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ABSTRACT  

   

This dissertation explores thermal effects and electrical characteristics in metal-

oxide-semiconductor field effect transistor (MOSFET) devices and circuits using a 

multiscale dual-carrier approach. Simulating electron and hole transport with carrier-

phonon interactions for thermal transport allows for the study of complementary logic 

circuits with device level accuracy in electrical characteristics and thermal effects. The 

electrical model is comprised of an ensemble Monte Carlo solution to the Boltzmann 

Transport Equation coupled with an iterative solution to two-dimensional (2D) Poisson’s 

equation. The thermal model solves the energy balance equations accounting for carrier-

phonon and phonon-phonon interactions. Modeling of circuit behavior uses parametric 

iteration to ensure current and voltage continuity. This allows for modeling of device 

behavior, analyzing circuit performance, and understanding thermal effects.  

The coupled electro-thermal approach, initially developed for individual n-channel 

MOSFET (NMOS) devices, now allows multiple devices in tandem providing a platform 

for better comparison with heater-sensor experiments. The latest electro-thermal solver 

allows simulation of multiple NMOS and p-channel MOSFET (PMOS) devices, providing 

a platform for the study of complementary MOSFET (CMOS) circuit behavior. Modeling 

PMOS devices necessitates the inclusion of hole transport and hole-phonon interactions. 

The analysis of CMOS circuits uses the electro-thermal device simulation methodology 

alongside parametric iteration to ensure current continuity. Simulating a CMOS inverter 

and analyzing the extracted voltage transfer characteristics verifies the efficacy of this 

methodology. This work demonstrates the effectiveness of the dual-carrier electro-thermal 

solver in simulating thermal effects in CMOS circuits.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE SURVEY 

1.1 Introduction  

 Silicon based microelectronics has long been a driving force in computing, 

communications, and other areas of technology which drastically affect the way people 

interact with the world. From the earliest integrated circuits to the latest in novel device 

topologies and advanced architecture, many of the critical operating principles in 

microelectronic circuits and devices have not changed. One example is the ubiquitous use 

of complementary transistor pairings in analog and digital circuits [1]. The study of silicon-

based microelectronics – both historically and in modern applications – includes carefully 

analyzing the operational principles of p-n junctions, MOSFETs and BJTs, as well as the 

design of advanced analog and digital circuits. The ubiquity of CMOS is clear in both 

analog and digital circuit design. Even as modern device structures deviate further in design 

and operating principle from traditional planar MOSFETs, it is likely that transistors with 

complementary conductivity type (as seen in the n- and p-type transistors used for CMOS 

design) will remain a cornerstone of electronic circuit design.  

 Many strategies exist to study and understand the behavior of microelectronic 

circuits and devices. Often the preferred methodology for beginning to understand a 

phenomenon is to measure its effects and to fit those result to a mathematical formula. Just 

as any periodic signal can be represented by a series of sinusoids, any functional 

phenomenon can be approximated by a sufficiently ordered polynomial. Describing the 

behavior of electronic devices with current and voltage equations uses the curve fitting 

approach; this method is fantastic for teaching electronic concepts and for practical design 
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of electronic circuits [2]. Compact modeling can even be extended as our understanding of 

electronic devices grows. In microelectronics, as device lengths shrink and more transistors 

fit on a single wafer, previously unobserved phenomena begin to affect the operation of 

these devices. Some examples are the effects of drain-induced barrier lowering (DIBL) and 

channel length modulation (CLM). The strategy taken in the compact modeling approach 

is to parameterize the functional models to include the contributions of these effects [3]. 

1.2 Computational Electronics 

 Clever parameterization schemes and modifications to the underlying equations 

allow compact modeling to predict the performance of electronic devices; however, these 

models tend not to describe the underlying physics of the devices. When there is a 

discrepancy between the predicted and actual behavior of a system, it can be important to 

understand the physics behind the relevant phenomena. While it is possible to understand 

the physics of a system purely through experimentation, analysis, and functional 

descriptions of observed behavior, it often helps to model the physics of a system directly. 

Computational electronics uses theoretical models that describe the physical behavior of 

electronic devices, experimental results that provide insight and key parameters for these 

models, and computational methods to predict the characteristics of these devices [4]. 

Figure 1 shows the synergy between experimental methods and various computational 

approaches used to study electronic devices and circuits. 
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Figure 1 - Computational Electronics: Physical characterization such as secondary ion mass 

spectroscopy (SIMS) and transmission electron microscopy (TEM) inform semiconductor 

process simulation; electrical characterization such as current-voltage (IV) profiling, 

capacitance-voltage (CV) profiling, and quantum efficiency (QE) measurements inform 

semiconductor device simulation. The results of the process and device simulation improve 

simulation of circuit behavior. 

  

 When modeling the dynamics of a system, one must consider transport phenomena 

such as the exchange of mass, charge, energy or other physical quantities. Naturally, the 

study of electronic devices requires an understanding of charge transport. Device modeling 

methodologies make use of a variety of different transport models depending on the 

application; model selection is typically dictated by the scale of the device [5]. Figure 2 

shows a hierarchy of charge transport models. 
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Figure 2 - Charge Transport Modeling Hierarchy: In the Semi-classical regime the 

characteristic length of the device (L) is much larger than the DeBroglie wavelength (λ) 

and the mean free path (ℓ). When the length scale is comparable with the DeBroglie 

wavelength and the mean free path, quantum mechanical models are appropriate. 

  

 Solving for device characteristics using these transport models typically follows the 

same basic protocol: computational techniques are used to solve the fundamental 

equations, which are supplemented by other equations that describe other important 

physical quantities. For example, it is common to solve the Boltzmann transport equation 

for charge transport while simultaneously solving Poisson’s equation for the charge 

distribution and electric fields.  

 The use of modeling techniques to aid in the development of semiconductor device 

technology is known as Technology for Computer-Aided Design (TCAD). Many 

commercial TCAD tools are used in industry alongside compact modeling tools. 

Commercially available TCAD packages often rely heavily on one specific transport 

modeling methodology. To keep up with innovations in device topology, TCAD tools 

should use multi-scale strategies that incorporate the advantages and mitigate the 

disadvantages of each methodology [6]. This dissertation seeks to develop one such multi-
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scale methodology to combine a particle-based solution to the semi-classical Boltzmann 

transport equation for charge transport with a fluid model for thermal transport. 

 Electrical characteristics are not the only factors in the behavior of microelectronic 

devices. Many other physical phenomena can be considered when studying these systems. 

Variations in the fabrication process can lead to non-uniformity in etched or deposited 

layers which can be modeled and predicted using process simulation. Defect chemistry 

determines how impurities and dopants behave within a crystal lattice and can be studied 

using molecular dynamics. Mechanical strain can affect the physical properties of the 

crystal lattice. Often individual phenomena are studied independently to better understand 

their effects, but sometimes they are studied alongside the charge transport models to 

determine electrical characteristics that account for the contributions of each phenomenon. 

 One such consideration of interest in microelectronics is the study of thermal 

transport. As transistor scaling drives devices further into the sub-micron lengths, not only 

are more precise charge transport models required, but so too are the effects of self-heating 

more pronounced. Microelectronic devices are typically operated by manipulating electric 

fields with applied voltage. Charge carriers gain energy as they accelerate in the presence 

of an electric field; this energy must go somewhere. Self-heating occurs when thermal 

energy is transferred from accelerated charge carriers to the crystal lattice. Charge transport 

modeling allows for the simulation of electrical characteristics and thermal transport 

modeling allows for the simulation of temperature effects [7]. Thermal modeling in 

electronic devices makes use of a variety of different techniques depending on the 

application. Figure 3 shows a hierarchy of thermal modeling; power density and electric 

field strength in critical device regions typically dictate model selection.  
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Figure 3 - Thermal Transport Modeling Hierarchy: In thermal equilibrium the temperature 

of the semiconductor (Tlattice), the charge carriers (Te),
 and the phonons (TLO) are 

equivalent. Hot-carrier effects drive the system into thermal non-equilibrium, where 

increased temperature of charge carriers and phonons must be considered. 

 

 The purpose of this dissertation is to establish a methodology for coupling thermal 

transport and charge transport modeling in MOSFET devices. A review of the literature on 

existing methods of electro-thermal simulation provides context for important 

considerations and explains the motivation for critical decisions made regarding this 

dissertation work. 

1.3 Literature Survey 

1.3.1 Drift-Diffusion Models Coupled to Appropriate Thermal Solvers 

 The first in the hierarchy of charge transport models is the drift-diffusion model, a 

semi-classical model derived by considering moments of the Boltzmann Transport 

Equation [4]. The drift-diffusion model is often favored for its relative simplicity because 

the current (density) at a given location is dependent only on the electric field and charge 

concentration gradient. Using the drift-diffusion model involves evaluating the current 

equations, continuity equations, and Poisson’s equation. Many commercially available 
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TCAD tools use the drift-diffusion method to simulate device behavior. The drift-diffusion 

method can also be used for electro-thermal simulations; however, there is one critical 

limitation. Whereas particle-based models such the Monte Carlo method evaluate for 

individual carrier specific quantities for electrons and holes (i.e. carrier velocity, 

temperature, and location), the drift diffusion method only provides averages (e.g. drift 

velocity), densities (e.g. current density), and distributions (e.g. carrier distribution). 

Coupling the drift-diffusion method with thermal models is typically limited to the Joule 

heating (J∙E) method. The current density is used to calculate the contribution of resistive 

heating, the effects of which appear as heat generation terms in the heat conduction 

equation. 

 Despite these limitations, the earliest attempts to couple charge transport and 

thermal transport models for semiconductor simulation use the drift diffusion and Fourier 

law method. One such paper discusses modeling thermal effects in BJTs in two dimensions. 

The flow of charge (current density) is determined using drift-diffusion equations, charge 

distribution is determined by solving the Poisson equation, and thermal effects are 

determined using the Joule heating (J∙E) model [8]. The modeling techniques and 

methodologies have advanced significantly over the years, but the basic foundational 

methodology is still intact: solve for electrical characteristics and current flow, solve for 

thermal characteristics and heat flow, and couple the solvers in a meaningful and consistent 

way. 

 While electro-thermal coupling is restricted to the Joule heating method, there have 

been attempts at incorporating advanced thermal modeling alongside the relatively simple 

electrical characteristics of the drift-diffusion method. In one such paper electrical transport 
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is modeled using the drift-diffusion method and heat generation is derived as a function of 

the electrical quantities. Meanwhile, advanced thermodynamic models consider material 

thermal properties such as specific heat capacity and thermal conductivity alongside the 

heat generation terms derived from the electrical characteristics [9]. 

 In addition to using the electrical characteristics to study the thermal effects in 

devices, there are also attempts to use the thermal results to improve the charge transport 

modeling. One such improvement is to incorporate temperature dependent mobility models 

which account for carrier self-heating. This technique has been applied to the study of self-

heating effects in strained silicon semiconductor-on-insulator (SOI) devices [10]. The 

methodology includes a drift-diffusion simulation with temperature dependent mobility 

calculated using the relaxation time approximation (RTA). The self-heating included in 

these simulations is a modified resistive heating model that considers specific heat 

capacity, thermal conductivity, and thermal generation.  

 While most drift-diffusion based electro-thermal models use the Joule heating 

method, there have been attempts to modify the drift-diffusion equations to allow for other 

thermal transport models. One such paper studies electron transport and hot-electron 

interactions with optical and acoustic phonons in GaAs MESFETs [11]. The electron 

transport uses a modified drift-diffusion/Poisson solver; this couples with a thermal 

transport model that uses the energy balance equations for optical and acoustic phonons. 

This methodology considers the exchange of energy between electrons and phonons by 

substituting electrical properties from the drift-diffusion solution (e.g. concentration, drift 

energy, and drift velocity) into the energy balance equations for phonons. This scheme 
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accounts for the interaction of electrons with optical and acoustic phonons as well as 

phonon-phonon interactions between acoustic and optical phonons. 

 Many commercially available TCAD tools use the drift-diffusion method to 

simulate device behavior. One of the strategies commonly employed in electronics research 

is to use the available tools and incorporate custom solutions to mitigate the limitations of 

these tools. This approach is used to study thermal behavior in lateral double-diffused 

MOSFET transistors commonly used for high frequency and high-power applications [12]. 

The author makes a distinction between electrical non-equilibrium, where high electric 

fields cause a charge flux (current); and thermal non-equilibrium, where substantial 

temperature gradients and hotspots result from a difference in temperature between charge 

carriers and the crystal lattice. Predictably, electrical and thermal non-equilibrium are co-

occurring in electrical devices, particularly in those with high electric fields and substantial 

power density. The study of these effects requires an electro-thermal model that allows for 

both electrical and thermal non-equilibrium. Using commercial TCAD tools (ATLAS) to 

gather electrical simulations results, importing quantities such as carrier concentration and 

carrier energy into a thermal solver, and evaluating thermal transport while considering 

these electrical characteristics provides such a framework. The thermal models used in this 

work are the energy balance equations for acoustic and optical phonons as well as the Joule 

heating model. In comparing the results of both heating models, the energy balance model 

predicts a more pronounced hotspot with larger temperature gradients than is predicted by 

the Joule heating model. This is a partially coupled solution; the results from the electrical 

characterization are input conditions for the thermal solver, but the thermal solution outputs 

do not couple back to the electrical solver.  
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 Un-coupled or partially coupled methods of thermal simulation tend to 

underestimate the effects of self-heating [13]. Including the thermal effects as directly 

coupled to a particle-based device simulator, whether in the form of a coupled fluid model 

for phonon energy balance or a full phonon Monte Carlo, provides a much more accurate 

picture of the electro-thermal phenomena in micro- and nano- devices. The work of this 

dissertation improves significantly on this methodology by fully coupling the electrical and 

thermal solvers.  

