
Deep Domain Fusion for Adaptive Image Classification

by

Andrew Dudley

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2019 by the
Graduate Supervisory Committee:

Sethuraman Panchanathan, Chair
Hemanth Venkateswara

Troy McDaniel

ARIZONA STATE UNIVERSITY

August 2019

ABSTRACT

Endowing machines with the ability to understand digital images is a critical task

for a host of high-impact applications, including pathology detection in radiographic

imaging, autonomous vehicles, and assistive technology for the visually impaired.

Computer vision systems rely on large corpora of annotated data in order to train

task-specific visual recognition models. Despite significant advances made over the

past decade, the fact remains collecting and annotating the data needed to success-

fully train a model is a prohibitively expensive endeavor. Moreover, these models are

prone to rapid performance degradation when applied to data sampled from a differ-

ent domain. Recent works in the development of deep adaptation networks seek to

overcome these challenges by facilitating transfer learning between source and target

domains. In parallel, the unification of dominant semi-supervised learning techniques

has illustrated unprecedented potential for utilizing unlabeled data to train classifi-

cation models in defiance of discouragingly meager sets of annotated data.

In this thesis, a novel domain adaptation algorithm – Domain Adaptive Fusion

(DAF) – is proposed, which encourages a domain-invariant linear relationship between

the pixel-space of different domains and the prediction-space while being trained un-

der a domain adversarial signal. The thoughtful combination of key components in

unsupervised domain adaptation and semi-supervised learning enable DAF to effec-

tively bridge the gap between source and target domains. Experiments performed on

computer vision benchmark datasets for domain adaptation endorse the efficacy of

this hybrid approach, outperforming all of the baseline architectures on most of the

transfer tasks.

i

Angela,

For all the mountains we will climb,

this one I dedicate to you.

ii

ACKNOWLEDGMENTS

The list of individuals to which I owe the utmost gratitude for supporting me on the

path to completing this thesis couldn’t possibly be contained within a single page. To

every person that I have had the privilege of learning from on this fascinating

pursuit of knowledge, please know that you have helped mold me into who I am

today, and I am eternally indebted to you.

Dr. Panch, you gave me a home when I was lost, the opportunity to succeed, and

even in the final days have returned to me a confidence that was long forgotten.

Thank you for founding CUbiC, and for taking the role as my graduate advisor.

Dr. Venkateswara and Dr. McDaniel, you’ve shown unwaivering faith in me to

triumph over even the most daunting of challenges. Thank you for your endless

expertise and advise.

Within the walls of CUbiC and the Yochan Laboratory, I have had the pleasure of

working side-by-side with more relentlessly driven and intelligent individuals than I

could ever have hoped to meet in five lifetimes;

Tathagata, Sarath, Sailik, Sachin, Gabe, Lydia, Yantian, Ram, Aditya, and Anagha;

Badri, Meredith, Bijan, Bryan, and Abhik;

Your hard work and dedication will never cease to inspire.

ASU and CIDSE, you have given me more than I ever expected to find on this

academic journey;

For my role as a TA: Dr. Doupe, Dr. Kambhampati, Dr. Dougherty;

For unparalleled academic advising: Allison and Christina;

Thank you for everything!

To my father for setting the example of everything I hope to be, my mother for her

eternal love and support, and my sister for leading the charge back into academia, I

love you, I appreciate you, and I am so proud to call you my family.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 2

1.2 Thesis Outline . 3

2 DOMAIN ADAPTATION . 5

2.1 Domains and Tasks . 5

2.2 Domain Adaptation . 6

2.2.1 Unsupervised Domain Adaptation . 7

2.2.2 Semi-Supervised Domain Adaptation . 7

2.2.3 Partial Domain Adaptation . 8

2.2.4 Open-set and Universal Domain Adaptation 8

3 RELATED WORK . 10

3.1 Feature Reduction . 10

3.2 Deep Domain Adaptation . 11

3.2.1 Adversarial Methods . 11

3.2.2 Statistical Moment Matching . 13

3.3 Semi-Supervised Learning . 13

3.3.1 Entropy Minimization . 14

3.3.2 Consistency Regularization . 16

3.3.3 Standard Regularization . 18

4 DEEP DOMAIN FUSION . 19

4.0.1 Domain Alignment . 19

iv

CHAPTER Page

4.0.2 Domain Fusion . 21

4.0.3 Objective Function . 25

5 Experimental Setup . 27

5.1 Datasets . 27

5.2 Implementation . 28

6 Results and Analysis . 30

6.1 Results . 30

6.2 Analysis . 31

6.2.1 Class Relationships . 31

6.2.2 Feature Clustering . 37

6.2.3 Linear Continuity . 39

7 Conclusions . 43

REFERENCES . 44

v

LIST OF TABLES

Table Page

6.1 Classification Accuracy on Transfer Tasks from Office-31 Dataset 30

6.2 Classification Accuracy on Transfer Tasks from Office-Home Dataset . . 31

vi

LIST OF FIGURES

Figure Page

4.1 The Domain Adaptive Fusion Architecture . 20

4.2 Illustration of the Data Augmentation Process Applied to Images in

the Target Domain . 23

4.3 Illustration of the Mixup Function . 24

5.1 Images Sampled from the Office-31 Dataset . 28

5.2 Images Sampled from the Office-Home Dataset . 28

6.1 Normalized Confusion Matrices for A → W Transfer Task on the

ResNet-50 Model . 33

6.2 Normalized Confusion Matrices for A → W Transfer Task on the

Domain Adversarial Neural Network Model . 34

6.3 Normalized Confusion Matrices for A → W Transfer Task on the

Domain Adaptive Fusion Model. 35

6.4 Comparison of Incorrectly Classified Images with Samples from Their

Predicted Classes on the A→W Transfer Task. 36

6.5 Comparison of Samples From the bottle Class Between the DSLR and

Amazon Domains . 37

6.6 T-SNE Feature Embeddings from ResNet-50, Domain Adversarial Neu-

ral Network, and Domain Adaptive Fusion Models 38

6.7 Visualization of Prediction Vectors with Varying Mixture Values 41

vii

Chapter 1

INTRODUCTION

Modern advances in machine learning have ignited imaginations around the world

with visions of superhuman artificial intelligence seemingly just around the corner.

With the latest technology enabling computers to drive cars, defeat grand champions

at their own games, model languages, write articles, produce music, and so much more,

these high expectations of the imminent future may not appear entirely unwarranted.

However, with human intellect as the benchmark, it is necessary to appreciate the

abilities that humans possess and which machines must be able to emulate in order to

make these sci-fi fantasies become a reality. In particular, the human brain’s ability

adapt and transfer knowledge across domains is a fundamental feature of human

intelligence, and has proven to be particularly challenging to replicate in silicon and

software.

This concept of domain adaptation can be elucidated by example. Imagine a

pathology diagnosis system developed to identify disease and injury in chest x-ray

images. The model employed by this application was trained on hundreds of thou-

sands of images taken from an x-ray machine at the local hospital. With access to

expert annotations provided by a staff of radiologists, the system has learned to ef-

fectively identify an array of common diseases. Impressed by these results, another

hospital is quick to adopt the diagnosis system in hopes of reducing their backlog

of x-rays. However, after a series of tests using images taken at their location, they

conclude that the predicted pathologies are not reliable. The system’s inability to

produce the same performance at the new hospital can be attributed a domain gap

that exists between the images produced by the two x-ray machines. Variation in the

1

x-ray tube voltage, display window, and dynamic range of the machine can impact

the appearance of the imaging, and a difference in patient demographics will result

in a different distributions of physical characteristics and pathologies captured in the

images. In order to improve the performance, the system could be retrained on a

dataset of x-rays from the new hospital, but doing so would also require ground-truth

pathology annotations for that dataset, which are prohibitively expensive and time

consuming to collect.

Domain adaptation algorithms seek to resolve these issues of adapting models

from a source domain to a target domain by reducing the distribution discrepancy

of the domains. This is most often accomplished without the need of collecting any

additional labels by using both the labeled data from the source domain and the

unlabeled data from the target domain to improve the model performance.

The goal of this thesis is to explore new methods of unsupervised domain adapta-

tion (UDA) in computer vision. With an abundance of raw visual data now available

through a host of internet services, the lack of labels to use this data in a super-

vised training setting has become one of the key obstacles to fully realizing the data’s

potential for training state-of-the-art classification models. UDA algorithms present

an opportunity to sidestep this obstacle entirely. The ubiquity of the domain gap

problem when training with limited datasets is a testament to the potential impact

and importance of finding effective adaptation solutions.

