Activity Specification for Time-based Discrete Event Simulation Models
by

Abdurrahman Alshareef

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved August 2019 by the
Graduate Supervisory Committee:

Hessam S. Sarjoughian, Chair
Georgios Fainekos
Joohyung Lee
Ming Zhao

ARIZONA STATE UNIVERSITY
December 2019

ABSTRACT

Computational models for relatively complex systems are subject to many diffi-
culties, among which is the ability for the models to be discretely understandable and
applicable to specific problem types and their solutions. This demands the specifi-
cation of a dynamic system as a collection of models, including metamodels. In this
context, new modeling approaches and tools can help provide a richer understanding
and, therefore, the development of sophisticated behavior in system dynamics. From
this vantage point, an activity specification is proposed as a modeling approach based
on a time-based discrete event system abstraction. Such models are founded upon
set-theoretic principles and methods for modeling and simulation with the intent of
making them subject to specific and profound questions for user-defined experiments.

Because developing models is becoming more time-consuming and expensive, some
research has focused on the acquisition of concrete means targeted at the early
stages of component-based system analysis and design. The model-driven architec-
ture (MDA) framework provides some means for the behavioral modeling of discrete
systems. The development of models can benefit from simplifications and elaborations
enabled by the MDA meta-layers, which is essential for managing model complexity.
Although metamodels pose difficulties, especially for developing complex behavior,
as opposed to structure, they are advantageous and complementary to formal models
and concrete implementations in programming languages.

The developed approach is focused on action and control concepts across the MDA
meta-layers and is proposed for the parallel Discrete Event System Specification (P-
DEVS) formalism. The Unified Modeling Language (UML) activity meta-models are
used with syntax and semantics that conform to the DEVS formalism and its exe-
cution protocol. The notions of the DEVS component and state are used together

according to their underlying system-theoretic foundation. A prototype tool support-

ing activity modeling was developed to demonstrate the degree to which action-based
behavior can be modeled using the MDA and DEVS. The parallel DEVS, as a formal
approach, supports identifying the semantics of the UML activities. Another proto-
type was developed to create activity models and support their execution with the
DEVS-Suite simulator, and a set of prototypical multiprocessor architecture model

specifications were designed, simulated, and analyzed.

1

To My Mother, Haya bint Nasser

1l

ACKNOWLEDGMENTS

I wish to thank the members of my graduate supervisory committee for their
service. I am especially thankful for my faculty advisor and committee chair, Hessam
Sarjoughian, for his guidance and support. I also appreciate the fruitful discussion
and valuable insights that have been put through by the committee members Georgios
Fainekos, Joohyung Lee, and Ming Zhao. Their valuable inputs have certainly helped
in shaping the outcome and formulating the contribution with further clarifications
regarding related formalisms and the logic foundation of this work.

I would also like to thank my colleagues at the Arizona Center for Integrative
Modeling and Simulation. The members and visiting scholars of this lab have been
outstanding in countless discussions over different topics, research interests, and prob-
lems. I also appreciate the School of Computing, Informatics, and Decision Systems
Engineering and, notably, the Computer Science Program for being an excellent aca-
demic environment for learning and conducting research. I would certainly go beyond
the space limit if I were to name all faculties and talented staff whom I greatly ben-
efited from throughout my years at the School and the Program.

A special appreciation goes sincerely beyond all academic credits to my brother
Turki, my sisters Nora, Asma, and Arwa, and all of my family for their awe-inspiring
spirits. I have been a longtime recipient of their tremendous encouragement and
unlimited support, without which I might have given up such a challenging pursuit
at many time points.

Undertaking this Ph.D. was supported by a scholarship provided by King Saud

University.

v

TABLE OF CONTENTS

Page
LIST OF TABLES]. . .o e xi
LIST OF FIGURES].o xii

CHAPTER

1 INTRODUCTION]

CHAPTER Page

3 BEHAVIORAL DEVS METAMODELING

3.1 Related Workl 34
[3.2 Atomic DEVS Metamodeling|.......... 36
[3.2.1 Meta-Behavior Modeling in EMF| 38
[3.2.2 Constrained Meta-behavior Modeling...................... 42

I CATTON. 49
4.1 Related Work] ... 51

[4.2 Approach| 53

[4.2.1 'T'hree Views tfor Specitying Atomic Model Behavior| 55

[4.2.2 Activity Specifications for Atomic DEVS Model|............ o7

[4.2.3 Action Specifications for Atomic DEVS Model| 58

.3 Statecharts and Activitiesl oo i il 60

4.4 Conclusion and Future Worklo oo 62

I THE UML ACTIVITIESL.o 65
Bl Related Workl 67

vi

CHAPTER Page

[5.2 Activities Simulation Through DEVS: Finding Rigor|.............. 69
b.2.1 A DEVS Grounding tor UML Activities| 70
H.2.2 The Semantics of Activities|.......... 72

(5.3 Network Switch: an Example|.......... 75
[5.3.1 Modularity|......... 76
[5.3.2 The Generality of the Models|............................. 78

6 ACTIVITY-BASED DEVS MODELING

[6.2 Activity-based DEVS Modeling Approach| 86
[6.2.1 Categorizing the Activity Specification| 89
[6.2.2 Note on Coupled Models and Behavioral Specification| 90
[6.2.3 Controlled Coupling Using Activities Control Nodes|........ 91

6.3 EMF-based Modeling Engine| 95
[6.3.1 Activity-based DEVS Ecore| 95
[6.3.2 Activities Graphical Definition and Tooling|................ 98
[6.3.3 Mapping| ... 100

[6.3.4 Preliminaries on the Validation of the Activity-based DEVS |

Modelsl. .o 102

[6.4 Activity-based Modeling tor Multiple Input Processor with Queue]. . 103

[6.4.1 Interpreting the Processor Model in the DEVS-Suite Simulator{105

[PARALLBLISM SEMANTICS [N MODELING ACTIVITIES

vil

CHAPTER Page

(2.1 _The Role of Action in Activities and Other Behavioral Modelsf 112
[7.1.1 Atomic Model and Action|, 113
[r.1.2 State and Time for Actions|............... i 115

(7.2 Multiprocessor Architectures| 116

(7.3 Parallelism Semantics|............ .. o o i 119
[7.3.1 Multiple Branching via Split Nodes| 121
[7.3.2 Joining Multiple Paths and Interruptions|.................. 124

FOR CPS DESIGNI. . 131
[8.1 Background| 134
8.1.1 Parallel DEVS
[8.1.2 Real-Time DEVS (RT-DEVS)| 135
[8.1.3 Action-Level Real-Time DEVS (ALRT-DEVS)[............. 135
8.1.4 Timed Automatalo 137
8.2 Related Workl 137
(8.3 Action-Level DEVS Specification Using Activity Modeling|......... 139
8.3.1 CP5 Activities Metamodell. o oo 139
[8.3.2 'The Modeling and Simulation of a Iraffic Intersection| 140
[8.4 Interacting with Reactive Computational-Physical Systems| 144
8.5 Verification of the CPS Activities Modelsl. 145
[8.5.1 Reasoning About Temporal Behavior|...................... 147

viil

CHAPTER Page

I SIMULATTION MODELS| 176
{10.1 On Simulation Modeling Architectures and Frameworks| 178
(10.1.1 Modeling Layers| 178

10.1.2 Related Workl. 180

(10.2 DEVS Specifications for Activity Nodes| 182

(10.2.1 Mapping UML Activity Control, Object, and Flow to DEVS |

Model, Port, and Coupling| 186

(10.3 Exploiting Parallelism|.......... 191
(10.3.1 Parallelism Semantics| i 192
[10.3.2 Simple Experiment for an Archetype Divide and Conquer |
Architecture in DEVS-Suite Simulatorl. 194

(10.4 Flow Selection Schemes| o o 196

X

CHAPTER Page

(10.4.1 A Pipeline Architecture| 198

10.4.2 A Multi-Server Architecture] 200

(10.5 Framework for Activity Modeling and Simulation| 201

(10.5.1 Time for Activitiesl. ... 202

[10.5.2 Observations of Temporal Analysis with Activities|.......... 204

[10.5.3 Simulating Activities in DEVS-Suite] 209

10.6 Conclusionlo 212

REFERENCES] 214
APPENDIX

A OTHER CONTRIBUTTONNS

[A.1 Infusing Simulatability into Sottware Models|...................... 225

[A.1.1 Transforming Activity Models to DEVS Models: Autonomous |

Vehiclesl 225

[A.2 Toward Precise Semantics of Actionsl............ 226
[A2.1 Introductionl......... ... 227
[A.2.2 The Atomic Model and the Actionl 227
[A23 A Processor Modell. ... 228

LIST OF TABLES

Table Page
[>.1 A Subset of the Mapping for Activity Elements| 73
[6.1 Activity Specifications for Atomic DEVS Modelf...................... 88
[6.2 Decision and Merge Node Figure Definition|........................ .. 101

7.1 A Subset of Activities Elements and Briefly Their Semantics with Re- |

| spect to Parallelism in Correspondence with DEVS|................... 120

[A.1 A Set of Atomic and Coupled Models for Activities DEVS Modeling |

x1

LIST OF FIGURES

Figure Page

(1.1 Related Works and Background Map Highlighting Our Activity Mod- |

| eling Approach.|....... 10

(1.2 Notation Examples of Essential Activity Modeling Elements Along |

| with Their Treatment as Components with Accounts to Multiple Ports |

| and Couplings.| 14
(1.3 Activity Modeling for a Wymore (1993)) Server System.|............... 15
[3.1 From Mathematical to UML to EMF Modeling.|...................... 39
B.2 A Metamodel for Atomic DEVS Model with State Transitionsl 43

[3.3 Ecore for a Processor with Primary State Transitions for the External |

[Transition Function. 46

4.1 A Subset of Behavior Elements and their Relationships In UML 2.5 |

| Metamodelll 54
[4.2 Different Views of Activities DEVS Modeling.|........................ 55
1.3 Activity Models for the Processor (Simplified).|....................... 60

4.4 The Overall View of the Approach and Relationships between Difterent |

[>.1 A Simplified View of Employing Concepts in M&S tor Activities Mod- |

| el 69

[5.2 The Action, Which Is a Special Type ot Activity Node, Is Treated as |

| an Atomic Model with Some Input and Output Ports.|................ 71
[5.3 The Network Switch Parallel DEVS Coupled Model|.................. 76
[>.4 An Activity for the Network Switch Coupled Model.|.................. 76

[>5.5 A Simulation View for the High-Level Activity Constructs Used to |

| Model Network Switch (Implemented in DEVS-Suite).|................ 78

xii

Figure Page

[6.1 An Activity for Synchronizing Outputs from the Generators Prior to |

| Processing. The Simulation View (Right) Is for the Corresponding |

| Implementation in DEVS-Suite. The Join Node as an Atomic Model |

| Is in Waiting Phase to Synchronize the Input through the Other Port |

| from the Second Generatorl......... 92
[6.2 Activity-based DEVS Metamodel.|. L. 97
[6.3 Visual Canvas tor Activity-based DEVS Modeling| 99

[6.4 Activity-based DEVS Modeling for Multiple Input Processor with Queue.[106

[7.1 A Classification for Formal and Semi-Formal Component-Based Mod- |

| eling Approaches with Respect to Structure and Behavior|......... ... 111

| Component Views with Couplings Are Shown in the Top, and Their |

| Corresponding Activities Are Shown in the Bottom. The Areas in |

| Grey Highlight the Control Nodes That Are Used to Represent the |

| Coordinating Procedure in Each Architecture. The Letter P Stands for |

| Processor and A for Action. In (A), the Coordinator Is Represented by |

| the Deciston Node D to Direct the Job According to Some Condition |

| Associated with the Outgoing Flow. Conditions Are Visually Omitted. |

| In (B), the Job Is Either Brought Back to the Decision Node d1 to Be |

| Directed Again, or Sent out If Completed. In (C), the Job Is Divided |

| in the Split Node S and Combined Back in the Join Node J after |

| ProcessIing.|o 118

[7.4 A View of the Architectures and Some of Their Corresponding Behaviors.|[128

xiil

Figure

Page

!

A View of the Architectures and Some of their Corresponding Behaviors.[129

81

Actions in the CPS Are Characterized into Four Types. the Types |

in Grey Are Crucial from a CPS Standpoint since They Are Akin |

to the Tight Coupling between Cyber and Physical Parts. Actuating |

Actions, for Example, Can Impact the Physical Environment Directly |

and Therefore Their Consequences Are Critical.|...................... 134

|8 2 I] 2 T II]] I [«1. .]] 1 E 1 i T] [“EE‘ |

Action. ALRT-DEVS Metamodel Is Also [inked with the Activities |

Metamodel at a High Level to Establish the Grounding for the DEVS |

Modeling and Simulation of the CPS Activity. The X, Y, and S Sets |

| NTEITES Tl Defiied Tor PDEVS. S Cordimalies 2 l

Visually Omitted. The Elements with Italic Are Abstract Super-Type |

I Elements.o 141
[8.3 The Activity for Modeling Trafhic Intersection and Simulating It In |
I DEVS-Suitel. . ..o 142
[8.4 Phase Trajectories for Difterent Scenarios for Toggle as a CPS Action.| . 146
[9.1 Modeling the Dual Server System in CoSMoS.| 154
[9.2 An Activity for the External Transition Function of the Coordinator.|.. 158
9.3 Activity of a Multi-Sever Archetype Architecture Is Devised Using Var- |
| 1ous Activity Constructs. S; and S; Actions Represent the Jobs Ser- |
| vice. C7 and C5 Represent Conditions for Choosing Flow Directions. |
| 'T'he Nodes inside the Dashed Line Area Highlight the Role of the Ac- |
| tivity Control Elements in the Manipulation of the I/O Flow.|......... 163
[9.4 Modeling the Coordinator Statecharts in CoSMoS.| 164

Xiv

Figure Page

9.5 Hierarchical Construction with Activities)................ 166
[9.6 A Metamodel for Hierarchical Activities Developed Using Ecore.| 167
[9.7 Viewpoint Specification m SIrius.| i 168
[9.7 Viewpoint Specification in Sirius.| i 169

[9.8 Modeling Multi-Server Activity in the Developed Activity Modeling |

[9.8 Modeling Multi-Server Activity in the Developed Activity Modeling |

[9.9 "The Simulation View of the Developed Activity for the Multi-Server |

System after the Code Generation for DEVS-Suite Simulator.......... 172

[10.1 Hlustration of the Mapping ot Different Activity Nodes with Accounts |

to Multiple Ports and Couplings.|.......... 190

[10.2 Activity-Based Modeling of the Divide and Conquer Architecture.|. 193

[10.3 The 'Trajectories for the State Variable phase and the Input n and |

Output out Ports With Events for the ao Component.|............. ... 197

(10.4 Different Abstractions of the Pipeline Architecture with Possibly Dif- |

terent Temporal Attributions in Their Simulations.|................... 199

[10.5 Activity-Based Modeling of the Multi-Server Architecture.|............ 201

(10.6 A High-Level Sketch [lustrating (A) the Incorporation of Action and |

Control Node on the One Hand and State on the Other, and (B) a |

Conceptual Relationship between 1/0O and Activity Pin|.............. 202

XV

Figure Page

[10.8 Throughput Is Observed by Simulating the Activity of Divide and Con- |

| quer in DEVS-Suite, Given Different Numbers of Actions and Tasks |

| Arriving at the Same Time. T), Is Equal to 10 Time Units in All Cases, |

| and 1. Is Assigned Linearly Relative to the Number of Actions, Where |

| a Greater Number ot Actions Requires a Greater I, Value|............ 212

[A.1 The Integration of the New Packages Within the Current Architecture.| 226

[A.2 The Multiple Views for Modeling and Simulation of an Intersection.| ... 226

[A.3 The Action Abstraction Is Situated at the Heart of Many Behavioral |

| opecifications and Thus Used As a Bridge Between the Formal Speci- |

| fication and Other Semi-Formal or Informal Modeling Approaches| 227

Xvi

Chapter 1

INTRODUCTION

Computational models for complex systems are subject to many difficulties, among
which is the ability to be directly applicable to various essential needs and natural
phenomena. In recent years, significant advances in developing dynamic models for
systems have used a variety of model abstractions under the model-driven archi-
tecture and model-based design umbrella of semi-formal methods. Fundamental to
these efforts is the metamodeling concept spanning component-based structural and
behavioral model specifications. From this vantage point, we have proposed an ac-
tivity specification to be developed based on the discrete event modeling approach
with the accounts to time notion. Models of this nature evolve with the intent of pos-
ing and answering specific and profound questions according to general set-theoretic
model specifications with supporting simulation execution protocols.

