.2] 
0.41 5.67 5.67 

Uncharacterized protein 

(LOC408608) 

GB50226 
20.3   

[±3.3] 

18.3   

[±3.3] 
-0.1 17.67 16 Transferrin 

GB41326 
18.0   

[±5.0] 

18.0   

[±2.2] 
0 12 12.67 

Venom acid phosphatase 

Acph1 

GB49854 
18.0   

[±5.7] 

18.0   [± 

13.5] 
0 13.67 11 Alpha amylase 

GB41777 
13.7   

[±1.7] 

17.3   

[±2.9] 
0.27 5.67 5.67 Uncharacterized protein 

GB44223 
11.0   

[±5.4] 

16.3   

[±5.2] 
0.48 10.33 15.33 

Lysosomal alpha-

mannosidase 

GB51783 
14.0   

[±2.2] 

15.7   

[±1.7] 
0.12 8.33 9.67 Carboxylpeptidase Q 

GB55452 
11.3   

[±0.5] 

15.3   

[±1.7] 
0.35 6.67 7.67 Apolipophorin III-like 

GB53579 
15.0   

[±2.9] 

15.0   

[±2.4] 
0 11.67 11.33 

Putative glucosylceramidase 

4 

GB54611 
10.7   

[±3.9] 

13.7   

[±0.5] 
0.28 8.67 10 

Serpin-5 (serine protease 

inhibitor) 

GB41776 
9.7   

[±0.5] 

11.7   

[±2.1] 
0.21 4 3.67 Uncharacterized protein 

GB43708 
10.7   

[±0.9] 

9.3          

[±1.7] 
-0.13 7.67 6.67 

Ferritin heavy polypeptide-

like 17 

GB49552 
4.7   

[±2.5] 

8.7            

[±3.7] 
0.86 4.67 6.67 

Venom serine protease Bi-

VSP 

GB51613 
4.7   

[±2.4] 

8.3            

[±1.9] 
0.79 4 7 

Uncharacterized protein 

(LOC408570) 

GB53830 
4.3   

[±0.9] 

7.0   

[±0.8] 
0.62 3.67 6 Protein Artichoke 

GB50012 
6.3   

[±0.5] 

7.0   

[±2.2] 
0.11 5.33 5 

Uncharacterized protein 

(LOC726323) 

GB42800 
6.0   

[±1.4] 

6.7   

[±0.9] 
0.11 6 6 Protein Takeout-like 

GB40759 
6.7   

[±0.9] 

6.3   

[±1.9] 
-0.05 4.67 4.33 Icarapin-like 

GB43731 
8.0   

[±1.4] 

5.7   

[±2.9] 
-0.29 5.33 5.5 Ferritin subunit 

GB44533 
4.0   

[±1.2] 

5.0      

[±0] 
0.15 4.33 5 

Uncharacterized protein 

(LOC408851) 

GB40758 
4.0   

[±0.8] 

5.0      

[±0] 
0.25 2 2 Icarapin-like precursor 

GB47104 
3.0   

[±0.8] 

4.0   

[±0.8] 
0.33 3 4 Lysozyme 
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GB50115 
4.0        

[±0] 

4.0   

[±0.8] 
0 

 

2.33 
Uncharacterized protein 

(LOC725202) 

GB48634 
2.7   

[±0.9] 

3.3   

[±0.5] 
0.25 

 

2.67 Glutathione peroxidase 

GB43823 
6.0   

[±1.6] 

3.3   

[±1.2] 
-0.44 4 2.33 

Chemosensory Protein 1 

precursor 

GB44564 
4.0   

[±1.4] 

3.0   

[±0.8] 
-0.25 4 3 Protein NPC2-like 

GB55451 
3.0         

[±0] 

2.7   

[±0.5] 
-0.11 3 2.67 Uncharacterized protein 

GB46652 
2.3   

[±0.5] 

2.7   

[±0.5] 
0.14 

 

2.67 
Peptidyl-prolyl cis-trans 

isomerase 

 

 

When comparing control-diet and pathogen-diet samples, we observed very little 

change in relative protein abundance within the royal jelly (Table 3.1). Among our focal 

immune proteins, we found no significant difference in protein levels between treatments 

for glucose oxidase (U = 7, P = 0.9), bee venom serine protease (Bi-VSP) (U = 1.5, P = 

0.134) or lysozyme (U = 2, P = 0.184). However, we did find significantly more of the 

antimicrobial peptide defensin-1 in pathogen-diet samples than control-diet samples (U = 

0, P = 0.05) (Fig. 3.2). It had a fold change of +0.68. 
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Fig. 3.2: The abundance of select immune proteins in control-diet and pathogen-diet 

royal jelly samples. Bar heights represent the mean peptide spectrum match values over 

three samples, with error bars denoting ± 1 s.d.. Of the 4 proteins compared, only the 

antimicrobial peptide defensin-1 was significantly upregulated in pathogen-diet samples 

(d).  

 

DISCUSSION 

 This study shows that nurses that ingest cells of the pathogen P. larvae appear to 

incorporate fragments of the cells into the royal jelly they produce (Fig. 3.1). We have 

shown recently that worker-ingested bacteria are transported to the hypopharyngeal 

glands, the site of royal jelly synthesis (Harwood et al. 2019), and here we show that they 

are incorporated into the royal jelly. This finding represents on overlooked social 

immunity pathway that can allow nestmates to share immunological memory. Our results 

also suggest that royal jelly composition may be sensitive to foreign material circulating 

systemically in the hemolymph. In a similar recent study, researchers found that nurses 

fed with double-stranded RNA (dsRNA) were able to incorporate these molecules into 

the royal jelly and transfer them to larvae, where the dsRNA remained biologically active 

(Maori et al. 2019). dsRNA activates the antiviral RNA-interference (RNAi) pathway 

that elicits sequence-specific gene silencing, and synthetic dsRNA is frequently used for 

targeted gene knockdown studies (Fire et al. 1998). Further still, another study showed 

that nurses fed with pesticides can also incorporate trace amounts of these agrochemicals 

into their royal jelly (Böhme et al. 2018), although the emphasis here is how well the 

hypopharyngeal glands prevent systemic pesticides from entering the royal jelly. 
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Nevertheless, these results indicate that royal jelly composition may be sensitive to the 

condition of nurses. These findings imply that  royal jelly can serve as a conduit for 

sharing immune elicitors like pathogen fragments, dsRNA, and other foreign substances 

between colony members.  

The incorporation of pathogen fragments into royal jelly suggests that trans-

generational immune priming may operate at the colony-level in honey bees. Unlike 

females from solitary species, honey bee queens do not normally venture outside their 

nest (Maeterlinck 1901), nor do they ingest food collected from their environment 

(Haydak 1970), so they have fewer opportunities to accumulate immune elicitors from 

pathogens that currently threaten the colony. Pathogen fragments in royal jelly may help 

queens inoculate her offspring against a wider array of immune elicitors, and hence 

protect them from pathogens they are likely to encounter as adults. This colony-level 

pathway may be particularly suited to pathogens like American foulbrood, since larvae 

are highly susceptible to the disease but adult workers are immune. Larvae only need to 

consume as few as 10 American foulbrood spores for an infection to set in (Shimanuki 

1997; Brødsgaard et al. 1998), but spores fail to germinate in the digestive tract of adults 

(Wilson 1971b). Nurses may also be able to directly inoculate larvae as well with royal 

jelly, meaning this pathway between nestmates would operate both vertically between 

offspring and parent, and horizontally between siblings.       

This study also showed that exposing nurses to American foulbrood does not 

induce large changes in the proteomic profile of the royal jelly they produce. Between 

samples from control-diet and pathogen-diet colonies, there is minimal change in the 

relative abundance of most proteins, including immunological proteins like glucose 
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oxidase, venom serine protease, and lysozyme (Table 3.1). However, the antimicrobial 

peptide defensin-1 appears to be an exception, with a modest relative fold change of 

+0.68 in royal jelly from pathogen-diet colonies compared to control-diet colonies. This 

finding raises two immediate questions. First, how does exposure to a pathogen lead to 

nurses producing elevated levels of defensin-1 in the royal jelly? One possibility is that P. 

larvae fragments bind to pathogen pattern recognition receptors in the Toll pathway (for 

Gram positive bacteria) and induce greater gene transcription of defensin-1, but the 

evidence for this is somewhat inconsistent. Studies have shown that adult workers 

exposed to bacteria, including American foulbrood, will increase expression of defensin-1 

(Casteels-Josson et al. 1994; Evans et al. 2006), but a recent study failed to observe 

significant upregulation defensin-1 expression in nurse head tissue after exposure to 

American foulbrood (López-Uribe et al. 2017). Nevertheless, insect AMPs like defensin-

1 can be observed in hemolymph for weeks after pathogen exposure (Casteels 1998), 

even as transcription of such AMP genes subsides during that time (Uttenweiler-Joseph et 

al. 1998), so only measuring gene expression may miss important information about the 

availability of the final peptide products. Alternatively, pathogen exposure may 

upregulate the translation of defensin-1 mRNA into peptides, or increase the rate of post-

translational modifications used to activate the peptide (Casteels-Josson et al. 1994), but 

these will have to be studied further.  

The second question raised by these results is whether a relative fold change of 

+0.68 in defensin-1 is biologically relevant. Conventionally, many human proteomics 

studies opt for a +1.2 threshold for significant  upregulation (Keenan et al. 2009; Serang 

et al. 2013), so defensin-1 would not meet this criterion. However, even modest increases 
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in defensin-1 concentration in royal jelly may improve larval resistance to American 

foulbrood. Not only has defensin-1 been shown to directly inhibit American foulbrood 

(Bíliková et al. 2001; Bachanová et al. 2002b), but it is also effective against Gram 

positive bacteria at concentrations as low as low as 1 µM (Fujiwara et al. 1990a). 

Furthermore, several components of the innate immune system are known to work 

synergistically, whereby two components working together have greater pathogen 

inhibitory effects than the sum of each component working independently. For example, 

bacterial growth inhibition assays have shown that antimicrobial peptides and lysozyme 

work together to greatly enhance one another’s effectiveness (Chalk et al. 1994). 

Lysozyme has also been shown to combat pathogens synergistically with apolipophorin-

III (ApoLp-III) (Zdybicka-Barabas et al. 2013), a lipid-transporting protein with anti-

pathogenic functions in insects (Whitten et al. 2004b; Kim and Jin 2015) that is found in 

royal jelly (Furusawa et al. 2008; Han et al. 2011b; Fujita et al. 2013; Zhang et al. 2014). 

Finally, young honey bee larvae’s maturing immune systems may struggle to produce 

their own defensin-1 when attacked by American foulbrood, as studies have shown that 

such a challenge induces little to no defensin-1 expression in larvae (8,11,66,67, although 

see 68 for exception). Thus, additional defensin-1 from exposed nurses may supplement 

the larvae’s dearth of this crucial antimicrobial peptide. Taken together, these findings 

suggest that even modest increases in defensin-1 in royal jelly may be biologically 

relevant in protecting the colony’s most vulnerable members.  

This study also further exemplified critical role that the protein Vg plays in honey 

bee immunity. Owing to its role as a pathogen pattern-recognition receptor, which has 

been documented in a broad range of animal taxa (Li et al. 2008, 2009; Liu et al. 2009; 
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Garcia et al. 2010; Zhang et al. 2011; Salmela et al. 2015; Du et al. 2017; Knight 2019), 

as well as its role in egg formation, Vg has been identified as the carrier protein that 

transports immune elicitors into the queen’s eggs (Salmela et al. 2015). Likewise in 

nurses, recent findings suggest that Vg plays a key role in transporting ingested 

pathogens to the hypopharyngeal glands (Harwood et al. 2019). Vg is taken up by the 

nurses’ hypopharyngeal glands to be used as an amino acid donor in the production of 

royal jelly (Amdam, Norberg, et al. 2003), and it’s possible that Vg transports bacteria 

into the glands to be incorporated into this jelly. Thus, Vg may play a role in all stages of 

colony-level TGIP in honey bees, from first inoculation and incorporation into the royal 

jelly, to delivery to the queen or larvae, and finally in the transport into the queen’s 

ovaries.  

This study has shown that royal jelly composition can be altered by a pathogen 

challenge, both in the corporation of pathogen fragments and through increased levels of 

the AMP defensin-1. The ability to transfer pathogen fragments in royal jelly means that 

trans-generational immune priming may function at a colony-wide level in honey bees. In 

addition to a vertical transfer of immune elicitors from a reproductive female to her 

offspring, honey bees may have a more complex pathway that goes from adult offspring 

(nurses) to reproductive female to future offspring, as well as horizontal transmission 

from adult offspring to immature offspring. The benefit here would be that larvae are 

inoculated with a larger repertoire of immune elicitors accumulated from the collective 

immunological experience of workers that gather resources from outside the nest, making 

larvae more resistant against pathogens they are likely to encounter when they themselves 

venture out of the nest.  
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CHAPTER 4 

VITELLOGENIN EXPRESSION IN THE HONEY BEE MIDGUT 

Gyan Harwood and Gro Amdam 

 

ABSTRACT 

The alimentary canal is an important organ that carries out many functions critical to 

insect physiology, including digesting and absorbing consumed nutrients, retaining water, 

eliciting immunological responses, and housing important endosymbionts. The midgut, in 

particular, is a compartment where digestion and absorption take place, and serves as a 

first point of contact between potential ingested pathogens and the insect immune system. 

Recently, we found the protein Vitellogenin (Vg) localized in midgut cells of some honey 

bee workers. Vg is an important egg-yolk precursor protein in nearly all oviparous 

animals, but it also has immunological functions shared across a wide-array of taxa. 

Additional and unexpected Vg functions have been characterized in honey bees, but none 

of these functions involve the midgut directly. Therefore, we sought to map out how Vg 

is localized and expressed in this organ across the two most common worker bee 

behavioral groups, namely nurses and foragers. We used quantitative reverse 

transcription PCR and immunohistochemistry to show that Vg is expressed in the midgut 

of both nurse and forager bees, and that the two groups have somewhat different protein 

localization in this organ. Our study provides a platform for building a more detailed 

understanding of the possible roles of Vg in insect midgut cells, and it adds to the current 

knowledge-base on this fascinating, multi-functional protein.  
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INTRODUCTION 

 The insect alimentary canal has been the subject of intense scientific inquiry. 

These efforts have led to the discovery and characterization of pluripotent stem cells 

(Hakim et al. 2001; Ohlstein and Spradling 2006; Ward et al. 2008; Buchon et al. 2009; 

Lehane and Billingsley 2012), a greater understanding of the molecular pathways 

activated in the alimentary canal’s responses against ingested pathogens (Ha et al. 2005; 

Buchon et al. 2009; Kumar et al. 2010; Lehane and Billingsley 2012), and the 

classification and functional characterization of the endosymbionts living therein 

(Kikuchi 2009; Anderson et al. 2013; Engel and Moran 2013). The insect alimentary 

canal is compartmentalized into the foregut, midgut, and hindgut, with the foregut and 

hindgut originating from the ectodermal layer and thus being replaced at each molt 

(Snodgrass 2018). In most adult insects, the foregut contains the crop which is used to 

store food, while the hindgut contains the rectum which absorbs water and ions, as well 

as the ileum which houses many endosymbionts (Chapman 1998; Martinson et al. 2012). 

The midgut is located between the foregut and hindgut and originates from the 

endodermal layer, and so it is retained each time the insect molts (Snodgrass 2018). The 

midgut is the site of digestion and absorption and plays a critical role in insect immune 

physiology.  

The insect midgut is composed primarily of elongated epithelial cells called 

enterocytes that protrude into the lumen and which carry out several important functions 

(Snodgrass 2018). They are critical for digesting and absorbing nutrients from consumed 

food as they produce and secrete digestive enzymes into the lumen, including proteinases, 

lipases and amylases (Lehane and Billingsley 2012). Enterocytes also secrete a chitinous 
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material called the peritrophic membrane (also called the peritrophic matrix or envelope) 

which protects the enterocytes from abrasion from ingested food, and which serves as a 

sieve to prevent pathogens, toxins, and large molecules from contacting the enterocytes 

(Brandt et al. 1978; Lehane 1997; Hegedus et al. 2009; Lehane and Billingsley 2012; 

Teixeira et al. 2015). Finally, enterocytes will produce and secrete an arsenal of 

immunological defenses when a pathogen is detected in the lumen. This arsenal includes 

antimicrobial peptides (AMPs) and reactive oxygen species (ROS) (Lehane et al. 1997; 

Nakajima et al. 2002; Ha et al. 2005; Buchon et al. 2009; Kumar et al. 2010; Dussaubat et 

al. 2012; Lehane and Billingsley 2012; Moreno-García et al. 2014).  

Recently, we discovered that the protein Vitellogenin (Vg) is present in midgut 

cells of at least some honey bee workers (Harwood et al. 2019). Vg is an egg-yolk 

precursor protein synthesized in the insect fat body that is used by females to deliver 

nutrients to developing eggs in most oviparous animals (Pan et al. 1969; Isaac and 

Bownes 1982; Raikhel and Lea 1983; Bownes 1986). However, this reproductive protein 

also has functions in immunity and organismal health: It binds to and eliminates 

pathogenic bacterial and fungal cells by recognizing pathogen-associated molecular 

patterns (PAMPs)(Li et al. 2008, 2009; Liu et al. 2009; Zhang et al. 2011, 2015; Salmela 

et al. 2015); It protects host cells from oxidative stress by binding to and neutralizing 

ROS (Havukainen et al. 2013; Sun and Zhang 2015a; Salmela et al. 2016); It binds to 

damaged host cells and protects them from further injury by recognizing damage-

associated molecular patterns (DAMPs)(Havukainen et al. 2013); and it transports the 

zinc required to maintain circulating hemocytes, which are cells of the innate immune 

system (Amdam, Simões, et al. 2004).  None of these functions have been documented to 
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involve midgut tissue directly. Therefore, after finding Vg in worker midgut cells 

(Harwood et al. 2019), we sought to map out how Vg is expressed and localized in this 

organ. The rational for this work was to start building a foundation for understanding the 

possible roles of Vg in the gut of honey bee nurses and foragers. 