1.1 Contributions

The contributions of this thesis are as follows:

1. We assert that the successful alignment of two domains effectively reduces an

unsupervised domain adaptation problem to a problem of semi-supervised learn-

ing.

2

2. We propose a data augmentation based regularization technique that constrains

a classification function to exhibit cross-domain linear behavior between convex

combinations of input images and their resulting predictions.

3. A novel domain adaptation architecture – Domain Adaptive Fusion – is pro-

posed that combines our regularization technique with dominant algorithms

from domain adaptation and semi-supervised learning research into a single

neural network that can be trained end-to-end. The performance of this model

is evaluated against other domain adaptation methods on a series of domain

adaptive transfer tasks.

1.2 Thesis Outline

Chapter 2 provides an overview of domain adaptation. We formally define the

problems of transfer learning and domain adaptation, as well as the notation used

throughout this thesis. We then outline the various settings studied within domain

adaption.

Chapter 3 is a literature review of modern algorithms and architectures most

relevant to the contributions of this thesis. The first section focuses on research in

domain adaptive methods, followed by a section on the most prominent approaches

to semi-supervised learning.

Chapter 4 describes our proposed Domain Adaptive Fusion (DAF) architecture.

Chapter 5 details the experimental setup. We explain the datasets used and enu-

merate the transfer tasks that they contain. Implementation details of the Domain

Adaptive Fusion architecture are provided, including the selection of hyperparame-

ters.

Chapter 6 contains the results and analysis of our experiments. In the first

3

section, performance results on transfer tasks from both Office-31 and Office-Home

datasets are compared against leading baseline models. The sections that follow

provide visualizations and discussion on the prediction error in our experiments in

the form of confusion matrices, t-SNE plots to analyze the domain invariance and

clustering of extracted features, and 3D plots of prediction vectors generated by the

baseline and DAF models to inspect the impact of the contributed regularization

technique.

Chapter 7 concludes the thesis with a summary of the contributions of this work,

and lists several ideas for future work that can be explored based these contributions.

4

Chapter 2

DOMAIN ADAPTATION

In the previous chapter, domain adaptation is motivated through example, presenting

the ubiquity of the problems that the work of this thesis aims to solve. In this chapter,

a formal approach is taken to precisely define domain adaptation in the landscape of

transfer learning problems. The first section provides the notation and definitions of

key components required to define transfer learning following the notation provided by

Pan and Yang (2009) and Venkateswara (2017). In the second section, this notation

is then used to illustrate the landscape of various domain adaptation settings, as well

as to highlight the relationship between unsupervised domain adaptation (UDA) and

semi-supervised learning (SSL).

2.1 Domains and Tasks

Transfer learning problems involve domains and tasks (Pan and Yang (2009)). A

domain D is defined as D = {X ,P(X)}, where X is a feature space and P(X) is the

marginal probability distribution that governs that feature space. Two domains are

then said to be different if either their feature spaces or their probability distributions

(or both) are different. Given a domain D, a task T under that domain is then defined

as T = {Y , f(.)}, where Y is the label space and f(.) is a function f : X → Y . The

function f is generally unknown, and in a supervised setting is learned using a set

of training data pairs {xi,yi} where xi ∈ X and yi ∈ Y . Once learned, the label

of a new data point x can be predicted using the value returned by f(x), which can

be seen as the posterior probability p(y|x). In some scenarios, it may also be useful

to define a domain D as a joint space of the features and the labels and their joint

5

probability distribution such that D = {(X × Y), P (X ,Y)} (Venkateswara (2017)).

Domain adaptation problems generally consist of two domains: a source and a

target. With a slight abuse of notation, a source dataset can be represented as a

collection of data points Ds = {(xsi ,ysi)}
ns

i=1, where xsi ∈ Xs and ysi ∈ Ys. Similarly, a

target dataset is represented as Dt = {(xti,yti)}
nt

i=1, where xti ∈ Xt and yti ∈ Yt.

Definition 1 Transfer Learning: (Pan and Yang (2009)) Given a source do-

main Ds with task Ts and a target domain Dt with task Tt, a transfer learning algo-

rithm is an algorithm that seeks to improve the performance of the target predictive

function ft(.) by utilizing Ds and Ts, where Ds 6= Dt or Ts 6= Tt.

2.2 Domain Adaptation

Using this definition of transfer learning, standard domain adaptation can then

be seen as the case of transfer learning where the source and target domains are

different (Ds 6= Dt), but they share the same task (Ts = Tt). The difference between

the domains can be modeled as the divergence of their joint probability distributions

Ps(X ,Y) 6= Pt(X ,Y), and the key task of domain adaptation is thus to estimate

P̂t(X ,Y) using the learned distribution P̂s(X ,Y).

This setting of domain adaptation implies that not only do the domains share

the same label space (Ys = Yt, an assumption more specifically called closed-set do-

main adaptation), but that their posterior probabilities are also similar Ps(Y|X) =

Pt(Y|X). Keeping in mind that a joint probability distribution P(X ,Y) = P (Y|X)P(X),

it is the co-variate shift of the marginal distributions Ps(X) 6= Pt(X) that must be

bridged in order to successfully adapt across the domains.

6

2.2.1 Unsupervised Domain Adaptation

The most popular domain adaptation scenario assumes that the labels for the

source domain are available, but the target labels are not, resulting in the datasets

Ds = {(xs1,ys1), . . . , (xsns
,ysns

)} and Dt = {xt1, . . . ,xtnt
}. This scenario receives a lot of

attention in computer vision research, as there are many modern services that make it

easy to collect unlabeled data from their domains. Unsupervised domain adaptation

shares many similarities with traditional semi-supervised learning:

Definition 2 Semi-Supervised Learning: (Chapelle et al. (2010)) This ma-

chine learning paradigm consists of a training set Xl = {(xi,yi)}ni=1 and an unlabeled

training set Xu = {xi}ni=1. The goal of semi-supervised learning is to use all of the

training data available to learn a model that can either predict the labels for the entire

feature space (as in inductive learning), or only predict the labels of the unlabeled

data Xu (as in transductive learning).

By setting Ds = Xl and Dt = Xu, it may even seem that these two areas of

machine learning are identical. However, there is an important distinction to be

made. In semi-supervised learning, there is a fundamental assumption that all of the

data from both the labeled and unlabeled dataset are drawn from the same probabil-

ity distribution, and thus the marginal distributions Ps(X) and Pt(X) must be the

same. By bridging the the differences of these distributions, algorithms developed for

semi-supervised learning become natural candidates for solving unsupervised domain

adaptation problems.

2.2.2 Semi-Supervised Domain Adaptation

Despite the popularity of unsupervised domain adaptation algorithms, they do

not consider the fact that it may sometimes be inexpensive to get labels for a subset

7

of the target dataset, and that even a few labeled samples in the target domain could

be leveraged in the learning algorithm to improve a model’s performance. Semi-

supervised domain adaptation is used to address these problems where there is again

a labeled source domain Ds = {(xs1,ys1), . . . , (xsns
,ysns

)}, but the target domain Dt

contains both an unlabeled collection of samples Dut = {xt1, . . . ,xtnu
} and a relatively

small labeled collection of samples Dlt = {(xtnu+1,y
t
nu+1), . . . , (x

t
nt
,ytnt

)}, such that

Dt = Dut ∪ Dlt, but there are not enough labeled samples in the target domain to

directly estimate P̂t(X ,Y). Exploration of this setting can be seen in ?? and ??.

2.2.3 Partial Domain Adaptation

In partial domain adaptation, proposed by Cao et al. (2018), the equal label space

assumption is relaxed, allowing the target label space to be a subset of the source

label space (Yt ⊂ Ys). This relaxation introduces new challenges, as standard domain

adaptation algorithms that attempt to match the target data to all of the source data

(including the data whose labels aren’t in the shared label space) are highly susceptible

to negative transfer. Partial domain adaptation is generally viewed in an unsupervised

domain adaptation setting, where none of the target labels are available, and thus

the target label space is unknown. Successful solutions to partial domain adaptation

problems must then not only ameliorate the domain gap between the domains, but

also account for the new category gap between the label spaces.