Since the modeling process tends to be time-consuming and highly expensive, we
focused on facilitating some concrete means that aid formulating both the structures
and behaviors of models simultaneously. The aim is to develop models that lend
themselves to a higher degree of rigor during the early stages of the modeling and
simulation life cycle. Intermediary abstractions, afforded through metamodeling, be-
come indispensable for exploring uncharted territories of model spaces in ways by
which their computational aspects expand and potentially lead to discovering new
models.

Introducing a new concept at a meta-layer necessitates substantial efforts at con-
crete layers to realize the concept in attempts to pursue its benefits. Such realization

comes into play while recognizing, at the fundamental level, the fact that achieving

a consistent formal system with full provability is out of reach. Furthermore, an in-
crease in system complexity demands richer abstractions and boundaries to be more
realizable in a useful way. Such models lead to simulations that can be more useful for
the understanding and predictability of intertwined time-based behavioral dynamics.
The subject of this dissertation is highly intrinsic to the systems to be modeled and
dependent on the modeler's ability. Basic research in this topic is needed to help
mitigate some of the fundamental barriers that arise when developing higher qual-
ity system architecture and design specifications. Such designs, once executed, can
provide useful insights much earlier than is currently possible.

1.1 Problem Statements and Attempted Works

Particular problems have been the subjects of the research conducted for this dis-
sertation. In the following, we introduce them with some remarks about the research
that was carried out by formulating the problems and relevant concepts. We discuss
more details throughout the remaining chapters, but first, we highlight general views

about some of the issues of interest and the efforts made to address them.
1.1.1 Model Ambiguity and Implicit Assumption

Models are generally treated as simplifications and, therefore, contain fewer details
about interests in their targeted domains. The process of simplification used in some
modeling approaches have led to ambiguities. For example, some aspects of the
Unified Modeling Language (UML) are known to be challenging to use. The problem
also becomes visible concerning particular properties that are implicit or otherwise
arbitrary. Modelers using such modeling languages often face the burden of navigating
through incomplete or possibly contradictory abstractions. These limitations result

in having models that do not lend themselves to a sound framework. For the context

of a sound framework, models should not only have well-defined syntax and semantics
but also be able to correctly simulate or execute model behaviors.

We employ concepts like actions and control in behavioral metamodels to provide
a means for understanding behavioral aspects of a system under study. We argue
that establishing a rigorous mathematical grounding for a strictly selected subset of
the UML is necessary to achieve essential benefits concerning execution. We also
suggest that discrete event modeling frameworks can serve as suitable candidates.
Thus, we propose formalizing the activity modeling via a set of system theory atomic
and coupled models as defined in the Discrete Event System Specification (DEVS).
Therefore, foundational elements of activities and actions are modeled and mapped
into a set of atomic and coupled models where they can collectively serve as a basis for
grounding different diagrams via coupling with the entry-level capability of modeling

and simulation for activities.

1.1.2 Code Generation and Execution

Code generation is a well-recognized problem that has been the target of tremen-
dous efforts and a variety of proposed frameworks and techniques to work around
it. While it is difficult to have a fundamental solution to this problem, code gen-
eration frameworks continue to grow to accelerate designs ranging from embedded
systems to highly networked systems. Tackling such a problem can take many dif-
ferent forms. The resulting programs may also encounter other issues in terms of
interpretations. When it comes to a model, the distinction between its automated
code generation and interpretation plays an essential role since each has a different set
of artifacts. The code generation produces artifacts that, in turn, can be subject to
further modification and optimization. Interpretation provides some understanding

of the separation of concerns such as model continuity with loose dependency on code

generation targeted for specific programming languages. The problem becomes more
challenging with increasing dependencies that can arise quite easily in systems that
have intrinsic complexity and scale traits. Even with the widely used abstraction
concepts and frameworks (e.g., Eclipse Papyrus) and the basic types of relationships
(e.g., dependency), code generation is restrictive.

Some frameworks, such as the Model Driven Architecture, have been proposed to
support the creation of simulation models. The overarching role of the frameworks
has been to aid model specifications in a disciplined fashion, but simulation is not
the primary focus. They can, however, provide intermediary layers from the higher
mathematical models to their corresponding software specifications from a mostly
structural standpoint. Unlike structural modeling, behavioral modeling is known to
be more difficult, particularly when functional operations require non-trivial control
schemes. This observation has resulted in proposing activity-based behavior modeling
for simulation. We consider actions as the fundamental units of behavioral modeling
and its use alongside state-based models. The state-based and flow-based abstrac-
tions can serve the complementary roles needed for developing rich component-based
modeling and simulation frameworks.

In addition, we have developed a prototype modeling engine that demonstrates
key aspects of the proposed activity modeling approach. The engine is produced
using the Eclipse Modeling Framework along with tools supporting graphical model
development and code generation for simulation. We also detail the relevant aspects
of the created metamodel in terms of modeling and simulation. A large number of
the activity artifacts from the vantage point of DEVS behavioral modeling, including
actions and control, are covered in detail. We also discuss the semantics of the

artifacts for time-accurate requirements for simulation.

1.1.3 Complexity and Scale

Models are developed to sustain, and therefore, having mechanisms for a longer
lifetime is of the utmost importance. Different kinds of measures can help in evalu-
ating model specifications. Component-based models, for example, are measured in
terms of the number of components and relationships they have. Quantitative mea-
sures are usually more straightforward; however, interpretations of such measures
differ across domains. In contrast, qualitative measures, such as model reuse, are
harder to define. The significance of some relationships or components as opposed
to others among application domains varies. Models may have intrinsically different
characteristics that complicate the scale and complexity measures, especially those
that are tied to model behavior. A family of models can help to deal with the com-
plexity and scale issues, which can become overwhelming when there is only one
model.

In discrete system modeling (Zeigler et al., 2018b)), the exact and approximate
scales for the structures of modular, hierarchical models are measured in a straight-
forward fashion. Many real systems, such as enterprise processes, are known to have
large scales and complexities. Such systems have a large number of components with
and even more significant number of relationships. The scale and complexity measure-
ments for a system that has a variety of components and connection types are hard to
obtain. Structural and behavioral homogeneity in models such as cellular automata
and synchronous reactive models lend themselves to simpler scalability and complex-
ity measures. Behavioral model specifications that are grounded in component-level
action and state abstractions are more likely to have scale and complexity measure-

ments.

1.1.4 Classification and Meta-Layers

The problem of classification continues to be the subject of extensive study, in-
cluding efforts such as set theory conceptualizations. Aside from being subjective
depending on, for example, data types and execution semantics, classifications can be
brittle, without careful use of abstractions. The problem becomes relatively straight-
forward if it is to be worked out in an ad hoc manner or when a system has rigid
behavior. Conversely, it is possibly a conundrum when a particular and specific rigor
is necessary to deal with system complexity.

We proposed a set theory specification in the context of DEVS. A mapping takes
the elements of the DEVS to their counterparts that conform to MDA. The idea is to
examine the capability of developing platform-independent models that can transform
into platform-specific models. We shed light on and introduce behavioral metamodel-
ing for discrete event simulation models. We also discuss the behavioral specification
from the standpoint of the MDA framework with a three-layer model abstraction con-
sisting of the metamodel, concrete model, and instance model. Prototypes were de-
veloped to describe the three-layer modeling approach from the perspective of DEVS
and realized in the Eclipse Modeling Framework. A behavioral metamodel expands
to the core model of the framework, and afterward, we examine it while consider-
ing other metamodels for supporting structural features. Furthermore, we discuss
some observations regarding behavioral metamodeling, model validation, and code

generation.

1.1.5 Model Evaluation and Architecture Selection

It is not common practice to develop models for subject systems in conjunction

with the environment within which they are expected to execute. Therefore, models

of experiments can play a significant role in evaluating the effectiveness of the sub-
ject model, particularly from the standpoint of the behavioral dynamics. Software
modeling methods that explicitly account for state and actions can lend themselves
to this purpose. Evaluating models of time-critical and safety-critical systems is nec-
essary. Even though some results can be rendered through standalone simulations of
a subject system, evaluations supported by experimental models are needed to gain
greater insight into the system dynamics. Without such an approach, some aspects
of the system may not be possible to evaluate. Therefore, activity modeling can help

in developing richer models for both the subject and experiment models.

1.1.6 Temporal Structure

There is a growing need for systems to account for the notion of time, which is
necessary for accommodating time-sensitive behaviors. Although essential in many
domains, the mere inclusion of time expands the state space of such dynamical sys-
tems with far more complications. Different theories and models suggest different
representations and calculations of time, and they vary significantly in definition from
those as simple as the linear temporal logic to as complex as a full account of time
as an abstract quantity with real values. Such notions are essential, especially when
dealing with well-known challenging problems in computing, such as parallelization
and synchronization.

To further the proposed activity approach for modeling and simulation, we exam-
ine it further concerning parallelization and synchronization of the data and control
flows. A time base, regardless of its granularity, is explicitly necessary to account for
parallelism in a simulation environment. We examine that by dissecting the basic
temporal properties that are related to control constructs within activity modeling in

the viewpoint of the parallel DEVS formalism and its time base.

Performance analysis and verification of cyber-physical systems (CPS) are good
examples when it comes to time sensitivity in decision-making processes. The inter-
action between computational and physical parts is of particular interest in modeling
such systems. We employ some research on simulation and model-checking for design-
ing computational-physical interactions in the context of a basic CPS and propose
an action-level model-driven activity modeling approach based on DEVS. We em-
ploy time intervals (TIs) to govern the communication between computational and
physical components at the level of actions. We extend the activities metamodel
to instantiate activities suitable for time-critical CPS. We also demonstrate with an

example of a vehicular traffic intersection model with verification.
1.2 Related Work and Contribution

Many existing formalisms have been useful for a variety of needs, among them
modeling and verification. Common examples of these formalisms are Petri nets
(Murata; [1989), timed automata (Alur, 1999), answer set programming (Lifschitz,
1999)), and DEVS (Zeigler et al., [2000). Each one can be used to dissect certain as-
pects of the system state. However, there has not been a formal way that a complete
representation of a system can take place except with a large degree of constriction
or abstraction. Thus, it becomes necessary to use a variety of formalisms for various
needs in a complementary manner. Fundamental difficulties may arise, especially
regarding heterogeneity; however, certain guarantees can be afforded if some anal-
ysis effort takes place. This fact is behind the high cost of developing models that
lend themselves to profound formalisms. Less formal approaches such as UML, Sys-
tem Modeling Language (SysML), and MDA may become appealing with beneficial
practices and accompanying frameworks. Environments such as Eclipse Modeling

Framework (Steinberg et al., |2008) are useful, but they are prone to complexity is-

sues (Fondement et al.| 2013) demanding parallel efforts to withstand a certain degree
of rigor and scale.

Despite advances in the degree of coverage of the state space, restricted formalisms
such as Petri nets continue to require extensions like time Petri nets (Berthomieu and
Diaz, 1991) and high-level Petri nets (Jensen and Rozenberg, 2012). Introducing a
continuous-time base in the specification leads to an inherent difficulty in interpreting
any classical computational model from a system-theoretic standpoint. This difficulty
is evident due to the necessary treatment in such a setting for challenging aspects of
heterogeneity, composability, discretization, multiple resolutions, and the likes.

Figure depicts a map of the overall literature in this dissertation, along with
possible paths and research areas. It includes some efforts along these paths and
areas; however, others remain unexamined. The expected capability dictates making
certain decision along the way.. Arriving at a certain execution is one capability
that some research is going after, while others are verification and simulation. The
means of how such capabilities are delivered also varies. Transformation, extension,
and formalization are some techniques to account for when conducting efforts that
involve constructs with an inadequate syntactical and semantic definitions. We will
discuss in more detail some of the research on these three capabilities. Nevertheless,
it is a voyage in spaces with multiple paths to arrive, ideally and ultimately, at such
capabilities.

Some formalisms account for specifications and are therefore used for modeling
particular aspects of systems. The modeling efforts then translate to means in which
verification of specific properties can take place under certain conditions. Some prop-
erties are reachability (Hwang and Zeigler, 2009), progress (Misral, 2001 or liveness
(Lamport), {1989), maximality (Misra, 2001)), and safety (Lamport|, [1989; |[Misraj, 2001;

Alur, 2015). The path toward achieving verification of such properties involves cre-

Petri Nets

/m Timod Automatn ————————{Varfctio]

DEVS —— Constrained-DEVS
Modeling T

~1
ﬁ Activity Modeling g

S —
P S
& Diagrams T !
R — 11}
Syl

Figure 1.1: Related Works and Background Map Highlighting Our Activity Modeling

Approach.

ating counterpart representatives in formalisms like timed automata, Petri nets, or
some extensions thereof, such as hybrid I/O automata (Lynch et al., |2003)) or high-
level Petri nets. Researchers have proposed different mappings to various formalisms
or extensions thereof. The degree of coverage in these efforts also varies. Some of
them account for basic elements (Rafe and Rahmani, 2008), while others account for a
wider set of constructs and definitions (Storrle and Hausmann, 2004)), such as the ones
defined in the activity metamodel (OMG] [2005)). For example, the latter includes de-
tailed treatment for semantics of various activity constructs such as executable node,
control nodes, and various patterns of activity edges. The work concludes, however,
with some critical remarks about the feasibility of aligning activities to Petri nets
and vice versa. We profoundly account for such remarks in this dissertation by es-
tablishing the distinction between verification and simulation as two different sought
capabilities. The former can be supported by taking the path of Petri nets and some
counterpart for it in the DEVS arena such as finit Deterministic DEVS (FD-DEVS)
(Hwang and Zeigler} |2009)) and constrained-DEVS (Gholami and Sarjoughian, 2017)).
While the former depends on use of TA, the latter is grounded on extending the DEVS

formalism to support verification with the benefit of a full-fledged modeling and sim-

10

ulation environments (e.g., DEVS-Suite simulator [ACIMS| |2019] with supports for
time series and behavior monitoring and debugging).

On the other side, shown in the lower part of Figure [1.1, some existing transfor-
mations, and extensions suggest the notion of model execution and define semantics
along the way during the model development and through proposed execution engines.
Some of these approaches employ the MDA (Miller and Mukerji, 2003) with adapted
mechanisms such as model to text (M2T) and Query/View/Transformation (QVT).
These mechanisms enable code generation for producing code snippets and programs
in target programming languages. An earlier work is executable UML (Mellor et al.,
2002)). More recently, the foundational subset of UML (fUML) (OMG, 2013)) extends
the UML with sets of actions with more elaborate semantic definitions and an exe-
cution model. It also proposes some mappings to the programming language Java.
Such standardization efforts led to the development of execution engines for the UML
activity diagram including Moka (Eclipse Foundation, 2016b) and others, in different
modeling tools. The mapping is then drawn from the introduced specialization of
activity elements (e.g., Read Self Action) to their counterpart in the target program-
ming language (e.g., this in Java). From a high-level point of view, the relationship
between modeling constructs and their code counterpart is apparently one-to-one.

Some works followed through to overcome the problem of clutter that comes up
due to such relationships with large graphical notation to represent a relatively sim-
ple procedure. Among these is the action language for foundational UML (Alf), a
textual language to represent fUML, and a proposal by Bedini et al.| (2017). Other
approaches employ MDA with metamodeling, profiling, and other extension mech-
anisms to compensate in models of UML and SysML with more concrete details of
implementations. One goal is to equip them with better inclination to simulation

(Foures et al., 2012) or execution (Mayerhofer et al.,2013). We thoroughly examined

11

these studies on various occasions, especially the ones that used DEVS, such as|Niko-
laidou et al.| (2008)), Risco-Martin et al.| (2009)), |Cetinkaya et al| (2011)), and Kapos
et al.|(2014).