In honey bees, workers are functionally sterile females that undergo an age-

associated task specialization focusing on brood care (nursing) vs. foraging for resources 

outside the colony. Vg appears to play roles in the control of transitions between maternal 

behaviors involving brood care and foraging (Amdam, Norberg, et al. 2004): Nurse bees 

have high Vg titers while forager bees have low titers, and reducing Vg titers in young 

worker bees by means of RNA-interference (RNAi)-mediated vg gene knockdown 

triggers precocious foraging behavior. The transition from nursing to foraging is 

associated with sweeping changes in worker gene expression, behavior, and physiology, 

including changes in immunity (Fluri et al. 1977, 1982; Bedick et al. 2001; Amdam, 

Simões, et al. 2004; Schmid et al. 2008), gut function (Crailsheim et al. 1992), and 

dietary preferences (Brodschneider and Crailsheim 2010). To decouple behavior-

associated patterns from age-associated patterns (foragers are typically older than nurses 

and thus behavior is naturally confounded by age), we compared nurses and foragers of 

the same age using single-cohort colonies (see Methods). Here, we tested whether vg is 

expressed the gut of both honey bee nurses and foragers using quantitative reverse 

transcription PCR (RT-qPCR), and we asked whether Vg localization in midgut tissue 

differs between the two behavioral groups using immunohistochemistry. These results 

allow us to make progress towards understanding Vg’s function in the gut, and some of 

these possible functions are discussed here.  
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METHODS 

Bees 

 Honey bee colonies were maintained at the Arizona State University Bee Lab in 

Mesa, Arizona. In order to obtain nurses and foragers of the same age, we used single-

cohort colonies. Two such colonies were established in which newly emerged workers 

(<24h old) were housed with a queen and several frames of honey, pollen, and empty 

comb.  After several days, many of these workers prematurely transition from nurses into 

foragers to meet the resource needs of the colony. On the seventh day after establishing 

the colonies, we paint marked foragers that we observed returning to the nest with pollen. 

On the fourteen day after establishing the colonies, we collected 25 marked foragers and 

an equal number of nurses. This ensured that all nurses and foragers had been performing 

their given task for a minimum of seven days. Nurse bees were selected by observing 

workers that entered brood cells to feed the larvae.  

 

Gene Expression 

 A total of 16 nurses and 16 foragers were used for gene expression comparison. 

Midguts were dissected from anesthetized bees and RNA was extracted via phenol-

extraction using TRIzol® reagent (Invitrogen #15596018). RNA was diluted to a 

concentration of 200 ng/µl and DNA was removed via DNase I treatment (Thermo 

Scientific™ #EN0525). One-step RT-qPCR was performed using a QuantiTect SYBR® 

Green RT-PCR kit (Qiagen #204245) and performed on an ABI Prism 7500 (Applied 

Biosystems). Actin was used as a reference gene, as it is stably expressed across honey 

bee tissues  and commonly used in honey bee research (Lourenço et al. 2008; Scharlaken 
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et al. 2008). Each sample was prepared in duplicate for both actin and vg. The PCR 

program began with a reverse transcription step at 50oC for 30 minutes, followed by an 

activation step at 95o for 15 minutes. It then repeated 40 cycles of 94oC for 15 seconds, 

52oC for 31 seconds, and 72oC for 32 seconds. Primer sequences used in the RT-qPCR 

reactions were as follows: 

 

Vg Forward: 5’ – GTTGGAGAGCAACATGCAGA - 3’  

Vg Reverse: 5’ – TCGATCCATTCCTTGATGGT – 3’ 

 

Actin Forward: 5’ – TGCCAACACTGTCCTTTCTG – 3’ 

Actin Reverse: 5’ – AGAATTGACCCACCAATCCA – 3’ 

 

Immunohistochemistry 

 Bees were anesthetized on ice and pinned to a dissecting tray. The midgut was 

dissected and cold 1X phosphate buffered saline (PBS) was applied during this procedure 

to maintain tissue freshness. The organ was fixed in 4% paraformaldehyde overnight at 

4oC then washed 3 times for 10 minutes in cold 1X PBS before being embedded in an 

agarose medium. The embedded tissue was cut into 200 µm thick longitudinal sections 

using a Leica VT1000s vibratome. Our longitudinal sections offered us two views of 

midgut structure depending on where in the organ the section was made: Sections made 

through the center of the lumen provide a cross section where one can observe how the 

epithelial cells protrude into the gut lumen (Fig. 4.2), while sections made at the external 

surface of the organ allows one to observe how midgut cells are arranged in two-
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dimensional space when attached to the basement membrane and surrounding muscles 

(Fig. 4.3).   All samples received the same staining treatment. First, sections were 

blocked for 10 minutes with 5% goat serum (Jackson ImmunoResearch #005-000-121) in 

a solution of 1X PBS and 0.1% Triton X-100 (Sigma #T8787). We then added a 1:1000 

dilution of polyclonal rabbit-anti-Vg primary antibodies (raised against 180 kDa honey 

bee vitellogenin; Pacific Immunology, Ramona, CA) and incubated the tissue overnight 

at 4oC. The tissue was then washed 3 times for 10 minutes and incubated for an 

additional 3 hours at room temperature in 1X PBS with 5% goat serum and 0.1% Triton 

X-100, this time with a 1:1000 dilution of goat-anti-rabbit secondary antibodies tagged 

with Alexa Fluor® 488 (Jackson ImmunoResearch #111-545-047) and a 1:500 dilution 

of rhodamine phalloidin (Invitrogen™ #R415). Tissue was then washed 3 times for 10 

minutes in cold 1X PBS and incubated an additional 15 minutes at room temperature in 

1X PBS with 0.1% Triton X-100 and a 1:30000 dilution of DAPI (4′,6-diamidino-2-

phenylindole. Invitrogen™ #D3571) before being washed for a final 5 times for 10 

minutes in 1X PBS. The tissue was then mounted on slides and imaged on a Leica SP5 

confocal microscope with a 20X oil-immersed lens. Separate 10 µm z-stack image series 

were taken sequentially for each fluorophore to avoid cross-talk between excitation and 

emission spectrums. We imaged tissues from 3-6 individuals from each behavioral group. 

In order to confirm the binding specificity of the secondary antibodies, we also created 

antibody control staining slides. In this case, staining procedure was the same except the 

rabbit-anti-Vg 1o antibodies were excluded from the first incubation step. Control slides 

were made using the longitudinal sections through the center of the lumen (i.e., cross 

section images, Fig. 4.2). 
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Statistics and Analysis 

Relative gene expression levels were calculated using the ∆∆Ct method 

(Schmittgen and Livak 2008). Differences between nurses and foragers were determined 

using a T-test on log10-transformed data. All statistical analysis was performed in R 

(3.5.2). We assessed differences in Vg tissue localization visually between nurses and 

foragers. The aim was to look for general patterns relating to Vg localization in different 

regions of the midgut or within different regions of enterocytes.  

 

RESULTS 

Gene expression  

We found that vg was expressed in the midguts of both nurses and foragers from 

single-cohort colonies. For both groups, vg transcript amplification occurred at later 

cycles (PCR cycles 27.9 and 28.5, respectively), indicating low transcript abundance. The 

relative expression did not differ significantly between nurses and foragers when 

compared via their 2^-∆∆Ct values (t = -0.71, df = 30, p = 0.48) (Fig. 4.1).  
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Fig. 4.1: vg expression in the midguts 

of same-aged nurses and foragers. Bar 

heights represent the mean log10 vg 

expression in the two groups, as 

calculated by the ∆∆-Ct method, with 

error bars representing +/- 1 standard 

error. Statistical comparison between 

the two groups was performed via a 

Student’s T-test on log10-transformed 

data. Expression levels were found to 

not significantly differ between the two behavioral groups. 

 

General observations of structure 

  In the longitudinal cross sections, we observed enterocytes protruding into the 

lumen that measure approximately 100-200 µm in length (Fig. 4.2). Along the length of 

the organ, the midgut folds inward to increase surface area. These folds can be seen in 

Fig. 4.2B, D, E, & F, with a closeup of the folds seen in Fig. 4.2A & C. The enterocytes 

are connected to one another at their base via a basement membrane, and in order to 

facilitate gut motility, the exterior of the midgut is wrapped in a lattice of muscles that 

either run the length of the organ (i.e., longitudinal muscles) or which wrap around the 

organ (i.e., circular muscles). These muscles are clearly visible with the phalloidin stain 

in Fig. 4.2B & D, which appear as bright red lines and dots running along the bottom of 

the images. The enterocytes respond to ingested material by secreting a chitinous 
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substance into the lumen called the peritrophic membrane. This peritrophic membrane is 

visible above the enterocytes in Fig. 4.2A and B, and to a lesser extent in Fig. 4.2C, and 

reaches a maximum thickness of approximately 50 µm in our samples. 

 

 

Fig. 4.2: Confocal micrographs showing longitudinal cross-sections of the honey bee 

worker midgut. The protein Vg is stained with Alexa Fluor 488 (green), nuclei are stained 

with DAPI (blue), and F-actin is stained with rhodamine phalloidin (red). In each sample, 

images are oriented with the midgut lumen towards the top and the midgut exterior 

towards the bottom. Scale bars represent 50 µm. Positive signal for Vg is observed in 

both the nurses (A-B) and foragers (C-D), but not in the Vg control stained samples (E-
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F). Vg is seen not only in the gut epithelial cells, but also in the peritrophic membrane 

that shields the epithelial cells in the lumen. The peritrophic membrane is more 

prominent in nurses (A-B) than foragers (C-D). These are representative images of 

observations made on N=3 and N=6 nurses and foragers, respectively. 

 

In the sections made at the external surface of the midgut, we observed that cells 

attach to the basement membrane in a cluster formation, and that cells towards the centers 

of the clusters have their nuclei placed closer to the basement membrane (Fig. 4.3 B, E). 

Based on their structure, we interpret these clusters as being regenerative nidi (Jimenez 

and Gilliam 1990; Silva-Olivares et al. 2003; Illa-Bochaca and Montuenga 2006; Park et 

al. 2009): That is, cells at the center of the cluster are undifferentiated stem cells that 

divide and differentiate into enterocytes and other midgut cells.  
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Fig. 4.3: Confocal micrographs looking at the outside surface of the honey bee worker 

midgut. Vg is stained with Alexa Fluor 488 (green), nuclei are stained with DAPI (blue), 

and F-actin is stained with rhodamine phalloidin (red). Scalebars represent 25 µm. Cells 

are arranged in cluster formations, with cells at the center of the clusters having their 

nuclei closer to the basement membrane. Vg appears around these clusters in nurse bees 

(A), but not in foragers (D).  

 

Vg localization 

We found that Vg protein was localized throughout the enterocytes of same-aged 

nurses and forages (Fig. 4.2). For both groups, Vg does not appear to be restricted to 

certain regions of the midgut or compartmentalized in particular areas of the enterocytes: 

it is found throughout the cytoplasm from the base of the cells to the apex. However, 

when observing clusters of regenerative cells (Fig. 4.3), Vg appears to surround these 

clusters in nurses but the pattern is not observed in foragers. This Vg may be deposited 

extracellularly around these cell clusters, or this phenomenon could be due to microscope 

edge effects if cells towards the outside of the cluster contain a higher abundance of Vg 

than cells towards the center (Fig. 4.3 A, B). Nevertheless, Vg does appear to be secreted 

out of enterocytes and into the peritrophic membrane along the luminal edge of the 

enterocytes (Fig. 4.2 A, B). We found that the peritrophic membrane was consistently 

present in all nurse samples imaged but was absent or greatly reduced in all forager 

samples (Fig. 4.2).  
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DISCUSSION 

This research yielded several intriguing results that expand our understanding of 

honey bee physiology. First, we show that Vg protein is not only localized in midgut 

epithelial cells (Figs. 4.2, 4.3), but it is also apparently synthesized there based on local 

gene expression (Fig. 4.1). This finding confirms a previously overlooked organ for vg 

expression in insects in general, and honey bees in particular (Mao et al. 2013). As with 

other insects, honey bees primarily synthesize Vg in their fat body tissue (Sappington and 

S. Raikhel 1998; Tufail and Takeda 2008), but the protein can also be synthesized in 

queen ovaries (Guidugli, Piulachs, et al. 2005). In some blood-feeding arthropods like 

ticks, vg is expressed in the midgut to activate the ovaries and transport required nutrients 

from the blood meal (Thompson et al. 2007; Boldbaatar et al. 2010), while in mosquitos a 

blood meal stimulates fat body production of Vg to facilitate egg production (Bonizzoni 

et al. 2011). In these examples, Vg appears to be carrying out its typical reproductive 

function in response to a nutrient stimulus, but roles of Vg in the honey bee worker 

midgut may be less clear, since these workers are functionally sterile and only rarely 

activate their ovaries. In honey bees, worker reproduction primarily occurs after 

irreversible loss of the dominant reproductive queen, with some exceptions (see (Barron 

et al. 2001)).  

We observed that vg is expressed at similar levels for same-age nurses and 

foragers (Fig. 4.1). This result was unexpected, given that vg expression in the fat body 

and Vg titers in the haemolymph are substantially different between nurses and foragers. 

It has been well-established over decades of research that worker behavior and vg 

expression are intricately linked: nurses have high titers of circulating Vg and foragers 
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have low titers (Nelson et al. 2007), and conversely, knocking down Vg via RNAi in 

young adults causes workers to prematurely transition into foragers (Amdam and Omholt 

2003; Antonio et al. 2008; Harwood et al. 2016). In the midgut, however, behavioral 

maturation and vg expression appear to have been decoupled. The exact reason for this 

decoupling remains unclear, but it could be that the midgut maintains steady (albeit low) 

expression of vg in order to carry out some function(s) that are important for both nurses 

and foragers. Alternatively, midgut vg expression may still vary with age as it does with 

fat body expression and circulating titers of the protein (Nelson et al. 2007), but our use 

of same-age nurses and foragers will not reveal this pattern. This latter point will require 

further investigation. 

Finally, we found that the peritrophic membrane is consistently present in nurses 

but is absent or greatly reduced in foragers (Fig. 4.2). This may be due to dietary and 

physiological changes that coincide with the transition from nurse to forager, as nurses 

feed primarily on protein-rich pollen in order to produce royal jelly to feed the larvae and 

queen, while foragers feed on carbohydrate-rich honey (Brodschneider and Crailsheim 

2010). Pollen is much more abrasive than honey and may require a more robust 

peritrophic membrane to protect midgut cells. In ants, carnivorous species are observed 

with larger peritrophic membranes than their nectar- or honeydew-feeding counterparts 

(Cook and Davidson 2006). Different diets also require different digestive machinery. 

The peritrophic membrane contains many digestive enzymes secreted from the 

enterocytes (Brandt et al. 1978; Lehane 1997; da Cruz-Landim and Cavalcante 2003; 

Hegedus et al. 2009) and nurses have higher enzymatic activity in their midgut than 

foragers (Moritz and Crailsheim 1987; Jimenez and Gilliam 1989). The level of 
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enzymatic activity is directly related to the amount of protein consumed (Jimenez and 

Gilliam 1989), and foragers have a reduced ability to digest protein (Crailsheim et al. 

1992). Alternatively, these results could simply be an artifact of our samples, wherein the 

nurses had more recently consumed food to trigger the secretion of a peritrophic 

membrane. However, given the consistent pattern across multiple samples this 

explanation seems unlikely. Intriguingly, we found that Vg is secreted out of the 

enterocytes and into the peritrophic membrane, which suggests that it is intended to 

interact with the ingested materials and/or microorganisms in the gut lumen. 

The evidence gathered in this and previous studies points to an as-yet-unknown 

function of Vg in the midgut: Vg is stably expressed in nurses and foragers, it is secreted 

into the peritrophic membrane, it is resilient against systemic vg knockdown via RNAi 

(Harwood et al. 2019), and the Vg receptor is expressed in midgut tissue (Guidugli-

Lazzarini et al. 2008). The precise nature of Vg’s role in the midgut remains unclear, but 

it’s other non-reproductive functions may give a clue. First, we propose that Vg can play 

a role in antimicrobial activity and cellular maintenance in the insect midgut. For 

example, Vg may be functioning as part of the anti-microbial defense mechanism against 

ingested pathogens in worker bees. The midgut is a key organ for fighting off infections 

(Chapman 1998), and the enterocytes produce AMPs to kill pathogenic cells detected in 

the lumen. Likewise, Vg can bind pathogenic cells via PAMPS (Li et al. 2009; Liu et al. 

2009; Salmela et al. 2015) that include lipopolysaccharides and peptidoglycans found in 

Gram negative and Gram positive bacteria cell walls, respectively. Vg can either destroy 

such cells directly (Li et al. 2009) or opsonize them to recruit other components of the 

innate immune system to destroy them (Li et al. 2008). Interestingly, the AMPs produced 
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by the enterocytes activate the Immune Deficiency (IMD) pathway which combats Gram 

negative bacteria, but it is believed that enterocytes do not respond to Gram positive 

bacteria (Chapman 1998). Several deadly honey bee pathogens like American foulbrood 

(Paenibacillus larvae) and European foulbrood (Melissococcus plutonius) are Gram 

positive bacteria, and their point of entry is the larval gut. We do not yet have data on Vg 

localization in the larval gut of the honey bee, but larvae are known to express the vg 

gene with functions currently unknown (Guidugli, Piulachs, et al. 2005). Vg may be 

deployed to combate Gram positive bacterial pathogens.  

Second, we propose that Vg can protect midgut enterocytes from the host’s own 

immune defenses. Enterocytes secrete ROS to kill pathogens detected in the midgut (Ha 

et al. 2005; Buchon et al. 2009, 2013; Kumar et al. 2010), but ROS can also inflict 

cellular damage on the host’s cells. Vg is an antioxidant (Seehuus et al. 2006; 

Havukainen et al. 2013; Sun and Zhang 2015a) and so may act as a buffer to protect the 

host’s cells from autotoxicity. Moreover, Vg can recognized damaged host cells and 

protect them against further injury and ROS damage (Havukainen et al. 2013). With 

abrasive damage from ingested food and ROS damage from immune responses, the insect 

midgut is a harsh environment that requires pluripotent stem cells to regenerate the 

population of enterocytes (Micchelli and Perrimon 2006; Ward et al. 2008; Buchon et al. 

2014). Cellular turnover of enterocytes is very quick (about 1 – 2 weeks in drosophila 

(Chapman 1998)), and Vg may help to protect damaged enterocytes and extend the life of 

each cell in the midgut. 

Further studies are required to properly elucidate Vg’s function in the midgut, but 

this will require novel experimental approaches to overcome existing challenges. As 
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noted, Vg in the midgut appears to be resilient against standard systemic injections of 

double-stranded RNA (dsRNA) used to elicit RNAi gene knockdown (Harwood et al. 

2019), making it difficult to compare control individuals with gene-knockdown 

individuals. One can administer vg dsRNA orally (e.g., (Nunes and Simões 2009), but 

this introduces issues of inconsistent dosing since individuals consume variable amounts 

of food (Araujo et al. 2006). Furthermore, ingested dsRNA will be excreted or absorbed 

through the midgut and into the haemocoel, but the dsRNA that transiently passes 

through the midgut epithelial cells may have limited efficacy against target transcripts 

therein. Other studies that tried to target gut-specific genes with orally administered 

dsRNA failed to knockdown the target gene (Rajagopal et al. 2002). Thus, without an 

adequate experimental reduction of Vg in the midgut, it is challenging to test for 

functional roles of this protein.  