2.2.4 Open-set and Universal Domain Adaptation

The open-set and universal recognition settings remove the equal label space as-

sumption entirely, such that both the source and target label spaces may include

categories not shared by the domains. Like partial domain adaptation, these modi-

fications to the standard domain adaptation setting further increase the challenge of

8

the training task. Open-set domain adaptation approaches assume that the shared

label space is known, and then seek to train the model to throw away the “unknown”

classes while learning to correctly classify data samples in the target domain whose

labels are from the shared label space Panareda Busto and Gall (2017). Universal

recognition then tackles the domain adaptation problems where the label spaces are

unrestricted and the shared label space between the domains is unknown You et al.

(2019).

9

Chapter 3

RELATED WORK

The problem of domain adaptation is defined by the domain gap that exists between

related but distinct domains. In this thesis, a view is adopted that the amelioration

of the discrepancy between source and target domains can be equivalently seen as

reducing a domain adaptation problem to a semi-supervised learning problem. As

such, it is prudent to provide a survey of recent literature from both problem spaces

in order to effectively outline the landscape in which the contribution of this work

resides. Domain adaptation is ubiquitous in the fields of machine learning; however,

we’ll focus most of our attention on methods developed for computer vision.

3.1 Feature Reduction

Classification tasks are often accomplished by first embedding high-dimensional

inputs into lower dimensional embeddings or features, and then training a classifier

on those features. Classic techniques for image classification in computer vision relied

on designing functions by hand to extract meaningful features, which could then be

used as input for shallow learning models such as Support Vector Machines (SVMs)

to generate class predictions (Dalal and Triggs (2005)). The advent of deep neural

networks spawned what is now the dominant modeling technique for image feature

extraction – Convolutional Neural Networks (CNNs) (LeCun et al. (1989)). CNNs

enable the feature extractor and classifier to be trained end-to-end using the same

objective function, and have been shown to automatically learn transformations that

generate transferable features.

10

3.2 Deep Domain Adaptation

Recent algorithms and model architectures designed to resolve the domain gap

mostly follow one of two primary methodologies: adversarial training and moment

matching.

3.2.1 Adversarial Methods

Generative Adversarial Networks (GANs) Goodfellow et al. (2014) first introduced

the idea of using a discriminative module to adversarially train a generative network

in order to improve its ability to produce realistic, fake data samples. This was

accomplished by training a discriminator D to accurately predict the label for real

and fake samples, while simultaneously training a generator G to minimize log(1 −

D(G)) and thus to generate fake samples that would fool D into thinking they’re real.

Extensive work expounding on the utility and performance of GANs quickly followed

(Ganin and Lempitsky (2014); Zhu et al. (2017); Kim et al. (2017); Hoffman et al.

(2017); Sankaranarayanan et al. (2018)).

Inspired by the discriminative mechanism used for measuring the distribution dis-

crepancy in GANs, Ganin and Lempitsky (2014) introduced a similar mechanism

with the goal of minimizing the discrepancy for domain adaptation by training a fea-

ture extractor to instead confuse a domain discriminator – making it uncertain about

whether samples originated from the source or the target domain. This approach,

called the Domain Adversarial Neural Network (DANN), follows directly from the

theory that effective domain transfer necessitates that the predictions be made on

features that are invariant of the domain from which they originated. Where GANs

required a two-step iterative process to first train the discriminator and then the gen-

erator, Ganin and Lempitsky (2014) introduced the gradient reversal layer (GRL),

11

enabling the network to be trained end-to-end by simply reversing the gradient of

the discriminator during backpropagation to train the feature extractor. The sim-

plicity and effectiveness of the GRL for domain adaptation has resulted in extensive

utilization of this technique in recent domain adaptation literature, including: class-

level predictions using multiple domain discriminators conditioned on the softmax

predictions of the classifier Chen et al. (2017); combinations of global feature domain

discriminators augmented with domain-specific loss functions for learning semantic

details of the domains Tsai et al. (2018); Chen et al. (2018); leveraging multiple local

domain discriminators and a global discriminator as attention mechanisms for fine-

grained transfer Wang et al. (2019b); and using the output of domain discriminators

as sample-level weighting mechanisms in various domain adaptation settings Zhang

et al. (2018); Cao et al. (2019); You et al. (2019).

CycleGANs, introduced in Zhu et al. (2017), enable unpaired image-to-image

translation by combining the domain alignment method from the standard GAN

architecture with a cycle-consistency loss at the pixel-level. CycleGANs train two

GANs in parallel – one to translate the input from source to target, and the other

to translate from target to source. By passing an input through both generative

networks, a cycle-consistency loss is calculated by measuring the error between the

original input and the generated one.

Following the success of the CycleGAN architecture, Hoffman et al. (2017) de-

veloped CyCADA in order to constrain the input mapping to retain vital semantic

information within the image that may otherwise be lost. In doing so, they introduced

the power of cycle-consistency to the world of unsupervised domain adaptation.

12

3.2.2 Statistical Moment Matching

Another method of aligning the domain distributions is by explicitly matching

statistical measures of deep feature representations between the domains. The Max-

imum Mean Discrepancy (MMD) is a standard metric used to estimate the distance

between two distributions. The Domain Adaptation Network (DAN) calculates a

multi-kernel variant of this metric, MK-MMD, for the final layers of the network,

and minimizes these discrepancies alongside the standard classification loss in order

to directly align the domains. Since its application in DAN, MK-MMD and a se-

ries of other distribution divergence measures have have been widely adopted and

adapted in domain adaptation research. Shen et al. (2017) uses a neural network to

estimate the Wasserstein distance as an objective measure between the source and

target domains. Venkateswara et al. (2017a) minimizes the MK-MMD while training

the network to learn hash values for each object category in an unsupervised domain

adaptation setting. Long et al. (2017) uses the joint probability distribution across

the final layers of the Joint Adaptation Network (JAN) in order to train using a joint

maximum mean discrepancy (JMMD) criterion.

3.3 Semi-Supervised Learning

The semi-supervised learning (SSL) paradigm considers scenarios where the la-

beled data available is insufficient to train a strong model, and seeks to improve the

performance of the model by including unlabeled data in the training process. In

order to utilize unlabeled data, SSL algorithms hinge on the following assumptions:

• Smoothness assumption Chapelle et al. (2010): If two data points are

close to each other, their respective labels should also be close to each other.

• Low-density separation assumption Chapelle and Zien (2005): The

13

decision boundaries between classes should occur in areas of low density in the

feature space. This can be equivalently formulated as the cluster assumption,

which states that two points that fall within the same cluster are likely to belong

to the same class.

• Manifold assumption Belkin and Niyogi (2004); Chapelle et al. (2010):

High-dimensional data lies on a low dimensional manifold.

For deep learning models, these assumptions are exploited by encoding them into

functions and then appending those to the objective function being minimized to

train the neural network. In this section, we discuss the three most dominant SSL

objectives being deployed in modern models.

3.3.1 Entropy Minimization

Many shallow and deep learning methods make use of the cluster assumption by

minimizing the intracluster distance while also maximizing the intercluster distance,

resulting in decision boundaries that pass through low-density regions of the space.

The entropy minimization principle Grandvalet and Bengio (2005) is used to coax

deep neural networks into producing such clusters by noting that the classification of

unlabeled samples should be confident, and confident predictions lead to lower entropy

on the prediction vector. Minimizing the entropy of the unlabeled data predictions

therefore encourages low-density separation of the of the feature embeddings.

Given the entropy function

H(X; θ) = −EXlog [P (Y|X; θ)] ,

entropy minimization can be implemented explicitly into an SSL loss function as

LEM = Ll − λH(Xu; θ),

14

where Ll is the standard cross-entropy loss for supervised training on the labeled data

(discussed further in Section 4.0.3), Xu is the unlabeled target dataset, and λ is the

hyperparameter used to control the influence of the unlabeled data on the overall

training process Grandvalet and Bengio (2005). Note that by maximizing LEM , the

objective function simultaneously maximizes the cross-entropy loss while minimizing

the empirical entropy. The value given to λ is important – if λ is set too high, the

supervised learning signal will be overpowered; if set too low, the model will not be

able to learn from the unlabeled data. This hyperparameter is often implemented

using a deterministic annealing scheme to slowly increase the influence of the entropy

signal over time.

Pseudo-labelling (Lee (2013)) can be seen as an equivalent, implicit implemen-

tation of entropy minimization that enables supervised training on unlabeled data.

