
Power, Performance, and Energy Management of Heterogeneous Architectures

by

Chetan Arvind Patil

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved August 2019 by the
Graduate Supervisory Committee:

Umit Y. Ogras, Chair
Chaitali Chakrabarti
Aviral Shrivastava

ARIZONA STATE UNIVERSITY

December 2019



ABSTRACT

Many core modern multiprocessor systems-on-chip offers tremendous power and per-

formance optimization opportunities by tuning thousands of potential voltage, frequency

and core configurations. Applications running on these architectures are becoming increas-

ingly complex. As the basic building blocks, which make up the application, change during

runtime, different configurations may become optimal with respect to power, performance

or other metrics. Identifying the optimal configuration at runtime is a daunting task due

to a large number of workloads and configurations. Therefore, there is a strong need to

evaluate the metrics of interest as a function of the supported configurations.

This thesis focuses on two different types of modern multiprocessor systems-on-chip

(SoC): Mobile heterogeneous systems and tile based Intel Xeon Phi architecture.

For mobile heterogeneous systems, this thesis presents a novel methodology that can

accurately instrument different types of applications with specific performance monitoring

calls. These calls provide a rich set of performance statistics at a basic block level while the

application runs on the target platform. The target architecture used for this work (Odroid

XU3) is capable of running at 4940 different frequency and core combinations. With the

help of instrumented application vast amount of characterization data is collected that pro-

vides details about performance, power and CPU state at every instrumented basic block

across 19 different types of applications. The vast amount of data collected has enabled

two runtime schemes. The first work provides a methodology to find optimal configura-

tions in heterogeneous architecture using classifiers and demonstrates an average increase

of 93%, 81% and 6% in performance per watt compared to the interactive, ondemand and

powersave governors, respectively. The second work using same data shows a novel imita-

tion learning framework for dynamically controlling the type, number, and the frequencies

of active cores to achieve an average of 109% PPW improvement compared to the default

governors.

i



This work also presents how to accurately profile tile based Intel Xeon Phi architecture

while training different types of neural networks using open image dataset on deep learning

framework. The data collected allows deep exploratory analysis. It also showcases how

different hardware parameters affect performance of Xeon Phi.

ii



Dedicated to my family

iii



ACKNOWLEDGEMENTS

This thesis is the result of efforts and guidance from many people who in all capacity

contributed to the research work in this thesis.

Grateful to Dr. Umit Y. Ogras, my research advisor for his patience, advice, and guid-

ance over the years which led to this thesis work. Without his support, this thesis would not

be possible. Thank you to Dr. Chaitali Chakrabarti and Dr. Aviral Shrivastava for being on

my thesis committee.

I also would like to thank Ganapati Bhat, Sumit K. Mandal, and Ujjwal Gupta for their

support and help with Odroid. Their guidance around Odroid XU3 helped in developing

elegant solutions leading to work getting published in journals. I greatly enjoyed working

with Dr. Partha Pratim Pande and Dr. Janardhan Rao Doppa. Their inputs on imitation

learning helped in getting deep insight into power management solution. I also cherish

the research work done on multi-core architectures with Dr. Prabhat Mishra and Subodha

Charles.

Thankful to Arizona State University for providing an environment that made the pro-

cess both productive and enjoyable at the same time. My years at ASU also allowed me to

interact with numerous students which have helped me grow professionally and made my

journey at ASU memorable.

Finally, thank you to my parents Arvind Pitambar Patil and Kalpana Arvind Patil for

their endless support and understanding.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATED RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 WORKLOAD INSTRUMENTATION FRAMEWORK FOR HETEROGE-

NEOUS MPSOCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Phase-Level Application Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 PAPI vs Linux Perf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Data Characterization Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Odroid XU3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Using Instrumented Framework For Performance Optimization . . . . . . . . 19

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 POWER, PERFORMANCE AND ENERGY MANAGEMENT USING PHASE

LEVEL INSTRUMENTED WORKLOADS AND FRAMEWORK. . . . . . . . . . 24

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 DyPO: Dynamic Pareto-Optimal Configuration Selection . . . . . . . . . . . . . . 25

4.2.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Dynamic Resource Management Using Imitation Learning . . . . . . . . . . . . 36

v



CHAPTER Page

4.3.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 EXPLORATION OF MANY CORE PERFORMANCE ORIENTED HET-

EROGENEOUS ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Intel Xeon Phi Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Heterogeneous Tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.2 Memory Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.3 Cluster Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.4 Thread Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Deep Learning Framework, Networks and Data . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.2 Neural Networks Under Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Instrumentation And Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



LIST OF TABLES

Table Page

3.1 System And Application Level Parameters Used In This Work . . . . . . . . . . . . 15

3.2 Data Format For Each Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 List of Applications Instrumented From Different Bench Marking Suites. . . 21

4.1 Improvement w.r.t DyPO [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Q-Table Size For Different Number of Bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 System And Application Level Performance Data Collected In This Work. . 66

5.2 Data Format For Each Time Data Is Logged Using Linux Perf. . . . . . . . . . . . . 67

5.3 Different Xeon Phi Features Using Which Experiments Were Carried Out. . 71

vii



LIST OF FIGURES

Figure Page

1.1 256 Different Frequency And Core Configurations of The Blackscholes

Application Showing The Trade-off Between (a) Power Consumption And

Execution Time, (b) Energy Consumption And Execution time [22]. . . . . . . . 1

3.1 Phase-Level Application Instrumentation And Data Characterization Process. 12

3.2 PAPI Instrumentation Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Odroid XU3 Exynos 5422 Processor With Big (A15) And Little (A7) Cores. 19

3.4 Power And Performance Optimization Algorithm Can Be Integrated With

Instrumentation Framework For Evaluating The Algorithm. . . . . . . . . . . . . . . . 20

4.1 The Outline of The DyPO [22] Approach With An Illustrative Example. A

Block of Instructions, Such As A Function Call, Makes Up Basic Blocks.

The Instrumentation Groups A Sequence of Basic Blocks Into Distinct

Snippets. Finally, Each Snippet or A Sequence of Snippets May Form

Workload Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 DyPO-Energy [22] Approach Compared With The Default Governors Run-

ning On The Platform. In Multi-Threaded Benchmarks, -2T and -4T Rep-

resents Two And Four Threads, Respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 DyPO-Energy, Interactive, Ondemand And Powersave Governor Compari-

son For Normalized Energy Consumption [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 DyPO-Energy, Interactive, Ondemand and Powersave Governor Compari-

son For Normalized Power Consumption [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Comparison of The Normalized PPW Obtained Using DyPO-Energy [22]

Approach And Aalsaud et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Overview of The Proposed IL Based Dynamic Resource Management Method-

ology [45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii



Figure Page

4.7 Comparison of Energy Between The Oracle, App-Specific And Global Poli-

cies Using Oracle Minimizing Energy Without Timing Constraints [45]. . . . 39

4.8 Comparison of The IL Policy With Default Governors On Odroid-XU3.

Markers Represent Different Applications [45]. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Running Two Types of Networks On Caffe With Increasing Number of

Threads Shows That Xeon Phi Does Provide Speedup. Both Alexnet And

Googlenet Ran For 100 Iterations With A Batch Size Of 256. Speedup Does

Decrease When The Number Of Threads Start Sharing Resources. During

128 Thread More Than One Thread Is Sharing Same L2 Cache Within A

Single Tile, Thus Leading To Context Switching And Performance Degra-

dation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Intel Xeon Phi 7210 Knights Landings With 32 Tiles And 64 Cores. . . . . . . . 50

5.3 Every Single Tile In Intel Xeon Phi 7210 Knights Landings Has Two CPU

Cores. Each Core Has 2 Dedicated VPU. Two Cores Have A Shared L2

Cache of 1 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Xeon Phi 7210 Knights Landings During Boot Time Can Be Configured To

Run The Memory In Three Different Modes - Cache, Flat, And Hybrid. . . . . 53

5.5 Xeon Phi 7210 Knights Landings Working In All-to-All Cluster Mode.

Memory Is Shared Across All Tiles/Cores. No Virtual Quadrant Exists

In All-to-All. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Xeon Phi 7210 Knights Landings Packet Movement When Used In Quad-

rant Cluster Mode. There Are Four Virtual Quadrants With Each Having

One Fourth of The Total MCDRAM And DDR4 Memory. . . . . . . . . . . . . . . . . 56

ix



Figure Page

5.7 Xeon Phi 7210 Knights Landings Packet Transfer During SNC Cluster

Mode. SNC Has Two Sub-Modes, SNC-2 And SNC-4. SNC-4 Is Similar

To Quadrant Mode. SNC-2 Sub-Mode Has Two Virtual Quadrants Instead

of Four And Has A Direct Tile To The Core To Memory Affinity. . . . . . . . . . . 57

5.8 Xeon Phi 7210 Knights Landings Allows Threads To Be Distributed And

Affinity To Be Set In Four Different Manners. It Gives Flexibility To An

Application During Runtime By Allocating Resources Based On The Num-

ber of Threads To Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.9 Experiment Setup Showcasing How ImageNet Data Is Used In Caffe Frame-

work To Train Different Networks Using Various Xeon Phi Tuning Param-

eters Such As Memory, Cluster And Thread Mapping. . . . . . . . . . . . . . . . . . . . . 63

5.10 Execution Time Of Alexnet With 100 Iteration And 256 Batch Size On

Different Memory And Cluster Mode With Increasing Number of Threads. . 68

5.11 Execution Time of GoogleNet With 100 Iteration And 256 Batch Size On

Different Memory And Cluster Mode With Increasing Number of Threads. . 69

5.12 Execution Time Of ResNet With 100 Iteration And 256 Batch Size On

Different Memory And Cluster Mode With Increasing Number Of Threads. 70

5.13 Execution Time Of VGGNet With 100 Iteration And 256 Batch Size On

Different Memory And Cluster Mode With Increasing Number Of Threads. 72

5.14 Power Consumption of AlexNet 100 Iterations And 256 Batch Size Across

Different Memory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.15 Power Consumption of GoogleNet 100 Iterations And 256 Batch Size Across

Different Memory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



Figure Page

5.16 Power Consumption of ResNet 100 Iterations And 256 Batch Size Across

Different Memory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.17 Power Consumption of VGGNet 100 Iterations And 256 Batch Size Across

Different Memory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.18 CPI of AlexNet 100 Iterations And 256 Batch Size Across Different Mem-

ory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.19 CPI of GoogleNet 100 Iterations And 256 Batch Size Across Different

Memory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.20 CPI of ResNet 100 Iterations And 256 Batch Size Across Different Mem-

ory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.21 CPI of VGGNet 100 Iterations And 256 Batch Size Across Different Mem-

ory, Cluster And Thread Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.22 Maximum Memory Bandwidth Across Different Networks With The Same

Iteration And Batch Size For All-to-All And Flat Mode Memory. All Clus-

ter And Memory Mode Show A Similar Trend. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



Chapter 1

INTRODUCTION

State-of-the-art smartphones and tablets have to satisfy the performance requirements

of a diverse range of applications under tight power and thermal budget [15, 21, 64]. The

number of power management configurations offered by modern multiprocessor system-

on-chip (MpSoCs), such as the number of voltage-frequency levels and active cores, have

been increasing steadily to adapt to these dynamically varying requirements [52]. For

example, octa-core big.LITTLE architectures have 20 different CPU core configurations

that can be selected at runtime. Combined with the voltage and frequency levels, this leads

to more than 4000 dynamic configurations to consider during optimization.

The large design space results in more than one order of magnitude variation in both

Figure 1.1: 256 different frequency and core configurations of the Blackscholes application show-

ing the trade-off between (a) power consumption and execution time, (b) energy consumption and

execution time [22].

1



power consumption and performance, as shown in Figure 1.1(a). Moreover, the definition

of the optimality can change depending on the context. For instance, users prefer to maxi-

mize the responsiveness (i.e., performance) for interactive applications, while minimizing

the energy becomes the priority when the platform is running out of power. Therefore, it is

crucial to identify the optimal configuration at runtime.

Chip designers and power management architects spend significant effort to attain the

optimal power-performance trade-off. For example, Figure 1.1(a) plots power consump-

tion and execution time of a multi-threaded application for 128 different core and operating

frequency configurations. It can be seen that many configurations are close to the Pareto-

optimal curve. Frequency governors integrated in the OS-stack leverage this fact effectively

to deliver the desired trade-off [2, 36]. For instance, the interactive and on-demand gover-

nors increase the frequency whenever core utilizations exceed a threshold to maximize the

performance, while the powersave governor chooses the minimum operating frequency to

minimize power consumption [54]. Similarly, the dynamic power management algorithms,

such as cpuidle, increase (decrease) the number of active cores when the core utilizations

are above (below) tunable thresholds [4, 53]. Hence, these highly optimized governors

can dynamically scale the number of active cores and frequency to optimize the power-

performance trade-off. However, none of these approaches can guarantee optimality with

respect to other metrics, such as energy consumption. For instance, Figure 1.1(b) shows

that many Pareto-optimal configurations in the power-performance plane are far away from

the Pareto curve in the energy-performance plane. Moreover, a governor that chooses the

lowest power configuration results in 39% more energy consumption and 126% slower

execution with respect to the minimum energy configuration.

Despite the impressive progress in hardware support, the majority of existing solutions

in commercial mobile platforms still rely on simple heuristic algorithms whose simplicity

is hard to beat. For example, interactive and ondemand governors in mobile systems in-

2



crease (decrease) the operating frequency by one level when the utilization exceeds (goes

below) a static threshold. They are very aggressive in driving the frequency levels up since

one of the main differentiating factors is still the performance perceived by the user, such

as touch responsiveness or the maximum throughput while running key performance indi-

cators (KPI). Hence, this choice leads to running the applications at the highest frequencies

during most of their active time, leaving little room for improving the performance. In

contrast, the powersave governor uses the lowest frequency levels to minimize power con-

sumption. However, this choice does not necessarily maximize the energy-efficiency [22].

Therefore, new solutions must not only maximize the energy-efficiency, but also need to

have negligible runtime overhead to be practical.

To outperform default governors that are de-facto across all mobile platforms, it is cru-

cial to have insightful data from numerous applications which not only considers different

core and frequency configuration of target platform but also presents deep insight into dif-

ferent phases of the application and data around it [8]. To enable algorithms that can choose

the optimal configuration with respect to a given metric as a function of the workload, the

instrumentation framework and data collection are vital. To this end, Chapter 3 presents

a novel approach for instrumenting different types of applications precisely by considering

different phases they are made of. It also provides details on how the instrumented frame-

work can be easily integrated with any to be proposed runtime methodology. This approach

is illustrated using 19 commonly used benchmarks.

Chapter 4 presents two novel and practical dynamic resource management technique

for heterogeneous mobile platforms that made use of the proposed instrumentation frame-

work and data collected to first enable runtime optimal configuration selection and then

using the same data to outperform the first strategy by making use of the imitation learning

(IL) framework [39, 59, 61, 66]. The proposed technique controls the type (Big/Little),

number, and the frequencies of active cores. IL is a promising approach since it enables us

3



to automatically transform an optimal offline solution into an efficient online policy. The

phase-level instrumentation has enabled the construction of a near-optimal Oracle policy

offline by exploiting characterization data for target applications available at design time.

Both the proposed solution employ advanced algorithms to design low-overhead control

policies that outperform the default ondemand, interactive and performance governors.

Apart from mobile based MpSoCs, many core architectures that are designed to assist

deep learning have also attracted significant attention. The goal of these architectures is

to provide performance to enable faster completion of the task rather than focusing on

efficiency. Chapter 5 explores the Xeon Phi [65] architecture equipped with 64 cores and

capable of running different types of clustering, memory, and thread modes. This study

provides a deep insight into the tile based heterogeneous Xeon Phi architecture by profiling

widely used neural networks [40] [28] [63] [67] and also showcase how to profile networks

during runtime to collect data using performance counters and power consumption sensor.

Chapter 5 presents the results of this exploratory study concerning runtime, cycles per

instruction, power consumption and memory bandwidth.

4



Chapter 2

RELATED RESEARCH

Advances in heterogeneous processors have enabled widespread adoption of mobile

platforms. These platforms integrate multiple types of cores (Big/Little), graphics process-

ing units, and other accelerators to support a wide variety of applications [21, 25, 41]. The

heterogeneity in mobile platforms requires new techniques for their resource management

at runtime [12, 20, 30, 35, 50, 56, 72]. To develop accurate runtime optimization scheme,

phase-level details of the application on target architecture is necessary. Phase-level perfor-

mance and power analysis provide fine-grained and reliable information about the work-

load. This information enables accurate power and performance models across different

platforms [78] and practical power management algorithms [32]. For example, using the

phase-level analysis one can collect statistics on one platform and use it to predict the power

and performance on another platform [78]. This leads to significant improvements in the

accuracy of the models by using this insight compared to an approach that uses aggregate

application statistics. Therefore, in contrast to the other phase-level approaches, this work

leverages the use of phase-level for characterization for many benchmarks which is then

used to develop runtime schemes [22, 24, 45] that outperform state-of-the art governors.

