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ABSTRACT  

   

Uncertainty is inherent in predictive decision-making, both with respect to 

forecasting plausible future conditions based on a historic record, and with respect to 

backcasting likely upstream states from downstream observations. In the first chapter, I 

evaluated the status of current water resources management policy in the United States 

(U.S.) with respect to its integration of projective uncertainty into state-level flooding, 

drought, supply and demand, and climate guidance. I found uncertainty largely absent 

and discussed only qualitatively rather than quantitatively. In the second chapter, I turned 

to uncertainty in the interpretation of downstream observations as indicators of upstream 

behaviors in the field of Wastewater-Based Epidemiology (WBE), which has made 

possible the near real-time, yet anonymous, monitoring of public health via 

measurements of biomarkers excreted to wastewater. I found globally, seasonality of air 

and soil temperature causes biomarker degradation to vary up to 13-fold over the course 

of a year, constituting part of the background processes WBE must address, or detrend, 

prior to decision-making. To determine whether the seasonal change in degradation rates 

was introducing previously unaccounted for uncertainty with respect to differences in 

observed summertime and winter-time populations, I evaluated demographic indicators 

recorded by the Census Bureau for correlation with their distance from all major 

wastewater treatment plants across the U.S. The analysis identified statistically 

significant correlation for household income, education attainment, unemployment, 

military service, and the absence of health insurance. Finally, the model was applied to a 

city-wide case study to test whether temperature could explain some of the trends 

observed in monthly observations of two opiate compounds. Modeling suggests some of 
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the monthly changes were attributed to natural temperature fluctuation rather than to 

trends in the substances’ consumption, and that uncertainty regarding discharge location 

can dominate even relative observed differences in opiate detections. In summary, my 

work has found temperature an important modulator of WBE results, influencing both the 

type of populations observed and the likelihood of upstream behaviors disproportionally 

magnified or obscured, particularly for the more labile biomarkers. There exists 

significant potential for improving the understanding of empirical observations via 

numerical modeling and the application of spatial analysis tools. 
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CHAPTER 1 

INTRODUCTION 

Few infrastructures provide more anonymous, resource-efficient access for 

continuous, near-real time monitoring of the health of large urban populations than the 

municipal wastewater collection system. By its nature, wastewater is an ideal matrix for 

the study of daily consumption and metabolism. Wastewater-based Epidemiology (WBE) 

has been used to monitor population-scale consumption of various illicit and recreational 

substances, medications, and exposure to environmental toxins and contaminants. More 

recently, WBE has been explored as a tool for monitoring dietary choices and overall 

nutrition as well as the impact of air quality and temperature on public health. Although 

many of the proposed dietary and mental and physical health biomarkers have yet to be 

fully tested in wastewater matrices, the field is rapidly moving towards the evaluation of 

antibiotic resistance and changes in microbiome. In short, over the last decade, WBE has 

been shown to be an effective, increasingly viable method for the evaluation of human 

health at large scales, with analytic techniques developed to identify even minute 

volumes of substances of interest. These advances have positioned practitioners of WBE 

to consider larger, and longer-lasting longitudinal studies.  

While WBE has emerged as a non-invasive, non-intrusive, technique attractive for 

its protection of the anonymity of groups of individuals monitored, WBE studies are 

structurally vulnerable to uncertainty as to the size and type of population represented by 

the measurements collected at central monitoring points downstream of the contributing 

individuals.  
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In this dissertation, I attempt to further bracket this uncertainty by integrating 

modeling into the interpretation and future design of field- and lab-based wastewater-

based epidemiology (WBE) studies. The results of these modeling experiments are 

intended to inform future WBE efforts two-fold. On the front end, modeling experiments 

can lead to better-designed monitoring studies, such that the selection of biomarkers of 

interest and population estimate methods are matched to a study area and its hydraulic 

and demographic characteristics. On the back end, these models can assist in better 

interpreting experimental results obtained in the field, such that decision-making is less 

skewed by biases in the data which are the result of non-experimental factors, like 

ambient conditions. 

 

Hypotheses 

The underlying hypothesis being tested in this dissertation is that 1) seasonal air 

and soil temperature, by modulating the temperature of wastewater and the speed with 

which wastewater temperature achieves equilibrium, will result in different rates of in-

sewer degradation for any biomarker of interest; that in turn, this will lead to 2) different 

upstream extents and minimum initial mass loads observable at downstream sampling 

locations; and finally that 3) these seasonal differences in degradation rates can result in 

statistically-significant changes in populations observable at the same sampling location, 

and 4) that temperature-related seasonality can be observable in field measurements of 

substances with public health significance, such as opiates.  

 

 



3 

Objectives 

The objectives of this dissertation are as follows:  

a) To identify to what extent wastewater temperature is expected to fluctuate 

over the course of a year across the world, and what impacts these 

fluctuations are expected to have on the degradation rates of biomarkers, 

the maximum distal reach of WBE observation, and the population 

captured by downstream sampling,   

b) To identify to what extent the seasonal change in distal reach resulting 

from the acceleration or retardation of biomarker degradation in response 

to seasonal changes in wastewater temperature can lead to the observation 

of demographically distinct populations at the same sampling location in 

winter versus summer months, and, 

c) To test, on a local scale, whether the proposed model of temperature 

dependence may explain some of the monthly differences observed in a 

real-world year-long opiate monitoring study, and to extrapolate the 

impact seasonal differences in degradation may have on estimates of per-

capita opioid consumption. 
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CHAPTER 2 

ON THE NEED TO INTEGRATE UNCERTAINTY INTO U.S. WATER RESOURCES 

PLANNING 

Abstract 

A changing climate is expected to inject uncertainty into water resource 

management decision making. We examined the latest publicly available, state-level 

guidance regarding the management of water supplies and demands concerning risks 

associated with drought, flooding, and climate change. We found state-level guidance 

supplementing the federally backed flood mitigation program to be updated most 

regularly (54% in the last 5 years; 84% in the last decade). Yet, the underlying floodplain 

mapping data these local planning efforts rely on are acknowledged by the Federal 

Emergency Management Agency (FEMA) to be chronically outdated. Drought planning 

guidance was found to be most outdated (16% last updated in the last 5 years; 18% 

almost two decades ago), and across the U.S., almost universally (94%) reactive 

(emergency response) rather than proactive (mitigation or management). Although 79-

94% of states provide some level of guidance regarding water supply and demand, the 

projections themselves may significantly predate the guidance. Many (70%) U.S. states 

still lack climate change impact guidance, particularly non-coastal states and those 

impacted by increased water scarcity rather than flooding. Strategies are rare (4%) for 

addressing the impacts of increased variability and uncertainty to meet inelastic demands 

with finite supplies. We conclude significant gaps exist in planning to address known or 

projected risks of climate-related impacts. Specific recommendations, including the 
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implementation of a nationwide water census, are provided to improve both the data and 

knowledge base of water management and reduce current vulnerabilities. 

 

Introduction 

Today’s global and local climates deviate from historical records collected over 

the past two centuries, a fact that poses new challenges. Human activities are affecting 

climate (Easterling et al. 2000; Short et al. 2012; UNFCCC 2015; Marotzke et al. 2017; 

Cai et al. 2019) and introducing a new level of uncertainty into forecasts.  Recent 

analyses indicate that even if all anthropogenic greenhouse gas emissions were to cease 

immediately, the impacts of legacy emissions would continue for some time (Meishausen 

et al. 2011). Thus, our climate is already altered (Milly et al. 2008; Cubasch et al. 2013; 

Yang et al. 2015) and historical records are becoming less illustrative of future climate 

events (Rummukainen 2012). While climate change mitigation is important, near-term 

adaptation by human populations is unavoidable (Hanemann et al. 2012).  

Water resources are an important aspect of climate change. As the extent and 

frequency of extreme climate events increases, the probability grows of unprecedented 

and potentially irrevocable changes in planetary processes (Alexander et al. 2006). These 

changes will challenge communities around the world to adapt their use and governance 

of water, both regionally and locally (Mujumdar 2013; Liu et al. 2018). Experts have 

observed the emergence of more extreme weather patterns, with direct implications for 

water resources management (Kunkel et al. 2013;  Westra et al. 2014; Peterson et al. 

2013; Janssen et al. 2014; Vose et al. 2014; Wuebbles et al. 2014; Hirsch and Archfield 

2015; O’Gorman 2015; Seeley and Romps 2015; Feng et al. 2016; National Academies 
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of Sciences, Engineering and Medicine 2016;  Pathak et al. 2017). An altered climate will 

change the distribution and magnitude of water supplies and influence the distribution 

and magnitude of anthropogenic water demands, particularly for agriculture and power 

production, and ecologic water demands, particularly via evapotranspiration (Huntington 

2006).  

Until recently, we had been designing infrastructure and crafting policies under 

the premise that natural fluctuations in hydrologic parameters fall, and will continue to 

fall, within an unchanging envelope of variability. This unchanging variability is known 

as the principle of stationarity (Milly et al. 2008). Under stationarity, while the day-to-

day value of any particular hydrologic parameter may be more or less difficult to predict, 

the overall range – and thus overall uncertainty – in the expected range of parameter 

values can be known from historic records. Thus, in the past, regulations relied heavily 

on historical climate records to assess risk and plan for uncertainty in largely 

deterministic ways (Huskova et al. 2016; Pahl-Wostl 2007; Liu et al. 2013). 

Uncertainty in the water sector, like in other physical systems, is composed of 

epistemic and aleatoric components (Der Kiureghian and Ditlevsen 2009; Beven 2013; 

Jiang et al 2016; Gardoni 2017). The former is a function of our imperfect ability to 

measure every input and thus, there being some uncertainty associated with our outputs. 

The latter relates to the highly variable behavior of some systems. For instance, rainfall 

characteristics (frequency, intensity, duration) may fall within known bounds, but the 

amount of daily rainfall a year from today can be effectively considered random. That is 

why many rainfall generators rely on descriptive statistics sampled from an observation 

record to regulate mean storm recurrence and intensity, but use random processes to 
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generate the discrete pulses themselves (Rodriguez-Iturbe et al. 1987;  Rodriguez-Iturbe 

et al. 1988; Heneker, et al 2001; Willems 2001;  De Michele and  Salvadori 2003; Furrer 

and Katz 2008; Muller et al. 2009; Serinaldi 2009; Ailliot et al. 2015; Ben Alaya et al. 

2015; So et al. 2015; Shamir et al. 2015; Shamir 2017; Shahraki et al. 2019). Epistemic 

uncertainty may be easier to reduce (e.g., by investing in finer-resolution weather 

satellites; expanding stream gauge and soil moisture sensor networks; implementing 

SCADA systems to collect data on water use in real-time), but it may be more difficult to 

quantify a priori, since it is an unknown unknown. By contrast, we may not have the 

means of reducing aleatory uncertainty (e.g., some variability in climate will remain 

regardless of recent climate change), however, we can describe and quantify it using 

probabilistic methods.    

A growing body of work is demonstrating the aleatory component of uncertainty 

is increasing and that water resources management decisions made under past climate 

normals are failing to satisfy the reality of a changing climate (Huskova et al. 2016; 

Wilbanks and Fernandez 2014; Shamir et al. 2015; Sharma and Wasko 2019). 

Increasingly, we are seeing changes in runoff, streamflow, and precipitation that are large 

enough to push hydroclimate beyond the range of historical behaviors (Seager et al. 2007; 

U.S. Climate Resilience Toolkit; IPCC 2014). Uncertainty around the excess or deficit of 

water is negatively coupled with economic prosperity and political stability, particularly 

in transboundary settings (Albrecht et al. 2017; Movilla-Pateiro 2016; Salman 2007; 

Giordano et al. 2014; Conti 2014; Eckstein 2013; Bernauer 2002; Gerlak et al. 2011; 

Megdal and Scott 2011). That uncertainty will matter more than ever before as the era of 

stationarity comes to an end (Milly et al. 2008).  
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Are we doing what is necessary to adapt to this change? How prepared are we to 

plan, design, and invest in the face of escalating uncertainty?  The objective of this paper 

is to address these questions by: 

(A) exploring where increased climate uncertainty may impact and impair water 

resource planning; 

(B) assessing how prepared we are today to face future challenges; 

(C) highlighting areas in which we stand to improve our preparedness; and 

(D) providing recommendations for moving forward.  

 

Methodology 

A search of U.S. state-level drought, flood management, supply, and demand 

guidance documents was conducted between late Summer and early Fall 2018. A 

database was created to provide citations for the latest-available guidance documents 

analyzed and included in this study. These data were joined to state shapefiles retrieved 

from the U.S. Census Bureau in Fall 2018. Risk maps, providing an indication of 

projected risks associated with drought, flooding, supply, and demand were adapted from 

the U.S. Environmental Protection Agency’s EPA’s Climate Change Impacts and Risk 

Analysis (CIRA) project data (EPA 2015). To better demonstrate the implications of 

future uncertainty on the complexity of planning efforts, the range of impacts across each 

of the projections (projections include the outputs of different global climate models, 

such as IGSM-CAM (MIT’s Integrated Global System Model (IGSM) coupled with the 

National Center for Atmospheric Research Community Atmosphere Model (CAM); see 

Monier et al. 2013) vs MIROC (University of Tokyo’s Model for Interdisciplinary 
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Research on Climate; see Watanabe et al. 2011), as well as the impacts of no-action vs. 

some emission mitigation) were mapped. Projected climate impacts, mapped to the 

county level, were adapted from Hsiang et al. 2017. 

 

Results and Discussion 

Where We are Today 

The review uncovered significant gaps in states’ preparedness with respect to 

water resource planning and uncertainty (Figure Error! No text of specified style in 

document.-1, Table Error! No text of specified style in document.-1). Compared with 

drought, supply and demand, and climate change guidance, state-level flooding guidance 

supplementing the federally backed flood mitigation program has been most recently 

updated (54% in the last 5 years; 84% in the last decade). Yet, the underlying floodplain 

mapping data these local planning efforts rely on are acknowledged by the Federal 

Emergency Management Agency (FEMA) to be at least in part, chronically outdated 

(DHS 2017). Particularly in rapidly developing and inland (vs. coastal) parts of the 

country, FEMA struggles to keep up with the compounding effects of climate and land 

use change (ASFM, 2011; DHS 2017). Drought planning guidance is almost universally 

(94%) reactive (emergency response) rather than proactive (mitigation or management). 

Only 16% of states had updated their drought guidance in the last 5 years, whereas 18% 

continue to rely on guidance published almost two decades ago. Although 79-94% of 

states provide some level of guidance regarding water supply and demand, the 

projections themselves may significantly predate the guidance. 70% of US states still lack 
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climate change impact guidance, particularly inland, non-coastal states and those which 

will suffer from increased water scarcity rather than flooding.  

Finally, we find uncertainty too-rarely (as few as 20%) mentioned, and even more 

seldom adequately explained. As few as 4% of guidance offer strategies for addressing or 

mitigating the impacts increased variability and uncertainty will have on the states’ 

ability to fulfill demands with finite supplies.  