Nevertheless, the need to understand Vg’s role in this important organ remains. 

This study has expanded our understanding of Vg genetic expression and tissue 

localization in honey bee workers, and provided important new findings. We have shown 

that vg is not only expressed in honey bee workers, but also that expression is steady 

between same-age nurses and foragers, and that Vg is secreted from enterocytes into the 

peritrophic membrane. Further functional experiments will be required to ascertain Vg’s 

precise role in this organ.  
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CHAPTER 5 

NUCLEAR TRANSLOCATION OF VITELLOGENIN IN THE HONEY BEE 

Heli Salmela, Gyan Harwood, Daniel Münch, Christine Elsik, Elías Herrero-Galán, 

Maria K. Vartiainen, Gro V. Amdam 

 

ABSTRACT 

The Large Lipid Transfer Protein vitellogenin is known for a broad phylogenetic role in 

yolk formation. A vitellogenin-encoding gene was likely present in the last common 

ancestor of the majority of animals 700 million years ago, representing the ancestral gene 

in this protein family. In recent years, additional functions of vitellogenin were 

discovered in oxidative stress resistance and immunity, in groups as diverse as fish and 

social insects. It has remained enigmatic how vitellogenin affects multiple traits. We 

asked whether vitellogenin enters the nucleus and acts via DNA-binding. We used 

immunohistology, cell fractionation and cell culture to show that an N-terminal part of 

honey bee vitellogenin translocates into cell nuclei. We used prediction tools to show that 

vitellogenin can bind to DNA, then demonstrated this empirically with chromatin 

immunoprecipitation followed by sequencing (ChIP-seq). We found robust vitellogenin-

DNA binding loci at genes that influence immunity and behavior. Thereafter, we did an 

initial test of dynamic properties by means of immunological challenge with Escherichia 

coli, revealing variation in cutting- and nuclear translocation- patterns of vitellogenin in 

vitro and in vivo. Finally, we inspected the associated enzymatic modifications with a 

protease inhibition assay, and summarized findings by building the most complete three-

dimensional vitellogenin structure for insects so far. Our data represent the first 

demonstration of nuclear translocation and DNA binding of a Large Lipid Transfer 
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Protein. We suggest that a fundamental regulatory role of this ancient protein has been 

overlooked, with possible implications for a large number of animal species.  
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INTRODUCTION 

 

Vitellogenin (Vg) is the oldest member of the Large Lipid Transfer Protein 

(LLTP) family (Hayward et al. 2010). Vg evolved early in the animal lineage and is 

currently present in nearly all oviparous species as an essential yolk precursor protein. 

While Vg diversified in some groups to include the cytosolic large subunit of microsomal 

triglyceride transfer protein (MTP) and apolipoproteins (Apo)(Hayward et al. 2010), the 

Vg molecule itself may have evolved to support multiple functions. In fish and some 

insects, for example, Vg is highly pleiotropic (Havukainen, Halskau, and Amdam 2011); 

acting as an immunomodulatory protein (Li et al. 2008; Liu et al. 2009; Garcia et al. 

2010; Tong et al. 2010; Sun et al. 2013b), a behavior regulator (Amdam, Norberg, et al. 

2006; Nelson et al. 2007; Antonio et al. 2008; Ihle et al. 2010; Gospocic et al. 2017), an 

antioxidant with potential impact on rates of aging (Seehuus et al. 2006; Corona et al. 

2007b; Havukainen et al. 2013; Sun and Zhang 2015b; Salmela et al. 2016), and as a 

resource for the feeding of young (Kishida and Specker 2000; Amdam, Norberg, et al. 

2003). We have detailed understanding on how Vg forms egg yolk (Tufail and Takeda 

2008), and, more recently, how it acts in innate immunity as a pathogen pattern 

recognition receptor (Zhang et al. 2011; Sun et al. 2013b), but the molecular 

mechanism(s) by which Vg can influence multiple traits remain unknown. 

Pleiotropic proteins can implement their multitude of effects in various ways. One 

route is by acting as transcription factors or participating in gene-regulatory complexes 

that affect the expression of many genes (Chesmore et al. 2016). Interestingly, down-

regulation of Vg by means of RNA interference mediated vg gene knockdown alters the 

expression of thousands of genes, as exemplified by the honey bee (Apis mellifera) 
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(Wheeler et al. 2013). However, no previous research has addressed or established 

whether Vg, or any protein homologous to Vg including MTP or Apo (Baker 1988a), can 

translocate into the cell nucleus and bind DNA.  

This gap in our knowledge is self-evident given the molecular size of the LLTPs: 

The proteins are typically around 200 kDa (Finn 2007; Tufail and Takeda 2008), while 

nuclear proteins are below 60 kDa in general  (although nuclear transfer of one 110 kDa 

protein was reported (Wang and Brattain 2007). In other words, it seems very unlikely 

that a LLTP can enter a nucleus. Yet in many animals, Vg is cut and reassembled prior to 

secretion (Finn 2007; Tufail and Takeda 2008). In invertebrates such as insects, Vg is cut 

in the vicinity of a multiply phosphorylated polyserine linker sequence stretch that resides 

between two evolutionarily conserved Vg protein domains called the N-sheet and the α-

helical domain (Baker 1988a; Mann et al. 1999; Tufail and Takeda 2008; Havukainen et 

al. 2012) . In honey bees, this cutting occurs in vivo in fat body tissue, which is 

functionally homologous to the liver and white fat in vertebrates and the primary 

production-site of Vg (Tufail and Takeda 2008). The cut is between amino acid residues 

335 and 427 within the honey bee Vg polyserine linker, resulting in a detached 40 kDa 

N-sheet of unknown function (Havukainen, Halskau, Skjaerven, et al. 2011).  

In this study, we asked whether pleiotropic effects of Vg may be partly explained 

by nuclear translocation and DNA-binding of the conserved N-sheet, and we used the 

honey bee as our study organism. First, we tested whether the N-sheet subunit can 

translocate into the nucleus of fat body cells using an antibody targeting the honey bee N-

sheet domain. We verified the results using fluorescently-labeled Vg in cell culture. 

Second, we predicted the DNA-binding ability of honey bee Vg using sequence- and 
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structure-based programs, and then used chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) to identify Vg binding sites in honey bee DNA. We searched for 

de novo binding motifs and performed additional functional analysis of Vg-DNA binding 

sites in silico, identifying many sites associated with immune- and behavior- related 

genes. These data motivated a functional response-to-challenge assay using E. coli to 

reveal if behavior of Vg cutting and translocation is in fact dynamic. Finally, we 

established the enzymatic conditions required for Vg cutting, and we developed a three-

dimensional structure model to elucidate the critical N-terminal area of the protein.  

 

METHODS 

Antibody against honey bee Vg 40 kDa fragment 

 The honey bee Vg 40 kDa fragment (Uniprot ID Q868N5; the amino acid 

residues 24-360) was produced in E. coli by GenScript (Piscataway, NJ, USA); it was 

subcloned into pUC57 vector, and an N-terminal hexahistidine tag was used for one-step 

affinity purification. The polyclonal serum antibody was raised in a rat by Harlan 

Laboratories (Boxmeer, the Netherlands), and tested by Western blotting against proteins 

extracted from the honey bee (as in (Havukainen, Halskau, Skjaerven, et al. 2011)) (Fig. 

S1).  

 

Western blotting 

The gel and Western blot reagents were purchased from Bio-Rad, and the 

protocol for all of the blots was as follows. The blotted nitrocellulose membrane was 

incubated with PBS containing 0.5% Tween with 2.5% bovine serum albumin overnight. 
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The membrane was incubated for 1 h with the N-sheet antibody (1:2000) and for 1 h with 

a horseradish peroxidase-conjugated secondary antibody (1:5000) prior to imaging using 

an Immun-Star kit. All gels and blots were imaged, and band intensities were measured 

using a ChemiDoc XRS imager (Bio-Rad). 

 

Vg purification 

Vg was purified from wintertime worker honey bee hemolymph as in Salmela et 

al. 2015. 

 

Immunohistology 

 N=6 winter worker bees were collected from two hives at Norwegian University 

of Life Sciences, Aas, Norway. The gut was removed, and the abdomen detached and 

placed for overnight fixing in 4% paraformaldehyde in 4 ºC, followed by three PBS 

washes, 10 min each. The fat body was dissected in PBS and de/rehydrated with a full 

ethanol series. For each individual, one tissue sample was used as test (full set of 

antibodies) and another one as control (no primary antibody). The samples were 

incubated with the antibody against 40 kDa Vg (see above) overnight in 4°C (1:50 in 2 % 

BSA-PBS-Triton X-100). DAPI was used as a nuclear marker. The anti-rat secondary 

antibody was Alexa-568 nm that has no emission spectrum overlap with DAPI. For 

qualitative anatomical descriptions, a high NA (=high resolution) objective was chosen 

(40x immersion oil; NA 1.25). Scans were taken with zoom 1.0 and zoom 2.0. All images 

were taken in sequential acquisition mode to minimize crosstalk between the two 

channels for detecting DAPI and the Vg signal.  
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Cell fractionation 

 Nine winter worker honey bee individuals were anesthetized in cold and the fat 

body tissue was dissected in ice cold PBS. The fat body tissues were placed in three tubes 

with 50 µl hypotonic buffer (20 mM Tris-HCl pH 7, 10 mM NaCl and 3 mM MgCl2) 

pooling three individuals per tube. 2.5 µl 10 % NP-40 was added, followed by 10 s vortex 

and centrifugation for 10 min 3000 g in 4°C. The supernatant was collected as the 

cytosolic fraction. The pellet was washed once with 500 µl hypotonic buffer, and then 

suspended in 30 µl hypotonic buffer with 5 mM EDTA, 1 % Tween-20 and 0.5 % SDS 

and vortexed shortly. All samples were then centrifuged for 10 min 15000 g in 4°C. 15 µl 

of each sample was run on SDS-PAGE gel and blotted.  

 

Labeled Vg in cell culture 

 Pure Vg was labeled with Alexa Fluor 488 protein labeling kit (Invitrogen, 

Carlsbad, CA, USA). HighFive cells were grown on a 8-well chamber slide (Thermo 

Fisher) over night (number of slides one, repeated three times). The media was replaced 

with 20 µg/µl Vg-488 in PBS and incubated in dark for 1 h. The cells were washed twice 

with PBS, fixed with 4 % paraformaldehyde and the washes were repeated. DAPI was 

used as a nuclear marker. The cells were imaged the following day with Leica TCS SP5 

MP (63x). 

 

DNA-binding prediction 

  The following prediction tools available for protein-DNA binding were tested 

with default settings: Sequence-based DNABIND (Liu and Hu 2013), DP-BIND (Hwang 
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et al. 2007) (run twice due to the input limitation of 1000 amino acids) and DRNApred 

(Yan and Kurgan 2017), and structure-based DNABIND (Liu and Hu 2013) and 

DISPLAR (Tjong and Zhou 2007). The structure used was the honey bee Vg N-sheet 

homology model published earlier (Havukainen, Halskau, Skjaerven, et al. 2011). 

 

ChIP-seq 

Samples of newly emerged and 7-day older worker bees were created by pooling 

fat body tissue from 10 individuals from each age group, all originating from the same 

hive. Freshly harvested samples were flash frozen in liquid nitrogen and homogenized. 

Chromatin immuno-precipitation was carried out using established protocols (Bai et al. 

2013) using Dynabeads™ Protein G (Invitrogen). We opted to use polyclonal antibodies 

raised in rabbits against the whole 180 kDa Vg molecule (Pacific Immunology, Ramona, 

CA) (Jensen and Børgesen 2000) rather than the rat-origin antibodies against the 40 kDa 

Vg subunit used elsewhere in this study because of their superior immunoprecipitation 

performance. In a preliminary study, the rabbit-origin antibodies consistently pulled 

down more chromatin than multiple batches of the rat-origin antibodies, which failed to 

retrieve sufficient chromatin for sequencing. This is likely due to Protein G (and A) 

having a greater affinity for rabbit-origin than rat-origin antibodies, as per the 

manufacturer. In a preliminary study we had compared immuno-precipitation efficacy 

using antibodies against the whole 180 kDa Vg molecule with antibodies against the 40 

kDA N-terminal domain used elsewhere in this study. The antibody against the 180 kDa 

molecule consistently pulled down more chromatin than multiple batches of antibodies 

against the 40 kDa domain, so we elected to use the former in this procedure. Chromatin 
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samples were sequenced at the DNASU lab at Arizona State University. The raw 

Illumina 2x75bp pair-end reads were quality checked using FastQC v0.10.1 (Andrews 

2010), followed by adapter trimming and quality clipping by Trimmomatic 0.35 (Bolger 

et al. 2014). Any reads with start, end or the average quality within 4bp window falling 

below quality scores 18 were trimmed. The clean reads were aligned to reference genome 

Apis mellifera Amel_4.5 

(https://www.ncbi.nlm.nih.gov/genome/48?genome_assembly_id=22683) by Bowtie 2 

version 2.2.9 (Langmead and Salzberg 2012).  Another round of QC was performed on 

bam files. Library complexity was checked by NRF (nonredundancy fraction), defined as 

the number of unique start positions of uniquely mappable reads divided by number of 

uniquely mappable reads. All the samples passed the threshold 0.8 recommended by 

ENCODE. IGVtools and bamCompare from deepTools (Ramírez et al. 2014) were 

employed to compare two BAM files based on the number of mapped reads. First the 

genome is partitioned into bins of equal size and then the number of reads in each bin is 

counted. The log2 value for the ratio of number of reads per bin was reported for IGV 

visualization. MACS2 was used for peaks calling with 0.01 FDR cutoff.  Narrowpeak 

files as MACS2 output were annotated by HOMER (Heinz et al. 2010). It first determines 

the distance to the nearest TSS and assigns peak to that gene. Then it determines the 

genomic annotation of the region covered by the center of the peak, including TSS, TTS, 

Exon (coding), 5' UTR Exon, 3' UTR Exon, Intronic, or Intergenic. 

To test for non-random occurrence of peaks within genome features, we used 

1000 random peak datasets from the 7-day old worker data set. To create the random 

peak datasets, we used the shuffle program of the BEDTools package (Aronesty 2011) on 
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the 782 peaks from the 7-day data set that were located on full chromosome assemblies to 

generate 1000 bed files with peak locations that were shuffled within chromosomes, such 

that shuffled peak locations were non-overlapping and did not occur in assembly gaps. 

The annotatePeaks.pl program from the Homer package (Heinz et al. 2010) was then 

used to annotate the 1000 shuffled peak data sets and the 7-day peak data set with respect 

to genome features in the NCBI Apis mellifera RefSeq annotation. We used chi-squared 

tests to determine whether the observed numbers of peaks overlapping promoter plus TSS 

regions (-1 kb to +100 bp from TSS), TTS, exons, introns and intergenic regions were 

greater or less than expected by chance. 

We performed a gene functional annotation and cluster analysis using DAVID 6.8 

(Huang et al. 2009a, 2009b) to look for common gene ontology (GO) terms among genes 

pertain to biological function, molecular function, and cellular component, as well as 

KEGG pathway terms. We used default settings on DAVID in which clusters were 3 or 

more genes that shared a common GO term. This cluster analysis uses a modified 

Fisher’s Exact Test to look for enriched terms in the gene list, as well as provides a more 

conservative FDR statistic using a Benjamini-Hochberg procedure. Finally, it provides an 

estimate of fold enrichment to further test whether certain gene annotations are 

proportionally more represented in the ChIP data set than with the honey bee genome as a 

whole.  

 

Vg-DNA binding motif search 

For de novo motif identification, we created a non-redundant dataset of 790 peaks 

by combining peaks identified in the newly emerged and 7-day old samples and merging 
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peaks with overlapping regions between the two dataset. We used GimmeMotifs 

(Heeringen et al. 2011)ich ran and combined results for ten motif prediction packages – 

Mdmodule , Weeder, GADEM, trawler, Improbizer, BioProspector, Posmo, ChIPMunk, 

JASPAR, AMD, HMS and Homer. GimmeMotifs clusters the results, performs 

enrichment and computes receiver operator characteristic (ROC) and mean normalized 

conditional probability (MNCP). Half of the peaks (395) were used to train each 

algorithm and the other half was used for testing. Since we did not have a priori 

knowledge of the motif length, we ran GimmeMotifs four times with different size range 

options (small 5-8 bp, medium 5-12 bp, large 6-15 bp, xl 6-20 bp). Since the peaks were 

located throughout the genome, we used sequences randomly chosen from the genome 

with GC content to the peak sequences as the background for the enrichment tests. 

 

Vg cutting and nuclear translocation in response to E. coli In vitro 

K-12 strain of E. coli were grown to 1x108 cells/ml density, washed with PBS and 

heat-killed by shaking them in 95 °C for 30 min (Groh et al. 1996). This thermal 

treatment also permanently inactivates the E. coli proteases (Moran et al. 2001). The 

bacteria were then diluted 1:5 and 1:25 in PBS. 6 µl of bacteria and equal volume of 8.5 

mg/ml fat body protein extract (see above) were mixed and incubated in +26°C for 30 

min and then blotted using the Vg-N-sheet antibody. In vivo: Worker honey bees tending 

brood were captured. This behavior is performed by 4- to 12-day-old nurse bees (Johnson 

2010); this age/behavior group was chosen because they are known to have elevated 

levels of Vg compared to younger or older summer workers and to have better age 

control compared to winter bees (Amdam, Norberg, et al. 2005a). The bees were caged in 
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groups of 14 and fed ad libitum either with sterile 50 % sucrose solution or the same 

solution mixed with E. coli K-12 strain BioParticles, Alexa Fluor 488 conjugate #E13231 

(Invitrogen) in final concentration of 0.5 mg/ml. The bees were kept in +34°C in dark for 

24 h. Subsequently, the bees were immobilized by cold treatment and their fat body tissue 

was prepared for confocal microscopy as above (see: Immunohistology). This protocol 

resulted in 8 successful control samples and 9 treatment samples, in addition to one 

antibody control sample per treatment group. The presence of the labeled E. coli particles 

in the fat body tissue was confirmed by detection of their 488 nm fluorescence signal. For 

each individual, we zoomed in three different fat body tissue areas with approximately 15 

cells and counted the number of cells with visible nuclear localization and the number of 

cells without a sign of nuclear localization. Logistic regression with quasibinomial 

distribution was used for statistical analysis.  

 

Electron microscopy 

Aliquots of pure Vg (1.1 mg/ml in 20 mM Tris, 150 mM NaCl, pH 7.5) were 

applied to carbon-coated copper grids (30 s) and stained with 2% uranyl acetate. 