Section 3.3 provides more details on how phase-level instrumentation is implemented and

used for building classifiers and Oracle based policy that perform much better than the

recently proposed algorithm [1].

Default governors on mobile platforms, such as interactive and ondemand governors [54],

and algorithms [3, 50, 56] take management decisions based on the system utilization.

However, decisions made with utilization alone may not be optimal in terms of PPW or

energy consumption. Therefore, recent research has focused on new algorithms for run-

5



time management of mobile platforms [1, 5, 17, 18, 22, 58]. However, studies presented

in [1, 5, 18, 58] do not use phase level instrumentation, which provides fine-grained infor-

mation to take optimal power management decisions. The technique in [18] chooses only

the type of core (Big/Little) on which the task has to be executed. In the proposed power

management technique [22, 45], by controlling four configuration knobs, namely, the num-

ber of active big cores, number of active little cores and their corresponding frequencies,

is used to better existing runtime techniques on heterogeneous architectures. Controlling

more knobs allow us to explore number of decisions. Furthermore, the work presented

in [1] uses application-specific policies, which is not scalable for unseen applications. A

recent study uses a gradient search approach to decide the operating configuration of the

platform such that temperature violations are minimized [5, 74]. Specifically, it reduces

the frequencies iteratively until the temperature constraint is met. Therefore, it takes a few

iterations of decision making for the approach to achieve its objective. Chapter 4 show-

cases different approaches [22, 45] that take decision at each snippet using the classifier

and also using learned machine learning models. The technique proposed in uses phase

level instrumentation.

Widespread use of mobile platforms in the last decade is enabled by advanced power

management techniques, including dynamic core and uncore scaling [12, 38, 51], cache re-

configuration, task partitioning, task scheduling, and power budgeting [21, 29, 72, 75]. Sig-

nificant number of these power management techniques focus on power and performance

optimization through dynamic power management (DPM) and dynamic voltage, frequency

scaling (DVFS). DPM consists of a set of algorithms that selectively turns off system com-

ponents that are idle, such as controlling the number of active cores in the system depending

on their utilization [4]. Similarly, DVFS-based schemes control the operating frequency of

a core based on the utilization [30, 50, 54]. For example, millions of commercial mobile

platforms run the ondemand and interactive governors [54]. However, these techniques do

6



not guarantee optimality with respect to a given metric such as energy consumption. These

approaches typically perturb the configuration by a single predetermined step. For example,

interactive and ondemand governors increase (or decrease) the frequency of the processor

if the utilization is above (below) a certain threshold [54]. The work presented in [76] pro-

poses a technique to maximize the performance within a given power budget by estimating

Pareto-optimal solutions dynamically. This approach relies on analytical power consump-

tion and instructions per second model to find the Pareto-optimal frequency configurations

of homogenous architectures. Approach presented in Section 4.2 finds the Pareto-optimal

core and frequency configuration in heterogeneous architectures using an extensive set of

hardware measurements and multinomial logistic regression. Hence, this approach com-

bines DVFS and DPM by setting the operating frequency/voltage and the type and number

of active cores simultaneously.

In recent work, machine learning techniques are employed for dynamic resource man-

agement in mobile platforms [47, 55]. For example, the work presented in [55] builds

offline decision trees for choosing the frequency of CPU and GPU. These models are then

used at runtime to assign CPU and GPU frequencies for gaming applications. However,

they do not consider the problem of choosing the number of active CPU cores. More re-

cently, RL algorithms based on Q-table approach have been proposed for dynamic voltage

and frequency selection [13, 71]. However, prior RL based solutions have several draw-

backs. First, they are not practical as the size of the Q-table grows exponentially with

the state and action space, as demonstrated in experimental results section. Thus, they re-

quire huge storage, which is limited to mobile platforms. Second, the performance of RL

methods depend critically on the design of a good reward function to drive the learning

process, which is a non-trivial task [19, 24]. Finally, the overall learning process to create

near-optimal policies is very slow due to the need to try different actions at each state (i.e.,

exploration) to discover the best decision. An IL-based power management technique has

7



been proposed for homogeneous manycore chips [39]. However, the proposed method is

not applicable to heterogeneous mobile processors with different types of cores. More-

over, it is evaluated in a simulation setup for a specific suite of applications. Using an

extensive experimental evaluation on a heterogeneous mobile hardware platform Section

4.3 work [45] solves the problem by covering all possible core configuration for offline

characterization and extends IL-based power management to heterogeneous architectures.

Many core architecture also play crucial role in deep learning research. Deep learn-

ing frameworks like Caffe [33] make it easy to train networks [40, 73] using open data

set ImageNet ILSVRC [60]. Intel Xeon Phi architecture [65] provides many features that

allow faster execution of application. In [11] authors explored different memory and clus-

ter modes on Xeon Phi with respect to network-on-chip traffic. Authors in [68] provide

comparative analysis of Xeon Phi against GPU and CPU for domain specific usage. Re-

sults [68] show that the performance on a many core integrated architecture in some cases

is comparable or better than that on a GPU. When it comes to accessing data irregularly,

GPU does outperform Xeon Phi and other CPU based architecture. Chapter 5 provides

detailed exploratory analysis of Xeon Phi architecture.

8



Chapter 3

WORKLOAD INSTRUMENTATION FRAMEWORK FOR HETEROGENEOUS

MPSOCS

3.1 Overview

This chapter presents comprehensive methodology on how workload can be instru-

mented to obtain phase level power and performance characterization data on modern

MpSoCs with negligible overhead using compiler infrastructure, API calls and power-

performance counters on target architecture. The phase level instrumentation and char-

acterization proposed in this chapter is not only unique, but easy to use across application.

It is implemented and tested using widely referenced benchmarking suite covering differ-

ent domains with mix of single, multi-threaded and graphic benchmarks. This chapter also

showcases how the proposed instrumentation technique and data generated help in devel-

oping state-of-the-art dynamic power saving solutions on MpSoCs.

Major contributions:

Phase-Level Application Instrumentation (Section 3.3): Usage of applications on mo-

bile architectures is growing exponentially and leading to more complex application. These

applications are built of different phases which demand different requirements from system

during the time they are active. The growing number of cores in MpSoCs also provides the

ability to help these applications by enabling architecture resources that can adapt to the

requirements of the application phase being executed. Widely used approaches to obtain

power and performance counter based data from any architecture rely on running applica-

tion as whole and then profiling it during its life on the target architecture. Such techniques

provide time based profiling and not phase level profiling. The work presented in this sec-

9



tion solves this problem by proposing, implementing and testing a framework developed

using LLVM [43] compiler and PAPI calls [49]. Overhead added with this approach is less

than 1% and also allows data collection using a different frequency and core knobs of Mp-

SoCs. This is the first step in phase level workload instrumentation and characterization.

Data Characterization Methodology (Section 3.5): The second step after accurately in-

strumenting wide range of workloads is to collect data on the target platform. The collected

data provides phase level details about power consumption, processing time and different

hardware performance counters. Since the data is collected at different phases of the ap-

plication, there are more than 4,000 phases across 19 different single, multi-threaded and

graphics applications. This framework and data were used to design algorithms [22, 24, 45]

that optimize runtime power, performance, and energy of heterogeneous target platform.

Target Platform Odroid XU3 (Section 3.6): The third step in developing a robust power

optimization technique is choosing a correct target platform. Since the focus of this in-

strumentation framework is mobile heterogeneous architecture, Odroid XU3 is used as a

target platform which is not only ARM based but also has eight multi-heterogeneous cores

equally divided into big (A15) and little (A7) clusters. Odroid XU3 [27] is used to im-

plement proposed instrumentation framework and then is also used to collect phase level

performance data with the help of different hardware counters and sensors. This platform

provides us with numerous cores and frequency knobs to enable optimization. This section

also provides deep insight into Odroid XU3 in terms of its system and hardware features.

Using Instrumented Framework For Performance Optimization (Section 3.7): Final

step is to make use of the developed framework and data collected to implement algo-

rithms that enable dynamic control of the type of cores, number, and the frequencies of

active cores in heterogeneous processors. This section provides a brief overview of the ex-

periment methodology that can be used to integrate the instrumented framework with any

of proposed optimization methodology to enable faster experimentation and testing. There

10



are two major runtime optimization techniques that make use of proposed instrumentation

methodology. The first work [22] enables run time optimal configuration selection on Mp-

SoCs using traditional classifiers. The second work [45] provides optimization based on

Oracle policy using Imitation Learning. Chapter 4 presents results based on instrumented

data which is used to train and test the published performance management framework.

Linux Perf VS PAPI (Section 3.4): Linux Perf [37] is a widely used profiling tool on

Linux Platforms. Since the target platform also runs Linux operating system, it is important

to justify why to make use of PAPI [49] and not Linux Perf. One of the key advantages

of PAPI over Linux Perf is the ability to allow phase level instrumentation. With Linux

Perf only time based sampling is possible, which is not the goal of this work. This section

explores the benefits of using PAPI over Linux Perf for instrumentation.

3.2 Motivation

Most of the existing DVFS solutions around power and performance optimization rely

on application level characterization. The fundamental problem with this approach is that

not all part of the application requires same optimal configuration to run because an ap-

plication is made of different phases and each phase has different optimal needs from the

underlying architecture. Mobile platforms are equipped with a growing number of cores

in MpSoCs and each architecture provide numerous configurations that can aide run time

governor based optimization. The target platform used in this work is equipped with ARM

big.LITTLE Samsung Exynos 5422 MpSoC which has four little A7 cores cluster and four

big A15 cores cluster that can operate at 13 and 19 different frequencies, respectively [27].

Each of the A7 and A15 core clusters can scale different voltages by adjusting the frequen-

cies. In all, there are total of 4×5×13×19 (4940) different frequency and core configu-

rations. Running the platform on each of these configurations leads to a huge variation in

power consumption and performance as shown in Figure 1.1. Moreover, any given applica-

11



Figure 3.1: Phase-Level application instrumentation and data characterization process.

tion consists of multiple workload phases [62]. For example, lower CPU frequencies may

save power during a memory-intensive phase. In contrast, CPU-intensive phases with many

active threads are likely to benefit more from higher frequencies and number of cores.

Therefore, different configurations may become optimal with respect to a given metric

as the workload varies at runtime [10]. To make use of different phases of an application to

enable runtime optimization, there is a need for a framework that provides platform runtime

data for each of these phases. The work done in this thesis enables the development of such

solution where any given application can be accurately profiled to find the phases and then

instrument these phases to collect runtime phase wise characterization data which enables

optimization algorithm development. Later sections in this chapter provide more details

about the instrumentation process.

12



PAPI Instrumentation 
Pass Using LLVM

Custom Library (.so)

Clang Compiler

Benchmark

Instrumented 
Benchmark (.o)

Cmake/Make

In
pu

ts
O

ut
pu

t

Figure 3.2: PAPI instrumentation overview.

3.3 Phase-Level Application Instrumentation

This section discusses in detail the phase level application instrumentation, terminolo-

gies around instrumentation and how it is implemented.

Defining Phase in an Application: Any application is made of different code blocks.

Two major types of code blocks are: function blocks and basic blocks. Each of these

blocks is responsible for executing a specific code block in the application code. A function

block can have many basic blocks but vice versa is not true. Every basic block has a

single entry and single exit point that and any given application can have millions of basic

blocks. Performing instrumentation at a functional level will not provide details about

important phases at basic block levels. Hence, this work focuses on using basic blocks for

instrumentation. Application phases in this work, are also later defined as snippets.

Source-Level Instrumentation: In the software world, the instrumentation is a process of

adding an extra piece of code without affecting the original execution flow of the applica-

tion. In order to, achieve accurate phase-level instrumentation, source-level instrumentation

is used rather than binary-level instrumentation. Using source-level instrumentation all the

basic blocks in an application are found using basic blocks with the help of LLVM compiler

13



infrastructure as shown in Figure 3.2. Using this information, accurate instrumentation of

PAPI calls is achieved which enables data characterization.

PAPI: All the applications used in this work are instrumented with PAPI calls. It is impor-

tant to understand what these PAPI calls are and what they do. Performance Application

Programming Interface (PAPI) provides system independent access to hardware perfor-

mance counters found on most of the processors. The target platform on which PAPI is

running should have Performance Monitoring Unit (PMU) which provides cycle based

performance details such as the number of instructions retired, cache misses, memory ac-

cess, etc. This information is stored in specific registers that can then be read with help of

software calls. This is where PAPI comes into use. By using the API calls in PAPI library,

software calls can be made to read run time performance counter data. There are two types

of performance counters also called as events. The first one is the a set of native events and

then another is set of preset events. Preset events are more generic events that are defined

and by default found on the majority of the architecture such as instructions. Native events

are more target specific. It can be read with the help of PMU and platform perf driver by

making calls to find which specific native events other than preset events are supported by

the target platform. In this work, both preset and native events are used. Since our goal is

to instrument the code that will run and collect data during the run time of the application,

it is important to select set of those events which cover different CPU architecture details

such as pipeline, cache, and memory. Hence, the performance counters instrumented in

this work are chosen such that they provide details about different parts of the core archi-

tecture. Apart from performance counter events, different sensors were used to log data

such as the total CPU and DRAM power consumption, core frequencies, core utilization,

and also phase level execution time by leveraging PAPI. The system and application level

parameters used in this work are listed in Table 3.1.

Finding Basic Blocks: As described in the previous few subsections, the phases are se-

14



Table 3.1: System and application level parameters used in this work.

Application Level Parameters System Level Parameters

Instructions Retired Per Core CPU Frequency

CPU Cycles Per Core CPU Utilization

Branch Miss Prediction little, big, GPU and DRAM Power Consumption

Level 2 Cache Misses Number of Active Cores

Data Memory Access Execution Time

Noncache External Memory Request

quences of basic blocks. To instrument at basic blocks level, a process to find them

is required. The instrumentation framework proposed achieves it by relying on LLVM

and clang compiler. Instrumentation pass in LLVM identifies existing functions and basic

blocks, and add new functions (PAPI APIs) for any application.

Instrumenting Application with PAPI: Figure 3.2 illustrates the process of instrumenting

any benchmark with PAPI calls using LLVM and clang compiler. Using Cmake/Make util-

ities to compile the LLVM instrumentation pass to get a custom library object file. Finally,

clang compiler is used to compile the benchmark with the custom library as an additional

input. This generates an output object file that has PAPI instrumented at different basic

blocks. This instrumentation process is independent of how the application code is written,

as it relies specifically on analyzing the basic blocks, which are the building blocks of any

application and a widely used syntax analysis terminology in the compiler domain. To ac-

curately instrument applications with PAPI, LLVM compiler infrastructure is used as it has

the functionality to analyze any given source code at different regularities, such as module

level, function level, and basic block level [43]. LLVM treats any input source as a single

block of module that can be broken down into functions. Each of these functions contains

15



different basic blocks that subsequently contain assembly instructions. Instrumenting at

the function level is too coarse, while instrumentation at the instruction level is too fine-

grained. Therefore, utilizing LLVM with clang compiler [42] to analyze and instrument

PAPI calls at critical basic blocks within an application to collect the hardware counters at

runtime.

All the target applications are instrumented to divide into groups of basic blocks called

snippets. This enables the collection of power and performance statistics of each snippet at

runtime, as illustrated in Figure 3.1. For example, consider an application code with 100

million basic blocks (BB1 to BB100M) where each basic block is a sequence of instruc-

tions. The instrumentation in this example inserts special BB PAPI read() basic blocks

that call the PAPI for reading hardware counters and system statistics every 1 million basic

blocks. A pair of BB PAPI read() basic blocks create a boundary for different snippets of

an application. Each snippet or a sequence of snippets may form distinct phases.

Instrumenting single-threaded workloads requires identifying the critical basic blocks

and then adding simple PAPI calls. While instrumenting the multi-threaded benchmarks,

tie each thread to its performance counter values. It is achieved with the help of PAPI,

which provide specific calls to register threads that can maintain their counter data. Since

multi-threaded workloads also have phases that only have single threads, it is ensured that

instrumentation can capture such phases as well. At the time of logging the hardware

counter values along with system performance, thread IDs and time-stamp of data collec-

tion is also written to the log file. This methodology allows the analysis of both single- and

multi-threaded phases of any workload. In practice, inserting PAPI APIs are expected to

introduce extra instructions as overhead. Therefore, it is ensured that the overhead intro-

duced with these API calls is less than 1%. Overall, the process of instrumentation enables

capturing the critical regions that provide useful information regarding different phases of

an application running on any platform.

16



3.4 PAPI vs Linux Perf

For many optimization based analysis using performance counter, Linux Perf is the

most preferred tool. It can be used with any application during runtime to easily capture

performance counter data and also logs it to a text file. There are many shortcomings of

Linux Perf in comparison to PAPI. Linux Perf does not enable profiling at the basic block

level and it is also not useful when it comes to getting data for every basic block or snippet.

It is possible to log performance counter data every specific time interval using Linux Perf,

however such data still does not provide which part of the application the data belonged to.

Also since the goal of this work is to enable phase-level instrumentation rather than time

based instrumentation, PAPI is preferred.