Hsiang et al. (2017) perform their analysis using only one global circulation 

model (GCM). However, because they map their projections to the county level, the data 

nevertheless provides a good illustration of the spatial variability that state-level guidance 

must address. In reviewing the projected risks associated with climate-related impacts to 

the water sector, we find the threats – and uncertainty – unevenly distributed across the 

U.S. The southeastern United States is projected to be the strongest-hit by climate-related 

impacts to the water sector (Hsiang et al. 2017). The figure communicates net economic 

impacts, at the county level, related to climate change. Some counties in the U.S. were 

found to have no detrimental impact, or even a positive economic impact, from a 

changing climate. Thus, we make a determination of no risk. However, lacking a 

planning process or guidance may pose a risk in itself. Further, if for instance, increased 

agricultural productivity or tourism offsets the impacts of increased storm surge, the net 

impact may show no risk, even as there is a very real impact when the results are 

disaggregated. This is a limitation to any composite measures of risk, however, and 

particularly when applied to something like climate change in the water sector, in which 

components act in opposite direction (e.g., drought vs flooding). 
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The uncertainty pertaining to our current best estimates is generally largest in the 

southeastern United States, and smallest in the northeastern United States. Although 

northern in-land states are not, as a whole, particularly well (or better) prepared, these 

states are projected to face a lesser magnitude of risk with respect to future drought 

around which there is greater agreement between different GCMs. Adequate preparation 

plans may be simpler to develop than in regions, such as the southeast, where there exists 

more uncertainty around the magnitude and direction of impact of climate on water 

resources. With the exception of California and Florida, states least prepared for climate 

change (in terms of the lack of climate change planning guidance), are at risk for higher 

damages associated with climate change as a percentage of income (Hsiang et al. 2017).  

Hawaii and Alaska were part of the planning guidance document review. The 

results of this effort are shown in Table Error! No text of specified style in 

document.-1. However, the bulk of national-level climate modeling for the U.S. has, to 

date, been limited to the contiguous states. State-level climate modeling studies for 

Hawaii and Alaska that used a methodology consistent with that used for the continuous 

U.S. studies were not available.  Thus, the two states  are not shown in Figure Error! No 

text of specified style in document.-1. 
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Table Error! No text of specified style in document.-1. Current preparedness of U.S. 

states to deal with uncertainty related to climate change 
S

ca
rc

it
y
 (

D
ro

u
g
h
t)

 

• 45 U.S. states have a state-wide drought plan; 5 do not (AK, AR, LA, 

MS, ND). 

• 9 states (AK, AR, IA, LA, MI, MS, MT, NH, NJ, NY, ND, OK, UT, and 

WA) last issued or updated their current drought plans prior to 2000.  

• 8 states (DE, HI, IN, ME, MD, OR, SC, WI) have drought plans issued 

in the last 5 years. 

• 10 states mention uncertainty in drought guidance (CA, CO, HI, IL, IA, 

KY, MI, OH, SD, UT) 

• 40 states do not include any language around uncertainty associated with 

planning for and anticipating the timing, duration, intensity of droughts. 

• Most states (up to 47) provide drought guidance that is reactive rather 

than proactive 
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• 49 U.S. states provide state-level flood guidance; 1 state (Utah) does not. 

• 27 states have flood guidance published or updated in the last 5 years. 

• 42 states have flood guidance published or updated in the last 10 years.  

• 34 states do not include uncertainty in any form in their flood 

management guidance.  

• Of the 16 states (AK, AZ, AR, CA, IL, IA, LA, MD, MA, MN, MO, 

NV, NH, NM, OH, WI) that do mention uncertainty associated with the 

timing, spatial distribution, duration, or intensity of flooding forecasts, 

14 do not provide any additional or site-specific guidance for addressing 

the uncertainty beyond the FIMA boilerplate suggestion of voluntarily 

incorporating an extra 1 foot of freeboard (height above a minimum 

estimated base flood elevation) during the initial construction process) as 

a factor of safety.  

• 2 states (AZ, CA) are unique in that they go beyond the federal 

boilerplate language and offer additional guidance on the uncertainty 

associated with flooding. Arizona provides a matrix of recommended 

and inadvisable calculation methods based on risk level; California 

elaborates on the sources of uncertainty with flooding mapping and 

flood management, esp. when hazards are projected over the long term. 
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• 47 states have some form of state-wide water supply guidance; 3 states 

(LA, ME, VA) do not. 

• 25 states have state-level water supply guidance published or updated in 

the last 5 years – however, the supply estimates on which this guidance 

relies on have not necessarily been updated in the last 5 years. 

• 39 states have state-level water supply guidance published or updated in 

the last 10 years – however, the supply estimates on which this guidance 

relies on have not necessarily been updated in the last 10 years. 

• 25 states acknowledge that there exists uncertainty with respect to water 

supplies, particularly for projections at longer time scales; another 25 of 

50 states do not. 
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• 35 states have some form of state-wide water demand guidance; 15 

states (AK, GA, IL, LA, ME, MD, MA, NH, NY, OH, SD, TN, VA, 

WA, WI) do not. 

• 19 states have state-level water demand guidance published or updated 

in the last 5 years – however, the demand estimates on which this 

guidance relies on have not necessarily been updated in the last 5 years. 

• 29 states have state-level water demand guidance published or updated 

in the last 10 years – however, the demand estimates on which this 

guidance relies on have not necessarily been updated in the last 10 years. 

• 22 states acknowledge that there exists uncertainty with respect to water 

demands, particularly for projections at longer time scales; another 28 of 

50 states do not. 
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• Only 15 (AK, CA, CO, CT, FL, HI, ME, MD, MA, NH, NY, OR, PA, 

VA, WA) have issued guidance and planning materials pertaining to 

climate change and its impacts on water resources; 35 states have no 

such guidance. 

• Of those 15 states with state-level climate change guidance, only 1 

(California) is in a semi-arid region of the country.  

• Of those 15 states with state-level climate change guidance, only 1 

(Colorado) is non-coastal.  

• Of those 15 states with state-level climate change guidance, only 3 (CA, 

HI, PA) were last published or updated in the last 5 years.  

• In existing guidance, there is significant recognition and 

acknowledgment of uncertainty – both in the climate projections 

themselves, and in climate’s changing impact on water supplies and 

demands as well as the occurrence of episodes of drought and flooding.  

 

These findings overlie a national under-investment in water resources. Funding 

for water-resource infrastructure lags what is necessary to maintain and modernize 

existing assets. The American Society of Civil Engineers estimates across the nation, the 

deficits amount to $105 billion for water and wastewater infrastructure, $15 billion for 

inland waterways and marine ports, $39.4 billion for dams, and $70 billion for levees 

(ASCE 2017). With federal and state-level funding for infrastructure declining, the 

burden to address these deficits falls to municipalities and local utilities. Although 80% 

or more of the spending in the water sector is currently occurring at the municipal level 
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(Koehler 2018), many communities lack the tax base to address their part of the nearly 

$230 billion national water sector deficit (ASCE 2017).   

Promising Forward Progress 

With respect to better understanding (quantifying) variability and uncertainty  

As modern water infrastructure continues to become more reliant on automation 

via SCADA (Supervisory Control and Data Acquisition) control systems, utilities around 

the country are beginning to apply their SCADA systems to tasks like preventative 

maintenance and leak detection.  Data reported by American Water Works Association 

suggests non-revenue water (lost and unaccounted for water) rates are as high as 43% in 

major U.S. cities and over 85% in rural communities (Arcadis and Bluefield 2018; 

American Water Works Association 2018). The implementation of SCADA for 

preventative maintenance and leak detection is doubly beneficial, as it helps better 

manage water in the face of increasing risk of water scarcity (Figure Error! No text of 

specified style in document.-1) and prevents the $230 billion backlog of investment in 

water resources infrastructure from growing as a result of premature asset failures.  

Some utilities are already moving beyond these more basic tasks, by implanting 

SCADA in conjunction with analytics tools for predictive purposes. The Tarrant Regional 

Water District (TWRD) in Texas is leveraging machine learning technology in addition 

to SCADA to track real-time energy market conditions and the energy consumption of 

energy-intensive assets used in daily operation of its water conveyance system. The 

energy management optimization tool includes an alert system for energy market 

conditions, a capability to proactively simulate power consumption impact of operational 

changes before they are implemented, and a platform to integrate asset performance 
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levels (Arcadis 2018). While SCADA systems do not replace expert operators they can, 

and do, supplement them. Coupled with the appropriate analytics and alert levels, 

SCADA can improve the ability of utilities to respond to frequent fluctuations or rapid 

spikes in operational parameters and to carry out probabilistic decisions by mining data 

collected by the SCADA system in the past.  

 

With respect to developing tools for communicating uncertainty to decision makers 

Dynamic simulation tools have been recommended for environmental resource 

management for several decades (Costanza and Ruth 1998; Simonovic and Fahmy 1999; 

Stave 2003; Winz et al 2009; GoldSim 2016). The availability of object-oriented, 

modular, GUI-based platforms to build hitherto computationally complex system-

dynamics models has increased participation by utilities and governmental agencies 

(GoldSim 2016). These software tools are being used to develop comprehensive models 

which are capable of simulating long-term planning horizons, numerous competing 

demands, and alternative supply and demand scenarios, while remaining interactive and 

informative to stakeholders with various levels of modeling expertise. In Arizona, the 

Central Arizona Project Service Area Model (CAP:SAM) was developed by CAP staff 

and is used to aid the management of the Central Arizona Project (CAP 2017). The 

Central Arizona Project (CAP) is tasked with managing and delivering all the state’s off-

river allocation of the Colorado River (up to 1.5 million acre-feet per year) to municipal 

and industrial users, agricultural entities, and Native American tribes, serving 80% of the 

state’s population in the process (Hanemann 2002). CAP:SAM projections incorporate 

variable rates and patterns of growth, shortage levels, effluent reuse patterns, aquifer 
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recharge and recovery plans, and complex supply portfolio management decisions 

(Emanuel et al.; Seasholes et al.). The model is successful not only in its ability to 

provide a central repository for large amounts of disparate data, but as a cohesive and 

more easily digestible tool for CAP planners to communicate with water users and 

decisionmakers about issues facing the state’s water resources. Similarly, in California, 

the CalLite model was developed through a partnership between the California 

Department of Water Resources and the U.S. Bureau of Reclamation to simulate 

operation of California’s State Water Project and Central Valley Project (Islam et al. 

2010). CalLite is used to screen proposed water management projects throughout 

California and provides a platform for rapid and interactive policy evaluations which can 

be revised in collaboration with stakeholders and decisionmakers.  

The more these probabilistic models are built in-house by the water resource 

management agencies themselves, the more likely they are to be used, because 1) 

consensus regarding the need for these tools, their major assumptions, and critical 

capabilities and has been reached;  2) sufficient institutional capacity to run, interpret, 

maintain, and update the models has been developed; and 3) ownership in the process and 

product will prolong the period of time the models will be maintained.   

 

With respect to implementing policies to manage the impacts of uncertainty 

Whereas official redactions to water right law are slower in coming, across the 

country voluntary programs are emerging. Conserve to Enhance (Schwarz and Megdal 

2008) and the Verde River Exchange Water Offset Program (Cronin et al. 2017) are two 

successful examples. Conserve to Enhance (C2E) is a voluntary municipal water 
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conservation program; each billing cycle, participating households or businesses are 

notified of monthly savings they accrued as a result of their voluntary conservation 

efforts. Participants may then elect to donate the value of the savings to the C2E grant 

pool. Funds are disbursed annually as grants for projects which enhance local water 

resources and the environment, such as stream restoration, rainwater harvesting, or 

stormwater control. The Verde River Exchange was established in 2016 to provide local 

groundwater users a mechanism by which to reduce the impact of groundwater pumping 

on the Verde River. Without forfeiting or gaining long term water rights, participants 

may purchase annual credits from other Exchange participants who elect to withdraw less 

than their allotted share during a given water year. It is the first voluntary groundwater 

mitigation program in operation in the U.S. (Cronin et al. 2017). Neither program negates 

the uncertainty associated with future water supplies and demands. However, as a tool 

encouraging conservation and promoting the idea of banking water (whether legally or 

physically) for lean times, these programs can buffer communities from the impacts of 

short-term water-stress while capacity for longer-term solutions is developed.  

Across the country, new rainfall intensity-duration-frequency (IDF) curves are 

being calculated, new design storms are being generated, and new materials are being 

specified in response to a changing climate (PANYNJ 2018). Updated design manuals 

and master plans reflect these changes. However, little-to-no retrofitting of existing 

infrastructure does. Insofar as infrastructure is concerned, funding is the principal 

bottleneck. However, in May 2018, the Governmental Accounting Standards Board 

issued an Implementation Guidance Update that opens new funding mechanisms for 

green infrastructure (GASB 2018). Under the new GASB guidance, not only the initial 
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installation, but also the ongoing maintenance of green infrastructure like green roofs or 

permeable pavements, will be considered capital assets if they are part of water utilities’ 

distributed infrastructure. As assets, these line items can be funded via bonds, thus 

opening new, deeper funding sources than what exists for operation and maintenance 

activities under previous standards.  

Evidence from other large federal water-related investments suggest that the move 

towards smaller and more privatized funding in the water sector will continue. Change in 

FEMA policy may be forthcoming to address the agency’s $24 billion debt (Palmer 

2017), as it shifts its strategy away from funding rebuilding efforts and towards relocation 

(Moore 2017). If privatized, the non-subsidized cost of insuring home in flood zone could 

discourage sprawl into low-lying flood-prone areas by market forces rather than 

regulation. 

Finally, some cities are beginning to move towards developing guidelines for both 

qualitative and quantitative cost-benefit analyses that consider more novel categories 

such as ecosystem services, service losses, stress and anxiety, and quality of life and 

health benefits, recommending sensitivity analyses, and pricing ecosystem services as 

they relate to making communities more resilient to the impacts of climate change (NYC 

ORR 2019;  FEMA 2016). NYC planners in particular are promoting the integration of 

flexible adaptation pathways, particularly for infrastructure projects with a useful life 

exceeding 50 years (NYC ORR 2019).  
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Remaining Gaps 

In planning for drought, the prevalent lack of discussion of uncertainty may be 

attributed in part to the fact that drought forecasts are usually made on much shorter time 

scales than projections of water supply and demand or flooding, which helps reduce the 

uncertainty associated with the forecasts. Drought forecasts are made on time scales 

ranging from one to four months (NOAA CPC). By contrast, projections of supply and 

demand rely on assumptions made for much longer timescales. For instance, Arizona 

state statutes require the demonstration of 100-year assured water supply which 

necessitates forecasting supply and demand 100 years into the future (A.R.S. § 45-576). 

We have expanded this section to include the discussion provided above as well as the 

references cited.  Secondly, most current state-level drought guidance is reactive rather 

than proactive. It is aimed at addressing drought once the state of emergency is declared, 

rather than planning for it, or anticipating its occurrences in the future.  

In flood management, the universal recommendation for additional freeboard 

(height above a minimum estimated base flood elevation) during construction does 

provide some buffer for unforeseen flooding events. However, freeboard elevations are 

calculated based on FEMA base flood elevation maps which for many communities, 

particularly in non-coastal areas which represent the majority of the country’s landmass, 

are outdated. In areas, like the northeastern U.S., undergoing rapid land development 

and/or rapidly changing climate normals (averages of climatological variables including 

temperature and precipitation (Arguez et al. 2012)), one foot of additional freeboard 

based on outdated flood elevation maps may be insufficient to prevent flooding. 
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Of the 25 states whose water supply guidance acknowledges that there exists 

uncertainty with respect to water supplies, particularly for projections at longer time 

scales (Table Error! No text of specified style in document.-1), none describe practical 

suggestions, infrastructure tools, or legal mechanisms to help mitigate its effects.  The 25 

states which do acknowledge the existence of uncertainty do not quantify it. Lacking 

even an order of magnitude estimate of the envelope of uncertainty around a state’s 

current water supply estimates and projections makes planning efforts more brittle, as 

these plans are tailored to a narrower set of future scenarios than are plausible. 