Pseudo-labels are generated by simply treating the highest probability class prediction

as the true class, that is,

yi =


1 if i = argmax [p(yi|x)]

0 otherwise

,

and then training using cross-entropy loss on both the labeled and pseudo-labeled

data.

Similarly, a sharpening function can be applied to the prediction vectors of unla-

beled data to generate soft pseudo-labels with lower entropy (Berthelot et al. (2019)).

Supervised training with these sharpened predictions also results in an implicit min-

imization of entropy.

15

3.3.2 Consistency Regularization

Consistency-based learning methods exploit the smoothness assumption of SSL by

ensuring that an input sample is consistently mapped to the same point in the feature

space or label space. In the π-model (Laine and Aila (2016)), each input is passed

through the model twice with different dropout initializations, and the mean squared

difference of the predictions is penalized. In the same work, Laine and Aila (2016)

note that the π-model could just as effectively be implemented by instead generating

predictions on the inputs without backpropogation to generate pseudo-labels, and

then passing augmentations of the input using a different dropout initialization to

train the network using these predictions with the pseudo-labels as the targets for

the unsupervised loss component. As such, the update of the π-model is based on a

single initialization of the network, is inherently noisy. To resolve this issue, temporal

ensembling is proposed. In this method, the exponential moving average (EMA) of

the network prediction pi is maintained for each sample xi.

p̄i = αp̄i + (1− α)pi,

where α determines how much weight is applied to previous predictions.

Where temporal ensembling asserts consistency on the predictions of a network,

the mean-teacher model (Tarvainen and Valpola (2017)) asserts consistency on the

weights of a network by materializing a “teacher” network whose weights are the

exponential moving average (EMA) of the “student’s”. In Li et al. (2019), certainty-

driven consistency loss (CCL) is proposed for mean-teacher models to either filter

or weight the impact of consistency training at the instance-level by measuring the

predictive variance of each sample with different augmentations. For the Domain

Adaptive Fusion network, multiple augmentations of each unlabeled sample are eval-

uated and then assigned the averaged, sharpened prediction for that sample as a label

16

to encourage consistent predictions.

Other consistency regularization methods have been developed that generate new

training data to span the space between the inputs of the original dataset. In

Mixup (Zhang et al. (2017)), a data augmentation-based regularization technique

was proposed to compel models to learn a linear continuity between convex combina-

tions of the input features and their corresponding classification labels in a supervised

learning setting. This is accomplished by sampling a mixing coefficient λi from the

Beta distribution

λi ∼ β(α, α),∀(xi,yi) ∈ X

and a random data point (xj,yj) ∈ X to generate an augmented data point (xi,a,yi,a)

where

xi,a = λxi + (1− λ)xj

yi,a = λyi + (1− λ)yj.

In CutMix (Yun et al. (2019)), the spirit of the Mixup augmentation strategy

is applied to the regional dropout technique of Cutout. Where Cutout creates aug-

mented inputs by removing a region of the input image, CutMix then fills the removed

region with a patch from another image. As the augmented image may then contain

a mixture of two different classes, they also generate a new label for the augmented

data with a proportional mixture of the labels corresponding to the original inputs.

The usefulness of Mixup regularization has since been studied in the realm of

semi-supervised learning problems, including in the recently developed MixMatch

algorithm from Berthelot et al. (2019), which uses a combination of Mixup, label

sharpening, and entropy minimization principles to produce a holistic objective func-

tion for utilizing unlabeled data. MixMatch uses the sharpened predictions of the

17

target samples as pseudolabels, and then applies the mixup algorithm to both the

source and target samples, resulting in two augmented datasets that each contain

mixtures from both domains. The outstanding results of MixMatch inspired our in-

terest in exploring the combined efficacy of these techniques when applied to various

settings of domain adaptation, where discrepancies between the marginal distribu-

tions of the labeled and unlabeled datasets introduce challenges not faced by the

preceding studies.

Concurrent to the development of MixMatch, Verma et al. (2019) applied Mixup

to another SSL technique called Interpolation Consistency Training (ICT). ICT differs

from MixMatch in a few small but meaningful ways: It doesn’t use sharpening for

entropy minimization (and instead uses standard pseudo-labels for the target data),

it only applies mixup to the target data, and it adopts the mean teacher approach

of maintaining a second network for classification whose weights are the exponential

moving average of the weights of the primary network being trained.

3.3.3 Standard Regularization

Machine learning algorithms generally seek to learn a generalized function from

the dataset they’re trained on. Regularization penalties are often imposed in or-

der to avoid overfitting to the data and thus to improve the generalizability of the

learned model. The expansive number of weights in large neural networks make them

particularly prone to memorization of the data when effective regularization is not

employed. A simple method of moderating the complexity of a model is by penalizing

the magnitude of the weights using L2 regularization (Krogh and Hertz (1992); Ng

(2004)).

18

Chapter 4

DEEP DOMAIN FUSION

This chapter introduces Domain Adaptive Fusion (DAF), a deep neural network which

performs domain alignment and domain fusion towards unsupervised domain adap-

tation. The following sections outline the different components of the DAF network,

and motivate their utility in the training process.

In unsupervised domain adaptation we have labeled data from the source domain;

Ds = {xsi , ysi }ns
i=1, and unlabeled data from the target domain; Dt = {xti}nt

i=1. The data

points x∗i belong to an input space denoted by X and the labels belong to a discrete

space y∗i ∈ Y := {1, . . . , C}. The goal is to determine the unknown target data labels

given the constraint that the source and target data joint distributions are different,

i.e., Ps(X, Y) 6= Pt(X, Y). The DAF network has parameters θ := {θG, θD, θC},

where θG are the parameters for the base feature extractor component G, θD are the

parameters for the domain alignment component D and θC are the parameters for

the classifier C. The different components of the DAF and the gradient paths are

illustrated in Figure 4.1. When training the DAF, we deploy mini-batches of size

2B with B samples Xs = {xsi}Bi=1 and Ys = {ysi }Bi=1 from source and B samples

Xt = {xti}Bi=1 from the target. We describe the model in terms of mini-batches and

note that it can be extended to the entire dataset.

4.0.1 Domain Alignment

In order to reduce the domain adaptation problem to a semi-supervised one, we

align the features of the source and target. For G to output domain-aligned features

we adopt the domain confusion model from DaNN Ganin et al. (2016), to train an

19

Figure 4.1: The Domain Adaptive Fusion architecture. Xs and Xt represent the

mini-batches from the source and target domains. X ′s and {X ′t,1, . . . ,X ′t,k} represent

the augmented batches generated by the MixMatch algorithm. The neural network

modules for the feature extractor, classifier, and domain discriminator are represented

by G, C, and D, and GRL represents the gradient reversal layer used for domain

adversarial training during backpropogation. The supervised classification task for

the augmented source data is shown in light blue, where LX ′
∫

corresponds to the cross-

entropy loss objective. The semi-supervised task for the k-augmented target data is

show in green, where LX ′
t

represents the consistency regularization objective using

the multi-class brier score. The task of reducing the feature distribution discrepancy

is shown in orange, where LD represents the domain adversarial loss objective.

20

auxiliary network D to align the features output from G. If d ∈ {1, 0} are the domain

labels where d = 1 for source samples and d = 0 for target samples, the discriminator

network D tries to minimize,

LD = − 1

2B

∑
x∈{Xs∪Xt}

dlog[D(G(x))] + (1− d)(1− log[D(G(x))]), (4.1)

where D(G(x)), is the output probability from a sigmoid activation. The discrimi-

nator is trained through back propagation to minimize LD, i.e., distinguish between

the source and target samples. On the other hand, a gradient reversal (GRL in Fig-

ure 4.1) is applied to modify the parameters of G in an adversarial manner in order

to align the source and target features and make them indistinguishable to the dis-

criminator. This involves reversing the gradient −∂LD
∂θG

during back propagation over

the parameters in G. The domain alignment component ensures that the source and

target features output from G(.) have no little to no domain discrepancy.

4.0.2 Domain Fusion

With domain alignment in place, the G network plays the role of a feature ex-

tractor that aligns the source and target data features. This reduces the domain

adaptation problem to a semi-supervised learning problem with the source data be-

ing treated as the labeled set and the target data becoming the unlabeled set. In the

following we outline the steps to implement domain fusion.