Since the goal of this work is to enable not only phase level instrumentation but also

provide CPU specific data like power consumption, active cores, per core frequency and

most important per core utilization. Such data is not easy to get using Linux Perf and

also based on the preliminary analysis it adds approximately 5ms of additional runtime

overhead. Another major benefit of using PAPI to enable instrumentation framework over

Linux Perf is portability. Apart from ensuring that there is a perf driver and PAPI library

is installed on the system, the proposed instrumented framework can be easily ported to a

new system. With Linux Perf it is also very difficult to integrate any optimization frame-

work that can take decision based on runtime data. Using PAPI this work can provide a

framework that not only instruments application at the basic block level, but also allows

algorithm integration for MpSoCs power and performance optimization.

3.5 Data Characterization Methodology

Once the benchmarks are instrumented with the PAPI, runtime instrumented data is

collected for different frequency and core configurations. First, the platform is set to the

17



Table 3.2: Data format for each phase.

Time-
stamp

Power
Consumption

# Active
Cores

CPU
Frequency

Perf. 
Cntr 1

Perf. 
Cntr N

Core 
Utilizations

…

One row for each workload snippet, frequency, little core and big core configuration
Total number of rows per phase of a benchmark= ���� � ������� � ����	 � ���
���

highest frequency and core configuration, i.e., 2 GHz for the big cores with all eight cores

active. Then, three iterations of each benchmark are executed at this frequency and core

configuration. Next, by stepping down the frequency of the big core cluster while maintain-

ing the number of active cores. The same process is repeating for each benchmark included

in the study. After this, by reducing the frequency level by one, and the same process is

repeated for all the supported frequency levels and the core configurations.

This selection includes all core configurations (4×4) from 1L+1B to 4L+4B. At least

one little and one big core is included in order to maintain the heterogeneity of the system.

Then frequency is sweeped uniformly from 0.6 GHz to 2 GHz in steps of 0.1 GHz for all

16 core configurations. Frequencies lower than 600 MHz are not included since they are

rarely energy optimal. That is, the lowest power configuration in our experimental setup is

{1L, 0.6 GHz, 1B, 0.6 GHz} and the highest performance configuration is {4L, 1.4 GHz,

4B, 2 GHz}. The entire application is run from start to end for all the selected configu-

rations. Therefore, all the relevant phases are considered irrespective of the application.

On profiling three iterations of 19 benchmarks for 256 different configurations lead to a

total of 13,824 different benchmark runs. The system is re-booted before starting the data

collection process for each benchmark to ensure consistency of the platform environment.

Finally, all the data collected during the characterization data for each workload snippet

following the format shown in Table 3.2.

18



Figure 3.3: Odroid XU3 Exynos 5422 processor with big (A15) and little (A7) cores.

3.6 Odroid XU3

The experiments to collected the characterization data were performed on the Odroid

XU3 platform running Ubuntu OS with kernel version 3.10 and 4.4 [27]. The platform is

equipped with Samsung Exynos 5422 chip, which has four little (A7) cores and four big

(A15) cores as shown in Figure 3.3. The little core frequency can vary from 0.2 GHz to 1.4

GHz and big core frequency can change from 0.2 GHz to 2 GHz in steps of 0.1 GHz. The

platform supports per cluster DVFS, i.e., the cores within the same cluster have to run at the

same frequency and voltage. Changing the CPU cluster frequencies and setting of the core

online and offline are supported in the platform using the cpu-freq driver. The platform

also provides INA231 current monitoring sensors [70] that report the power consumption

for each CPU cluster, memory and GPU using the I2C driver. The sampling frequency of

the current sensors is set to 5 ms to capture small transients in power consumption.

3.7 Using Instrumented Framework For Performance Optimization

The major goal of the instrumented benchmarks and the data collected on Odroid XU3

is to enable easy integration with any proposed power and performance methodology. Fig-

ure 3.4 shows how PAPI calls instrumented in the benchmarks can also be integrated with

19



Figure 3.4: Power and performance optimization algorithm can be integrated with instrumentation

framework for evaluating the algorithm.

any algorithm that proposes optimal running condition for different phases of the appli-

cation. This implementation is divided into the kernel space and user space. The kernel

space contains the Perf driver and the CPU governors with a sysfs interface [48]. The Perf

driver is mainly responsible for communicating with the ARM performance monitoring

unit (PMU) [14], which keeps track of different hardware and software counters, which

is the key to the data collected from each of the applications in Table 3.3. As discussed

earlier, it allows the PMU to capture the performance counters listed in Table 3.1. The

framework also utilizes a custom CPU governor to capture per-core utilization through the

sysfs interface.

The userspace contains the instrumented benchmarks with PAPI that query the perf

driver for performance counters [49]. At runtime, the hardware counters and CPU utiliza-

tion at each snippet of the application are used and can be fed to any of the optimization

algorithms. During the runtime, any classifier based technique can find the optimal fre-

quency and core configuration, and then assigns them to the cores using the sysfs interface.

The instrumentation framework also logs time stamps, algorithm output, and input features

20



Table 3.3: List of applications instrumented from different bench marking suites.

MI-BENCH CortexSuite PARSEC Gaming

Basicmath Large Kmeans Blackscholes 2 Threads Tetris

Dijkstra Spectral Blackscholes 4 Threads

FFT Motion Estimation Fluidanimate 2 Threads

Patricia PCA Fluidanimate 4 Threads

Qsort

SHA

Blowfish

String Search

ADPCM

AES

to a log file for debugging and offline analysis purposes.

Benchmarks: To validate the implementation, nineteen single- and multi-threaded bench-

marks from PARSEC [9],MI-Bench [26], Cortex [69] suites and a standalone gaming ap-

plication Tetris are used. Table 3.3 provides the list of all the applications instrumented

from each of the benchmarking suites.

Usage With Default Governors: The Linux kernel implements many frequency governors

that allow developers to optimize for a certain parameter. The powersave governor runs the

application at the lowest frequency such that the power consumption is minimized. The

ondemand governor is used to meet a user defined utilization threshold by changing the

frequency [54]. The interactive governor is similar to the ondemand governor, except that

it holds the frequency at a certain level for a fixed interval before making any changes. The

instrumentation framework is designed to work with any of the governor using the method-

ology as shown in Figure 3.4. It is important to note that governor, except ondemand does

21



not provide per core utilization, however the system around the instrumentation frame-

works not only enables per core utilization log but it does so for powersave and interactive

governor too.

Overhead Analysis: There is always a possibility that the addition of instrumented code

to the vanilla benchmark will result in overhead. This is true for the proposed instrumen-

tation framework too. However, the measured runtime overheads are almost negligible.

The instrumentation overhead can be measured in terms of the percentage of the extra in-

structions added to the benchmarks to log the performance counter data using the PAPI.

The baseline is the case when no APIs are inserted within the benchmark. As opposed to

the baseline, the APIs in this approach have to be added in the source code from different

workload snippets, as explained in Section 3.3. It is observed that a very low mean and

median overheads of 1.0% and 0.2% across all the 19 different benchmarks as listed in

Table 3.3. However, there may be an overhead from the integrated algorithm. Based on

the usage in [22], the overhead of instrumentation framework along with runtime selection

algorithm is 20s, whereas the minimum and mean execution time of the workload snippets

are 2.1 ms and 22.6 ms, respectively. That is the runtime overhead of is less than 1% of the

smallest snippet and less than 0.1% of the mean value of the execution time of all the snip-

pets. Similarly, the instrumented framework in [45] measured the run-time overhead of

both the instrumentation framework and policy for each snippet in the application set. The

execution time of the policy ranges from 13µs to 200µs. This amounts to an overhead of

0.07% to 1% for an average snippet of length 20 ms. Both the approaches show that there

is negligible overhead when the algorithm is integrated with the instrumented framework.

3.8 Conclusions

The instrumentation process and data collection methodology proposed in this work

is unique and provides the ability to profile application at basic block level while the ap-

22



plication is running on the target platform. This methodology has led to two published

work [22, 45] that showcase how such unique set more than 4000 phases across 19 dif-

ferent set of application can enabled runtime optimization. This work not only proposed

a novel instrumentation framework but also enabled runtime testing of power and perfor-

mance optimization technique. The data collected at the phase level can also be used to

propose many future novel runtime schemes. This data can also be critical in providing

runtime online learning [6, 23] that can help optimize several unseen applications on Mp-

SoC platform.

23



Chapter 4

POWER, PERFORMANCE AND ENERGY MANAGEMENT USING PHASE LEVEL

INSTRUMENTED WORKLOADS AND FRAMEWORK

4.1 Overview

The instrumentation and data characterization methodology as shown in Figure 3.1 and

the Figure 3.4 framework created around it is designed to easily integrate with any power,

performance, and energy management optimization algorithm. Using the full setup as ex-

plained in Chapter 3, it is easy to integrate and test any optimization framework that en-

ables runtime phase-level decision on heterogeneous architectures like Samsung Exynos

5422. This chapter will present details on how using the instrumentation framework and

data, it enabled two published work. First work proposes optimal runtime phase-wise con-

figuration classifier [22]. The second work uses data to use it for imitation learning [45] to

better earlier phase level optimization technique.

This chapter is organized as follows:

Enabling Proposed Methodology (Section 4.2.1 and 4.3.1): This section briefly describes

two different methodologies that enables runtime optimization on Odroid XU3. The data

collected using the instrumented benchmarks as explained in Section 3.5 allows offline

characterization to develop optimization technique. The structured data can also be used

to either accurately train a classifier and built Oracle policies which outperform default

governors.

Faster Experiments (Section 4.2.2 and Section 4.3.2): Apart from making use of data to

enable runtime optimization algorithm development, the proposed framework also enable

easy experimental validation. The proposed methodology shows how two different algo-

24



rithms can plug into the instrumentation framework to quickly validate and evaluate the

proposed methodologies. The same framework in future can be used to enable new novel

online strategies on heterogeneous architectures that can provide optimal core configuration

for unseen applications.

Improved Results (Section 4.2.1 and Section 4.3.1): Using the instrumented data to gen-

erate classifiers and oracle, both proposed solutions show improved results when compared

with previous best methodology. The section presents the results showcasing how much

performance per watt improvement is there compared to existing methodologies. Data is

critical in providing a base that allowed detailed offline characterization without which such

algorithm development is not possible.

Summary (Section 4.2.4 and Section 4.3.4): This chapter concludes by summarizing

major takeaways in terms of instrumentation, data and how it acts as a catalyst in enabling

solutions that are not unique but far better compared to existing runtime heterogeneous

governors. In future, such big amount of data collected at all possible frequency and core

steps will drive further optimization on heterogeneous architectures.

4.2 DyPO: Dynamic Pareto-Optimal Configuration Selection

DyPO [22] is one of the two runtime optimization techniques that made use of instru-

mentation data and framework in Chapter 3. This section provides a brief overview of

how the phase-level data is used to propose a methodology to enable runtime optimal se-

lection. Later sub-sections showcase the experiments carried out using the instrumentation

framework and conclude with results and conclusion.

4.2.1 Proposed Methodology

In Section 3.6 it is discussed that Exynos 5422 provides the ability to switch frequency

and core configuration at two different clusters. With A7 (little cluster) and A15 (big clus-

25



ter) more than 4000 optimal voltage and frequency configurations can be achieved. Each

of these configuration settings provides varying optimal conditions. In DyPO, the set of all

possible configurations is denoted by C, and the configuration at time k with ck ∈ C. Each

feasible configuration can be represented by ck = {nL,k, fL,k, nB,k, fB,k}, where the ele-

ments represent the number of active little cores, the frequency of little cores, the number

of active big cores, and the frequency of big cores, respectively. Similarly, the set of phases

encountered during the lifetime of an application is denoted by P, and the phase at time k

with pk ∈ P. DyPO’s optimization goal can be expressed as:

Find f : P 3 pk 7→ c∗k ∈ C (4.1)

where c∗k ∈ C is the optimal configuration

for workload phase pk ∈ P

Identifying the optimal configuration c∗k at runtime for each phase pk is a daunting task

due to a large number of workloads and configurations. For example, the Basicmath ap-

plication has three phases, and identifying the optimal configuration of each phase would

mean searching through 40043 (≈ 6×1010) different possibilities for the entire application.

Searching through this combinatorial space is intractable at runtime. Furthermore, the def-

inition of the optimality may change over time depending on the application scenario. For

example, minimizing energy consumption becomes a priority when the battery is running

low. Hence, there is a strong need to dynamically identify the optimal configuration c∗k for

a given optimization objective at any point in time.

DyPO designs a classifier using this characterization data (Section 3.5) as shown in

the top part of Figure 4.1. For example, consider two different phases, the first with 10K

LLC-misses (high) and the second with 1K LLC-misses (low). Suppose that the charac-

terization step reveals the optimal configurations as {2L, 1 GHz, 3B, 1 GHz } and {4L,

2 GHz, 4B, 2 GHz }, respectively. The classification step uses these data points to design a

26



Figure 4.1: The outline of the DyPO [22] approach with an illustrative example. A block of in-

structions, such as a function call, makes up basic blocks. The instrumentation groups a sequence

of basic blocks into distinct snippets. Finally, each snippet or a sequence of snippets may form

workload phases.

classifier f : P 3 pk 7→ c∗k ∈ C that maps different snippets to the optimal configurations

at runtime. The plot in the lower right corner of Figure 4.1 illustrates a potential classifier

that can separate these two snippets. The classifier is then used online to determine the

optimal configuration for any workload encountered at runtime. As an example, assume

that the system encounters Phase-3, which has 9K LLC-misses and the similar number of

instruction-retired with Phase 1 and Phase 2. Since Phase-3 is closer to Phase-1 charac-

terized offline, the classifier will assign it the same optimal configuration of {2L, 1 GHz,

3B, 1 GHz }. While the illustrative example is simple, the real problem is multidimen-

27



sional and far more challenging than creating simple visual boundaries between phases.

DyPO aims to solve this problem by making use of the instrumentation and data collection

methodology and then applying it using the classifier.

4.2.2 Experiments

DyPO experiments involved two-step process. The first process involves using the in-

strumented benchmarks to enable data collection by running eighteen single and multi-

threaded benchmarks from PARSEC [9],MI-Bench [26], Cortex [69] and suites on Odroid

XU3 platform. Figure 4.1 shows an experiment setup along with classifier that enabled

DyPO optimization framework. The frequency on Odroid XU3 Exynos 5422 big.LITTLE

is first set to the highest frequency and core configuration, i.e., 2 GHz for the big cores

with all eight cores active. Then, three iterations of each benchmark at this frequency and

core configuration. Next, stepping down the frequency of the big core cluster while main-

taining the number of active cores. Repeating this process for each benchmark discussed

earlier. After this, by reducing the frequency level by one, and repeating this process for all

supported frequency levels and core configurations. Time spent on collecting data for 128

configurations on Odroid XU3 is typically about 1-2 hours per benchmark. Then sweep-

ing the frequency uniformly from 0.6 GHz to 2 GHz in steps of 0.2 GHz for all 16 core

configurations. Frequencies lower than 600 MHz are not included since they are rarely

energy optimal. That is, the lowest power configuration in the experimental setup is 1L,

0.6 GHz, 1B, 0.6 GHz, and the highest performance configuration is 4L, 1.4 GHz, 4B,2

GHz. On profiling three iterations of 18 benchmarks for 128 different configurations lead

to a total of 6,912 different benchmark runs. For each of the benchmark different phases of

the applications are considered and data is collected for each of these phases because of the

phase-level instrumentation. Each data phase of the benchmark collected is in the format

as shown in Table 3.2.

28



4.2.3 Results

This section presents the validation of the DyPO classifier at runtime. Using the in-

strumentation framework as shown in Figure 3.4 at runtime, DyPO reads the hardware

counters, power consumption, and utilization during each workload snippet as inputs to

the classifier. Then, the classifier computes the probabilities of the optimal configurations.

Finally, the configuration with the highest probability is assigned to the system for the next.

Figure 4.2 shows the comparison between offline characterized data for the entire ap-

plication run at different frequency and core configurations (◦), the Pareto-optimal points

for power-execution time trade-off (♦), the Pareto-optimal frontier for energy-execution

time trade-off (—), powersave governor (+), interactive governor (∗), ondemand gover-

nor (×), and the proposed DyPO-Energy approach (4). Since these plots show energy

and execution time trade-off, the operating points closer to the Pareto-optimal frontier and

low ordinate are desirable. The data points plotted using the green markers (◦) show the

relative locations of the Pareto frontiers and the configuration space. This is useful in de-

bugging and analyzing how different governor results get placed relative to these points.