Water demands are also subject to uncertainty, particularly in the context of long-

term planning (USBR 2011). Similarly to water supply, we find uncertainty in water 

demand estimates and projections not quantified in the reviewed state-level guidance 

even by the 22 states whose planning guidance does acknowledge the existence of 

uncertainty (Table Error! No text of specified style in document.-1, Figure Error! No 

text of specified style in document.-1). Socioeconomic drivers behind water demands 

are as important as the biophysical drivers behind water supply, but much of the 

knowledge exists outside of the water sector (USBR 2011).  Further, in many states, de 

minimis users (especially of groundwater) are legally exempt from reporting their water 

use. Thus, there is also un-represented uncertainty with respect to historic and current 

water demand that we can estimate only by indirect indicators such as population and per 

capita daily water consumption estimates (themselves subject to uncertainty).  

Finally, there is a lack of coverage and a lack of diversity in the types of climate-

related water resource impacts that are being addressed across the nation at present. For 

instance, because coastal states are over-represented among those with climate planning 
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guidance, more guidance is available for adapting to sea level rise and flood surge than to 

drought. Such guidance will be of little assistance to states tasked with developing 

climate impact plans in which scarcity is a more probable risk (Figure Error! No text of 

specified style in document.-1). With the exception of California and New York, most 

available state-level climate change guidance documents do not offer up any concrete 

steps to address uncertainty. 

 

Recommendations 

Table Error! No text of specified style in document.-2. Recommendations for U.S. 

states to deal with uncertainty related to climate change. 
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• For states with no drought response guidance (AK, AR, LA, MS, ND), 

develop such guidance. 

• For states with pre-2000 guidance (AK, AR, IA, LA, MI, MS, MT, NH, 

NJ, NY, ND, OK, UT, and WA), consider the likelihood of the plans’ 

obsolescence and update as needed.  

• Expand drought planning to include adaptation and mitigation strategies 

(that acknowledge the uncertainty around the timing, duration, and 

intensity of drought events) rather than simple emergency response 

measures.  

• Develop and include in planning guidance tiered shortage levels that 

occur as a state of drought is approached; tie these to legal mechanisms 

which provide the state progressive authority to begin emergency-level 

regulation of water demands in advance of absolute drought conditions. 
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• Collaborate with FEMA to develop guidance language around the 

limitations of FEMA flood maps and floodplain delineations to aid 

public and developers in interpreting the assurances and limitations of 

these models more correctly. Refer to current CA and AZ approaches 

for examples (Table Error! No text of specified style in document.-1). 

• Integrate, where appropriate, ecological engineering and green 

infrastructure options into flood management recommendations as an 

additional tool for managing uncertainty in addition to (or if appropriate, 

instead of) the standard 1-foot freeboard. This can be more effective on 

a local level and would not duplicate federal-level efforts by FEMA. 

Just as freeboard provides a factor of safety (buffer) against the 

uncertainty around flood elevations, green infrastructure (e.g., as 

permeable pavements, swales and berms, constructed/managed 

wetlands, vegetated buffers, greenways, etc.) provides additional 

capacity to contain storm/floodwater that happens to exceed design 

assumptions. 

• Seek to integrate land use (zoning, general plans) and water resource 

planning where possible to address floodplain problems proactively 

rather than reactively by decreasing the amount and value of 

infrastructure constructed in vulnerable areas. 
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• For water supply planning, integrate land use and water resource 

planning to better steward land representing critical supply sources (e.g., 

streams, mountain fronts, areas with snowpack); Better integrate 

demographic data (population growth projections) into water use 

planning to prevent over-development and over-allocation in areas with 

known water supply limitations.  

• On monthly and annual scales, track how projected volumes of 

renewable water supplies for key watersheds have compared to actual 

availability of snowpack, streamflow, or other indicators of concern.  

• Use discrepancies to re-calibrate the models used to generate 

projections, adjusting the conceptual model (projection assumptions) if 

required. If needed, use discrepancies to direct investment in better tools 

and additional data collection for watersheds or processes (e.g., 

streamflow; snowpack) which are more poorly simulated by predictive 

models. 

• Quantify the uncertainty associated with water supplies, both seasonally 

and annually.   

• Consider how poor water quality may impact water supply and 

incorporate into projections as a reduction in water available to serve 

municipal, agricultural, industrial, and/or ecological needs: if 

infrastructure and funding are not available to remediate or treat water 
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such that it can be used to meet existing productive demands, it is 

effectively unavailable as a source of supply. 

• Identify and quantify how upstream water management decisions may 

affect downstream availability (particularly in transboundary settings).  

• In conjunction with demand planning, review all allocations which rely 

on supply predictions; identify the sensitivity of unmet demand (or new 

surplus) to anticipated changes in supply – particularly at the upper and 

lower bounds of the envelope of uncertainty calculated for water supply.  
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• To improve demand planning, conduct a water census to establish 

baseline; require all water users to report their annual water use, 

regardless of exemption status (e.g., domestic/de minimis users, Native 

American reservations, federal lands) or water source (e.g., surfacewater 

vs groundwater vs reclaimed water). Repeat every n-years, basing 

census frequency on growth, overall supply availability, and amount of 

risk and uncertainty acceptable to constituents.  

• Use water census to generate n-year water priorities and cutback 

programs subject to the limits of state jurisdiction; integrate into 

emergency drought response and tiered shortage plans.  

• Evaluate alternative demand alternatives whenever possible, to better 

understand how closely to over-allocation the system is operating (e.g., 

when demand exceeds supply).  

• For states which do not track de minimis users, initiate efforts to 

document the number of users and locate their water abstractions in 

space. Subsequently, require annual reporting of de minimis users’ 

withdrawals.  

• For states with larger seasonal fluctuations in water demands (e.g., 

related to climate, water use sector (i.e. agricultural vs large urban), and 

demographics (i.e., snowbird populations vs lack thereof), consider 

requiring reporting on annual or seasonal, rather than annual, time 

scales.  
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• In approving new water claims, utilize a moving target (x years of 

demonstrated uninterrupted water supply with y% certainty); base 

timeframe on type of right, consider requiring a re-issuance of rights in 

n-years to balance the need for some certainty for development and 

consumer protection with an understanding that excessively long 

projections may have unacceptably wide margins of uncertainty. 
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• More critically consider steps to adaptation and mitigation rather than 

just acknowledging impacts may occur.  

• Document changes to climate normals across the state; if data are 

lacking, design and implement monitoring networks and analysis 

protocols to collect and interpret these data moving forward.  

• Update specific guidance documents, such as stormwater conveyance 

design manuals, in which assumptions related to probable precipitation, 

temperature, or other hydrologic indicators are based on climate 

normals.  

• Identify key infrastructure and planning tools designed for climate 

normals which are significantly exceeded by current and/or projected 

climate; identify adaptation or mitigation measures to increase their 

resilience; retrofit, retire, or reinforce as needed. 

 

Additionally, to continue making meaningful strides towards identifying sources 

of uncertainty, quantifying their impacts, and taking appropriate steps towards mitigating 

negative externalities we recommend the community continue working to close the gap in 
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climate models. Despite advances, the need for better data and better climate models 

remains (DWR 2008). Divergence of GCM-based projections of water supply and flood 

risk leads to lack of clear guidance for decision makers and operators. While projected 

variability (more erratic climate) may be a legitimate reality, projected divergence 

between GCMs is not. When resources are under-allocated towards determining which 

projection scenarios are more likely, costly water resources infrastructure (already subject 

to a $230 billion deficit) is over-engineered, and additional uncertainty is passed along to 

challenge decision makers. The climate science community should continue to make 

strides in how it curates, reviews, and ranks the outputs of its modeling efforts.  

 

Conclusions 

In the United States, our survey of state-level planning guidance found states 

currently under-prepared or entirely unprepared to address the impacts clime change will 

have on our ability to manage drought, flooding, supply and demand. Coastal states lead 

the nation with respect to climate planning, but the lessons learned may not be 

transferable to those in-land – particularly in semiarid regions projected to face increased 

aridity rather than coastal flooding. We find that although uncertainty has begun to leak 

into the vernacular of state-level planners (with 10 out of 50 states-level guidance 

acknowledging the presence of uncertainty with respect to drought planning, 16 of 50 for 

flooding, 25 of 50 for water supply, 22 of 50 for water demand, and 15 of 50 for climate 

impacts), the magnitude of the uncertainty is not quantified nor are its sources explicitly 

identified. To that end, we recommend the water community embrace a planning process 

that is more tolerant of variability, work to map and quantify uncertainty, and wherever 
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possible, increase the amount of empirical data that projections, as well as other design 

and planning tools, are based on. Doing so will improve the nation’s ability to plan, 

design, and invest in the face of escalating uncertainty. 
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CHAPTER 3 

MODELING WASTEWATER TEMPERATURE AND ATTENUATION OF 

SEWAGE-BORNE BIOMARKERS GLOBALLY 

Abstract 

Accurate modeling of in-sewer degradation of sewage-borne epidemiological 

biomarkers requires information on local wastewater temperature. We applied a 

deterministic, physical model to map theoretical wastewater temperature on a monthly 

scale worldwide and incorporated in the model estimated changes in the decay rate of 31 

biomarkers of public health relevance frequently used in wastewater-based epidemiology 

(WBE). Over the course of a year, 75% of the world’s global wastewater temperatures 

were estimated to fall into the temperature range of 6.9 to 34.4°C. These modeling results 

were in good agreement with empirical observations (n=400), as indicated by coefficients 

for Pearson (0.81; 0.76) and Spearman (0.86; 0.78) correlations for annual minima and 

maxima, respectively. Application of the Q10 rule for biochemical reaction rates showed 

that, depending on wastewater temperature, half-lives of sewage-borne biomarkers will 

change significantly (range: 27%-7,010%) from the baseline at ambient conditions 

(21±1°C; 100%). Importantly, these temperature-related modulations of in-sewer 

biomarker decay changed the size of the area observable by WBE; in the extreme, 

changes in the distal reach observable by WBE can be as large as 49-fold over the course 

of a year at a given location. This first model of spatial and temporal variability in 

wastewater temperature has multiple suggested applications, including (i) utility for 

explaining literature-reported discrepancies in the detectability and levels of sewage-

borne biomarkers, (ii) identification of optimal and sub-optimal wastewater-borne 
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biomarkers depending on their varying half-lives over the course of the year at the 

sampling location of interest, and (iii) estimating the effective size of the sewershed 

capture zone in WBE studies.  

 

Introduction 

Wastewater-based epidemiology (WBE) has been used successfully to study the 

behavior and chemical consumption of populations at large scales, without the expenses 

and privacy concerns associated with traditional human subject studies (Zuccato et al. 

2008, Castiglioni et al. 2011; Van Nuijs et al. 2011; Rodríguez-Álvarez et al 2015, 

McCall et al. 2016, Ort et al. 2014; Choi et al 2018; Gracia-Lor et al. 2018). These 

studies have been performed at different scales, from neighborhood-wide (Gushgari et al 

2018)  to city-wide (e.g., Hernández et al 2015, Tscharke et al 2016, Andrés-Costa et al 

2014, Kim et al 2015, Baz-Lomba et al 2016) to nationally (e.g., Du et al 2015, 

Mackuľak et al 2014, Castiglioni et al 2015, Been et al 2016, Zuccato et al 2016, Yu et al 

2015) to internationally (e.g., European Union - Ort et al 2014). While fewer international 

campaigns have been undertaken (e.g., Ryu et al 2016), WBE remains highly relevant for 

global analysis as well. The SCORE monitoring network has provided a wealth of 

information primarily for European companies (Van Nuijs et al 2018). In the United 

States, the Human Health Observatory at Arizona State University represents another 

shared resource constituting both a sample repository and a sampling network allowing 

studies to reach back in time as well as around the globe (Venkatesan et al 2015). The 

importance and challenge of appropriately accounting for biomarker degradation has 

been characterized previously (McCall et al. 2016; Devault et al 2017; Ramin et al 2018; 



36 

Thai et al 2019; Plósz et al 2013; Chen et al 2014; O’Brien et al 2017) and is relevant at 

any scale but particularly in global locations experiencing significant temperature 

fluctuations. Few other studies have explored half-lives of biomarkers in wastewater at 

non-standard temperatures (Cormier et al 2015; Senta et al 2014), and no studies have 

explored temperatures higher than 22°C.  

The temperature of wastewater around the world is only anecdotally known, and 

observations are recorded predominantly at the downstream end of sewer networks at the 

intake locations of wastewater treatment plants, whereas the majority of the residence 

time of wastewater-borne biomarkers is spent in the low-flow reaches upstream in the 

deep underground (Elías-Maxil 2015). 

Prior work on temperature gradients in sewers has been done in the field of 

construction for the purpose of establishing the feasibility of, and methods for, the 

recovery of thermal energy from wastewater (Dürrenmatt and Wanner 2008; Dürrenmatt 

and Wanner 2014; Silva 2012; Cipolla and Maglionico 2014; Hofman et al 2014; 

Brueckner et al 2014; Abdel-Aal et al 2015; Elías-Maxil 2015; Mattsson et al 2017; 

Bertrand et al 2017; Elías-Maxil et al 2017; Pelda and Holler 2018).  However, because 

these models were developed for localized, design-oriented application, many of even the 

more parsimonious ones are too dependent on knowing detailed three-dimensional 

construction information for a sewer network to enable global analysis – information that 

often is not known or not available to researchers performing WBE and UMM studies.  

The present study was designed to address this gap by providing robust monthly 

estimates of long-term average wastewater temperature around the world and monthly 

estimates of the in-sewer decay rate of 31 biomarkers of physical and mental health, as 
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well as the effective reach of the wastewater monitoring effort. WBE studies typically 

make use of a mixture of target biomarkers consisting of parental compounds (e.g., 

medications), their characteristic metabolites, and supplemental analytes tracked to 

enable an estimation of the count of people (population size) reflected in a sample.  

The 31 biomarkers selected in this study include licit and illicit drugs (e.g., 

heroin, morphine, amphetamine, ecstasy, methamphetamine) and their metabolites as 

well as antibiotics, birth control hormones, and other medications used for treatment of 

seizures and depression. Together or separately, tracking of these signature compounds in 

wastewater may allow to estimate spatial and temporal patterns in substance use and 

disease prevalence. The stimulants caffeine and nicotine also were included, as these may 

serve a dual purpose of providing insights into community behavior and the size of the 

contributing population (Senta et al 2015). At ambient temperatures, the half-lives of 

these substances are known to range from minutes to weeks (McCall et al 2017, Senta et 

al 2014; Cormier et al 2015; Benotti and Browawell 2009; Baz-Lomba et al 2016; Berset 

et al 2010; Castiglioni and Zuccato 2011). 

 

Methodology  

Global Air and Soil Texture Data 

Air temperature (monthly average, minimum, and maximum for 1970-2000) was 

derived from WorldClim Version 2.0 (Fick and Hijmans 2017), downloaded at 10-minute 

spatial resolution (approximately 100 square miles). Soil texture (topsoil and subsoil 

USDA soil texture classification) was derived from the Harmonized World Soil 

Database, version 1.2 (FAO 2012). Soil water content by soil texture was estimated with 
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the upper limit of water content set to the Field Capacity and the lower to the Permanent 

Wilting Point (Datta el al. 2017).  