Micrographs were taken in minimal dose conditions in a JEOL 1230 transmission 

electron microscope operated at 100 kV, using a low-dose protocol and a 4k x 4k TVIPS 

CMOS detector under the control of EM-TOOLS software (TVIPS). Final magnification 

of the CMOS images was 54,926. A total of 15,000 particles were selected, normalized, 

and CTF-corrected using procedures implemented in the XMIPP package (Scheres et al. 

2008). For three-dimensional reconstructions, different starting templates were generated 

using the EMANstartcsym program, by common lines or using artificial noisy models 
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and Gaussian blobs with the rough dimension of the proteins (Ludtke et al. 1999),  in 

both cases with identical results, which confirms the robustness of the structure obtained. 

The structure of the homologous protein lipovitellin from silver lamprey (1lsh) was fitted 

into the final vitellogenin volume and used to determine the handedness of the structure. 

 

RESULTS 

Immunohistology 

Worker honey bee fat body tissue was observed with confocal microscopy using 

an antibody targeting the Vg N-terminus and a fluorescently labeled secondary antibody 

(Fig. 5.1A-E). Honey bee fat body consists of trophocyte and oenocyte cells (Chapman 

1998). Trophocytes are responsible for Vg production and storage while oenocytes do not 

produce or contain Vg (Pan et al. 1969; Isaac and Bownes 1982; Raikhel and Lea 1983; 

Bownes 1986). We observed two types of Vg localization patterns in trophocytes: i) Vg 

signal co-localized with DAPI in the nucleus, and also found spread throughout the 

cytosol (Fig. 5.1A-B), and ii) Vg signal absent in the nucleus and instead restricted to 

granule-like formations in the cytosol (Fig. 5.1C, see also (Havukainen, Halskau, 

Skjaerven, et al. 2011) for observations of this pattern). Controls for autofluorescence and 

unspecific secondary antibody staining were included (Fig. 5.1D-E), which indicated that 

the immunosignals present in Fig. 5.1A-D are specific for Vg antibody incubation.  

 

Cell fractionation  

To further verify the nuclear location of the N-terminal Vg fragment, we 

separated fat body cells into cytosolic and nuclear compartments by cell fractionation 
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followed by western blot (Alberts et al. 2002). Full-length Vg (180 kDa) and a ~75 kDa 

band were found in the cytosolic component, while the nuclear component only 

contained fragments below 75 kDa, including the 40 kDa N-sheet domain (Fig. 5.1F). We 

have shown previously that the 40 kDa Vg subunit is a specific cleavage product of fat 

body cells and not simply a biproduct of unspecific degradation (Havukainen, Halskau, 

Skjaerven, et al. 2011; Havukainen et al. 2012). We also observed 70, 37 and 25 kDa 

fragments in the nuclear fraction, but these are likely degradation products caused by the 

method, as the bands are faint or non-existent in untreated Western blot samples 

(Supplementary data SI1). 

 

Fig. 5.1. Localization of 

Vg signals in the honey 

bee fat body using an 

antibody targeting the 

N-terminal 40 kDa 

domain. A-E Confocal 

images of fat body 

trophocyte cells with a 

characteristic irregularly 

shaped nuclei 

representing six 

samples. The last panel 

shows the superposition 
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of DAPI (cyan) and Vg signal (red). A Vg signal co-localizes with DAPI in cell nuclei. B 

Zoom-in of a single cell showing Vg nuclear translocation. C Cells that do not show Vg 

co-localization with DAPI, instead, Vg signal is found in granules in the cytosol. The 

scale bar = 10 µm. D-E show representative images for controls where the primary 

antibody was applied (D) or omitted (E). Note that when omitting Vg antibody 

incubation, no immunosignal was detected (grayscale), while only the DAPI signal 

(cyan) was present. Scalebar = 50 µm. Magnification 40 x. F Western blot of cytosolic 

and nuclear fractions of honey bee fat body tissue. S = size standard. The full-length (180 

kDa) Vg is dominating the cytosolic fraction of the fat body proteins, whereas the 40-kDa 

N-terminal fragment mostly localizes in the nuclear fraction. Also other fragments of 

approximately 70 and 25 kDa were visible in the nuclear fraction. Three individuals were 

pooled for each of lane. N = 3. 

 

Antibody-free, labeled Vg in cell culture 

To rule out that the nuclear signal was an artefact caused by Vg primary antibody, 

we incubated cell cultures (Lepidopteran ovarian HighFive cells) with pure fluorescently-

labelled Vg. During incubation, the fluorescent Vg was imported into cells and was 

visible in the cell nuclei co-localizing with DAPI, and also visible in the cytosol in 

granule-like formations (Fig. 5.2).  
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Fig. 5.2. Localization of 

Alexa-488-labelled purified 

Vg in cultured insect 

HighFive cells. Vg was 

observed both in cytosol 

mostly in bright granules 

and as haze in the nucleus 

in the confocal sections. 

The lowest row shows two 

Vg-negative controls 

imaged with the same 

settings. Scale bar = 5 µm. 

Magnification x 63 

 

 

 

Predicting Vg-DNA-binding 

Using the whole Vg amino acid sequence, two separate programs with different 

search algorithms, DP-Bind (Hwang et al. 2007) and DRNApred (Yan and Kurgan 2017), 

both identified the same amino acid residue stretch as a putative DNA binding domain: 

SRSSTSR in the position of 250-256 in the N-sheet domain of Vg. Another sequence-

based program, DNABIND (Liu and Hu 2013), also identified N-terminal Vg as a DNA-

binding protein. This program predicts a protein’s DNA binding probability and sets a 
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threshold probably of 0.5896, above which a protein is statistically likely to be able to 

bind DNA. Vg scored a 0.6267 probability, indicating it can bind DNA. Additionally,  

the structure-based prediction software DISPLAR (Tjong and Zhou 2007) identified the 

SRSSTSR stretch as capable of binding DNA using a published honey bee Vg N-sheet 

model (Havukainen, Halskau, Skjaerven, et al. 2011) as input. There were another 12 and 

3 additional stretches identified by DP-BIND and DRNApred, respectively, which did 

not overlap between the programs, whereas DISPLAR identified two additional stretches 

that did not overlap with predictions made by the two sequence-based programs. Taken 

together, results from multiple prediction software platforms support the hypothesis that 

Vg can bind to DNA, and this capability is likely restricted to the N-sheet.  

 

ChIP-seq 

To test empirically whether Vg binds to DNA, and to determine what types of 

genes and genomic regions Vg is bound to, we performed ChIP-seq on newly emerged 

(<24 hours) and 7-day old worker bees. Newly emerged workers will take on tasks such 

as cleaning comb cells, while workers at 7 days old tend to nourish the queen and 

developing larvae. Thus, workers in these two age groups span an important behavioral 

transition or maturation that is integral to a colony’s division of labor (Seeley 1982). 

When comparing ChIP DNA with input DNA (i.e., DNA not immunoprecipitated with 

antibodies), we found significant enrichment (FDR < 0.01) at 90 and 782 putative Vg-

DNA binding sites in newly emerged and 7-day old workers, respectively. We found a 

greater number of binding sites than expected by chance within promoter-Transcription 

Start Site (TSS) regions, Transcription Termination Sites (TTS), and intergenic regions, 
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while we found fewer binding sites than expected by chance in exons and none in introns 

(Table 5.1). Of the 90 binding sites in newly emerged bees, 83 (92%) were also present in 

7-day old bees, illustrating an expansion of binding sites as workers age. Many of the 

binding sites (66 and 559, respectively) were found in close proximity to coding regions, 

being located either in promotor regions, exons, TTSs, or within 2kb from a transcription 

start site.  

 

Table 5.1. Tests for nonrandom occurrence of peak in genome feature 

genome 

feature 

total 7D 

peak on 

chromo-

somes 

obs 

overlap 

obs not 

overlap 

exp 

overlap 

exp not 

overlap 

chi-squared P-value 

promoter 782 162 620 62 720 175.1792115 5.47106E-40 

tts 782 109 673 46 736 91.67527174 2.08916E-24 

exon 782 81 701 99 683 3.747105018 0.052899057 

intron 782 222 560 439 343 244.5499512 4.00545E-55 

intergenic 782 208 574 136 646 46.14241486 1.09962E-11 

 

 

We pooled all Vg-DNA binding sites from both age groups, and we performed a 

gene functional annotation clustering analysis to better understand the biological role of 

genes at these loci. We performed this analysis using DAVID Bioinformatics Resources 

(Huang et al. 2009a, 2009b) with default settings, drawing from Gene Ontology terms for 

biological processes, molecular function, and cellular component, as well as KEGG 

pathway terms. This yielded a total of 26 functional clusters (Table 2), with several 

clusters significantly enriched when compared to the honey bee genome as a whole, 

including “cation channel activity” (N=11, P<0.001), “G protein-coupled receptor 

activity (N=11, P=0.004), “cell adhesion” (N=6, P=0.009),  “gated channel activity” 
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(N=9, P=0.009), “apoptotic process” (N=4, P=0.03), and “nucleic acid binding” (N=54, 

P=0.054).  We found Vg-DNA binding sites at several key innate immune system genes 

that were not assigned to a cluster, including Toll-like receptor 4, defensin-1, autophagy 

protein 5, and autophagy-related protein 9. Within the “G protein-coupled receptor 

activity” cluster, we also found genes coding for receptors that are known to play a role 

in complex phenotypes, like behavior, including receptors for corazonin, glutamate, 

acetylcholine, and octopamine (see Dataset S1 for complete list of Vg binding sites). 

These results demonstrate that Vg binds to DNA at hundreds of loci in the honey bee 

genome, that several are behavior-relevant, and that many of these Vg-DNA interactions 

persist as adult workers transition between tasks.  
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Table 5.2. Gene function cluster analysis of gene-associated Vg-DNA binding sites 

Cluster GO Term 
Number of 

Genes 

Modified 

Fisher's 

Exact Test 

(P-value) 

Fold 

Enrich-

ment 

FDR 

(B-H 

adjusted 

P-value) 

cation channel activity GO:0005261 11 < 0.001 4.587 0.025 

G-protein coupled receptor activity GO:0004930 11 0.004 2.940 0.217 

cell adhesion GO:0007155 6 0.009 4.537 0.990 

gated channel activity GO:0022836 9 0.009 2.978 0.351 

apoptotic process GO:0006915 4 0.030 5.694 1.000 

nucleic acid binding GO:0003676 54 0.054 1.239 0.722 

extracellular matrix GO:0031012 4 0.099 3.476 0.830 

calcium channel activity GO:0005262 3 0.109 5.212 0.863 

actin filament-based process GO:0030029 4 0.131 3.122 1.000 

monosaccharide metabolic process GO:0005996 3 0.166 4.033 1.000 

cellular component assembly GO:0022607 8 0.217 1.613 1.000 

regulation of cell communication GO:0010646 4 0.245 2.305 1.000 

sequence-specific DNA binding GO:0043565 10 0.248 1.448 0.967 

Pyruvate metabolism ame00620 3 0.321 2.573 0.994 

protein tyrosine phosphatase 

activity GO:0004725 3 0.337 2.502 0.974 

membrane organization GO:0061024 3 0.364 2.342 1.000 

phosphatidylinositol binding GO:0035091 3 0.372 2.317 0.979 

transcription factor activity, 

transcription factor binding 
GO:0000989 3 0.406 2.157 0.985 

serine hydrolase activity GO:0017171 4 0.455 1.604 0.992 

chitin metabolic process GO:0006030 3 0.493 1.815 1.000 

motor activity GO:0003774 3 0.562 1.604 0.996 

metal ion binding GO:0046872 42 0.679 0.968 0.998 

structural molecule activity GO:0005198 8 0.756 0.937 0.999 

cellular catabolic process GO:0044248 4 0.819 0.913 1.000 

nucleotide metabolic process GO:0009117 3 0.867 0.864 1.000 

GTP binding GO:0005525 4 0.964 0.609 1.000 

 

Binding motif identification 

We ran four analyses using GimmeMotif (Heeringen et al. 2011), and we selected 

the top motif predictions, based on a combination of percent enrichment, P-value, ROC-

AUC and MNCP (Table 3) (Fig. 5.3). The top motif prediction for the small motif run 
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was a sub-motif of the large motif run, so it is was discarded. These results suggest that 

there are specific sequence motifs to which Vg binds.   

 

Table 5.3. Top de novo motif predictions. 

Motif Enrich-

ment 

P-

value 

ROC-

AUC

* 

MN

CP* 

Best 

Known 

Match 

P-

value 

for 

Match 

No. 

Peaks 

with 

motif 

Analysis 

TCAAGAGATGGC

GC 

35.75 6.36E

-122 

0.737 5.44 C2H2_ZF_

M2196_1.0

1 

5.27E-

04 

300 large 

nAkyrCCATCTnTyG

rwwAn 

34.5 2.12E

-116 

0.788 5.58 bHLH_Ave

rage_34 

2.70E-

02 

310 medium 

TyAGCGCCATCT 33.1 2.81E

-116 

0.725 5.23

9 

C2H2_ZF_

M2196_1.0

1 

8.10E-

07 

314 xl 

*ROC-AUC = area under ROC curve, MNCP = mean normalized conditional probability 

 

 

Fig. 5.3. Logo representations for the 

top motif predictions. A) Top motif 

prediction from analysis with “large” 

motif setting (35.75% enrichment). B) 

Top motif prediction from analysis 

with “medium” motif setting (34.5% 

enrichment). C) Top motif prediction 

from analysis with “xl” motif setting 

(33.1% enrichment). 
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In vitro E. coli incubation 

As Vg is a pathogen pattern recognition receptor (Li et al. 2008; Salmela et al. 

2015), including vertebrates like fish (Liu et al. 2009; Zhang et al. 2011), and we detected 

Vg binding at several innate immunity genes (Results), we did a bacterial challenge for 

initial exploration of Vg translocational mechanisms. We incubated fat body protein 

extract rich in Vg with an increasing concentration of heat-killed E. coli whose bacterial 

proteases were inactivated by the thermal treatment (Moran et al. 2001). We measured 

the level of Vg fragmentation by Western blotting (four concentrations of E. coli, N = 3 

each). The presence of the bacteria appeared to enhance Vg-cutting, as the amount of N-

terminal fragmentation products increased in response to the number of bacteria (Fig. 

5.4A).  

 

Fig. 5.4. Effect of exposure to bacterial material on Vg cutting and nuclear localization. 

A. Vg cutting in response to E. coli. Honey bee fat body protein extract was subjected to 

a dilution series of heat-killed E. coli for 30 min in replicates of three and blotted using 

the Vg-N-terminal antibody. The level of Vg cutting was determined by dividing the total 

Vg protein signal by the fragments below 75 kDa (the nuclear fragments, see Fig. 5.1F).  
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B. Vg localization response to orally consumed bacteria in honey bee workers. Presence 

of Vg in the nucleus of fat body trophocyte cells was detected using confocal microscope 

in a control group (N = 8) and in a group fed with fragments of killed E. coli (N = 9). 

Each bar represents the number of cells counted in a honey bee individual’s fat body 

tissue. See representative images in Fig. 5.2.  

 

In vivo E. coli consumption 

We fed caged honey bee worker nurses (age 4 – 12 days) with control food or 

food supplemented with killed fragmented E. coli overnight and detected the level of 

nuclear translocation of Vg using confocal microscopy. In the control group (N = 8), the 

proportion of fat body trophocyte cells showing nuclear translocation of Vg ranged from 

25.00 % to 89.29 % (Fig. 5.4B). In the E. coli treatment group (N = 9), the range was 

from 0 % to 64.00 %. Regardless of the high level of individual variation in both the 

control and the E. coli-fed group, the proportion of cells with Vg signal in the nucleus 

(versus cells with signal in the cytosol) was significantly higher in the control group than 

in the group that received bacterial fragments in their diet (b = -1.4499, z = -2.501, df = 

16, p = 0.0245). These two experiments, together, indicate that the regulation of Vg 

cutting and nuclear translocation responds dynamically after exposure to bacterial 

material.  

 

Vg cutting site inspection via 3D structure and cutting assay 

Few structural models exist for Vg (Roth et al. 2013) and none of them focus on 

the dynamics at the N-sheet domain. To help bridge this gap, we used electron 
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microscopy to create the most complete 3D model of insect Vg so far and, in addition, we 

establish the enzymatic conditions required for cutting the 40 kDa N-sheet domain from 

the rest of the honey bee Vg molecule using a western blot -based inhibition assay (Fig. 

S2).  

A low-resolution 3D electron microscopy reconstruction of the purified honey bee 

Vg was carried out using negatively stained specimens (Fig. 5.5A), after multiple X-ray 

crystallization attempts failed. The structure has the general shape of a cylinder of ~140 

Å high and 80 Å wide, with two small masses protruding from the top and bottom of the 

structure. The existing X-ray structure of the homologous protein lipovitellin from 

lamprey (1lsh) (27) was fitted into the vitellogenin volume (Fig. 5.5B). The N-terminal 

domain (orange mass in Fig. 5B), together with both the β-barrel and the α-helical 

domains of lipovitellin (yellow mass in Fig. 5B), were easily fitted into the Vg volume, 

and the lipid-binding cavity was easily identified. The unresolved fragments of the 

lipovitellin structure seem to match the position of the extra masses observed in the Vg 

EM volume (Fig. 5.5B). The N-sheet followed by the linker stretch appears to protrude 

from the structure (red mass in Fig. 5.5C). These results suggest that enzymes have clear 

access to the N-sheet cutting site (see Fig. S2 for enzymatic cutting assays). Moreover, 

the following treatments were found to prevent the cutting of Vg: leupeptin, YVAD-

AOMK, EDTA and PhosSTOP. This indicates that, among possibly several other 

molecular mechanisms, dephosphorylation (PhosSTOP inhibits dephosphorylation) and 

caspase-type activity (YVAD-AOMK is a specific and leupeptin a broad-range caspase 

inhibitor) are important for Vg cutting to occur (Fig. S2).  
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Fig. 5.5. The 3D reconstruction of 

the honey bee Vg reveals the 

exposure of the cutting site. (A) 

Different views of the 3D 

reconstruction of the Vg from 

honey bee. The four on the left are orthogonal side views of the volume, whereas the two 

on the right correspond to the two end-on views of the 3D reconstruction. Bar indicates 

100 Å. (B) The same views with the atomic structure of lipovitellin from lamprey (pdb 

1lsh) docked into the EM 3D reconstruction. The N-sheet domain, which protrudes from 

the main body of the structure, is highlighted in orange. The domain colored red points to 

the linker that connects the N-sheet domain to the lipid cavity (yellow mass).  