Figure 4.2(a) shows the results for the Basicmath application. The powersave governor

lies to the extreme right of the plot at about 20 seconds execution time and consuming

about 10 J of energy; this is expected as the goal of the powersave governor is to minimize

power consumption. However, it does not minimize energy consumption. In contrast, the

DyPO-Energy approach runs the application at the lowest energy point of the Pareto fron-

tier at about 14 seconds of execution time and 8.7 J of energy consumption. It successfully

achieves the energy minimization goal while also improving the execution time. Similarly,

the DyPO-Energy approach leads to much lower energy consumption when compared with

the interactive and ondemand governors. More precisely, the energy consumption is re-

duced by 42% (15 J to 8.7 J) and 46% (16 J to 8.7 J), respectively. This demonstrates

29



8 10 12 14 16 18
Execution Time (s)

10

15

20

E
n

er
g

y 
(J

)

Basicmath

(a) 1 1.5 2 2.5
Execution Time (s)

1.5

2

2.5

E
n

er
g

y 
(J

)

Dijkstra

(b) 2 3 4
Execution Time (s)

2

2.5

3

3.5

E
n

er
g

y 
(J

)

FFT

(c) 3 4 5 6
Execution Time (s)

3

4

5

6

E
n

er
g

y 
(J

)

Patricia

(d) 

1.5 2 2.5 3 3.5
Execution Time (s)

2

3

4

5

E
n

er
g

y 
(J

)

Qsort

(e) 1 2 3
Execution Time (s)

1

2

3

E
n

er
g

y 
(J

)

SHA

(f) 12 14 16 18 20 22 24
Execution Time (s)

10

15

20

E
n

er
g

y 
(J

)

Blowfish

(g) 0.3 0.4 0.5 0.6
Execution Time (s)

0.3

0.4

0.5

E
n

er
g

y 
(J

)

StringSearch

(h) 

4 6 8
Execution Time (s)

5
6
7
8
9

E
n

er
g

y 
(J

)

ADPCM

(i) 4 6 8
Execution Time (s)

4

6

8

E
n

er
g

y 
(J

)

AES

(j) 4 6 8 10
Execution Time (s)

6

8

10

E
n

er
g

y 
(J

)

Kmeans

(k) 8 10 12 14 16
Execution Time (s)

10
12
14
16
18

E
n

er
g

y 
(J

)

Spectral

(l) 

4 6 8
Execution Time (s)

4

6

8

E
n

er
g

y 
(J

)

MotionEstimation

(m) 2 3 4 5
Execution Time (s)

3

4

5

E
n

er
g

y 
(J

)

PCA

(n) 1 2 3 4
Execution Time (s)

1.5

2

2.5

3

3.5

E
n

er
g

y 
(J

)

Blackscholes-2T

(o) 1 2 3
Execution Time (s)

1

1.5

2

2.5

E
n

er
g

y 
(J

)

Blackscholes-4T

(p) 

1 1.5 2
Execution Time (s)

1

1.5

2

E
n

er
g

y 
(J

)

Fluidanimate-2T

(q) 1 1.5 2
Execution Time (s)

1

1.5

2

E
n

er
g

y 
(J

)

Fluidanimate-4T

(r) 10 20 30 40
Execution Time (s)

15
20
25
30
35

E
n

er
g

y 
(J

)

Basicmath + Patricia

(s) 

Characterization
Pareto-Power
Pareto-Energy
Powersave
Interactive
Ondemand
DyPO-Energy

Figure 4.2: DyPO-Energy [22] approach compared with the default governors running on the plat-

form. In multi-threaded benchmarks, -2T and -4T represents two and four threads, respectively.

the effectiveness of the DyPO technique in optimizing energy consumption. More impor-

tantly, none of the three default governors in the system lie on the Pareto-optimal point.

30



In particular, the powersave and interactive governor are significantly off the Pareto curve.

This is not desirable because there are other configurations in the system that could have

achieved lower energy consumption for the same execution time. The rest of the plots

in Figure 4.2(b-n) show the energy consumption and performance trade-off for 13 more

single-threaded applications. As expected, the interactive and ondemand governors con-

sume significantly more energy, since they are optimizing the system to meet a utilization

target. The powersave governor, on the other hand, does a good job in reducing power

consumption. However, it comes at the expense of performance and energy. In contrast,

the results achieved by the proposed technique are always closest to the lowest point of the

Pareto frontier for all applications.

Multi-threaded Applications: As the complexity of mobile apps increases, it is also im-

portant to analyze the behavior when running multi-threaded applications. Therefore, by

analyzing their energy consumption and performance trade-off in Figure 4.2(o-r). In par-

ticular, Figure 4.2(q) shows the results obtained for the Fluidanimate application running

with two threads. The DyPO-Energy approach lies below the Pareto-optimal curve, which

means that the approach even outperformed the best case scenario of the characterization

data, with a low energy consumption of 0.87 J and 1 second execution time. The lowest

power configuration on the power and execution time Pareto curve (♦) leads to 2 seconds

execution time. Moreover, it has substantially higher energy consumption compared to

DyPO-Energy. This happens since the lowest power configuration utilizes a fewer number

of cores, which has a very large penalty when there are more than one active threads. Sim-

ilarly, the Blackscholes application running with two and four threads and Fluidanimate

application with four threads show that the technique achieves lower energy than the de-

fault governors, as illustrated in Figures 4.2(o)(p)(r). In these workloads, the DyPO-Energy

moves up on the Pareto-optimal curve towards higher performance. This happens since the

active threads increase the utilization, which demands a larger frequency. However, the

31



proposed technique still stays at the Pareto frontier, unlike the powersave, interactive and

ondemand governors.

Concurrent Applications: The proposed runtime approach also works when multiple ap-

plications are running concurrently. More specifically, the instrumentation is specific to

a particular foreground application. However, the classifiers operate on the performance

counters, such as cache misses, non-cache external memory request, and the number of ac-

tive cores listed in Table 3.1. Therefore, when other background applications are running,

the load perceived by the governor changes. For example, the background applications can

increase the CPU utilization, as well as hardware counters, such as LLC misses. Since

the CPU utilization and hardware counters are inputs of the DyPO classifier, the proposed

approach works with any number of applications and tasks running simultaneously with

the foreground application. There were always hundreds of Linux OS background appli-

cations when experiments were performed. To demonstrate the operation with multiple

applications more explicitly, experiment for simultaneously executing two applications,

Basicmath (in foreground), and Patricia (in background). Figure 4.2(s) shows the results

with this multiple application scenario. The proposed DyPO-Energy approach successfully

minimizes the energy consumption compared to the default governors. More precisely,

DyPO-Energy achieves 9% lower energy consumption, and at the same time, 27% faster

execution time compared to the powersave governor. DyPO also observes 52% lower en-

ergy consumption than the ondemand and interactive governors, albeit with a significant

increase in execution time. This is expected since DyPO-Energy minimizes the energy

consumption, while ondemand and interactive governors aim for performance. Most im-

portantly, the optimal energy consumption of BML and Patricia running together is 12 J.

This is almost the same as the sum of the individual optimal energy consumptions of BML

and Patricia from Figure 4.2(a) and (d) equal to 11.7 J (sum of 8.7 J and 3 J). This further

corroborates the claim that multiple applications can be optimized by using the DyPO-

32



Spec
tra

l
AES

Blo
wfis

h

Km
ea

ns

Flu
id

an
im

at
e-

2T

ADPCM

Flu
id

an
im

at
e-

4T
PCA

Motio
nEst

im
at

io
n

Blac
ks

ch
oles

-4
T

Pat
ric

ia

Blac
ks

ch
oles

-2
T
Qso

rt

Dijk
st

ra

Stri
ngSea

rc
h

SHA
FFT

Bas
icm

at
h

0

1

2

N
o

rm
al

iz
ed

 E
n

er
g

y Powersave Interactive DyPO-Energy Ondemand

Average Powersave

Average Ondemand

Average Interactive

Figure 4.3: DyPO-Energy, Interactive, Ondemand and Powersave governor comparison for normal-

ized energy consumption [22]

Energy approach effectively.

Comparison With Default Governors: This section summarizes the advantages of the

proposed methodology in comparison to the default governors for each benchmark. To this

end, by normalizing energy consumption, power consumption, execution time and PPW

obtained for each governor with DyPO-Energy results. For example, Figure 4.3 shows

the normalized energy consumption of all the benchmarks compared with the interactive,

ondemand and powersave governors. It is observed that the energy consumption reduces

by 49% and 45% compared to the interactive and ondemand governor, respectively. For

the interactive governor, even the smallest energy savings obtained by DyPO-Energy for

the Basicmath application is 41%. The energy consumption achieved by the powersave

governor is slightly more than 6% of the energy consumed by DyPO-Energy. The power

consumed by the interactive and ondemand governors is about 3.5× that of the DyPO-

Energy, as shown in Figure 4.4, while the power consumed by the powersave governor is

about 23% lower. Note that compared to the powersave governor, DyPO-Energy provides

both energy savings and higher performance. When compared to the ondemand and inter-

33



Spec
tra

l
AES

Blo
wfis

h

Km
ea

ns

Flu
id

an
im

at
e-

2T

ADPCM

Flu
id

an
im

at
e-

4T
PCA

Motio
nEst

im
at

io
n

Blac
ks

ch
oles

-4
T

Pat
ric

ia

Blac
ks

ch
oles

-2
T
Qso

rt

Dijk
st

ra

Stri
ngSea

rc
h

SHA
FFT

Bas
icm

at
h

0

2

4

N
o

rm
al

iz
ed

 P
o

w
er

Powersave Interactive DyPO-Energy Ondemand

Average Interactive 
and OndemandAverage Powersave

Figure 4.4: DyPO-Energy, Interactive, Ondemand and Powersave governor comparison for normal-

ized power consumption [22].

active governors DyPO-Energy obtains substantial reductions in energy consumption albeit

with lower performance, as shown in Figure 4.3. This is expected because the ondemand

and interactive governors are designed for performance, not energy efficiency.

Comparison with Aalsaud et al. [1]: This section presents comparison of DyPO-Energy

against a state-of-the-art approach proposed by Aalsaud et al. [1]. They use power and

performance (IPC: Instructions/Cycle) models that are linear functions of the number of

little cores, big cores and one bias term. Figure 4.5 shows the PPW obtained by the DyPO-

Energy, Aalsaud-offline and Aalsaud-ADA approaches normalized to the PPW obtained

by running the ondemand governor. On average, the DyPO-Energy, Aalsaud-offline and

Aalsaud-ADA provide 81%, 46% and 18% gain in PPW compared to the ondemand gov-

ernor. Therefore, the DyPO-Energy approach shows 55% and 25% improvement in PPW

compared to the Aalsaud-offline and Aalsaud-ADA approaches, respectively. Note that for

applications Blackscholes-2T and String-Search, both Aalsaud-ADA and Aalsaud-offline

perform worse than the ondemand governor. This is because for the String-Search applica-

tion, the Aalsaud-offline approach used the configuration with a frequency of 1.2 GHz, and

34



B l o w f i s h
S p e c t r a l

A E S
K m e a n s

F l u i d a n i m a t e - 2 T
A D P C M P C A

M o t i o n E s t i m a t i o n

B a s i c m a t h

B l a c k s c h o l e s - 4 T

B l a c k s c h o l e s - 2 T
P a t r i c i a

Q s o r t

F l u i d a n i m a t e - 4 T
D i j k s t r a F F T S H A

S t r i n
g S e a r c h

A v e r a g e0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

 

 

 
No

rm
ali

ze
d P

PW

 D y P O - E n e r g y   A a l s a u d - O f f l i n e   A a l s a u d - A D A   O n d e m a n d

Figure 4.5: Comparison of the normalized PPW obtained using DyPO-Energy [22] approach and

Aalsaud et al. [1].

four little and big cores. This wastes the extra energy headroom, whereas the ondemand

governor utilizes it by keeping the frequency below 1 GHz. Similar behavior is observed

for the Blackscholes-2T application. In contrast, DyPO-Energy provides substantial gains

in PPW compared to the approaches in Aalsaud et al. [1] and to the ondemand governor for

all the benchmarks.

4.2.4 Summary

Continued demand for performance led to powerful mobile platforms with heteroge-

neous multiprocessor system on chips. These platforms provide many voltage-frequency

levels and active core configurations that can be chosen at runtime. DyPO presented a

novel methodology that finds the Pareto-optimal configurations at runtime as a function of

the workload. The methodology consists of a combination of offline characterization and

runtime classification. Using phase-level offline characterization for several benchmarks

and then using classifiers that map the characterized data to the Pareto-optimal configura-

35



tion are learned offline using multinomial logistic regression. The classifiers are used at

runtime to select the optimal configuration concerning a specific metric, such as energy

consumption. Experiments show an average increase of 93%, 81% and 6% in performance

per watt compared to the interactive, ondemand and powersave governors, respectively.

4.3 Dynamic Resource Management Using Imitation Learning

DyPO presented a novel runtime optimal configuration selection classifier that can

achieve better efficiency over existing state-of-the art governors using the instrumented and

data collection framework. Using the same data collection methodology discussed work

done in [45] presents a novel and practical imitation learning scheme for [39, 59, 61, 66]

dynamic resource management of heterogeneous mobile platforms. The technique controls

the type (Big/Little), number, and the frequencies of active cores. IL is a promising ap-

proach since it enables us to automatically transform an optimal offline solution into an

efficient online policy. This work shows how phase-level instrumented data can be used to

construct a near-optimal Oracle policy offline by exploiting characterization data for target

applications available at design time. Then using advanced IL algorithms on characterized

data one can design low-overhead control policies that imitate the Oracle policy and gen-

eralize beyond the applications used for training. This implementation and optimization

proof is done on the exact same platform as DyPO. DyPO uses simpler logistic regression

classifier while the proposed approach in this work used regression trees (RTs), thus does

not limit the number of configurations available at runtime.

4.3.1 Proposed Methodology

The state-of-the-art mobile platforms similar to Odroid XU3 and Exynos 5422, can

control the number of active cores and their frequencies at runtime periodically with 50

to 100 ms intervals as the workloads change dynamically [54]. Consider a heterogeneous

36



Figure 4.6: Overview of the proposed IL based dynamic resource management methodology [45]

mobile platform with n cores of k types. Without loss of generality, let us assume that one

can control the platform at runtime by specifying the number of active cores for different

types (n1, n2, · · · , nk) and their corresponding frequencies (f1, f2, · · · , fk). The set of sup-

ported configurations C = {C1, C2, . . . , CM}, specify the number of active cores and their

frequencies. For example, the hardware platform used in experiments has four Big (B) and

four Little (L) cores. Thus, each configuration Ci for 1 ≤ i ≤ M in this platform is a

4-tuple (niB, niL, fiB, fiL) denoting the number of active Big cores, number of active Little

cores, frequency of Big cores, and frequency of Little cores, respectively.

A given policy π maps the current system state to a candidate control configuration

Ci ∈ C at each control epoch. Using the set of target applications T the goal is to create

the best policy that maximizes the specified objective (e.g., performance-per-watt) on the

given target applications that also generalizes to new unseen applications. This problem

is solved using the instrumentation framework and characterized data to develop an IL-

based methodology, as outlined in Figure 4.6. The proposed methodology [45] presents an

efficient mechanism to construct an Oracle policy π∗ that drives the overall learning process

presented.

37



4.3.2 Experiments

The instrumentation, data collection and experiment methodology in this work is sim-

ilar to DyPO except that an additional gaming benchmark is used and granularity of fre-

quency increased. Since the framework used by in this work is same as that proposed

in Chapter 3, it uses the same Odroid-XU3 board [27] running Ubuntu OS on Samsung

Exynos 5422 SoC that integrates four A15 (Big) and four A7 (Little) cores. Since it sup-

ports heterogeneous multiprocessing, hence allows tasks to be scheduled to any of the

eight cores. Evaluation of the proposed IL approach is proved using 19 application work-

loads from PARSEC with ‘simsmall’ inputs [9], MiBench [26], CortexSuite [69] bench-

mark suites and Tetris, which is a gaming application.

The major difference in terms of characterized data in this work compared to DyPO

is the frequency step for each core and frequency configuration. In DyPO, the frequen-

cies for which data collected on Big and Little cores were from 200 MHz–2.0 GHz and

200 MHz–1.4 GHz with a step of 200 MHz respectively. However, in this proposed Or-

acle based policy the frequency range is the same. However, the frequency granularity

is 100 MHz, which doubles the amount of data available to make the policy more accu-

rate. This vast amount of new data collection was possible due to the ease of using the

instrumented framework created and described in Chapter 3.

4.3.3 Results

Application-Specific vs. Global Policy: Existing IL approaches on homogeneous many-

core systems [39] employ an application based optimized policy. However, application-

specific optimization is not practical since many applications are unknown, or may not

even exist, at design time. Since controllers optimized for a specific application can be

considered as a best-case solution, proposed IL policty [45] starts with comparing global

38



Figure 4.7: Comparison of energy between the Oracle, App-Specific and global policies using Ora-

cle minimizing energy without timing constraints [45].

IL-based policy against application-specific policies. By training IL-based policy [45] for

each application separately to obtain 19 app-specific policies. Then, using leave-one-out

cross-validation and Oracle policies for all applications at once to generate a single global

policy. That is, the test application is not included in the training of the global policy. Fig-

ure 4.7 compares IL global policy against the app-specific policies in terms of their total

energy consumption. In this case, both global and application specific policies are trained

with Oracle minimizing energy. The global policy performs very similarly (in terms of

energy consumed) to app-specific policies which are not practical. The largest difference

in energy between App-Specific and Global policy is observed for the Tetris application

which is 30%. On an average, the energy consumption of the applications obtained by our

global policy is within 6% of the app-specific policies and within 9% of the Oracle poli-

cies. In summary, the proposed IL methodology is able to produce a practical global policy

which has comparable performance to app-specific policies while generalizing to unseen

applications.