1.3.2 Hydrodynamic/Thermal Solver Coupling 

 One limitation of the drift-diffusion model is its inability to incorporate thermal 

effects beyond the Joule heating. The hydrodynamic model rectifies this assumption. Like 

the drift-diffusion model, the hydrodynamic model is derived from the Boltzmann 

Transport Equation. 

 Another problem that the hydrodynamic model addresses is the assumption that 

carriers travel at some saturation velocity within the drift-diffusion model under the force 

of an electric field. This assumption appears in compact models and drift-diffusion models 

in the form of carrier mobility terms. In compact model current equations, mobility is a 

constant, and the current is dependent on the applied voltage(s). In the drift diffusion 

model, the contribution from the drift term in the equation is dependent on mobility. Many 

drift-diffusion solvers use temperature dependent and field dependent mobility models to 

improve the results, but the underlying assumption remains. As charge carriers accelerate 

in the presence of an electric field, they often exceed the saturation velocity before settling. 

This is known as velocity overshoot. The effects of velocity overshoot cannot be 

considered when using a mobility-based model. 
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 One strategy of implementing the hydrodynamic model is as an extension to the 

drift-diffusion equations as in the work of Majumdar et al. [11]. By deriving the equations 

of the hydrodynamic model, one arrives at a modified drift-diffusion equation which 

includes electron temperature. A similar strategy is used to modify the drift-diffusion 

equation by correcting the local drift velocity to account for velocity overshoot. 

Incorporating the results of increasingly complex models by modifying simpler models is 

a recurring theme in engineering. 

 Still it is possible to evaluate the equations of the hydrodynamic model without 

making such modifications or simplifications. This method is used to study self-heating 

effects in sub-micron silicon MOSFETs [14]. The methodology includes the hydrodynamic 

equation derived from the zeroth, first and second order moments of the Boltzmann 

transport equation (BTE), and a temperature dependent mobility model for electrons. Self-

heating is included by solving for the interactions between high-energy electrons and the 

optical phonon modes; the thermal energy of the optical phonons is then assumed to decay 

into the acoustic modes. This offers a significant improvement over the resistive heating 

models and accounts for the separate interactions between hot carriers, acoustic phonon 

modes, and optical phonon modes. 

 

1.3.3 Monte Carlo Device Simulations and Self-Heating 

 All the models discussed previously are continuum methods of describing the flow 

of charge in semiconductor devices. While current flow is often considered as a continuous 

phenomenon, it is made up of the contributions from individual charged particles. With 

small enough device dimensions, the continuous description of current becomes 
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inconsistent with reality, and a particle-based model becomes more desirable. In 

semiconductors the motion of charged particles (typically referred to as “charge carriers” 

or simply “carriers”) is determined by acceleration under the force of the electric field 

(drift), dispersion due to concentration gradients (diffusion) and random scattering events 

due to impurities, lattice vibrations, etc. In the drift-diffusion model, the effects of random 

scattering are incorporated in the mobility: carriers move at their saturated drift velocity as 

a function of the electric field, temperature, etc. In the hydrodynamic model, the effects of 

random scattering are incorporated through momentum and energy balance equations. The 

Monte Carlo method evaluates the effects of scattering directly by using stochastic 

techniques to select an appropriate mechanism and randomizing the momentum and energy 

of the scattered carrier accordingly.  

 Even so, the Monte Carlo method, like the drift-diffusion and hydrodynamic 

models, is based on the Boltzmann transport equation (BTE). Whereas the drift-diffusion 

and hydrodynamic models use moments of the BTE to derive a set of continuity equations, 

the Monte Carlo method satisfies the BTE by balancing the driving forces of drift and 

diffusion with the collision forces of random scattering. Deriving scattering rates according 

to Fermi’s golden rule and selecting random scattering processes according to these rates 

ensures that the Monte Carlo method satisfies the BTE in the long-time limit. 

 The Monte Carlo method is used for studying a variety of transport phenomena. It 

is commonly used to study charge transport, but it can be used for other particle-based 

studies as well. One such application is the study of electron transport in the context of 

surface spectroscopy [15]. To solve for electron transport in the context of semiconductor 

devices, the Monte Carlo solution to the BTE is coupled with Poisson’s equation or 
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Schrodinger’s equation [16]. Tierney’s dissertation work uses this methodology to study 

electron transport in HEMT and Spintronic devices. Device simulation using the Monte 

Carlo method is not limited to the study of electron transport. While electrons are the charge 

carriers most often associated with the flow of current, since they are responsible for 

current flow in conductors, other charged particles such as positively or negatively charged 

ions contribute to the flow of charge as well. In semiconductors, a valence state which is 

missing an electron is often considered a positively charged hole. Holes can move freely 

in the valence ban, much like electrons in the conduction band. The Monte Carlo method 

can thus be used to study hole transport in semiconductors. 

 The work of Dewey et al. gives an insight into the shortcomings of a parabolic band 

model – common in early Monte Carlo studies of electron transport – for studying hole 

transport [17]. To correct the errors, the parabolic band model is replaced with a piecewise 

continuous function for hole energy with respect to the wave vector; this technique is used 

for both the heavy hole and light hole bands. A parabolic spin-orbital band is included for 

simplicity. This dissertation uses a similar model for warping in the heavy hole and light 

hole bands, while using a parabolic band model for the split-off band. 

 While simplified band structure models (non-parabolic bands for electrons and 

warped bands for holes) are often sufficient, some methodologies instead use the full-band 

structure when simulating carrier transport. One such study uses the Monte Carlo method 

to solve for hole transport in silicon and germanium [18]. Instead of using a parabolic or 

warped band model for the valence band, this work uses the full-band structure to 

determine the distribution function and to calculate scattering rates in the valence band. 

The pseudopotential method along with Cohen and Bergstresser’s atomic pseudopotentials 
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is used to determine the band structure [19]. Scattering rates are derived using Fermi’s 

golden rule. While this provides a great basis for studying hole transport in the valence 

band of silicon and germanium, it does not appear to provide a significant advantage over 

the warped band model used in other works. 

 The insights from Monte Carlo studies can also be used to improve our 

understanding of the underlying behaviors governing device performance. One such effort 

uses a full-band Monte Carlo simulation to study bulk valence-band transport properties in 

silicon and germanium [20]. The band structure is calculated using the k∙p method and the 

scattering is calculated using Fermi’s golden rule. The focus of this paper is to understand 

the dependence of the ohmic mobility on the optical deformation potential, and to use this 

understanding to predict the temperature dependence of the ohmic mobility. This work 

seems critical for developing temperature dependent mobility models to use in conjunction 

with drift-diffusion based devices simulators. The device simulator presented in this 

dissertation work uses the particle-based Monte Carlo directly to study transport in the 

device so there is no need to extract bulk parameters such as mobility.  

 While the Monte Carlo method has the inherent advantage of directly modeling the 

behavior of carriers under the influence of random scattering, it has advantages in electro-

thermal modeling as well. While the drift-diffusion model is limited to studying thermal 

transport using the Joule heating method and the Fourier law, the Monte Carlo method does 

not have this limitation. Still, the Fourier law can be used alongside the Monte Carlo 

method to study thermal effects. One such effort studies an interesting device structure of 

strained silicon MODFETS [21]. The simulation methodology is to couple a Monte Carlo 

solver for electrical transport with a heat diffusion equation solver for thermal transport. 
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This is a reasonable methodology since it allows the coupling of the Monte Carlo solver to 

the thermal solver in the form of heat generation sources based on the electrical analysis 

from the Monte Carlo. The Monte Carlo – if it allows for temperature dependent scattering 

– can be coupled with temperature profile from the thermal result. The only phenomena 

this methodology cannot account for are local thermal non-equilibrium effects: the effects 

of the electron-phonon and phonon-phonon interactions that occur when there is a 

discrepancy in local temperature between electrons, acoustic phonons, and optical 

phonons. With the significant difference in lifetime and mean free path of optical and 

acoustic phonons, this can play a significant role in thermal transport. The work of this 

dissertation addresses these effects by solving for the energy balance equations for phonons 

rather than the Fourier law for heat flux. 

 The Monte Carlo method can comfortably address the contributions from local 

thermal non-equilibrium effects. Since it is a particle-based methodology, the Monte Carlo 

method is ideal for studying phenomena that exhibit localized effects. Individual particle 

parameters and locations within the device are already tracked when solving using the 

Monte Carlo method; the inclusion of carrier temperature as one of these parameters allows 

for a difference in local temperature between electrons, acoustic phonons, and optical 

phonons. This fact provides the basis for a methodology of simulating thermal effects in 

nanodevices by coupling the particle-based Ensemble Monte Carlo (EMC) solution to the 

Boltzmann Transport Equation (BTE) for electrons with a fluid model for optical and 

acoustic energy transfer derived from the BTE for phonons [13]. Similar techniques have 

been used to study electron transport in silicon semiconductor-on-insulator (SOI) devices 

[22], [23] and nanowire devices [24]. The same methodology can be adapted for particle-
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based simulation of both electron and hole transport coupled with the fluid model for 

thermal energy transfer. 

 1.3.4 Phonon Monte Carlo and Miscellaneous Electro-Thermal Effects 

Several studies approach electro-thermal modeling using methodologies that differ from 

those described above. Artaki’s study of hot phonon effects in silicon field effect transistors 

(FETs) is one such example, which considers the effects of non-equilibrium electron 

temperature on bulk phonons in silicon [25]. The formulation assumes a quasi-classical 

and locally Maxwellian distribution of electrons with a temperature significantly greater 

than that of the lattice temperature.  Bulk phonons are assumed to equilibrate with the hot 

electrons locally; this equilibration is treated by solving Planck's formula for electrons and 

phonons. The electron temperature is calculated as a function of the electric field using a 

field dependent mobility model. Finally, the energy loss of hot electrons though phonon 

assisted thermalization is calculated as a function of the electric field. This establishes a 

theoretical framework for determining the contribution of phonon scattering effects on 

energy loss in charge carriers in bulk silicon. 

 Thermal modeling is not limited to Fourier’s law or the energy balance method. 

Rather than treating thermal transport as a continuum phenomenon, it is possible to treat 

individual lattice vibrations (phonons) as particles and calculate their transport 

characteristics accordingly. Optical and acoustic phonons follow the Boltzmann transport 

equation for phonons. There are many ways to evaluate the phonon BTE; lower order 

moments of the phonon BTE simplify to Fourier’s law and the energy balance equations. 

These methods of evaluation were discussed in the previous sections. 
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 The phonon BTE can also be evaluated stochastically using the Monte Carlo 

method; Ramayya used this method to study thermoelectric properties of silicon nanowires 

[26]. A 1-D phonon Monte Carlo solves for thermal transport while a coupled 1-D Poisson-

Schrödinger solver evaluates charge transport. Further studies of phonon Monte Carlo are 

included in the thesis work of Abdul Shaik, where the results of the phonon Monte Carlo 

show that bulk conductivity models are insufficient in describing thermal behavior in 

nanoscale devices [27].  

 These studies on phonon Monte Carlo techniques provide a pathway for advanced 

progression of electro-thermal modeling in nanoscale devices. Expanding the capabilities 

of such solvers to allow for 2- and 3-dimensional solutions and coupling with compatible 

Poisson-Boltzmann or Poisson-Schrödinger solvers will allow for simulation of advanced 

device structures. 

1.4 Purpose and Project Scope 

 The purpose of this dissertation is to present the cumulative results of a research 

study in the topic of electro-thermal simulation of CMOS devices and circuits. This study 

uses the ensemble Monte Carlo technique of solving the Boltzmann transport equation 

(BTE) for charge transport alongside the energy balance method for evaluating thermal 

transport. Prior results demonstrate the feasibility of this method for modeling CMOS 

circuits in two parts: electro-thermal simulation of NMOS devices and electrical simulation 

of a CMOS inverter. This dissertation prioritizes coupling of the electro-thermal solver 

with the CMOS solver.  

 The thermal solver, which uses the energy balance equations to determine optical 

and acoustic phonon temperatures, shows reliable results while coupled to the electron 
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Monte Carlo device simulator and used to solve for NMOS device performance. The goal 

of this dissertation is to couple the thermal solver with the electron-hole Monte Carlo 

device simulator to solve for CMOS device behavior and circuit performance. 

Implementing the coupled solver requires introducing temperature dependent scattering 

tables for both electrons and holes. In addition to calculating the temperature dependent 

scattering tables, each simulation subroutine that handles ensemble particles or particle 

attributes must be compatible with the additional temperature parameters. Finally, the 

energy balance solver evaluates the thermal transport using the temperature parameters 

from the electron-hole Monte Carlo. 