Data Augmentation

As is common with semi-supervised learning procedures, we estimate artificial labels

for the target data using consistency regularization techniques Miyato et al. (2015);

Tarvainen and Valpola (2017); Zhou et al. (2004). We augment the training data with

multiple stochastic transformations of the input x to yield different versions of the

21

input that have the same label. Data augmentation is performed on the input vectors

for both the source and target batches using an Augment(x) function, which performs

random flips and crops on the input image x. The source inputs are augmented once,

and the target inputs are augmented K times to produce K different augmentations

of the target batch:

X̂s = {Augment(xsi)}Bi=1 X̂t = {Augment(xti)k}
B,K
i=1,k=1 (4.2)

Soft Pseudo-labeling

We perform consistency regularization on the unlabeled data by ensuring that the

same pseudo-label is assigned to each of the K augmented versions of an input image

x. These pseudo-labels are generated by first predicting a soft label yti,k for each

xti,k ∈ X̂t, with,

yti,k = C(G(xti,k)) ∀i ∈ {1, . . . , B}, k ∈ {1, . . . , K}, (4.3)

where C(.) is the classifier network and C(G(x)) gives the softmax output from the

classifier network - a probability vector yti,k = [p1,ti,k, . . . , p
C,t
i,k]> over C classes, where

pc,ti,k is the probability p(yti,k = c|xti,k). To arrive at a consistent prediction for the

unlabeled data, we average over the K predictions and estimate a common label for

each of the augmented input images {xti,1, . . . ,xti,K}:

yti =
1

K

K∑
k=1

yti,k ∀i ∈ {1, . . . , B}. (4.4)

Following the approach proposed in Berthelot et al. (2019), we encourage the low-

density separation of class assignments to target data samples by implicitly exploiting

the minimum entropy criterion using a sharpening function on yti . Specifically,

ŷti,k =
(yti)

1/T∑C
c=1(y

c,t
i)1/T

∀i ∈ {1, . . . , B}, k ∈ {1, . . . , K}, (4.5)

22

Figure 4.2: Illustration of the data augmentation process applied to images in the

target domain.

where the hyperparameter T controls the temperature of the distribution Goodfellow

et al. (2016). As T → 0, ŷti,k approaches the Dirac-delta function, which will produce

one-hot labels. The pseudo labels ŷti,k are then assigned to their corresponding input

vectors in X̂t, with all the K augmentations of xti,k for k ∈ {1, . . . , K} assigned the

same pseudo label ŷti,k for k ∈ {1, . . . , K}. The data augmentation for the source

results in the modified datasets, X̂s (Equation 4.2) with one-hot labels Ŷs where

Ŷs is one-hot vector representation of source data labels Ys = {ysi }Bi=1. Likewise,

the data augmentation followed by pseudo labeling for the target dataset yields X̂t

(Equation 4.2) and the corresponding labels Ŷs where Ŷs = {ŷti,k}∀i ∈ {1, . . . , B}, k ∈

{1, . . . , K}. The data augmentation and pseudo label generation is depicted in Figure

4.2.

Data Fusion

The DAF network is trained on data generated from the fusion of source and target

samples. Our hypothesis is that a model with linear behavior across domains will be

an effective classifier for data from both the domains. Once the domains are aligned,

23

Figure 4.3: Illustration of the mixup function, where (x̂a, ŷa) ∈ X̂s||X̂t, and

(x̂M , ŷM) ∈ X̂M . (x′a,y
′
a) represents an augmented, mixed-up, labeled datum that

will be used during the training phase of Domain Adaptive Fusion.

we train the DAF with a convex combination of data from both the domains along

with a convex combination of their corresponding labels. We employ the MixUp

procedure Zhang et al. (2017) to enforce a linear behavior between data from the two

domains. We constrain the DAF model output for a convex combination of inputs to

be similar to the convex combination of the DAF model outputs over the individual

inputs. We create a unified set of augmented data samples, X̂m = {X̂s ∪ X̂t} by

concatenating and shuffling the augmented source and target datasets. Likewise, we

create the unified label set Ŷm = {Ŷs∪Ŷt} all the while maintaining the order between

data in X̂m and their labels in Ŷm. The fusion dataset is created using the MixUp

procedure,

X ′s = MixUp(X̂s, {X̂m,i}Bi=1, α) Y ′s = MixUp(Ŷs, {Ŷm,i}Bi=1, α) (4.6)

X ′t = MixUp(X̂t, {X̂m,i}|X̂m|
i=B+1, α) Y ′t = MixUp(Ŷt, {Ŷm,i}|Ŷm|i=B+1, α). (4.7)

The Mixup(X1, X2, α), takes two equal sized sets as input along with hyperparameter

α. It then performs a linear combination of elements from X1 and X2 to create a

fused dataset of the same size as X1. Mixup samples a mixing value λ from the U-

shaped Beta(α, α) distribution, where 0 < α < 1. As alpha approaches 0, Beta(α, α)

approaches the Bernoulli distribution. We illustrate MixUp() with an example. Let

xi1 ∈ X1 and xi2 ∈ X2 be the ith elements of X1 and X2. Let Y1 and Y2 be the

24

labels corresponding to X1 and X2. If yi1 ∈ Y1 and yi2 ∈ Y2 are the ith elements of Y1

and Y2. Then, the fusion of MixUp({xi1}, {xi2}, alpha) and MixUp({yi1}, {yi2}, alpha),

would yield,

x′i = λxi1 + (1− λ)xi2 (4.8)

y′i = λyi1 + (1− λ)yi2 (4.9)

In practice we set λ = λmax = max(λ, (1 − λ)). This is in order to ensure that the

majority of the mixing weight is given to the original sample of the batch being mixed

(samples from the first argument of the mixup function). The data fusion procedure

is illustrated in Figure 4.3. The data fusion component creates fused samples from

domain-aligned source and target samples and trains the DAF model to predict their

fused labels. We consider the DAF model to be robust to domain shift because it

is trained with fused samples from the source and the target. In practice, the data

augmentation procedure is treated as auxiliary to the training process. This is accom-

plished by detaching the augmented batches X ′s and X ′t from the network to prevent

the flow of the gradient through the augmentation steps during backpropagation.

4.0.3 Objective Function

The DAF network is guided by the following objectives functions. The labeled

data (X ′s and Y ′s) has more confident labels since it is created using the ground truth

source labels. The labeled data is used to minimize the cross-entropy objective,

Ls =
1

|X ′s|
∑

x′s
i ∈X ′

s,y
′s
i ∈Y ′

s

KL(y′si ||C(G(x′si))), (4.10)

where KL stands for Kullback-Leibler divergence which estimates the cross-entropy

between labels y′si and DAF prediction C(G(x′si)). The pseudo-labeled data (X ′t

and Y ′t) has artificial labels. In view of the less confident labels for the target, we

25

apply the Brier score Berthelot et al. (2019), which is less sensitive to outliers and

is bounded. This is a standard loss function for unlabeled data in semi-supervised

learning literature Laine and Aila (2016). The objective function for the unlabeled

data is given by,

Lt =
1

|X ′t |
∑

x′t
i,k∈X

′
t ,y

′t
i,k∈Y

′
t

∣∣∣∣y′si,k − C(G(x′si,k))
∣∣∣∣2
2
, (4.11)

Finally, to discourage DAF from overfitting to the training data, the L2 regularization

loss is applied across the layer of the network’s parameters,

L2 =
∑
θi∈θ

‖θi‖22. (4.12)

DAF Objective Function

The objective for the DAF model is estimated from Equations (4.1), (4.10), (4.11) and

(4.12). In each iteration the DAF objective is determined by a two-player, minimax

game,

(θG, θC) = arg min
θG,θC

[Ls − λLD + γLt + ηL2] (4.13)

(θD) = arg min
θD

[λLD + ηL2] (4.14)

where, λ, γ and η are hyperparameters that control the importance of the correspond-

ing terms in the DAF objective.

26

Chapter 5

EXPERIMENTAL SETUP

The Domain Adaptive Fusion (DAF) network was evaluated on a collection of transfer

tasks contained within several domain adaptation datasets. We start this chapter by

first providing a description of each of these datasets and identifying some of the

challenges posed by their transfer tasks. We then provide implementation details

regarding our network and training parameters used during experimentation.