Comparison with State-of-the-Art Governors: Commercial devices are shipped with

power and performance management governors like performance, ondemand,

interactive, and powersave. Therefore, it is critical to compare the proposed IL

39



approach with these default governors. It is achieved by running each application using all

the governors. During this evaluation, characterization of performance, power consump-

tion, and PPW of all the applications similar to earlier experiments are done. To provide

a holistic view, comparison of these governors in terms of both performance and PPW

is also presented.The performance governor operates close to the highest operating states

whenever the SoC is actively running the applications. Therefore, normalize the execu-

tion time and PPW obtained for each application to the corresponding values given by the

performance governor. Hence, the reference in the red square (�) marker in Figure 4.8

corresponds to the performance governor. Ideally, the results should be in the ideal re-

gion (marked in the dashed circle), where execution time is minimized, and performance is

maximized. The results of the interactive and ondemand governors are shown with ? and

4 markers, respectively. Each marker shows the normalized execution time (x-axis) and

the percentage improvement in PPW (y-axis) in comparison to the performance governor.

Both interactive and ondemand governors have low execution time but poor PPW, since

they tend to ramp up the frequency whenever the cores are highly utilized. In contrast, the

powersave governor, shown in blue circle markers (©) achieve on an average 92% higher

PPW than the performance governor. However, this comes at the cost of more than 2.5×

higher execution time.

The proposed global IL policy with PPW Oracle (♦) dominates the powersave gover-

nor for all data points both in terms of PPW and execution time. The policy achieves on an

average 15% boost in PPW combined with a 25% reduction in execution time. For Tetris

application, the IL policy achieves 10% improvement in PPW with a 31% reduction in ex-

ecution time when compared with powersave governor. While running Kmeans and BML

applications concurrently, the IL policy achieves 150% improvement in PPW compared to

the performance governor. At the same time, it reduces execution time, by 27% and con-

sumes 5% less energy in comparison to powersave governor. The PPW improvement of IL

40



1 1.5 2 2.5 3

Normalized Execution Time

0

50

100

150
P

e
rc

e
n

ta
g

e
 P

P
W

 I
m

p
ro

v
e

m
e

n
t

w
.r

.t
 P

e
rf

o
rm

a
n

c
e

Performance

Ondemand

Interactive

Powersave

IL Policy for PPW

IL Policy for Energy

Ideal Region

Blowfish

FFT

Figure 4.8: Comparison of the IL policy with default governors on Odroid-XU3. Markers represent

different applications [45].

policy (with PPW Oracle) with respect to the performance governor ranges from 75% to

150%. Similarly, IL policy achieves significant PPW improvements when compared to the

interactive and ondemand governors. The corresponding penalty in execution time is much

smaller than that of the powersave governor.

The proposed methodology is also compared with the existing governors in the platform

with the IL Policy that minimizes the energy consumption using red (♦) in Figure 4.8. It

is observed that improvements in both PPW and execution time when compared to the

powersave governor, which aims to minimize power consumption. The improvements for

Basicmath and Blowfish applications are highlighted using red dashed arrows in Figure 4.8.

The PPW improvement of the IL policy range from 101% to 159% with respect to the per-

formance governor. For the gaming application Tetris, this IL policy consumes 39% less

energy than powersave governor while having a 9% improvement in execution time. At the

same time Tetris shows 152% improvement in PPW in comparison to the performance gov-

41



ernor. Furthermore, while running Kmeans and BML applications concurrently, the policy

achieves 5% more PPW than powersave governors with 36% improvement in execution

time. At the same time, it achieves 117% increase in PPW than performance governor

while running Kmeans and BML applications concurrently. The proposed IL policy for

energy also achieves significant improvements when compared to the interactive and onde-

mand governors. It is also observed that the IL policy for energy minimization has a higher

PPW than the IL policy for PPW maximization, but at a higher execution time penalty. The

IL policy for PPW, on the other hand, achieves a lower penalty for execution time while

sacrificing the improvement in PPW.

In summary, IL policies provide a significant step towards the ideal corner. They can

replace the powersave governor and can be used in conjunction with the performance-

oriented governors whenever the optimization goal is to maximize the PPW or minimize

energy consumption.

Comparison with DyPO (Section 4.2): DyPO is a recent approach proposed in [22] for

Pareto-optimal configuration selection in heterogeneous processors. The DyPO algorithm

first identifies the Pareto-optimal configurations for a given performance metric and designs

a classifier to choose the optimal configurations at runtime. This work also compares IL

policies for PPW and energy with the DyPO-Energy algorithm in [22]. For all applications,

the proposed IL policy has less energy consumption than DyPO. For BML, the energy con-

sumption with the IL policy is 22% less than DyPO. For multi-threaded applications also,

the IL policy shows improvement over DyPO. For example, 4-threaded Blackscholes appli-

cation consumes 20% less energy when it is executed with IL policy than DyPO. Moreover,

the proposed IL policy consumes 18% less energy than DyPO when Kmeans and BML ap-

plications run concurrently. On average, the proposed IL policy consumes 10% less energy

than DyPO for the applications shown in the figure. Table 4.1 summarizes the average

improvement in PPW, energy and execution time obtained by respective IL policies. It is

42



Table 4.1: Improvement w.r.t DyPO [22]

Percentage Improvement

Oracle type PPW (GIPS/W) Energy (J) Exe. time (s)

Maximizing PPW 6.3% 4.7% 9.2%

Minimizing Energy 10.7% 9.3% 5.1%

noted that the proposed IL policy has 6.3%, 4.7% and 9.2% improvement in PPW, energy

and execution time respectively with respect to DyPO when the objective of the Oracle is

to maximize PPW. On the other hand, IL policy has 10.7%, 9.3% and 5.1% improvement

in PPW, energy and execution time respectively with respect to DyPO when the objective

of the Oracle is to minimize the energy consumed. The improvement over DyPO can be

attributed to two primary reasons. First, DyPO limits the number of configurations avail-

able at runtime by pruning the configurations using the k-means clustering algorithms. As

a result, it is unable to use the full breadth of configurations available in the platform. In

contrast, the proposed approach has a much larger range of configurations to choose from

at runtime. As a result of this, it can choose configurations that have better energy or PPW,

depending on the optimization objective of the policy. Secondly, DyPO uses a much sim-

pler logistic regression classifier while the proposed approach uses regression trees (RTs).

RTs can approximate the nonlinear behavior of the policy better in comparison to logis-

tic regression. In summary, the proposed IL-based policy can improve energy, PPW and

execution time as well when compared to the DyPO approach.

Implementation Overhead: In this section, the evaluation of the implementation overhead

of the proposed approach on the Odroid-XU3 platform [27]. To this end, the proposed

imitation learning policies are implemented as user space governors. Measurement of the

run-time overhead of policy for each snippet in the application set. The execution time

43



Table 4.2: Q-Table size for different number of bins.

Bins Features State-Action Pairs Accuracy (%)

4 10 106×4940 92.3

6 10 6× 107×4940 95.1

of policy ranges from 13µs to 200µs. This amounts to an overhead of 0.07% to 1% for

an average snippet of length 20 ms. The proposed approach also has a negligible storage

overhead as it only has to store the comparison operators of the if-then rules corresponding

to regression tree-based policy. Specifically, the regression trees implemented on the board

have a maximum of 512 non-leaf nodes. This leads to a storage overhead of 2 kB for each

RT. In contrast, RL approaches require the storage of a Q-table with one entry for each

state-action pair defined by the features in Table 1 and available control actions (4940). For

example, with four bins and ten features, policies achieve an average prediction accuracy

of 92.3%, as shown in Table 4. Increasing the number of bins to 6 improves the accuracy

to 95.1%. However, with 6 bins, the Q-table size grows to 6× 107×4940 entries, which is

infeasible on most mobile platforms including ours.

4.3.4 Summary

Managing mobile platforms at runtime is challenging due to increasing heterogeneity,

the number of processors, the large space of control actions, and exponential growth in

applications. Existing governors on commercial devices employ simple heuristics based

on system utilization, which leads to sub-optimal performance. IL presented a practical

approach for dynamic management of mobile processors using the framework of IL. It

propose construction of an Oracle policy to maximize PPW for a set of applications. Using

this Oracle, runtime policies can be constructed that apply to a broad range of application

workloads. Experiments on a commercial mobile platform show 101% improvement in

44



PPW on an average while running nineteen commonly employed benchmarks.

4.4 Conclusions

The two policies discussed in this chapter showcase the importance of accurately char-

acterized data on heterogeneous architecture. Characterized data enables offline policies

that enable runtime optimization. Both the proposed works [22][45] are enabled by the

instrumentation framework discussed in Chapter 3. Phase-level instrumentation and char-

acterized data enabled two different types of policies, with second one [45] bettering the

other one [22] showcase that more such policies can be proposed using the same frame-

work. By making use of characterization data as discussed in Chapter 3, both the policies

can be further enhanced to achieve online training which will provide more advanced online

optimal core frequency configuration policies.

45



Chapter 5

EXPLORATION OF MANY CORE PERFORMANCE ORIENTED

HETEROGENEOUS ARCHITECTURE

5.1 Overview

Many core architectures are crucial in providing faster solution for workloads involv-

ing large amount of data processing. Graphics Processing Unit (GPU) is widely used for

deep learning training which often involves thousands of gigabytes of data processing. Re-

cently, Intel Xeon Phi code name Knights Landing (KNL) [65] have gained popularity

which targets high performance computing including training neural networks using deep

learning framework. Xeon Phi is also a heterogeneous architecture as each tile has mul-

tiple central processing units and quadruple vector processing units. These two different

types of processing units allow performance gain and instruction set optimization. This

works showcases architectural details of Intel Xeon Phi architecture and provides detailed

exploratory analysis by running neural networks using deep learning framework Caffe [33]

to train ImageNet data set [16]. This has led to work getting published [11].

Rest of this chapter is organized as follows:

Intel Xeon Phi (Knights Landings) (Section 5.3): To run deep learning framework and

train networks on an open data set, it is crucial to understand the processor architecture on

which training will occur. This section provides an overview of Intel Xeon Phi architecture

by focusing on core, frequency and memory organization. It also presents details on the

Network-On-Chip (NoC) that provides packet delivery from the core to memory and back

to the core using YX mesh routing [31, 34, 44, 46, 65].

Memory and Cluster Modes (Section 5.3.2 and Section 5.3.3): Unique feature of Xeon

46



Phi is its ability to run at different memory and cluster modes. Xeon Phi’s ability to provide

a different combination of memory and cluster mode helps by reducing memory misses,

eventually leading to reduced core-to-core communication time. These two features also

provide the ability to run any application including training neural network faster. These

sections provide more details on memory and cluster modes supported, and also show how

different combination can allow performance gain.

Thread Modes (Section 5.3.4): When using GPU for running any type of kernel to train

deep networks, threads within the software kernel play an important role. Just having a

large number of threads is not important, it is also crucial to understand how to map these

threads for given workloads such that there is less memory contention. Xeon Phi provides

enough resources in terms of cores and memory to allow a large number of threads to run

which eventually provides speedup. Xeon Phi relies on OpenMP for thread management.

This section provides a detailed explanation on how thread management in Xeon Phi can

be used and how different number of cores can provide enough resources to each of these

threads. This section also provides details on the occurrence of thread bottleneck in Xeon

Phi when the total number of threads running on a different number of cores leads to mem-

ory contention, eventually leading to performance degradation.

Deep Learning Framework, Networks And Data (Section 5.4): Over the last decade

deep learning has attracted many researchers. This has enabled development of deep learn-

ing frameworks that allow not only usage of neural networks but also help enhance/pro-

pose networks that can provide much better accuracy using the vast amount of available

dataset [16]. Deep learning framework has three major components - Frameworks that

enables training, Networks that learns the data features and the Data itself. This section

provides extensive detail of all these three important components of the many core Xeon

Phi architecture.

Instrumentation, Experiments And Results (Section 5.5 and Section 5.6): This work

47



carried out a detailed exploratory analysis on Xeon Phi and Deep Learning Framework

on Developer Access Program [57] platform. With the help of performance counters and

sensors on the system, deep insight into the architecture and where the bottlenecks are

found. System tools like Linux Perf [37] were instrumented to not only log performance

related data but also power consumption and execution time every specific interval.

5.2 Motivation

Deep learning has attracted a lot of research and many papers have been published

around it [77]. This has led to the development of deep learning framework, learning net-

works and open data set. Data is crucial for deep learning research as the majority of

the work is to train set of images to ensure that the network designed learns the features

such that it can be applied to un-seen data to improve accuracy. ImageNet [16] solved the

majority of the problem when it came to making large amount of categorized data avail-

able. By introducing different types of challenges ImageNet enabled creation of different

networks [40] [28] [63] [67] that provide better accuracy using deep convolutional neu-

ral networks. To make it more easy for new researchers to evaluate and propose training

networks, deep learning frameworks like BVLC Caffe [33] were developed.

These three components - data, network, and learning framework - led to research ad-

vancement in artificial intelligence (AI) and machine learning (ML). However, another im-

portant reason for AI and ML advancement is the processor architecture technology. GPUs

with numerous nodes can provide performance which enables faster analysis, debugging

and development of neural networks. Lately, there has been the need to also look into

whether these architectures can be made more efficient [65] apart from being just power-

ful. Comparative study [68] has shown that GPUs are not the only architectures that should

be used when it comes to training and testing network with huge amount of data. It also

depends on the domain for which the training is being carried out.

48



Figure 5.1: Running two types of networks on Caffe with increasing number of threads shows that

Xeon Phi does provide speedup. Both AlexNet and GoogleNet ran for 100 iterations with a batch

size of 256. Speedup does decrease when the number of threads start sharing resources. During 128

thread more than one thread is sharing same L2 cache within a single tile, thus leading to context

switching and performance degradation.

Figure 5.1 shows how running two different types of deep CNN, AlexNet [40] and

GoogleNet [67], with All-to-All cluster mode and Flat memory mode on Xeon Phi with an

increasing number of threads (T in figure stands for thread) allows performance gain. How-

ever, from same figure one can also see that performance gain strongly correlates with the

number of threads used to run during training. Since Xeon Phi is equipped with 64 physical

cores with 2 cores sharing same 1 MB L2 cache, running more than 64T means resource

sharing among threads. This eventually leads to cache thrashing and performance degrades

during 128T as two threads are fighting for the same resources. Intelligent scheduling of

each of the training task can boost training speed. Xeon Phi is one such processor architec-

ture that provides the ability to train and test networks on a huge amount of raw data using

49



Figure 5.2: Intel Xeon Phi 7210 Knights Landings with 32 tiles and 64 cores.

unique architecture and memory design. Figure 5.1 also shows how Xeon Phi can train

networks faster simply by using more threads during runtime. In this work by providing

an exploratory study on Xeon Phi using a deep learning framework used to run a different

networks on ImageNet data. With the help of Xeon Phi’s memory modes and quadrant

modes, it is possible to run these networks on different combination of memory-cluster

modes. Later sections provide more details on how this exploratory study is performed and

conclusions drawn.

5.3 Intel Xeon Phi Architecture

Xeon Phi architecture as shown in Figure 5.2 is made up 64 low power Silvermont

micro-architecture with changes catering to high performance workloads like deep learning

CNNs. Each of these 64 cores is paired to form 32 tiles, with each tile or 2 cores sharing

50



L2 cache and also having multiple dedicated Vector Processing Units (VPUs). Network

on chip routing followed by Xeon Phi is a 2D mesh YX routing. Figure 5.3 shows single

tile in a Xeon Phi holding two cores, with shared 1 MB L2 cache and one Caching/Home

Agent (CHA). Each core is capable of running 4 threads simultaneously using out of order

cores and large translation lookaside buffer (TLBs). The 2 VPUs per core allows AVX512

instruction execution with help of fused add units and wider 512-Bit registers. Specific

software calls to these VPU allows single instruction multiple data processes.

The architecture design also shows set of two types of memory channels that en-

able connections to DDR4 memory and another set of channels leading to Multi-Channel

DRAM (MCDRAM) which is capable of providing 4x more bandwidth compared to DDR4.

DDR4 can be connected using any of the six channels on the right and the left side of the

architecture as shown in Figure 5.2. On other hands, MCDRAM is spread across 8 different

sides with each section providing a memory of 2 GB leading to 16 GB of high speed mem-

ory to 64 cores. Each of the 2 GB MCDRAM has a dedicated embedded DRAM memory

controller (EDC). The critical reasoning of such placement of MCDRAM is discussed in

the next section. Xeon Phi’s two main features are memory and cluster modes. These two

features determine how many levels of memory hierarchy Xeon Phi can have apart from

features like where the application can fetch the data from and how the network traffic will

flow from cores to directories to memories to back to the core. Memory and cluster modes

are discussed in Section 5.3.2 and Section 5.3.3 respectively.

Figure 5.2 also shows specific tiles that are disabled. These tiles are not pre-disabled

and this information is obtained based on the physical core IDs that get logged while per-

forming deep profiling of system architecture using kernel tools as discussed in Section 5.5.