 

Wastewater Temperature Estimation  

Wastewater temperature was estimated from calculations of soil temperature at 

depth, in turn based on monthly statistics regarding air temperature observed between 

1970-2000. A unifying deterministic model was developed and implemented in QGIS 

3.6.1 (QGIS Development Team, 2019). The wastewater temperatures were used to 

calculate adjusted biomarker half-lives to identify the impacts on signal loss and capture 

area. 

The thermal diffusivity, 𝑘, per USDA soil texture class was calculated as: 

𝑘 = 𝑘0 + 𝑎 𝑒𝑥𝑝 (−0.5 (
𝑙𝑛(

𝜃

𝜃0
)

𝑏
)

2

)             Equation 

Error! No text of specified style in document.-1  

where 𝑘0 is the thermal diffusivity of dry soil, 𝑎 is the difference between the highest 

thermal diffusivity at the optimal water content 𝜃0 and the thermal diffusivity of dry soil, 

𝑏 is the half-width of the peak of the 𝑘(𝜃) curve, and 𝜃 is the actual volumetric water 

content (Arkhangelskaya and Lukyashchenko 2018).  

The minimum depth of cover for sewer pipes may be estimated at 3 m based on a 

review of design guidelines for different climate conditions (Anchorage Water and 

Wastewater Design Manual, 2018; El Paso Utilities, 2016; EPCOR 2019; Orange County 

Sanitation District, 2012).   Although the actual depth to cover may greatly exceed the 

minimum and extend down to 12 meters or more (Caughey 2013; WSSC 2008), the 
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actual depth to cover was parameterized at 6.1 meters to represent a more globally 

applicable upper mean.  

Soil temperature at sewer depth was calculated as shown in Equation Error! No 

text of specified style in document.-2: 

𝑇𝑠𝑜𝑖𝑙 (𝐷,𝑡𝑦𝑒𝑎𝑟) = 𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑎𝑚𝑝

∗ 𝑒𝑥𝑝 (−𝐷 √
𝜋

365 ∗  𝛼
) ∗ 𝑐𝑜𝑠 (

2𝜋

365
 (𝑡𝑦𝑒𝑎𝑟 − 𝑡𝑠ℎ𝑖𝑓𝑡 −

𝐷

2
√

365

𝜋 ∗ 𝛼
)) 

          Equation 

Error! No text of specified style in document.-2 

where 𝑇𝑚𝑒𝑎𝑛 is the mean monthly air temperature, 𝑇𝑎𝑚𝑝 is the amplitude equal to half of 

the difference between the maximum and minimum monthly temperature, 𝐷 is the soil 

depth at which temperature is calculated (equal to the depth of cover), 𝛼 is the soil 

thermal diffusivity, 𝑡𝑦𝑒𝑎𝑟 is the time elapsed from the beginning of the year, and 𝑡𝑠ℎ𝑖𝑓𝑡 is 

the time to the mid-point of the month with the lowest surface temperature (Kusuda and 

Achenbach 1965; Florides and Kalogirou 2005). 

Wastewater temperature was calculated from soil and air temperature based on an 

initial estimate of domestic wastewater discharge temperature (17.8-31.2°C; based on an 

assumed range of 25-75% hot water and temperatures of 13°C and 50°C for unheated and 

heated indoor water. The in-pipe heat loss or gain was calculated as: 

∆𝑇 =
𝑞𝑤𝑎+𝑞𝑤𝑠

 𝑚𝑐𝑝
         Equation 

Error! No text of specified style in document.-3 
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with  𝑞𝑤𝑎 =
1

𝑅𝑤𝑎
(𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝑎𝑖𝑟)        Equation 

Error! No text of specified style in document.-4 

and  𝑞𝑤𝑠 =
1

𝑅𝑤𝑠
(𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝑠𝑜𝑖𝑙)      Equation 

Error! No text of specified style in document.-5     

where ∆𝑇 heat loss or gain in wastewater flowing in a pipe from interaction with soil and 

air; 𝑞𝑤𝑎 is the thermal heat exchange between wastewater and air; 𝑞𝑤𝑠 is the thermal heat 

exchange between wastewater and soil; 𝑚 is the mass flow rate of wastewater (estimated 

with a density of 1,000 kg/m3); 𝑐𝑝 is the thermal heat capacity, and 𝑇𝑤𝑎𝑡𝑒𝑟 , 𝑇𝑠𝑜𝑖𝑙 , and 𝑇𝑎𝑖𝑟 

are the initial temperatures of wastewater, and the surrounding soil, and air, respectively. 

The thermal resistivity between wastewater and air (𝑅𝑤𝑎) was estimated at 0.04 m2/℃, 

thermal resistivity between wastewater and soil (𝑅𝑤𝑠) was estimated at 0.5 m2/℃, and 

specific heat capacity for water (𝑐𝑝) was estimated at 4.2 kJ/kg℃ (Abdel-Aal et al 2013; 

Abdel-Aal et al 2015).   

The adjusted biomarker half-lives were based on the calculated wastewater 

temperature, a series of initial biomarker half-lives lives reported at ambient 

temperatures, and the Arrhenius Equation as shown in Equation 3-6:  

𝑅2 = 𝑅1 × 𝑄10
(

𝑇2−𝑇1
10℃⁄ )

       Equation 

Error! No text of specified style in document.-6 

where 𝑅1 is the initial decay rate, equal to the negative natural log of two divided by the 

initial reported half-life (Laidler 1984). When solving for the half-live, yields Equation 3-

7: 
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𝑡1

2
,2

=  𝑡1

2
,1

×
𝑙𝑛(2)

𝑙𝑛(2)×𝑄10
(𝑇2−𝑇1

10℃⁄ )
      Equation 

Error! No text of specified style in document.-7 

where 𝑡1/2,1 is the initial half-life, 𝑇1 is the temperature at which initial half-life was 

derived, 𝑡1/2,1 is the half-life at seasonally- and spatially-adjusted wastewater temperature 

calculated in this study, 𝑇2 is the calculated temperature to which initial half-life is 

adjusted to, and 𝑄10 is a factor of temperature-dependent of rate change, ranging between 

2 and 3 for most biologic systems, estimated at 2.5 for all 31 biomarkers. 

For estimating time to extinction, where 𝑁𝑡 is the detection limit and 𝑁0 is the 

load measured in wastewater, the exponential decay equation can be rewritten as 

Equation 3-8:  

𝑡 =  
𝑡1/2 𝑙𝑛(

𝑁𝑡
𝑁0

)

−𝑙𝑛 2
         Equation 

Error! No text of specified style in document.-8 

        

Temperature-dependent Change in Relative Distal Reach 

To understand how the observed range in calculated wastewater temperature 

impacts the expected distance a marker can cover between the point of introduction and 

point of observation in the sewer pipe (relative distal reach), the exponential decay 

equation can be rewritten to solve for travel time (Equation 3-9), which is the dividend of 

length and flow velocity (Equation 3-10). Thus, for a constant flow velocity (𝑣), initial 

biomarker discharge quantity (𝑁0) and analytical detection limit (the minimum 𝑁(𝑡) that 

could be observed by WBE sampling), the monthly calculated wastewater temperatures 

result in maximum and minimum observable sewer reaches which vary by a factor of up 
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to 260 globally over the course of the year (Table Error! No text of specified style in 

document.-3), relative to published half-lives reported for transformations at ambient 

temperatures. Performing the same calculation to obtain the estimated range of half-lives 

at monthly-varying wastewater temperatures results in transformations which range from 

no change to a factor of 49 for a given location over the course of a year.  

𝑡 =  log𝑁0
(

𝑁(𝑡)

0.5
)

𝑡1/2

        Equation 

Error! No text of specified style in document.-9 𝐿/𝑣 =  log𝑁0
(

𝑁(𝑡)

0.5
)

𝑡1/2

   

    Equation Error! No text of specified style in document.-10 

𝐿 =  𝑣log𝑁0
(2𝑁(𝑡))𝑡1/2       Equation 

Error! No text of specified style in document.-11 

𝐿𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑖𝑛 =  𝑣log𝑁0
(2𝑁(𝑡))0.44𝑡1/2 =  0.27𝑡1/2𝑣log𝑁0

(2𝑁(𝑡))     Equation 

Error! No text of specified style in document.-12 𝐿𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑎𝑥 =

 𝑣log𝑁0
(2𝑁(𝑡))19.36𝑡1/2 =  70.10𝑡1/2𝑣log𝑁0

(2𝑁(𝑡)) Equation Error! No text of 

specified style in document.-13   

∆𝐿 =  𝐿𝑚𝑎𝑥  / 𝐿𝑚𝑖𝑛 =  
19.36𝑡1/2𝑣𝑙𝑜𝑔𝑁0(2𝑁(𝑡))   

0.44𝑡1/2𝑣𝑙𝑜𝑔𝑁0(2𝑁(𝑡))   
=  

70.10  

0.27 
= 260  Equation 

Error! No text of specified style in document.-14  

 

Temperature-dependent Effective Area Observable by Wastewater-based Epidemiology  

To transform the change in maximum sewershed reach into an estimate of 

observable area, the length (𝐿) can be approximately equated to a radius (𝑟), such that 
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sewershed area is estimated to be half of the area of a circle whose radius (radial extent) 

is defined by the maximum observable extent, 𝐿 (Equation 3-15 through Equation 3-18).  

𝐴 =
1

2
𝜋𝑟2 ≅  𝐴 =

1

2
𝜋𝐿2        Equation 

Error! No text of specified style in document.-15  

𝐴𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑎𝑥 =
1

2
𝜋𝐿𝑚𝑎𝑥

2        Equation 

Error! No text of specified style in document.-16  

𝐴𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑖𝑛 =
1

2
𝜋𝐿𝑚𝑖𝑛

2       Equation 

Error! No text of specified style in document.-17  

∆𝐴 = 𝐴𝑚𝑎𝑥/𝐴𝑚𝑖𝑛 =  
1

2
𝜋𝐿𝑚𝑎𝑥

2/
1

2
𝜋𝐿𝑚𝑖𝑛

2 =  𝐿𝑚𝑎𝑥
2/𝐿𝑚𝑖𝑛

2 = (∆𝐿)2 Equation 

Error! No text of specified style in document.-18  

 

Illustrative Change in Population Captured 

To estimate the impact of changing observable sewershed extent on the capture of 

population over the course of a year, estimated population density for the year 2020 was 

multiplied by the change in observable area (Equation 3-19). Population density (number 

of persons per square kilometer) was based on a 15-arcminute (approximately 30 km) 

resolution download of The Gridded Population of the World, Version 4 (GPWv4): 

Population Density Adjusted to Match 2015 Revision of UN WPP Country Totals 

(CIESIN 2018).  

∆ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × ∆𝐴 ≅ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × ∆𝐿2    Equation 

Error! No text of specified style in document.-19 
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Results 

Global-scale seasonal wastewater temperature 

Assuming a sewer burial depth of 6.1 meters (~20 feet), soil water moisture 

parameterized as the average between field capacity and permanent wilting point, a 

wastewater flow volume of about 11 liters per second (0.25 million gallons per day) with 

a density of 1,000 kg/m3, and an initial wastewater temperature of 17.8°C, model output 

places 75% of the world’s global wastewater temperatures in the range of 6.9 to 34.4°C 

(Figure Error! No text of specified style in document.-1).  
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Figure Error! No text of specified style in document.-2. Average monthly wastewater 

temperatures show a wide range between the northern and southern hemispheres (Panel 

A); the range contracts notably during the months of May to September (Panel B). Note 

that temperatures below 0°C are artifacts of a model parameterized to represent global 

average conditions. Sewer depth and thermal resistivity between wastewater and air 

(R_wa) and between wastewater and soil (R_ws) would, in fact, be higher as a function 

of deeper burial and pipe insulation designed to prevent pipe freezing and failure. 
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Implications for biomarker half-lives and observable capture area 

The effect of seasonal and spatial variation in wastewater temperature on 

degradation rates was investigated for a total of 31 sewage-borne biomarkers (McCall et 

al 2017, Senta et al 2014; Cormier et al 2015; Benotti and Browawell 2009; Baz-Lomba 

et al 2016; Berset et al 2010; Castiglioni and Zuccato 2011).  These included 20 illegal 

drugs, seven markers of physical health, and four markers of mental health (Table Error! 

No text of specified style in document.-3). Wastewater temperature’s modulation of 

half-life was estimated to deviate from 100% at ambient conditions 21±1°C within a 

range between 27% and 7,010%, depending on location and season. 

 

Table Error! No text of specified style in document.-3. Ambient and range of 

wastewater temperature-adjusted half-lives for select illegal drugs, and for select 

biomarkers of physical and mental health. 

Compound (Acronym) Description 

t1/2, amb 

(hr) @ 

T1 (°C) 

t1/2, range 

(hr) 

Illicit Drugs 

6-Acetylcodeine (AC) Metabolite of Heroin 0.1 @ 22 0.03 - 7.01 

6-Monoacetyl-morphine 

(MAM) 

Metabolite of Morphine 0.7 @ 22 0.22 - 49.07 

Amphetamine (AMP) Stimulant 2.2 @ 22 

0.71 - 

154.21 
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Compound (Acronym) Description 

t1/2, amb 

(hr) @ 

T1 (°C) 

t1/2, range 

(hr) 

Benzoylecgonine (BE) Metabolite of Cocaine 18 @ 22 

5.78 - 

1261.74 

Cocaine (COC) Stimulant 8 @ 22 

2.57 - 

560.77 

(±)-3,4-Methylenedioxy-

methamphetamine 

(MDMA) 

Ecstasy 38 @ 22 

12.20 - 

2663.67 

Methylenedioxy-

pyrovalerone (MDPV) 

Stimulant 50 @ 22 

16.06 - 

3504.83 

Mephedrone (MEPH) Synthetic stimulant drug 14 @ 22 

4.50 - 

981.35 

Cocaethylene (COE) 

Metabolite of cocaine 

and ethanol use 

8 @ 22 

2.57 - 

560.77 

2-Ethylidene-1,5dimethyl-

3,3-Diphenylpyrrolidine 

(EDDP) 

Major metabolite of 

methadone 

61 @ 22 

19.59 - 

4275.90 

4-Hydroxy-3-methoxy 

methamphetamine 

(HMMA) 

More potent than 

MDMA 

10 @ 22 

3.21 - 

700.97 



48 

Compound (Acronym) Description 

t1/2, amb 

(hr) @ 

T1 (°C) 

t1/2, range 

(hr) 

Ketamine (KET) Dissociative anesthetic 80 @ 22 

25.69 - 

5607.73 

Methamphetamine (METH) Stimulant 52 @ 22 

16.70 - 

3645.03 

Methiopropamine (MPA) 

Stimulant, meth 

substitute  

38 @ 22 

12.20 - 

2663.67 

Methoxetamine (MTO) 

Dissociative 

hallucinogen 

173 @ 22 

55.56 - 

12126.72 

Morphine-3-β-D 

glucuronide (MG) 

Metabolite of morphine 7 @ 20 

1.87 - 

408.51 

Norcocaine (NorCOC) Metabolite of cocaine 7 @ 22 

2.25 - 

490.68 

4-Methoxyamphetamine 

(PMA) 

Serotonergic drug 21 @ 22 

6.74 - 

1472.03 

Methoxymethamphetamine 

(PMMA) 

Stimulant, psychedelic  42 @ 22 

13.49 - 

2944.06 

O-Desmethyltramadol 

(ODMT) 

Opioid  28 @ 22 

8.99 - 

1962.71 

Physical Health Biomarkers 
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Compound (Acronym) Description 

t1/2, amb 

(hr) @ 

T1 (°C) 

t1/2, range 

(hr) 

Carbamazepine (CBZ) Seizure Treatment 139 @ 22 

44.64 - 

9743.44 

Sulfamethoxazole (SMX) Antibiotic 

480 @ 

21.5 

147.25 - 

32139.68 

Ethinylestradiol (EE2) Birth Control 

456 @ 

21.5 

139.89 - 

30532.70 

Norethindrone (NOR) Birth Control 

144 @ 

21.5 

44.18 - 

9641.90 

17β-Estradiol (E2) Hormone 

31.2 @ 

21.5 

9.57 - 

2089.08 

Diclofenac (DCF) Anti-inflammatory 78 @ 22 

25.05 - 

5467.54 

Tramadol (TRA) Narcotic / Pain Relief 160 @ 22 

51.38 - 

11215.47 

Physical Health and Population Count Biomarkers 

Caffeine (CAF) 

Stimulant / Population 

Marker 

456 @ 

21.5 

139.89 - 

30532.70 

Zolpidem (ZOL) Sedative 64 @ 22 

20.55 - 

4486.19 
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Compound (Acronym) Description 

t1/2, amb 

(hr) @ 

T1 (°C) 

t1/2, range 

(hr) 

Nicotine (NIC) 

Stimulant / Population 

Marker 

233 @ 

21.2 

69.54 - 

15178.12 

Norketamine (NorKET) Antidepressant, sedative 28 @ 22 

8.99 - 

1962.71 

Range of half-life at max and min wasterwater temperatures vs. 

ambient conditions 

27%-

7,010%  
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Figure Error! No text of specified style in document.-3. Annual fluctuations in 

wastewater temperature, expressed as the maximum absolute difference ( ) between 

winter and summer extremes (Panel A); holding all other parameters constant, the change 

in temperature results in a sewershed extent change between 1 (no change over the course 

of a year) and a factor of 49 (Panel B); overlaid with 2020 global population density, 
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fluctuations in wastewater temperature may translate to up to 30,000 additional people 

captured by WBE monitoring efforts over the course of a year (Panel C). 