5.1 Datasets

Office-31 The Office-31 dataset Saenko et al. (2010) is a de-facto standard in

computer vision for benchmarking domain adaptation techniques. It consists of three

domains – Amazon (A), Webcam (W), and DSLR (D) – with 31 categories of images

in each domain, and 4,652 images in total. Images in the Amazon dataset were

collected from amazon.com, while the images from Webcam and DSLR are taken

with a webcam and digital SLR camera, respectively.

Historically, the W→ A and D→ A transfer tasks have proven to be particularly

trying for the adaptive networks that have attempted to bridge the gap between

these domains. It can immediately be noted that where the Webcam and DSLR

datasets have 500 and 800 images, respectively, the Amazon dataset has over 2800

images. While this fact alone is likely to contribute the challenge of learning to adapt

and generalize from Webcam and DSLR, further analysis in Section 6.2.1 reveals

additional challenges of these tasks.

Office-Home The Office-Home dataset Venkateswara et al. (2017b) consists of ap-

proximately 15,500 images of common household and office objects. With 65 cate-

27

(a)

(b)

(c)

Figure 5.1: Images sampled from the Office-31 dataset. (a) Amazon (b) DSLR (c) We-

bcam

(a)

(b)

(c)

(d)

Figure 5.2: Images sampled from the Office-Home dataset

gories and four unique domains, this dataset constitutes a more challenging set of

domain adaptation tasks as compared to Office-31. The domains include Art (Ar),

Clipart (Cl), Product (Pr), and Real World (Rw).

5.2 Implementation

The network architecture and training procedures of DAF were implemented in

PyTorch. The feature extractor is comprised of a Resnet50 model He et al. (2016) with

weights pre-trained on the ImageNet dataset Deng et al. (2009), which is fine-tuned

during the training process. The adversarial domain discriminator and classification

28

modules are each connected to the final convolutional layer of the ResNet50 model

via a shared bottleneck layer to reduce the dimensions of their input features. The

domain adversarial discriminator is implemented using a gradient reversal layer with

a linear ramp-up coefficient calculated for the first 10,000 iterations of the training

process. Our DAF model was built on top of the CDAN codebase1 for loading image

datasets and training parameters, and utilizes network class definitions provided by

the easydl2 deep learning utilities library.

An Adam optimizer Kingma and Ba (2014) is used for weight updates, where η is

provided as the weight decay parameter for implementing the L2 regularization. All

experiments were ran with batch size of 16 on a single Tesla V100 or Titan X using

the following hyperparameter values: α = 0.75, γ = 10, λ = 1.5, η = 0.04, T = 0.5.

The learning rate was initialized at 0.001 for the classifier, domain discriminator, and

bottleneck layer, and to 0.0001 for the ResNet50 model. It’s important to note that

the temperate hyperparameter T of the sharpening function directly affects the initial

entropy value calculated on the target dataset. Reducing the value of this hyperpa-

rameter will reduce the entropy of the pseudo-labels, and may require adjusting the

value of γ to prevent divergence while training.

During testing, ten different crops of each input image are generated and passed

through the network. Samples are then classified as the most frequently predicted

class of the ten augmentations. Some of the images of the office-home dataset have

resolutions of over 2000x1000 pixels, so to speed up the training process all images in

the were first rescaled to 256x256 pixels as a pre-processing step. In future work, gen-

erating a pre-processed collection of seeded augmentations saved directly as tensors

would allow for more expedient training and tuning of the hyperparameters.

1https://github.com/thuml/CDAN
2https://github.com/thuml/easydl

29

Chapter 6

RESULTS AND ANALYSIS

The results of DAF on the domain adaptive computer vision classification tasks for

the Office-31 and Office-home datasets are reported in Table 6.1 and Table 6.2,

respectively. The average reported performance values for each of the baseline models

are compared against a single complete training run of DAF for each experimental

setting.

6.1 Results

Method A→W D→W W→D A→D D→A W→A Avg

ResNet He et al. (2016) 68.4 96.7 99.3 68.9 62.5 60.7 76.08

TCA Pan and Yang (2009) 72.7 96.7 99.6 74.1 61.7 60.9 77.62

GFK Gong et al. (2012) 72.8 95.0 98.2 74.5 63.4 61.0 77.48

DAN Long et al. (2015) 80.5 97.1 99.6 78.6 63.6 62.8 80.37

RTN Long et al. (2016) 84.5 96.8 99.4 77.5 66.2 64.8 81.53

DANN Ganin et al. (2016) 82.0 96.9 99.1 79.7 68.2 67.4 82.22

ADDA Tzeng et al. (2017) 86.2 96.2 98.4 77.8 69.5 68.9 82.83

JAN Long et al. (2017) 85.4 97.4 99.8 84.7 68.6 70.0 84.32

MADA Pei et al. (2018) 90.0 97.4 99.6 87.8 70.3 66.4 85.25

SimNet Pinheiro (2018) 88.6 98.2 99.7 85.3 73.4 71.6 86.13

GTA Sankaranarayanan et al. (2018) 89.5 97.9 99.8 87.7 72.8 71.4 86.52

CGAA Wang and Wang (2018) 75.2 95.7 99.6 72.3 57.2 57.5 76.25

DAF 92.33 99.25 100.0 88.35 68.12 70.22 86.38

Table 6.1: Classification accuracy on transfer tasks from Office-31 dataset

On the Office-31 dataset, DAF outperformed all baselines on the A→W,D→

30

W,A → D, and W → D adaptive transfer tasks. Compared to DANN, DAF ob-

tained a 10.3% performance improvement on A→W and an average 4.2% increase

across all Office-31 experiments, indicating that the learning signal provided by the

joint semi-supervised learning techniques on unlabeled target data significantly im-

proves the model’s effectiveness on the target domain. On the more challenging

Method Ar)Cl Ar)Pr Ar)Rw Cl)Ar Cl)Pr Cl)Rw Pr)Ar Pr)Cl Pr)Rw Rw)Ar Rw)Cl Rw)Pr Avg

ResNet He et al. (2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.13

DAN Long et al. (2015) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.28

DANN Ganin et al. (2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.5 76.8 57.60

JAN Long et al. (2017) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.31

CGAA Wang and Wang (2018) 43.4 57.1 67.6 49.9 57.7 58.3 51.7 43.5 66.2 59.9 51.7 74.9 56.83

CDAN Long et al. (2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.81

EasyTL Wang et al. (2019a) 52.8 72.1 75.9 55.0 65.9 67.6 54.5 46.9 74.7 63.8 52.3 78.0 63.30

DAF 48.8 66.1 73.5 57.9 68.9 67.9 55.7 49.5 79.9 68.3 58.8 82.2 64.79

Table 6.2: Classification accuracy on transfer tasks from Office-Home dataset

dataset of Office-Home, the performance of DAF exceeds all domain adaptation base-

line methods on most of the transfer tasks.

6.2 Analysis

6.2.1 Class Relationships

To help visualize what classes are responsible for the prediction error in our net-

work, confusion matrices were generated for the A → W task (see Figures 6.1, 6.2,

6.3). In a confusion matrix C, each row i corresponds to the known correct class of

the target data, and each column j corresponds to the predicted class. Each cell Cij

is shaded based on the number of samples from class i that were predicted as class j.

The number of samples in each class aren’t balanced, so we normalize the prediction

counts across each row to get a clear view of the prediction distribution for each class.

The normalized confusion matrices for ResNet-50, DANN, and DAF are displayed

in Figures 6.1a, 6.2a, and 6.3a, respectively. Simple visual inspection reveals that the

31

DAF model significantly outperforms the base ResNet-50 model, and it appears that

DAF also met or exceeded the percentage of correctly classified samples for every

class as compared to the DANN network. This is a strong indicator that the holistic

combination of semi-supervised learning components employed in the DAF network

was successful in utilizing the unlabeled target data towards the alignment of the

source and target domain.

In Figures 6.1b, 6.2b, and 6.3b, the values on the diagonals are masked out (set to

0) prior to normalization in order to highlight the misclassified samples of each model.

It is immediately apparent that the classification entropy is significantly reduced in

our model – that is, the number of incorrect classes predicted for each class set of

target data is reduced for almost every set.

The masked confusion matrix for our DAF model has seven instances of only a

single predicted class being responsible for all of the misclassifications in that row.

To shed some light on the reason for these errors, we compare a few of the mislabeled

samples with samples from their predicted classes (Figure 6.4).