 

DISCUSSION 

Vg is the oldest member of the Large Lipid Transport Protein family, dating back 

at least 700 million years (Hayward et al. 2010), and is common to nearly all oviparous 

animals owing to its central role in egg-yolk production. With few exceptions, it is found 

across the entire animal kingdom, ranging from some of the simplest multicellular 

animals, like Placazoans (Hayward et al. 2010), to some of the most complex, like 

mammals (Warren et al. 2008) (Fig. 6). It performs numerous functions, including many 

pertaining to complex traits such as behavior (Amdam, Norberg, et al. 2003, 2006; 

Nelson et al. 2007; Antonio et al. 2008; Corona et al. 2013), longevity (Amdam and 

Omholt 2002; Corona et al. 2007b; Amdam et al. 2012), and immunity (Amdam, Simões, 

et al. 2004; Shi et al. 2006; Li et al. 2008; Zhang et al. 2011; Salmela et al. 2015; Sun and 
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Zhang 2015b). The Vg molecule contains several highly conserved domains, and thus 

many of its functions are shared by diverse taxa. For example, its role as a pathogen 

pattern recognition receptor is observed in coral (Du et al. 2017), fish (Li et al. 2008; Liu 

et al. 2009), and insects (Salmela et al. 2015).  

 

 

Fig. 5.6 The deep phylogenetic history of Vitellogenin. Vg is the oldest member of the 

LLTP family of proteins, and first evolved around the time Metazoans (animals) 

appeared, more than 700 million years ago (1, 97). It is present in all extant Metazoan 
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phyla, from earliest animals like sponges and cnidarians to the more recently evolved 

chordates, like fish, birds, and monotreme mammals (48, 98–108). Although nearly 

ubiquitous, Vg has been lost in several lineages that are the focus of much scientific 

research, including placental mammals and higher dipterans like Drosophila 

melanogaster (109, 110). Vg’s earliest known functions pertain to egg-yolk formation 

and immunity, but it remains to be seen when DNA binding evolved.   

 

Here, we reveal a major and hitherto unknown ability of Vg that can provide a 

molecular explanation for how Vg regulates so many complex traits: nuclear 

translocation and DNA binding. Vg may be directly involved in modulating gene 

expression, and given its ubiquity in the animal kingdom and its conserved molecular 

structure, it is possible that it performs a similar function across a wide array of oviparous 

animals.  

In our study, we found strong evidence of Vg translocating to the nucleus using 

three methods: immunohistology, cell fractioning into nuclear and cytosolic 

compartments and anti-body-free localization of Vg in cell culture. The two first 

approaches confirmed the Vg N-sheet domain to be present in both nucleus and cytosol, 

with the latter result reaffirming previous findings (Smedal et al. 2009; Havukainen, 

Halskau, Skjaerven, et al. 2011). Moreover, the second approach specifies that the cell 

nucleus excludes the full length 180 kDA Vg molecule and the previously reported 

specific Vg fragmentation product of 150 kDa size (i.e., the Vg molecule without the N-

sheet domain) (Havukainen, Halskau, Skjaerven, et al. 2011). The cell culture approach 

makes it less likely that antibody artefacts explain the outcomes of the first experiments.  
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We found theoretical support for Vg’s DNA binding ability using several prediction 

software platforms, and this prompted us to test this ability empirically. Our ChIP-seq 

analysis confirmed that honey bee Vg binds to many loci in fat body DNA of newly 

emerged and 7-day old workers. Despite there being far fewer Vg-DNA binding sites in 

newly emerged than 7-day old workers (150 vs 927 loci, respectively), there is robust 

overlap in binding sites between these two age groups as over 75% of sites observed in 

newly emerged workers are still present in 7-day older workers. This suggests that Vg not 

only maintains long-term associations with specific loci, but also that the repertoire of 

Vg-DNA binding sites expands as workers age and behaviorally transition from cell 

cleaning to nursing.   

Gene functional annotations of these Vg-DNA binding sites hint at the types of 

biological functions that Vg may be targeting for regulation. For example, two of the 

larger functional clusters have GO terms “nucleic acid binding” and “transcription factor 

activity” (Table 5.1), suggesting that Vg interacts with molecular machinery regulating 

gene expression. These clusters include genes coding for transcription factors, histones, 

methyltransferases, and zinc finger proteins (Dataset S1), all important players in gene 

regulation. Additionally, we found significantly enriched functional clusters for GO terms 

“ion channel activity” and “G protein-coupled receptor activity” (Table 5.1), suggesting 

that Vg regulates components of signal transduction pathways. Interestingly, newly 

emerged and 7-day old workers perform different tasks, and many genes in the “G 

protein-coupled receptor activity” cluster are known to affect how an individual behaves 

and responds to stimuli. These include receptors for glutamate (Kucharski et al. 2007), 

acetylcholine (Eiri and Nieh 2012), corazonin (Gospocic et al. 2017), and octopamine 
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(Grohmann et al. 2003). One possible explanation is that as workers age and transition 

between tasks they respond to different signals from nestmates and the environment, and 

thus must be equipped with relevant molecular machinery to receive and respond to those 

signals.  

A potential shortcoming here is that these Vg-DNA binding loci are from fat body 

cells rather than neurons, so the effect on behavior might appear limited. However, Vg is 

neither found nor expressed in honey bee neurons (Münch et al. 2015), limiting its 

likelihood of binding to DNA therein. Fat body, on the other hand, not only produces and 

stores Vg, but also plays a central role in regulating metabolism and homeostasis. In this 

capacity, it produces many products that affect a wide range of insect behaviors, 

including courtship (Lazareva et al. 2007), host-seeking (Klowden et al. 1987), feeding 

(Zinke et al. 1999), and onset of foraging (Antonio et al. 2008). Moreover, the fat body is 

a key player in innate immunity (Fehlbaum et al. 1994; Morishima et al. 1997; Lycett et 

al. 2006), and our data show Vg to be bound to several key immune-related genes in this 

tissue, including toll-like receptors (reviewed in (Akira et al. 2001; Medzhitov 2001)), 

defensin-1 (reviewed in (Ganz 2003)), and autophagy proteins (reviewed in (Levine and 

Deretic 2007; Xu et al. 2007; Nakahira et al. 2011; Deretic 2012)) (Dataset S1). Taken 

together, the fat body’s central role in honey bee biology means that any protein-DNA 

binding herein could have wide-ranging effects on numerous physiological pathways. 

This work also revealed several putative de novo DNA binding motifs for Vg. The aim of 

this ChIP-seq work here was to determine whether Vg binds to DNA, and if so, at which 

loci. Our next step is to further our understanding of Vg’s actions inside the nucleus and 

to determine how it regulates gene expression across different caste types and populations 
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in honey bees. This is a multi-faceted approach that will involve performing ChIP-seq on 

workers, drones, and queens from multiple colonies to determine how Vg differentially 

binds to DNA, and performing gene expression analyses such as RNA-seq to elucidate 

how Vg-DNA binding up- or down-regulates gene expression at various loci. 

Furthermore, we can distinguish whether Vg is a transcription factor or co-regulator by 

determining what other proteins it interacts with in the nucleus via co-

immunoprecipitation and mass spectrometry (Li, Collins, et al. 2016). This will greatly 

enhance our knowledge of Vg’s regulatory properties and can potentially unveil co-

evolutionary relationships between Vg and other proteins. Nevertheless, the findings 

presented in this study here represent a major new discovery of Vg function.  

Given Vg’s numerous immunological functions and that fact that it binds to several 

immune-related genes, we showed that Vg cutting is sensitive to infection and that the 

system dynamically responds to immunological perturbations. Interestingly, Vg cutting is 

enhanced by incubation with heat-killed E. coli, but ingestion of E. coli by workers 

reduces the amount of Vg N-sheet subunit translocated to the nucleus. This finding 

suggests that bacterial material provokes Vg instability, but that Vg nuclear translocation 

is a tightly regulated process. From an immunological standpoint, it may be that Vg 

responds to bacterial infection by directly binding to and eliminating bacterial cells rather 

than up-regulating the transcription of additional immune-related genes, as Vg is known 

to bind to bacteria such as E. coli (Salmela et al. 2015) and act as a bactericidal molecule 

(Zhang et al. 2011).  Follow-up studies are needed to fully elucidate Vg’s immune 

response to bacterial infection, as the current study setting does not capture the acute 

changes caused by the bacterial challenge.  
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Vg’s roles in immunity and reproduction seem to be interlinked, and we have 

shown before that honey bee Vg binds to bacterial surface molecules and carries them to 

the queen’s eggs in the process of maternal immune priming (Salmela et al. 2015). 

Injection of dead bacteria negatively impacts oogenesis in the mosquito Anopheles 

gambiae due to altered vg expression (Rono et al. 2010). The injected bacteria activate 

the Immune deficiency (IMD) pathway, which is the key cascade in the defense against 

Gram-negative bacterial infection. Hence, it has been suggested that the IMD-Vg 

association provides the molecular basis for the trade-off between reproduction and 

immunity (Rono et al. 2010). In Drosophila, a caspase called Dredd  is required for the 

activation of IMD (Leulier et al. 2000). Dredd has YVAD-activity (Kim et al. 2014), 

which makes it a candidate caspase to study further in the context of the immunological 

and reproductive implications of Vg cutting.   

In the in vivo setup, the level of nuclear translocation of Vg was highly variable 

among individuals in both the control and the E. coli-fed groups. Similarly, Western blots 

of individual bees show variation in the strength of the 40 kDa N-sheet band (Fig S1). 

The haemolymph titers of full-length Vg is known to have a high level of individual 

variation in honey bees, which is associated with variation in stress tolerance (Seehuus et 

al. 2006). Similarly, variation in the nuclear Vg might be linked to certain physiological 

features, but this speculation needs further investigations.   

Finally, we present the first 3D structure of a full-length invertebrate Vg, albeit at 

low resolution. The previous structural biology carried out on the Vg protein family 

includes an X-ray structure of lamprey lipovitellin purified from eggs (Raag et al. 1988a; 

Anderson et al. 1998), an NMR structure of the honey bee Vg polyserine linker 



  112 

(Havukainen et al. 2012), and homology modeling of honey bee Vg (Havukainen, 

Halskau, Skjaerven, et al. 2011; Havukainen et al. 2013)and mammalian apolipoprotein 

B by others (Mann et al. 1999). The lamprey structure lacks four C-terminal regions 

because they are disordered and cannot be resolved with the X-ray diffraction (Anderson 

et al. 1998). Our electron microscopy structure shows the whole molecule, where the 

missing regions appear as protrusions surrounding the C-terminal area when compared to 

the lamprey X-ray structure. The electron microscopy structure reveals, for the first time, 

that the honey bee Vg is a monomer (see previous speculations in (Wheeler and Kawooya 

1990)), unlike most insect (Tufail and Takeda 2008)or vertebrate Vgs (Finn 

2007).Comparison between the lamprey lipovitellin X-ray structure and our insect Vg 3D 

electron microscopy reconstruction reveals surprisingly little differences in the N-sheet or 

the linker region. The heavily phosphorylated honey bee polyserine linker is 70 amino 

acid residues longer than the corresponding non-phosphorylated linker in the lamprey 

protein (Havukainen et al. 2012). In addition, there are two insect specific loops of 

unknown function in the N-sheet domain (11 and 19 amino acid residues long in the A. 

mellifera Vg) (Havukainen, Halskau, Skjaerven, et al. 2011). In spite of the great 

differences in sequence and posttranslational modifications between insect and vertebrate 

Vgs, they appear structurally conserved. The lamprey X-ray structure docks well into the 

3D reconstruction of the honey bee Vg, and shows that both N-sheet and the polyserine 

linker are well-exposed to solvent (Orange and red domains in Fig. 5.4B).  Such easily 

accessible sites are often preferred by proteases (Fontana, Laureto, et al. 2004), unless 

they are protected by some other means, for example, by phosphate groups (Cohen 2000). 

Our Vg-cutting inhibition assays suggest that dephosphorylation, indeed, may be 
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important for Vg cutting to occur. Furthermore, the cutting inhibition assay suggests the 

Vg N-sheet domain is cleaved via caspase activity (see Supplementary Information). 

However, we highlight that the cutting and nuclear translocation of Vg might be linked to 

many more traits than tested or hypothesized here. We conclude that Vg cutting might 

not need major conformational changes, but the phosphorylation status of Vg may play a 

crucial role instead. 

Our discovery that the Vg N-sheet subunit binds to DNA in fat body cell nuclei 

raises a number of questions that warrant further research. First, does Vg translocate into 

the nucleus in other tissues in addition to the fat body? Vg has been verified in eggs and 

ovaries (Seehuus et al. 2007), in hypopharyngeal glands (Seehuus et al. 2007), in immune 

cells (Hystad et al. 2017), and in glial cells of the honey bee brain (Münch et al. 2015). In 

this latter observation, it is specifically the Vg N-sheet that is localized in glial cells, and 

such subcellular localization should prompt  a highly relevant research subject since 

honey bee vg knock-downs show an altered brain gene expression pattern (Wheeler et al. 

2013) and major behavioral changes (Nelson et al. 2007). Second, does Vg naturally 

translocates to the nucleus in other animals? The N-terminal Vg cutting pattern is similar 

in most insects studied (Tufail and Takeda 2008), but the possibility of N-sheet 

translocation remains speculative before it is experimentally tested in another species.  

Finally, what role do other Vg fragments play in nuclear translocation? In addition to the 

most prominent 40 kDa N-sheet fragment (Havukainen, Halskau, Skjaerven, et al. 2011), 

Vg is prone to what appears to be unspecific degradation (Wheeler and Kawooya 1990). 

Both the N-sheet-specific and whole-Vg-specific antibodies, as well as Vg purified from 

fat body (Havukainen et al. 2012), show weak protein bands smaller in size to full-length 
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Vg, most notably, bands of ~75 and ~125 kDa in size. It is unclear if these are functional 

Vg fragments or simply the result of unspecific fragmentation. In general, we have 

observed that Vg fragment number grows in harsh sample treatment conditions. We 

suspect that at least a 25 kDa fragment detected by the Vg antibody used here in our 

tissue fractioning assay is a degradation product caused by the assay protocol. However, 

it is not ruled out that other Vg fragments in addition to N-sheet play a role in nuclear 

localization of Vg.  

Vg was first discovered as an egg-yolk protein, but the protein is so ancient that 

we cannot be sure of its original function, and it’s possible that it took on a gene 

regulatory role early in its history. While we only touch the functional link between Vg 

and immunity in this study, our results will, hopefully, spark diverse future studies on the 

role of Vg as a putative transcription factor in honey bees and other animal species.  
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CHAPTER 6 

VITELLOGENIN IS A DNA-BINDING PROTEIN IN HONEY BEES 

Gyan Harwood, Chris Elsik, Shanshan Yang, Gro Amdam 

 

ABSTRACT 

Many proteins can bind various ligands to perform multiple different functions, including 

some that bind to DNA and regulate gene expression. Vitellogenin (Vg) is a highly 

conserved multifunctional protein that is primarily known for its role in egg formation, 

but which also has functions pertaining to immunity, oxidative stress relief, longevity, 

and behavior. In the honey bee (Apis mellifera), gene knockdown of Vg elicits expression 

changes in many other genes, suggesting that it may play a more direct role in gene 

regulation. We have recently shown that a structural subunit of Vg translocates to the 

nucleus and binds DNA, potentially acting as a transcription factor. Here, we expand on 

this finding by examining how Vg-DNA binding may elicit gene expression changes in 

the honey bee worker caste, and by identifying other nuclear proteins bound to the Vg-

DNA complex that may indicate signaling pathways involved in Vg gene regulation. We 

find that Vg-DNA binding is associated with expression changes in dozens of genes and 

that the Vg-DNA complex interacts with dozens more nuclear proteins. Our results 

suggest Vg-DNA binding may regulate several important processes in honey bee 

workers, including energy metabolism, behavior, and signaling.  
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INTRODUCTION 

It was long thought that all proteins performed a single given function (Horowitz 

1995). Advances in molecular biology have shifted our understanding, and it is now 

believed that many proteins, if not the majority, are multifunctional. Such multifunctional 

proteins perform different tasks depending a number of contexts including their 

extracellular or subcellular localization, concentration relative to binding partners, and 

post-translational modifications they have undergone (Volz 2008; Gurevich and Gurevich 

2015; Faust et al. 2017). Proteins’ functions stem from their molecular structure (shape), 

which allow them to bind specifically to and interact with various ligands, including other 

proteins, lipids, and nucleic acids. Proteins that localize in the cell nucleus and bind 

nucleic acids can achieve multifunctionality by regulating expression of genes involved 

in many biological pathways (Chesmore et al. 2016). 

Vitellogenin (Vg) is a well-documented multifunctional protein. This ancient and 

highly conserved protein (Baker 1988a, 1988b; Babin et al. 1999; Smolenaars et al. 2007; 

Wu et al. 2013) is primarily known for its role in egg-yolk formation in oviparous 

animals, where it transports lipids and other nutrients into developing eggs and serves as 

a yolk protein precursor (Pan et al. 1969; Engelmann 1979). In addition, Vg also acts as a 

pathogen pattern recognition receptor (Zhang et al. 2005, 2011; Li et al. 2008; Liu et al. 

2009; Tong et al. 2010; Salmela et al. 2015), an antioxidant (Seehuus et al. 2006; 

Havukainen et al. 2013; Sun and Zhang 2015a), and a nutrient storage protein (Amdam, 

Norberg, et al. 2003), and plays key roles in phenotypes like behavior (Amdam and 

Omholt 2003; Amdam, Norberg, et al. 2003; Ihle et al. 2010; Roy-Zokan et al. 2015; 

Dittmer et al. 2019) and longevity (Amdam, Norberg, et al. 2005b; Ihle et al. 2015; 
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Salmela et al. 2016). Many of these functions are shared across a diverse collection of 

organisms including corals (Du et al. 2017), fish (Shi et al. 2006; Li et al. 2008, 2009; Liu 

et al. 2009), and insects (Havukainen et al. 2013; Salmela et al. 2015; Harwood et al. 