Transformation takes place in particular between the DEVS, on the one hand, and
the UML, SysML, or MDA, on the other (e.g.,|Yonglin et al. (2009); Sarjoughian and
Markid| (2012)); Mittal and Martin (2013b))). These studies attempted to holistically
look into the problem of a potential mismatch between the formal and semi-formal
specifications. The MDA frameworks deliver some benefits for transformation from a
primarily structural vantage point, and certain mappings are selective, leaving many
details to be abstract given that metamodels are inherently incomplete. Many imple-
mentations and manifests take place at concrete layers to compensate and complement
as much as possible for their counterpart representation at the higher layers. Lower
level implementations are necessary to arrive at some artifacts that facilitate simula-
tion or execution but the correspondence between formal and semi-formal specifica-
tion is mostly unfulfilled, especially regarding semantic definitions, and it will likely
remain as such.

In this dissertation, we attempt to use profound simulations to realize, to some
degree, the behavioral specification of certain types of models. We examine an inclu-
sive subset of activity constructs with attention to their syntax and semantics. From
a modeling perspective, we employ the notion of the model as defined in modeling
formalisms such as discrete event or discrete time system specifications. Models of
such a nature encounter a more rigorous and explicit specification of their time base,
I/0O sets, state sets, and /O and state segments. The result are models that benefit
from basic definitions in general modeling languages and semi-formal methods. Yet,
such models lend themselves to the mathematical discrete event system specification

(i.e., the DEVS) and its abstract simulator.

12

1.3 Published Works

Several publications have preceded the submission of this dissertation. The earlier
work by [Sarjoughian et al.| (2015 presented in Chapter [3| has been carried out to set
the stage and highlight issues regarding specifying behavior at the meta-layers from
more of an observational standpoint. The work was followed up by the activity-based
DEVS model specification [Alshareef et al] (2016) that we present in Chapter [l The
approach was studied further and extended by |Alshareef and Sarjoughian| (2017) and
Alshareef et al.|(2018), as shown in Chapter |5 and @ respectively, to cover aspects of
coupling and the coupled model as opposed to focusing only on the atomic one. We
propose a basic mapping between activities and DEVS (Alshareef and Sarjoughian,
2017)). Also, we presented a specification for action at the Ph.D. Colloquium at the
Winter Simulation Conference (Alshareef], 2017)), which we have included in Appendix
[A.2l Another demonstration with a traffic example is included in Appendix[A.T] which
we presented at the Spring Simulation Conference Demo Session 2017.

The semantics of activity modeling is discussed with respect to parallelism by Al-
shareef and Sarjoughian| (2018b)) in Chapter [/} Chapter [§]includes an example model
for CPS design as discussed by Alshareef and Sarjoughian (2018a). We developed
this example after extending the metamodel to account for temporal elements, par-
ticularly those in action-level real-time DEVS, such as time window. More recent
work has also been published to account for the hierarchical construction in the ac-
tivity (Alshareef and Sarjoughian| 2019)), and it is presented in Chapter @ Work on
a journal article with a more comprehensive view is ongoing and included in Chapter
[10l I have also contributed to work on a profile for cognitive modeling and domain-
specific modeling by visiting scholars to Arizona Center for Integrative Modeling and

Simulation (ACIMS), namely [Zhu et al.| (2017, [2018).

13

(a) An Example for a Fork Node, Where (d) An Example for a Decision Node, Where

Outgoing Flows Are Synchronized. One Outgoing Flow Is Activated.

(b) An Example for a Join Node, Where (e) An Example for a Merge Node, Where

Incoming Flows Are Synchronized. One Incoming Flow Is Activated.
mny outy my outy
SYNC SELECT
. — . —
Ny, outy, Ny, outy,

(¢c) A Corresponding Sync Model for Both (f) A Corresponding Select Model for Both

Fork and Join. Decision and Merge.

Figure 1.2: Notation Examples of Essential Activity Modeling Elements Along with

Their Treatment as Components with Accounts to Multiple Ports and Couplings.

1.4 Preliminary Notations

In Figure [1.2] we briefly present some of the essential modeling elements that
we use throughout this dissertation. The fork node is the one that synchronizes
dispatching outputs through its outgoing flows. The join works similarly but for
incoming flows for which it expects an input. Since they are symmetric, we refer to
them both as SY NC'. Similarly, the merge and decision nodes are used to select one
flow for proceeding as with incoming in the former and outgoing in the latter. They
are both referred to as SELECT.

Figure [1.3] exemplifies the notations by modeling the server system in [Wymore

14

(1993)), which is a component of the manufacturing system model. A set of states
along with NOONE' describes this system, which indicates the absence of inputs
at some time instant. The system description includes a random input to allow
errors to happen during service and therefore determine the result of the service. A
next signal transmits in conjunction with the output upon service completion. The
description also includes a transition function with a time lapse between the issuance
of subsequent signals. The system is described with the queuing system as a way
to facilitate deduction about service with more details. The length of the queue,
for example, is variable and can be of interest to determine the adequacy of simple
models.

An activity for such a system includes two actions a and b. We developed such
an activity using our activity tool. The flow coming through input and service time
parameters gets directed toward both actions. An error is injected to only one action
where its flow is neglected by the merge node after one action sends its outgoing flow.
This example highlights some essential aspects of our approach. The subsequent

chapters elaborate on this treatment.

oo
e

—
output
— .
service time I

Figure 1.3: Activity Modeling for a [Wymore| (1993) Server System.

next signal

0

15

Chapter 2

BACKGROUND

The background about the Discrete Event System Specification (DEVS) (Zeigler
et al., 2000)) formalism is essential to lay the ground for a computational basis and use
to establish a link with other models of computation and discrete event systems. The
atomic model is of particular interest in this dissertation due to the inherent difficulty
of the behavioral specification, given the level of abstraction of the simulator. This
difficulty is realized at the heart of this work and discussed from the vantage point of
formalism itself and other existing frameworks and architectures such as the Model
Driven Architecture (MDA). In such frameworks, the primary role is to facilitate
handling structures.

Due to the behavioral limitations in existing works, we give a brief background
about the so-called Semantics of a Foundational Subset for Executable UML Models
(fUML) (OMG;, 2018). A similar initiative has taken place and precedes f{UML under
the notion of Executable Unified Modeling Language (xUML) |Mellor et al| (2002).
Throughout this dissertation, we look further and examine extensions that are taking
place, whether in the proposed subset itself or via the underlying execution engines
that are being developed in conjunction with it. We have made arguments about the
necessity of simulation in such efforts to shed light and clarify subtleties that might
arise due to modeling restrictions and execution.

Another essential background for this dissertation is about modeling discrete event
systems. We primarily focus on the DEVS formalism; however, we also benefit from
other well-known modeling formalisms such as State-charts. We also discuss the

activities and actions in this context as we think of them to complement different ap-

16

proaches, especially when having some more detailed behavioral models. The Eclipse
Modeling Framework (EMF) is used in this dissertation as a realization for the MDA
and a concrete means to examine multiple aspects of it, especially its support for the
behavioral specification.

2.1 Metamodeling and the DEVS Formalism

In this work, our goal is to develop concepts that can enable building a framework
capable of specifying meta-behavior for atomic DEVS models. Then, we use these
means to create concrete atomic DEVS models. Toward this goal, we employ Model-
Driven Engineering (MDE) and in particular, the MDA framework with its EMF
realization. Although there are a variety of DEVS-based modeling and simulation
tools, in this work, we use the DEVS-suite simulator for developing the proposed

behavioral DEVS metamodel.
2.1.1 MDA and Model Layers

The MDA framework has been proposed for developing software systems (OMG
2003). Its central concept is a four-layer model abstraction hierarchy. A key abstrac-
tion concept in MDA is for a classifier and its instances to form a two-layer hierarchy.
A classifier has an abstract specification that can have one or more instances. Clas-
sifiers are universal and instances are specific. Every classifier is at a higher level of
abstraction relative to its instance. Instances are related to one or more classifiers via
conformance relationship. The implication is having complementary models, each of
which has a specific role to play and collectively provide a disciplined roadmap for
developing software systems. Each higher-level layer offers capabilities that are more
abstract as compared to those offered by lower-level layers. Conversely, each layer is

built using the elements contained in the layer above.

17

A realization of the MDA approach consists of Meta-Object Facility (MOF), Uni-
fied Modeling Language (UML), User Model, and User Object modeling layers (OMG
2003). At the meta-meta model (M3) layer, the MOF has an Ecore specification for
defining metamodels in the OMG's family of MDA languages. Described using the
UML metamodel, the M3 layer supports computation-independent metadata man-
agement, metadata services, model management, tag capability, and reflective opera-
tions, among others. The metamodel (M2) layer can have models that conform to the
M3 layer. The M2 layer is for platform-independent modeling. These models can be
domain-specific. The Ecore at the M2 layer can be used to define concrete models at
the M1 layer. The MO layer is used to describe instances of models specified at the M1
layer. The M3, M2, M1, and MO layers support the incremental development of mod-
els for component-based systems. It is useful to note that the separation of concerns

in MDA is essential for developing software system tools, including simulators.
2.1.2 DEVS Atomic Model

The set-theoretic specification of parallel atomic model X, S, Y, .xt, ;nt, .onf,, tais
domain-neutral. Its input and output are defined in terms of port names and variables.
The variables can be arbitrarily complex. And atomic models are responsible for han-
dling differences in the input and output variables. From software design, appropriate
I/O type consistency is necessary. For any user-defined (and domain-specific) model,
the internal, external, and confluent, time advance, and output functions can have
arbitrary logic as long as they satisfy the abstract definitions provided in the mathe-
matical atomic model specification. A restricted specification of parallel DEVS called
Finite Deterministic DEVS (FD-DEVS) introduced by Hwang and Zeigler| (2009) has
been developed. Events and states are defined to be finite sets, and external and

internal events are allowed to occur at time intervals restricted to rational numbers.

18

No time interval between one event and the next can be infinitely small. Abstracting
time to be rational instead of real numbers is one way to achieve that. When states
are simple, possible state transitions can be enumerated and unreachable states iden-
tified. These restrictions can simplify model validation for the EMF-DEVS modeling

described next.

2.1.3 EMF-DEVS Atomic Model

Sarjoughian and Markid| (2012) propose EMF-DEVS as a metamodeling approach
for the parallel DEVS formalism. The basic aim is to define and validate DEVS
metamodels using the Eclipse EMF framework. The EMF validation infrastructure
is used to define the elements of DEVS models with a set of constraints. These
constraints align with the DEVS formalism and the target DEVS-Suite simulator,
which uses the Java programming language. The structures of atomic and coupled
meta-DEVS models can be modeled and validated. The generic capabilities provided
in the EMF M3 and M2 layers are extended to support concrete models for the
DEVS-Suite simulator. The EMF-DEVS metamodel can support input, output, and
state sets as well as external, internal, output, and time advance functions. These
abstract functions (Oegr, Oint, Ocon, A, ta) do not include the logic that is necessary to
define behaviors. For example, the external transition function d.,; does not define
a generic transition from a source state to a target state with constraints. Also, the
output function does not define conditions for generating outputs.

In the context of metamodeling as in EMF-DEVS, the term validation refers to
the Eclipse EMF validation framework and its execution engine. The Eclipse EMF
has built-in validation mechanisms such as reflection for the metamodels at the M2
layer. Metamodels at the M2 layer can be validated for conformance to the meta-meta

model at the M3 layer. Concrete models at the M1 layer can also be validated to

19

conform to the DEVS metamodel. Here validation does not refer to the execution of
a metamodel over some time and determine whether or not it produces behavior per
user requirements and expectation. Given a concrete simulation model (M1 layer),
the model can be verified to be specified correctly both in terms of M1 and M2
layers. When executed over some time while recognizing the behavior as acceptable
for some defined experimental condition, the model is said to be valid. Regarding the
verification and validation definitions for concrete models, the EMF-DEVS validation
may be referred to as verification when a metamodel has domain knowledge. For
example, the external transition function has the necessary control structure and
other details to specify the next state of a model given its current state and received

input.
2.2 Foundational UML Subset

We examine the state of the art of UML standards and the recent advancement
of the fUML and concepts like executable modeling. Therefore, it would be useful
to provide an essential but yet sufficient background of the f{UML and some of its

primary subjects.
2.2.1 UML Activities

The fUML subset is devised based on the approach of activity modeling. From
a high level, an activity can be seen as a directed graph of vertices and connected
by edges. Each vertex is an activity node, and each edge is an activity edge which
can be either an object or a control flow. Every control, object, or executable node
is an activity node. Action is an executable node that can be further specialized to
encompass a variety of different basic behaviors. Previously, we discussed with details

the use of activities in specifying the behavior of atomic DEVS models (Alshareef

20

et al., |2016). Lifting behavior to higher levels across the meta-layers such as M2
can result in greater benefits, especially for checking the syntax and semantics of the
specified models at a higher level of abstractions. As a result, modeling at the lower
levels becomes simpler and less detailed since the other details about the system under
development have been addressed at the higher levels. Also, we extend our research
toward a direction on simulating UML activities by exploiting the capability provided
in the Parallel DEVS simulator.

Parallel DEVS was proposed by |(Chow| (1996) to provide the capability of handling
collisions that may arise during the interaction between different components. The
formalism allows all imminent messages to be sent out simultaneously, which can be
used as a useful abstraction for handling activities flows. It is especially important in
the case where the activity node has multiple incoming flows, such as the case in the

fork and merge nodes.

2.2.2 Abstract Syntax

The abstract syntax of f{UML mainly consists of classes, common behaviors, activ-
ities, and actions. It selects some certain elements from the complete UML to provide
a more precise definition of their semantics. Although it uses the above four packages,
it excludes some features thereof. Some packages from the UML 2 Superstructure are
excluded. The reasons for excluding some packages or features vary. Some packages
are excluded due to their insignificance in terms of execution. Others are excluded
due to the encountered complexity if they are to be realized in a computational plat-
form. On some occasions, features are excluded because of their generality. Therefore
some ambiguity or restrictions concerning their semantics may arise.

The packages for activities and actions are covered, although with exclusions to

some of their features. Overall, f{UML does not entirely realize the complete model

21

of activities as defined in the UML but instead recognizes an essential subset of it.
The included pieces of these packages are organized and sub-organized in a well-
established architecture. The relationships are then established as necessary, using
dependency, specialization, and import. Actions are the fundamental units of the
behavioral specification. However, they have to be contained in some behavior that is
currently the activity. According to UML 2.5, the action is a subtype of the executable
node, which is itself a subtype of activity node. Therefore, actions can be contained
in activities as executable nodes or interactions as actions. Currently, we only focus
on their containment within activities. Action may have input pins, output pins,
or constraints. Action is also specialized further to represent many different forms
of behavior based on different semantics and usage. For example, structural feature
actions are used to handle reading, writing, adding or removing structural features
such as a queue within some model. The manipulation of the feature has to go
through this set of actions. There are multiple sets within the metamodel of actions.
Each set also has more subsets or specific actions. The relationship between actions is
determined mainly via generalizations from the more general or abstract action to the
more specific or concrete ones. In our work, we handle the concept of action in general.
However, we also detail some defined actions that are necessary for the discussion and

demonstration. Other sets of actions can benefit from a similar approach.

2.2.3 Execution Model

The execution model is a major contribution of f{UML given that its abstract syn-
tax is already defined in UML superstructure and yet revisited in the subset. The
execution model is a f{UML model that defines the specification for the execution.
The execution model expects a well-formed model to provide a meaningful execution

semantics. The operational specification is currently described in the form of equiva-

22

lent code in Java. The reason is that activity diagrams become inconveniently large
when addressing relatively significant behavior. One of our concerns in this work
is to overcome this issue by utilizing DEVS capabilities for addressing behavioral

specifications.
2.2.4 Foundational Model Library and Base Semantics

It can also be useful to provide a brief description and reasoning about these
two components of the fUML specifications. The foundational model library includes
primitive types and behaviors accompanied by their basic operations such as functions
for handling Boolean signatures. It also defines some capabilities for managing input
and output. These definitions, along with other concepts, are rigorously defined in
the DEVS formalism as well as the modeling and simulation packages provided in the
DEVS-Suite simulator (ACIMS| 2017b)). Therefore, we focus our use on the formalism
and what is in the selected simulator. Regarding the base operational semantics of
fUML and Parallel DEVS, the simulator provides an explicit protocol for the behavior
of the execution model, which can be used for verification purposes. In our case, the
semantics are substantially extended due to the definition of time. However, the base

semantics are still maintained.
2.3 Formalisms and Languages for Discrete Event Modeling

There exist formalisms, modeling languages, and frameworks to develop behav-
ioral models. Our work focuses on the rigorous specification of DEVS as an abstract
mathematical formalism accompanied by a framework supported by modeling lan-
guages and run-time execution. In the following sub-sections, we describe necessary

background details for understanding and developing behavioral models.

