
Cross Platform Training of Neural Networks to Enable Object Identification by

Autonomous Vehicles

by

Sangeet Sankaramangalam Ulhas

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2019 by the

Graduate Supervisory Committee:

Spring Berman, Chair

Kathryn Johnson

Sze Zheng Yong

ARIZONA STATE UNIVERSITY

August 2019

 i

ABSTRACT

Autonomous vehicle technology has been evolving for years since the Automated

Highway System Project [1]. However, this technology has been under increased scrutiny

ever since an autonomous vehicle killed Elaine Herzberg, who was crossing the street in

Tempe, Arizona in March 2018 [2]. Recent tests of autonomous vehicles on public roads

have faced opposition from nearby residents [14]. Before these vehicles are widely

deployed, it is imperative that the general public trusts them. For this, the vehicles must be

able to identify objects in their surroundings and demonstrate the ability to follow traffic

rules while making decisions with human-like moral integrity when confronted with an

ethical dilemma, such as an unavoidable crash that will injure either a pedestrian or the

passenger.

Testing autonomous vehicles in real-world scenarios would pose a threat to people

and property alike. A safe alternative is to simulate these scenarios and test to ensure that

the resulting programs can work in real-world scenarios. Moreover, in order to detect a

moral dilemma situation quickly, the vehicle should be able to identify objects in real-time

while driving. Toward this end, this thesis investigates the use of cross-platform training

[15] for neural networks that perform visual identification of common objects in driving

scenarios. Here, the object detection algorithm Faster R-CNN [25] is used. The hypothesis

is that it is possible to train a neural network model to detect objects from two different

domains, simulated or physical, using transfer learning. As a proof of concept, an object

detection model is trained on image datasets extracted from CARLA, a virtual driving

environment, via transfer learning [26]. After bringing the total loss factor to 0.4, the model

is evaluated with an IoU metric [24]. It is determined that the model has a precision of

 ii

100% and 75% for vehicles and traffic lights respectively. The recall is found to be 84.62%

and 75% for the same. It is also shown that this model can detect the same classes of

objects from other virtual environments and real-world images. Further modifications to

the algorithm that may be required to improve performance are discussed as future work.

 iii

DEDICATION

 To my mother, father, brother and sister for their unconditional support.

 iv

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Dr. Spring Berman of the School for

Engineering of Matter, Transport and Energy at Arizona State University. The door to Prof.

Berman’s office was always open through her Google Calendar when I ran into trouble or

had a question about my research or writing. She consistently encouraged this paper to

ultimately be my own work and steered me in the right direction.

I would also like to thank the experts who were involved in the validation and survey for

this research project: Dr. Kathryn Johnson, Dr. Sze Zheng Yong, and Mr. Shenbagaraj

Kannapiran. Without their passionate participation and input, the validation and survey

could not have been successfully conducted.

I would also like to acknowledge Mr. Hunter Larkins of the Department of Psychology at

Arizona State University for all his help in completing the study part of this thesis, and I

am gratefully indebted to Mr. Saurabh Prabhu and Mr. Akshay M Nair for their generous

help and valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents and to my brother and

sister for providing me with unfailing support and continuous encouragement throughout