 

Predicted seasonal changes in biomarker degradation vary across the world, with 

equatorial regions having the highest degradation rates (i.e., highest wastewater 

temperatures, refer to Figure Error! No text of specified style in document.-2) but the 

smallest variation over the course of a year (Figure Error! No text of specified style in 

document.-3A,B). Inland areas are expected to have more variability than coastal ones. 

Most extreme fluctuations in theoretical wastewater temperature and observable 

sewershed extent occur in sparsely populated, or unpopulated regions of the world 

(Figure Error! No text of specified style in document.-3C). However, in densely 

population regions of the world where past monitoring efforts have taken place, even 

relatively small factors translate to significant changes in the size of the population 

observable as a function of wastewater temperature and biomarker decay (Figure Error! 

No text of specified style in document.-3C). The population observed is biomarker 

dependent. Thus, low-concentration biomarkers may fall below the practical limit of 

detection ( 

 

 

 

 

 

Table Error! No text of specified style in document.-4). 
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Table Error! No text of specified style in document.-4 Observed loading, detection 

limits, and subsequent effective extinction periods for 11 select biomarkers investigated 

frequently Castiglioni and Zuccato 2011. 

Compound (Acronym) 

Global 

t1/2, range 

(hr) 

Loads measured 

in WW (~𝑁0)60 

Method 

detection 

limit 

(~𝑁𝑡)60 

Max 

time, t,  

before 

effective 

extinction 

(hr) 

6-Acetylcodeine (AC) 

0.03 - 

7.01 

<LOQ to 1.5±2.7 

ng/L 

2.6 ng/L 0 – 4.9 

6-Monoacetyl-morphine 

(MAM) 

0.22 - 

49.07 

2.0±2.4 to 14±14 

ng/L 

5.3 ng/L 0 – 118 

Amphetamine (AMP) 

0.71 - 

154.21 

<LOQ to 2±3.4 

ng/L 

5.4 ng/L 0 – 0 
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Compound (Acronym) 

Global 

t1/2, range 

(hr) 

Loads measured 

in WW (~𝑁0)60 

Method 

detection 

limit 

(~𝑁𝑡)60 

Max 

time, t,  

before 

effective 

extinction 

(hr) 

Benzoylecgonine (BE) 

5.78 - 

1261.74 

127±12 to 

1468±211 ng/L 

1.98 ng/L 

34 - 

12274 

Cocaine (COC) 

2.57 - 

560.77 

50±9 to 465±90 

ng/L 

1.4 ng/L 13 - 4840 

(±)-3,4-Methylenedioxy-

methamphetamine 

(MDMA) 

12.20 - 

2663.67 

0.9±1.7 to 28±10 

ng/L 

6.3 ng/L 0 – 6906 

Cocaethylene (COE) 

2.57 - 

560.77 

2.4±2.6 to 12±2 

ng/L 

0.95 ng/L 0 - 2177 

2-Ethylidene-

1,5dimethyl-3,3-

Diphenylpyrrolidine 

(EDDP) 

19.59 - 

4275.90 

24±3 to 91±19 

ng/L 

1.64 ng/L 

72 - 

25945 

Methiopropamine 

(MPA) 

12.20 - 

2663.67 

<LOQ to 40±17 

ng/L 

3.7 ng/L 0 – 10509 
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Compound (Acronym) 

Global 

t1/2, range 

(hr) 

Loads measured 

in WW (~𝑁0)60 

Method 

detection 

limit 

(~𝑁𝑡)60 

Max 

time, t,  

before 

effective 

extinction 

(hr) 

Morphine-3-β-D 

glucuronide (MG) 

1.87 - 

408.51 

<LOQ to 18±3 

ng/L 

0.63 ng/L 0 – 2067 

Norcocaine (NorCOC) 

2.25 - 

490.68 

1.1±1.2 to 8±1 

ng/L 

1.92 ng/L 0 – 1094 

 

Comparison of calculated wastewater temperature with observations 

The theorical wastewater temperatures were compared with nearly 400 

observations extracted from 20 studies reporting empirical observations of wastewater 

temperature for 45 locations around the world (Figure Error! No text of specified style 

in document.-4A,B). While wastewater treatment plant operators routinely measure the 

temperature of plant influent and effluent, these data are not academically available, and 

a database of wastewater treatments plants worldwide does not currently exist. Based on 

the available dataset (n=400), the results show that, as parameterized, the modeled 

wastewater temperatures are biased to under-estimate the high end (30-40°C) of observed 

wastewater temperatures. Nevertheless, the modeled temperatures are able to replicate 

seasonal dynamics well for those instances where such finer-resolution data were 

available (Figure Error! No text of specified style in document.-5). 
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Figure Error! No text of specified style in document.-4.  All reported observations of 

wastewater temperature correlated against calculated analogs for equivalent time period 

and location in space (Pearson correlation = 0.57; Spearman correlation = 0.63) (Panel 

A); location of all reported wastewater temperature observations shown in Figure Error! 

No text of specified style in document.-4A and select monthly timeseries shown in 

Figure Error! No text of specified style in document.-5 (Panel B). 
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Figure Error! No text of specified style in document.-5. Calculated monthly 

wastewater temperature for 24 locations around the world (Figure Error! No text of 

specified style in document.-4B) as compared to empirical reported wastewater 

temperature records for the sample location. Empirical observations represent a mixture 

of monthly or daily values, annual averages, and minimum and maximum annual values. 

Discussion 

Here we developed, implemented, and validated a framework for estimating 

biomarker degradation over the course of a year for any location around the world. The 

model can be used to better guide comparative sewage metrology efforts by identifying 

optimal sampling locations, times, and biomarkers given their likely degradation in the 
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environment within the study area of interest. Globally, modulations of biomarker half-

lives modulated by seasonal wastewater temperature was calculated to range between 

27% and 7,010% relative to rates commonly reported for experiments conducted at 

ambient (21±1°C) conditions. Few other studies have explored half-lives of biomarkers in 

wastewater at non-ambient temperatures, and no studies have explored temperatures 

higher than 22°C. Cormier et al. (2015)  reported the modulation of half-lives for raw 

wastewater at 4°C and 21.5°C for 17β-estradiol (3077%), norethindrone (533%), caffeine 

(342%), sulfamethoxazole (425%).  Senta et al. (2014) reported half-life changes for 

morphine-3-β-D glucuronide (257%), 6-acetyl morphine (148%), cocaine (494%), 6-

acetyl codeine (150%) at 10°C and 20°C in municipal wastewater. Thus, the theoretical 

results of this study are consistent with the empirical observations of available parallels. 

The probable cause for the bias of the model towards the under-estimation of observed 

temperatures is the under-estimate of the initial wastewater temperature released into the 

sewer system. Discrete discharges (e.g., a hot shower) will exceed any one long-term 

average wastewater temperature estimate and lead observed temperatures to rise, 

particularly if observations are made further upstream in a sewer network where the 

overall wastewater temperature is not modulated by the aggregation of flows. The 

observation sample set illustrates some of the limitations in identifying wastewater 

temperature empirically – observations are scarce, certain regions (and thus, climates) of 

the world are over-represented compared to others, the relative contribution of 

wastewater from domestic and industrial sources is not always known, and the associated 

wastewater flowrate is not always known or reported. Furthermore, many of the 

observations represent a snapshot in time, which may be overly biased by activity that is 
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less representative of the area on a long-term basis (e.g., a range of 6-35°C captured 

within the span of a single December day in Ede, Netherlands; Schilperoort and Clemens 

2009). 

Based on the calculated range in wastewater temperature over the course of a 

year, and holding initial biomarker loading and analytic detection limit constant, the 

observable sewershed reach changed up to a factor of 49 between winter and summer 

months (Figure Error! No text of specified style in document.-3B). Wastewater 

temperature strongly impacts the duration of signal retention, and thus the quality and 

return-on-investment of sewage metrology and wastewater-based epidemiology 

campaigns conducted to collect information on the behavior, environmental threats, and 

human health status of large populations.  Additionally, if the population markers degrade 

as quickly as the biomarker, and the population monitored was homogenously distributed 

across the sewershed, then the outcome of the seasonal modulation is problematic only in 

the loss (attenuation during summer months) of signal. However, if the population marker 

is persistent and the biomarker of interest labile, large biases would result. Of the 31 

biomarkers included in this study, population markers caffeine and nicotine were the 

second- and third-most persistent compounds (Table Error! No text of specified style in 

document.-3). Thus, the variability introduced by the seasonality of wastewater 

temperature and its modulation of biomarker half-lives, observable sewershed extent, and 

potential population capture (Figure Error! No text of specified style in document.-3, 

Panels A-C) may in fact be compounded by differences in biomarker decay rates.  

If the Q10 for the selected population marker (i.e., caffeine; nicotine) and 

biomarker(s) of interest to a WBE study are equal, then winter and summer per-capita 
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results will not be biased by bias in population estimates, since both will change in 

unison. This assumes, however, that the population is homogenous around the sampling 

location, and that the reduced distal reach observable during the hot season captures a 

population as representative as that observable during the cold season when the reach 

expands.  

 

Advantages and Limitations 

The estimates of wastewater temperature and subsequent biomarker degradation 

presented in this study are founded on a physically based, entirely deterministic model. 

The model relies on a relatively few, relatively easy to bracket assumptions, only few of 

which (e.g., soil water content at time of interest) are time-variant and more challenging 

to parameterize accurately. Because it is entirely deterministic, the model’s limitations 

are related to the simplifying assumptions used to parameterize it efficiently for a global 

study. For instance, in this study soil water content was set to the average of field 

capacity and permanent wilting point, varying by soil texture category, by invariant 

across climates. Precipitation events or prolonged drought can also push soil moisture 

outside of this range. At the selected temporal and spatial resolutions (30-year average 

month, 100 square-mile grid spacing), the model is best suited for understanding regional 

and seasonal trends.  

For use at point or local scale, most parameters are known or can be directly 

measured. Thus, the model can be used as-is, with more refined inputs providing more 

reliable outputs, reflective of field conditions at the time of sampling. The model can be 

easily expanded to a sub-daily timestep by applying empirically derived peaking factors 
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for temperature, such as those presented for a case study in Balogna, Italy (Cipolla and 

Maglionico 2014). 

For refining its use at regional or global scales,  future iterations may incorporate: 

1) local or regional building codes specifying sewer burial depth requirements for cold 

regions; 2) the effects of insulated piping on the thermal diffusivity between wastewater 

and soil in cold regions; 3) a recursive calculation of wastewater temperature based on 

flow rate, to transition between low-flow upper reaches of a sewer network to high-flow 

downstream trunk lines arriving at a central wastewater treatment plant; 4) seasonal 

changes in initial wastewater temperature discharges; and 5) the effects of rainfall-runoff 

to wastewater temperature based on global precipitation datasets.  

 

Conclusions 

According to both empirical and modeling data presented here, wastewater 

globally is undergoing considerable fluctuations in temperature over the course of the 

year. This physical change has potentially far reaching consequences for the data quality 

of wastewater-based epidemiological studies. Assuming constant inputs of biomarkers 

into a given sewerage system over the course of a year, the concentrations and mass of 

biomarker compounds detectable at a given monitoring location is predicted to be subject 

to considerable change as a function of temperature. In addition, the distal reach of 

wastewater monitoring was determined to change significantly in most regions of the 

world.  This implies that the concentrations and mass loads reported in the literature in 

longitudinal WBE studies would benefit from a correction for temperature effects. 

Temperature affects the degradation of compounds, including those of interest to 
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wastewater-based epidemiology studies. To date, most WBE studies have been 

performed in the northern hemisphere; between the 20th and 40th parallel in North 

America and Asia, and between the 40th and 60th in Europe. Existing observation-based 

studies have simply not covered the entire global spectrum of field conditions. If interest 

in WBE continues to grow and studies expand globally, the resulting observations will 

come from both more- and less temperate regions, with subsequently greater and lesser 

seasonal variability in temperature and degradation. In order to account for the potential 

impact of wastewater temperature in WBE studies, it would be desirable to collect more 

empirical data on biomarker attenuation in sewage as a function of temperature. 

Specially, more bench or pilot-scale testing of the temperature-dependence of biomarker 

degradation rates and the calculation of Q10 rates from empirical results would help 

demonstrate experimentally the significance of temperature to WBE results. The half-live 

values used in this work should be viewed as illustrative only and in future studies ideally 

should be replaced with empirical data that may or may not be specific to the monitoring 

location and the microbial community of the local sewerage network and wastewater. 

With respect to the estimates of per-capita consumption or exposure based on de jour 

population estimates, labile chemical population biomarkers (e.g. caffeine, nicotine, 

certain pharmaceuticals) are also prone to seasonal temperature-related degradation. This 

quality makes them even more attractive than de facto (e.g., census-based) population 

estimates, because the latter would not account for the changing distal reach that is 

observed during the hotter and colder times of the year. In conclusion, more empirical 

work is necessary for understanding the temperature-dependence of popular biomarker 
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degradation rates, as this information is largely lacking in the literature but potentially of 

greater impact on data quality than uncertainties of population estimates in WBE studies. 
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CHAPTER 4 

ANALYZING THE IMPACT OF SEASONAL TEMPERATURE VARIABILITY ON 

DEMOGRAPHIC GROUPS OBSERVABLE BY WASTEWATER-BASED 

EPIDEMIOLOGY 

Abstract 

Over the last decade, wastewater-based epidemiology (WBE) has emerged as a 

non-invasive, non-intrusive technique to monitor the health and behavior of populations. 