23

2.3.1 Parallel DEVS Atomic Model

The set-theoretic specification of the atomic model is an abstract representation
of a standalone component of a system (Zeigler et al., 2000). The formal specification
can be defined independent of any language and, more generally, simulation platforms.
From a software standpoint, we need to have the specifications to be formulated in
terms of modeling and software programming languages. Many DEVS simulators
can accept the specification of a model following a target simulator’s programming
language syntax, semantics, and specialized constructs such as model initialization.
Examples of these tools are DEVS-Suite (Kim et al., [2009)) and CoSMoS (Component-
based System Modeling and Simulation) (ACIMS, 2017a) where the programming
language is Java. Other simulators use different languages as an input such as CD++
(Chidisiuc and Wainer}, 2007) and PowerDEVS (Bergero and Kofman, [2011) where
the programming language is C++. The work by |Hollmann et al.| (2015]) provides
a specific language based on the formal specification definition language with a set
of rules to translate it into simulatable models targeting simulators like DEVS-Suite
and PowerDEVS. As defined by Zeigler et al.| (2000), the basic formalism of parallel
DEVS model is an algebraic structure — atomic model = (X, Y, S, dczt, dint, Ocons A, ta).
X is the set of input events. S is state representing the tuple of sequential states.
The state must have at least two independent variables. One is called sigma (o),
the time duration allocated to the current state of the model. The other variable,
called phase, represents a set of state values that change and can be tracked. Y is the
set of output events. d;,; and d.,; are the internal and external transition functions,
respectively. The model receives a bag of inputs meaning that the elements of the
bag may have multiple occurrences and have no order. The receiving model accounts

for this possibility to perform proper handling of the inputs. d.,, is the confluent

24

transition function, which can be specified to handle the collision between external
and internal events. A is the output function which transforms S into Y at arbitrary
time instances. ta is the time advance function which maps the internal state into a
positive real number using elapsed time since the last state transition (i.e., it computes
o which can range from zero to infinity, inclusive). Any domain-specific definition of
the functions mentioned above must satisfy their corresponding abstract definitions as
provided in the modeling formalism. Together, the elements of the DEVS specification
allow the modeler to define operations and controls for system structure and behavior

flexibly.

Simple processor

This example is selected to demonstrate some concepts throughout the discussion.
We start with a simple processor and later extend to have a queue to demonstrate
behavioral expressiveness. The simple processor only stores jobs upon their arrival,
process them for some amount of time (duration), and then sends them through the
output port. It does not account for input buffering and preemption of a job under
processing. We devise the behavioral specification of this process, as described in
the DEVS formalism, in a set of activity models as an intermediary phase between
them and their concrete manifestations. The simple processor example as presented

by [Zeigler and Sarjoughian (2003) is defined as

Processorprocessing time = (X, Y, S, dext, Oints Ocons A, ta),
where
IPorts = {“in”},where X;, = J (a set of job identifiers);
Xy ={(p,v)|p € [Ports,v € X;,} is the set of input ports and values;

S = {“passive”, “busy” } x RF™ x J;

25

OPorts = {“out” },where Yy, = J;
Y = {(p,v)|p € OPorts,v € Y, } is the set of output ports and values;
dint(phase, o,) = (“passive” | 00, x);
dext((phase, o, x), e, ((“in”, 71), (“in”, J2), ..., (“in”,7n)))s Ji € Jin,
= ((“busy”, processing_time), ji, ja, ---, jn) if phase = “passive”
= ((phase,o —e),x) otherwise;
deon((8,ta(s)),) = Oext(0ine(5), 0, x);
A(“busy”, 0,5) = j

ta(phase,o,j) = o.

2.3.2 Statecharts

There are many modeling languages available for specifying the behaviors of
atomic DEVS models. Statecharts is popular due to its expressiveness power for
representing complex behaviors of systems (Harel and Politi, [1998). Statecharts de-
fine mainly hierarchical states and state transitions. They can be used to specify the
discrete behavior of a system and its components. Other languages and metamodels
also exist for modeling the behavior such as behavior diagrams in UML (OMG], [2012)).
They provide different notations where behavior can be captured in various diagrams.
Each diagram generally has some advantages relative to some other diagrams. The
diagrams vary in their syntax as well as semantics to satisfy different needs. One
major diagram is UML state machines, which is considered to be a variant of Harel’s
statecharts. The transitions, as well as states, can be associated with some behavior.
Modelers can use state machines, interactions, sequences, or activities for describing

behaviors within and across model components.

26

2.3.3 Activities and Actions

The UML Activities diagram is a major method for developing detailed behav-
ioral models (OMG]| [2012)). Their standardized specifications, including visual syntax
and semantics, have undergone significant changes under the stewardship of the In-
ternational OMG Standardization consortium. Activities allow for behaviors to be
specified using a set of elements along with their sequencing defined as control and
object flows. The elements are the activity nodes. A node can be control, object,
or executable node. Control nodes define the flow of tokens between activity nodes.
A control node can be either initial to define the starting point of an activity ex-
ecution, final to define when activity stops, fork for splitting a flow into multiple
flows, join for synchronizing multiple flows, merge to act similar to join but without
synchronizing flows, or decision to select between its outgoing flows. Each control
node can be used to define certain behavioral properties of components such as the
DEVS atomic model. Object nodes are used to handle data. We will use the activity
parameter node to define inputs. Finally, executable nodes are the core elements of
activities. Actions are a special type of executable nodes, and therefore, they can
be within an activity. On the other hand, actions in UML 2.5 (OMG, |2012) can be
only defined in the context of an activity. Thus, together, they provide a means for
modeling behavior to establish processing routines that include control structures.
It is important to note that activity modeling emphasizes and supports specifying
actions and combining them using arbitrary control structures.

Actions are the only kind of the executable nodes in UML 2.5. They are necessary
to take advantage of more capabilities provided by the activities. Besides, they are
the fundamental units of behavior specification. Some actions change the state of

the system. This kind of action in our approach satisfies how states are changed in

27

DEVS atomic model internal and external transition functions. Examples of these
actions are add structural feature value and wvalue specification actions. Other kinds
of action support handling objects. Read self action is used to obtain the current
object context and place it in its output pin. Value specification action is also used
to provide certain value and place it in its output pin. The structural feature actions
are used for either assigning or retrieving a structural feature of an object. They can
be both used for the phase as a structural feature. They can also be used for other
features or more complex objects.

Event actions can also be used. For example, an accept event action can be
used to model the waiting for an event to occur in some other entity to proceed in
the activity flow. In the context of UML actions, this event can be caused by the
simulation protocol to trigger some atomic model components, or by other models
that decompose the behavior into multiple models. There can also be an accept time
event action which is used to model waiting time. Send signal action can be used to
model invocation for some other components. It is also used to enforce some order
when used with the accept event explicitly. For example, to impose the order of
executing the DEVS output and internal transition functions, a sending event signal
must be completed to enable the accept event action. However, this sort of scenario
is part of the simulation protocol.

Additionally, invocation actions provide a means for communication and signals
among multiple activities, e.g., call behavior action, to call either behavior or oper-
ation. The action can be synchronous if it has to wait for the called behavior or
operation to complete. Otherwise, it can be asynchronous and then immediately
proceed after calling the associated behavior or operation. Such an order is crucial
for the execution of the behavior of the atomic model. That is, internal and exter-

nal transition functions cannot execute simultaneously although possible, using the

28

confluent transition function. We will elaborate further in the subsequent sections.
2.4 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) (Steinberg et all 2008) is the core of the
Eclipse modeling project, which serves as a basis for modeling and metamodeling.
The framework and its various capabilities provide an Eclipse realized manifestation of
the Model-Driven Architecture (MDA). It is surrounded and equipped with a variety
of tools to facilitate the process of creating and maintaining metamodels as well as
producing sets of classes and runtime support in highly model-driven development.
The Ecore as the basis for EMF is used to define metamodels to provide a common
grounding for UML, XMI, and Java. It unifies these and other models in a well-
defined setting with automated mapping from one to another (e.g., UML to Java).
Such incorporation places a strong focus on the model as the fundamental unit for
building software-based systems.

EMF has been extended to provide a means for creating metamodels for parallel
DEVS formalism as in EMF-DEVS [Sarjoughian and Markid| (2012). The framework
currently supports defining and validating the structure of atomic and coupled meta-
DEVS models. As discussed earlier, we want to take a step forward into behavioral
modeling, which turned out to be not straight forward. The EMF itself is mainly
concerned with structural aspects. However, in a previous work (Sarjoughian et al.,
2015)), we discuss behavioral metamodeling for DEVS by extending the Ecore. In this
work, we realize the activity metamodel as a significant step in creating a behavioral
modeling engine and preparing for further support, such as defining the graphical
definition and mapping.

Graphical Modeling Framework (GMF) (Gronback, [2009) has been built upon

EMF'. It exploits EMF capabilities such as code generation and model serialization

29

to specify models visually. These models are ensured to conform to their metamodels
defined in Ecore. GMF, as an extension of EMF, allows for building tooling infras-
tructure to be used for modeling and diagram generation. This approach is used
in developing an engine enabling specification of statecharts for DEVS atomic mod-
els (Fard and Sarjoughian, 2015). Although this approach uses both EMF and the
Graphical Editing Framework (GEF), it segregates the metamodel from the graphical
information in a clear manner. This is especially useful in our case since we need to
support graphical notations for activities as well as maintaining consistency between
the structural and behavioral metamodels for DEVS modeling. The metamodel is
referred to as a domain model in the context of GMF. Once defined, there are two
models to be initially generated and then manipulated to account for the specific
graphical requirements. Those two models are the graphical and the tooling defini-
tion model. The graphical definition model defines graphical components and figures
used in the models. The tooling definition model defines the other aspects of the ed-
itor, such as the palette. The generation model is generated similarly to EMF. After
that, the mapping model combines all definitions in the three previous models to put
things together and map every element to its graphical counterparts. Once created,

the process of generating the diagram editor becomes ready to be performed.

30

Chapter 3

BEHAVIORAL DEVS METAMODELING

A variety of methods may be used to represent time-based dynamics of systems.
The behavior of a system, for example, can be modeled using set-theory, UML di-
agrams, and pseudo code. Each kind of model serves specific purposes and must
ultimately map to programming code suitable for execution in one or possibly multi-
ple target simulators. A mathematical model is useful for defining a systems structure
and behavior independent of software design and simulation technologies. UML Class
and Statecharts diagrams, among others, help design complex modeling and simulate
engines that may or may not necessarily have mathematical grounding. Computer
code can be developed and partially generated based on mathematical or certain kinds
of software specifications. Each of these methods has its strengths and weaknesses,
and none is currently considered to contain all the necessary capabilities required for
generating executable simulation code.

The atomic and coupled models in the DEVS formalism (Zeigler et al., 1997)
are metamodels. From the standpoint of MDA, DEVS has an abstract syntax and
an execution semantics that together define a modeling language for discrete event
systems. The set-theoretic DEVS models are abstract mathematical artifacts. An
atomic DEVS has its elements defined, for example, as sets, functions, and relations.
These model elements individually and collectively satisfy certain general abstract
properties and constraints. For example, a model can receive a finite number of input
events within a finite period of time at arbitrary time instances, process these inputs
with state changes within a period, and generate a finite number of output events. It

is the responsibility of the modeler to show that the developed atomic models for a

31

given target simulator satisfies the properties and conform to the constraints defined
for the DEVS atomic formal specification.

In the MDA framework, a concrete atomic DEVS model for a system component,
relative to its metamodel, has specific structural (e.g., inputs and states with possi-
ble particular values) and behavioral elements (e.g., state transitions for a particular
source and target states with assigned times to next events). The metamodel is a
language within which concrete models can be developed. Furthermore, a concrete
model may also satisfy constraints such as state variable types and state transitions
sanctioned for specific application domains. Full-fledge behavioral DEVS metamodel-
ing can support the automatic conformance of concrete models to their metamodels.
This capability can significantly reduce the amount of manual effort required to show
concrete models that satisfy their metamodel properties and constraints.

From a tool's perspective, a simulator, such as DEVS-Suite (ACIMS| [2017Db)), is
designed as a collection of UML classifiers and relations that capture some aspects
of the set-theoretic atomic and coupled parallel DEVS models. These models can
also be collectively referred to as a DEVS UML metamodel. The inputs, states, and
outputs, and internal, external, output, and time advance functions of the model are
defined abstractly; they, by themselves, are not executable. For example, the data
structure for input is defined as a pair (port-name and input-variable) where the port
has a string type, and the input variable has an entity type. Similarly, the external
transition function is defined as a method with specific arguments, but without any
actual implementations for the state transitions and conditions under which they are
to execute. As in its mathematical counterpart, a concrete atomic model must have
instances of the port-name and input-variable attributes belonging to the UML classes
and interfaces. The realization of the formal DEVS models as UML specifications is

advantageous. UML includes abstractions such as data typing, return types, and

32

control structures that enrich the abstract atomic DEVS model specification. These
models can map through transformation into partial code for programming languages
using professional tools dating back to the 1990s.

Simulators such as DEVS-Suite do not explicitly account for domain-specific mod-
eling. A modeler can develop domain-specific models using object-oriented modeling
principles and design patterns. Low-level techniques can enforce in an ad-hoc manner
the domain-neutral contracts embodied in the DEVS UML models. Examples of such
techniques are checking for data type compatibility and expected values for concrete
models. Eventually, these models are to implement in some specific programming
languages. These contracts cannot account for domain-specific knowledge; they must
encounter extensions. This approach becomes complicated and unwieldy as the scale
and complexity of the system, that is to be simulated, increase. Such resulting simu-
lators lack rich capabilities to support and develop domain-specific metamodels and
also are unable to validate basic model properties and constraints such as data typing
and legitimate state transitions, for example. MDA-based modeling, however, can
lend itself to develop and automatically validate the behavior of any domain-specific
DEVS concrete model against its metamodel and by extension the general-purpose
atomic DEVS model.

Given the above discussions, we can make a few observations. When concrete
atomic DEVS models are developed using programming languages, it is challenging
to ensure they conform to their abstract model. A substantial amount of effort is
required to concretize behavioral abstractions. Therefore, it is essential for the meta
and concrete atomic models to be systematically related to each other as proposed in
the MDA framework. This relation is especially important, given that the challenging
part of developing models of complex systems is specifying their behaviors. Therefore,

we need an atomic DEVS metamodel that can support behavioral modeling (e.g., re-

33

ceiving sanctioned input events and legitimate state transitions with timing). Toward
this goal, we propose behavioral metamodeling for the general-purpose and domain-
specific atomic models using the Eclipse Modeling Framework (Steinberg et al., [2008).
Consistency between these models can be specified and enforced (referred to as val-
idated) with automation. Concrete models can generate from their domain-specific
metamodels. Behaviors contained in these metamodels can significantly reduce the
amount of effort to create concrete models and improve their quality using automated
code generation.

3.1 Related Work

In this section, we primarily focus on behavioral DEVS atomic metamodeling and
briefly consider the extent to which detailed specifications can be supported. Model-
driven design approaches have been playing a more significant role in developing
complex simulation models. Focusing our attention on the OMG MDA framework
and DEVS, we find some approaches that follow the MOF Technology Space (Bézivin
et al.,[2005)). [Yonglin et al.|(2009) proposed a DEVS metamodel for developing SMP2
(Simulation Model Portability standard). This metamodel maps to SMP2 metamodel
using QVT (Miller and Mukerji, 2003). Simple states and state transitions for the
atomic DEVS model are supported. In work by |Cetinkaya et al.| (2012), structural
DEVS metamodeling can be supported. As in EMF-DEVS, behavior specification for
the atomic DEVS metamodel is not supported (see Section 2.3).