my years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

Author

Sangeet Sankaramangalam Ulhas

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

1 INTRODUCTION ... 1

1.1 Background.. 1

1.2 Unreal Engine .. 5

1.3 CARLA Driving Simulator ... 6

1.4 CHARTOPOLIS testbed .. 7

1.5 Object Detection Algorithms .. 8

1.6 Tensorflow... 11

1.7 Transfer Learning ... 12

2 DRIVING SIMULATION STUDY ... 16

3 DATASET COLLECTION METHODOLOGY ... 20

4 OBJECT DETECTION ALGORITHM AND RESULTS 25

4.1 Object Detection Algorithm Testing and Evaluation 25

4.2 Test Results ... 35

5 CONCLUSION AND FUTURE WORK .. 41

5.1 Conclusion ... 41

5.2 Future Work... 42

REFERENCES ... 43

 vi

Page

APPENDIX

A SAMPLE CODE FOR IMAGE EVALUATION .. 46

B SAMPLE CODE FOR INTERSECTION OVER UNION EVALUATION 52

C OBJECT DETECTION RESULTS FOR IOU TEST DATASET 55

 vii

LIST OF TABLES

Table Page

1. Hardware Used to Build CARLA ... 5

2. Object Detection Precision-Recall Calculation .. 33

 viii

LIST OF FIGURES

Figure Page

1. Human Factor Involvement in Crashes ... 2

2. MIT Moral Machine Experiment .. 3

3. Illustration of the R-CNN Object Detection Algorithm 9

4. Illustration of the Fast R-CNN Object Detection Algorithm 10

5. Illustration of the Faster R-CNN Object Detection Algorithm 11

6. Benefits of Transfer Learning ... 13

7. Error Rates on ImageNet Validation Set .. 14

8. Scenario 1 .. 17

9. Scenario 2 .. 17

10. Scenario 3 ... 18

11 RPC Server-Client .. 18

12. Scenario 4 .. 19

13. Driving Simulator Setup ... 20

14. Image from RGB Camera ... 22

15. Visualized Output of Depth Sensor ... 22

16. Semantic Segmentation ... 23

17. LIDAR – Ray Cast ... 23

18. Annotating a Sample Image Using LabelImg ... 24

19. Object Detection Model Zoo ... 25

20. Loss Curves from Tensorboard data .. 26

21. Illustration Depicting IoU Metric .. 27

 ix

Figure Page

22. An Example of Computing IoU for Various Bounding Boxes 27

23. IoU for Car Detection ... 28

24. IoU for Car Detection ... 28

25. IoU for Car Detection ... 29

26. IoU for Car Detection ... 29

27. IoU for Traffic Light Detection ... 30

28. IoU for Traffic Light Detection ... 30

29. IoU for Traffic Light Detection ... 31

30. IoU for Traffic Light Detection ... 31

31. Precision and Recall to Measure Accuracy of Object Detection 32

32. Test Result ... 35

33. Test Result ... 36

34. Test Result ... 36

35. Test Result ... 37

36. Test Result ... 37

37. Test Result ... 38

38. Test Result ... 38

39. Test Result ... 39

40. Test Result ... 39

41. Test Result ... 40

 1

CHAPTER 1

INTRODUCTION

1.1 Background

Research spanning almost seven decades about human behavior around automation has

shown that we have a natural tendency to trust reliable automated systems too much. After

we relinquish our control to these machines for an extended period, it becomes second

nature to our minds to trust them and to expect them to work as required. However, new

research suggests that this trust may not extend to autonomous vehicles, also called self-

driving vehicles, or vehicles with autopilot. For example, a recent study found that while

drivers used the autopilot control feature to travel 34.8% of their miles, they maintained

‘functional vigilance’ while the autopilot was enabled [3]. Advanced driver assistance

systems like automatic lane keeping, smart cruise control, and other technologies are now

commonplace in most mid-range consumer automobiles. Some researchers claim that a

few hundred thousand kilometers of driving experience for autonomous cars programmed

with machine learning algorithms is sufficient to prepare the technology for widespread

deployment [27]. However, many argue that the safety record for self-driving cars has not

yet been proven [13]. While these autonomous vehicles would eliminate the incidence of

fatal crashes that are due to human causes [4] (see Figure 1), public trust in autonomous

vehicles is essential for their widespread adoption.

 2

Figure 1 – Human Factor Involvement in Crashes [4]

Although automation erases some of the limitations of human-operated machinery, it will

still need to respond to difficult dilemmas entailing ethical and moral decisions. An

example of such a problem that is relevant to autonomous vehicle decision-making is the

“trolley problem”. A trolley problem is an analogy which represents a decision between

hurting a few or many [28]. The MIT moral machine experiment gathered data from 40

million decisions on trolley-problem scenarios, presented online in ten languages, from

people spanning over 233 countries and territories [12] (see Figure 2). The analysis of this

data determined both global moral preferences and individual variations in preferences.