The specific version of Xeon Phi Knights Landings used for this study has 64 cores or 32

tiles. This is 8 cores or 4 tiles less than the paper [65] introducing KNL. The same paper

shows a total of 36 tiles but in reality, there are 38 slides as per the block diagram of the

51



Figure 5.3: Every single tile in Intel Xeon Phi 7210 Knights Landings has two CPU cores. Each

core has 2 dedicated VPU. Two cores have a shared L2 cache of 1 MB

architecture in the paper. This means there are a set of 2 tiles disabled in the Xeon Phi

version used in the [65]. If 6 more tiles are disabled from same version of Xeon explained

in the paper [65], one gets Xeon Phi model used for exploratory analysis in this work which

has 32 tiles and 64 cores.

5.3.1 Heterogeneous Tile

Xeon Phi used in this work has 32 tiles as shown in Figure 5.3. Each of these tiles has

6 processing units of two different types. This essentially makes each of the 32 tiles in

Xeon Phi nothing but a heterogeneous tile architecture. Two of the processing units shown

in Figure 5.3 are CPUs running x86 and AVX512 instruction set. Each of these CPUs

shares two vector processing units (VPUs). Both the VPUs and CPUs have common 1 MB

of L2 cache and communicate with the help of Caching/Home Agent (CHA). With many

core architecture, thermal runaway also becomes an important challenge to handle [7].

Figure 5.2 shows there are 32 tiles with each holding 6 processing units including CPUs

and VPUs. To ensure that the temperature is not a critical issue with Xeon Phi, CPUs

in tile are designed based on low power Silvermont Atom processor. This processor are

mostly used for mobile devices but are specifically re-designed to make use of them in

52



Figure 5.4: Xeon Phi 7210 Knights Landings during boot time can be configured to run the memory

in three different modes - Cache, Flat, and Hybrid

large number in Xeon Phi.

The VPU shown in Figure 5.3 uses a novel 512-bit SIMD instruction set, which is

specifically designed for many core x86 architecture like Xeon Phi. It also has modi-

fied multiply-add instructions that allow execution of multiple floating point operations per

cycle. Many of the mathematical operations can be offloaded to VPU as it has inbuild

extended math unit to perform calculations on fly that traditional CPU units would take

multiple cycles leading to performance degradation.

5.3.2 Memory Modes

Xeon Phi is equipped with a high bandwidth memory called MCDRAM and regular

DDR4 memory. MCDRAM is capable of providing up to 400+ GB/sec of speed and storage

size of 16GB. DDR4 in Xeon Phi can provide up to 90+ GB/sec of transfer speed with a

storage capacity of up to 300 GB. The system used for exploratory analysis has 100 GB

of DDR4. In total, the Xeon Phi’s 64 cores are exposed to 100 GB of low level memory

and the 16 GB of memory provided by MCDRAM can be used in three different modes,

also known as memory modes. Figure 5.4 shows three types of memory modes that can be

used to make MCDRAM act either as L3 cache or last level memory. The three different

53



memory modes in Xeon Phi are - Cache Mode, Flat Mode, and Hybrid Mode.

Cache Mode: When Xeon Phi is used with cache mode all of 16 GB of MCDRAM acts

as L3 cache. This is an important feature for any application that is going to work with

a maximum of 16GB of data as it can directly bring all the data to L3 and any L2 cache

miss will lead to reducing cycle penalty. This is due to the data being present in L3 cache

which is the next reference point. While using Xeon Phi in cache mode it is important to

map the data to MCDRAM using either memory allocation functions or pre-built NUMA

control tools. Figure 5.4 illustrates cache mode. It shows how MCDRAM acts as 16 GB of

cache. Memory allocation of all application running during cache mode starts by default

at DDR4. To make use of cache mode feature, applications should start memory alloca-

tion from MCDRAM. Otherwise running in cache mode will not provide a performance

improvement.

Flat Mode: Xeon Phi in flat memory mode makes use of all of 16 GB of MCDRAM as

last level memory and the memory address allocation for workloads by default starts at

MCDRAM and then interleaves to DDR4 if an application requires more than 16 GB of

memory. Figure 5.4 shows a flat mode structure. Since the target system has 100 GB of

DDR4, the total last level memory available for application is 116 GB due to the addition

of MCDRAM. The flat mode can provide better performance if used with correct cluster

mode other. Based on the results discussed in Section 5.6 flat mode provides better results

when used with any other cluster modes than All-to-All.

Hybrid Mode: In hybrid memory mode both cache and flat memory are combined to pro-

vide virtual cache and flat memory. When set to hybrid mode during boot, the system will

see half of the MCDRAM being used as L3 cache and another half as last level memory.

Hybrid mode becomes useful if used with sub-NUMA SNC-2 and SNC-4 clustering mode

due to a direct affinity between core to a directory to memory. The target system used in

this work has a total of 16 GB of MCDRAM. During hybrid mode, half of the MCDRAM

54



Figure 5.5: Xeon Phi 7210 Knights Landings working in All-to-All cluster mode. Memory is shared

across all tiles/cores. No virtual quadrant exists in All-to-All.

(8 GB) is used as cache and other half acts as last level memory.

All three memory modes are capable of providing a performance benefit. However,

performance gain also depends on how big the memory footprint of the workload is going

to be and more importantly what cluster modes, as discussed in Section 5.3.3, Xeon Phi

is operating on. A correct combination of memory with cluster mode can lead to more

controlled traffic movement and enable faster execution.

5.3.3 Cluster Modes

Apart from the ability to provide different types of memory modes, Xeon Phi can also

be configured to run in different cluster modes. The major difference between memory

and cluster modes is that when a specific memory mode is used then Xeon Phi provides

55



Figure 5.6: Xeon Phi 7210 Knights Landings packet movement when used in Quadrant cluster

mode. There are four virtual quadrants with each having one fourth of the total MCDRAM and

DDR4 memory.

application ability to make use of the memory architecture for address allocation and data

management. However, based on which cluster mode is active Xeon Phi can route the traffic

from core to memory differently. Based on the affinity between tile, directory, and memory,

clusters can provide varying performance. These cluster modes can lower latency, improve

data bandwidth and eventually decrease the distance travelled by the packets within a chip

architecture. These modes are adjustable from the basic I/O system (BIOS) at boot time

similar to memory modes. Xeon Phi can be used in three different cluster modes - All-to-

All, Quadrant and Sub-NUMA clustering (SNC-2/SNC-4). This section provides in depth

detail about these three types of cluster modes and explains how these mode can help gain

performance.

56



Figure 5.7: Xeon Phi 7210 Knights Landings packet transfer during SNC cluster mode. SNC has

two sub-modes, SNC-2 and SNC-4. SNC-4 is similar to Quadrant mode. SNC-2 sub-mode has two

virtual quadrants instead of four and has a direct tile to the core to memory affinity.

All-to-All Cluster Mode: This is the default cluster configuration used by Xeon Phi. All-

to-All mode has a fundamental drawback as it does not have any affinity among tile, direc-

tory, and memory. As shown in Figure 5.5, All-to-All works on the principle that a miss hit

occurring in any tile does not mean that the nearest memory will hold the data requested.

This typically leads to lower performance compared to other clustering modes. As Xeon

Phi is essentially a mesh network that follows YX routing, a miss on tile T20 (T stands for

tile) in Figure 5.5 means that the request packet has to first traverse Y direction from (1).

In this example, the directory affinity to T20 is the EDC marked (2). After traversing in

Y direction from tile T20 the packet then traverses to (2) in X direction where it gets the

memory address for the data request by tile T20, which is (3). From (2) the packet then

57



follows Y direction as per YX routing until it reaches another EDC node and then moves

in the X direction and gets the data requests by T20. From there by again following the YX

routing the packet eventually reaches back to (4) which is the requesting tile T20.

This clearly showcases that when Xeon Phi is fully loaded with multiple data request

the mesh network will get busy. This will eventually impact performance. There are only

two ways to ensure this does not occur. First is by mapping threads and data such that it is

closest to the tile running the thread. This also means making use of other cluster modes

that provide better affinity. Second is by running less memory intensive workloads, which

means running workloads that are compute intensive rather than memory intensive.

Quadrant Cluster Mode: When BIOS is enabled to run Xeon Phi in Quadrant cluster

mode then the architecture is divided into four virtual quadrants as shown in Figure 5.6.

When miss hit occurs at tile T20 (marked as (1)) in Quadrant mode with EDC (marked

as (3)) holding the data, the traverse path is very similar to All-to-All. However, in this

cluster mode, there is a direct affinity between directory and memory. This also means that

a request from a tile can go to any directory, but the directory will only access memory from

the same quadrant. All the four quadrant are allocated an equal amount of last level memory

to ensure symmetry. Quadrant mode performs better compared to All-to-All as the latency

of request is less and memory regions are visible to the workloads that can ensure correct

thread to the quadrant to memory mapping. For the system used in this work, the capacity

of DDR4 memory is 100 GB and MCDRAM is 16 GB. As soon as BIOS is enabled to run

Quadrant mode the memory is equally divided in to four equal memory with each quadrant

allocated 4 GB of MCDRAM and 25 GB of DDR4 dedicated to it.

There are clear benefits of using Quadrant mode over All-to-All, however it also de-

pends on the correct mapping of threads which is crucial in ensuring that the L2 miss

request is catered faster to provide better performance. By default a thread running in a

quadrant, bottom left section in Figure 5.6, will get memory allocated in two of the MC-

58



DRAM located with in the same region. If memory mode is either cache or hybrid then

dedicated L3 cache is provided to a specific number of cores/tiles within the quadrant.

Sub-NUMA Cluster (SNC) Mode: The last of the three cluster modes is Sub-NUMA

(non-uniform memory access) Cluster (SNC). SNC mode within itself has two sub-modes

- SNC-2 and SNC-4. In this mode, each tile has a direct affinity to directory and memory.

This means a request originating in top right section/quadrant, as shown in Figure 5.7, will

ensure that the data resides in the same quadrant which is a major improvement over Quad-

rant. By taking an example of a request originating from T22 marked as (1) in Figure 5.7

will mean that the MCDRAM within the quadrant will hold the data and this information is

also stored in the directory within the same quadrant. When SNC-2 cluster mode is enabled

then same properties apply to two quadrants which are bottom half and the top half in the

same figure. In SNC-4 the tiles are virtually divided into four different quadrants as clearly

marked in Figure 5.7. The amount of memory shared in SNC clustering mode is exactly

similar to Quadrant mode with the difference that when in SNC-2 each of the two quadrant

gets 8 GB of MCDRAM and 50 GB of DDR4.

SNC cluster mode is the most advanced of the three modes. It has dedicated affinity

between tile, directory, and memory, leading to a faster performance by reducing L2 miss

penalty. Due to the software ability to map threads to cores and accordingly allocate data

to memory within the same quadrant, SNC is supposed to provide far better performance

compared to other two cluster modes.

5.3.4 Thread Modes

Mesh routing, cluster mode, and memory modes are unique architecture features from

the hardware point of view which Xeon Phi is capable of providing. However, since Xeon

Phi has 64 cores available to the application, it is also important to understand how the

workload running on Xeon Phi can be mapped by making use of thread affinity and thread

59



Figure 5.8: Xeon Phi 7210 Knights Landings allows threads to be distributed and affinity to be set in

four different manners. It gives flexibility to an application during runtime by allocating resources

based on the number of threads to run.

distribution. Using system level libraries it is possible to run the application written or

compiled with OpenMP calls to manage threads in four different possible ways - Compact,

Balance, Scatter, and User Defined. In this section, thread affinity is discussed which

controls, where the thread will run and then thread distribution is explained which controls

how threads are distributed based on the number of threads to execute.

Thread Affinity: If an application has more than one thread then it is possible to map these

threads such that it can reduce run time. When running such application on Xeon Phi, de-

pending on the number of threads each thread can be tied to a tile and within the tile which

core will run that thread can also be decided. This is achieved by running an application

with the help of OpenMP. The application running should have a code structure that al-

lows OpenMP thread management. Consider an example of four threads in an application

running on Xeon Phi as shown in Figure 5.8. It is possible to run all the four threads on

Core C0 and it is also possible to run the same four threads on core C0 and core C1 with

60



two threads per core. Such management of threads is irrespective of which type of thread

distribution is enabled and also thread affinity is in some sense a manual process as the

threads can be asked to run on specific core thread ID. This process can be automated by

making use of thread distribution.

Thread Distribution: For Xeon Phi, threads can be managed by making use of four dif-

ferent types of distribution techniques without worrying about manually mapping threads

to cores. It is achieved with application and tools written with OpenMP APIs. Figure 5.8

clearly shows the difference between the four types of distribution techniques. For simplic-

ity, consider that there are four threads to run and the same number of cores are available.

If the application is enabled to run in Compact thread mode then all four threads will be

sequentially allocated to the core C0 only since each of the four core can run a maximum

of four threads. This also means thread allocation starts at first core available and moves to

next core only if the core already has a maximum of four threads running. If the same four

threads are to run in Balance mode then total number of threads are divided into half and

are distributed to core C0 and C1. This makes core utilization better compared to Compact.

During Scatter thread mode the number of threads will be divide by four (or the number

of physical cores on architecture) and then allocated to one core at a time sequentially till

all threads are mapped to at least one core. With a dedicated core for each thread, com-

putation is much faster. The last thread distribution criteria are User Defined which can

be mapped as an example in Figure 5.8. This means one can provide more or less thread

to one core and on another hand, another core may be running half of the thread the first

core is running. This also means the application can dictate how and where the threads will

run. However, for this, to happened the application has to be hardcoded with thread to core

mapping.

By introducing thread management with cluster and memory mode Xeon Phi provides

numerous ways using which performance of any workload can be improved. By making

61



use of three different memory modes with four cluster modes to run threads in four different

ways runtime can be reduced drastically. In later sections, deep learning framework, net-

works and data used to analyze these different types of architectural modes is discussed.

5.4 Deep Learning Framework, Networks and Data

The exploratory analysis carried out as part of this research work is achieved by running

different types of CNN networks [40] [28] [63] [67] on a deep learning framework [33]

using ImageNet [16] open data set. This section provides a brief overview of which tools

were used and the reason to use those. The amount of data collected has enabled deep

insight into Xeon Phi’s architectural features.

5.4.1 Experimental Framework

Caffe [33] is one of the most widely used deep learning frameworks. It has numer-

ous features that make it easy to use across different types of deep CNN networks. Net-

works running on Caffe can be used to train and validate models that use images as input.

These images can be from any open dataset and one such dataset used in this work is Ima-

geNet [16]. For Xeon Phi, Caffe has already been optimized by Intel. It is done by inserting

API calls within Caffe that allow thread distribution using OpenMP thread management as

discussed in Section 5.3.4. The benefit of such optimization is that the framework can be

used on Xeon Phi with thread optimization by running N number of threads across different

networks. Another added advantage of such optimization is that the neural network being

used requires no modification. This ensures that the network being used for architectural

profiling is the original networks with original training parameters. Optimized Caffe itself

has shown great performance benefits. However, so far none of the studies has explored

the effect of the clustering, memory and thread mode in terms of reducing time to train

network and that too on vast amount of data like ImageNet ILVSRC12 [60].

62



Figure 5.9: Experiment setup showcasing how ImageNet data is used in Caffe framework to train

different networks using various Xeon Phi tuning parameters such as memory, cluster and thread

mapping.

This framework also provides easy setup of data that can be used to train the network.

The data preparation details and pre-built scripts can be directly applied to the raw data.

Once the data is available in the format as per Caffe requirement, then different networks

can be evaluated without modifying anything on the framework side. Such fast and easy

to use framework with software architecture providing options to run threads in Scatter,

Compact and Balance mode allowed detailed training and evaluation of the architecture.

5.4.2 Neural Networks Under Study

Neural networks are used to train image based data to come up with a trained model

that can be applied to unseen data. This is the de-facto process used in the field of artificial

intelligence and machine learning. These networks are written in a specific format and to

63



use them one has to use deep learning frameworks like Caffe. There are numerous networks

proposed over the last decade, but only a few of these have attracted other researchers to

come up with networks to better the accuracy as achieved by previously proposed CNN

networks.

In this work, four specific networks are used - ResNet [28],AlexNet [40],VGGNet [63]

and GoogleNet [67]. For the sake of simplicity, the networks used in this work are not

modified. All learning parameters are kept as per the original network settings. This is to

ensure that there is no run to run variation. The major reason to use these four networks

is that each of these provided elegant solution during different years of ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [16]. This made it interesting to see if the

same networks when running on an architecture like Xeon Phi can take less time to train

by tuning system parameters like memory modes, cluster modes, and threads. On Xeon

Phi, these networks are used as the default network structure is and only parameters that

were changed in these networks were the number of threads. Each of these four networks

makes use of the same data set with the same number and sequence of images to make the

experiments more consistent.