In the MOF technology space, some works have employed DEVS Natural Lan-
guage (DNL), XML Schema, and Extended BNF for defining DEVS models. These
support behavioral modeling using mostly the same ideas and methods. The MS4Me
(Seo et all [2013) focuses on modeling using DNL as described by (Zeigler and Sar-

joughianl, 2012). The DNL as meta-language supports Finite-Deterministic DEVS

34

models (Hwang and Zeigler, 2009). MS4Me uses Xtext (Eclipse Foundation, [2013))
to enforce DNL rules for simple inputs, outputs, states, state transitions, and timing.
As a modern Java-like language, Xtend supports developing FD-DEVS models. The
MS4Me models can be augmented to become Parallel DEVS models using the full
expressiveness of the Java language. It supports adding Java code to the model and
thus developing Parallel DEVS models while maintaining a tight connection with the
FD-DEVS models. The Java code is injected into slots in a structured manner using
tagged code blocks. These are inserted directly into the generated source files. These
tagged code blocks are used to specify additional behavior for initializing, internal
transition, external transition, and output. Compared with FD-DEVS, classic, or
parallel DEVS models that have these kinds of code blocks are difficult to validate.
The DEVSML (Mittal et al) 2007) is developed for DEVS simulation models that
can be executed in net-centric computing environments.

Some works employ SysML (Nikolaidou et al., 2008) and UML (Borland et al.,
2003; |Risco-Martin et al., 2009; [Mooney and Sarjoughian, 2009; |Pasqua et al., [2012).
The authors developed a SysML profile for classical DEVS. An atomic model is de-
fined as a collection of stereotype blocks. State Definition and Association diagrams
define the behavior. Atomic Internal and External diagrams describe the internal
and external functions, respectively. Descriptions for the time advance and output
functions are parts of the Atomic internal diagram. Similar to the above approaches,
simple states with constraints are defined. The external diagram follows FSM with
control elements such as choice, fork, and join elements. Time allocated to states can
only be defined in the internal diagram. The DEVS SysML profile and DEVS MOF
are intrinsically different due to their technology spaces. There exist other approaches
that use metamodeling abstraction (Fard and Sarjoughian, [2015; |Ighoroje et al., 2012;

de Lara and Vangheluwe, 2004)). |Garredu et al| (2014) give a survey that discusses

35

the uses of some MDE approaches for DEVS.
3.2 Atomic DEVS Metamodeling

The mathematical properties and constraints defining an atomic DEV'S model can
apply to any implementation of it. Therefore, it is useful to have a framework that
can not only capture the atomic model's formal specification (i.e., a metamodel) but
also enforce its syntax and semantics for domain-specific metamodels. Another im-
portant advantage is to define models independent of any particular simulator. That
is, metamodels can transform into concrete models that can execute in simulators im-
plemented in specific computing platforms. This framework must (help) validate the
behavior of any concrete atomic DEVS model against its metamodel. To achieve this,
we propose introducing behavioral metamodeling to structural metamodeling. The
resulting metamodeling framework must also lend itself to developing metamodels
for modelers domains of interest. This framework is also desired to support defining
domain-specific concrete models for desired systems.

We intuitively define behavioral metamodeling as a set of concepts realized in
a framework that supports specifying operational details of the internal, external,
output, and time advance functions of any atomic DEVS model. These generic op-
erations can be used to define behavior for any domain-specific DEVS metamodel.
Domain-specific behavior can be specified by extending the generic DEVS metamodel
behavior. That is, the behavior of these functions is defined independently of comput-
ing platforms in which they can be fully implemented. The properties and constraints
in the domain-neutral and domain-specific functions for the concrete models can be
validated. The properties and constraints of the functions that are not satisfied in
any concrete model are automatically identified and reported.

Figure illustrates the concept of meta and concrete mathematical and UML

36

modeling. The structure, unlike behavior, of mathematical atomic and coupled DEVS
models can be completely specified both abstractly (as a metamodel) and concretely
(as a concrete model). In mathematical modeling, a concrete model has more infor-
mation relative to its metamodel. In the metamodel, d..¢, dint, dcon, A, ta functions are
abstract mathematical constructs. The abstract atomic DEVS model functions do
not have sufficient details, for example, as in Statecharts. Indeed Statecharts also
does not capture the levels of detail in the functions that an arbitrary atomic model
can have. In contrast, arbitrary concrete atomic models must have details, including
decision logic and control in the state, output, and timing functions.

The concept of meta and concrete models in UML are distinct as compared with
the ones just described for a mathematical model. While UML metamodels are in-
dependent of computing platforms, concrete-models are not. Separating models to
be platform-independent and platform-specific is important (see Section 2.1). Meta-
models are technology (simulator) agnostic. Concrete models include details that are
specific to target simulators. The meta and concrete models can be related to one
another.

Focusing on behavioral modeling, the line arrows from the concrete model and
metamodel are conceptual. For mathematical modeling, one may construct relation-
ships to show, for example, state transitions in an external transition function in a
concrete model conform to the abstract external transition function specification. In
UML modeling, one can include rules that can apply to concrete models. The block
arrows at the metamodel and concrete model levels involve complex modeling and
software development tasks, requiring detailed design and code development.

Considering the distinct roles mathematical and UML modeling offers, a desirable
goal is to support both. The EMF framework (Steinberg et al., 2008)) is a strong

candidate as it already supports UML meta- and concrete modeling, and it can sup-

37

port developing specific metamodels as in EMF-DEVS. In particular, the relationship
between meta (M2 layer) and concrete models (M1 layer) is formalized. Furthermore,
the EMF includes the meta-meta model (M3 layer) and instance models (MO layer).
Given these, we extend the EMF-DEVS (Sarjoughian and Markid} 2012) structural
metamodeling to enable behavioral (functional) metamodeling. Generic and domain-
specific metamodels with built-in and user-defined properties and constraints for the
external, internal, output, and time advance functions are supported. Modelers may
develop metamodels in a structured setting, thus leading to the automation of meta-
model validation as defined in EMF. (We note that validation is not referring to sim-
ulation validation.) Constraints defined for the generic and domain-specific atomic

DEVS metamodels enable validating concrete atomic models.
3.2.1 Meta-Behavior Modeling in EMF

We begin by sketching the basic details of the M2, M1, and MO layers for the
atomic DEVS model shown in Figure 3.1} At the M2 layer, the Ecore is an instance
of the Ecore at the M3 layer. The M3 Ecore metamodel is at a higher level of
abstraction for the atomic DEVS metamodel. That is, the DEVS metamodel extends
the instance of the M3 Ecore. The role of the M2 layer is to support developing
concrete models at the M1 layer.

As noted earlier, the DEVS-Suite simulator is developed in Java, a strongly typed
language. The kernel of the modeling engine contains data structures and operations
that satisfy the DEVS modeling formalism. Thus, at the M1 layer, user-defined
models can be generated from the DEVS metamodels. Suppose we want a Processor
model which can receive bags of input, process one of them, and generate one or more
outputs. Assuming we have an eProcessor metamodel, it can be used to create the

concrete Processor model. This concrete model at the M1 layer can be created for

38

a platform-specific simulator, such as DEVS-Suite. The DEVS-Suite simulator can
execute an instance of the concrete model at the MO layer.

In MDA, the MO layer refers to the instances of the user models. These can be
physical objects or executable software objects (e.g., compiled code). Such instances
can be modeled as UML Object diagrams. As software objects, they can exist at
execution time, and their states may be stored, for example, like XML or byte code.
In contrast, for simulation, the MO layer refers to the users parameterized atomic and
coupled models. Therefore, at this layer, we have not only parameterized models but

also their instances as part of other coupled model instances (see Figure .

4 EMF Model Layers A
[\ | Ecore ‘
Mathematical UML General DEVS meta-model
| structure || behavior | o
=
|:> meta Domain-specific DEVS meta-model
| structure ” behavior |
*
- \ . / confoqms to
| |
: : Concrete domain- -
] I specific model s
e N
i *
Mathematical | =) uMmL concrete conforms o
| J
]
o
Model instance s
\ J

Figure 3.1: From Mathematical to UML to EMF Modeling.

Although metamodeling is not as expressive as programming languages such as
Java, it is shown to be useful, for example, as in the Graphical Modeling Frame-
work (Gronback, 2009). The metamodel behavior specification for DEVS functions is
achievable using Statecharts (Harel, [1987). The elements of a parallel atomic model at
M1 can be arbitrarily complex. An example is the external transition function. It can

have any attribute type, expressions, and control structures that a target computing

39

platform supports.

The signature definitions for the atomic model external and internal transition
functions can be defined using structural metamodel as in EMF-DEVS. The abstract
definitions for these two functions must include some operations needed to result in
some appropriate state change. State changes in these functions can be defined as
transitions amongst source and target states. A transition may have input events,
conditions, and actions. A prototypical state transition is set to transition from a
source state to a target state. Such a constraint for state transitions can be identified
and validated at the M2 layer. The output and time advance functions can also be
set using operations and control structures. An operation can have attributes and
statements (McNeill, 2008). A metamodel behavior specification requires identifying
abstractions for state transitions in the external, internal, and confluent transition
functions.

Similarly, appropriate abstractions are needed for the output and time advance
functions at the M2 layer. The behavior of all DEVS functions as just described,
can be validated using EMF. The definitions for the atomic model functions must be
consistent with the abstract DEVS simulation protocol.

To model the content of EOperation, we need to extend the EMF Ecore metamodel
(McNeill, 2008). Therefore, we will extend the Ecore metamodel to model DEVS
functions that have been defined as EOperations (i.e., interface definitions) in EMF-
DEVS. Our goal is not just to validate domain metamodels. We also aim to execute
these functions after concrete models are generated for a specific simulator, DEVS-
Suite, for instance. The code generation creates the corresponding code for the defined
elements in the metamodel. In EMF, the generator model plays a significant role in
how the resulting code could be generated and organized via some settings that may

differ based on the targeted platform. Those settings can be configured separately

40

to ensure that the model maintains its platform independency. The process can be
manipulated in a way that will lead to producing concrete models.

Thus, the general metamodel, shown in Figure 3.2} extends the EMF Ecore meta-
model with some definitions for state transitions, actions, and conditions. It also in-
cludes essential elements of the atomic DEVS model. The metamodel extends Ecore
elements with DEVS functions and also others for defining behavior. By extending
Ecore, we are enabling EOperation (which is used to define DEVS functions) to in-
clude some content that can transform into the concrete code rather than just having
operation signatures. The extended EOperations will be contained in the extended
EClass (eAtomic in our case) since they cannot be contained in EClass itself. This
is a reason for extending EClass and EPackage since the Ecore elements themselves
(EClass and EPackage) will not allow adding the extended ones (Extended EClass
and EOperation) [McNeill| (2008]). Therefore, we first extend EOperation as a basic
step to support behavioral DEVS metamodeling. Second, we extend EClass to allow
adding the extended EOperation. The third step is extending EPackage to enable
adding the extended EClass.

The second part of the metamodel (shown in the middle of Figure is specializ-
ing eDEVSOperation to represent external transition, internal transition, output, and
time advance functions. All of these can include operations that have statements and
local variables. They also may have return values. The eDeltExt and the eDeltInt
represent external transition and internal transition functions. Both compose transi-
tions defined to capture the concept of state transition. State transition has a name
defined as an EString, source, and target defined as an ETypedElement, input de-
fined as an optional reference of type elnput to be used in the external transition
function. It can also have some actions and conditions. We also added two spe-

cialized state transitions for the phase and sigma primary states. Source and target

41

phases are added to the state phase transition (StatePhaseTransition) and defined as
an EString. Source and target states for sigma are added to the state sigma tran-
sition (StateSigmaTransition) and defined as an EDouble. Any other specific state
transition can also be defined in the same manner for domain-specific models.

The behavior is consistently captured at the general and domain-specific meta-
modeling at the M2 layer. The generic behavioral metamodel is predefined for the
modeler. The domain-specific meta-behavior can be defined by the modeler as needed.
The same approach is followed for the actions and conditions that are represented
abstractly and then specialized in providing the support for developing the behavior
at the concrete model. The eOutput and eTA elements refer to the eState in addition
to the inherited composition feature from eDEVSOperation to support having other

operations for more functionalities.
3.2.2 Constrained Meta-behavior Modeling

The metamodel shown in Figure [3.2]is based on the parallel atomic DEVS model.
This model has an infinite state-space, and therefore model validation (as in model
checking) is impractical. A sub-class of DEVS called Finite-Deterministic DEVS (FD-
DEVS) (Hwang and Zeigler}, 2009) has finite state-space, which makes it attractive for
behavior modeling at the M2 layer. The total state of the atomic DEVS metamodel
can be defined as {primary} x {secondary} x Ry . An atomic FD-DEVS model
restricts the range of values for the time advance function to Q. Model validation
is computable when the values for inputs, outputs, and states (including the time
to next event) are finite. These constraints can be validated for having legitimate
output, time advance, and internal and external transition functions. Constraints for
state transitions (belonging to both external and internal transition functions) can

be validated. For example, states in any state transition can be validated to include

42

GeneralBehavior ## DEVSStructure
— BiFonah — H EcClass [EPackage
peration

A | I —— ——

l i
‘ J E eAtomic] [E] eDEVSPackage]
(

I J

[0..4] localvariable

[0..*] eoperationimpl

[0..%] inputs
diliin B aopata W i [1.1] state
H Localvariable [0..1] localvariable)
[0..%] statement [estate
[0.1] input [1..1] state
H statement

[1.1] state [[1.1] state

DEVSBehavior ‘

[eDEVSOperation
E Action { o
i L] L]

D
[stateTransition ’ ‘

[0.4] actions - E eDeltext | | E eDeltint | H etA [eOutput
= name : EString [2..*] extTransitions | |
It jt| I
T [2..] intTransiti ?

[0..*] conditions | |

| [stateSigmaTransition | | [statePhaseTransition |
E Condition
= source_sigma: EDouble = 0.0 = source_phase : EString
o target_sigma: EDouble = 0.0 © target_phase : EString

Figure 3.2: A Metamodel for Atomic DEVS Model with State Transitions.

only the states defined in the model's state set, and there are no unreachable states.
For the external event, its input event can be checked to be included in the input
set. State to output mappings can also be validated by checking whether or not every
output belongs to the output set. We can also check if outputs are computed using
states that belong to the state set. Time to next event for every state transition must
also belong to Qo). When the time interval is infinity, three is no output. Validation
of behavior domain-knowledge can be augmented with user-defined constraints.
Considering a domain-specific metamodel, they may have their constraints on the
input, output, and state sets as well as the atomic model functions. These constraints
must be defined by the user, for example, by extending the EMF-DEVS metamodel.

Users may specify domain-specific constraints using the EMF Eclipse framework and

43

tool. Of course, user-defined constraints cannot contradict those that are defined
for the generic metamodel. We note that the restrictions in the atomic FD-DEVS
model and its dynamics may require complex control structures. State transitions in
the external (or internal) transition function may have to be synthesized in complex
patterns. Transitioning between external and internal transition functions can have
many configurations.

Similarly, the output and time advance functions may have complex structures.
These considerations restrict the behavioral metamodeling describe above. Nonethe-
less, the capabilities afforded by MDA is advantageous as compared with model de-
velopment where there is little or no means to start from metamodeling and reach
executable models. Specific state transitions can be individually validated at the
M2 layer. Behavioral metamodeling developed in this research aids model validation
before transforming them into an M1 model and M0 simulation. Once concrete FD-
DEVS models are generated from metamodels, they can be validated using existing

techniques and tools (Dill, [1989; Hwang and Zeigler, [2009).
3.3 A Processor Example Behavioral Metamodel Snippet

In this section, we will demonstrate the process of developing a domain-specific
model (eProcQ as shown in Figure , which represents a simple processor with a
queue. The processor metamodel is developed using the definition provided at the
atomic DEVS metamodel. The root element is eDEVSPackage, which can contain
the eAtomic models such as eProcQ and any other EClass such as Entity and Queue.
Entity and Queue EClasses are defined similarly to their definition in the DEVS-
Suite GenCol library (ACIMS, [2017b)). Figure shows all the model elements in
the EMF editor and Figure depicts the corresponding Class Diagram for the

eProcQ Ecore model. Detailed specifications are provided for the external transition

44

function relative to other modeled elements such as model states and variables.

We created two transitions and gave the values associated with each one. The
first transition is for the phase, and the other one is for the sigma. Figure shows
the specified properties for the state phase transition that complies with the state
phase transition definition. The phase transition has a condition and an action. The
condition is modeled as inequality for the queue size. The action is modeled as a
method call for add operation, which is defined in Queue EClass. The action allows
specifying the object, an action name that can be any operation associated with
that object, and parameters. All of them have been defined as EReferences to their
targeted model elements (see Figure . Figure shows an inequality condition
specified based on the queue size. It has a left-hand side which is specified as an
action (queue.size() as shown in Figure and right-hand side which is specified
as an integer value of type Elnt in this case. Currently, the metamodel is limited for
only those scenarios since they are the only ones defined within the atomic DEVS
metamodel. The implementation is done on a Windows 7 Computer. The models are
created using Eclipse Mars Milestone 6 with Eclipse Modeling Tools and EMF Ecore
2.11.