To better understand the underwhelming performance of the DAF model on the

D→ A transfer task, another masked t-SNE plot is generated (see Figure ??). Our

network seems to predict the mobile phone class with high precision but very low

recall (there are 100 mobile phone samples in the target Amazon dataset). By the

same token, the speaker class is also incorrectly predicted with very high frequency,

and is contributing to significant percentage of the prediction error seen in our results.

Both of these classes also happen to be the most frequently occurring classes in the

source dataset, with up to four times more samples than other classes. This strongly

indicates that the D→ A transfer task suffers from a class imbalance problem, which

DAF does nothing to compensate for. Instance-weighting or oversampling techniques

may help ameliorate this issue, and is left for future work.

32

Confusion Matrices – ResNet-50 (source only)

(a) Normalized

(b) Diagonal masked and normalized

Figure 6.1: Normalized confusion matrices for A→W transfer task on the ResNet-50

model. In matrix (b), the diagonal entries are masked out to highlight the misclassi-

fications.

33

Confusion Matrices – Domain Adversarial Neural Network

(a) Normalized

(b) Diagonal masked and normalized

Figure 6.2: Normalized confusion matrices for A→W transfer task on the Domain

Adversarial Neural Network model. In matrix (b), the diagonal entries are masked

out to highlight the misclassifications.

34

Confusion Matrices – Domain Adaptive Fusion

(a) Normalized

(b) Diagonal masked and normalized

Figure 6.3: Normalized confusion matrices for A → W transfer task on the DAF

model. In matrix (b), the diagonal entries are masked out to highlight the misclassi-

fications.

35

(a) Helmets classified as computer mice

(b) Actual computer mice

(c) Projectors classified as trays

(d) Actual paper trays

(e) Staplers classified as punchers

(f) Actual punchers

Figure 6.4: Comparison of incorrectly classified images with samples from their pre-

dicted classes on the A→W transfer task.

Noting that many samples are also incorrectly predicted as the bottle class, yet

the recall for actual bottles on the target domain is low, we visualize bottle images

from both domains for further analysis (see Figure 6.5). It can clearly be seen that

the Amazon domain contains samples that are largely mislabeled or loosely labeled

as compared to the DSLR domain, which explains the high error rate contributed

by these classifications. Inspection of other Amazon classes reveals similar problems

with the dataset.

36

(a) DSLR bottles

(b) Amazon bottles

Figure 6.5: Comparison of samples from the bottle class between the DSLR and

Amazon domains

6.2.2 Feature Clustering

By sharpening the soft pseudo-labels of the target data during training, it was

our hope that the learned feature representations for the target data would form

distinctive clusters for each class in the dataset. Furthermore, successfully aligning

the source and target domains should produce features – and therefore clusters – that

are indistinguishable between the domains. We visualize the learned feature space

using t-SNE embeddings of the Cl→ Pr transfer task (65 classes) and the A→W

transfer task (31 classes) for the Resnet-50, DANN, and DAF models (shown in Figure

6.6).

The resulting plots of these t-SNE embeddings perfectly matched our expectations,

with DAF producing 31 clearly separated clusters on the A→W task 6.6d, of which

the target and source features for each class appear to be primarily nested within

the same clusters. The successful clustering of DAF is even more apparent on the

Cl→ Pr task – while both ResNet-50 (fig. 6.6a) and DANN (fig. 6.6b) struggled to

produce coherent clusters, the t-SNE embeddings from the DAF model remain highly

37

Cl→ Pr

(a) ResNet-50

(b) DANN

(c) DAF

A→W

(d) ResNet-50

(e) DANN

(f) DAF

Figure 6.6: t-SNE embeddings for Cl→ Pr ((a), (b), (c)) and A→W ((d), (e), (f))

for ResNet-50, DANN, and DAF models.

38

discriminable (fig. 6.6c).

6.2.3 Linear Continuity

One of the key contributions of this work is the fusion of data from separate

domains to impose linear continuity between convex combinations of input features

with their corresponding predictions. To analyze the impact of this regularization

technique, we visualized the prediction vectors of the ResNet-50, DANN, and DAF

models by fusing two unseen target samples while varying the mixture value from

0 to 1 (see Figure 6.7).

On these samples, all three models correctly classify the unfused input images

(λ = 0 and λ = 1); however, the prediction error and entropy of both the ResNet-

50 model (fig. 6.7b) and the DANN model (fig. 6.7c) increased when confronted

with fused samples. On the other hand, the multi-class predictions produced by

our model trained using Domain Adaptive Fusion (fig. 6.7d) closely followed the

fused ground-truth labels, maintaining correct primary class predictions throughout

the varied fusion levels, with approximately equal probabilities of the correct classes

predicted on the image produced by an equal fusion of the two input images.

39

(a) Example of input fusion on chair and

laptop samples with λ = 0, 0.5, and 1

(b) ResNet-50

(c) DANN

40

(d) DAF

(e) Ground Truth

Figure 6.7: Visualization of the prediction vectors with varying mixture values λ on

the (b) ResNet-50, (c) DANN, and (d) DAF models. (Continued on the following

page.)

41

Figure 6.7: Subfigure (a) illustrates the fused sample inputs with λ = 0, 0.5, and 1,

and (e) displays the convex combinations of the ground truth labels, representing

the desired outputs in the case of perfect linear behavior of the classifier over fused

samples. Each label in the prediction vector is colored based on the absolute error

between the class prediction and the ground truth.

42

Chapter 7

CONCLUSIONS

Using a hybrid approach to fuse domain adaptation with principles of semi-supervised

learning, the Domain Adaptive Fusion architecture is able to successfully bridge the

source and target domains, producing competitive results on challenging computer

vision classification tasks. By encouraging cross-domain linear behavior of the classi-

fication function between convex combinations of input images and their predictions,

the surface of the function between these samples is effectively smoothed, facilitat-

ing the alignment of the domain distributions. Deeper analysis of the DAF model’s

classification error, clustering, and predictive function supports these claims, and also

highlights where mislabeled and imbalanced data in the experimental datasets is likely

to contribute to poor performance on a few of the transfer tasks.

The compelling results of the work proposed in this thesis should not be seen

as the limit of the fusion approach for domain adaptation. The fusion of deeper

feature representations from the network may expand the uses of the DAF architecture

beyond the pixel space, and fusions of extracted features with learned categorical

prototypes may further enhance the desired regularization characteristics produced

by the algorithm. While DAF currently requires the use of the original input images

for domain alignment, it may also be possible to the modify adversarial domain

discriminator to instead learn the mixture value (λ) in order to directly encourage

domain invariance of fused samples. Modifications to α, the hyperparameter that

controls the distribution sampled from to generate λ, has also yet to be explored. It

is hypothesized that ramping up this value at the beginning of the training process

could yield improved training results.

43

REFERENCES

Belkin, M. and P. Niyogi, “Semi-supervised learning on riemannian manifolds”, Ma-
chine learning 56, 1-3, 209–239 (2004).

Berthelot, D., N. Carlini, I. Goodfellow, N. Papernot, A. Oliver and C. Raffel,
“Mixmatch: A holistic approach to semi-supervised learning”, arXiv preprint
arXiv:1905.02249 (2019).

Cao, Z., L. Ma, M. Long and J. Wang, “Partial adversarial domain adaptation”,
in “Proceedings of the European Conference on Computer Vision (ECCV)”, pp.
135–150 (2018).

Cao, Z., K. You, M. Long, J. Wang and Q. Yang, “Learning to transfer examples for
partial domain adaptation”, arXiv preprint arXiv:1903.12230 (2019).

Chapelle, O., B. Schlkopf and A. Zien, Semi-Supervised Learning (The MIT Press,
2010), 1st edn.

Chapelle, O. and A. Zien, “Semi-supervised classification by low density separation.”,
in “AISTATS”, vol. 2005, pp. 57–64 (Citeseer, 2005).

Chen, C., Q. Dou, H. Chen and P.-A. Heng, “Semantic-aware generative adversarial
nets for unsupervised domain adaptation in chest x-ray segmentation”, in “Interna-
tional Workshop on Machine Learning in Medical Imaging”, pp. 143–151 (Springer,
2018).

Chen, Y.-H., W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang and M. Sun,
“No more discrimination: Cross city adaptation of road scene segmenters”, in “Pro-
ceedings of the IEEE International Conference on Computer Vision”, pp. 1992–2001
(2017).

Dalal, N. and B. Triggs, “Histograms of oriented gradients for human detection”,
(2005).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database”, in “CVPR09”, (2009).