This study revealed the factors that influenced their decisions. In addition, a recent study

by Dr. Kathryn Johnson at Arizona State University (ASU) has isolated some of the moral

values or factors behind decisions that determine a person’s driving behavior [23]. The two

core values that really mattered were ‘power’ and ‘benevolence’. It is now apparent that

autonomous vehicles will encounter ethical dilemmas, such as inevitable crash scenarios

 3

similar to the trolley problem. The technology available to us today can be used to tackle

some of these challenges.

Figure 2 - MIT Moral Machine Experiment [12]

Towards this end, the work in this thesis is motivated by the problem of programming

moral integrity into autonomous vehicles based on studies of human decision-making

during simulated vehicle crashes. I conducted these studies, in collaboration with Dr.

 4

Kathryn Johnson at ASU, using the CARLA driving simulator, which is described below

in Section 1.3. In addition, experiments can be performed on object detection and lane

tracking using a new version of a small-scale physical driving testbed called

CHARTOPOLIS, developed at ASU [5][29], which includes small robots that emulate

autonomous vehicles.

This thesis accomplishes the task of building a bridge that closes the gap in experiments

conducted on the CHARTOPOLIS testbed and the simulation environment, CARLA, by

demonstrating cross platform training of a neural network. The method used in this thesis

can also be called a normalization technique (object classification knowledge becomes

transferrable) in which a control system implemented on the small robot robotic vehicles

on the physical testbed can be transferred to simulated vehicles in CARLA in order to

check its functionality in scenarios that are much more complicated than ones that can be

implemented on the testbed. For example, there are limitations to the realism of modeling

pedestrians on the testbed. While we could train an object detection model, designed as

described in this thesis, to detect a pedestrian on the testbed, there might be situations in

which the pedestrian performs complex maneuvers that cannot be reproduced easily on the

testbed. In such a scenario, the exact same object detection model could be used on CARLA

which can simulate complex traffic scenarios. In this way, the object detection model

serves as a cross-platform tool that could potentially bridge the gap between physical and

simulated environments when conducting research on autonomous vehicle control

strategies. In the following sections, we describe Unreal Engine, which is used to design

the simulated environment; CARLA Driving Simulator, which is used for data collection

and object detection; CHARTOPOLIS testbed, which is used as the physical domain to

 5

complement the simulation in CARLA; Object detection algorithms that are used in this

thesis; TensorFlow library, which is used to deploy the object detection algorithms;

Transfer learning and its applications in this thesis.

1.2 Unreal Engine

CARLA (see Section 1.3) was developed with a simulated world created using Unreal

Engine 4. Unreal Engine is a graphics engine developed by Epic Games, first released

in 1998 for the first-person shooter game ‘Unreal’. Since then, it has undergone various

iterations through development year after year and has become quite popular among

game developers. The most recent version is Unreal Engine 4, released in 2014 [6]. For

the purposes of building the driving simulator detailed in this thesis, Unreal Engine

4.22 was built on an Ubuntu distribution (16.04 LTS) of Linux. The following

specification of the hardware is used.

Operating System Ubuntu 16.04 LTS, 64-bit

Processor 10-Core Intel Xeon Processor

Memory 16 GB ECC x 2

GPU Nvidia GeForce RTX 2080Ti

Table 1 – Hardware used to build CARLA

Other simulators like Autoware, Airsim, TORCS, Udacity Simulator, and the

Donkeycar simulator were also considered for the simulated crash studies. From this

list, CARLA and Airsim were identified as the best fits for the purposes of this thesis

because they use Unreal Engine, which provides a lot of the functionality needed for

simulation studies with acceptable fidelity and scalability. Another candidate for the

graphics environment was Unity. Both Unity and Unreal Engine are capable of

 6

producing AAA quality graphics. They have extensive toolboxes that include a terrain

editor, physics simulation, animation, advanced lighting, and virtual reality support.