3.4 Conclusion

The term metamodel invokes different understandings since it refers to some model
abstracted to another. It can encompass theories, methods, tools, and domains of dis-
course, including simulation. As such, metamodeling is used by theorists, developers,
and practitioners in software and simulation engineering, among others. We consid-
ered the modeling formalisms, and in particular, asked at what levels of abstraction
can the behavior of a prototypical atomic DEVS model be specified. Our inquiry is

to distinguish meta-, concrete, and instance modeling layers from the standpoint of

45

[C] Properties 52

Property Value
Input 4 elnput Job
= 3 = Name =4
4 @] platform:/resource/EMFDEVS_Processor/model/eProc.ecore -
a .
4 < eDEVS Package ProcPack Source = phas.e. Estring
4 B ehtomic eProcQ :ourcephase »jp;ssweEs ‘
4 # eDelt Ext deltbxt Ta’ge: - ,E"c:se‘ ting
=% e: EDouble SIgephace =ACNE
=<3 input: Entity
4 < State Phase Transition t1
. A (c) Phase Change for Tran-
4 < Inequality LESS_THAN
4 Action sition t1.
<4 State Sigma Transition t2
= processing_time : EDouble [Properties 52
= queue: Queue Property Value
job : Enti
z JOSt . oy Localvariable e
‘ Tt . Name & add(Entity)
= Ehaseiigtrlngl Object = queue : Queue
S e Parameters <3 input : Entity
<4 elnput Job
4 [Queue
4 Rl (d) Action for Transition t1.
=3 entity : Entity
4 @ remove(Entity) e
P rties 23
<3 entity : Entity BSOS
@ size() Property Value
4 [Entity Operator I= LESS_THAN
= name: EString RHS 110

(a) Ecore Editor View for the Processor. (e) Less Than Inequality for

H eProcQ H Queue o .
| — — Transition t1.
© processing_time : EDouble = 0.0 | [0,1] queue | @ add(entity Entity)
¢ deltExt(e EDouble, input Entity) @ remove(entity Entity)
@ size [T Properties 52
Property Value
0.1] job
i Localvariable =
5 entiy Name @ size()
4
Object = queue : Queue

©= name : EString =
- paramEters =

(b) A Class Diagram for the Processor. (f) Left Hand-Side for the

Less Than Inequality for

Transition t1.

Figure 3.3: Ecore for a Processor with Primary State Transitions for the External

Transition Function.

Model-Driven Architecture. These layers can form a basis for building a new gen-

eration of modeling and simulation frameworks and tools that can help move from

46

metamodeling to simulation code step-by-step. It is helpful to have modeling methods
with tools that can not only represent mathematical abstractions within the MDA
layers but also introduce capabilities to enforce verification and validation as much
as possible in the M2 before resorting to the M1 and MO layers.

One of the challenges facing building such ideal modeling and simulation tools is
the difficulty of specifying the behavior of models. We focused our attention on the
atomic DEVS model. We proposed defining meta-behavior for general and domain-
specific modeling using the concept of state transition from Statecharts for external
and internal transition functions (see Figure [3.3). We then extended the EMF Ecore
operation with the external, internal, output, and time advance functions. These
functions, unlike the mathematical counterparts, can have some of their behaviors
defined. These functions can also be validated to a limited degree. To validate, we
described the necessity of restricting DEVS to Finite-Deterministic DEVS. We devel-
oped an example to show behavioral metamodeling for the atomic DEVS model. We
focused this work on the platform-independent metamodeling. We briefly discussed
its role in developing platform-specific tools. Looking further into metamodeling,
we observe that a target simulator must lend itself to the behavior defined in terms
of state transitions, output, and time advance functions. Each function can have
parts that are arbitrary and specific to the system being modeled. Thus, mapping
behavior at a higher-level abstraction (as in the M2 layer) to lower-level abstractions
(as in M1 and MO layers) involves execution semantics (e.g., simulators may handle
simultaneous event and communication differently despite being consistent with the
abstract simulation protocol). Thus, it is desirable to lift behavior modeling as much
as possible to the M2 layer with support to checking syntax and semantics with as
little dependency as possible on the M1 and MO layers. It is also necessary to account

for simulator design/implementation choices.

47

Knowing the high degree of DEVS expressiveness and the MDA framework, it is
easy to see approaches that such as FD-DEVS should simplify the development of
verification and validation methods and tools. The degree, to which the behavioral
metamodel may apply to other kinds of modeling formalisms also, remains as future
work. In particular, for models that cannot be represented as DEVS, our approach
for specifying meta-behavior may turn out to be useful. Finally, we believe exciting,
challenging theoretical, methodological, developmental, and practical research remain
to be formulated and answered for achieving general and domain-specific multi-layer

behavioral modeling, including meta-modeling.

48

Chapter 4

AN APPROACH FOR ACTIVITY-BASED DEVS MODEL SPECIFICATION

The Unified Modeling Language (UML) and the Model Driven Architecture (MDA)
framework are commonly used to specify models of systems. They offer modeling
constructs (e.g., activity node and control flow) capable of specifying DEVS atomic
model behavior. Furthermore, it is possible for some UML behavioral specifications,
in conjunction with the MDA framework, to be shown to conform to the DEVS for-
malism. Tools, supporting MDA, offer built-in capabilities to validate user-defined
DEVS models in a disciplined manner. Enabling early validation of simulatable mod-
els has significant benefits, especially as systems continue to grow in complexity and
scale rapidly. These benefits can be achieved once the model development envi-
ronment is enriched with some formalism that has a well-defined syntax (modeling
constructs) and a sound semantic (execution protocol). The DEVS formalism and its
abstract simulator provide a suitable means to satisfy these needs for developing and
simulating system-theoretic models (Zeigler et all 2000).

Many approaches use popular languages (such as Statecharts) for specifying the
behavior of discrete-event models. Some efforts focus on restricted variants of the
DEVS formalism such as FD-DEVS (Hwang and Zeigler, 2009)), supporting model
verification. More recently validation of DEVS behavior, grounded in UML meta-
modeling and the Eclipse Modeling Framework (EMF), a realization of the MDA,
has been proposed by [Sarjoughian and Markid| (2012)). Auto-generated simulation
models have also received attention with few tools supporting some basic behavior
modeling.

To specify the behavior of atomic DEVS models using UML specification methods

49

such as Statecharts, it is necessary for the methods to conform to the DEVS formalism.
It implies that both the syntax and semantics of the atomic model (structure and
behavior) must be captured in UML models (such as Activity models) and their
variants. Furthermore, the atomic model specification and its simulators need to
be loosely coupled. That is useful for the models to be not specific to some target
simulator.

The availability of software system modeling frameworks with their increasing
automation capabilities is invaluable for reducing the gap between DEVS and UML
abstractions (Sarjoughian et al. 2015; [Sarjoughian and Markid, 2012; Zeigler and
Sarjoughian, [2012). Advanced architectures of frameworks such as EMF offer im-
portant functionalities across the model development lifecycle. Some capabilities are
straightforward to employ the following guidelines and standards, but others require
rigorous analyses and further development to apply for simulation purposes.

To define behaviors of any arbitrary atomic DEVS models, we customize the UML
activities according to the atomic DEVS formal specification. We will describe the
metamodel of activities in the context of atomic modeling. Due to the nature of
the Activity modeling language as a subset of UML, the usage of the activity meta-
model significantly varies with different views and aspects in the modeling process.
Therefore, we consider different views that can be taken when employing activities
to describe the behaviors of DEVS atomic models. The activity explicitly defines
a set of modeling capabilities such as sequencing which leads to many possibilities
corresponding to different ordering and partitioning of the behavior being modeled.

In this work, we briefly give a background about some candidate languages for
developing behavioral atomic DEVS models with an emphasizes on the UML activities
as defined in the UML 2.5 specification (OMG, [2012)). After the related work, we

present our approach by going through different views for specifying the behavior

20

followed by presenting an activity specification for the atomic DEVS model. Then,
we illustrate the usage of the actions in the atomic model, followed by an example.
After that, we discuss further the relationship with the DEVS Statecharts (Fard and
Sarjoughian, 2015)). Finally, we conclude and briefly discuss ongoing future research.

4.1 Related Work

There are many works on the concepts, methods, tools, and technologies to make
DEVS more accessible to users. We focus on some of the ongoing works that use cer-
tain UML behavioral diagrams for DEVS model specifications. Some works address
the need to create models that are ready for simulation via transformation and trans-
lation techniques. They take into account some conventional approaches for modeling
the behavior of systems such as Statecharts (state-based approach) and activities (flow
and event-based approach). They target specific simulators where high-level model
specifications can be partially translated to code that can be executed using a specific
simulator. Other works consider model-driven techniques in addressing the problem
of specifying behavior at different levels of abstractions. They consider metamodeling
and model-driven architecture as a means for defining modeling languages that take
into account the behavioral specifications of the system. Formal verification is being
addressed as well in some of these approaches and frameworks using a variety of soft-
ware engineering methods and tools. Our work focuses on behavioral atomic DEVS
model specification. We neither focus on transforming models nor translating models
to simulatable code. We aim to enrich developing the behavioral model specification.

There have been some studies in using Statecharts for modeling atomic DEVS
behavior. In an early work, the use of Statecharts for defining the behavior of DEVS
models was proposed by [Schulz et al|(2000). A mapping from DEVS models to UML

Statecharts is offered to support graphical DEVS model development (Zinoviev, [2005)).

o1

In another work, an executable framework based on UML Statecharts is developed
by Mooney and Sarjoughian (2009). This work shows a subset of UML Statecharts
models that conforms to certain properties, making them executable. In recent work,
a Statecharts metamodel specialized for DEVS is proposed (Fard and Sarjoughian,
2015)). Other works focus on defining UML state machines for behavioral definition
along with use case, sequence, and timing diagrams (Risco-Martin et al., [2009)).
There is a significant distinction between viewing the behavior of atomic models
in activities as opposed to Statecharts. We also think that activities as a language
for specifying system behavior have not received sufficient attention, especially after
the release of UML 2.5 (OMG] 2012). There have been few works that consider ac-
tivities as a way to approach the simulation for models specified at higher levels of
abstraction. They focus on transforming the higher-level models into an executable
form. In (Foures et al., 2012)), the goal is to provide a simulation for activity diagram
conforming to OMG SysML specifications. The solution was not developed for DEVS
models (Pasqua et al)|2012). Instead, it proposes transforming sequence diagrams to
FD-DEVS models. It also generates Java code for atomic models that have simple
behaviors. In the SysML profile for classic DEVS (Nikolaidou et al., 2008), the ac-
tivity diagram is used to facilitate the definition of the external transition function.
There are also other three sub-diagrams for describing the behavioral specification
of the atomic model. Those diagrams are SysML constraint diagram for defining
states, parametric diagram for establishing state association, and state machine dia-
gram for describing the internal transition, output, and time advance functions. In
recent work, UML activity modeling is used to define the external, internal, output,
and time advance functions for atomic models of a health care system (Ozmen and
Nutarol, 2015). These models, as compared with mathematical specification or code,

are more attractive to domain experts. However, the use of activities in this work

52

incorporates with the simulation routine resulting in agent-based models. Behavior
modeling is achieved by representing the functions of the atomic and coupled DEVS
model component of a system as UML activities. Defining their relationships takes
place in terms of the DEVS simulator protocol.

Ptera (Feng et all [2010) is also another way of specifying an event-oriented model.
It contains actions, final, and initial parameters that can attribute to an event that
represents a vertex in the model. The activity has different notations for each one of
those attributes. It lacks the rigorous definition of time as opposed to the Ptera model
of computation. In contrast to the existing works, our focus is to employ activities and
the activity metamodel itself and how to enrich it to arrive at activity-based DEVS
model specifications. We will view the activity as a major diagram in the object-
oriented paradigm to support the specification of an atomic model. However, rather
than using UML activity modeling as-is, we are interested in specializing it to capture
the atomic DEVS model syntax and conform to the DEVS execution semantics. The
specialization is necessary since the UML activity syntax and semantics is aimed at
satisfying a wide range of needs. Thus it lacks the essential constructs to specify

atomic models that can conform to the DEVS formalism.

4.2 Approach

We begin by considering DEVS metamodels (i.e., DEVS to SMP2 (Yonglin et al.,
2009), MDD4MS (Cetinkaya et al.,[2011)), and EMF-DEVS (Sarjoughian and Markid,
2012))) that have been proposed based on MDA. Based on such metamodels, we
focus on the behavioral specifications using a model-driven approach to be consistent
with the other existing approaches. UML State Machines (Nikolaidou et al.l [2008)
provides a specification based on an object-oriented variant of the original Statecharts

formalism (Harel and Politi, |1998). However, the metamodel of the UML State

93

Machines associates the Behavior element with the State and Transition elements.
The behavior defined as an effect of Transition may also have actions assigned to
it. Likewise, Behavior can be defined for State as an entry, exit, and doActivity.

The action takes place in an activity as an executable node. A subset of UML 2.5

Behavior
0.1
0.1
Transition

metamodel is shown in Figure {4.1]

|
—O"l‘| Activity | | StateMachine |
. 0.1 N
ActivityNode | ActivityEdge | |

| ControlNode | | ObjectNode | | ExecutableNode |
A

Figure 4.1: A Subset of Behavior Elements and their Relationships In UML 2.5 Meta-

model.

Here, we examine how activities can be employed in the context of atomic DEVS
modeling. Activities may be used from a different point of view in modeling behavior
of an atomic model. A view may also depend on using other kinds of models. We
consider three views for specifying the behavior using activities. The first view is
to create a separate activity diagram for each routine belonging to a function. For
instance, the activity captures the behavior, including actions and their order, for
using an input to set the state of an atomic model. For each control state, there
is a set of activities defined to handle one or more inputs. The second view is to
create an activity for each function. For an atomic model, five activity diagrams
are corresponding to each of the external transition, internal transition, confluent,
output, and time advance functions. The third view defines one activity diagram that

corresponds to the behavior of an atomic model as specified by all of its functions.

o4

sub-activity

> Input received H[Set phase H Set sigma]

(a) A Sub-Activity to Describe a Simple Routine.

- N
atomic
<<iterative>> \

| ‘ Set sigma H Set phase]
'—9[Initialize]ﬁ> output l% Send output>—)> deltint |—>[Set phase]—)[Set sigma]

(b) One Activity for the Atomic Model.

X

J

Figure 4.2: Different Views of Activities DEVS Modeling.

4.2.1 Three Views for Specifying Atomic Model Behavior

In the first view, an activity is defined to specify the behavior for each event-
routine as a subordinate unit of the corresponding DEVS atomic model component.
We refer to them as sub-activities. It takes advantage of the existing definitions
provided in the activity diagram to complement Statecharts by ordering actions. It
does not involve complex behavior handling concerning other DEVS components nor
the simulator. However, it can represent some basic patterns intrinsic to modeling, for
example, the external transition function, as shown in Figure [4.2al Other procedures
are assumed to be handled externally in a separate activity or even in a different model
that can communicate with the activity model. An example of this behavior would
be managing decision points based on the control state for the external transition
function. The selected activity is executed directly once being called. Thus, it is a
suitable when those activities become sub-models due to their simplicity. The option
removes most of the encountered complexity when handling the total state of an

atomic model in state transitions.

95

The notion of activities provide some means for handling more complex scenarios
among atomic model parts in addition to the capability of handling flows. We devised
the second view to capture the concept of control in DEVS functions. An activity is
created for the external and internal transition, confluent, output, and time advance
functions. In this view, we use additional constructs for representing behavioral
patterns that can be captured in the DEVS functions. For example, a decision node
can be used to check for the current phase. Decision nodes can also be used to monitor
ports and input values. Arbitrariness is presumed for any order that is not explicitly
defined in the model; this conforms to the parallel DEVS formalism. For instance,
the expansion region construct can be used to iterate a collection of received inputs
in an arbitrary order. The execution of such a scenario is given by the simulator
protocol and its implementation in some target simulator. These activity models, as
compared with the first view, have more artifacts for handling more complex patterns.
However, the modeler has more capabilities at hand in modeling and constraining the
behaviors of atomic DEVS models.