Ganin, Y. and V. Lempitsky, “Unsupervised domain adaptation by backpropagation”,
arXiv preprint arXiv:1409.7495 (2014).

Ganin, Y., E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand and V. Lempitsky, “Domain-adversarial training of neural networks”, The
Journal of Machine Learning Research 17, 1, 2096–2030 (2016).

Gong, B., Y. Shi, F. Sha and K. Grauman, “Geodesic flow kernel for unsupervised
domain adaptation”, in “2012 IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 2066–2073 (IEEE, 2012).

Goodfellow, I., Y. Bengio and A. Courville, Deep learning (MIT press, 2016).

44

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio, “Generative adversarial nets”, in “Advances in neural
information processing systems”, pp. 2672–2680 (2014).

Grandvalet, Y. and Y. Bengio, “Semi-supervised learning by entropy minimization”,
in “Advances in neural information processing systems”, pp. 529–536 (2005).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “Proceedings of the IEEE conference on computer vision and pattern recogni-
tion”, pp. 770–778 (2016).

Hoffman, J., E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros and T. Dar-
rell, “Cycada: Cycle-consistent adversarial domain adaptation”, arXiv preprint
arXiv:1711.03213 (2017).

Kim, T., M. Cha, H. Kim, J. K. Lee and J. Kim, “Learning to discover cross-domain
relations with generative adversarial networks”, in “Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70”, pp. 1857–1865 (JMLR. org,
2017).

Kingma, D. P. and J. Ba, “Adam: A method for stochastic optimization”, arXiv
preprint arXiv:1412.6980 (2014).

Krogh, A. and J. A. Hertz, “A simple weight decay can improve generalization”, in
“Advances in neural information processing systems”, pp. 950–957 (1992).

Laine, S. and T. Aila, “Temporal ensembling for semi-supervised learning”, arXiv
preprint arXiv:1610.02242 (2016).

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition”, Neu-
ral computation 1, 4, 541–551 (1989).

Lee, D.-H., “Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks”, in “Workshop on Challenges in Representation Learning,
ICML”, vol. 3, p. 2 (2013).

Li, Y., L. Liu and R. T. Tan, “Certainty-driven consistency loss for semi-supervised
learning”, arXiv preprint arXiv:1901.05657 (2019).

Long, M., Y. Cao, J. Wang and M. I. Jordan, “Learning transferable features with
deep adaptation networks”, arXiv preprint arXiv:1502.02791 (2015).

Long, M., Z. Cao, J. Wang and M. I. Jordan, “Conditional adversarial domain adap-
tation”, in “Advances in Neural Information Processing Systems”, pp. 1640–1650
(2018).

Long, M., H. Zhu, J. Wang and M. I. Jordan, “Unsupervised domain adaptation
with residual transfer networks”, in “Advances in Neural Information Processing
Systems”, pp. 136–144 (2016).

45

Long, M., H. Zhu, J. Wang and M. I. Jordan, “Deep transfer learning with joint
adaptation networks”, in “Proceedings of the 34th International Conference on
Machine Learning-Volume 70”, pp. 2208–2217 (JMLR. org, 2017).

Miyato, T., S.-i. Maeda, M. Koyama, K. Nakae and S. Ishii, “Distributional smoothing
with virtual adversarial training”, arXiv preprint arXiv:1507.00677 (2015).

Ng, A. Y., “Feature selection, l 1 vs. l 2 regularization, and rotational invariance”,
in “Proceedings of the twenty-first international conference on Machine learning”,
p. 78 (ACM, 2004).

Pan, S. J. and Q. Yang, “A survey on transfer learning”, IEEE Transactions on
knowledge and data engineering 22, 10, 1345–1359 (2009).

Panareda Busto, P. and J. Gall, “Open set domain adaptation”, in “Proceedings of
the IEEE International Conference on Computer Vision”, pp. 754–763 (2017).

Pei, Z., Z. Cao, M. Long and J. Wang, “Multi-adversarial domain adaptation”, in
“Thirty-Second AAAI Conference on Artificial Intelligence”, (2018).

Pinheiro, P. O., “Unsupervised domain adaptation with similarity learning”, in “Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition”,
pp. 8004–8013 (2018).

Saenko, K., B. Kulis, M. Fritz and T. Darrell, “Adapting visual category mod-
els to new domains”, in “European conference on computer vision”, pp. 213–226
(Springer, 2010).

Sankaranarayanan, S., Y. Balaji, C. D. Castillo and R. Chellappa, “Generate to adapt:
Aligning domains using generative adversarial networks”, in “Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition”, pp. 8503–8512
(2018).

Shen, J., Y. Qu, W. Zhang and Y. Yu, “Wasserstein distance guided representation
learning for domain adaptation”, arXiv preprint arXiv:1707.01217 (2017).

Tarvainen, A. and H. Valpola, “Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results”, in
“Advances in neural information processing systems”, pp. 1195–1204 (2017).

Tsai, Y.-H., W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang and M. Chandraker,
“Learning to adapt structured output space for semantic segmentation”, in “Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition”,
pp. 7472–7481 (2018).

Tzeng, E., J. Hoffman, K. Saenko and T. Darrell, “Adversarial discriminative domain
adaptation”, in “Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition”, pp. 7167–7176 (2017).

Venkateswara, H., Domain Adaptive Computational Models for Computer Vision,
Ph.D. thesis, Arizona State University (2017).

46

Venkateswara, H., J. Eusebio, S. Chakraborty and S. Panchanathan, “Deep hash-
ing network for unsupervised domain adaptation”, in “The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)”, (2017a).

Venkateswara, H., J. Eusebio, S. Chakraborty and S. Panchanathan, “Deep hash-
ing network for unsupervised domain adaptation”, in “Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition”, pp. 5018–5027 (2017b).

Verma, V., A. Lamb, J. Kannala, Y. Bengio and D. Lopez-Paz, “Interpolation con-
sistency training for semi-supervised learning”, arXiv preprint arXiv:1903.03825
(2019).

Wang, J., Y. Chen, H. Yu, M. Huang and Q. Yang, “Easy transfer learning by exploit-
ing intra-domain structures”, in “IEEE International Conference on Multimedia
Expo (ICME)”, (2019a).

Wang, X., L. Li, W. Ye, M. Long and J. Wang, “Transferable attention for domain
adaptation”, (2019b).

Wang, X. and X. Wang, “Unsupervised domain adaptation with coupled generative
adversarial autoencoders”, Applied Sciences 8, 12, 2529 (2018).

You, K., M. Long, Z. Cao, J. Wang and M. I. Jordan, “Universal domain adaptation”,
in “The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)”,
(2019).

Yun, S., D. Han, S. J. Oh, S. Chun, J. Choe and Y. Yoo, “Cutmix: Regulariza-
tion strategy to train strong classifiers with localizable features”, arXiv preprint
arXiv:1905.04899 (2019).

Zhang, H., M. Cisse, Y. N. Dauphin and D. Lopez-Paz, “mixup: Beyond empirical
risk minimization”, arXiv preprint arXiv:1710.09412 (2017).

Zhang, J., Z. Ding, W. Li and P. Ogunbona, “Importance weighted adversarial nets for
partial domain adaptation”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 8156–8164 (2018).

Zhou, D., O. Bousquet, T. N. Lal, J. Weston and B. Schölkopf, “Learning with local
and global consistency”, in “Advances in neural information processing systems”,
pp. 321–328 (2004).

Zhu, J.-Y., T. Park, P. Isola and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks”, in “Proceedings of the IEEE interna-
tional conference on computer vision”, pp. 2223–2232 (2017).

47

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Contributions
	Thesis Outline

	DOMAIN ADAPTATION
	Domains and Tasks
	Domain Adaptation
	Unsupervised Domain Adaptation
	Semi-Supervised Domain Adaptation
	Partial Domain Adaptation
	Open-set and Universal Domain Adaptation

	RELATED WORK
	Feature Reduction
	Deep Domain Adaptation
	Adversarial Methods
	Statistical Moment Matching

	Semi-Supervised Learning
	Entropy Minimization
	Consistency Regularization
	Standard Regularization

	DEEP DOMAIN FUSION
	Domain Alignment
	Domain Fusion
	Objective Function

	Experimental Setup
	Datasets
	Implementation

	Results and Analysis
	Results
	Analysis
	Class Relationships
	Feature Clustering
	Linear Continuity

	Conclusions

	REFERENCES