Both engines support 2D, and fully 3D rendered games. They run the latest rendering

technologies including PBR (Physically Based Rendering), GI (Global Illumination),

volumetric lights, post processing, and advanced shaders. While it is possible to

produce the same simulation quality using either engines, Unity falls short when it

comes to tools that are usable out of the box. Unreal provides presets that can be easily

used and modified. This was apparent once CARLA was updated with its current sensor

suite. For this reason, Unreal Engine was selected as the graphics engine in the

simulation studies.

1.3 CARLA Driving Simulator

CARLA [30] is an open-source simulator for autonomous driving research that was

developed by a group of developers with the help of its founding sponsors Intel Labs

and the Computer Vision Centre at Universitat Autonoma de Barcelona, Barcelona to

facilitate the development, training, and validation of autonomous vehicle systems. Not

limited to open-source code, CARLA also provides open-source digital assets (urban

layouts, buildings, vehicles). The simulator provides a wide array of sensor suites and,

environmental conditions, full control of all static and dynamic agents, map generation,

and many more features. [30] CARLA has two primary modules, the simulator module,

and the Python API module. The former will be referred to as the server-side in this

thesis. This module performs most of the graphic-intensive processes and hence

requires a dedicated GPU to run satisfactorily. With the Python API, we can control all

static and dynamic agents in the simulation, attach sensors to the agents, and

 7

record/reproduce all the data generated using these sensors. CARLA is also well-

integrated with the Robot Operating System (ROS). The ROS bridge that is being

developed by CARLA’s developers can facilitate the programming of multiple agents

with a composite moral profile that is built from the results of human subject studies

using the driving simulator. These programs can then be adapted to work with the

CHARTOPOLIS testbed.

1.4 CHARTOPOLIS testbed

CHARTOPOLIS [29] is a miniature testbed that is being designed as a laboratory for

testing human-robot interaction in a scale model of an urban traffic environment. It has

small car shaped mobile robots called Go-CHARTS that has all the sensory capabilities

of an autonomous vehicle. Along with carefully designed roads with proper lane

systems that conform with the driving regulations in the United States (to scale), it also

has artistically designed buildings, a working traffic regulation system with traffic signs

and signals and model pedestrians. CHARTOPOLIS provides a safe environment in

which it is possible to test our future autonomous vehicle control strategies, such as

those based on a composite moral profile from human subject studies. It is also part of

the vision that this thesis work proposes – to be able to train a single neural network

that can perform various tasks like object detection and vehicle navigation across

multiple domains/platforms. In this thesis, the proposed domains are the

CHARTOPOLIS testbed (physical domain) and the CARLA driving simulator (virtual

domain).

 8

1.5 Object Detection Algorithms

Within the field of computer vision, various algorithms based on deep learning

techniques have been developed for detecting particular objects in images and videos.

These algorithms are now quite widely used and have numerous applications besides

autonomous vehicle driving, including people counting, face detection, medical

diagnosis, gaming, and security. There are three algorithms that are used widely in the

industry [17]:

• Faster R-CNN

• YOLO

• SSD

In this thesis, we make use of Faster R-CNN, which is a recent incarnation of region-

based convolutional neural networks (R-CNN). Although the first R-CNN algorithms

were computationally expensive, they have now been improved and can achieve real-

time rates using very deep neural networks [16]. R-CNN extracts regions of interest in

the shape of boxes from an input image by using selective search. It then checks

whether any of these boxes contains an object. The regions that contain objects are

extracted first. For each of these regions, a CNN is used to extract particular features.

Finally, these features are used to detect objects. Unfortunately, R-CNN is relatively

slow due to the multiple steps involved in the process [17].