5.4.3 Data Collection

To evaluate Xeon Phi using deep learning framework, structured data is required. Due

to the ImageNet challenge the vast amount of open data set is readily available for anyone

to download and use without any restrictions. For the exploratory analysis in this work

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) data set is used [60]. The

data is available in raw format and separated as training, test and validation data. Caffe pro-

vides process to convert these raw files into Lightning Memory Mapped Database (LMDB)

format. This ensures there are no bottlenecks due to data fetching during training phase.

With more than 10 million images covering 100 different object classes ensures that the

64



network being developed or used is accurately trained. Such a huge amount of data also

allowed Xeon Phi memory to be fully loaded which also increases traffic network under

different cluster modes.

5.5 Instrumentation And Experimental Results

To correctly explore Xeon Phi architecture, an experiment setup that makes use of

Caffe, networks and ImageNet data is created. The major goal is to enable an experi-

ment environment that provides profiling data. To achieve this, Linux tools were used.

The platform used for experimentation is DAP [57] that came with Intel Xeon Phi 7210

processor with 32 tiles having 2 core each, providing a total of 64 cores. Each core can

clock a maximum frequency of 1.5 GHz in turbo mode. The operating system running on

DAP is CentOS 7.3 configured with Xeon specific software package 1.5.3. The system is

also configured with Intel deep learning math libraries. This is required to make use of

AVX512 architecture instruction set. Xeon Phi is traditionally not designed to be energy

efficient hence the governor policy is kept by default to run at the highest frequency of

1.5 GHz. One of the tools which were extensively instrumented for this work is Linux

Perf [37]. It allowed profiling without the need to modify any of the deep learning source

code. Another tool used is numactl that provides flexibility to map application to desired

section of the memory. This is useful when the system is configured to run in different

cluster (mainly Sub-NUMA clustering mode) and memory modes. Figure 5.9 provides a

detailed overview of how the experiments on Xeon Phi were carried out in order to capture

the important performance details.

Data Preparation: ImageNet data used for experimentation is a set of two groups of raw

JPEG images covering different types of objects. The two groups in which the images

are provided are training and validation images. During the training of a network training

images are used and during the same training process periodically validation images are

65



Table 5.1: System and application level performance data collected in this work.

Application Parameters System Parameters

Instructions Retired CPU Frequency

CPU Cycles Number of Active Cores

EDC Controller Request DRAM Power Consumption

DDR Controller Request Package Power Consumption

Data Memory Access DDR and MCDRAM Bandwidth

Execution Time

used to validate the trained model to calculate loss and adjust the learning parameters. The

images retrieved from ImageNet are first reduced to a specific size of 256x256. This is

achieved by pre-built scripts in Caffe which ensures that the quality images does not suffer

and the compression achieved reduces the time to fetch the data from low level memory

including hard drive where the big data is stored. By reducing image size more images

can be stored in a cache (when MCDRAM is used in cache mode) and it can reduce time

to train by fetching new images faster. The data section in Figure 5.9 shows exactly how

this process is achieved. After reducing the size of images, all the images are combined

and stored in a Lightning Memory Mapped Database (LMDB) format. LMDB stores the

image sequentially in the manner they were labeled using database format. This allows

faster access to images. The last step of data preparation is the computation of the mean of

all the images. All the training model requires subtraction of image mean from each image

which is used as a training parameter.

Memory and Cluster Combination: Similar to the different number of threads, the ex-

periments also made use of all available types of memory and cluster modes. Using BIOS

settings, for every possible combination of memory and cluster mode network is trained on

all combination. In all, there are nine combinations of memory cluster mode, but in this

66



Table 5.2: Data format for each time data is logged using Linux Perf.

work, SNC-2 is also used as one of the cluster modes that increased the total number of

experiment combination to twelve.

Thread Distribution: All the networks used for experiments were run with 16T, 32T, 64T,

and 128T. For each run data is collected with four different thread settings. This provided

data that gave insight by loading the network of Xeon Phi with increasing traffic. In the

experiment and results section T in 16, 32, 64, and 128 stands for threads. Exploratory

analysis is carried out with the combination of different types of thread distribution tech-

nique. This meant experiments for 16T were also ran first with Scatter, then Balance and

finally Compact thread setting. Such a methodology allows that the exploratory analysis

covers all aspect of how Xeon Phi can be used by applications.

Setting Up Caffe To Train Networks: To use Caffe correctly first important step is data

preparation and second it to configure networks correctly. All the four networks - AlexNet,

GoogleNet, RestNet, VGGNet - used in this work were set with default training parameters.

The only parameter that is tuned is the batch size. For all the networks batch size is kept

constant at 256 to avoid run to run variation with respect to data. Training and validation

images were pointed to LMDB data files to ensure that the same data is used by different

networks during the training period. Compilation of Caffe by done using Intel deep math

libraries and more importantly with compiler and libraries that allowed thread distribution.

Total number of iteration for all the networks is set to 100. This is done to ensure that

the training is completed within a reasonable amount of time without compromising the

amount of traffic that each run with generating. For each iteration with a batch size of 256,

67



Figure 5.10: Execution time of AlexNet with 100 iteration and 256 batch size on different memory

and cluster mode with increasing number of threads.

256 images were fetched.

Profiling Networks On Xeon Phi During Runtime: Final step is to make use of the pro-

filing tool that can accurately profile network running on the system. This is achieved with

the help of Linux Perf [37]. To enable more architecture specific data collection and profil-

ing, Linux Perf is modified to read performance counters that were not by default enabled

in Linux Perf tool for Xeon Phi. The profiling is set to time based where data is logged

into a text file every one second. The granularity is kept as one second due to the number

of counters getting logged and also since the workloads are deep neural networks it takes

a lot of time and reducing profiling granularity would mean a lot of noisy data. The over-

head added with the profiling is negligible as the performance monitoring unit (PMU) in

x86 architectures including Xeon Phi is capable of providing multiple counters at the same

time without adding overhead.

68



Figure 5.11: Execution time of GoogleNet with 100 iteration and 256 batch size on different mem-

ory and cluster mode with increasing number of threads.

Table 5.1 provides a list of counters that were collected every second. These are di-

vided into application and system parameters. The major performance counters that were

collected for every second of training were DRAM and Package power consumption, and

DDR and MCDRM bandwidth usage. These four parameters provided how busy the sys-

tem is during the training period and how many requests are being sent to a lower level of

memory. Every second the data collected is logged in a text file in row format as shown in

Table 5.2. Such level of data information allowed accurate analysis of how the Xeon Phi

is responding to the request of the application running under different memory, cluster and

thread modes. Section 5.6 presents results and analysis of all these combinations of runs

on Xeon Phi.

69



Figure 5.12: Execution time of ResNet with 100 iterations and 256 batch size on different memory

and cluster mode with increasing number of threads.

5.6 Results

The experiments carried out to explore Xeon Phi architecture involved running a com-

bination of a different memory, cluster, and thread modes. The preliminary analysis done

is to understand whether the distribution of threads (Scatter/Compact/Balance) has any im-

pact on the runtime of the application. Since the workload used for experiments are deep

learning neural network trained using the large number of training images, thread distri-

bution is not taken into account. The reason is due to the fact that a minimum number of

threads that were to run is 16 and Compact distribution mode will provide lower runtime

as it will run 16 threads on 4 cores. On another hand the same number of threads in Scatter

mode will run on 16 different cores. Since the minimum number of threads used in this

experiment Compact will perform worse than Scatter, Compact mode is not used during

experiments. Balance and Scatter are no different other than neighboring threads are run-

70



Table 5.3: Different Xeon Phi features using which experiments were carried out.

Memory Cluster Number of Threads Thread Mapping

Cache All-to-All 16T Scatter

Hybrid Quadrant 32T

Flat SNC-2 64T

Cache SNC-4 128T

ning on the same core with Balance. However, since the workload is essentially fetching

and training different images every iteration Balance provides the same working as Scatter.

To avoid re-running similar experiments for no performance gain, Table 5.3 shows differ-

ent parameters on Xeon Phi that were used while training four different types of neural

networks on Caffe.

Xeon Phi is stressed with 48 different experiment setting for the same network. Across

four network 192 different types of experiments were carried out and for each second of

time spent by these networks on Xeon Phi performance data is collected and analyzed. In all

the results figure the X-label follows acronym that uses A for AlexNet, G for GoogleNet,

V for VGGNet and R for ResNet. Threads are labelled as T, suffixed to the number of

threads. For example, 16T means 16 threads. Cluster modes are labelled as A2A for All-

to-All, Quadrant is for Quadrant mode, SNC-2 and SNC-4 are for Sub-NUMA Clustering

modes. Memory modes are shortened to FM for Flat Mode, CM for Cache Mode and HM

for Hybrid Mode. All results are for 256 batch size with 100 iterations.

Execution Time: Figure 5.10 shows how AlexNet performs across different cluster and

memory modes. The major difference is seen with the increasing number of threads. When

64 threads, AlexNet provides the best performance irrespective of the cluster and memory

mode. However, major performance gain is achieved only with 32 threads when compared

with 16 threads. If thread counts are increased to 128 then performance degrades. Such

71



Figure 5.13: Execution time of VGGNet with 100 iterations and 256 batch size on different memory

and cluster mode with increasing number of threads.

a trend is expected because each of the 64 cores is running two threads rather than one

thread with 64 cores. This means cache rate decreases and improves training time. Similar

trends are observed for GoogleNet in Figure 5.11, ResNet in Figure 5.12, and VGGNet in

Figure 5.13.

When it comes to clustering modes, Sub-NUMA clustering (SNC-2 and SNC-4) is

ideally supposed to provide far better performance due to a direct affinity between tile,

directory, and memory. However, in terms of execution time, this is not the case for any of

the networks as shown in Figure 5.10, 5.11, 5.12, 5.13.

All-2-all, which is the default affinity mode, is comparable to Quadrant cluster mode

and provides similar performance across 16T, 32T, 64T, and 128T. In some cases, it can also

be seen that SNC-2 and SNC-4 is performing worse than the other two clustering modes.

The observations made for clustering mode hold irrespective of which memory mode is

72



Figure 5.14: Power consumption of AlexNet 100 iterations and 256 batch size across different

memory, cluster and thread mode.

active. Cache mode and Flat mode provide better performance compared to Hybrid mode.

The major reason for this is because half of the high speed bandwidth memory MCDRAM

is partition into the two parts (cache and flat) which leads to address overlapping. To con-

clude, cluster and memory mode do provide features but that will guarantee faster training

is not true. Increasing number of threads to 1 thread per core is most likely the best way to

achieve better performance.

Power Consumption: Each of the network when executing on Xeon Phi is also profiled

to log power consumption. Only the package power values are reported as this value is

capturing power usage activity on package that has the Xeon Phi 32 tiles and high speed

MCDARM memory. Figure 5.14 shows the effect of threads with different cluster and

memory modes. In terms of power usage, it does not matter which clustering or memory

mode is active as this parametric value is purely reliant on workload. It does not matter

which network on Xeon Phi, all of them achieve the peak package consumption which is

73



Figure 5.15: Power consumption of GoogleNet 100 iterations and 256 batch size across different

memory, cluster and thread mode.

around 180 W. Both 64T and 128T consume the same amount of power because all the 32

tiles are active.

For other networks as shown in Figure 5.15, 5.16, 5.17 similar power trend is observed.

Xeon Phi is not designed to be energy efficient. The architecture is supposed to provide

peak performance and it achieves that by running as many tiles it has. Energy efficiency can

be achieved at the cost of performance but that is not the main goal when training deep neu-

ral networks like AlexNet, VGGNet, GoogleNet, and ResNet on Caffe. The major reason

to focus on power consumption is to show that the architecture is truly busy and providing

all the 64 cores to each of the threads. The trend of increasing power consumption from

16T to 128T shows that all cores are busy computing to train the network using different

images.

CPI: One of the better metric to understand how a system is performing is Cycles Per

Instructions (CPI). During profiling, the tool is set to log cycles and instruction retired ev-

74



Figure 5.16: Power consumption of ResNet 100 iterations and 256 batch size across different mem-

ory, cluster and thread mode.

ery second. Across different networks, it is observed that irrespective of which network

is being trained, in SNC-2/SNC-4 clustering mode the cycles spent per instruction is al-

most twice. Figure 5.18 shows this trend for AlexNet irrespective of how many threads

are being executed concurrently. Sub-NUMA clustering also showed a decrease in perfor-

mance in terms of execution time. These two data points clearly show that Sub-NUMA

is the worst clustering mode out of the three clustering modes compared to cycles spent

per instructions. The major reason for such behavior is also with the fact that the data the

memory is not equally distributed. In case the data being used is not spread equally across

all eight controllers it might lead to slower performance as Sub-NUMA follows strict core

to the directory to memory affinity. Any cross memory allocation may lead to performance

degradation. Similar CPI observations are made for VGGNet, RestNet, and GoogleNet as

shown in Figure 5.21, 5.20, 5.19 respectively. This also shows that it does not matter how

75



Figure 5.17: Power consumption of VGGNet 100 iterations and 256 batch size across different

memory, cluster and thread mode.

Figure 5.18: CPI of AlexNet 100 iterations and 256 batch size across different memory, cluster and

thread mode.

76



Figure 5.19: CPI of GoogleNet 100 iterations and 256 batch size across different memory, cluster

and thread mode.

big the training network is and whether it demands more activity from underlying Xeon

Phi architecture, the CPI always increases for Sub-NUMA mode.

Traffic: Xeon Phi features YX routing 2D mesh networks. Figure 5.5 shows how data

package travels in one of the clustering mode. The more the traffic the busy the network will

directly impact the runtime of the application. For deep learning neural network training

this is the major issue as many threads will be active training networks, adjusting weights,

fetching data from memory, etc. Every cache miss will lead to request low level memory.

MCDRAM provides more than 400 GB/sec of maximum traffic. Figure 5.22 shows how

much MCDRAM and DDR4 memory bandwidth is utilized. An important observation

here is that the network complexity also drives how much bandwidth utilization occurs. In

the case of ResNet and VGGNet in Figure 5.22 maximum of 110 GB/sec and 100 GB/sec

bandwidth utilization is achieved. This also shows that as the network complexity increases

77



Figure 5.20: CPI of ResNet 100 iterations and 256 batch size across different memory, cluster and

thread mode.

Figure 5.21: CPI of VGGNet 100 iterations and 256 batch size across different memory, cluster and

thread mode.

78



cache miss rate increases too and it eventually leads to lower performance. At this point

it does not matter which clustering or memory or how many threads are being used. Even

though MCDRAM is capable of providing 400+ GB/sec of memory bandwidth it rarely

achieves it. This can be the major bottleneck for an architecture with so many cores as the

traffic being generated is ever increasing and the movement of these packets is affected due

to the available bandwidth.

Bottlenecks: Based on the results for execution time, power consumption, CPU and mem-

ory bandwidth utilization it is clear that Xeon Phi does provide different ways to run and

train deep learning networks. However, the different features does not necessarily allow

it to provide better performance. The results shown conclude that the major bottleneck is

most likely the tiles which are running low power Silvermont Atom cores. CPI in Fig-

ure 5.18, 5.19, 5.20, 5.21 show that the performance of cores is degrading as data traffic

request increases across any combination of cluster and memory mode. Having just 1 MB

of L2 caches to share among two cores and four VPUs does degrades performance. An-

other bottleneck is the network that is slowing the memory bandwidth usage. Figure 5.22

does show that increasing network traffic pushed memory bandwidth usage, however, it

also shows that peak memory bandwidth is never touched. By making use of more pow-

erful cores/tiles and ensuring memory bandwidth is utilize to fullest may make Xeon Phi

more powerful and enable much faster training on even larger datasets.

5.7 Conclusions

The work done around Xeon Phi clearly shows the importance of detailed profiling

of the system. It is important to understand any architecture not only from the software

point of view but also in terms of architectural features. Section 5.3 provides a deep look

into Xeon Phi architecture and different features that it comes with. Detailed exploration of

memory, cluster and thread modes in Section 5.3.2, Section 5.3.3, and Section 5.3.4 respec-

79



Figure 5.22: Maximum memory bandwidth across different networks with the same iteration and

batch size for All-to-All and Flat Mode memory. All cluster and memory mode show a similar

trend.

tively. Exploratory analysis showed how the same application can be mapped in a different

manner by tuning different configuration knobs on Xeon Phi. This work also explored how

the infrastructure created around Xeon Phi can be used to run a different type of neural

networks and simultaneously logging critical performance details to provide deep insight

in terms of performance and power. Based on the data analyzed the major bottlenecks for

Xeon Phi is in the tile architecture that is running low power Atom architecture Inability

to make use of maximum memory bandwidth is another reason of bottleneck in tile based

architecture like Xeon Phi. With the insights drawn in this work, Xeon Phi can be further

improved to provide much better performance than it currently does.

80



Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

Continued demand for performance led to powerful mobile platforms with heteroge-

neous multiprocessor system on chips. These platforms provide many voltage-frequency

levels and active core configurations that can be chosen at runtime. In order to accurately

propose methodologies to enable runtime optimization on heterogeneous architecture, char-

acterized data at different level of core and frequency configuration is critical. Chapter 3

discussed a phase-level instrumentation and characterization methodology that lead to more

than 4000 phases across 19 different types of benchmarks covering widely used bench

marking suites. It enabled creation of not only an instrumentation technique but also a sys-

tem by which the framework can be easily used to test any offline developed polices. Two

such policies were discussed in Chapter 4

Using phase-level offline characterization, Section 4.2 showed a runtime optimal con-

figuration selection policy which provided better metric, such as energy consumption.