While attractive for protecting the anonymity of groups of individuals monitored, WBE 

studies potentially are vulnerable to uncertainty as to the size and type of population 

represented as a function of wastewater temperature. We used 2017 American 

Community Survey data and a database of U.S. wastewater treatment plants (WWTPs), 

to compute the distance between WWTP observational locations and the radial distance 

to populations of differing demographics. We consistently found at various spatial scales 

and regions, a non-random relationship between distance and demographics (household 

income, educational attainment, military service, unemployment, and lack of health 

insurance), with universally more inclusive study areas in the wintertime compared to 

summertime sampling. Biomarker degradation slowed by cooler winter temperatures was 

predicted to increase the effective distal reach of WBE. In addition, the relative 

contribution of populations nearest and furthest from the WWTP were predicted to be 

more evenly distributed in winter versus summer. By contrast, summertime WBE data 

were found to be dominated by populations residing closest to the WWTP. When used in 

conjunction with appropriate ethical guidelines, results obtained here can aid in designing 

more equitable WBE sampling campaigns. The approach established here for assessing 
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radial heterogenicity in the U.S.A. is readily applicable to other parts of the world to 

improve the robustness and informational value of WBE data. 

 

Introduction 

Wastewater-based epidemiology (WBE) has been used to monitor population-

scale consumption of illicit substances (Zuccato et al., 2008; Baker et al., 2014; Ort et al., 

2018), exposure to environmental toxins and contaminants (Rousis et al., 2016; 

González-Mariño  et al., 2017; Gracia-Lor et al., 2018), and the consumption of 

recreational substances such as alcohol (Reid et al., 2011; Ryu et al., 2016; Chen et al., 

2019), nicotine (Rodríguez-Álvarez et al., 2014; Senta et al., 2015; Lai et al., 2018), and 

caffeine (Senta et al., 2015; Gracia-Lor et al., 2017a).  More recently, WBE has been 

explored as a tool for monitoring nutrition (Bowes and Halden, 2019) as well as the 

impact of air quality and temperature on public health (Fattore et al., 2016; Phung et al., 

2017). Although many of the proposed diet and health biomarkers have yet to be fully 

tested in wastewater matrices (Choi et al., 2018a), the field is rapidly moving in the 

direction of being able to evaluate antibiotic resistance and changes in microbiome (Choi 

et al, 2018a). In short, over the last decade, WBE has been shown to be an effective, 

viable method for the evaluation of human health at large scales, with analytic techniques 

developed to identify even minute volumes of substances of interest (Gracia-Lor et al., 

2017b). These advances have positioned practitioners of WBE to consider larger, and 

longer-lasting longitudinal studies.  

Hall et al. (2012) published the first study addressing the ethics of WBE. Later, 

Prichard et al. (2014; 2016) developed a set of ethical research guidelines for the field. 
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More recently, others have investigated the privacy (Lancaster et al., 2019; Zipper et al., 

2019) and social, political, and ethical impacts of WBE work (Van Hal, 2019). Due to the 

sensitive nature of the behaviors and conditions being sampled in WBE work, anonymity 

remains on the forefront of study plans. However, the same factors which make the 

anonymity of WBE methods both more feasible and attractive than traditional human 

subject studies mean that more effort is required to ensure that the population observed 

by WBE remains the same over the course of the experiment(s), and that any changes to 

that population are accounted for and understood during analysis and subsequent policy 

or decision-making. For spatial and temporal comparisons to be made effectively, per-

capita (population-normalized) results are preferable to bulk loads (Van Nuijs et al., 

2011). Uncertainty in population estimates translate directly into uncertainty regarding 

the calculated daily load of various biomarkers. 

Currently, WBE studies attempt to achieve one of two types of population counts. 

The de jure population is one which represents the long-term population residing within a 

study area. It is represented by census counts, population surveys, zoning and density 

maps, and would not include tourist or commuter populations (Zuccato et al., 2016). The 

de facto population is made up of all persons contributing to the sampled wastewater at 

the time of sampling. Because the de facto population is more dynamic, there have 

emerged multiple approaches to its estimation. One of the more traditional is via 

chemical loading (Thai et al., 2018). Another is using hydrochemical water quality 

parameters (Lin et al., 2018; Kasprzyk-Hordern, 2019; Zheng et al. 2019). Other 

alternatives, such as via mobile device data (Thomas et al., 2017; Baz-Lomba et al., 

2019), and via genetic biomarkers (Yang et al., 2017) have also emerged. Any counts 
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which depend on analytes found in wastewater, however, are not entirely immune to 

unrelated phenomena like rainfall, temperature, and other (Ramin et al., 2018; Thiebault 

et al., 2019). However, these are the easiest to use, since they are co-collected alongside 

the biomarker of interest, and may be expected to have undergone and been subjected to 

much of the same conditions in-pipe.  

To date, population markers previously used in WBE studies include artificial 

sweeteners, nicotine (Chen et al, 2014; Senta et al., 2015), caffeine (Senta et al, 2015), 

pharmaceuticals (Lai et al., 2011; O’Brien et al., 2017), creatinine (Chen et al., 2014; 

Brewer et al., 2012),  cholesterol (Chen et al., 2014), ammonia (Zheng et al., 2017), and 

DNA (Zheng et al., 2017). While endogenous markers may have a narrower band of 

variability relative to consumed substances, markers like nicotine, caffeine, alcohol, and 

artificial sweeteners are doubly attractive also because they can elucidate the 

consumption patterns of populations in addition to serving to estimate population.  

Variability in urban populations may impact WBE studies. Due to the attenuation of 

biomarkers in wastewater during their residence time in the collection system, samples 

collected downstream inherently represent a subset of the parent compounds released by 

a subset of the population upstream. If this subset is representative of the population at 

large, proper population counts alone would suffice to make the per-capita estimates 

representative of the city as a whole. However, if this over-sampled population subset is 

significantly different than the population at large, even when properly adjusted per 

capita, the results are not representative of the total population.  

The objective of this study was to examine, using the U.S.A. as a case study, 

whether the results of WBE studies are vulnerable to seasonal changes induced by 
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variable wastewater temperature, insofar as those changes significantly alter the 

population sampled over the course of a year. In order to understand the potential impact 

of degradation loss we examined whether heterogenicity exists and poses a threat as a 

function of monitoring reach. The United States has documented political, social, and 

economic differences at the regional level, as well as in public health outcomes 

(Rentfrow et al., 2013). Prior public health studies have investigated the effects of income 

inequality (Lynch et al., 1998) and heat exposure (Wu et al., 2013) and mortality, air 

pollution and life expectancy (Pope et al., 2009; Correia et al., 2013), obesity 

(Drewnowski et al., 2007; Singh et al., 2008), Parkinson disease (Willis et al., 2010), and 

disability (Vos et al., 2012), finding regional differences. Thus, regional differences in 

WBE outcomes could be expected. Consequently, a secondary objective of the study was 

to establish whether the variability of urban populations changes regionally or as a 

function of spatial scale. The results of the study can be used by WBE practitioners in 

conjunction with the ethical guidelines to design more equitable WBE campaigns. The 

methodology can be applied to studies in other countries and adapted for global analysis, 

pending data availability.   

 

Methodology 

Data 

USA Wastewater Treatment Plants 

Locations of major wastewater treatment plants across the U.S. were obtained 

from the U.S. EPA inventory of WWTPs. The GIS dataset contained data on wastewater 

treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated 



69 

Compliance Information System (ICIS) and other datasets (USEPA FRS dataset). The 

full FRS was filtered based on EPA’s determination of major facilities to a total of 13,940 

WWTPs which were analyzed in this study.  

 

Demographics 

Demographic data at the census block group level were obtained from the 2013-

2017 American Community Survey, retrieved from the IPUMS National Historical 

Geographic Information System, v 13.0 (Manson et al., 2018). 

 

Estimated Seasonal Change in Sewershed Extent 

Spatial distributions of wastewater temperature were adapted from Hart and 

Halden (In Review), which estimated monthly wastewater temperature at a 100-square 

mile resolution across the world based.  

 

Residence time in sewers and wastewater flow velocities 

Kapo et al. (2017) report the national median estimated hydraulic residence time 

(HRT) for wastewater in the United States. For major treatment plants (treating more than 

40 MGD), Kapo et al. calculated a median HRT of 10.5 hours, with the 10th percentile of 

the population located within a 5.8-hour HRT radius from the WWTP, the 90th within 

15.4 hours, and the 99th within 19.1 hours. The constant 0.6 m/s (1.432 mph) travel 

velocity used by Kapo et al. was used to back-calculate the 10th, 50th, 90th, and 99th 

percentile travel distances. At 0.6 m/s, the travel distances at these percentiles are 7.8, 

14.1, 20.7, and 25.6 miles, respectively.  
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Calculations 

Demographics binned by distance from WWTP 

The distance from each census block group polygon to a major WWTP was 

calculated using Spatial Join in ESRI ArcMap. The attributes and distances from each 

WWTP were joined to all census block groups and their respective demographic data. 

Category “bins” were created by creating a new field in which the distance field was 

rounded up to the nearest whole mile. The nearest whole miles were used as 

categories/bins. Demographic indicators were averaged across the filtered geographies 

(national vs state vs county scale; states comprising the U.S. Census regions Northeast, 

Midwest, South, and West).  

 

Biomarker Decay: Percent Initial Quantity Remaining vs Hours Elapsed 

The adjusted biomarker half-lives were based on the calculated wastewater 

temperature, a series of initial biomarker half-lives lives reported at ambient 

temperatures, and the Arrhenius Equation as:  

 

𝑅2 = 𝑅1 × 𝑄10(𝑇2−𝑇1
10℃⁄ )       Equation 

Error! No text of specified style in document.-20 

where 𝑅1 is the initial decay rate, equal to the negative natural log of two divided by the 

initial reported half-life (Laidler 1984). Thus: 
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𝑡1

2
,2

=  𝑡1

2
,1

×
𝑙𝑛(2)

𝑙𝑛(2)×𝑄10(𝑇2−𝑇1
10℃⁄ )

      Equation 

Error! No text of specified style in document.-21      

where 𝑡1/2,1 is the initial half-life, 𝑇1 is the temperature at which initial half-life was 

derived, 𝑡1/2,1 is the half-life at seasonally- and spatially-adjusted wastewater temperature 

calculated in this study, 𝑇2 is the calculated temperature to which initial half-life is 

adjusted to, and 𝑄10 is a factor of temperature-dependent of rate change, ranging 

between 2 and 3 for most biologic systems. 

For estimating time to extinction, where 𝑁𝑡 is the detection limit and 𝑁0 is the 

load measured in wastewater, the exponential decay equation can be rewritten as:  

𝑡 =  
𝑡1/2 𝑙𝑛(

𝑁𝑡
𝑁0

)

−𝑙𝑛 2
         Equation 

Error! No text of specified style in document.-22      

   

Biomarker Decay: fractional contribution as a function of distance 

At each time step, the percent initial quantity remaining is divided by the sum of 

the remaining percentage for all timesteps. Residence time is converted to a distance 

using a 0.6 m/s travel velocity (Kapo et al., 2017). The result represents the fraction of 

biomarker that is accumulated at the corresponding distance from the WWTP.  

 

Statistical Analysis 

Analyses were performed in ESRI ArcMap 10.6, Microsoft Excel 2016, and R (R-

3.6.1). Nonlinear correlation was calculated using the nlcor package in R. nlcor 

implements a heuristic to calculate the nonlinear correlation between numeric vectors, 
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and to return the p-value of the significance of the calculated correlation. The heuristic 

adaptively identifies multiple local regions of linear correlations to estimate the overall 

nonlinear correlation (Ranjan and Najari, 2019). 

Results and Discussion 

Demographics of populations at different spatial scales  

In the United States, the finest level of spatial granularity for which the richest 

dataset of demographic data is available from the U.S. Census Bureau is the census block 

group. National, state-, and county-level demographics as a function of census block 

group distance from a major WWTP are shown in Figure Error! No text of specified 

style in document.-6. The non-linear correlation coefficient (nlcor) between the mean of 

the demographic indicator and the binned distance to WWTP for each of the panels is 

shown on the associated panel. Household income is the best-correlated, although 

education attainment, unemployment, military service, and the absence of health 

insurance are also significantly correlated with distance. Sex is not correlated at a 

statistically significant level. One possible explanation for the presence of a non-

homogenous distribution of demographic indicators like household income is the zoning 

and location of “nuisance” public works infrastructure, like wastewater treatment plants 

or landfills, in less affluent communities. However, wastewater treatment plants are 

somewhat randomly positioned in different cities, based on topographic considerations 

and proximity to ready discharge points; historically, rivers, streams, and oceans. It is 

probable, therefore, that the relationship between indicators of affluence and well-being 

(e.g., household income, high school graduation, unemployment, health insurance) and 

proximity to a wastewater treatment plant are bi-directional: less affluent communities 
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are less likely to resist the construction of a new wastewater treatment plant in their 

midst, and proximity to a plant makes an area less desirable over time.  Correlations are 

highest at the national level, followed by the county level. While the correlation remains 

statistically significant for the state level, for the state selected (Arizona), it is weakest of 

the three scales.   

 

 

Figure Error! No text of specified style in document.-6. National, state, and county-

level trends in 6 demographic indicators recorded by the 2017 American Community 

Survey at the census block group level as a function of distance from a major wastewater 

treatment plant, and the 2017 population counts (n) captured by the national, state, and 

county-level categories (sources: U.S. Census Bureau and U.S. EPA FRS). For each 

spatial scale, the mean value of the demographic indicator shown in red. All demographic 

indicators other than sex show a non-linear correlation at statistically significant (p<0.05) 
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levels. This indicates that in the U.S.A., heterogeneity exists across different spatial 

scales (nation, state, county), and seasonal changes in biomarker degradation rates are 

introducing additional complexity in the interpretation of WBE results intended to 

represent uniform populations. 

Demographics of populations across different regions 

Regional demographics as a function of census block group distance from a major 

WWTP are shown in Figure Error! No text of specified style in document.-7. As in the 

national, state-, and county-level analysis above, household income is most highly 

correlated with distance. However, all indicators but sex show a statistically significant 

correlation. Although some variation intra-regionally exists, the overall patterns are 

generally preserved for each indicator. The nonlinear correlation analysis indicates 

statistically significant, non-random variability in the demographics of populations served 

by major WWTPs and their distance from the WWTP.  
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Figure Error! No text of specified style in document.-7. Regional trends in 6 

demographic indicators recorded by the 2017 American Community Survey at the census 

block group level as a function of distance from a major wastewater treatment plant, and 

the 2017 population counts (n) captured by each regional category (sources: U.S. Census 

Bureau and U.S. EPA FRS). Average shown in red.   

 

Seasonal change in signal decay and population captured by WWTP influent sampling 

In the U.S., gravity sewers account for the vast majority (92.5%) of all sewer 

systems, with force mains accounting for the remaining 7.5% (Morrison et al., 2010). We 

calculate the signal decay of 17 biomarkers as a function of hydraulic residence time 

transformed into travel distance to a central sampling point at the WWTP (Figure Error! 