 9

Figure 3 – Illustration of the R-CNN Object Detection Algorithm [17]

A different version of the algorithm, Fast R-CNN, passes an entire image to ConvNet

(short for Convolutional Neural Networks), which then generates regions of interest

instead of passing the extracted regions from the image. Instead of using three different

models as in R-CNN, the algorithm uses a single model that extracts features from the

regions, classifies them into different classes, and returns the bounding boxes of object

classes under investigation. These three steps are done simultaneously, enabling Fast

R-CNN to execute faster than R-CNN. However, Fast R-CNN is not fast enough when

applied on a large dataset, since it also uses selective search for extracting the regions.

 10

Figure 4 – Illustration of the Fast R-CNN Object Detection Algorithm [17]

The iteration of the algorithm that we use, Faster R-CNN, fixes this problem. It replaces

selective search with the region proposal network (RPN) technique. Feature maps are

extracted from the input image using ConvNet, and the maps are passed through an RPN,

which then returns the object proposals. Finally, the maps are classified, and bounding

boxes are predicted. Object detection algorithms like Faster R-CNN are possible means to

identify potential traffic hazards on the two platforms proposed in this thesis work, the

CHARTOPOLIS testbed and the CARLA driving simulator. Alternatives like YOLO, SSD

or RFCN can also be used based on experimental requirements of speed and accuracy.

Faster R-CNN was used in this thesis work due to its ease of access when it comes to

overcoming common debugging hurdles because of better documentation. It also yielded

better accuracy when a minimally trained neural network performed object detection.

 11

Figure 5 – Illustration of the Faster R-CNN Object Detection algorithm [17]

1.6 TensorFlow

TensorFlow is an open-source software library for dataflow and differentiable

programming across a wide range of applications. It was developed by Google initially

for internal use. Later, it was released under the Apache License 2.0. It is a symbolic

math library and is used for machine learning applications [7]. It can also be utilized as

an interface for expressing machine learning algorithms through the implementation

for executing such algorithms. The primary advantage that it provides is that it can be

run across various platforms on different types of systems using the same algorithms.

It is being used for conducting research in more than a dozen disciplines of computer

science, including speech recognition, natural language processing, computer vision,

 12

robotics, data mining, computational drug discovery, and geographic information

extraction.

1.7 Transfer Learning

Transfer learning is a machine learning method in which a neural network model that

was trained for a particular task is then repurposed by additional training for an entirely

different application. This method saves time on model training and produces better

results in test and validation of the checkpoint model (intermediate model output or

save point) created by training a pre-trained model on a new dataset of the object class

under investigation. It is popular for applications that can benefit from the use of pre-

trained models [8]. For example, knowledge (specific intrinsic features recognized by

the neural network) realized by training a model to detect cars could then be used to

train the same model to detect trucks. Domain adaptation can be used when we are

required to learn from a source data distribution and subsequently create a model that

performs well on a different (but related) target data distribution. Since the objective of

this thesis is to show that minimal training of a neural network will suffice to enable

cross-platform training of the network for object identification in autonomous driving

applications, transfer learning is the most essential part of this project. The performance

of a model that is trained using transfer learning can exhibit three main improvements

over its performance without the use of transfer learning [18]: a higher start, a higher

slope, and a higher asymptote (see Figure 6). A successful application of transfer

learning will exhibit all these benefits. However, it

should be noted that in general, it is not obvious that there will be a benefit to using

transfer learning in a particular domain until after the model has been developed and

 13

evaluated. The use of pre-trained neural network models in transfer learning is limited

only by the researcher’s imagination. A model may be downloaded and used out of the

box, which is the approach that we take in this work. Further, the model can be used as

a feature extraction model. Here, the output of the model from a layer prior to the output

layer of the model is used as input to a new classifier model [19]. This means that we

make use of the intrinsic features that were captured by the pre-trained neural network

while we train it further on a separate dataset.