 Coupling the energy balance solver with the electron-hole Monte Carlo device 

simulator follows the same procedure as coupling with the electron Monte Carlo device 

simulator. Electrical parameters - carrier temperature, carrier concentration, and average 

velocity - from the device solver couple with the thermal solver to evaluate the energy 

balance equations. Finally, the entire coupled electro-thermal code is verified while using 

both the temperature dependent scattering mechanisms for the Monte Carlo and the optical 

and acoustic phonon temperatures from the energy balance solver. Results are consistent 

with those previously shown in the literature, but with some degradation in device 

performance due to carrier self-heating. Results also provide insight into the difference in 

thermal behavior of NMOS and PMOS devices. 

 After implementing the coupled electro-thermal solver for CMOS devices, the next 

step is to generalize the simulator for CMOS circuit applications. Simulating CMOS 

circuits using a single generalized solver requires that the Monte Carlo solution to the 

Boltzmann transport equation (BTE) include both electrons and holes in the particle 
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ensemble. The electrical device solver for CMOS can simulate the behavior of a CMOS 

inverter. The electro-thermal device solver provides insight into how the effects of carrier 

self-heating affect circuit performance. 

 In the future it will be beneficial to address the issue of continuity methods. The 

results shown in this dissertation use a brute force method of maintaining current continuity 

in CMOS circuits connected in series. Revisiting injection and extraction methods of 

continuity modeling could provide a more robust means of studying CMOS systems. 

 The motivation for this dissertation is to study practical applications of multi-scale 

modeling approaches. The generalized CMOS electro-thermal simulator described in this 

dissertation could eventually be coupled with a global multi-scale solver for the heat flow 

in the surrounding material and interconnects. This would provide a robust and versatile 

platform on which to study carrier self-heating, the effects of closely spaced adjacent 

devices, and heat flow in the surrounding circuitry. The simulations shown in this 

dissertation provide some insight as to how self-heating affects device performance. A full 

multi-scale solver which incorporates the dual carrier electro-thermal solver might provide 

even more. The NMOS global multi-scale device-and-interconnect solver shown in this 

dissertation demonstrates the feasibility of such a tool. 

 This dissertation prioritizes the development and testing of a CMOS device solver 

compatible with this global multi-scale methodology; coupling with the global solver is 

outside the scope of this dissertation project. 
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CHAPTER 2 

THE MONTE CARLO METHOD 

2.1 Charge Transport 

 Effective modelling of the behavior of electronic devices requires accurately 

describing carrier transport. In the case of Silicon MOSFETs, electron and hole transport 

in the channel determines the flow of current in the device. There are several options, 

shown in Fig. 4, for calculating carrier transport in semiconductors: drift-diffusion, 

hydrodynamics, Boltzmann, Wigner, and Green’s functions. Both hydrodynamics and 

Boltzmann methods also come in quantum corrected varieties while Green’s functions can 

be solved in equilibrium, near-equilibrium and non-equilibrium cases. This dissertation 

uses the Monte Carlo method of solving the Boltzmann transport equation (BTE).  

 

 
Figure 4 - Semiconductor Modeling Techniques: This hierarchy of modeling techniques is 

arranged according to the number of simplifying assumptions needed. This dissertation 

focuses on the Monte-Carlo/Boltzmann Transport methodology. 
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2.2 The Boltzmann Transport Equation 

 To solve the BTE using the Monte Carlo method, the BTE is arranged such that 

drift and diffusion processes or driving forces are balanced by the scattering processes or 

diffusive forces. Particle motion due to the electric field and concentration gradient is 

described by differential terms. Particle motion due to interactions with other particles, 

impurities in the semiconductor, and the crystal lattice is described by the collision integral. 

The BTE in this form allows for the stochastic evaluation of charge carrier transport. 

( , , )
r v

Coll G R

f t f f
f f

t m t t −

  
= −  −  + +

  

r v F
v       (1) 

Equation (1) is a generalized form of the BTE. The generation and recombination (G-R) 

terms cannot be treated using the Monte Carlo method because the time scale for these 

processes differs sufficiently from that of the collision processes. The Monte Carlo method 

for solving the BTE becomes insufficient in devices such as bipolar junction transistors 

(BJTs) where generation and recombination contribute significantly to carrier transport 

dynamics. In devices such as field effect transistors (FETs) the G-R terms are negligible in 

the transport dynamics. Several classical quantities must be replaced with the appropriate 

quantum terms to describe the effect the semiconductor band structure has on carrier 

transport. 
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      (2) 

Equation (2) shows the form of the BTE derived when omitting the G-R terms and 

substituting the appropriate quantum quantities. Evaluating this form of the BTE using the 
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Monte Carlo method gives a reliable semi-classical model for transport of electrons and 

holes in semiconductor materials.  

2.3 The Monte Carlo Method for Solving the BTE 

2.3.1 Methodology 

 Solving the differential terms of the BTE can be simplified by solving in the quasi-

static regime. In digital logic circuits, this approximation can be justified since the rate of 

change in the electric field and concentration gradients are relatively low in comparison 

with the same parameters in high speed devices, such as high frequency amplifiers or radio 

frequency devices. When solving in the quasi-static regime, the effect of the electric field 

on a charge carrier is simplified as a constant force applied over a small enough time step. 

Newton’s second law determines the acceleration of the charge carrier based on the 

effective mass in the conduction band, the amount of charge (±q), and the magnitude of the 

electric field. If the time-step is selected appropriately such that the electric field seen by 

the charge carrier is approximately constant, this quasi-static simplification can be applied 

to dynamic systems. 

 The collision integral is solved by calculating scattering rates and using the Monte 

Carlo method to select an appropriate scattering mechanism stochastically. By allowing 

each charge carrier to accelerate under the force of the electric field, and then to scatter 

according to the appropriate statistical model, this methodology assures that both sides of 

the BTE are balanced and the transport is described accurately.  
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2.3.2 Carrier Free-Flight 

 The Monte Carlo method assumes the motion of each particle consists of finite free-

flight terminated by a scattering event which changes momentum and energy of the 

particle. Free-flight times for each particle are generated randomly according to probability 

functions related to the scattering rates. Simulating an ensemble of particles requires 

synchronizing the free-flight potion of the Monte Carlo method without sacrificing the 

probabilistic nature of the random flight times. Introduction of a simulation time step 

allows for this synchronization. If an ensemble particle has a cumulative free-flight time 

that exceeds the prescribed time step, the particle accelerates under the force of the electric 

field for the duration then awaits the start of the next time step. If an ensemble particle 

scatters before the end of the prescribed time step, the outcome of the scattering event is 

resolved, and a new free-flight time is calculated; this repeats until each particle in the 

ensemble has enough cumulative free-flight time to reach the end of the time step. 

 In a bulk Monte Carlo simulation, the force acting on each particle during free-

flight is from an external electric field, defined in the simulation parameters. Adjusting the 

external electric field and monitoring the response of the ensemble particles allows for the 

evaluation of bulk charge transport properties. The Monte Carlo simulation computes the 

energy, momentum, and velocity of each particle in the ensemble. Comparing the 

saturation velocity against a range of external field values allows for the calculation of field 

dependent bulk mobility. Observing the transient behavior as carriers approach their 

saturation velocity provides insight regarding velocity overshoot. In a Monte Carlo based 

device simulator, there are internal electric fields acting on the particles during free-flight 

that are calculated separately. 
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2.3.3 Scattering Rates 

 Appropriate treatment of scattering phenomena in the Monte Carlo simulation 

ensures that the interactions described by the collision term in the BTE balances with the 

driving forces described by the differential terms. Scattering rates are necessary to 

construct the probability density functions used to randomly select the free-flight time. 

Scattering rates are also necessary to determine the final state of each particle after 

scattering occurs. The scattering rates used in Monte Carlo simulations depend on the band 

structure of the semiconductor. Figure 5 shows an illustration of the silicon band structure. 

 

 
Figure 5 - Silicon Band Structure: The illustrated band structure of silicon shows the lowest 

energy conduction band valley and three valence bands. This dissertation considers 

electron transport in this conduction valley and hole transport in these three valence bands. 
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 Conduction band scattering calculations use a non-parabolic band approximation 

to provide a more accurate dispersion relation. Valence band scattering calculations use a 

warped band approximation because the parabolic approximation fails to accurately 

describe the dispersion relation for holes. Several scattering phenomena are included in the 

calculation of the scattering tables. Acoustic phonon intra-band scattering is included for 

both electrons and holes. Acoustic and optical phonon inter-band scattering is also included 

for both electrons and holes, but the difference in dispersion relations between the 

conduction and valence bands necessitates unique considerations of electrons and holes.  

 Electrons in the conduction band occupy the valley located near the X-point in the 

first Brillouin zone, meaning there are six equivalent valleys; this is illustrated in Fig. 6a. 

Because of the k-space orientation of these equivalent valleys, inter-band scattering can 

occur in one of two processes: an f-process occurs when an electron scatters into a valley 

along an orthogonal axis relative to the starting valley, a g-process occurs when an electron 

scatters into the opposite valley along the same axis relative to the starting valley.  

 Holes in the valence band are assumed to occupy one of three energy bands: heavy 

hole, light hole, and split-off. All three are centered around the gamma-point in the 

Brillouin zone. The heavy hole and light hole band occur at the gamma-point and their 

dispersion relations are described using the warped band approximation; warping in the 

valence band is illustrated in Fig. 6b. The split-off band is also centered at the gamma-

point, but with greater energy separation. 
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Figure 6 - Conduction and Valence Constant Energy Surfaces: (A) The silicon conduction 

band has six equivalent valleys about the X-point. Inter-valley scattering rates must account 

for two types of scattering processes in these valleys. (B) Heavy hole and light hole valence 

bands in silicon exhibit warping. Constant energy surfaces are approximately spherical 

near to the gamma point but become increasingly warped as energy increases. The  

 

 Coulomb scattering occurs due to attractive or repulsive forces between mobile 

charge carriers and immobile charge ions in the crystal lattice. Ionized donor or acceptor 

dopant atoms, charged defects in the crystal, dangling bonds at material interfaces, and 

other forms of impurities can cause Coulomb scattering. Without simulating the molecular 

dynamics of the system or introducing an interface charge profile, it is still possible to 

account for ionized impurity scattering due to donor and acceptor doping. Coulomb 

scattering is included for electrons, but not for holes. The scattering tables for electrons 

and holes in silicon are shown below in Fig. 7-10. 
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Table 1: Phonon Deformation Potentials in Silicon Conduction Band  

Scattering 

Process 

Type of 

Phonon 
Temperature (K) Energy (meV) 

Deformation Potential 

(108 eV/cm) 

f1 TA 220 19 0.5 

f2 LA/LO 550 51 3.5 

f3 TO 685 57 1.5 

g1 TA 140 10 0.3 

g2 LA 215 19 1.5 

g3 LO 720 62 6 

 

The deformation potentials in Table 1 are used to calculate the intervalley phonon 

scattering rates for electrons in the conduction band [28].  

 
Figure 7: Electron-phonon scattering rates in in silicon. 
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Table 2: Piecewise Non-Parabolic Description of Warped Valence Bands 

Band 

Energy 

Range 

(eV) 

Wavevector 

Range         

(108 cm-1) 

Non-

Parabolicity 

(eV-1) 

Effective 

Mass 

Energy 

Offset 

(eV) 

Wavevector 

Offset   

(108 cm-1) 

Heavy 

Hole 

0 - 0.5155 0 - 0.404 0.4 1 0 0 

0.5155 - 2 > 0.404 0 -1.4124 0.9558 0 

Light 

Hole 

0 - 0.2 0 - 0.1259 0.1 0.2 0 0 

0.2 - 1.1 0.1259 - 0.3398 0 -1.0736 1.7392 0.7642 

1.1 - 2 > 0.3398 -0.045 0.9 0.6 0 

Split-

Off 
0.044 - 2 ≥ 0 0 1 0 0 

 

The piecewise non-parabolic description described in Table 2 is used to calculate the 

intervalley phonon scattering rates for holes in the valence band [29]. 

 
Figure 8: Hole-phonon scattering rates in the heavy hole band in silicon. 
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Figure 9: Hole-phonon scattering rates in the light hole band in silicon. 

 
Figure 10: Hole-phonon scattering rates in the split-off band in silicon. 
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2.4 Bulk Mote Carlo Results 

 Bulk Monte Carlo simulations are used to evaluate bulk properties in 

semiconductors by solving the BTE for charge transport. These bulk properties provide 

valuable insight about the material systems present in semiconductor electronics. Figure 

11 shows bulk results for holes in silicon. 

 

 
Figure 11 - Bulk Hole Monte Carlo Simulation Results: Velocity versus time (A) and 

energy versus time (B) show the transient behavior of holes in the bulk simulation. Velocity 

versus electric field (C) and energy versus electric field (D) characteristics are compared 

against existing results in the literature (Jacoboni) and collaborators (Vinucius) to verify 

the performance of the Monte Carlo simulator. 