2019). Vg is localized both intracellularly and extracellularly, being first synthesized in 

the liver (Wang et al. 2005), adipose tissue (fat) (Brookes 1969), or hepatopancreas 

(Guan et al. 2016) (depending on the organism) before being secreted into the blood or 

hemolymph. It can then be taken up by the ovaries and other tissues via receptor-

mediated endocytosis (Noah Koller et al. 1989; Raikhel and Dhadialla 1992). Vg’s 

multitude of functions have been the subject of much study, and there is now a fairly 

good understanding of how Vg’s molecular structure enables it to interact with specific 

ligands to facilitate discrete functions like lipid transport (Raag et al. 1988b), pathogen 

recognition (Liu et al. 2009; Salmela et al. 2015), and oxidative stress relief (Seehuus et 

al. 2006; Havukainen et al. 2013). However, evidence also points to Vg playing a more 

direct role in regulating gene expression and molecular pathways. For example, knocking 

down vg gene expression via RNA interference (RNAi) results in expression changes to 

thousands of genes in the brain (Wheeler et al. 2013). While the mechanism by which Vg 

can affect gene expression has thus far remained a mystery, we have recently made a 

major discovery that sheds new light on Vg’s ability to affect so many functions: In 

honey bees (Apis mellifera), a highly conserved structural subunit of Vg is cleaved and 

translocated into the nucleus of fat body cells where it binds to DNA at hundreds of loci 

(Salmela et al, submitted). The consequences of this Vg-DNA binding are not yet 

understood, but Vg may be acting as a transcription factor or transcriptional co-regulator 

to affect genes involved in a broad range of biological functions.  
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Honey bees are a premier insect model for Vg studies owing to the key roles it 

plays in social behavior, immunity, nutrient storage, and ageing (see references above). A 

honey bee colony is composed of a reproductive queen and a functionally sterile worker 

caste that performs a series of age-dependent tasks required for colony survival and 

proliferation (Seeley 1982). Vg sets the pace of worker behavioral development, with 

younger workers aged 1-2 weeks having high titers of Vg and performing brood-rearing 

tasks (i.e., nursing), while a subsequent decline in Vg and a concomitant  increase in 

juvenile hormone prompt workers to become foragers that collect resources required by 

the colony (Amdam and Omholt 2003). This behavioral change from nursing to foraging 

is also accompanied by a change in diet from lipid- and protein-rich pollen to 

carbohydrate-rich honey. Vg titers at different worker life stages can also affect behaviors 

like responsiveness to sucrose and preference for collecting nectar or pollen as foragers 

(Amdam, Norberg, et al. 2006; Wang et al. 2012, 2013). Honey bees have also been used 

to study Vg’s effects on ageing, as both queens and overwintering workers have high Vg 

titers and live a relatively long time (several years and several months, respectively), 

while summer workers have much lower titers and typically live just 1-2 months 

(Amdam, Norberg, et al. 2005a; Salmela et al. 2016).  Vg’s role in extending lifespan 

stems not only from its ability to fight pathogens and act as a nutrient store, but also from 

its ability to neutralize reactive oxygen species (ROS) and lessen the cellular damage that 

leads to senescence (Seehuus et al. 2006; Havukainen et al. 2013). With a new 

understanding of Vg nuclear translocation and DNA binding, we can begin to investigate 

how Vg’s role as a potential transcription factor may contribute to differences observed  

among the honey bee worker caste.  
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In this study, we used a multi-pronged approach to compare Vg’s actions in the 

cell nuclei of nurses and foragers. We limited confounding age-effects by comparing age-

matched  nurses and foragers sampled from single-cohort colonies. Specifically, 1-day 

old workers are paired with a queen, and a subset of these workers prematurely transition 

into foragers as the nutritional demands of the colony grow. Our aims in this study were 

threefold. First, we mapped out Vg-DNA binding sites using chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) to determine which sites are 

shared or unique to nurses and foragers. We analyzed the genomic distribution of these 

binding sites to determine whether they are preferentially found in promotor regions (i.e., 

where transcription factors typically bind), and we performed a motif analysis to look for 

specific Vg-DNA binding sequences. We compared these motifs with known 

transcription factor binding motifs from Drosophila melanogaster, as the genetic 

architecture of this marquee insect model is more fully worked out. Second, we used 

RNA-seq to investigate whether Vg-DNA binding corresponds to gene expression 

differences in nurses and foragers, and we performed Gene Ontology (GO) term analyses 

to determine whether ChIP-seq and RNA-seq gene lists are enriched for specific 

biological functions. Finally, we used co-immunoprecipitation followed by mass 

spectrometry to identity additional nuclear proteins that are bound to the Vg-DNA 

complex. Given that transcriptional regulation can involve a complex interaction between 

transcription factors, co-regulators, enzymes, signaling molecules (Bondos and Tan 

2001), the aim here is to elucidate regulatory pathways that may contributing to Vg-DNA 

binding and subsequent gene expression changes.  
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Our results suggest that Vg’s DNA- and protein-binding in the nucleus regulates 

many genes involved in energy metabolism, behavior, and signal transduction pathways. 

This study represents the first comprehensive investigation of Vg’s potential gene 

regulatory roles in honey bees, particularly as it relates to differences among different 

task groups in the worker caste. Given Vg’s ubiquity in metazoans and its conserved 

sequence and structure, this study should open up a broad new field of research to 

examine similar functions in Vg and other related proteins across a large spectrum of 

animal taxa.   

 

METHODS 

Bees 

 Bee stocks were maintained at the Arizona State University Bee Research Facility 

in Mesa, Arizona, USA. We established 3 single-cohort colonies and treated each as a 

separate biological replicate owing to the high degree of relatedness among the 

nestmates. To make these colonies, brood frames from established hives were placed in 

an incubator overnight at 34°C and 50% humidity, and the next morning roughly 2,000-

3,000 newly emerged were transferred into each of 3 “nuc” hives along with a caged 

queen and frames of honey, pollen, and empty comb (Scheiner and Amdam 2009; 

Amdam et al. 2010). The bees in each of the single-cohort colonies originated from 

different donor hives. The hives were sealed for 3 days, after which they were opened 

and the queen was released from her cage. In single cohort colonies, some of the workers 

will prematurely transition into foragers in order to collect resources for the colony, and 

on the 7th day after establishing the colonies we paint marked new foragers that were 
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returning to the hive with pollen. On the 14th day, we collected N=50 paint marked 

foragers and an equal number of nurses from each colony, meaning all foragers and 

nurses had been performing their given task for at least 7 days. Nurses were identified 

when they entered brood cells to feed larvae. Collected bees were anesthetized on ice 

before having their fat body dissected, flash frozen in liquid nitrogen, and stored in -

80°C. From each of the three single-cohort colonies, we pooled fat body samples from 25 

nurses or 25 foragers. Pooled samples were homogenized in a mortar and pestle with 

liquid nitrogen, and the resulting homogenate was divided into two workflows for ChIP-

seq and RNA-seq. 

 

Chromatin immunoprecipitation 

 For the ChIP-seq pipeline, we followed previously established protocols (Bai et 

al. 2013). Briefly, the homogenate was transferred to a 15mL dounce homogenizer tube 

on ice with 4mL of 1% formaldehyde in 1x phosphate-buffered saline (PBS) to crosslink 

DNA and proteins in the sample. The crosslinking was quenched after 20 mins by adding 

glycine (final concentration 125mM). The homogenate was transferred to a 15 mL tube 

and centrifuged at 1500g for 3 mins at 4°C, and the resulting pellet was washed 3 times 

with 1x PBS and protease inhibitor cocktail (Roche cOmplete™). We then washed the 

pellet once with cell lysis buffer (NaCl 100mM, HEPES [pH 7.6] 5mM, EDTA 1mM, 

NP-40 0.5%) and protease inhibitor and centrifuged it at 1500g for 5 mins at 4°C. After 

discarding the supernatant, we resuspended the pellet in 600 µl nuclear lysis buffer 

(HEPES [pH 7.6] 50mM, EDTA 10mM, Na-deoxycholate 0.1%, N-lauroylcosanine 

0.5%) and sonicated the sample with a QSonica Q800R2 sonicator for a total of 5 mins 
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(15 s on, 20 s off, amplitude = 20%). We checked the sonicated sample on an agarose gel 

to confirm that the DNA was sheared to a size of 300-500 bp.  

 The Vg-DNA complex was precipitated using antibodies specific to the whole 

honey bee Vg protein (Pacific Immunology, Ramona, CA) and whose specificity to Vg 

has been verified in several studies (Münch et al. 2015; Harwood et al. 2019). We first 

conjugated these antibodies to magnetic Dynabeads™ (Invitrogen™ #10001D, Protein 

A). To do so, we removed the magnetic beads from their buffer and washed them 4 times 

with 1 mL blocking buffer (1x PBS with 5% bovine serum albumin [BSA, Jackson 

ImmunoResearch #001-000-161]) before adding 500 µl block solution and 20 µl 

antibodies to the beads and rotating overnight at 4°C.  We then washed the antibody-bead 

complex 5 times with blocking buffer, then added 500 µl of the chromatin extracts and 

500 µl of dilution buffer with protease inhibitor (SDS 0.01%, Triton x100 1%, EDTA 

1.2mM, Tris-HCl [pH 8.0] 16.7mM, NaCl 167 mM) and rotated at 4°C overnight. 

Separately, we used 50 µl of chromatin extracts + dilution buffer as input DNA. These 

samples were incubated with magnetic beads that had undergone the same washing steps, 

except they had not been conjugated with the antibodies. The next day, all samples were 

washed with a low-salt buffer (SDS 0.01%, Triton x100 1%, EDTA 2mM, Tris-HCl [pH 

8.0] 20mM, NaCl 150mM), a high-salt buffer (SDS 0.01%, Triton x100 1%, EDTA 

2mM, Tris-HCl [pH 8.0] 20mM, NaCl 500mM), a LiCl buffer (LiCl 0.25M, NP40 1%, 

Na-deoxycholate 1%, EDTA 1mM, Tris-HCl [pH 8.0] 10mM), and TE buffer (EDTA 

1mM, Tris-HCl 10mM). The samples were then eluted by suspending the beads in 200 µl 

elution buffer (EDTA 10mM, Tris-HCl [pH 8.0] 50mM, SDS 1%) and heating in a water 

bath at 65°C for 15 mins. The magnetic beads were discarded and the remaining solution 
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was reverse cross-linked by incubating at 65°C overnight on a heating rack. To purify the 

DNA in the samples, we added 200 µl of TE buffer and 8 µl of RNase A (LifeTech 

#12091021) and incubated at 37°C for 30 mins before adding 8 µl of Proteinase K 

(LifeTech #25530049) and incubating at 55°C for 1 hr. We then used 

phenol:chloroform:isoamyl (LifeTech #15593-031) and a heavy phase lock gel tube (5 

PRIME #2302810) to separate the aqueous DNA from any contaminants. Finally, we 

used  16 µl glycogen (LifeTech #AM9510), 40 µl of sodium acetate (LifeTech #R1181), 

and 800 ul of 100% EtOH (Fisher #04355222) to precipitate the DNA for 1 hr at -80°C 

before centrifuging at 16,000g for 30 mins at 4°C. We washed the resulting pellet with 

70% EtOH and allowed it to airdry before resuspending it with 50 µl of TE buffer. We 

measured the concentration of DNA on an Invitrogen Qubit™ Fluormenter 2.0.  

 

DNA library prep, sequencing, and annotation 

 DNA samples (ChIP DNA + Input DNA) were submitted to the Biodesign 

DNASU Sequencing Core at Arizona State University. Illumina compatible libraries 

were generated on the Apollo 384 liquid handler using KAPA Biosystem’s LTP library 

preparation kit (KAPA KK8232). Genomic DNA was sheared to approximately 400-

600bp fragments using Covaris M220 ultrasonicator, then all samples were end repaired 

and A-tailed as described in the KAPA protocol. Illumina-compatible adapters with 

unique indexes (IDT #00989130v2) were ligated on each sample individually. The 

adapter ligated molecules were cleaned using Kapa pure beads (Kapa Biosciences, 

KK8002), and amplified with Kapa’s HIFI enzyme (KK2502). Each library was then 

analyzed for fragment size on an Agilent’s Tapestation, and quantified by qPCR (KAPA 
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Library Quantification Kit, KK4835) on Thermo Fisher Scientific’s Quantstudio 5. 

Libraries were then multiplexed and sequenced on 2x75 flow cell on the NextSeq500 

platform (Illumina) at the ASU’s Genomics Core facility. 

The raw Illumina 2x75bp pair-end reads were quality checked using FastQC 

v0.10.1, followed by adapter trimming and quality clipping by Trimmomatic 0.35. Any 

reads with start, end or the average quality within 4bp window falling below quality 

scores 18 were trimmed. The clean reads were aligned to reference genome Apis 

mellifera Amel_HAv3.1 (ht https://www.ncbi.nlm.nih.gov/assembly/GCF_003254395.2/) 

by Bowtie 2 version 2.2.9.  Library insert size was checked by Picard Tool 

(https://broadinstitute.github.io/picard/). Library complexity was checked by NRF 

(nonredundancy fraction), defining as number of unique start positions of uniquely 

mappable reads divided by number of uniquely mappable reads. IGVtools and 

bamCompare from deepTools were employed for compare two BAM files based on the 

number of mapped reads. First the genome is partitioned in to bins of equal size and then 

the number of reads in each bin is counted. The log2 value for the ratio of number of 

reads per bin of each sample was reported for IGV visualization and compared between 

each pair. With 95% correlation, three biological replicates were combined for peak 

identification.  MACS2 was used for peaks calling with 0.05 FDR cutoff.   

Narrowpeak files as MACS2 output for each individual replicates and combined samples 

were annotated by HOMER. It first determines the distance to the nearest transcription 

start site (TSS) and assigns the peak to that gene. Then it determines the genomic 

annotation of the region covered by the center of the peak, including promotor (1kb 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000002195.4
https://broadinstitute.github.io/picard/
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upstream to 100bp downstream of TSS), transcription termination site (TTS), Exon 

(Coding), 5' UTR Exon, 3' UTR Exon, Intronic, or Intergenic. 

 

Genome region and motif analysis of ChIP-seq binding sites 

 To determine whether Vg-DNA binding sites are more likely than chance to be 

located in promotor regions, we first created a null distribution of ChIP loci. To do this, 

we took 1000 hypothetical ChIP peaks of 200 bp long and randomly distributed them 

throughout the genome using HOMER, and then repeated this procedure for 1000 

iterations. We then examined which types of genomic regions were at the center of these 

peaks using the same default classifications in HOMER as above. A Chi-square test was 

then used to determine whether to compare this null distribution with the distributions 

found in our ChIP-seq data.  

 

Motif analysis 

 For motif discovery, we used the DREME feature (Bailey 2011) within the 

MEME suite of tools (Bailey et al. 2009) to look for short, ungapped motifs of 8bp within 

samples. We then compared the these motifs to known Drosophila motifs using 

TOMTOM (Gupta et al. 2007). 

 

RNA extraction 

Using the same homogenized samples as with the ChIP procedure, a portion of 

the homogenate went into an RNA extraction workflow. Here, use followed standard 

phenol RNA extraction protocols using TRIzol™ Reagent (Invitrogen™ #15596026), 
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chloroform (Alfa Aesar #32614) and isopropanol (LabChem #LC157501). The resulting 

RNA pellets were air-dried, re-suspended with nuclease-free water, and subject to 

DNAse treatment (Invitrogen™ Turbo DNA-free™ #AM1907). We measured the RNA 

concentration using a NanoDrop and then diluted each sample a working concentration of 

200 ng/µl.  

 

RNA library prep, sequencing, and annotation 

Using KAPA’s mRNA HyperPrep Kit (KAPA #KK8580), mRNA sequencing 

libraries were generated from total RNA. Magnetic oligo-dT beads were used to capture 

mRNA specifically, and the mRNA was sheared to approximately 150-200bp in length 

using heat and magnesium. The 1st strand of the mRNA fragments were reverse 

transcribed using random priming. The 2nd strand was generated with incorporated dUTP 

molecules, and dAMP was added to the 3’ ends of the double-stranded cDNA molecules. 

Illumina-compatible adapters with unique indexes (IDT #00989130v2) were ligated on 

each sample individually. The adapter ligated molecules were cleaned using KAPA Pure 

beads (KAPA #KK8002), and amplified with Kapa’s HIFI enzyme (KAPA KK2502). 

The strand marked with dUTP is not amplified, allowing for strand-specificity. Each 

library was then analyzed for fragment size on an Agilent Tapestation, and quantified by 

qPCR (KAPA KK4835) on Thermo Fisher Scientific’s Quantstudio 5 before multiplex 

pooling and sequencing a 1x75 flow cell on the NextSeq500 platform (Illumina) at the 

ASU Genomics Core facility.  

The Apis mellifera transcriptome and Annotation Release 104 from NCBI 

(derived from genome Amel_HAv3.1) were used for quasi-mapping and count 
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generation. FASTQC1 (version 0.11.8) was used on each sample for quality check. 

Average per-base read quality scores were over 30 in all samples and no adapter 

sequences were found, indicating high quality reads. We used Salmon3 version 0.13.1 to 

quasi-map reads to the transcriptome and quantify abundance of each transcript. The 

transcriptome was first indexed, then quasi-mapping was performed to map reads to 

transcriptome using additional arguments --seqBias and --gcBias to correct sequence-

specific and GC content biases and --numBootstraps=30 to compute bootstrap transcript 

abundance estimates. Gene-level counts were then estimated based on transcript-level 

counts using the “bias corrected counts without an offset” method from the tximport 

package. 84 – 90% of reads mapped to the transcriptome (41.1-62.2 million per sample) 

and were kept for statistical analysis. We used the TMM  (trimmed mean of M values) 

normalization in the edgeR package to adjust for possible biased in RNA composition, 

such as reads mapping to viral genomes.  Normalization factors  ranged from 0.52 and 

1.35, but variation was between individuals, not caste or hives, suggesting no group-level 

difference in RNA composition. Samples with a higher proportion of reads mapping to 

viral genes tended to have lower TMM normalization factors, to account for the smaller 

number of reads mapping to the Apis transcriptome. The NCBI Amel_v3.1 Annotation 

Release 104  contains 12,090 genes, but not all are expressed in our samples at detectable 

levels. We set a detection threshold of 0.5 CPM (counts per million) in each sample, 

resulting in 9,134 genes detected that accounted for 99.95% of all reads. After filtering, 

TMM normalization was performed again and normalized log2-based CPM values were 

calculated using edgeR’s cpm() function with prior.count = 3 to help stabilize fold-

changes of extremely low expression genes. Multidimensional scaling in the limma7 



  128 

package was used to identify potential treatment effects at higher level. Testing for 

differentially expressed genes (DEGs) was performed using Limma-trend methods. We 

identified 468 DEGs between nurses and foragers using a (Benjamini-Hochberg) FDR < 

0.05 as a cutoff.  