Figure 6 - Benefits of Transfer Learning [18]

Deep CNNs extract low, middle, and high-level features and classifiers in an end-to-end

multi-layer fashion. When a deep neural network starts to converge on an asymptote (as

the loss decreases), a degradation problem occurs: the deeper the network is, the faster its

accuracy becomes saturated, after which its performance degrades rapidly. The cause for

this is neither overfitting nor the addition of more layers causing higher training error but

poorly optimizable loss functions. This deterioration is proof that not all systems are easily

optimizable. As a solution, Microsoft introduced the deep residual learning network

(ResNet). Error rates of single-model results on the ImageNet validation set [31] are listed

 14

in Figure 7. The figure shows that ResNet is the better choice since it results in the lowest

errors. In the case of top-1 score (see Figure 7), you check if the top class (the one having

the highest probability) is the same as the target label. In the case of top-5 score, you check

if the target label is one of your top 5 predictions (the 5 ones with the highest probabilities).

The 50-layer ResNet (ResNet-50 in Figure 7) is constructed by replacing each 2-layer block

with a 3-layer bottleneck block. This model requires 3.8 billion FLOPs. The 101-layer and

152-layer ResNets requires 7.6 billion and 11.3 billion FLOPs, respectively. Because of

these high computational requirements, choosing a network with a large number of hidden

layers would defeat our objective of achieving accurate object detection with quick,

minimal training of the model.

Figure 7 - Error Rates on ImageNet Validation Set [22]

To further motivate the use of transfer learning in this thesis, let us look at an example

problem. Imagine that we have a pre-trained object detection model that can detect cats

and dogs from images. These are four-legged mammals that share similar visual

characteristics which can be recognized by the hidden layers in the pre-trained model. Now

 15

imagine that we need to create an object detection model that can detect horses. It is much

harder to train a model with a small image dataset of horses to reach the same level of

performance as a model that is modified from cat-dog detection through further learning

(transfer learning). A study indicates that we reduce the size requirement of the new dataset

by implementing transfer learning [20]. This simply means that we will need fewer pictures

of horses to train the new model. To summarize, transfer learning enables the use of a much

smaller image dataset to train and test a neural network that can detect particular object

classes across multiple domains (in our case, the physical testbed CHARTOPOLIS and the

virtual environment CARLA). The application of transfer learning can also vastly improve

the final performance of the neural network as shown in Figure 6. These are the primary

motives behind the use of transfer learning in this thesis work.

 16

CHAPTER 2

DRIVING SIMULATION STUDY

We used the driving simulator CARLA in a study, designed in collaboration with Dr.

Kathryn Johnson at ASU, that sought to understand and differentiate the moral profiles of

drivers based on study participants’ decisions in a simulated “trolley-problem” scenario

and their responses to a survey afterward. The details of this study are described in

Immanuella Kankam’s M.S. thesis, “Design of an Immersive Virtual Environment to

Investigate How Different Drivers Crash” [9]. Participants viewed the simulation on three

adjacent computer monitors and drove through the virtual environments, from the

perspective of the driver, using a Logitech steering wheel (G920 Driving Force) and pedals.

During the simulation, they would unexpectedly encounter three different inevitable crash

scenarios, in which they could not avoid a collision and could only decide where to steer

their vehicle, and therefore, where to crash. Snapshots of the three simulated scenarios are

shown in Figures 8, 9, and 10 below. As described earlier, a wide range of virtual driving

environments can be simulated in CARLA, which can be used to train and validate the

object identification algorithms that are proposed in this thesis.

 17

Figure 8 – Scenario 1

Figure 9 – Scenario 2

 18

Figure 10 – Scenario 3

The driving environments in Figures 8, 9, and 10 were modeled in Unreal Engine 4 built

on an Ubuntu distribution of Linux, as described in Section 1.2. These scenarios were then

simulated in CARLA by using a Python API to call functions in Unreal Engine, which in

turn uses an RPC (Remote Procedure Call) client, as illustrated in Figure 11.