 These bulk Monte Carlo Results are useful in studying behavior of materials used 

in semiconductor device manufacturing. Often Monte Carlo results can be used to extract 

key parameters for use with other types of models. For example, it is common to use bulk 
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Monte Carlo results to generate field dependent mobility models for use with a drift-

diffusion solver. This method is vital to extending the useful lifetime of existing reliable 

modeling techniques while novel – but often less reliable – techniques are developed. 

 The focus of this work; however, is to develop a device solver based on the Monte 

Carlo method of solving the BTE for charge transport. The Monte Carlo evaluates for the 

particle motion and scattering (known as the carrier free-flight/scatter loop) in the presence 

of an electric field. In the bulk solver, the electric field is a constant applied field, 

irrespective of position. In a semiconductor device the electric field arises as a result of an 

applied voltage bias and the field varies with position; additional techniques are required 

in order to calculate the electric field for the device solver. 

 



  32 

CHAPTER 3 

PARTICLE BASED DEVICE SIMULATOR 

3.1 Spatial Quantities in the Device Structure 

 The Monte Carlo method for solving the Boltzmann Transport Equation (BTE) 

provides a solution for charge carrier transport in a semiconductor bulk crystal with a 

constant electric field. To simulate carrier transport in a micro-electronic device, one must 

describe the structure of the device and calculate the magnitude of the electric field 

throughout. Under appropriate conditions, a quasi-static description of the electric field 

accurately models the drift forces contributing to carrier transport. For each time step in 

the simulation, an electro-static “snap-shot” of the device provides the necessary 

parameters. This “snap-shot”, acquired by solving Poisson’s equation for electrostatics, 

gives the electric potential. Solving for the gradient of the potential gives the electric field 

as a function of position [4]. 

 Many parameters evaluated as scalars in the bulk Monte Carlo solver become time 

and position dependent variables in the device simulator. Quantities such as doping density, 

carrier concentration, and electric field, treated as constants in the bulk simulator, vary with 

position, and/or time in the device simulator. This difference necessitates the careful 

construction of a spatial mesh, illustrated in Fig. 12, for mapping quantities to real-space 

coordinates. Defining the characteristics of this mesh is critical in describing the device 

structure.  
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Figure 12 - Device Structure and Mesh Illustration: This is a qualitative depiction of the 

rectangular mesh used to define a device structure. Material parameters and several 

evaluated quantities, such as electric potential, are mapped to the nodes. Spatial quantities 

not mapped to nodes, such as electric field and particle position, occupy cells between 

nodes. The node spacing (Δx and Δy) must be smaller than the smallest wavelength of the 

charge variation, approximated by the Debye length (λD). This mesh facilitates the 

numerical methods used in simulation and adheres to the physical structure of the device. 

 

 A rectangular mesh facilitates a straightforward numerical solution to Poisson’s 

equation. Uniform node spacing makes locating ensemble particles within the mesh trivial. 

Node spacing less than the Debye length ensures that the quasi-static approach gives a 

reasonable approximation of the transport dynamics. Device parameters such as doping 

concentration are defined at the nodes. Material parameters such as electric permittivity are 
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defined within each cell. The Poisson equation is evaluated for the electric potential along 

the nodes while the electric field is calculated within each cell [30].  

3.2 Solving the Poisson Equation 

 Poisson’s equation emerges from evaluating Gauss’s Law in the electrostatic 

approximation. Gauss’s law states that the divergence of the displacement vector (D) is 

equal to the free charge density (ρ). 

 =D            (3.1) 

In a linear, isotropic, and homogeneous material, the displacement vector is the product of 

the permittivity (ε) and the electric field. 





= → =D E E          (3.2) 

Faraday’s law states that the curl of the electric field is equal to the negative time rate of 

change of the magnetic field (∂B/∂t). In the absence of a magnetic field, the curl of the 

electric field is zero, and the electric field can be described as the negative gradient of a 

scalar potential function (φ). 

0
t




 = − = → = −

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E E         (3.3) 

Substituting the result of Equation 5 into Equation 4 gives Poisson’s equation. 

2( )
 

 
 

 =  − = → = −E         (3.4) 

Evaluating for the electrostatic potential in regions of spatially varying permittivity 

requires the generalized form of Poisson’s equation. 

( )    = −           (3.5) 
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The equation is linearized and discretized so that the potential at each node can be evaluated 

iteratively using a five-point stencil, shown in Fig. 13. The resulting system of linear 

equations are solved using the successive over-relaxation (SOR) method. 

 

 
Figure 13 - Five-Point Stencil for Solving Poisson's Equation: Indices i and j allow for the 

identification of each node within the mesh. Solving for the potential, φi,j , at the central 

node relies on values of the potential in the adjacent nodes. 

 

The potential is calculated using the finite difference discretization. 
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Allowing for spatially varying permittivity requires a different form of Poisson's equation. 

 ( , ) ( , ) ( , )i j i j i j    = −         (3.12) 

Applying the finite difference method to this form of Poisson's equations relies on the 

introduction of coefficients corresponding to the five-point stencil, illustrated in Fig. 14. 

 ( , ) ( , ) ( 1, ) /a a i j i j i j y x = = + +         (3.13) 

 ( , ) ( , ) ( 1, ) /b b i j i j i j y x = = + −         (3.14) 

 ( , ) ( , ) ( , 1) /d d i j i j i j x y = = + +         (3.15) 

 ( , ) ( , ) ( , 1) /e e i j i j i j x y = = + −         (3.16) 

 ( , ) ( , ) ( , ) ( , ) ( , )c c i j a i j b i j d i j e i j= = − + + +      (3.17) 
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The potential under this discretization scheme is: 

 
1

( , ) ( 1, ) ( 1, ) ( , 1) ( , 1) ( , )i j a i j b i j d i j e i j i j
c

     = + + − + + + − +   (3.18) 

 

Figure 14 - Five-Point Stencil with Spatially Varying Permitivity: Indices i and j allow for 

the identification of each node within the mesh. This figure shows the spatially varying 

permittivity, εi,j , and coefficients as they relate to the central and adjacent nodes. 

3.3 Calculating the Electric Field 

 Solving Poisson’s equation for the electro-static potential throughout the device 

provides a means to determine the electric field; this electric filed acts as the driving force 

behind carrier transport in micro-electronic devices. Any given particle within the Monte 

Carlo ensemble can be located within the device structure, and the force on that particle 

can be calculated according to the potential at the surrounding nodes. While electric 
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potential has been calculated at each node point, the electric field and by extension the 

force on each ensemble particle is calculated within the cells. 

q=F E  = −E         (3.19) 

Discretizing along the 2-D mesh space defined for this simulation gives this form. 
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E   (3.20)  

Figure 15 shows an illustration of the electric field calculation. 

 
 

Figure 15 - Electron Field Calculation: An ensemble particle is located within the device 

mesh (A); the force on the particle is determined by calculating the electric field (B). 

 

 With the electric field is evaluated the free-flight/scatter procedure of the Monte 

Carlo solution to the Boltzmann transport equation (BTE) proceeds as before. The electric 

field parameter in the bulk Monte Carlo becomes a spatially varying quantity evaluated at 

each time step.  
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3.4 Particle Mesh Coupling 

 At the end of each time step in the simulation, after the carrier free-flight/scatter 

outcomes are calculated, Poisson’s equation is solved. To account for the ensemble 

particles’ contribution to the charge distribution, it is necessary to couple their charge with 

the device mesh. This coupling is achieved using a nearest element center (NEC) scheme, 

illustrated in Fig. 16. The charge of each ensemble particle has its charge distributed evenly 

amongst the mesh nodes surrounding the cell it occupies; this prevents self-force [31]. 

 
Figure 16 - Particle Mesh Coupling: An ensemble particle is located within the device mesh 

(A); the charge on this particle is assigned to the surrounding nodes (B). Charge assignment 

is repeated for each particle in the ensemble. 

 

3.5 Boundary Conditions 

 Boundary conditions state how a numerical solution should behave at boundary 

nodes. In a Monte Carlo device solver, boundary conditions determine how external 

dynamics influence the solution of Poisson’s equation. With transport inside the device 

structure described, what remains is to describe boundary conditions at the edge of the 
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simulation region. Particle-based device simulators use two types of boundary conditions 

which suit both the numerical methods used as well as the physical behavior of the device. 

Dirichlet boundary conditions are used at metal contacts and Neumann boundary 

conditions are used elsewhere.  

 Dirichlet boundary conditions are first order. In the context of the Poisson solver, a 

Dirichlet condition describes the value of the potential. Applying this condition at the 

contact nodes fits with physical intuition because typical operation of such devices includes 

applying a voltage to the contacts. The applied voltage results in an imposed electrical 

potential at the boundary nodes; thus, Poisson’s equation has its solution fixed at these 

nodes.  

 Neumann boundary conditions are second order. A Neumann condition describes 

the rate of change instead of the value in the numerical solution. Applying this condition 

at the non-contact device boundary nodes fits with physical intuition because such devices 

are electrically isolated; therefore, there should be no flow of current at the device 

boundaries. No flow of current implies no charge flux; thus, Poisson’s equation can be 

solved by setting the derivative of the charge density equal to zero at these nodes. 

 Boundary conditions also impose a specific behavior regarding the Monte Carlo 

ensemble. Contact nodes act as “active” boundaries. When applying a voltage at the 

contacts, it is possible for current to flow in the device. Ensemble particles, electrons or 

holes, can escape the simulation boundaries at the contacts. Similarly, ensemble particles 

can be injected or extracted at the contacts as needed to maintain charge neutrality at the 

contacts, thereby emulating the behavior of a perfect ohmic contact.  
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 In contrast, the non-contact boundary nodes are “passive”. Since no current flows 

at non-contact boundaries, ensemble particles are reflected. Reflection can be specular, 

where the angle of reflection equals the angle of incidence; or diffuse, where the angle of 

reflection is random. In most regions of the device, it is enough to allow for specular 

reflection. Ensemble particles experience frequent scattering such that any given particles 

trajectory is constantly changing. In the channel region, diffuse or partially diffuse 

reflections at the gate boundary emulate the effects of surface roughness scattering.  

3.6 Device Simulator Program Flow 

 The program flow of a particle-based device simulator incorporates the functional 

components described above. While some of the routines are specific to one device 

structure, others are generalized and can be used for alternative device structures with little 

to no modification. A carefully designed device simulator is modular and quite flexible, 

allowing it to be used to study numerous phenomena. The program flow of the particle-

based device solver developed in this dissertation is described below and shown in Fig. 17. 

 Material parameters are initialized: physical parameters of the semiconductor, 

oxide, and metal materials in the device are defined. The device mesh is initialized based 

on Debye length to ensure adequate resolution for the quasi-static approximation. Poisson’s 

equation is solved for equilibrium conditions (no applied voltage) beginning with an initial 

guess for the potential profile based on the doping profile. Ensemble particles are initialized 

based on the equilibrium distribution described by Poisson’s equation. The main loop of 

the program describes the transport of ensemble particles (free-flight/scatter), how these 

particles interact with the device mesh (particle mesh coupling), and how the resulting 

distribution affects the electrostatics of the system (non-equilibrium Poisson solver). 
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During every time step these processes are evaluated self consistently until the results 

converge. When the prescribed number of simulation time steps have elapsed, the loop 

ends, and results are collected. 

 Bulk characteristics are calculated by running the Monte Carlo simulation without 

coupling to a device mesh. The carrier free-flight/scatter proceeds without the particle mesh 

coupling or the Poisson solver; electrostatic quantities such as the electric field are instead 

input to the program as parameters.  

 
Figure 17 - Device Simulator Program Flow: The program flow illustrates the difference 

when solving for device behavior or bulk parameters. 

3.7 Device Simulator Results 

 Observing device mesh quantities and ensemble particle attributes throughout the 

simulations gives significant insight into device behavior. Monitoring flux at the contacts 

allows for calculation of the current at the source and drain. In a typical MOSFET device, 
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the current in the source equals the current in the drain. Electric current is defined as the 

rate of flow of electric charge. If total number of charge carriers passing the source or drain 

contact is plotted versus time the current is proportional to the slope. Current is calculated 

by accounting for the charge of each ensemble particle (-e for electrons and +e for holes). 

Current in the source and drain is a good indicator of device performance. Analyzing the 

current under different bias conditions is a method of characterizing MOSFET devices. 

Cumulative charge and IV characteristics are shown for an NMOS device in Fig. 18 and 

for a PMOS device in Fig. 19. 

 
Figure 18 - NMOS Device Behavior: (A) Cumulative charge for an NMOS transistor. (B) 

Drain current versus drain voltage characteristics for a NMOS transistor. 

 
Figure 19 - PMOS Device Behavior: (A) Cumulative charge for an PMOS transistor. (B) 

Drain current versus drain voltage characteristics for a PMOS transistor. 
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CHAPTER 4 

THERMAL TRANSPORT MODELING 

4.1 Hot Carrier Effects 

 When highly energized electrons or holes, known as “hot carriers”, experience 

scattering, energy is released as lattice vibration in the form of acoustic or optical phonons. 

Acoustic phonons (E < 50meV) provide a mechanism for the dissipation of energy in the 

form of heat conduction. Optical phonons (E > 50meV) are highly localized lattice 

vibrations: they decay into acoustic phonons, then the energy is released as heat [32]. 