 

Protein immunoprecipitation and mass spectrometry 

 To pull down other proteins that are interacting with Vg and DNA, we integrated 

our ChIP procedure with a protocol for immunoprecipitation of chromatin-interacting 

protein complexes (Mohammed et al. 2016). As with the ChIP protocol, we pooled bee 

tissue (N=10) from each caste within colonies and crosslinked the homogenate with 1% 

PFA. We quenched the homogenate, washed it, lysed the cellular membranes, lysed the 

nuclear membranes, and then sheared the samples via sonication. We bound our anti-Vg 

antibodies (20 µl) to 100 µl of magnetic Dynabeads™ (Protein A) then incubated them 

with our samples. As a control, we incubated samples with Dynabeads™ that had not 

been bound with anti-Vg antibodies, so any proteins precipitated in these samples would 

be due to proteins interacting directly with the Dynabeads™. If any protein was identified 

in both the treatment and control samples it was deemed a false positive and removed 

from further analysis. The remainder of the procedure followed Mohammed et al.’s 

protocol (Mohammed et al. 2016), whereby the bead samples were washed first with 

RIPA buffer (HEPES [pH 7.6] 50 mM, EDTA 1mM, Na-deoxycholate 0.7%, NP-40 1%, 

and LiCl 0.5M) then with ammonium bicarbonate, then subject to trypsin digestion, solid 

phase extraction, and washing, before being loaded onto an AB Sciex 4800 mass 
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spectrometer for MALDI-TOF/TOF-MS (matrix-assisted laser desorption/ionization – 

tandem time of flight – mass spectrometry).   

Proteomics analysis was performed on an Orbitrap Fusion Lumos Tribrid mass 

spectrometer with an Ultimate 3000 nano-LC and nanoelectrospray ionization. Peptides 

were separated with a nC18 analytical column (C18 Pepmap 100, 3 µm particle, 100 Å 

pore, 75 µm i.d. ×150 mm) using 150 min buffer gradient a low flow rate at 300 nL/min. 

Data-dependent acquisition in positive mode was performed for data collection. Acquired 

data was searched with Proteome Discoverer 2.2 using the SEQUEST search engine with 

label-free quantification workflow against the UniProt database of Apis mellifera 

(http://www.uniprot.org; Protome ID: UP000005203). Search parameters was trypsin 

cleavage sites with a 2 missed cleavage site allowance, precursor and fragment mass 

tolerance was set at ±10ppm and 0.6 Da. Carbamidomethyl of cysteine was set as a fixed 

modification, and oxidation of methionine as a variable modification. To consolidate a 

master list of Vg-interacting proteins, we first removed any proteins identified in the 

control precipitations, and restricted our analyses to proteins identified in at least 2 of the 

3 samples per caste. We also removed any classes of proteins identified as potential 

contaminants in previous studies (Guo et al. 2009; Mellacheruvu et al. 2013).  

 

Gene ontology 

 All gene lists from ChIP-seq, RNA-seq, and proteomics analyses were searched 

for enrichment of specific Gene Ontology terms with HymenopteraMine (v1.4) (Elsik et 

al. 2016) using Official Gene Set 3.2 (OGSv3.2) as the background. Specifically, we 

looked for enrichment of biological processes, molecular functions, and KEGG 

http://www.uniprot.org/
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pathways. We used a Benjamini-Hochberg-adjusted P < 0.05 to determine significantly 

enriched terms.  

 

RESULTS 

Vg-DNA binding 

 We found an average of 944 Vg-DNA binding sites in nurses (range: 901-1020) 

and 930 in foragers  (range: 867-1049) that were aligned to the honey bee genome. These 

binding sites were found in promotor regions with a higher probability than chance, with 

an average of 25% and 27%, respectively, found within a 2kb window upstream of a 

transcription start site compared to 12.5% of sites observed here in a null distribution of 

randomly generated ChIP peaks (χ2 = 193.92, df = 1, p < 0.001, χ2 = 137.47, df = 1, p < 

0.001) (Fig. 6.1A) [Disclaimer: the null distribution was generated using the previous 

honey bee genome assembly Amel_4.5 and is currently being regenerated to the latest 

Amel_HAv3.1 genome by a collaborator]. We trimmed away redundant binding sites 

annotated to the same gene and only considered genes that were shared by at least 2 of 

the 3 biological replicates per caste, leaving a total of 596 genes, hereafter referred to as 

ChIP genes for clarity. Of these ChIP genes, the majority were shared between nurses 

and foragers, while 188 and 96 were found only in nurses or foragers, respectively (Fig. 

6.1B). A GO term analysis did not find significant enrichment at the BH-adjusted P-value 

level for any biological processes, molecular functions, or known pathways, but there 

was enrichment at the unadjusted P-value level for “signaling receptor activity” in nurses 

(GO: 0038023, unadjusted P = 0.024) and “methyltransferase activity” in foragers (GO: 

0008168, unadjusted P<0.001).  
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Binding motifs 

We next performed a motif analysis to find specific DNA sequences to which Vg 

binds, and to compare these sequences to known Drosophila melanogaster transcription 

factor binding motifs. We found significant enrichment for 55.3 motifs in nurses (range: 

40-65 per sample) and 59 motifs in foragers (range: 45-69), indicating common DNA 

sequences to which Vg binds. The most highly enriched motifs for nurses and foragers 

are depicted in Fig. 6.1C. These motifs were similar to several known drosophila 

transcription factor binding sites. [Disclaimer: These analyses are still being performed 

and a more comprehensive report will be included in the published manuscript].  

 

 

 

 

Fig. 6.1 ChIP-seq revealed 944 and 930 Vg-DNA binding sites in nurses and foragers, 

respectively. A: The distribution of ChIP-seq binding sites in promoter regions compared 

to other genomic regions. A promoter region is defined as a window 2kb upstream to 

100bp downstream from a transcription start site.  Both nurses and foragers had 

significantly more sites in promoter regions compared to a null distribution of 

randomized ChIP-seq peaks, as determined by χ2 Goodness of Fit tests. B: ChIP-seq sites 
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were annotated to 596 separate genes. Nurse and forager samples shared peaks in a 

majority of these genes, while some were restricted to only nurses or foragers. C: Logos 

for the 4 most common binding motifs observed in all nurse and forager samples. The 

motifs are 8 bp long, with letters denoting the nucleotide sequence found therein (A, T, 

C, G).  

 

Differential gene expression 

 RNA-seq analysis generated 41 – 62 million mappable reads per sample, 

detecting 9,134 genes above a threshold cutoff of 0.5 CPM. Variation between castes and 

hives was examined using multidimensional scaling of logCPM values of the 5000 most 

variable genes. All nurse samples were found to be similar to each other and clustered 

closely together, while forager samples showed higher inter-colony variation (Fig. 6.2A). 

The cause of this increased variation among foragers is unknown but may be due to viral 

infection as foragers had a higher proportion of their counts map to two known viral 

genomes (Table S1). Differential expression testing yielded 468 DEGs between nurses 

and foragers using a 1-way  ANOVA with an FDR P<0.05, of which 342 genes had a 

log2 fold change greater than 1 (Fig. 6.2B). As expected, Vg was one of the most 

differentially expressed, showing levels nearly 8x higher in nurses than foragers (log2FC 

2.97, BH-adj. P = 0.009). GO term analysis of all DEGs showed enrichment for several 

biological processes, molecular functions, and KEGG pathways, including “oxidation-

reduction process” (GO:0055114, BH-adj. P < 0.001), “catalytic activity” (GO:0003824, 

BH-adj. P < 0.001), and many metabolic pathways (Table 6.1).  
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Fig. 6.2 RNA-seq expression results from nurses and foragers, and their overlap with 

ChIP-seq results. A: Multidimensional scaling of nurse and forager samples comparing 

variance of logCPM values for the 5000 most variable genes. The first dimension 

explains 47% of the variance and separates nurses from foragers, as well as accounts for 

some variance between forager samples. The second dimension explains 25% of the 

variance and accounts for additional variance among forager samples. B: Heat map of 

genes that were differentially expressed (DEGs) between nurses and foragers 

(FDR<0.05). The three columns on the left are from foragers samples, the three on the 
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right are from nurses. Blue and red coloration indicate the degree to which a given gene 

was up- or down-regulated (s.d. from mean).  C: Euler plot depicting the overlap in 

DEGs upregulated in nurses or foragers with genes identified as Vg binding targets via 

ChIP-seq. Approximately 7% of genes bound by Vg show differential expression 

between nurses and foragers.  

 

Overlapping ChIP genes and DEGs  

We found that 34 genes bound by Vg also showed differential expression (Fig. 

6.2C), indicating these as candidate genes for direct transcriptional regulation by Vg (Fig. 

6.3). This overlap of ChIP genes and DEGs represents ~7% of all Vg-DNA binding sites, 

which is in line with other studies of transcription factors (Pilon et al. 2011; Pfeiffer et al. 

2014; Zhan et al. 2018). Overlapping ChIP genes and DEGs showed  enrichment for the 

GO term “heparan sulfate sulfotransferase activity” (GO:0034483, BH-adj. P = 0.005) 

(Table 6.1). Heparan sulfate is polysaccharide that binds to a variety of proteins and 

performs many functions pertaining to signal transduction, genomic regulation, and viral 

infection (Schubert et al. 2004; Christianson and Belting 2014; Stewart and Sanderson 

2014; Gao et al. 2019). This term was also enriched when only considering genes 

upregulated in foragers, but there were no enriched terms for genes upregulated in nurses 

only. The Vg-bound genes that show differential expression in nurses or foragers are 

involved in a broad set of biological functions. These include several receptors with 

known effects on behavior and signaling, a number of enzymes involved in oxidation-

reduction  pathways, and an important antimicrobial peptide used to fight infection 

(Defensin-1). 
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Fig. 6.3 Candidate genes for Vg transcriptional regulation. These are ChIP-genes that 

show  differential expression between nurses and foragers (FDR<0.05). The x-axis shows 
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the log2 fold change, with nurse-upregulated genes to the left and forager-upregulated 

genes to the right.    

 

Mass spectrometry of Vg-bound nuclear proteins 

Our co-immunoprecipitation assay identified a total of 163 Vg-bound nuclear 

proteins that were not observed in our control precipitations. We restricted our 

downstream analysis to a proteins identified in at least 2 of the 3 biological replicates per 

caste and removed classes of proteins identified in previous studies as potential false 

positives, including ribonucleoproteins, histones, and ribosomal proteins (Mellacheruvu 

et al. 2013), leaving a total of 43 proteins. Here, we again found significant enrichment 

for the biological process “oxidation-reduction process” (GO: 0055114, BH-adj. P < 

0.001), along with several metabolic processes and a tryptophan metabolic pathway 

(ame00380, BH-adj. P = 0.028) (Table 6.1). Additionally, we found another connection 

between  Vg-bound genes differentially expressed in nurses or foragers and the nuclear 

proteins bound to Vg: the most abundant protein identified was β-glucuronidase, an 

enzyme involved in the hydrolysis of heparan sulfate that is known to co-localize with 

heparan sulfate in the nucleus and be enzymatically active there (Schubert et al. 2004) 

(Fig. 6.4). The other most abundant proteins include melittin, the pain-producing 

component of bee venom that has been shown to be upregulated during pathogen 

infection and display antimicrobial properties (Doublet et al. 2017), and ferritin, a 

multifunctional protein known to play important roles in storing and transporting iron, 

regulating apoptosis (Cozzi et al. 2003), and mediating the antioxidant and protective 

properties of an important immune-related transcription factor NF- κB (Pham et al. 
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2004). In total we identified 7 mitochondrial proteins bound to Vg in the nucleus, all but 

one of which are directly involved in oxidation-reduction processes.  

 

Fig. 6.4 Identification and abundance of Vg-bound proteins from the nucleus of fat body 

cells. Abundance is quantified using the Normalized Spectral Abundance Factor (NSAF), 

which compares the number of peptide spectrum matches over the amino acid length of 

the protein, with the assumption that more lengthy proteins are more likely to have more 

matches.   
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Table 6.1: GO term enrichment for ChIP-seq, RNA-seq, and nuclear proteins 

Description Term ID 
Adj. P 

Value 

Number of 

Genes or 

Proteins 

RNA-seq (all DEGs)    
oxidation-reduction process GO:0055114 2.26E-13 57 

aromatic amino acid family metabolic process GO:0009072 4.68E-02 5 

cofactor binding GO:0048037 8.12E-08 37 

iron ion binding GO:0005506 1.95E-05 16 

catalytic activity GO:0003824 2.33E-05 151 

oxidoreductase activity, acting on paired donors, with 

incorporation or reduction of molecular oxygen 
GO:0016705 5.47E-05 16 

coenzyme binding GO:0050662 1.89E-04 21 

monooxygenase activity GO:0004497 6.48E-04 12 

heme binding GO:0020037 1.66E-03 14 

tetrapyrrole binding GO:0046906 1.68E-03 14 

flavin adenine dinucleotide binding GO:0050660 1.41E-02 10 

oxidoreductase activity, acting on CH-OH group of 

donors 
GO:0016614 1.97E-02 10 

chitin binding GO:0008061 3.04E-02 9 

Valine, leucine and isoleucine degradation  ame00280 6.25E-05 9 

Tryptophan metabolism  ame00380 2.05E-04 7 

Fatty acid degradation  ame00071 2.64E-04 7 

Phenylalanine metabolism  ame00360 1.05E-03 4 

Glycine, serine and threonine metabolism  ame00260 4.12E-03 6 

beta-Alanine metabolism  ame00410 5.99E-03 5 

Drug metabolism -  other enzymes  ame00983 6.37E-03 6 

Fatty acid elongation  ame00062 9.26E-03 4 

Glyoxylate and dicarboxylate metabolism  ame00630 1.04E-02 5 

Tyrosine metabolism  ame00350 1.12E-02 4 

Pyruvate metabolism  ame00620 3.66E-02 5 

Lysine degradation  ame00310 4.41E-02 5 

Overlapping ChIP-seq sites and DEGs    

heparan sulfate sulfotransferase activity GO:0034483 5.42E-03 2 

Vg-bound nuclear proteins    

oxidation-reduction process GO:0055114 3.02E-05 13 

organic acid metabolic process GO:0006082 2.97E-02 7 

oxoacid metabolic process GO:0043436 2.97E-02 7 

generation of precursor metabolites and energy GO:0006091 4.20E-02 5 

carboxylic acid metabolic process GO:0019752 4.33E-02 7 

Tryptophan metabolism ame00380 2.88E-02 3 
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DISCUSSION 

 Vitellogenin has been the subject of much scientific interest over the last 50 years 

not only for its numerous functions, but also for its highly conserved structure across 

disparate taxa. The 40 kDa Vg subunit that we have examined here contains the N-

terminal domain, which is present in Vg-orthologs of non-oviparous species, such as 

mammalian apolipoprotein B (ApoB) and microsomal triglyceride transfer protein (MTP) 

(Baker 1988b; Segrest et al. 1999). Results from earlier gene knockdown studies 

indicated that Vg may play a more direct role in regulating gene expression (Wheeler et 

al. 2013). In this study we sought to further elucidate Vg’s potential gene regulatory role 

by examining its binding to DNA and nuclear proteins and to explore how these binding 

interactions may contribute to differences observed in the honey bee worker caste. We 

found that Vg binds to over 600 genes and is more likely than chance to be found in 

promotor regions, where transcription factors typically bind (Gill 2001). We also found 

that Vg-DNA binding is associated with differential gene expression in 34 genes of 

nurses and foragers, and that over 40 additional nuclear proteins bind to the Vg-DNA 

complex. While large data sets from sequencing and mass spectrometry studies will 

inevitably yield a plethora of potential biological relationships to explore, there are 

several commonalities shared among our data sets that suggest possible biological 

processes under Vg control, some of which may contribute to differences observed 

between honey bee nurses and foragers. These include energy metabolism and 

subsequent ROS production, behavior, and signaling.  

Both the list of all DEGs between nurses and foragers and the list of nuclear 

proteins bound to the Vg-DNA complex are most highly enriched for the term 
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“oxidation-reduction process”. Oxidation-reduction processes, or redox reactions, are 

enzymatic reactions used to transfer electrons between chemicals and are often associated 

with cellular respiration in mitochondria, where nutrients are oxidized in the production 

of ATP (Handy and Loscalzo 2012). That nurses and foragers would show differential 

expression of redox genes is certainly expected given that these castes consume different 

diets and so must employ different enzymatic machinery to metabolize them. Another 

recent study found that diet-induced DEGs in workers are also most highly enriched for 

“oxidation-reduction” processes  (Azzouz-Olden et al. 2018). However, what is far less 

expected is the high number of redox proteins that are found bound to the Vg-DNA 

complex. This suggests that enzymes used in redox reactions may also interact with Vg 

as part a signaling pathway that influences gene expression. Half of the redox proteins we 

found bound to the Vg-DNA complex are also mitochondrial proteins, which suggests 

this signaling might originate from the mitochondria. Mitochondria are essential 

organelles for maintaining homeostasis and mitochondria-to-nucleus signaling can be 

used to affect expression of nuclear genes that reconfigure metabolic pathways (Cantó et 

al. 2015; Smith et al. 2018) and reduce oxidative stress from reactive oxygen species 

(ROS) (Khan et al. 2018), among other functions. There are several mitochondria-to-

nucleus signaling pathways and one of the ChIP genes we identified that was upregulated 

in foragers, ceramide kinase, is part of a retrograde signaling pathway controlling 

apoptosis (Jazwinski 2015). ROS also play a prominent role in signaling. While the ROS 

produced from cellular respiration can cause cellular damage and ultimately shorten 

lifespan, they can also activate various signaling molecules, such as transcription factors 

like NF-κB that upregulate antioxidant and DNA-repair genes (Storz et al. 2005; Storz 
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2006). One possible explanation for this apparent relationship between Vg and redox 

enzymes is that Vg plays some as-yet-undermined role in mitochondria-to-nucleus 

signaling, though there is no solid evidence yet. Still, when one considers the 

mitochondria’s central roles in energy metabolism, ROS production, nuclear signaling, 

and ageing in light of Vg’s roles in those same processes, it hints there may be a closer 

functional and evolutionary relationship between Vg and the mitochondria than 

previously thought. Other proteins known to play important roles in both mitochondrial 

function and gene regulation include STAT3, which can localize in mitochondria and 

perform oxidative phosphorylation functions and also translocate to the nucleus as a 

transcription factor to regulate many processes like cell proliferation and apoptosis 

(Wegrzyn et al. 2009). This possible connection between Vg and the mitochondria should 

warrant further research.  

Our results show that Vg-DNA binding is associated with expression changes in 

several behavior-related genes. Histamine-gated chloride channel 1, which is highly 

upregulated in nurses, has been shown to synchronize activity during light-dark cycles in 

drosophila (Alejevski et al. 2019), while odorant receptor 13a is speculated to play a role 

in detecting brood pheromone in honey bees (Oxley et al. 2008). But perhaps the most 

intriguing finding was that foragers upregulated expression of the corazonin receptor. 