Figure 11 – RPC Server-Client

There were several major drawbacks in the initial implementation of these simulation

studies. We identified solutions to these drawbacks, described below:

 19

• Motion sickness: The simulations were displayed to the study participants on a

three-monitor arrangement that required rapid lateral eye movement, which caused

motion sickness in some participants. This was fixed by replacing the three-monitor

setup with an ultra-wide curved monitor and better anti-aliasing.

• Low simulation framerates: The low frame rates of the simulation can be increased

by running the Unreal Engine server-side on a different computer station and

running only the client-side on Python, which is relatively less computationally

intensive on a computer. The setup for the server-side processing is currently under

development.

• Steering wheel sensitivity: The cause of extreme steering-wheel sensitivity was

identified as a low input range from -1 to 1 that is being employed by the CARLA

developers for inputs from steering wheels. A fix for this issue is also under

development with help from CARLA’s developers.

After the three-monitor setup was replaced with a curved monitor (see Figure 13) to

reduce the incidence of motion sickness, a second group of participants used the

simulator to conduct similar tests on a fourth scenario (with a similar situation), shown

in Figure 12.

Figure 12 – Scenario 4

 20

Figure 13 – Driving Simulator Setup

 21

CHAPTER 3

DATASET COLLECTION METHODOLOGY

The paper “Driving in the Matrix: Can Virtual Worlds Replace Human-Generated

Annotations for Real World Tasks” explains the need to explore our ability to train neural

networks on data obtained from virtual worlds [10]. In this paper, they say, “We

demonstrate that a state-of-the-art architecture, which is trained only using these synthetic

annotations, performs better than the identical architecture trained on human-annotated

real-world data, when tested on the KITTI data set for vehicle detection”. The work in this

thesis is inspired by a similar motivation. Moreover, we aim to evaluate our trained object

detection model on images from the real world and other graphic engines. This would

ultimately demonstrate that cross-platform training can be used to enable a neural network

to detect objects on the physical CHARTOPOLIS testbed. The paper [10] used an image

dataset obtained from the video game GTA-V and used its GPU’s stencil-buffer data,

which includes scene depth and other auxiliary information from the game for image

segmentation. This aids in proper semantic segmentation and eliminates the need for

human supervision during the segmentation process. When using image datasets from

CARLA, this technique can be replaced by data from the array of sensors pre-programmed

into the simulation environment. These sensors are the following:

 22

1. Camera - RGB

Figure 14 – Image from RGB Camera

2. Camera – Depth

Figure 15 – Visualized Output of Depth Sensor

 23

3. Camera – Semantic Segmentation

Figure 16 – Semantic Segmentation

4. Lidar – Ray cast

Figure 17 – LIDAR -Ray Cast

The in-situ dataset recording tools in CARLA make it easy to simulate different

scenarios and create an annotated dataset of objects that are commonly present in

driving environments. We created a training dataset with 820 images from CARLA

simulations and labelled this dataset with the following object classes:

 24

• vehicle

• bicycle

• motorbike

• traffic light

• traffic sign

A test dataset consisting of 208 similar images (from CARLA) was also created.

Labelling was done manually using ‘labelImg’ (a tool used for annotation), as shown

in Figure 18 [11].

Figure 18 – Annotating a Sample Image Using LabelImg

The ResNet-50 model was used to implement transfer learning. This model was pre-

trained on the COCO (Common Objects in Context) dataset [32], which contains some

of the object classes that are used in this thesis. Faster R-CNN, described in Section

1.5, was used as the object detection algorithm.

 25

CHAPTER 4

OBJECT DETECTION TESTING AND RESULTS

4.1 Object Detection Algorithm Testing and Evaluation

Faster R-CNN, though slow, is very accurate. The speed versus accuracy of the model

compared to some of the other models from the ‘object detection model zoo’ is shown in

Figure 19.