Considering the functions of an atomic model to be viewed in one activity is also
possible; this is the third view. However, this holistic view necessitates having defini-
tions and artifacts involving relationships between the atomic model functions. Unlike
the second view, implicit relationships, for example, between internal and external
transition functions may be modeled. In this view, we may also take into account the
simulation protocol. For example, in the DEVS-Suite simulator, the atomic models
components are specified and also simulated independently of each other. In this
view, the behavior of the model is defined explicitly in some structure that accounts
for the simulator. Such a structure must conform to the simulator interfaces using
some activity artifacts such as accept event actions. A major drawback for this view

is that model specification is tightly dependent on the abstract simulator. The be-

o6

havior of a simple processor model (Zeigler et al.,|2000) (it processes inputs it receives
and sends out processed inputs) is shown in the first view Figure and the third

view (Figure |4.2b). Next, the second view is detailed along with the processor model
shown in Figures [4.3] and [4.4]

4.2.2 Activity Specifications for Atomic DEVS Model

Considering all the UML activity constructs (OMG]| 2012), we can model even
more complex behavior by using a fork, join, decision, merge nodes, and expansion
regions. We also use call behavior actions. The nodes are to specify the behavior
of the atomic model components where the call behavior actions are to depict the
communication points with other models. Each node is used to represent some specific
concepts in the atomic models. We describe these artifacts and their corresponding
concepts in the atomic DEVS model. Then, we present how these artifacts (see Table
1) can be used to define the behavior of the exemplary processor model with multiple
inputs.

The fork node splits the flow into concurrent flows, each having multiple input
events. The expansion region can also be used for the same purpose. Unlike the
fork node, the expansion region is a specialized action which is a structured activity
node. It defines concurrent flows of its included elements for the number of input
events in the collection of received input events. However, the execution might be
performed sequentially based on the simulation engine design and its implementation.
The iterative expansion region processes the collection of received inputs sequentially.
The order of processing these inputs is arbitrarily determined. In a parallel atomic
DEVS model, multiple inputs can be received simultaneously. Therefore, the activity
has a collection of inputs processed in an iterative expansion region. Further, these

inputs can be examined inside the region via some activity nodes nested in the same

o7

region. The activity can be terminated inside the region.

The decision node provides a means for controlling the flow by having multiple
outgoing edges with guards assigned to all edges. For example, the decision node can
be used to control the flow based on the phase. The phase is read in a preceding
action and then evaluated by some guard conditions associated with some outgoing
edges from the decision node. An else can also be defined as a guard for one of the
outgoing edges.

We can also use a special kind of action called CallBehaviorAction. It allows the
invocation of some behavior in a different model. We can use this action to call the
behavior specified in the sub-activities discussed in the first view. For each input
arriving in some control state, the sub-activity is called synchronously meaning that
the main activity will not proceed until the called behavior completes.

We now create multiple activities for atomic model behavior, as shown in Table 1.
These activities are created for modeling the behavior of an atomic DEVS model with
multiple inputs. We model the external, internal transition, and output functions,
each in a separate activity. Activity models for the time advance and confluent
transition functions can be specified similarly. We use the artifacts as described in
Table 1 to provide the required modeling capabilities for capturing the behaviors of
atomic DEVS models. The semantics of these artifacts as defined in UML specification

aligning with the concepts described for DEVS.

4.2.3 Action Specifications for Atomic DEVS Model

Actions are used as executable nodes in the activity diagram. They are the fun-
damental units of behavior specification in UML. Some actions change the state of
the system. This kind of action in our approach satisfies how states can change in

the DEVS atomic internal and external transition functions. For example, a phase

o8

change is modeled using add structural feature value action named Set phase. The
value of the target phase is modeled using value specification action with the value of
the target state. The value, to be assigned, transmits through the output pin using
an object flow connected to the value input pin of Set phase action. The actions
can take place in the activities corresponding to the external and internal transition
functions. A similar procedure follows for setting sigma or other state variables.

Other kinds of action support handling objects. Read self action is used to obtain
the current object context and place it in its output pin. Value specification action is
also used to provide specific value and put it in its output pin. The structural feature
actions are used for either assigning or retrieving some features of an object. Both
are used for the phase, although they can be used for other features or more complex
objects.

Event actions can also be used. An accept event action can be used to model the
waiting for an event to occur in some other entity to proceed in the activity flow. In
the context of UML actions, this event can be caused by the simulation protocol to
trigger some other parts of an atomic model. It may also trigger other models that
decompose the behavior into multiple models. There can also be an accept time event
action which is used to model wait time. We also use a send signal action which can
be used to model invocation for some other components. It is also used to enforce
some order when used with accept event explicitly. For example, to enforce the order
of executing the output and internal transition function, a sending event signal must
complete enabling the accept event action. However, this sort of scenario could be
viewed as part of the simulation protocol.

We also use invocation actions. An example of these actions is send signal action.
A call behavior action is used to call either an operation or an activity. The action can

be synchronous if it has to wait for the called behavior to complete. Otherwise, it can

29

be asynchronous and then immediately proceed after calling the associated behavior
or operation. We use synchronous call behavior action in the external transition
activity to enforce the activity to wait for the completion of sub-activities before
proceeding to other activities. Suspending is necessary since the behavior of the
atomic model executes sequentially (i.e., the behavior in any of the functions of an
atomic model is sequential).

Using the described activity diagram artifacts, we can create activities for the
output and internal transition function for the processor model shown in Figure |4.3]

The activity for the external transition function shows in the following section.

Read phase

p
output

.

deltint

H Set phase H Set sigma]

Figure 4.3: Activity Models for the Processor (Simplified).

4.3 Statecharts and Activities

The actions belonging to activities can be used with states and transitions in Stat-
echarts. These actions can be viewed as the sub-activities in activity models detailed
in the previous section. This approach follows the syntax of UML 2.5 where the effect
of the transition is described using the Behavior element which is a generalization for

the Activity as well as the State Machine (see Figure . We consider the DEVS

60

metamodel (Sarjoughian and Markid, [2012) as a higher-level abstraction to couple
behaviors of atomic metamodel (Sarjoughian et al) 2015). The proposed abstraction
offers to couple their input and output ports as formalized in the parallel-coupled
DEVS model.

Together Statecharts and Activity models support richer behavioral modeling for
atomic DEVS models. Figure illustrates this approach and highlights the basic
relationships between Activity and Statecharts models. The DEVS structural meta-
model for the atomic and coupled DEVS models is not the focus except the input
and output ports for atomic models. The top left-hand side shows the coupled model
GP (GeneratorProcessor) composed of a generator (Generator) and processor (Pro-
cessor) models. The top right-hand side shows the external transition function of
the exemplary processor in the activity model. The bottom left-hand side shows the
external function of the same exemplary processor as a Statecharts. Finally, the bot-
tom right-hand side shows one of the sub-activities. The sub-activity can decompose,
such that, it includes other activities to develop simpler behavior models. That is,
we avoid developing unnecessarily complex behavioral model specifications. The de-
composition process must conform to the relationships with the Behavior element as
defined in the UML 2.5 metamodel.

The Activity and Statecharts models show in Figure to provide complemen-
tary behavioral specifications for the processor model. Both can be used to describe
DEVS model specifications; none of these alone is known to be sufficient to have a
complete specification of an arbitrary atomic model. Given the modularity in DEVS
(models can only communicate with one another through couplings), the Activity
and Statecharts models can only represent encapsulated behaviors of atomic models.
These behavioral models capture different aspects of atomic models using distinct

modeling syntaxes and semantics. We can use these behavioral models to concretely

61

represent the abstract mathematical specifications of the atomic model functions. In
the processor Activity model, the inputs for the atomic model processor is defined
as an input parameter for the activity. The input, however, is defined as an event
for its corresponding transition in the Statecharts model. Both models define phase
state transition from passive to active. In the activity model, we use multiple actions
and control nodes to describe the implementation specified in the state transition.
We use the read phase action, decision nodes, and set phase action. This sequence
of nodes in the activity model is equivalent to state transition and actions defined in
the Statecharts model.

Using Activity modeling overcomes some limitations in the other Object-Oriented
modeling methods given its unique capabilities such as sequencing, control, and data
flow. The use of DEVS Activity modeling is promising for generating models that
can be executed in simulators. Such models are especially useful when considering
the ongoing efforts to have tool support for defining model specifications and auto-
mated code generation. Overall, as Figure 4.4 shows, Statecharts and Activity models
complement each other and support creating a richer specification for atomic models.

The activity diagrams in Figure 4.4) may be developed in tools such as Papyrus
(Eclipse Foundation, [2016b). A modeling engine specialized for developing activity
models for atomic DEVS models can also be developed. The coupled GP model and
the external transition function belonging to the Statecharts of the Processor model

are developed in CoSMoSim |ACIMS| (2017z).

4.4 Conclusion and Future Work

Few approaches are proposed to utilize the potential benefits of employing MDA
concepts for DEVS. These approaches follow guidelines to enrich the development of

simulation models. Including behavioral specifications in a model, the development

62

~

PC External Transition Activity (Activity model)

x: Message

i [Producer_1 LA
Start Out g& .r
/'I
|

I
"

<<iterative>>

Call sub-act for Set
branch passivel.h phase

Callsub-actfor |] Set
branch else th “phase

[phase is

External Transition (Statecharts model) | .. A
Job Passive Sub-Activity

(v})

passive 1In>[job] ([) $‘[processingTime, setSigma]‘@VaIue’\l active

Figure 4.4: The Overall View of the Approach and Relationships between Different

Models of Consumer Behavior.

lifecycle demands careful usage and guided by the MDA framework. Building models
in stages can help modelers move across model abstractions. We can start developing
Activity models and supplement them with Statecharts models, for example.

In this work, we described using modeling artifacts such as activity nodes and
activity edges to specify behavior patterns such as sequencing and synchronization
defined in Activities Behavior metamodel. We proposed customizing activity mod-
eling to specify behaviors for atomic models. The activity metamodel can be used
in various ways. We discussed creating activity models considering different views
and exemplified behavioral activity modeling for an atomic processor model by a set
of DEVS-based activity constructs. For future work, we plan to extend this work
to support domain-specific activity-based behavioral DEVS modeling. We also plan
to extend the CoSMoS to support Activity modeling for DEVS atomic models. The
extension requires Statecharts and Activity models not only conform to the DEVS

formalism but also consistent with one another. Achieving this kind of capability

63

may lead to improved model verification and validation.

64

Chapter 5

DEVS SPECIFICATION FOR MODELING AND SIMULATION OF THE UML
ACTIVITIES

The path toward utilizing the capabilities available in discrete event system mod-
eling is essential. We are currently still far away from fully enhancing the use and
therefore preventing failures that may arise in such systems. The concern of advanc-
ing and investigating discrete event systems has been continuously growing to attain
an appreciation of the potential solutions and consequently taking advantage of them.
UML has been dominant in the world of software modeling. Some aspects of it bear
resemblance with discrete event systems which have been subject to research in the
last decade from two points of view. The first one is to use UML as a language for
system specifications while the other one is to supply UML with concepts to overcome
its weakness in terms of formal grounding. The potential value that can be added
to UML by providing a rigorous mathematical specification is priceless. It brings the
value of formal specification into a widely used language by modelers.

However, there is a substantial complexity that can arise while trying to bring
the formal specification to such a language. First, we are dealing with a high level of
ambiguity that is necessary to maintain some level of generality. The language has
standardized around the concept of allowing end-users to comprehend its models in
a human-understandable manner. Adding formal specification may potentially result
in relatively sacrificing some general ideas and definitions. Such exclusion certainly
makes the problem challenging in addition to the inherent complexity and ambiguity
that might arise in the language itself.

The problem has been widely discussed in research from both theoretical and

65

practical aspects. The solutions also widely vary. Researchers have been continu-
ously providing extensions, frameworks, and tools. Some solutions rely on further
knowledge about the intended domain while some others attempt to remain more
neutral and domain-independent. The same perspective has also applied regarding
platforms and applications. The notion of behavioral DEVS metamodeling is in-
troduced in a previous work (Sarjoughian et al., 2015) to provide some support for
behavioral specification at the meta-levels. SysML is one of the most common UML
profiles that has been devised based on similar motivation for system engineering,
and yet it is challenging to simulate (Nikolaidou et al., 2016]).

Some current solutions do not incur the current lack of formality. Others require
a substantial amount of additions and extensions to resolve some ambiguities. On the
other hand, many approaches take a different direction and address the problem from
an implementation standpoint, for example, by operational semantics for well-formed
models. The Model-Driven Architecture (MDA) as well has been extensively used to
address the problem from an architectural point of view.

A suitable candidate to be used for activities is Parallel DEVS (Chow, (1996)).
In so doing, the fundamental activity behavioral elements of UML (OMG, [2012),
which are mainly action nodes in activities, can map to Parallel DEVS based on
their resemblance with atomic models. Elements of this subset may have inputs and
outputs. The transition function can be then devised for each element to implement
the behavioral specification according to their semantics. For example, the semantics
of the fork node can be specified. This realization can result in a conveniently visual
representation and simulation of surface UML models that have a collective behavior
in terms of its foundational elements such as in fUML (OMG] [2018)). This is achieved
by utilizing a Parallel DEVS simulator such as DEVS-Suite (ACIMS, 2017D)).

In this work, we begin by giving some background about related matters of UML

66

activities and the foundational UML subset (fUML). We then discuss the related
works. Next, we describe the basis for our rationale about the concept of activity
modeling and simulation and what does it mean in terms of DEVS modeling. Then,
we establish a fundamental ground for mapping between activities and DEVS con-
cepts. We demonstrate the approach with a simple illustrative example. Finally, we
discuss some findings and steps toward continuing the work in both the near and long

term future.

5.1 Related Work

A significant effort has been continuing to enhance the process of model-driven
practices for modeling in general and simulation modeling as well. The notion of
allowing models to be executable has existed for a while. In (Harel and Gery, (1996)),
an integrated set of languages are developed for object modeling around statecharts.
The goal is to produce an executable model which cannot be achieved without defin-
ing a precise semantics. That follows by an attempt to define a formal operational
semantics for UML statecharts (Latella et all [1999). Another executable UML has
been introduced by (Mellor et al., [2002) to complement UML with the code to make
it executable using model compilers. The notion of the proposed executable model is
inspired by approaches such as (Stahl et al., 2006). In (Kirshin et al., 2006)), a UML
simulator is defined based on a generic model execution engine. The simulator relies
on the available knowledge in the model upon the start of the simulation. It suspends
when there is missing information via user/tool interaction. More recently, the f{UML
(OMG], [2013) is proposed to provide the semantics necessary for executing a subset of
UML. Mayerhofer| (2012)) used f{UML to enable model testing and debugging. These
capabilities become accessible in a model execution platform called MOKA within

the Papyrus Eclipse (Eclipse Foundation, 2016b)).

67

There has also been an effort to employ model-based and model-driven method-
ologies for the system-theoretic specification (Risco-Martin et al., 2009; Mittal and
Martin, [2013a). [Mooney and Sarjoughian (2009) utilized DEVS for the creation of ex-
ecutable UML models based on statecharts. This approach, unlike other DEVS-based
approaches, is grounded by providing both specification syntax and execution seman-
tics with well-defined timing. Such grounding is necessary for concurrent handling of
events when developing composite executable UML models.

Activities have been a major modeling approach to resolving some limitations in
the current modeling practices. We characterize these efforts based on their purpose.
Some efforts aim toward automating and producing models that are suitable for
production, where the others are built based on the theory of modeling and simulation.
The model is a foundational element from both perspectives. The latter can also be
considered as a theoretical basis for general system design instead of just being tied
to simulation purposes. Thus, on one end, this is an attempt to devise a methodology
based on the DEVS formalism for activity modeling. On the other end, it provides a
profound means for specifying their precise semantics.

Our methodology relies on a different perspective in approaching model execu-
tion. We consider that the creation of the activity model is conducted for simulation
purposes even though it is intended and often used for actual software product de-
velopment. We want to ensure that the models are established based on rich system-
theoretic specifications. At the same time, we also maintain the same capabilities by
debugging techniques such as visualizing, controlling, and tracing the execution yet
in a disciplined manner. We take a similar position with Risco-Martin et al.| (2009)
and Mooney and Sarjoughian (2009). However, as in our previous work (Alshareef
et al., [2016), we keep our focus on the activity modeling and try to achieve our new

target goal exploiting the DEVS formalism.