Thermal transport models describe these phenomena which are illustrated in Fig. 20. 

Modeling electron/phonon interactions at the device level and heat conduction at the macro 

scale provides a detailed picture of thermal characteristics in microelectronic devices and 

circuits. 

 
Figure 20 - Hot Carrier Effects: Energy is transferred from hot carriers to optical and 

acoustic phonons, allowing the energy to dissipate via heat conduction. 
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 The significant difference in the duration of thermal processes in high field 

electronic devices necessitates the use of multi-scale modeling. The Monte Carlo based 

device simulator relies on the quasi-static approximation which requires a length scale on 

the order of the Debye length and a time scale on the order of the mean time between 

scattering events. The time scale determined by this criterion is appropriate for describing 

interactions between electrons and phonons, but it is orders of magnitude less than the time 

scale needed for heat conduction. A multiscale solution resolves this discrepancy by 

coupling the electron-phonon thermal transport model with the Monte Carlo device 

simulator, then solving for the heat conduction in the packaging and interconnects with a 

partially coupled Fourier law solver. 

4.2 Thermal Transport Models 

 Many physical processes are affected by the transfer of thermal energy within a 

system. Thermal processes are dictated by the first law of thermodynamics: the change in 

energy (dE) of a system (which equals the sum of the Internal energy U, the kinetic energy 

KE and the potential energy PE) is equal to the net amount of heat (Q) supplied to the 

system minus the net work (W) done by the system on its surroundings

( )dE d U KE PE dU
Q W

dt dt dt

+ +
= = = − .      (4.1) 

For our system the change in KE, PE and net work is zero. The total heat accumulated in 

the system includes the heat going into the system (Qin) minus the heat going out of the 

system (Qout) plus the heat generated internally (Qgen). Thus

in out gen accE U Q Q Q Q =  = − + = .       (4.2) 
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Consider a thin element of thickness x in a large plane wall. Assume the density of the 

wall is , the specific heat is c and the area normal to the heat transfer is A. An energy 

balance on this thin element during small time interval t can be expressed as: 

(
rate of heat

conduction

at x

) − (
rate of heat

conduction

at x+𝛥x

) + (

rate of heat

generation

inside the

element

) = (

rate of change 

of energy

inside the

element

)  (4.3a) 

or: 

. .
element x

x x x gen element gen element

E Q
Q Q E E

t x
+

 
− + =  − +

 
,    (4.3b) 

where Qx=Qin and Qx+x=Qout and Egen.element=Qgen.  The change in energy content is: 

( )element p t t t p

T
E c A x T T c A x t

t
 +


 =  −   


     (4.4) 

where T is the temperature. From the heat transfer (denoting the thermal conductivity 

with k) one has: 

Q T
q k

A x


= = −


.         (4.5) 

Substituting Eq. (4.4) and Eq. (4.5) into Eq. (4.3b) leads to the heat conduction equation:

.gen element p

T T
k E c

x x t


   
+ = 

   
       (4.6) 

which is a cornerstone equation for the analysis of self-heating effects in commercial 

TCAD tools. 

4.2.1 Joule Heating 

 Semiconductor microelectronic devices are one such system where internal heat 

generation mechanisms play a roll. These devices operate with a voltage bias across two 
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or more contact terminals which result in electric fields and current flow. Semiconductors 

operate on the physical principle of conduction. In a metal, conduction occurs because 

valence electrons de-localize and become shared among the positively charged nuclei. In 

metals, the valence and conduction bands overlap, and the Fermi level is in the conduction 

band. In insulators, conduction is inhibited because there is a sufficiently wide gap between 

the conduction and valence bands; the energy required for an electron to reach the 

conduction band is such that the material will often break down before it conducts. In a 

semiconductor there is a gap between the conduction and valence bands, but it is 

sufficiently small, and the Fermi level is sufficiently close to the conduction band such that 

energized electrons can escape into the conduction band and move freely within the 

material.  

 Electrical conduction in the presence of an electric field results in current flow. 

Electrons in the conduction band are negatively charged and accelerate under the force of 

an electric field. In semiconductors, and similar phenomenon occurs when states in the 

valence band are not occupied by an electron. These empty states, called holes, are 

positively charged and act remarkably like physical particles. Holes also accelerate under 

the force of an electric field. 

 Predictably, acceleration of electrons and holes is finite. The carriers interact with 

their surroundings, emit energy, and change direction due to scattering. The emission of 

energy through scattering is expressed as a local increase in thermal energy known as 

carrier self-heating. Carrier self-heating occurs even in simple electrical systems where the 

movement of individual carriers is not even considered. In such a system the flow of 

electrical charge is considered in terms of voltage, current, and power rather than the 
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movement of individual particles. Thermal effects are described according to the Joule 

heating model, without considering the contribution of individual carriers. 

 The Joule heating model is one way to describe the process by which the flow of 

electric current produces heat. Joule’s law relates the power (energy per unit time) 

converted from electrical energy to thermal energy with the current flow and the resistance: 

2 2P IV I R V R= = =          (4.7) 

Compact models evaluate the current and voltage values associated with electronic devices; 

Joule heating is calculated by treating the device as a resistor and evaluating the basic form 

of Joule’s law. This form of Joule’s law is sufficient for simple systems but must be 

generalized for systems with non-uniform conductivity and non-uniform current density. 

Another form of Joule’s law allows for heating to be calculated locally by considering the 

differential power per unit volume (dP/dV) as a function of the current density (J) and the 

electric field strength (E). This form is derived by considering that the current density (J) 

is the current (i) over the area and the electric field strength is the voltage (v) over the 

length. 

( )
dP d

iv
dV dV

=   
i

J
Area

=  
v

E
length

=      (4.8) 

dP

dV
= J E           (4.9) 

4.2.2 Modeling Thermal Transport Using the J∙E method 

 The only prerequisite for the J∙E method is the ability to calculate current density 

and electric field. This is inherent in the study of charge transport, consequently any charge 

transport model can be coupled with the J∙E method for evaluating thermal transport.  
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 The decision of how and to what extent this coupling is implemented depends on 

the complexity of the system. In some cases, it is enough to forward-couple results from 

the electrical solver and solve for the thermal behavior separately. The electric field and 

current density profiles allow for the calculation of power per unit volume throughout a 

device; the resulting heat generation profile goes into the heat transfer equation and solving 

the Fourier law determines the temperature throughout the device. 

 In other cases, the effects of heating in the device are sufficient to change the 

electrical behavior of the device. The results of the thermal solver must be back-coupled to 

the electrical solver. The thermal profile in the device is calculated as in the forward-

coupled case and is subsequently used to re-evaluate the electrical characteristics while 

considering the temperature dependence of critical parameters. The Fermi-Dirac 

distribution is temperature dependent; therefore, the intrinsic carrier concentration is 

temperature dependent. Drift-diffusion solvers often use a temperature dependent mobility 

model to improve the accuracy of the transport model. Monte Carlo solvers can use 

temperature dependent scattering tables when evaluating for charge transport. Self-

consistently solving for charge transport and thermal transport in a device requires 

evaluating the variables that effect both the electrical characteristics and the temperature 

profile iteratively until the results from both models converge.  

4.3 Energy Balance Modeling for Phonons with Electrons as Free carriers 

 To simulate systems which exhibit thermal non-equilibrium requires a model that 

allows a local temperature difference between charge carriers and the phonon modes they 

interact with. One such methodology uses the energy balance equations which describe the 

transfer of thermal energy between charge carriers, phonons and the crystal lattice. The 
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energy balance equations describe the thermal energy of each contributor as an associated 

temperature [13]. The energy balance equation for optical phonons is: 

* 2
3

2 2

LO e LO d LO AB
LO LO

e LO e LO LO A

T T T nm v T Tnk
C C

t   − − −

    − −
= + −   

    
    (4.10) 

The energy balance equation for acoustic phonons is: 

( )
3

2

LO A e LA B
A A A LO

LO A e L

T T T TT nk
C k T C

t  − −

   − −
=   + +   

    
    (4.11) 

Equations (4.10) and (4.11) include the following quantities: 

LOC :  Optical phonon specific heat capacity (J/kg∙K) 

AC :  Acoustic phonon specific heat capacity (J/kg∙K) 

LOT :  Optical phonon temperature (K) 

AT : Acoustic phonon temperature (K) 

LT : Lattice temperature (K) 

eT : Electron temperature (K) 

n : Electron concentration (m-3) 

*m : Electron effective mass (kg) 

dv : Electron drift velocity (m/s) 

e LO − : Coupling time constant for electrons with optical phonons (s) 

e L − : Coupling time constant for electrons with the lattice (s) 

LO A − : Coupling time constant for optical phonons with acoustic phonons (s) 

Bk : Boltzmann constant (J/K) 
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Ak : Thermal conductivity of the material (W/m∙K) 

In the quasi-static approximation, the partial differential optical phonon temperature with 

respect to time is assumed zero and Eq. (4.10) becomes: 

* 23 1 3 1

2 2 2

LO A LOB
LO B e d

LO A e LO e LO

T T Tnk
C nk T nm v

  − − −

 −  
= − + +   

  
    (4.12) 

Equation 4.12 includes the thermal energy, drift energy and total energy of electrons. 

3

2
Thermal B eE nk T=  * 21

2
Drift dE nm v=  * 23 1

2 2
Total B e dE nk T nm v= +  

Substituting these terms, Eq. (4.12) becomes: 

3

2

e LO e LO
LO LO LO A B LO tot

LO A LO A

C T C T nk T E
 

 
− −

− −

− = − +      (4.13) 

Solving for the optical phonon temperature gives the following: 

3
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In the quasi-static approximation, the partial differential of acoustic phonon temperature 

with respect to time is assumed zero. When acoustic phonon scattering is elastic the final 

term goes to zero. The lattice temperature is estimated to be equivalent to the acoustic 

phonon temperature (TL = TA). Under these assumptions Eq. (4.11) becomes: 

( ) LO A
A A LO
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T T
k T C

 −
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       (4.15) 

Combined with Eq. (4.12) this gives: 

( )
* 23 ( )
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Defining -TA=T'A, (4.16) becomes: 
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 There are four temperature variables described in these equations: electron 

temperature (Te), optical phonon temperature (TLO), acoustic phonon temperature (TA), and 

lattice temperature (TL). There are also time constants relating the rate of energy transfer 

and specific heat capacities for each of the phonon modes. Finally, there are electrical 

characteristics which determine how energized charge carriers will contribute to the 

thermal profile: carrier concentration (n) and drift velocity (vd). 

 There are challenges in coupling these energy balance equations with the results 

from a charge transport solver. The drift-diffusion model, which models transport 

according to continuum equations and describes the flow of charge in terms current density, 

is inherently incompatible with the energy balance equations. The Monte Carlo method, 

which tracks the attributes of each charge carrier in an ensemble – and can be easily 

modified to include carrier temperature as one such attribute – is well suited for coupling 

with the energy balance model. 

4.3.1 Coupling Charge Transport and Energy Transport 

 Coupling the charge transport results from the Monte Carlo solver to the energy 

balance equations requires evaluating the relevant electrical characteristics throughout the 

device. The energy balance equations need these characteristics as spatially varying 

quantities, but the Monte Carlo device solver tracks them as ensemble attributes: the 

attributes of each charge carrier are recorded as that carrier moves about the device 

structure. To deliver the spatially varying characteristics to the energy balance equations, 
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the carriers must be located, and their attributes assigned to an appropriate real-space grid. 

One methodology to accomplish this is the particle-mesh coupling discussed in section 3.3. 

 Electrical characteristics (Te, n, and vd) are available from the Monte Carlo 

ensemble via particle-mesh coupling. Three temperature variables remaining: lattice 

temperature (TL), acoustic phonon temperature (TA), and longitudinal optical phonon 

temperature (TLO). Assuming lattice temperature is equal to acoustic phonon temperature, 

as shown in Eq. (4.15), leaves us with a system of two differential equations and two 

unknowns. The optical energy balance equation, Eq. (4.14) has an analytical solution. The 

acoustic energy balance equation, Eq. (4.17), a second order equation, follows the same 

successive over-relaxation (SOR) approach as the Poisson’s equation solver. 

 Using device simulator particle attributes as inputs to the energy balance equations 

results in an un-coupled solution. Coupling the electrical solver with the thermal model 

requires that the device simulator account for contributions from the thermal dynamics 

using temperature dependent scattering rates. In the bulk solver, temperature is an input 

parameter used to calculate the scattering tables. In the coupled electro-thermal solver, the 

temperature dependence of scattering rates accounts for the phonon temperatures from the 

energy balance equation. The exchange of information between the Monte Carlo solver 

and the energy balance solver is illustrated in Fig. 21. 
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Figure 21 - Coupling the Electro-Thermal Solver: Particle attributes from the Monte Carlo 

device simulator, electron density, average velocity, and temperature, contribute to solution 

of the energy balance equation. The thermal profile from the energy balance equation 

influences the scattering mechanics of electrons in the Monte Carlo. 