No text of specified style in document.-8a) using degradation rates (measured in 24-hour, 

20°C bench-scale gravity sewer analogs for stress hormones, histamines, and 

pharmaceuticals, and personal care products (Thai et al., 2019; Choi et al., 2018b; 

O’Brien et al., 2017). The retention curves are transformed into relative contribution as a 

function of distance from WWTP sampling point. Applying the monthly wastewater 

temperature model described in Hart and Halden (In Review), we are able to calculate the 

adjusted half-life for each biomarker according to the Arrhenius equation to derive 

maximum and minimum (winter- and summertime) retention curves and the associated 

contribution by distance (Figure Error! No text of specified style in document.-8b).  

Figure Error! No text of specified style in document.-8b demonstrates how WBE 

measurements of shorter-lived biomarkers such as Ranitidine or Iopromide not only 

represent a smaller portion of the population during summer months but are also much 
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more strongly biased towards populations closest to the WWTP than wintertime 

measurements. Assuming uniform initial loading, in this example, July sampling 

represents primarily the consumption patterns of populations within a 5-mile radius from 

a WWTP. Based on the median and 90th percentile travel distances, almost 40% of the 

population would not be represented in July.  By contrast, while the capture of Ranitidine 

and Iopromide in January still undergoes some attenuation with distance, the January 

sample would be more representative of the service area at large, and up to 99% of the 

population could theoretically be captured by a single observation made at the WWTP 

inflow point.  

 

 

Figure Error! No text of specified style in document.-8. Differences in biomarker half-

lives at ambient conditions are magnified by seasonal changes in the temperature of 

wastewater. As a result, wintertime samples are able not only to capture a larger portion 
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of the population served by a WWTP, but also to bias the results less with respect to 

populations closer vs. further from the WWTP. 

Seasonal change in the demographics of captured by WWTP influent sampling 

 

For chemicals with ambient (20°C) half-lives less than the median hydraulic 

residence time (10.5 hours), pooled samples represent less than 50% of the population 

contributing to a major WWTP. During summer months, we find that this applies, in 

descending magnitude, to Norfloxacin, Androstenedione, Cortisol, Paracetamol, Salicylic 

acid, Codeine, Caffeine, Furosemide, Ranitidine, and Iopromide (Figure Error! No text 

of specified style in document.-9). Only those biomarkers which exhibit effectively no 

degradation over approximately 25 hours (Figure Error! No text of specified style in 

document.-9) do not bias the results at all. Based on currently reported ambient half-lives 

under conditions representing pressure and gravity mains, such compounds include, 

Gabapentin, Carbamazepine, Norethindrone, Tramadol, Carbamazepine, Methoxetamine, 

Nicotine, Ibuprofen, Hydrochlorothiazide, Ethinylestradiol, Caffeine, Sulfamethoxazole, 

Fexofenadine, Acesulfame, and Carbamazepine, among others. All other compounds, 

especially those with half-lives of less than 10 hours, over-represent populations closest 

to the WWTP with ensuing bias towards associated demographics.   

For more quickly degrading biomarkers, longitudinal campaigns that track the 

health and consumption of populations over the course of a year should not treat winter 

and summer results as representative of the same population. For this class of biomarkers, 

the difference in winter versus summertime contributions can be put to good use, 

however. The steep gradient can be used to study the differences in the consumption 
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patterns of two subsets of the population without the need for additional sampling 

locations.  
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Conclusions 

There exists a non-random relationship between distance from a major wastewater 

treatment plant and demographic indicators like household income, educational 

attainment, military service, unemployment, and the lack of health insurance. In the 

United States, these patterns appear at various spatial scales (national vs. state vs. county-

level) and carry across different regions of the country, despite documented regional 

differences in political, social, economic, and public health profiles.  

WBE sampling during the colder months of the year will be universally more 

inclusive than sampling performed during the hotter months of the year, as a larger 

proportion of the population can be observed due to slower degradation rates, and also 

because the difference in the representation of populations at a downstream sampling 

location is more attenuated than summer-time samples, in which populations closest to 

the WWTP are represented much more in the composite.  

For WBE studies concerned exclusively with passive monitoring of population 

consumption patterns, health, and stress, we recommend winter-time samples be 

collected if the study is intended to be representative of the WWTP service area as a 

whole. For WBE studies which pair interventions with monitoring, our results can help to 

better target the interventions and interpret their impact. 
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CHAPTER 5 

ASSESSING POTENTIAL IMPACTS OF WASTEWATER TEMPERATURE ON 

OPIATE CONSUMPTION MONITORING IN TEMPE, ARIZONA, USA 

 

 

Abstract 

In this study, we sought to determine whether it was possible to isolate true 

changes in community consumption of opiates over the course of a year-long monitoring 

period from the effects of temperature-related change in degradation rates. Wastewater 

samples collected at the outfalls of three independent sewersheds and analyzed for total 

mass of opiate parent compounds codeine and oxycodone were evaluated. Hydraulic 

residence time and flow rates simulated by an EPA SWMM model were used in 

conjunction with a physical model representing heat transfer between wastewater, soil, 

and air, to calculate the expected contribution of temperature on the observed monthly 

change in measured opiate mass. Modeling results suggest at least some of the monthly 

changes observed in the measurable concentration of opiates should be attributed to 

natural, seasonal temperature changes, rather than to actual changes in the substances’ 

consumption. While WBE samples represent pooled populations, such that the exact 

location and mass of any particular discharge is unknown, hydraulic modeling, in 

combination with a wastewater temperature model, can be used to bracket the likely 

effects of ambient conditions (i.e., temperature) on WBE study results.  

 

Introduction 

It has been established that wastewater temperature can vary significantly across 

the world, with a rate of change up to 13-fold between winter and summer at the same 
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location (Hart and Halden, in review). The principal purpose of this study was to 

determine whether it was possible to isolate true changes in community consumption of 

opiates by detrending the effects of temperature-related seasonal change in the 

degradation of the biomarkers.  

 

Methodology 

Study area 

This study focused on the City of Tempe, Arizona, USA. The city of Tempe 

covers an area of 104 square kilometers and is land-locked by neighboring cities 

comprising the metropolitan Phoenix area. It had a population of 185,038 according to 

the 2017 U.S. Census and a density of 1,779 people per square kilometer. Land use is 

predominantly residential, with some industrial and commercial activity. 

 

Wastewater sample collection and processing 

Wastewater samples were collected over the course of 16 months at 3 locations 

representing the outfalls of 3 independent (not nested) sewersheds within the City of 

Tempe collection system. Each month, samples were collected for 7 consecutive days. 

Each day’s sample represents a composite of a 24-hour period. Samples were processed 

by liquid chromatography tandem mass spectrometry to derive final observed mass loads 

of codeine and oxycodone per day, per sewershed.  
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Data sources and assumptions for model inputs 

Data related to the physical layout of the wastewater collection system was 

obtained from the City of Tempe Water Utilities Department. Wastewater loading was 

estimated using historic wastewater meter data to derive a per capita wastewater loading 

rate. Population density estimates were based on Maricopa Association of Governor’s 

Traffic Analysis Zones (TAZ 2019), with residential wastewater loads assigned 

proportionally to population density and manhole (node) count. Industrial wastewater 

loads were assigned to the collection system node nearest to the industrial facility, with  

average flow rates and diurnal curves based on meter data. The EPA SWMM model was 

set up to simulate a 72-hour period representing typical weekday conditions subject to 

dry weather flows only. No leakage or infiltration were incorporated into the hydraulic 

model. The temperature-dependence (Q10) of Codeine and Oxycodone half-lives was 

assumed to be a constant 2.5.  

 

Table Error! No text of specified style in document.-5. Summary of major input 

datasets and assumptions. 

Data Type Value Source 

Soil Texture  Loam, Clay Loam, Sandy 

Loam 

USDA NRCS Web Soil Survey 

Soil Thermal 

Diffusivity 

Based on soil texture via 

regression 

Arkhangelskaya and 

Lukyashchenko 2018 
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Depth to Cover Varies Rim minus invert elevation, based 

on City of Tempe as-builts 

Daily wastewater 

generation, per 

capita 

64.74 gal (0.245 m3) City of Tempe Wastewater 

Master Plan 2016, analysis of 

meter data, population-weighted 

average of Alameda, Knox, 

Carver, and Camelot Lift 

Stations.  

DWF diurnal 

curves 

Varies by basin City of Tempe Wastewater 

Master Plan 2016, analysis of 

meter data 

Population 2018 actual population by 

TAZ polygon 

Projections of Population, 

Housing, and Employment for 

Maricopa and Pinal Counties, 

Arizona, by Traffic Analysis 

Zone, 2019. 

DWF per node, 

industrial 

As-is City of Tempe Wastewater 

Master Plan 2016, Wilson 

Engineers. 

Initial 

Wastewater 

Temperature 

30°C 
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Flow Rate EPA SWMM model output 

Q10 2.5 2-3 for biologic systems 

Ambient (20°C) 

half-lives in 

gravity mains 

Codeine: 0.8 hr;  

Oxycodone: 0.82 hr 

Gao et al. 2017  

Average 

Monthly Air 

Temperature 

See right,  

(°C) 

2019 US Climate Data, version 2.3 

Jan Feb Mar Apr May Jun 

12.3 14.0 16.7 20.4 25.2 29.6 

Jul Aug Sep Oct Nov Dec 

32.3 31.7 28.8 22.7 16.2 11.6 

 

Calculation of monthly wastewater temperature 

Heat loss or gain from a pipe can be expressed as the sum of the convective 

transfer of energy between wastewater in a pipe and the soil in which the pipe is buried, 

and because sewers do not flow full, the radiative transfer between wastewater and air as 

well. This relationship is expressed as: 

∆𝑄 = 𝑄𝑐𝑜𝑛𝑣 + 𝑄𝑟𝑎𝑑         Equation 

Error! No text of specified style in document.-23 

Where 𝑄𝑐𝑜𝑛𝑣 is the convective transfer, in watts; and the 𝑄𝑟𝑎𝑑 is the radiative transfer, in 

watts.  

First, the convective transfer is calculated as: 

𝑄𝑐𝑜𝑛𝑣 =∝ 𝐴 (𝑇𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇𝑠𝑜𝑖𝑙)     Equation 

Error! No text of specified style in document.-24 
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Where ∝ is the pipe’s convective heat transfer coefficient (estimated at an average 2.493 

W/(m2·°K) for the study area’s collection system); 𝐴 is the pipe surface area (m2); 

𝑇𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the temperature of the wastewater flowing through a pipe (°K); and 

𝑇𝑠𝑜𝑖𝑙 is the temperature of the soil in contact with the pipe (°K), estimated as: 

𝑇𝑠𝑜𝑖𝑙 = 𝑡𝑎𝑣𝑒,𝑎𝑖𝑟 − 𝐴𝑎𝑖𝑟𝑒
−𝑧√

𝜋

𝛼𝜏 𝑠𝑖𝑛 (
2𝜋(𝜃−𝜃𝑙𝑎𝑔

𝜏
−  𝑍√

𝜋

𝛼𝜏
) +  273.15   Equation 

Error! No text of specified style in document.-25 

Where 𝑡𝑎𝑣𝑒,𝑎𝑖𝑟 is the average annual air temperature (°C); 𝐴𝑎𝑖𝑟 is its annual amplitude 

(°C);  z is the pipe burial depth (m); α is the thermal diffusivity of the study area’s soil 

(22176 m2/day, calculated based on soil type from NRRC and texture-diffusivity 

regressions from Arkhangelskaya and Lukyashchenko 2018);  τ is the duration of the 

annual cycle (365 days); θ is the number of days elapsed since the start of the year; θlag 

is the phase lag in soil temperature (set to 0.75 radians based on reported observations for 

Tempe, Arizona, USA by Kusuda and Achenbach, 1965); and 273.15  is a conversion 

between degrees Celsius and degrees Kelvin to return Tsoil in units of °K. 

Next, the radiative component of heat transfer is calculated as: 

𝑄𝑟𝑎𝑑 =  𝜖 𝐴 𝜎 ((𝑇𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
4

− (𝑇𝑎𝑖𝑟)4)    Equation 

Error! No text of specified style in document.-26 

Where 𝜖 is the thermal emissivity of the piping material (estimated for the study area’s 

pipe system as 0.92, unitless); 𝐴 is the pipe surface area (m2); 𝜎 is the Stefan-Boltzmann 

constant relating emitted power per unit area and thermodynamic temperature, equal to 

5.67x10-8 W·m-2·K-4; 𝑇𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the temperature of the wastewater flowing 



87 

through a pipe (°K); and 𝑇𝑎𝑖𝑟 is the air temperature inside the pipe, approximated as 

surface air temperature (°K). 

The sum of convective and radiative transfer from Equation 5-1 (∆𝑄) can be 

related to the rate of temperature change (°C/second) by dividing the net heat transfer by 

the product of the density (1000 kg/m3) and specific heat capacity (4200 J/kg°C) of 

wastewater:  

∆𝑇 =
∆𝑄

𝑚𝑐𝑝
         Equation 

Error! No text of specified style in document.-27 

To calculate the resulting wastewater temperature at the end of the segment, the 

rate of temperature change (∆𝑇, °C/s) is multiplied by the quotient of segment length (m) 

and segment flow velocity (calculated by the EPA SWMM hydraulic model, m/s): 

𝑇𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟,𝑓𝑖𝑛𝑎𝑙 = ∆𝑇
𝐿

𝑣
       Equation 

Error! No text of specified style in document.-28 

Within each pipe segment, the 𝑇𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 subject to in-segment convective 

and radiative heat transfer is composed of two components: the temperature of any 

freshly discharged wastewater (temperature associated with DWF loading, estimated at a 

24-average of 30°C or 303.15°K), and the temperature of the wastewater passing from 

the pipe segment immediately upstream. The calculation was performed recursively at a 

temporal discretization of 1 second, which resulted, at each time step, in a pipe length (m) 

equal to the wastewater flow velocity (m/s). 

 

Calculation of wastewater temperature-related change in biomarker degradation rates  
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The degradation over time of a compound of interest present in wastewater can be 

expected to follow exponential decay, described by the formula as: 

𝑁(𝑡) = 𝑁0 (
1

2
)

𝑡

𝑡1
2          Equation 

Error! No text of specified style in document.-29   

Where 𝑁(𝑡) is the quantity that still remains and has not yet decayed after a time 𝑡 (i.e., 

the amount measured by the sampling campaign); 𝑁0 is the initial quantity of the 

substance that was excreted and discharged into the wastewater collection system; 𝑡1/2 is 

the half-life of the biomarker (codeine, fentanyl, oxycodone), and 𝑡 is the time elapsed 

between the time of excretion (time = 0) and time of observation/sample collection (time 

= 𝑡). 

The adjusted biomarker half-lives were based on the calculated wastewater 

temperature, a series of initial biomarker half-lives reported at ambient temperatures, and 

the Arrhenius Equation as shown in Equation 5-8:  

𝑅2 = 𝑅1 × 𝑄10
(

𝑇2−𝑇1
10℃⁄ )

       Equation 

Error! No text of specified style in document.-30 

where 𝑅1 is the initial decay rate, equal to the negative natural log of two divided by the 

initial reported half-life (Laidler 1984). When solving for the half-live, yields Equation 5-

9: 

𝑡1

2
,2

=  𝑡1

2
,1

×
𝑙𝑛(2)

𝑙𝑛(2)×𝑄10
(𝑇2−𝑇1

10℃⁄ )
      Equation 

Error! No text of specified style in document.-31   
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Where 𝑡1/2,1 is the initial half-life, 𝑇1 is the temperature at which initial half-life was 

derived, 𝑡1/2,1 is the half-life at seasonally- and spatially-adjusted wastewater temperature 

calculated in this study, 𝑇2 is the calculated temperature to which initial half-life is 

adjusted to, and 𝑄10 is a factor of temperature-dependent of rate change, ranging between 

2 and 3 for most biologic systems. A value of 2.5 is used in this study. 