68

5.2 Activities Simulation Through DEVS: Finding Rigor

There is some level of difficulty when it comes to modeling for simulation. A
profound simulation for activities accounts for further knowledge and details beyond
basic debugging capabilities provided in some approaches and tools. Although there
are some temporal aspects in the process of model debugging (Mayerhofer, 2012)), the
notion of time is not explicit in the debugging modes. The step is intrinsic to the
simulation modeling of dynamical systems based on a more expressive time notion.
In DEVS, the time period assigned to any state change due to external and internal
transition functions has arbitrary accuracy. Furthermore, the construct called elapsed
time allows inputs to be handled by the external transition function at any future
arbitrary time instance. These definitions can be effectively utilized to provide a
stronger foundation for the simulation of activity modeling. Instead of using a step-
wise or breakpoints as mechanisms to handle the execution of the activity model, the
time advance function and the notion of sigma are used. The step can then take place
during runtime based on these definitions. shows an overall view of how
the concepts of modeling and simulation employ in current practices. We will make

use of these entities as defined by [Zeigler et al.| (2000) to better perform the task.

Debugger

System < - - ‘@‘ » Simulator
Modeling Relation Simulation Relation

Figure 5.1: A Simplified View of Employing Concepts in M&S for Activities Modeling.

We construct the activity simulation based on the hierarchical and modular simu-
lation framework for the DEVS simulator. A set of atomic models generally specifies

the basic activity constructs. Consequently, each construct can be then simulated.

69

The coupling takes place between atomic models. The activity model is collectively
defined via coupled models. The communication between elements is handled through
messaging to represent the control as well as the object flow. The locus is transmitted

to other components according to the semantics of the activity.
5.2.1 A DEVS Grounding for UML Activities

This subsection presents how UML activities are treated from a DEVS stand-
point, including their structural and behavioral properties. A mapping is proposed to
facilitate the process of understanding the bridging points between activities and the
DEVS formalism. The mapping includes the general constructs and more concrete
constructs thereof. We also discuss the modularity and the generality of the mapping
in subsequent sections. We shall begin with the activity nodes and then consider the
edges.

The activity node, which is the most abstract node element in activities, is gen-
erally specified by an atomic model. Most of the specialized activity nodes bear
resemblance in terms of their structural properties as opposed to their behavior.
Therefore, the specification of the atomic model needs to be specialized further for
the atomic model behavior to define the semantics of the corresponding activity node.
The action, for instance, is treated as an atomic model with some input and output
ports (see [Figure 5.2)). The behavior of the atomic model is defined by the (external,
internal, and confluent) transition, output, and time advance functions. It is defined
as the most concrete element in the current activity hierarchy. The activity node
specializes as control, object, and executable nodes, among others. These elements
also specialize further. For example, the decision node is a subtype of the control
node. Its semantics are defined in the behavior of the atomic model that corresponds

to the decision node. Although its structural properties are set at a higher level,

70

since all elements share the same structural characteristics. The expansion region is
a particular case of the activity node where the coupled model is used for it. The
reason is quite straightforward since the expansion region may contain multiple nodes
and edges, which in turn map to their corresponding atomic models. The elements
of any activity are unique and may also have unique relationships to other elements
in the activity. This abstraction exactly mirrors that of flat DEVS coupled model
specification.

DEVS UML

in out
——» Atomic Model ——» Input pin |: Action :I Output pin

Figure 5.2: The Action, Which Is a Special Type of Activity Node, Is Treated as an

Atomic Model with Some Input and Output Ports.

The internal coupling is used to specify the activity edge, which is a supertype
for the control as well as the object (data) flows. The input and output ports make
modeling more accessible and therefore used to specify the input and output pins
alongside with ports to handle the flow. The activity node has at least one input
port, which is used to enable it. Note that, Parallel DEVS is selected since it allows
for receiving input (event) values simultaneously via multiple input ports. The nodes
vary in the number of their input ports based on their concrete types and incoming
edges. The multiplicity is, in a sense, similar to the activity nodes in having input or
value pins, or not having any. The output ports are treated similar to inputs except
they account for the outgoing edges and output pins. We note that, at a minimum,
a non-trivial atomic model must have at least either external or internal transition
state transition, two outputs, and two state variables. One variable represents the

assignment of time duration for operations. The other one represents at least two

71

values for the model to be in (Wymore, |1993)).

Thus, the previous components can serve collectively to form an activity model.
The model is viewed as a coupled model from a DEVS perspective. Edges establish
the connection between different activity constructs. In the DEVS formalism, the
specification of the external input and output interfaces, components, and the cou-
pling relation are included to serve as a means for establishing models from yet other
DEVS models (Zeigler et al., 2000). The external input coupling specifies the connec-
tion from the input parameter in the activity and considers it as an external input.
It conforms to having two distinct components as required by the Parallel DEVS
coupling legitimacy property. The coupling connects to some component ports. The
external output port is also used in the same manner but for the activity output. The
internal couplings are used as discussed in the previous paragraph to specify edges.
Table shows a subset of the mapping, although additional elements might be
needed to put the activity in a purely modular object-oriented modeling context. For
example, internal couplings can take place for communication between objects. Some
object node can request this communication in the activity model, and then outputs
are sent out to other actions accordingly. Other couplings are used for controlling the
model concerning the activity semantics. In the UML activity, it is not necessary to
require two components to communicate via ports strictly. That is, a component can

invoke operations of some other component instead of using signals (messages).
5.2.2 The Semantics of Activities

The basis of any simulation environment for activities has to account for execution
semantics. The objective is to define semantics that is specific to DEVS modeling
and yet general in the context of activity modeling. The activity initializes by either

an initial node or some external influence. For example, the activity can reside in

72

Table 5.1: A Subset of the Mapping for Activity Elements

Activity DEVS
Activity Coupled model
Activity node Atomic model
Expansion region Coupled model

Input and value pin Input port

Output pin Output port

Activity edge Internal coupling
Activity parameter External input coupling

Activity parameter External output coupling

the context of some other model such as a class. Any valid flow can represent an
execution of a particular activity performed by a course of action. The control nodes
manage that flow; however, they do not impose changes on the associated objects.
Each control node, as well as to object and action nodes, has its semantics. Our
objective is to define their semantics formally in a set of DEVS models. For instance,
the semantics of a decision node can be defined in the behavior of its corresponding
atomic model. Upon input arrival, the phase is changed to ”"executing” to denote the
existence of an active node in this particular execution path. Then, in the next time
step, the condition associated with this specific decision node is evaluated.

The result of the evaluation will determine via which port the output sent out.
If the assessment of the guard condition is true for more that one case, the output
will be sent out via one of the output ports arbitrarily. It is, however, the modeler's
responsibility to account for such a scenario if a mutual exclusion is required, for

instance. Finally, the phase is set back to passive by the internal transition function.

73

The formal specification of the atomic model that corresponds to that is defined in

Parallel DEVS as

Xor;

DEV Sy, ocessing time = (Xars Yars S, Oexts Oint, Ocon, A, ta), where

IPorts = {“in”, “inl”}, where X, =V (an arbitrary set);
Xy = {(p,v)|p € [Ports,v € X, } is the set of input ports and values;
S = phase X o x condition X store, where

phase = {“passive”, “executing”}, o = Raioo,

condition = {true, false}, store € Xyy;
OPorts = {“out”, “outl”}, where Y, =V (an arbitrary set);
Y = {(p,v)|p € OPorts,v € Y, } is the set of output ports and values;
dint(phase, o, condition, store) = (“passive”, 0o, condition, x) where x € X;
dext((phase, o, condition, store), e, X 1) =

((“executing”, processingTime, lcondition, (py,v1), - , (Pn,Un))

if pi € {in,inl},i € {0,--- ,n};

Scon(8,ta(s),) = bept(0ine(s), 0, x);
A(“executing”, o, condition, store)

= (out, store.v) if condition = true and store.p = in,

= (outl, store.v) if condition = true and store.p = inl,

= (out, store.v) if condition = false and store.p = inl,

= (outl, store.v) if condition = false and store.p = in, where(p,v) €

ta(phase, o) = o.

The processing time is defined as an abstraction to represent the step-wise exe-

cution of the activity model. The other control nodes are defined similarly to the

decision node while distinguishing between their unique structural and behavioral

properties. The fork and join nodes are for branching in and out the flow with a

74

synchronizing capability. That is, the join node waits for all incoming flow loci to
transition to an executing state and the fork sends out loci via all its outgoing flows.
The initial node does not have an incoming flow, and therefore, no input ports shall
manifest for this purpose. Similarly, the final node does not have an outgoing flow. It
should be noted that any output from an atomic or coupled model automatically du-
plicates per number of couplings that it has to output to. The duplication of outputs
takes place according to the external input and output couplings as well as internal

couplings.
5.3 Network Switch: an Example

Grounding activity models into DEVS has been accomplished at the meta-layers.
Thus, the process of creating concrete models becomes easier. We choose the network
switch for several reasons. It can be specified as a coupled model. It illustrates the
handling of inputs in Parallel DEVS. It also exemplifies inherently different behaviors
since it contains a switch as well as a processor. The model is described in (Zeigler
et al. [2000) as shown in . The internal transition function applies before
the external one in the case of having both the switch and one processor imminent.
The switch decides to send out the job via one of its output ports based on its polarity.
It does either one of the following scenarios. The first scenario, incoming input from
the first input port gets directed to the first output port. Also, inputs incoming from
the second input port gets directed to the second output port. The second one, if it
is on the other polarity setting, it reverses the first scenario. The nature of the switch
in its general form resembles the semantics defined for the decision node of activity.
From another perspective, the decision node can be considered as a higher level of
abstraction of the switch. Therefore, the activity model in can be seen as

a higher-level abstraction of the coupled model.

75

netSwitch

p0 out
in | in /

out
s0 out

outl
\‘ pl out

inl|inl

Figure 5.3: The Network Switch Parallel DEVS Coupled Model.

netSwitch

Figure 5.4: An Activity for the Network Switch Coupled Model.

In addition to the abstraction, the semantics of activities are incorporated as well.
The behavior of the switch accounts for the semantics of the decision node. In other
words, the polarity and inputs are checked as conditions. Once evaluated, the node
will send out the job to a corresponding processor. Actions are treated as atomic
models in general. However, they are treated as a processor in this example. This
treatment is due to the processor behavior, which accounts for the semantics of the
action. In other words, the semantics of activities are specified in the set of atomic
models that are then underpinned by the semantics of the simulation protocol for the

DEVS formalism.

5.3.1 Modularity

Thanks to the closure under coupling property, we can ensure the feasibility of
constructing a hierarchical model based on the elemental constructs. The mapping is

established based on the most abstract activity constructs, and then the behavior is

76

specialized accordingly. The most concrete elements are mapped into atomic models
and used in an activity or expansion region via coupled system specifications. The
coupled DEVS specification for the network switch activity is
A= (X,Y,D,{My|ld € D}, EIC, EOC,IC),
where
InPorts = {“in”, “inl”},
where X, =V (an arbitrary set), Xy ={(v)jv eV}
OutPorts = {“out”}, where X, =V, Yy ={(“out’,v)lveV}
D = {DecisionNode0, Action0, Actionl};
MpecisionNodeo = DecisionNode; Mactiono = Maction1 = Action;
EIC = {((Activity0, “in”), (DecisionNode0, “in”)), ((Activity0, “inl”),
(DecisionNode0, “inl1"))};
EOC = {((Action0, “out”), (Activity0, “out™)), ((Actionl, “out”),
(Activity0, “out”))};
IC = {((DecisionNode0, “out”), (Action0, “in”)), ((DecisionN ode0, “out1”),
(Actionl, “in”))}.

Since this is also a system specification itself, it can be used further in a broader
context within other system specifications. This also stands to provide additional
benefits in the context of UML. However, more investigation on the mapping has
to be carried out, given the current system specification that corresponds to only
activities and their substances only. Various behavioral and structural subsets of the
UML metamodel need to be investigated to determine how they can be treated in

this broader context.

7

5.3.2 The Generality of the Models

Assuming the simulation protocol is domain-agnostic, we think the DEVS models
that are built for the execution semantics of activities are also domain-agnostic. The
behavioral specification is polymorphic in the sense that they capture the behavior
that accounts for multiple types and values. The notion of specifying structure at the
meta-levels is well established but not for the state transition behaviors (Sarjoughian
et al., 2015). We think of the created DEVS models along with their behavior to be
situated at the M2 layer in the MDA. Their generic behavior can be used to simu-
late any specific instance. Despite that they are extensible, their current behavioral
specification is sufficient to be applied to well-formed instances at the concrete level

M1. A view of the simulation for some of the high-level activity constructs shows in

Artivityd
] Action0
r&in ing- passive -eout
o = infinity
in-a DecisionNodel _g it out e
executing
inl & o = 1.000 —& outl
Hein Action1
in@ passive -@out
0 = infinity

Figure 5.5: A Simulation View for the High-Level Activity Constructs Used to Model

Network Switch (Implemented in DEVS-Suite).

Another important aspect of the models is regarding metamodeling; that is, the
behavior of these models can be viewed as activity models. One activity corresponds
to each function of the atomic model |Alshareef et al| (2016). Such correspondence

is due to the existence of the meta-layers and the conformance relationship between

78

them. The models that encompass the semantics of the activities can be viewed as
activities. However, they are currently realized in Java code snippets that can take
place in the DEVS-Suite simulator. The representation of these snippets in activity
notation can be thought of based on the Annex A provided within fUML specification
(OMG, 2013)).

5.4 Future Work

We are currently working on the development of two packages for DEVS-Suite for
full support for the simulation of any well-formed activity model. One package is to
encompass the semantics of different control nodes as well as actions without losing
generality. The second package is for interpreting activities as a previous step before
simulating them.

The activity package contains the activity metamodel as discussed. It also contains
generic code snippets for the semantics of each control node. The action is treated as
a general construct. Additional research is yet needed to support further elaboration
for specific types. The research includes specific concrete details of the action type
as well as a mechanism to incorporate it with the current specification.

The interpreter is also added to make it easier to incorporate an activity model
from the activity package standpoint. A certain checking has to take place to ensure
the injected models are well-formed. We can benefit from that by eliminating as much
of the code portions possible for target execution platforms. The transformation to an
executable form is restrictive, particularly from the standpoint of automatically gen-
erating code for behavior specified in atomic models (Sarjoughian and Elamvazhuthi,
2009; Sarjoughian and Markid, 2012; Seo et all 2013; Mittal and Martin, [2013a).
Thus, the potential of the interpreter in further automation of the process while hav-

ing some control over the abstraction levels can be promising. We are working on this

79

issue, and our target objective is to ultimately provide these capabilities and make
them accessible to modelers who use simulators such as DEVS-Suite. The direction

of the transformation in a general sense remains open for future research.

5.5 Conclusion

In summary, we proposed a DEVS specification for UML activities in conjunc-
tion with the concept of executable modeling. The objective is to obtain a rigorous
grounding for the modeling and simulation of activities based on system theory. We
proposed mapping for activity elements into DEVS models. The mapping centers
around the concept of activity nodes, including actions since they collectively serve
as a basis for the activity and connecting them via edges. Also, we complemented that
with the definition of their semantics. We demonstrated the approach by developing
some examples of atomic and coupled models for a network switch according to the
Parallel DEVS formalism. We also discussed some remarks regarding the modularity
and expressibility of the models.

The research on behavioral modeling remains quite challenging. We employ a
variety of concepts, frameworks, methodologies, and tools in a manner that is consis-
tent with formal model specifications. The specification is important to be sufficiently
powerful to account for non-trivial dynamical systems and their models. Approach-
ing the creation of executable modeling from a modeling and simulation standpoint
is useful. The value of enabling rich and mature concepts such as experimental frame
(Zeigler et al., |2000) can be achieved whenever possible by techniques that can help
in the movement from different modeling layers to simulation and execution.

Introducing simulation, as opposed to debugging and testing, accompanied by its
full power to the UML activity modeling, leads to benefits. Among these benefits

is enabling underlying simulators to be employed for studying models during their

80

development life cycle. Such a goal is difficult to achieve without having precise model
semantics. The DEVS formalism can be utilized to define these semantics. It is a
suitable candidate to accomplish this objective. Moreover, it establishes the notion of
time yet more rigorously which can be utilized further, for example, for cyber-physical
systems and