Experiments showed an average increase of 93%, 81% and 6% in performance per watt

compared to the interactive, ondemand and powersave governors, respectively. Similarly,

Section 4.3 presented a practical approach for dynamic management of mobile processors

using the framework of imitation learning by constructing an Oracle policy to maximize

PPW for a set of applications. Using this Oracle, runtime policies that are applicable to a

broad range of application workloads were proposed. Experiments on a commercial mobile

platform show 101% improvement in PPW on an average while running several commonly

employed benchmarks. Existing governors on commercial devices employ simple heuris-

tics based on the system utilization, which led to sub-optimal performance. As a next step,

phase-level instrumentation can be extended to implement an online learning technique.

81



This will enable the policy to adapt itself to a wide range of previously unseen workloads.

Chapter 5 presented exploratory analysis of various features of many core heteroge-

neous tile based Xeon Phi architecture. Many architectural features like thread, clustering

and memory modes were explored. It is shown how characterization enables deep insight

into architectures with respect to deep learning. Using such technique one can easily un-

derstand the bottlenecks in different networks and also whether these bottlenecks are due

to the architecture on which training is being executed or not. Such vast amount of data can

also enable development of designing the architecture and making it more powerful and

efficient simultaneously.

82



REFERENCES

[1] A. Aalsaud et al. Power–Aware Performance Adaptation of Concurrent Applications
In Heterogeneous Many-Core Systems. In Proc. Int. Symp. on Low Power Electronics
and Design, pages 368–373, 2016.

[2] R. Z. Ayoub et al. OS-level Power Minimization under Tight Performance Constraints
in General Purpose Systems. In Proc. of the Intl. Symp. on Low-power Electronics
and Design, pages 321–326, 2011.

[3] K. R. Basireddy et al. AdaMD: Adaptive Mapping and DVFS for Energy-efficient
Heterogeneous Multi-cores. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2019.

[4] L. Benini, A. Bogliolo, and G. De Micheli. A Survey of Design Techniques For
System-Level Dynamic Power Management. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., 8(3):299–316, 2000.

[5] G. Bhat et al. Algorithmic Optimization of Thermal and Power Management for
Heterogeneous Mobile Platforms. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
26(3):544–557, 2018.

[6] G. Bhat et al. Online learning for adaptive optimization of heterogeneous SoCs. In
Proc. of the International Conference on Computer-Aided Design, page 61, 2018.

[7] G. Bhat, S. Gumussoy, and U. Y. Ogras. Power-temperature stability and safety
analysis for multiprocessor systems. ACM Trans. on Embedded Computing Systems
(TECS), 16(5s):145, 2017.

[8] G. Bhat, S. Gumussoy, and U. Y. Ogras. Power and thermal analysis of commercial
mobile platforms: Experiments and case studies. In In Proc. of Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 144–149, 2019.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications. In Proc. Int. Conf. on Parallel Arch. and
Compilation Techniques, pages 72–81, 2008.

[10] P. Bogdan, R. Marculescu, S. Jain, and R. T. Gavila. An Optimal Control Approach
to Power Management for Multi-Voltage and Frequency Islands Multiprocessor Plat-
forms under Highly Variable Workloads. In Proc. of the Intl. Symp. on Networks on
Chip, pages 35–42, 2012.

[11] S. Charles, C. A. Patil, U. Y. Ogras, and P. Mishra. Exploration of Memory and
Cluster Modes In Directory-Based Many-Core CMPs. In 2018 Twelfth IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), pages 1–8. IEEE, 2018.

[12] X. Chen et al. Dynamic Voltage and Frequency Scaling For Shared Resources In
Multicore Processor Designs. In Proc. of the Design Autom. Conf., page 114, 2013.

83



[13] Z. Chen and D. Marculescu. Distributed Reinforcement Learning For Power Limited
Many-Core System Performance Optimization. In Proc. of the Design, Automation
& Test in Europe Conference & Exhibition, pages 1521–1526, 2015.

[14] A. Cortex. A15 MPCore Processor Technical Reference Manual. ARM Holdings
PLC, 24, 2013.

[15] A. K. Coskun, T. S. Rosing, and K. Whisnant. Temperature Aware Task Scheduling
in MPSoCs. In Proc. of the Conf. on Design, Autom. and Test in Europe, pages 1659–
1664, 2007.

[16] J. Deng et al. Imagenet: A large-scale Hierarchical Image Database. In IEEE confer-
ence on computer vision and pattern recognition, pp. 248-255, 2009.

[17] S. Dey and othters. Edge Cooling Mode: An Agent Based Thermal Management
Mechanism For DVFS Enabled Heterogeneous MPSoCs. In 2019 32nd International
Conference on VLSI Design and 2019 18th International Conference on Embedded
Systems (VLSID), pages 19–24. IEEE, 2019.

[18] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt. SPARTA: Runtime Task Allocation
For Energy Efficient Heterogeneous Manycores. In Int. Conf. on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), pages 1–10, 2016.

[19] Q. Fettes et al. Dynamic Voltage And Frequency Scaling In NoCs With Supervised
And Reinforcement Learning Techniques. IEEE Trans. Comput., 2018.

[20] U. Gupta, J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky, F. Paterna, and S. Gu-
mussoy. Adaptive Performance Prediction for Integrated GPUs. In Proc. of the Intl.
Conf. on Computer-Aided Design, page 61, 2016.

[21] U. Gupta et al. Dynamic Power Budgeting For Mobile Systems Running Graphics
Workloads. IEEE Transactions on Multi-Scale Computing Systems, 4(1):30–40, 2017.

[22] U. Gupta et al. DyPO: Dynamic Pareto-Optimal Configuration Selection For Hetero-
geneous MpSoCs. ACM Trans. Embedd. Comput. Syst., 16(5s):123, 2017.

[23] U. Gupta et al. Staff: Online learning with stabilized adaptive forgetting factor and
feature selection algorithm. In Proc. of Design Automation Conference (DAC), pages
1–6, 2018.

[24] U. Gupta et al. A Deep Q-Learning Approach for Dynamic Management of Hetero-
geneous Processors. IEEE Computer Architecture Letters, 18(1):14–17, 2019.

[25] U. Gupta, S. Korrapati, N. Matturu, and U. Y. Ogras. A Generic Energy Optimization
Framework for Heterogeneous Platforms Using Scaling Models. Microprocessors
and Microsystems, 2016.

[26] M. R. Guthaus et al. Mibench: A Free, Commercially Representative Embedded
Benchmark Suite. In Proc. of the Int. Workshop on Workload Characterization, pages
3–14, 2001.

84



[27] Hardkernel. ODROID-XU3. https://wiki.odroid.com/old_product/
odroid-xu3/odroid-xu3 Accessed 24 Nov. 2018, 2014.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning For Image Recog-
nition. In Proceedings of The IEEE Conference On Computer Vision And Pattern
Recognition, pages 770–778, 2016.

[29] J. Henkel et al. Dark Silicon: From Computation to Communication. In Proc. of the
Intl. Symp. on Networks-on-Chip, page 23, 2015.

[30] S. Herbert and D. Marculescu. Analysis of Dynamic Voltage/Frequency Scaling in
Chip-Multiprocessors. In Proc. of the Int. Symp. on Low Power Elec. and Design,
pages 38–43, 2007.

[31] M. Horro et al. Effect of Distributed Directories in Mesh Interconnects. In Proceed-
ings of the 56th Annual Design Automation Conference 2019, page 51. ACM, 2019.

[32] C. Isci, G. Contreras, and M. Martonosi. Live, Runtime Phase Monitoring and Pre-
diction on Real Systems With Application to Dynamic Power Management. In Proc.
of the Intl. Symp. on Microarch., pages 359–370, 2006.

[33] Y. Jia et al. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv
preprint arXiv:1408.5093, 2014.

[34] B. K. Joardar et al. Design and Optimization of Heterogeneous Manycore Systems
Enabled By Emerging Interconnect Technologies: Promises and Challenges. In 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 138–
143. IEEE, 2019.

[35] H. K. Jörg Henkel and M. Rapp. Smart Thermal Management for Heterogeneous
Multicores. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 132–137. IEEE, 2019.

[36] D. Kadjo, U. Ogras, R. Ayoub, M. Kishinevsky, and P. Gratz. Towards Platform Level
Power Management in Mobile Systems. In Proc. of Intl SoC Conf., pages 146–151,
2014.

[37] L. Kernel. Tool, LinuxKernel. https://en.wikipedia.org/wiki/Perf_
(Linux), accessed 8 August 2019.

[38] R. G. Kim et al. Wireless NoC and Dynamic VFI Codesign: Energy Efficiency
Without Performance Penalty. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
24(7):2488–2501, 2016.

[39] R. G. Kim et al. Imitation Learning For Dynamic VFI Control In Large-Scale
Manycore Systems. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
25(9):2458–2471, 2017.

[40] A. Krizhevsky et al. Imagenet classification with deep convolutional neural networks.
In Advances In Neural Information Processing System, pages 1097–1105, 2012.

85

https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3
https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3
https://en.wikipedia.org/wiki/Perf_(Linux)
https://en.wikipedia.org/wiki/Perf_(Linux)


[41] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan. Heterogeneous Chip
Multiprocessors. Computer, 38(11):32–38, 2005.

[42] C. Lattner. LLVM and Clang: Next Generation Compiler Technology. In Proc. of the
BSD, pages 1–2, 2008.

[43] C. Lattner and V. Adve. LLVM: A Compilation Framework For Lifelong Program
Analysis & Transformation. In Proc. of the Int. Symp. on Code Generation and Opti-
mization: Feedback-Directed and Runtime Optimization, page 75, 2004.

[44] S. K. Mandal, R. Ayoub, M. Kishinevsky, and U. Y. Ogras. Analytical Performance
Models for NoCs with Multiple Priority Traffic Classes. ACM Trans. on Embedded
Computing Systems (TECS), 2019.

[45] S. K. Mandal et al. Dynamic Resource Management of Heterogeneous Mobile Plat-
forms via Imitation Learning. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2019.

[46] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote. Outstanding
Research Problems in Noc Design: System, Microarchitecture, and Circuit Perspec-
tives. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
28(1):3–21, 2009.

[47] J. F. Martinez and E. Ipek. Dynamic Multicore Resource Management: A Machine
Learning Approach. IEEE Micro, 29(5), 2009.

[48] P. Mochel. The Sysfs Filesystem. In Proc. of the Linux Symp., 2005.

[49] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A Portable Interface To Hardware
Performance Counters. In Proc. of the Dept. of defense HPCMP Users Group Conf.,
volume 710, 1999.

[50] T. S. Muthukaruppan et al. Hierarchical Power Management For Asymmetric Multi-
Core In Dark Silicon Era. In Proc. Design Autom. Conf., page 174, 2013.

[51] U. Y. Ogras and R. Marculescu. Modeling, Analysis and Optimization of Network-
on-Chip Communication Architectures, volume 184. Springer Science & Business
Media, 2013.

[52] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung. Design and Management
of Voltage-Frequency Island Partitioned Networks-on-Chip. IEEE Trans. on Very
Large Scale Integration Systems, 17(3):330–341, 2009.

[53] V. Pallipadi, S. Li, and A. Belay. Cpuidle: Do Nothing, Efficiently. In Proc. of the
Linux Symp., volume 2, pages 119–125, 2007.

[54] V. Pallipadi and A. Starikovskiy. The Ondemand Governor. In Proc. Linux Symp.,
volume 2, pages 215–230, 2006.

[55] J.-G. Park, N. Dutt, and S.-S. Lim. ML-Gov: A Machine Learning Enhanced Inte-
grated CPU-GPU DVFS Governor For Mobile Gaming. In Proc. Symp. on Embedd.
Syst. for Real-Time Multimedia, pages 12–21, 2017.

86



[56] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated CPU-GPU Power Manage-
ment For 3D Mobile Games. In Design Autom. Conf., pages 1–6, 2014.

[57] D. A. Program. Tool, IntelXeonPhi. http://dap.xeonphi.com/, accessed 9
August 2019.

[58] B. K. Reddy et al. Inter-cluster Thread-to-core Mapping and DVFS on Heterogeneous
Multi-cores. IEEE Transactions on Multi-Scale Computing Systems, 4(3):369–382,
2018.

[59] S. Ross, G. Gordon, and D. Bagnell. A Reduction of Imitation Learning And Struc-
tured Prediction To No-Regret Online Learning. In Proc. of the Int. Conf. on Art.
Intel. and Stat., pages 627–635, 2011.

[60] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2014.

[61] S. Schaal. Is Imitation Learning The Route To Humanoid Robots? Trends in cognitive
sciences, 3(6):233–242, 1999.

[62] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and
Exploiting Program Phases. IEEE micro, 23(6):84–93, 2003.

[63] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[64] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras. Predictive Dynamic Thermal and
Power Management for Heterogeneous Mobile Platforms. In Proc. of the Conf. on
Design, Automation & Test in Europe, pages 960–965, 2015.

[65] A. Sodani et al. Knights Landing: Second-Generation Intel Xeon Phi Product. 2016.

[66] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply Aggre-
VaTeD: Differentiable Imitation Learning for Sequential Prediction. In Proc. 34th Int.
Conf. Machine Learning, volume 70, pages 3309–3318, 2017.

[67] C. Szegedy et al. Going Deeper With Convolutions. In Proceedings of The IEEE
Conference On Computer Vision And Pattern Recognition, pages 1–9, 2015.

[68] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz. Comparative Performance
Analysis of Intel (R) Xeon Phi (TM), GPU, and CPU: A case Study From Microscopy
Image Analysis. In 2014 IEEE 28th International Parallel And Distributed Processing
Symposium, pages 1063–1072. IEEE, 2014.

[69] S. Thomas et al. CortexSuite: A Synthetic Brain Benchmark Suite. In IISWC, pages
76–79, 2014.

[70] TI-INA231. http://www.ti.com/lit/ds/symlink/ina231.pdf,
accessedApril06,2017.

87

http://dap.xeonphi.com/
http://www.ti.com/lit/ds/symlink/ina231.pdf, accessed April 06, 2017
http://www.ti.com/lit/ds/symlink/ina231.pdf, accessed April 06, 2017


[71] ul Islam et al. Hybrid DVFS Scheduling For Real-Time Systems Based On Rein-
forcement Learning. IEEE Systems J., 11(2):931–940, 2017.

[72] N. Vallina-Rodriguez and J. Crowcroft. Energy Management Techniques in Modern
Mobile Handsets. IEEE Comm. Surveys & Tutorials, 15(1):1–20, 2012.

[73] V. Venkataramani, A. Pathania, M. Shafique, T. Mitra, and J. Henkel. Scalable dy-
namic task scheduling on adaptive many-core.

[74] E. W. Wächter et al. Predictive Thermal Management for Energy-Efficient Execution
of Concurrent Applications on Heterogeneous Multicores. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(6):1404–1415, 2019.

[75] W. Wang, P. Mishra, and S. Ranka. Dynamic Reconfiguration in Real-Time Systems.
Springer, 2012.

[76] X. Wang et al. A Pareto-Optimal Runtime Power Budgeting Scheme for Many-Core
Systems. Microprocessors and Microsystems, 46:136–148, 2016.

[77] W. S. Z. L. Xuedan Du, Cai Yinghao. Overview of deep learning. pages 159–164,
2016.

[78] X. Zheng, L. K. John, and A. Gerstlauer. Accurate Phase-level Cross-platform Power
and Performance Estimation. In Proc. of Design Autom. Conf., page 4, 2016.

88


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RELATED RESEARCH
	WORKLOAD INSTRUMENTATION FRAMEWORK FOR HETEROGENEOUS MPSOCs
	Overview
	Motivation
	Phase-Level Application Instrumentation
	PAPI vs Linux Perf
	Data Characterization Methodology
	Odroid XU3
	Using Instrumented Framework For Performance Optimization
	Conclusions

	POWER, PERFORMANCE AND ENERGY MANAGEMENT USING PHASE LEVEL INSTRUMENTED WORKLOADS AND FRAMEWORK
	Overview
	DyPO: Dynamic Pareto-Optimal Configuration Selection
	Proposed Methodology
	Experiments
	Results
	Summary

	Dynamic Resource Management Using Imitation Learning
	Proposed Methodology
	Experiments
	Results
	Summary

	Conclusions

	EXPLORATION OF MANY CORE PERFORMANCE ORIENTED HETEROGENEOUS ARCHITECTURE
	Overview
	Motivation
	Intel Xeon Phi Architecture
	Heterogeneous Tile
	Memory Modes
	Cluster Modes
	Thread Modes

	Deep Learning Framework, Networks and Data
	Experimental Framework
	Neural Networks Under Study
	Data Collection

	Instrumentation And Experimental Results
	Results
	Conclusions

	CONCLUSION AND FUTURE DIRECTIONS

	REFERENCES