 

Modeling and numerical analysis software 

Hydraulic modeling to calculate hydraulic residence times (HRTs), volumetric 

wastewater flow rates, and velocities was performed using the U.S. Environmental 

Protection Agency’s (EPA) SWMM modeling environment (SWMM v.5.1.013; Rossman 

2015). ESRI ArcGIS was used to assign dry-weather flow loading to manholes based on 

TAZ population densities and the results of the City’s metering program. NetSTORM 

v.2019.06 was used to convert the binary output of SWMM 5.1.013 into timeseries of 

flow and velocity at each pipe segment into a format readable by text editors and GIS 

software (Heineman 2004). Network Analyst was used in ESRI ArcGIS to perform an 

accumulation analysis over the pipe network. 

 

Results and Discussion 

Impacts of temperature on biomarker mass available for downstream observation 

In the absence of seasonal temperature fluctuation, a biomarker discharged to the 

wastewater collection system at a constant rate would degrade at a rate proportional to its 

residence time in the system and arrive available for observation at some downstream 

sampling location at a seasonally invariant rate (Figure Error! No text of specified style 
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in document.-10). Because, however, seasonal changes in air and soil temperature effect 

the transfer of heat between wastewater and the surrounding environment, the 

temperature-adjusted degradation rate of such a biomarker will not be constant over a 

year. As a result, the same hypothetical constant loading upstream will result in different 

masses available for observation downstream. All else held constant, the degree to which 

the same seasonality in wastewater temperature will affect downstream observations will 

increase with increasing hydraulic retention times – i.e., it will be magnified for outfalls 

serving larger sewersheds, and attenuated in locations serving smaller sewersheds. 

Failing to account for the role temperature plays in the degradation of biomarkers will 

lead to the propagation of error into estimates of upstream discharge, consumption, and 

exposure, and subsequent inferences and decision-making regarding the status of public 

health and the appropriateness or efficacy of implemented or planned interventions.  
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Figure Error! No text of specified style in document.-10. The impacts of temperature 

on biomarker mass available for downstream observation increase with hydraulic 

retention time. If downstream observations are not adjusted accordingly, estimates of 

upstream biomarker discharge, and the consumption and exposure of populations to 

compounds of interests can misrepresent long-term trends. 

 

Temperature-corrected estimated upstream daily discharges of codeine and oxycodone 

An important source of uncertainty in efforts to translate downstream WBE observations 

into insights about the upstream populations represented by the pooled sample is that the 

actual discharge location(s) of substances measured downstream is unknown, and 

therefore their residence time and degradation are also unknown.  

 shows the seasonality and range of uncertainty in back-calculated initial daily 

discharge rates of (𝑁0, grams per day) of codeine and oxycodone associated with the full 

range of possible discharge locations in each of the three sewersheds explored in this case 

study. Larger sewersheds with longer hydraulic retention times afford more variability in 

potential residence time of the substances in the collection system between point of 

discharge and point of sampling, and result in greater uncertainty around the back-

calculation of initial quantities discharged from those observed at the sampling point (𝑁t) 

after time t = hydraulic residence time. This is generally magnified during the summer 

months when degradation rates increase in response to higher temperatures.  
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Impacts of discharge location on probability of observable signal at outfall 

The role played by the location of biomarker discharge in available observation 

mass loads is shown in  Figure Error! No text of specified style in document.-. In 

Figure Error! No text of specified style in document.-, the wintertime and summertime 

mass of Codeine remaining after an initial discharge of 100 grams per day travels through 

the collection system is shown for each of the three sewersheds monitored in the case 

study. Although the same initial mass can decay to one-half to nearly an order of 

magnitude depending on the location of discharge within the three sewersheds, 

temperature, particularly during summer months when degradation increases, expands the 

range. However, unlike the point of discharge which currently cannot be constrained to 

more than the upper and lower bounds of travel times, the impacts of temperature can be 

estimated on a finer scale.  

 

 

Figure Error! No text of specified style in document.-12. Probability distribution of 

Codeine mass observable at Sewershed 1-3 outfalls if 100 grams per day was discharged 

at any node upstream in the associated sewershed. 
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Seasonal changes in the focus of WBE observations 

The difference in the outfall sample’s makeup during winter and summer months 

is further illustrated by Figure Error! No text of specified style in document.-. In Figure 

Error! No text of specified style in document.-, the wintertime and summertime 

contributing percentage was assigned to each pipe in the collection system based on its 

model-simulated HRT and mapped to the associated building footprint. The observable 

ratio is calculated by dividing the contributing percentage of each pipe segment by the 

minimum contributing percentage for that sewershed. The ratios have been log 

transformed. The color coding reflects the ratio between each site’s contribution to a 

sample collected at the outfall, and the contributions of all others in the sewershed.  
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Figure Error! No text of specified style in document.-4. Seasonal changes in the focus 

of WBE observations. 

 

Implications for undetected dosage and its change seasonally 

 Overall, the case study’s monitoring plan is robust in that the half-lives of the 

compounds of interest, the hydraulic residence time of wastewater in the collection 

system, the method detection limits, and volumetric flow rates are relatively well-

matched, especially in sewersheds 2 and 3. Table 5-5 presents results from a numerical 

experiment in which a single hypothetical dose of codeine and oxycodone are released 

into the wastewater collection system at the upstream-most point in each of the three 

monitored sewersheds, and the concentration remaining after degradation during travel 
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time is compared with the method detection limit.  During winter months, the remnants of 

a single prescription dose of both Oxycodone and Codeine discharged at the upstream-

most point in the system will be detectable in sewersheds 2 and 3. During summer 

months, evidence of a single dose will be detectable only in sewershed 3, and only for 

Oxycodone. While current WBE method detection limits are precise enough to capture 

trace amounts of biomarkers on the order of nanograms per liter, there currently remains 

considerable uncertainty with respect to the timing, concentration, and location of initial 

compound releases upstream, and their degradation, dilution, or capture prior to arriving 

at the sampling point downstream. In addition to testing the case study’s monitoring 

design, this numerical experiment also reinforces the role that temperature plays in 

producing different observable outcomes given the same initial, actual public health-

related actions upstream.  
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Limitations and Advantages  

Although the EPA SWMM model represents an all-pipes model, it remains a 

planning-level tool in that the loading is based on long-term average rates. Divergence in 

the loading from any household at any part of the day from the idealized DWF curves is 

expected. Thus, while the flow paths are fixed, the actual hydraulic residence time during 

sampling can diverge from that simulated. More broadly, many variables are responsible 

for changes in the quantity of a biomarker available for observation at a downstream 

sampling location. In this study, we focus on temperature-related changes in the rate of 

exponential decay. When the measured mass of opiates is adjusted by the residual 

between measured and seasonally expected, the result is suggested to be a more accurate 

representation of the true nature of monthly differences in opiate consumption. Although 

simplifying assumptions required for the calculation of the temperature adjustment 

introduce uncertainty into the adjusted mass, correcting for temperature yields a better 

estimate of the true magnitude of other variables which impact downstream observations.  

 

Conclusions 

In future studies, temperature must be considered when per capita or bulk loads 

are described. In this case study, in a comparison with field data, we find seasonality in 

temperature and subsequent degradation rates of opiates cannot be ruled out as an at least 

partial explanation for observed decrease in summer total mass observed. Because the 

catchments in this WBE study had relatively short HRTs relative to the half-lives of the 

opiates sampled, changes in bulk mass are expected to track consistently with changes in 

per-capita consumption over the course of the year.  
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However, for WBE campaigns having sparser sampling locations and shorter-

lived compounds of interest, during summer months when wastewater temperatures are 

highest and the persistence of the compounds is lowest, when these bulk masses are 

adjusted to population to derive per-capita opiate consumption estimates, de-facto 

population counts (such as those based on census records), or even de-jour counts based 

on mobile phone data records are likely to over-estimate the population count of people 

contributing to the sample, resulting in under-estimated per-capita loads. In these 

instances, population estimates via the analysis of population biomarkers present in 

sewage, by being subject to the same changes in ambient conditions as the opiates, are 

more likely to adjust the true observable population appropriately. However, the ideal 

biomarker will have low variance in its excretion across a population, and will either not 

vary seasonally, or its variation be thoroughly understood (Gracia-Lor et al 2017). While 

a number of biomarkers have been proposed and used in WBE studies, an ideal candidate 

has not yet been definitively identified by the WBE community.  

Temperature, along with any other factor that influences biomarker degradation, 

will play a greater role the longer the biomarker travels between initial excretion and 

sampling. However, it is possible to estimate seasonal temperature differences – more so, 

at present, than the location(s) of discharge. Thus, accounting for temperature removes 

one of the variables in the “black box” and helps to constrain the uncertainty in back-

casts of community health from downstream observations of wastewater.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In the preceding chapters, my analysis output suggests that temperature plays a 

significant role in the degradation of many chemicals of concern for wastewater-based 

epidemiology (WBE) studies, particularly those compounds with half-lives less than a 

median sewer hydraulic residence time for a given study area.  

While temperature is only one of multiple factors causing changes in observable 

biomarker loads in sewer sampling locations downstream of source releases, I demonstrate 

that adjusting for its effects is feasible and practical, thereby allowing us to address one of 

the more easily knowable unknowns. The temperature-adjusted results, in turn, provide 

wastewater-based epidemiologists with a clearer picture of the remaining magnitude of 

change that needs to be accounted for in other ways. As a result, we are one step closer to 

separating the signal (i.e., the “true” changes in the initial excretion of biomarkers and the 

implications for community health and behavior upstream) from the noise embedded in the 

downstream observations from factors such as the diluting effects of stormwater intrusion, 

changes in wastewater pH, or the errors introduced during wastewater sampling or 

processing. 

Expanding the conceptualization of WBE uncertainty by Castiglioni et al. 2013, I 

propose that the uncertainty in community-scale (rather than per-capita) back-casts from 

downstream observations can be represented by the propagation of uncertainties:  

∑ 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 +  𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛 + 𝑢𝑝𝑡𝑎𝑘𝑒    Equation 6-1  

Where stability can be further decomposed into: 
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∑ 𝑡0.5  × (𝑝𝐻 + 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑏𝑖𝑜𝑓𝑖𝑙𝑚 + 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 + 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔)𝑡=max 𝐻𝑅𝑇
 𝑡=0             

Equation 6-2  

Of these, the most extensively parameterized and empirically measured parameters have 

been ones related to the role of sampling regime and analytical methods (chemical analysis) 

on the variability in the mass of compounds measured in wastewater. Some work has been 

done in estimating compound half-lives, particularly at ambient temperatures. However, 

currently the number of proposed WBE biomarkers exceeds those tested, and more pilot- 

and field-scale studies are required overall to validate and bracket observed stabilities 

under a wider variety of real-world conditions. Other factors, such as the impacts of 

temperature at non-ambient conditions, or the population-scale variability in the uptake and 

excretion of compounds present in environmental toxins, foods, personal care products, 

therapeutic or illicit drugs, have not yet been empirically parameterized.  

 

Key Findings 

With respect to whether temperature plays a significant role globally, in Chapter 3, I 

have found that wastewater globally experiences significant temperature changes annually. 

Over a year, 75% of the world’s wastewater is calculated to range between 6.9 and 34.4°C. 

Wastewater temperature changes are predicted to impact biomarker fate. Temperature-

induced biomarker half-lives may vary 27% to 7,010% from ambient conditions at 21±1°C. 

The observable distal reach of sewage monitoring may vary up to 49-fold as a result.  

With respect to whether demographic patterns may make seasonal variation in 

degradation rates problematic for the evaluation of long-term (multi-month) WBE studies, 



102 

in Chapter 4, I have found that statistically significant, non-linear correlations exist 

between multiple demographic indicators and hydraulic residence time (HRT). For 

biomarkers with half-lives less than the median U.S. HRT of approximately 10 hours, not 

only is less than 50% of the population represented in the sample, but the sample is skewed 

most strongly to represent those living closest to a major wastewater treatment plant. 

Consequently, current WBE studies may be sampling not just different numbers of people 

during winter months than they are during summer months, but are capturing, 

unknowingly, different types (demographics) of people as well. These findings can be 

leveraged to improve WBE studies in the future, however, by designing monitoring 

campaigns which compare inter-annual changes between the same season to identify 

temporal trends, and compare intra-annual changes to identify spatial trends, associated 

with different population sub-groups.  

With respect to the application of the temperature degradation model to a real-world 

example in the City of Tempe, AZ, USA, in Chapter 5, I have found modeling a possible, 

practical, and advisable mechanism for understanding the range of uncertainty associated 

with interpreting downstream observations of wastewater as community consumption of 

opiates upstream. Adjusted for temperature, the true consumption of codeine and 

oxycodone by the study area’s population remains more constant during the summer 

months than would be inferred from the experimental data alone. Observed winter-time 

spikes in the detection of these substances, on the other hand, represent an even greater 

increase in their use, all else held equal. Finally, even for relatively dense monitoring 

configurations, in which single prescription-grade doses of the biomarkers of interest can 

be released at the furthest point upstream and not degrade to false negatives by the time the 
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wastewater arrives at the sampling point, the uncertainty with respect to the actual 

discharge location within a collection system can dominate the estimation of initial doses 

back-calculated from downstream observations.    

 

Future Research  

A critical simplifying assumption carried through the temperature modeling and its 

application to real-world opiate observations is that the temperature-dependence of 

different biomarkers is constant regardless of substance, and can be approximated using 

the Arrhenius equation, where the rate of degradation increases by a factor of 2.5 for each 

10°C rise in wastewater temperature. This bears testing at the bench and field scale, as it is 

plausible that certain compounds are more sensitive to temperature than others. 

Determining this temperature dependence empirically may show that another non-linearity 

needs to be introduced into our conceptual understanding of the relation between direct 

downstream observations of biomarker concentrations in wastewater, and back-cast 

estimates of initial discharge and consumption and/or exposure.  

A perennial limitation of WBE studies continues to be the difficulty of deciphering 

between low downstream observations due to low rates of initial excretion, versus higher 

percentages of degradation – particularly for parent compounds which do not degrade into 

well-characterized, stable daughter compounds. This class of substances will continue to 

grow as WBE matures away from the monitoring of illicit drugs and towards more 

challenging tasks such as characterization of community-scale changes in gut microbiome. 

By extension, there is also a fundamental difficulty in distinguishing between small loads 
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released close to the sampling point but having undergone little degradation, and larger 

loads released further upstream and having undergone significant degradation during travel 

time. Because WBE is ultimately concerned with the upstream behavior and exposure of 

populations, and not with releases to a downstream environment, that an identical load 

arrives downstream but has originated from different upstream sources is of interest and 

not irrelevant. To address these coupled issues, more work is recommended to identify 

conservative markers that are capable of tracking travel time alongside the biomarker of 

interest. If such a marker is identified, it can be used to constrain the uncertainty related to 

the residence time of a particular unit mass of biomarker and thereby more accurately 

define the initial mass that was released upstream prior to its partial in-sewer degradation. 
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