 

4.4 Electro-Thermal Solver Program Flow 

 The program flow of the electro-thermal device solver developed in this dissertation 

is described below and illustrated in Fig 22. The material parameter initialization includes 

thermal parameters in addition to electrostatic parameters. Updated material parameters are 

mapped to the device mesh according to the same criteria. Temperature dependence does 

not influence the solution to the Poisson equation; the equilibrium solution to the Poisson 

equation initializes the charge distribution for the Monte Carlo ensemble. The Monte Carlo 

method now includes optical and acoustic phonon temperatures; the first iteration of the 

Monte Carlo free-flight/scatter routine requires some initial guess for these temperatures. 

For simplicity, the initial free-flight/scatter uses room temperature scattering rates; 
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subsequent iterations use scattering rates based on the phonon temperatures from the 

energy balance equation. When the electrical solver reaches steady state, the thermal solver 

takes the electrostatic quantities (carrier density, carrier energy, and average velocity) and 

solves for acoustic and optical phonon temperatures. The energy balance equation requires 

a thermal boundary condition for the solution to converge. In the isolated device simulator, 

assuming room temperature at the edge of the device provides this boundary condition. 

 The energy balance equation, like Poisson’s equation, is a second order partial 

differential equation. The numerical solution for the energy balance follows the same 

methodology as Poisson’s equation. Linearizing and discretizing across a five-point stencil, 

shown in Fig. 13 and 14, facilitates the numerical solution. Generalization of the equation 

accounts for spatially varying thermal conductivity; this is analogous to spatially varying 

electric permittivity in the electrostatic equations. Solving iteratively using the successive 

over relaxation (SOR) method provides a converging result for the optical and acoustic 

phonon temperatures. When the solution of the energy balance equations reaches steady 

state, the phonon temperatures throughout the device structure are available for subsequent 

iterations of the Monte Carlo solver. With the temperature dependent scattering rates used 

in the electro-thermal solver, the effects of carrier self-heating influence electrical 

performance of the device.  
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Figure 22 - Electro-Thermal Device Simulator Program Flow: This diagram shows the 

nested loop arrangement of the electrical and thermal portions of the solver. Results are 

collected when both parts reach steady state. 
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CHAPTER 5 

MULTI-SCALE MODELING AND EXPERIMENTAL METHOD 

5.1 Thermal Transport at the Macro Scale 

 In the coupled electro-thermal solver for an isolated device, boundary conditions 

assume room temperature at the edge of the device. This assumption is unrealistic in most 

semiconductor and microelectronics applications. On a chip, adjacent devices, isolating 

oxides, and conductive interconnects surround each device. Thermal transport in 

microelectronic devices is a complex process involving the surrounding materials in 

addition to the devices themselves. Discrepancies in time and length scales for device level 

transport and macro scale thermal transport necessitates multiscale modeling to study these 

phenomena.  

 Treating the microelectronic device as a heat source allows for the addition of a 

generation term when evaluating Fourier's law for thermal transport in the surrounding 

materials. The initial iteration assumes the device and its surroundings are at room 

temperature and the system is in equilibrium. Evaluating Fourier's law in the interconnects 

provides temperature boundary conditions for the device simulator. The electro-thermal 

device simulator reveals the phonon temperatures throughout the device. The lattice 

temperature is assumed equal to the acoustic phonon temperature, and this thermal profile 

determines the generation terms in subsequent iterations of the Fourier law solver. 

 With the device acting as a heat source in the macro-scale simulation region, the 

system is no longer in equilibrium. A positive heat flux is observed from the device towards 

the edge of the simulation region through the surrounding isolating oxide and conductive 

interconnects. Thermal conductivity can vary widely in the materials used in 
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microelectronic circuits; the dynamics of the system can vary depending on materials used 

and topology. This multiscale solution accounts for these dynamics. The results of the 

Fourier law solution for the macro-scale system provide more realistic temperature 

boundary conditions for the device simulator in subsequent iterations. The program flow, 

shown in Fig. 23, illustrates the coupling of the electro-thermal Monte Carlo device solver 

and the Fourie law interconnect solver. 

 
Figure 23 - Global Solver Program Flow: Results from the electro-thermal solver become 

inputs to the macro scale Fourier law solver; results from the Fourier law solver become 

boundary values in the electro-thermal solver. 
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5.2 Experimental Methods and Simulation of Temperature Sensing 

 Traditional methods of temperature sensing are often incompatible with 

semiconductor devices and microelectronic devices. Contact-reliant methods are likely to 

damage the structure rendering the results unusable.  

5.2.1 Thermoreflectance Method 

 The thermoreflectance method is effective for the direct measurement of surface 

temperature in semiconductors and often used for studying thermal effects in devices. One 

downside to this method is that it is ineffective in sensing localized sub-surface effects. 

Careful study of the device theory and simulation of thermal effects in microelectronics 

suggest the formation of localized regions of increased temperature (“hot-spots”) due to 

high electric fields and thermalization of the resulting high-energy electrons.  

5.2.2 Heater-Sensor Method 

 Experimental researchers at Interuniversitair Micro-Electronica Centrum (IMEC) 

proposed a method of determining the temperature within a transistor in saturation by using 

an adjacent transistor in sub-threshold as a sensor. This experimental approach is directly 

comparable to simulation provided an identical device structure is simulated [33].  

 The IMEC method uses the temperature dependence of the sub-threshold slope of 

enhancement mode devices to determine the temperature in the structure. With a MOSFET 

device biased in the subthreshold region, the slope of the I-V curve indicates the 

temperature of the device’s surroundings. To observe the self-heating process in active 

MOSFET devices, a subthreshold (sensor) device is placed adjacent to an active (heater) 

device, as shown in Fig. 24. The carrier self-heating in the active device causes a “hot-
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spot” to form. Thermal transport in the semiconductor material causes the sub-threshold 

device to experience a proportional increased temperature.  

 
Figure 24 - Heater-Sensor Device Structure: this device structure illustrates the 

configuration of the heater (left) and sensor (right) devices. 

 

 The subthreshold sensor device is calibrated by directly heating the substrate on a 

hot plate and measuring the subthreshold I-V curve slope as a function of temperature. The 

subthreshold slope of the sensor device is again measured while actively biasing the heater 

device. As a hot spot forms in the heater device, the temperature in the sensor device is 

calculated as a function of the subthreshold slope based on the hot plate calibration. While 

this method does not provide a direct measurement of the temperature profile in the active 

device, it has one clear advantage: the entire experimental procedure can be simulated. 

Simulating both the heater and sensor devices allows for direct comparison with the 

experimental results. Comparing simulated I-V characteristics of the active device with the 

experimental I-V characteristics, shown in Fig. 25(a), verifies the accuracy of the electrical 
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modeling. Comparing the simulated sensor temperature with the experimental sensor 

temperature, shown in Fig. 25(b), verifies the accuracy of the thermal modeling. 

 

 
Figure 25 - Heater-Sensor Experiment and Simulation Results: (A) heater device I-V 

characteristics and (B) corresponding sensor device temperature. Experimental data 

provided courtesy of IMEC. 

 

5.2.3 Simulated Temperature Profile Feasibility 

 The strategy of comparing simulated and experimental results for both electrical 

and thermal characteristics provides a strong framework for evaluating the feasability of 

the methodologies. The experimentatal method provides an opportunity for calibration of 

the temperature sensing and direct measurement of the electrical characteristcs, but offers 

limited insight for the underlying transport mechanisms. The simulation method directly 

models electro-thermal transport, offering exceptional insight into the location and nature 

of the "hot-spot", but it requires experimental validation. Verifying these results suggests 

the heator-sensor experiment actually measures self-heating, and the electro-thermal 

simulation provides an accurate thermal profile, as shown in Fig. 26. This approach 

provides a robust methodology for studying the nature and effects of carrier self-heating. 
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Figure 26 - Heater-Sensor Temperature Profiles: A localized hot spot forms in the drain 

region of the active device; this hot spot causes increased sensor device temperature 

resulting in a shift in the subthreshold slope. The lattice temperature profile (A) shows the 

increase in temperature and the optical phonon temperature profile (B) shows the 

pronounced hot spot in the drain of the active device. 

 

 The global device-interconnect simulator demonstrates the feasibility of multiscale 

modeling for studying the contributions of several concurrent phenomena. The Monte 

Carlo method solves for charge transport in the device, the coupled energy balance 

equations account for thermal interactions between charge carriers and phonons in the 

device, and the Fourier law evaluates for heat conduction outside the device. Comparisons 

with experimental results indicate this multiscale methodology goes beyond 

conceptualized behavior of a physical system to deliver simulated results which are 

comparable with measurable quantities. Expanding the capabilities of this methodology for 

CMOS simulations allows for the study of hot carrier effects in the context of micro-

electronic circuit applications. This requires a charge transport model capable of evaluating 

for the motion of both electrons and holes, a device solver which can simulate both n-

channel and p-channel MOSFETS (NMOS and PMOS), and a thermal transport model 

which accounts for the contribution of both hot electrons and hot hole effects. The 



  63 

remainder of this dissertation details the development of a CMOS electro-thermal solver: 

the approach is as follows: 

• Implement a Monte Carlo transport solver for holes 

• Develop a device solver for PMOS devices 

• Generalize the device solver for CMOS 

• Verify the CMOS solver by studying circuit behavior (CMOS digital inverter) 

• Couple the CMOS device solver with the energy balance thermal transport solver 

• Verify the CMOS electro thermal solver 
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CHAPTER 6 

CMOS DEVICE AND CIRCUIT SIMULATIONS 

6.1 Methodology and Device Structure 

 To study the interactions between closely spaced microelectronic devices in analog 

and digital circuits, multiple devices need to be simulated. Since many integrated circuits, 

both analog and digital, are designed using complimentary devices (CMOS in the case of 

MOSFET based ICs) it is necessary to simulate electron and hole transport concurrently. 

In this dissertation, the Monte Carlo ensemble contains both electrons and holes. The 

transport is solved using the appropriate free-flight and scattering mechanisms and the 

Poisson solver accounts for contributions to the charge distribution from both carrier types. 

This allows for simulation of device behavior in the context of CMOS circuits, like the 

CMOS inverter shown in Fig. 27. 

 
Figure 27 - CMOS Inverter Cross-Section: This is an illustration of the device structure 

used to demonstrate the dual-carrier methodology described in this dissertation. 

 

For CMOS simulation, the Monte Carlo method includes both electrons and holes in the 

particle ensemble. Separate scattering tables for electrons and holes account for the 

difference in conduction and valence band structure. The Poisson solver accounts for the 
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contributions of electrons and holes to the charge distribution. Solving for NMOS and 

PMOS individually with the dual carrier method demonstrates the performance of the 

methodology and builds confidence moving forward to full CMOS simulations. I-V 

characteristics of individual NMOS and PMOS, simulated using the dual-carrier solver, are 

shown in Fig. 18 and 19.  

6.2 Continuity Considerations 

 Full CMOS simulations also require a method to maintain continuity between 

series- and parallel-connected devices. For parallel connections, the voltage across the 

devices is equal, and the applied bias accounts for continuity. For series connections, such 

as in a CMOS inverter, current in the devices is equal, and the applied voltage cannot 

account for continuity. In a CMOS inverter the drain terminals of the NMOS and PMOS 

form the output. The voltage at the output depends on the behavior of the circuit. Output 

voltage is an emergent quantity rather than an applied quantity. Simulation of CMOS 

circuits requires a methodology to address this issue. 

6.2.1 Fully Self Consistent Approach 

 In a fully self-consistent solution, input and supply terminals have an applied bias, 

whereas output terminals have modified boundary conditions consistent with the observed 

circuit behavior. A CMOS inverter consists of series connected NMOS and PMOS 

transistors with power supplied at the source terminals, the input applied to the gate 

terminals, and the output at the drain terminals. Self-consistency in this configuration 

requires drain boundary conditions that maintain current continuity in these series 

connected devices. Current continuity in the circuit is analogous to charge continuity in the 

device. Selective carrier injection and extraction at the drain terminal of each device is one 
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approach to maintain charge continuity. Charge extraction at the drain of the NMOS 

transistor results in charge injection at the drain of the PMOS transistor. Since this is a dual 

carrier model, several available options are equivalent in terms of charge continuity. For 

example, in the event of extraction of an electron at the drain of the NMOS, injection of an 

electron or extraction of a hole in the drain of the PMOS results in equivalent charge flux. 

 Should the charge continuity scheme use a 1:1 correspondence (electron-for-

electron, hole-for-hole) or a majority carrier correspondence (electrons in the n-channel 

and holes in the p-channel)? Is it necessary to model the NMOS and PMOS as well as a 

resistive element such as a metal or polysilicon contact connecting the drain terminals? 

What happens to charge continuity when there is a capacitive element at the output, which 

charges and discharges as the inverter switches? It would be interesting to implement a 

fully self-consistent solution where output voltage is an emergent quantity dependent on 

the behavior of the circuit, but such a solution is not presented in this dissertation. 

6.2.2 Parametric Iteration Approach 

 While slightly less elegant, another method of addressing the continuity issue is to 

manipulate bias conditions while applying a voltage at each terminal. Applying a voltage 

at the source, gate, and drain terminals of a MOSFET results in current flow in the channel. 