Corazonin is a neuropeptide that, in Harpagnathus ants, has a co-repressive regulatory 

relationship with Vg to control caste identity and behavior (Gospocic et al. 2017). In 

Harpagnathus colonies, when a queen dies workers compete to become reproductives, or 

gamergates, and as the victors transition from hunting activity to egg-laying activity a 

drop in their corazonin expression causes an increase in vg expression. Conversely, 
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hunting behavior can be rescued in reproductives by injecting corazonin or knocking 

down vg, while knocking down the corazonin receptor decreases hunting behavior. In 

honey bees, a similar relationship may occur in reverse as workers transition from a 

quasi-reproductive state (i.e., exhibiting brood care) to foraging tasks. Here, high levels 

of Vg in nurses may repress corazonin receptor expression, while a reduction of Vg in 

foragers may release or promote expression of the receptor. What is revealed by our 

study is that Vg appears to play a direct role in regulating expression of one of its 

interactive partners.   

In terms of signaling, there are several pieces of evidence suggesting Vg plays a 

role. First, “receptor activity” is enriched in the list of nurse ChIP genes, albeit at the 

unadjusted P-value level. Still, this suggests that many genes targeted for Vg binding 

code for cell membrane proteins and components of cell signaling pathways. Second, 

there is significant enrichment for heparan sulfotransferase activity in the list of 

overlapping ChIP genes and DEGs, and the most abundant nuclear protein we identified, 

β-glucuronidase, is an enzyme that interacts with heparan sulfate in the nucleus (Schubert 

et al. 2004). Heparan sulfate often binds with proteins to form heparan sulfate 

proteoglycans (HSPGs), which are active on the plasma membrane and act as receptors 

for many ligands (Sarrazin et al. 2011). It is also of note that heparan sulfate in the 

nucleus is believed to play several roles in regulating gene expression and proliferation, 

as well as transport of molecules into the nucleus (reviewed in (Stewart and Sanderson 

2014). Interestingly, a relationship between Vg-like proteins and HSPGs has been 

documented in Drosophila: here, crossveinless d (csv-d) codes a Vg homolog that 

contains the same functional domain as the Vg subunit we investigated here, and in 
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drosophila it binds to HSPGs and plays a role in the bone morphogenic protein (BMP) 

signaling pathway (Chen et al. 2012). The relationship we have documented here 

between Vg, heparan sulfate, and other mediating proteins, should warrant further 

investigation into the types of signaling pathways they influence in honey bees.   

One potential shortcoming of this study is the lack comparison between Vg-

wildtype bees and Vg-knockout or -knockdown bees, as is a common approach for 

investigating how transcription factor binding affects expression. However, such 

comparisons may be unfeasible or unnecessary for our purposes. For one, CRISPR/Cas-9 

gene knockout in honey bees is still in its infancy, as it has only been demonstrated in a 

limited number of genes (Kohno et al. 2016; Hu, Zhang, et al. 2019; Roth et al. 2019) and 

still has challenges to overcome regarding efficacy and the effects of rearing larvae in 

hives vs in vitro (Souza et al. 2018). Moreover, even if the technology were sufficient, 

Vg-knockouts are likely lethal given the key role it plays in development. The first Vg-

knockout to date used the vertebrate model Danio rerio, which has several Vg genes, and 

showed offspring of Vg-knockout parents displayed mutated and usually lethal 

phenotypes (Yilmaz et al. 2019). That leaves RNAi-mediated knockdowns as the 

remaining option in our study, but this approach presents another issue: Vg-knockdown 

accelerates worker development into foragers (Nelson et al. 2007; Antonio et al. 2008), 

so the contrast between Vg-wildtype and Vg-knockdown workers is essentially the same 

as the same-age nurse and forager contrast we have created here using single cohort 

colonies. In our same-age workers, nurses vg expression was ~8 times higher than in 

foragers, which is a similar degree of difference observed in Vg RNAi studies (Nunes et 

al. 2013; Wheeler et al. 2013). 
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 This study has helped shed light on Vg’s actions in the nucleus and its potential 

gene regulatory pathways. While many questions remain, including what signals prompt 

Vg nuclear translocation and how Vg crosses the nuclear envelope, the data presented 

here offer insight into the types of biological processes that Vg may influence. They also 

offer an opportunity for new avenues for Vg research that were previously unknown or 

overlooked, including possible signaling pathways involving Vg and the mitochondria. 

The extent of Vg’s multifunctionality has always been impressive, and the discovery that 

its N-terminal region can also bind DNA and act as a possible transcription provides a 

mechanistic understanding of how it affects so many traits. Given that the Vg N-terminal 

region examined here is so conserved across metazoan taxa, our hope is that our findings 

spur other researchers to examine Vg’s gene regulatory functions in other organisms.  
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CHAPTER 7 

DISCUSSION 

Vitellogenin is an ancient and highly conserved protein, and over its evolutionary 

history it has gained numerous functions. These multitude of functions have been studied 

in many organisms, but perhaps none more so than in honeybees. Here, it has evolved 

beyond its role in egg production and plays important roles in social behavior and social 

immunity. In this dissertation, I have made several important advances in our 

understanding of Vg in honey bees that may also be applicable to other species.  

 

MAJOR FINDINGS AND IMPLICATIONS 

First, in chapters 2 and 3 I have shown that Vg is part of a colony-level immune 

pathway that for transferring immune elicitors between colony members. Here, worker 

bees transported ingested bacteria from their midgut to their hypopharyngeal glands, and 

Vg appears to play in this transport as Vg-knockdown individuals do not show bacteria at 

their glands. Vg is a key component in the synthesis of royal jelly, and as it enters the 

hypopharyngeal glands via receptor-mediated endocytosis it may carry with it across to 

plasma membrane to be incorporated into the royal jelly. Nurse bees can then deliver 

these pathogen fragments to the queen or young larvae. Transferring pathogen fragments 

between colony members may serve to prime their immune systems and make them more 

resistant to disease. Royal jelly is not only a vehicle for transferring pathogens, but it is 

also sensitive to the immunological state of the nurses producing it, as royal jelly from 

pathogen-fed nurses have higher concentrations of the antimicrobial peptide defensin-1. 

Uncovering this colony-level immune pathway also has important practical applications 
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for beekeepers. This pathway can now be exploited to deliver immune elicitors to queens 

in order to produce disease-resistant bees. Indeed, my collaborator is marketizing this 

discovery with a now-patented honey bee vaccine for the deadly American foulbrood 

disease (Salmela and Freitak 2017).  

In chapter 4, I have shown that Vg is localized in the worker midgut and possibly 

synthesized there, as we detected vg mRNA transcripts in this tissue. While Vg in known 

to synthesize in the digestive tract or hepatopancreas of several species, this is the first 

time to my knowledge that it has been shown in the midgut of honey bees. This has been 

an overlooked organ for Vg synthesis and function, and this discovery should spark 

future research. The midgut plays key roles in pathogen defense, digestion, and 

absorption, and Vg may be playing several roles here. Given Vg’s roles in binding 

pathogens and acting as an antioxidant, Vg may be mediated the midgut’s immune 

response to ingested pathogens, either by binding and neutralizing pathogens directly, or 

by buffering against the reactive oxygen species that midgut cells produce to kill 

pathogens. More research will be needed to determine the nature of Vg’s role in this 

organ.  

In chapters 5 and 6, I have made a major new discovery of Vg’s binding abilities 

that has the potential to re-frame our understanding of Vg’s multifunctionality. Here, I 

have shown that Vg binds to DNA in the nucleus and likely acts as a transcription factor 

or co-regulator. In the worker caste, Vg binds to hundreds of genes, and the identity of 

these binding sites shift as workers transition between different tasks. The types of genes 

Vg binds to gives a hint as to the types of biological processes being regulated by Vg. 

This includes many genes responsible for signal transduction pathways, metabolic 
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processes, and behavior. Our results also suggest that Vg is closely involved in enzymatic 

reactions, as its binding is not only associated with gene expression changes in enyzmes, 

but also because many enzymes in turn bind to the Vg-DNA complex. These results point 

to deeper evolutionary relationships between Vg and certain organismal processes. Vg is 

the oldest member of a large family of proteins known as Large Lipid Transfer Proteins 

(LLTPs), and this is the first known case of an LLTP functioning as a transcription factor. 

Given Vg's conservation across many taxa, this discovery here should spark research to 

determine if Vg and its orthologs also perform similar functions in other species. This 

could potentially reveal a new class of transcription factors build from ancient proteins. 

Vg plays a key role in so many important biological processes, and my findings here 

suggest that is directly involved in regulating genes pertaining to those biological 

processes.   

 

LIMITATIONS 

 The work presented does contain a few limitations. In looking at a colony-level 

immune pathway, our findings show Vg and pathogen fragments in specific localizations 

such as midgut, hypopharyngeal glands, and royal jelly, but all of the intermediate steps 

remain a mystery. That is to say, we are still in the dark about certain stages of the 

transportation process. For example, how do pathogen fragments exit the midgut, enter 

the hemocoel, and finally enter the hypopharyngeal glands? What types of receptors is it 

binding do to cross tissue barriers? Does Vg facilitate this transport from the beginning in 

the midgut, does it intercept the fragments in the hemolymph, or is the knockdown of vg 

and the absence of pathogens at the glands merely coincidental? These are specific 
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questions about this pathway that have not been answered here and which will require a 

more concerted effort to map them out.  

 In looking at Vg as a transcription factor, next-gen sequencing and mass 

spectrometry methods present some limitations as well. For one, our capabilities to 

produce large data sets and then them is constantly improving. So, what’s current and 

state of the art today is likely to be dated within a few years. Uncovering transcription 

factor targets is still mostly reliant on correlating protein-DNA binding sites with 

differential expression at those sites. But this approach poses a few problems. First, gene 

transcription is controlled by numerous regulatory mechanisms and typically involves 

many transcription factors working in concert. So, just because a protein-DNA binding 

site does not show differential expression between individuals from different treatment 

groups, it does not necessarily mean that that given protein does not help regulate 

expression of that gene. One approach researchers use to increase confidence that a 

protein actually controls gene expression at a given loci is to knockout the purported 

transcription factor and see how this affects expression of its target gene. This can still be 

problematic because as there are multiple transcription factors regulating that gene, so too 

can there be compensatory regulatory mechanisms that keep that gene expressing at a 

similar level between treatments. Knockouts also pose a particular problem for our study 

organism because these types of molecular approaches are still being developed in honey 

bees. Moreover, even if the methods were developed, Vg-knockouts would likely be 

lethal since Vg is so important to development. Thus, despite the major discovery I have 

made regarding Vg’s DNA binding ability and its likely role as a transcription factor, we 
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will have to continue using new molecular techniques as they develop in order to more 

precisely elucidate Vg’s gene regulatory functions.   

 There are also some limitations in characterizing the additional nuclear proteins 

that are bound to the Vg-DNA complex. For one, the approach used in this dissertation 

pulls down a broad range of all the proteins that bind to the Vg-DNA complex, but it 

does not give information about which particular combinations of those proteins are 

bound at specific loci. Thus, we are left with a very general list of proteins from which 

we can examine common functions between them to try to ascertain information about 

potential signaling pathways. But, understanding how particular combinations of proteins 

work together will require development of more precise methods.   

 

FUTURE DIRECTIONS 

 The findings outlined in this dissertation provide ample opportunity for future 

research. First, the colony level immune pathway I’ve laid out shows the transfer of 

bacterial pathogens, and a collaborator has turned this finding into a commercial vaccine 

product. However, it remains to be seen whether this same pathway may work for viral 

pathogens as well. When I’ve presented these findings to various beekeeper groups, this 

is a question they often raise since there are several deadly viruses common to US 

beekeeping operations.  My work in this dissertation shows that Vg binds to nucleic 

acids, and there is some evidence that it binds viruses in fish (Garcia et al. 2010). Now, 

the next steps are to confirm Vg-virus binding, and then determine the consequences of 

this binding. Does Vg inhibit viral replication? Are viruses binding to Vg to gain entry 

into additional tissues? Can viral particles be incorporated into royal jelly to pass between 
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individuals, and if so, what are the consequences for the recipient? These questions will 

need to be answered before bee vaccines against viruses can be developed.  

 Finding Vg in the midgut is a curious discovery, as this organ has been 

overlooked for examining Vg’s tissue-specific functions. The next step here is to 

determine Vg’s role. It seems plausible that Vg acts in response to ingested food, acting 

to bind and/or kill pathogens, act as an antioxidant to protect epithelial cells from 

oxidative stress, or perhaps in capacity as a nutrient transport protein. Numerous 

functional assays can be performed to better understand Vg function here.  

 The discovery that Vg may be a transcription factor in honey bee workers is a 

major discovery, and there are plenty more questions to answer in follow up. I have 

shown how Vg binds DNA across different behavioral groups in the worker caste, but it 

still remains to be seen how Vg-DNA binding occurs in other castes like queens and 

drones. Knowing this will provide a more complete picture of how Vg regulates honey 

bee biology. Given Vg’s highly conserved structure across so many organisms, studies 

should also examine whether it plays gene regulatory roles in other species as well. 

Finally, it would be useful to know how dynamic this Vg transcription factor activity is in 

response to different perturbations. For example, how might nutritional stress brought 

about through seasonal changes in flower availability alter the profile of Vg-DNA 

binding sites? Vg interacts in the nucleus with many genes and other proteins that 

function in metabolic pathways, so response to nutritional stress might reconfigure some 

of these signaling pathways. As another perturbation, how does immune challenge alter 

Vg-DNA interactions? My current research position examines the interplay between viral 

infection, behavior, and physiology in honey bees, and knowing how Vg responds to such 
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an infection would be useful, especially considering how many important functions seem 

to be influenced by Vg’s functions in the nucleus.  

 

CONCLUSIONS 

 Vg plays a remarkable number of important functions in organisms, and my 

research has revealed at least 2 more important functions. These include its role in a 

colony-level immune pathway in honey bees, and its functional as a potential 

transcription factor. Each discovery should pave the way for future avenues of research as 

we continue to unlock the mysteries of this ancient multifunctional protein.  
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Supplementary Information Text 

 

Extended technical description of vitellogenin cutting inhibition  

 

Results. To determine how the N-sheet domain is cleaved from the Vg molecule, we 

searched for candidate enzymes by applying an array of protease inhibitor molecules on 

fat body tissue homogenate rich in Vg. Use of lysate instead of pure target protein is 

necessary, since pure sample has been cleared of proteases (1). Without any protease 

inhibitors, full length Vg gets fragmented at room temperature in the tissue homogenate 

in 2 h (Fig. S2; the “control” sample kept on ice versus the “no inhibitors” samples). We 

included broad-range inhibitors and the highly specific caspase 1 inhibitor Ac-Tyr-Val-

Ala-Asp-acyloxymethyl ketone (YVAD-aomk), because there is a caspase 1 cut site in 

the Vg sequence that, hypothetically, would produce an N-terminal fragment of 40 kDa 

(2). Vg cutting was partially inhibited by YVAD-aomk, leupeptin (serine and cysteine 

protease inhibitor), EDTA (metalloprotease and phosphatase inhibitor) and phophatase 

inhibitor cocktail, but not by E64 (inhibitor of papain-like, but not caspase-like cysteine 

proteases (3)) or 3,4-dichloroisocoumarin (DCI) (serine protease inhibitor). These results 

show that Vg is cleaved by at least a caspase 1-like enzyme.  

Discussion. This study expands our understanding of the enzymatic activity required for 

Vg cutting (Fig. S2). Honey bee Vg N-sheet cutting site is located in a polyserine linker, 

whose dephosphorylation appears play a role in the proteolytic cleavage (4). Our 

inhibition assay strengthens the significance of the removal of phosphate groups, since 

we show that phosphatase inhibitors inhibit Vg cutting. The metalloprotease inhibitor 

EDTA inhibited Vg cutting similarly to phosphatase inhibitors. EDTA is known to inhibit 

phosphatases (5), which may explain the result. Alternatively, EDTA might inhibit some 
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other enzymes possibly involved in the cascade that leads into Vg cleavage. Moreover, 

this assay predicts that the cutting of Vg N-sheet is regulated by at least caspase 1-like 

enzyme, because there is cutting inhibition by the highly specific caspase 1 inhibitor 

YVAD-aomk and also by leupeptin whose inhibition range covers caspases. We were led 

to these findings by an earlier realization that caspase 1 is the only relevant (non-gut) 

enzyme with a cut site in the polyserine linker (4). In mammals, it is well-established that 

caspase 1 activity is regulated by phosphorylation events (6). The mammalian caspase 1 

is involved in many processes, most notably, inflammation and response to intracellular 

bacterial infection (reviewed by (7)). However, mammalian caspase activities do not 

directly translate to insects. Very little information is currently available about honey bee 

caspases in the literature.  

Method. Three winter worker honey bee individuals were anesthetized in cold, and their 

guts and ovaries were removed like before (8). The abdomens were detached, 

immediately cooled in liquid nitrogen and stored in -80ºC. The abdomens were 

homogenized in 1.5 ml ice cold PBS and insoluble material was removed by 

centrifugation. The inhibitors tested were (final concentration according to 

manufacturer’s instructions): E64 (10 µM), leupeptin (100 µM), DCI (100 µM), YVAD-

aomk (100 µM), EDTA (5 mM) and Roche PhosSTOP inhibitor cocktail (x 2). The 

inhibitors were incubated with 9 µl of honey bee protein extract in PBS in total volume of 

10 µl for 2 h in 28 ºC in triplicates and blotted. As controls, we had samples without 

inhibitors, and a sample that was kept on ice.  
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Fig. S1. Western blot of vitellogenin N-terminal antibody (targeting amino acids 24-360) 

in honey bee tissue lysate samples. Abdomen of nine winter worker honey bee 

individuals were homogenized and western blotted (20 µg total protein per lane). There is 

a strong full-length vitellogenin band (180 kDa) in each sample. In addition, there are 

shorter fragments, whose presence and strength varies in individual samples. The 

previously identified 40 kDa N-terminal vitellogenin fragment is indicated. The other 

fragments of unknown function detected by this antibody in some individuals are ~75 

kDa and ~125 kDa. 

 

  



  184 

 

Fig. S2. Western blot -based honey bee vitellogenin cutting inhibition assay. Un-cut, full-

length vitellogenin is marked with 180 and the N-terminal domain is marked with 40 

according to their size. S = size standard. The control is honey bee fat body protein 

extract kept on ice. The full-length vitellogenin is fully cut in 2 h in 28 °C in the absence 

of inhibitors (no inhibitors, N=2). The following treatments were found to prevent the 

cutting of vitellogenin: leupeptin, YVAD-aomk, EDTA and PhosSTOP. The treatments 

were done in triplicates. The figure is a combination of two blots. 
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Table S1: Proportion of each RNA-seq sample that aligned to 2 viral genomes, Varroa 

Destructor Virus-1 (VDV) and Deformed Wing Virus (DWV) 

CASTE COLONY ID VDV DWV 

Nurse 1 0.25 0.00 

Nurse 2 0.10 0.15 

Nurse  3 0.08 0.13 

Forager  1 0.37 0.01 

Forager  2 0.15 0.59 

Forager  3 0.29 0.26 
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