The drain current of a MOSFET is dependent on the bias conditions at the terminals; a 

unique set of applied voltages result in a specific drain current. In a CMOS inverter, the 

drain terminals of both NMOS and PMOS are series connected and act as the output of the 

logic circuit; therefore, no voltage bias is applied. Kirchhoff's first law states that the charge 

entering a node is exactly equal to the charge leaving the node; therefore, the drain currents 

of the NMOS and PMOS must be exactly equal. Given a set of input conditions, or voltage 
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biases on the gate and source terminals, there is only one value for the drain voltage that 

results in equal drain currents: the output voltage. Rather than maintaining current 

continuity through injection and extraction statistics, continuity is maintained by applying 

the correct output voltage. 

6.3 Results 

 The correct output voltage is determined iteratively. For a set of input biases, the 

output is swept from 0V (ground) to 2.5V (supply or VDD). By comparing the resulting 

drain currents of the NMOS and PMOS, shown in Fig. 28, the correct value of the output 

voltage is constrained. Iteration continues until the desired accuracy is achieved. The 

voltage transfer curve of the inverter, shown in Fig. 29, is constructed. Further simulations 

of the inverter need only select input and output values that correspond to the voltage 

transfer curve. 
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Figure 28 - Parametric Iteration Method: The I-V characteristics show the drain currents 

as a function of output voltage for a given input voltage: (A) Vin = 0V, (B) Vin = .5V, (C) 

Vin = .75V, (D) Vin = 1V, (E) Vin = 1.25V, (F) Vin = 1.5V, (G) Vin = 1.75V, (H) Vin = 2V, 

(I) Vin = 2.5V. Current continuity is satisfied when the correct output voltage is found and 

the NMOS and PMOS have equivalent drain current. 
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Figure 29 - Extracted Voltage Transfer Curve: These plots show the extraction 

methodology (A) and the resulting voltage transfer curve (B) of the CMOS inverter. 

 

 

6.4 Discussion 

Figures 28 and 29 show that the macro-scale behavior (current and voltage) of CMOS 

circuits can be modeled using the parametric iteration method described in section 6.2.2. 

This device level simulation, with carefully selected continuity conditions, accurately 

predicts the behavior of circuit. Coupling the CMOS device solver with the electro-thermal 

model from chapter 4 allows for the study device level thermal behavior within the context 

of CMOS microelectronic circuits. 
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CHAPTER 7 

CMOS ELECTRO-THERMAL MODELING 

7.1 Including Hole-Phonon Interaction to the Energy Balance Model 

 The dual carrier Monte Carlo device simulator can solve for electron and hole 

transport characteristics simultaneously. To solve for thermal transport requires the 

modification of the energy balance equations, Eq. (4.10) and (4.14), to account for the 

contribution of both electrons and holes. 

The energy balance equation for optical phonons is: 

* 2 * 2
3 3

2 2 2 2

LO e LO h LO e d e h d h LO AB B
LO LO

e LO h LO e LO h LO LO A

T T T T T nm v pm v T Tnk pk
C C

t     − − − − −

      − − −
= + + + −     

      
 (7.1) 

The energy balance equation for acoustic phonons is: 

( )
3 3

2 2

LO A e L h LA B B
A A A LO

LO A e L h L

T T T T T TT nk pk
C k T C

t   − − −

     − − −
=   + + +     

      
  (7.2) 

Equations (7.1) and (7.2) include the following quantities: 

LOC :  Optical phonon specific heat capacity (J/kg∙K) 

AC :  Acoustic phonon specific heat capacity (J/kg∙K) 

LOT :  Optical phonon temperature (K) 

AT : Acoustic phonon temperature (K) 

LT : Lattice temperature (K) 

eT : Electron temperature (K) 

hT : Hole temperature (K) 

n : Electron concentration (m-3) 
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*

em : Electron effective mass (kg) 

dev : Electron drift velocity (m/s) 

p : Hole concentration (m-3) 

*

hm : Hole effective mass (kg) 

dhv : Hole drift velocity (m/s) 

e LO − : Coupling time constant for electrons with optical phonons (s) 

h LO − : Coupling time constant for holes with optical phonons (s) 

e L − : Coupling time constant for electrons with the lattice (s) 

h L − : Coupling time constant for holes with the lattice (s) 

LO A − : Coupling time constant for optical phonons with acoustic phonons (s) 

Bk : Boltzmann constant (J/K) 

Ak : Thermal conductivity of the material (W/m∙K) 

Solving the optical energy balance equation under quasi-static approximation is shown in 

Eq. (4.11) - (4.15). Including holes in Eq. (4.12) gives the following: 

3 3

2 2

e h

LO A B LO B LO total total
LO

LO A e LO h LO e LO h LO

T T nk T pk T E E
C

    − − − − −

 −
= − − + + 

 
    (7.3) 

This dissertation assumes the relaxation time constants for electrons and holes are equal: 

e LO h LO eh LO  − − −= =  

With this assumption, Eq. (7.3) reduces to: 

3
( )

2

e heh LO eh LO
LO LO LO A B LO total total

LO A LO A

C T C T n p k T E E
 

 
− −

− −

− = − + + +    (7.4) 
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Solving for the optical phonon temperature gives: 

3
( )

2

e heh LO eh LO
LO LO B LO A total total

LO A LO A

T C n p k C T E E
 

 
− −

− −

 
+ + = + + 

 
    (7.5) 

Equations (4.14) - (4.17) solve the acoustic energy balance equation in the quasi-static 

approximation with elastic acoustic phonon scattering and lattice temperature assumed to 

equal acoustic phonon temperature. Including holes in Eq. (4.17) becomes: 

( )
( ) ( ) * 2 * 23 3

'
2 2 2 2

B e LO B h LO e d e h d h
A A

e LO h LO e LO h LO

nk T T pk T T nm v pm v
k T

   − − − −

− −
  = + + +    (7.6) 

This dissertation assumes the relaxation time constants for electrons and holes are equal: 

e LO h LO eh LO  − − −= =  

With this assumption, Eq. (7.6) reduces to: 

( )
( ) * 2 * 23

'
2 2

B e h LO e d e h d h
A A

eh LO eh LO

nk T T T nm v pm v
k T

 − −

+ − +
  = +     (7.7) 

 The optical energy balance equation, Eq. (7.5), has an analytical solution. The 

acoustic energy balance equation, Eq. (7.7), a second order partial differential equation, 

uses the same successive over-relaxation (SOR) approach as the Poisson’s equation solver. 

 This system of equations requires electron and hole parameters from the electrical 

characterization. Some of the requisite parameters are readily available because they are 

used to evaluate charge transport behavior; others are calculated explicitly in the thermal 

transport solver. Particle attributes are stored as ensemble variables. The physical 

characteristics of each charge carrier are updated as it travels through the device. The 

thermal transport solver requires these attributes as spatial quantities. Individual ensemble 

particle attributes are mapped to real-space coordinates appropriately using the particle-
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mesh coupling approach described in chapters 3 and 4. With the electron and hole 

characteristics from the Monte Carlo ensemble, the system of energy balance equations is 

solved for the optical and acoustic phonon temperatures. The result is a thermal transport 

modeling methodology which accounts for contributions from electron and hole hot carrier 

effects. 

7.2 Device Structure Used in CMOS Simulations 

The device structure is shown in Fig. 30. Charge and thermal transport are solved in 2-D. 

 
Figure 30 - CMOS Electro-Thermal Device Structure: NMOS and PMOS transisitors are 

biased in saturation (diode connected). This is the exact device structure used in CMOS 

electro-thermal simulations. 

A list of key parameters and operating conditions is shown in Table 1. 

 

Table 3: Device Geometry and Operating Parameters 

Parameter Value 

Device Width 5 µm 

Source, Drain, and Channel Length 50 nm 

Source and Drain Depth 20 nm 

Bulk Depth 50 nm 

Gate Oxide Thickness 1 nm 

Device Separation 50 nm 

Bias Voltage (VGS = VDS) 1.25 V (NMOS) -1.25V (PMOS) 
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The Monte Carlo solver gives the velocity of electrons and holes, shown in terms of 

directional components in Fig. 31 and 32, and in terms of magnitude in Fig. 33. 

 
Figure 31 - Electron Component Velocity: The x-component (A) and y-component (B) of 

the electron velocity are mapped to the device structure. 

 
Figure 32 - Hole Component Velocity: The x-component (A) and y-component (B) of the 

hole velocity are mapped to the device structure. 

 

The energy balance equations for thermal transport call for the drift velocity of charge 

carriers, shown in Fig. 33. The magnitude of the drift velocity is calculated by considering 

the contribution of the x- and y- component velocities. 
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Figure 33 - Electron and Hole Drift Velocity: The electron drift velocity (A) and hole drift 

velocity (B) are mapped to the device structure. 

In equations 7.5 and 7.7 carrier velocity appears in the form of a drift energy. The drift 

energy used in the thermal solver is calculated from the drift velocity. This energy is 

averaged until the Monte Carlo solver reaches steady state to reduces noise in the energy 

profile and help thermal solver converge. The average carrier drift energy, shown in Fig. 

34, is used to evaluate thermal transport behavior. 

 
Figure 34 - Electron and Hole Drift Energy: The drift energy of electrons (A) and holes (B) 

are averaged until the Monte Carlo solver converges and mapped to the device structure. 

The Monte Carlo solver also calculates the charge carrier thermal energy, shown in Fig. 

35, needed to determine the rate and outcomes of scattering events in the free-flight/scatter 

segment of the device simulations. 
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Figure 35 - Electron and Hole Thermal Energy: Electron thermal energy (A) and hole 

thermal energy (B) are calculated by the Monte Carlo solver, averaged until the Monte 

Carlo solver converges and mapped to the device structure. 

 

The thermal energy is used to determine carrier temperature, shown in Fig. 36, which is 

needed to evaluate Eq. 7.7. 

 
Figure 36 - Electron and Hole Temperature: Electron temperature (A) and hole temperature 

(B) are calculated from the thermal energy. Because the thermal energy is averaged, the 

calculated temperature also has reduced random noise. 

 

The total electron and hole energy needed to evaluate Eq. 7.5 are calculated as the sum of 

drift energy and thermal energy. Figure 37 shows the total energy profile. 
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Figure 37 - Electron and Hole Total Energy: Total energy of electrons (A) and holes (B) is 

calculated as the sum of the drift energy and thermal energy. 

 

Carrier density throughout the device is calculated using the nearest element center (NEC) 

charge assignment scheme. The carrier density, shown in Fig. 38, is used in Eq. 7.5 and 7.7 

to calculate the weight of the electron and hole contribution to the phonon energy balance. 

 

Figure 38 - Electron and Hole Density: Electron density (A) and hole density (B) are 

calculated by NEC scheme in the Monte Carlo solver. 

7.3 Combined Electron and Hole Device Characteristics 

 To understand the contributions to the thermal behavior from hot electrons and hot 

holes carrier attributes are examined as a whole: electrons with holes. Average carrier drift 
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velocity is calculated by aggregating the velocity of electrons and holes and weighting by 

their respective densities, effectively combining the profiles from Fig. 33. Figure 39 shows 

that the drift velocity profiles of the NMOS and PMOS differ due to the differences in 

charge transport dynamics of electrons and holes. 

 
Figure 39 - Combined Drift Velocity: Velocity in the MOSFET channel regions is due to 

the applied bias. The resulting electric field exerts a force on the charge carriers in the 

inversion layer (electrons in the n-channel and holes in the p-channel). Velocity in the bulk 

region is dominated by random motion of carriers, but with slightly higher average velocity 

near the edges of the depletion region due to diffusion along the concentration gradient. 

The combined electron and hole drift velocity is used to calculate the total combined drift 

energy, effectively combining the profiles from Fig. 34. One of the notable considerations 

in this calculation is that the dispersion relation differs between electrons in the conduction 

band and holes in the valence band, as discussed in chapter 2. The relation between drift 
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velocity and drift energy differs as well. The combined drift energy, shown in Fig. 40, 

highlights this difference. 

 
Figure 40 - Combined Drift Energy: Energy in the MOSFET channel regions is due to the 

applied bias. Differences in the energy profile between the n-channel and p-channel can be 

attributed both to the differences in electron and hole drift velocity as well as the difference 

in the dispersion relation for electrons and holes. Drift energy in the bulk region is primarily 

due to random motion of carriers; thus, differences in the energy profile in the bulk regions 

are attributed to differences in the dispersion relation for electrons and holes. 

The Monte Carlo solver calculates thermal energy of the electrons and holes, calculating 

the total thermal energy profile effectively combines the profiles from Fig. 35. Differences 

in the thermal energy profile, shown in Fig. 41, in the NMOS and PMOS are attributed to 

differences in transport behavior for electrons and holes. 
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Figure 41 - Combined Thermal Energy: Energy in the MOSFET channel regions is due to 

the applied bias. The resulting electric field exerts a force on the charge carriers in the 

inversion layer (electrons in the n-channel and holes in the p-channel). Thermal energy in 

the bulk region for both electrons and holes exceeds the thermal energy at room 

temperature (3kT/2=38 meV) due to hot carrier effects in the channel that cause an increase 

in temperature throughout the device structure. 

The combined electron and hole thermal energy is used to determine combined electron 

and hole temperature profile, effectively combining the profiles from Fig. 36. The 

difference in the carrier temperature profile, shown in Fig. 42, in the NMOS and PMOS is 

attributed to the difference in thermal energy of electrons and holes due to their differing 

charge transport behavior. 
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Figure 42 - Combined Carrier Temperature: Increased temperature in the MOSFET 

channel regions is due to the applied bias. The resulting electric field exerts a force on the 

charge carriers in the inversion layer (electrons in the n-channel and holes in the p-channel). 

Carrier temperature in the bulk region for both electrons and holes exceeds room 

temperature due to hot carrier effects in the channel that cause an increase in temperature 

throughout the device structure. 

With the drift energy thermal energy of both electrons and holes the total energy is 

calculated, effectively combining the profiles in Fig. 37. Total energy indicates the 

magnitude of the contribution from hot-carriers to thermal transport. Differences in the 

total energy profile for NMOS and PMOS devices indicate the extent to which differences 

in charge transport behavior of electrons and holes affects the thermal transport in these 

devices. Figure 43 shows the combined total energy profile for electrons and holes. 
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Figure 43 - Combined Total Energy: Energy in the MOSFET channel regions is due to the 

applied bias. The resulting electric field exerts a force on the charge carriers in the inversion 

layer (electrons in the n-channel and holes in the p-channel). Energy in the bulk region is 

dominated by random motion of the carriers and increased temperature in the device. 

7.4 Device Thermal Profiles 

The energy balance method of evaluating for thermal transport gives a thermal profile in 

the device which accounts for hot carrier effects of both electrons and holes. One important 

assumption in the derivation of Eq. (7.6) is equating the lattice temperature and the acoustic 

phonon temperature. With this assumption, the acoustic phonon temperature profile gives 

the temperature profile of the device crystal lattice as well. The optical phonon temperature 

profile in Fig. 44 shows localized hot spots forming due to hot-carrier effects in the NMOS 

and PMOS channel regions. The lattice temperature profile in Fig. 45 shows how the 
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thermal energy generated in these hot spots spreads out and causes an increase in 

temperature throughout the structure. 

 
Figure 44 - Optical Phonon Temperature: The optical phonon temperature profile reveals 

the shape and location of the hot spots that form from hot carrier effects in the NMOS and 

PMOS channel regions. 



  84 

 
Figure 45 - Acoustic Phonon/Lattice Temperature: While the optical phonon temperature 

profile shows the hot spot, the lattice temperature profile reveals how this hot spot results 

in increased temperature throughout the structure. 
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CHAPTER 8 

CONCLUSIONS 

 The Monte Carlo method of modeling charge transport has a long history of use in 

the computational study of semiconductor microelectronic devices. It is versatile, accurate, 

and provides a level of detail with regards to the behavior of individual charged particles 

that far exceeds continuum-based alternatives. Many studies in the literature include only 

a single conductivity type. Electron Monte Carlo simulations are used to study bulk 

properties in n-type materials and devices with electrons as majority or inversion layer 

carriers. Hole Monte Carlo simulations are used to study bulk properties in p-type materials 

and devices with holes as majority or inversion layer carriers. This dissertation 

demonstrates that combining electrons and holes in the Monte Carlo ensemble allows for 

the study of NMOS and PMOS devices concurrently using the same solver. 

 Heat transfer studies in computational electronics is increasingly important subject 

as dimensional scaling precipitates an increase in current density in semiconductor devices. 

Traditionally, the favored approach is to use the Joule's heating law in conjunction with 

Fourier's law to model the effects of resistive heating in electronic devices. The differential 

form of Joule's heating law relates the power per unit volume of heat dissipation with the 

current density and electric field; thus, the use of the Joule heating model to determine 

generation terms in the heat transfer equation is often called the J∙E method. This 

dependence on current density and electric field makes this method an intuitive choice for 

modeling of electronic devices, since these are fundamental characteristics of interest when 

evaluating device behavior. These quantities are available or calculable in the preferred 

charge transport modeling schemes.  
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 The Joule heating method of studying heat transfer in semiconductor electronics 

becomes ineffective for sufficiently small devices, since dimensional scaling also 

precipitates an increase in electric field strength in critical device regions. High electric 

fields result in hot-carrier effects playing a role in both charge transport as well as thermal 

transport. In the realm of charge transport, the thermal energy of excited carriers increases 

their scattering rates as they move around the device; however, the increase is not enough 

to prevent other high field effects like velocity overshoot and ballistic transport. Some of 

these effects can be incorporated into continuum methods using modified mobility models, 

whereas some require a transition to a stochastic approach such as the Monte Carlo method. 

In the realm of thermal transport, hot-carrier effects result in local thermal non-equilibrium; 

the thermal energy of an excited charge carrier exceeds that of its surroundings. This 

thermal non-equilibrium is incompatible with continuum models which describe the 

thermal energy in a system in terms of a simple temperature profile. 

 The energy balance approach allows for thermal non-equilibrium by separately 

evaluating the thermal energy of charge carriers, optical phonons, and acoustic phonons. 

Previously, this method was successfully implemented in semiconductor device electro-

thermal simulations and coupled with multiscale thermal transport simulations at the circuit 

level. These previous successes used the Monte Carlo method for charge transport and the 

energy balance method for thermal transport while only considering the contributions from 

electrons. This dissertation shows that the electro-thermal methodology is also effective 

when considering the contributions of both electrons and holes.  

 Future work may couple the dual carrier electron-thermal modeling approach with 

a multiscale approach for simulating thermal transport at the circuit level. It may become 
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possible to simulate entire CMOS circuits with the accuracy and precision of device level 

simulations. 



  88 

REFERENCES 

[1] A. S. Sedra, Microelectronic circuits, 6th ed. New York, NY: Oxford University 

Press, 2010. 

 

[2] P. Horowitz, The art of electronics, 2nd ed. Cambridge, MA: Cambridge 

University Press, 1980. 

 

[3] G. Hiblot, “DIBL-Compensated Extraction of the Channel Length Modulation 

Coefficient in MOSFETs,” IEEE Trans. Electron Devices, vol. 65, no. 9, pp. 

4015–4018, 2018. 

 

[4] D. Vasileska and S. M. Goodnick, Computational electronics. San Rafael, CA: 

Morgan & Clapool Publishers, 2006. 

 

[5] M. Pourfath, V. Sverdlov, and S. Selberherr, “Transport modeling for nanoscale 

semiconductor devices,” Solid-State and Integrated Circuit Technology (ICSICT), 

2010 10th IEEE International Conference on. pp. 1737–1740, 2010. 

 

 [6] V. Sverdlov, E. Ungersboeck, H. Kosina, and S. Selberherr, “Current transport 

models for nanoscale semiconductor devices,” Mater. Sci. Eng. R, vol. 58, no. 6, 

pp. 228–270, 2008. 

 

[7] E. Pop, S. Sinha, and K. E. Goodson, “Heat Generation and Transport in 

Nanometer-Scale Transistors,” Proc. IEEE, vol. 94, no. 8, pp. 1587–1601, 2006. 

 

[8] S. Gaur and D. Navon, “Two-dimensional carrier flow in a transistor structure 

under nonisothermal conditions,” IEEE Trans. Electron Devices, vol. 23, no. 1, pp. 

50–57, 1976. 

 

[9] G. Wachutka, “Rigorous thermodynamic treatment of heat generation and 

conduction in semiconductor device modeling,” IEEE Trans. Comput. Des. Integr. 

Circuits Syst., vol. 9, no. 11, pp. 1141–1149, 1990. 

 

[10] S. J. Kim, T.H. Shim, K. R. Choi, and J. G. Park, “Comparative study of self-

heating effect on electron mobility in nano-scale strained silicon-on-insulator and 

strained silicon grown on relaxed sige-on-insulator n-metaloxidesemiconductor 

field-effect transistors,” Semicond. Sci. Technol., vol. 24, no. 3, p. 35014, 2009. 

 

[11] A. Majumdar, K. Fushinobu, and K. Hijikata, “Effect of gate voltage on hot‐

electron and hot phonon interaction and transport in a submicrometer transistor,” J. 

Appl. Phys., vol. 77, no. 12, pp. 6686–6694, 1995. 

 

 

 



  89 

[12] A. Raman, D. Walker, and T. Fisher, “Simulation of nonequilibrium thermal 

effects in power LDMOS transistors,” Solid State Electron., vol. 47, no. 8, pp. 

1265–1273, 2003. 

 

[13] K. Raleva, D. Vasileska, S. M. Goodnick, and M. Nedjalkov, “Modeling Thermal 

Effects in Nanodevices,” Electron Devices, IEEE Trans., vol. 55, no. 6, pp. 1306–

1316, 2008. 

 

[14] J. Lai and A. Majumdar, “Concurrent thermal and electrical modeling of sub-

micrometer silicon devices,” J. Appl. Phys., vol. 79, no. 9, pp. 7353–7361, 1996. 

 

[15] A. Akkerman, M. Murat, and J. Barak, “Monte Carlo calculations of electron 

transport in silicon and related effects for energies of 0.02-200 keV,” J. Appl. 

Phys., vol. 106, no. 11, 2009. 

 

[16] B. D. Tierney, “Monte Carlo Studies of Electron Transport in Semiconductor 

Nanostructures,” Ph.D. Dissertation, Dept. Elect. Eng., Arizona State Univ., 

Tempe, AZ, 2011. 

 

[17] J. Dewey and M. A. Osman, “Monte Carlo study of hole transport in silicon,” J. 

Appl. Phys., vol. 74, no. 5, pp. 3219–3223, 1993. 

 

[18] S. Jallepalli, M. Rashed, W. K. Shih, C. M. Maziar, and A. F. Tasch, “A full-band 

Monte Carlo model for hole transport in silicon,” J. Appl. Phys., vol. 81, no. 5, pp. 

2250–2255, 1997. 

 

[19] M. Cohen and T. Bergstresser, “Band Structures and Pseudopotential Form Factors 

for Fourteen of the Diamond and Zinc-blende Structures,” Phys. Rev.144, pp. 789, 

1966. 

 

[20] J. M. Hinckley and J. Singh, “Monte Carlo studies of ohmic hole mobility in 

silicon and germanium: Examination of the optical phonon deformation potential,” 

J. Appl. Phys., vol. 76, no. 7, pp. 4192–4200, 1994. 

 

[21] T. Sadi, R. Kelsall, and N. Pilgrim, “Electrothermal Monte Carlo simulation of 

submicrometer Si/SiGe MODFETs,” IEEE Trans. Electron Devices, vol. 54, no. 2, 

pp. 332–339, 2007. 

 

[22] D. Vasileska, “Modeling thermal effects in nano-devices,” Microelectron. Eng., 

vol. 109, pp. 163–167, 2013. 

 

[23] S. S. Qazi, “Electrical and Thermal Transport in Alternative Device 

Technologies,” M.S. Thesis, Elect. Eng., Arizona State Univ., Tempe, AZ, 2013. 

 

 



  90 

[24] A. Hossain, D. Vasileska, and S. M. Goodnick, “Self-heating and short-range 

Coulomb interactions due to traps in a 10 nm channel length nanowire transistor,” 

in 2011 11th IEEE International Conference on Nanotechnology, pp. 1110–1113, 

2011. 

 

[25] M. Artaki and P. J. Price, “Hot phonon effects in silicon field‐effect transistors,” J. 

Appl. Phys., vol. 65, no. 3, pp. 1317–1320, 1989. 

 

[26] E. Ramayya, “Thermoelectric properties of ultrascaled silicon nanowires,” Ph.D. 

dissertation, Elect. Eng., Univ. Wisconsin-Madison, Madison, WI, 2010. 

 

[27] A. R. Shaik, D. “Multi Scale Study of Heat Transfer Using Monte Carlo 

Technique for Phonon Transport,” M.S. Thesis, Dept. Elect. Eng., Arizona State 

Univ., Tempe, AZ, 2016. 

 

[28] E. Pop, R. W. Dutton, and K. E. Goodson, “Analytic band Monte Carlo model for 

electron transport in Si including acoustic and optical phonon dispersion,” J. Appl. 

Phys., vol. 96, no. 9, pp. 4998–5005, 2004. 

 

[29] A. Abramo et al., “A Multiband Model for Hole Transport in Silicon at High 

Energies,” Semicond. Sci. Technol., vol. 7, no. 3B, pp. B597–B600, 1992. 

 

[30] J. R. Nagel, “Numerical Solutions to Poisson Equations Using the Finite-

Difference Method,” Antennas Propag. Mag. IEEE, vol. 56, no. 4, pp. 209–224, 

2014. 

 

[31] S. E. Laux, “On particle-mesh coupling in Monte Carlo semiconductor device 

simulation,” Comput. Des. Integr. Circuits Syst. IEEE Trans., vol. 15, no. 10, pp. 

1266–1277, 1996. 

 

[32] Z. Aksamija, H. S. Hahm, and U. Ravaioli, “Emission and absorption of phonons 

in silicon,” Phys. status solidi, vol. 5, no. 1, pp. 90–93, 2008. 

 

[33] K. Raleva, E. Bury, B. Kaczer, and D. Vasileska, “Uncovering the temperature of 

the hotspot in nanoscale devices,” in 2014 International Workshop on 

Computational Electronics (IWCE), pp. 1–3, 2014. 