Figure 19 – Object Detection Model Zoo

The newly created dataset is then used to do transfer learning, and the object detection

algorithm is subsequently tested and validated as explained above. The training was

terminated, and a checkpoint was created at 260 epochs. The total loss values decreased

from 3 to below 0.5 in this time frame. The step number, although low, yielded acceptable

 26

recognition of images from different graphic engines and several real-world images. The

graph of total loss versus epoch number is shown in Figure 20.

Figure 20 – Loss Curves from Tensorboard Data

The inference graph is then frozen, and the metadata stored for continuing training with a

multiple GPU setup. As a proof of concept, the saved object detection model is then tested

on ten images: five images from the recorded dataset, three real-world images, and two

images from video games rendered using a different graphical engine (Rockstar Advanced

Game Engine).

 27

To evaluate the instance segmentation provided by the trained model, we use a method

called Intersection over Union (IoU) for object detection. This is an evaluation metric that

evaluates the predicted bounding boxed versus the annotations used for training (ground

truth).

Figure 21 - Illustration depicting the IoU metric

In the numerator, we compute the area of overlap between the predicted bounding box and

the ground-truth bounding box. The denominator is the area of the union or the area

encompassed by both the predicted bounding box and the ground-truth bounding box. Here

we see the evaluation of some of the images from the test dataset. An extensive list is

attached in Appendix-C. The IoU values have been printed along with the bounding boxes

on the top left corner.

Figure 22 - An example of computing IoU for various bounding boxes

 28

Figure 23 - IoU for car detection

Figure 24 - IoU for car detection

 29

Figure 25 - IoU for car detection

Figure 26 - IoU for car detection

 30

Figure 27 - IoU for traffic light detection

Figure 28 - IoU for traffic light detection

 31

Figure 29 - IoU for traffic light detection

Figure 30 - IoU for traffic light detection

 32

Figure 31 - Precision and recall to measure accuracy of object detection [21]

In the field of information retrieval, precision is the fraction of retrieved documents that

are relevant to the query. In our context, precision is a measure of how many detections of

all the detections pertaining to an object class are correct. Recall is the fraction of relevant

documents that are successfully retrieved. In our context, recall is a measure of how many

were successfully detected out of the total number of images of a particular object class.

Since the objective of this thesis does not require perfect accuracy scores, accuracy

calculations are based on the IoU values in Figures 23-30. For calculating Precision and

Recall, as with all machine learning problems, we have to identify True Positives, False

Positives, True Negatives and False Negatives. To identify True Positives and False

Positives, we use IoU. Using IoU, we now have to identify whether the detection (a

Positive) is correct (True) or not (False). The most commonly used threshold is 0.5 - i.e.,

if IoU > 0.5, then it is considered a True Positive, and otherwise it is considered a False

Positive. The COCO evaluation metric [32] recommends measurement across various IoU

thresholds, but for simplicity, we will use a threshold of 0.5, which is the PASCAL VOC

metric [33]. For calculating Recall, we need the count of Negatives. Since every part of the

image where we did not predict an object is considered a negative, measuring “True”

 33

negatives is not that useful. So, we only measure “False” Negatives, i.e., the objects that

our model has failed to identify.

Another factor that is taken into consideration is the confidence that the model reports for

every detection. By varying our confidence threshold, we can change whether a predicted

box is a Positive or Negative. Basically, all predictions (Box + Class) above the threshold

are considered Positive boxes and all below it are Negatives. For every image, we have

ground truth data that tells us the number of actual objects of a given class in that image.

We calculate the IoU with the ground truth for every positive detection box that the model

reports. Using this value and our IoU threshold (set to 0.5), we calculate the number of

correct detections (A) for each class in an image. This is used to calculate the Precision for

each class [TP/(TP+FP)].

Object

class
Image IoU TP FP

Confidenc

e

Actual

No.

detecte

d
FN

Vehicle Figure23
0.954

3
TP 99% 2 1 1

Vehicle Figure24
0.930

5
TP 99% 4 3 1

Vehicle Figure25
0.921

2
TP 99% 1 1 0

Vehicle Figure26 0.919 TP 99% 6 6 0

Traffic

Light
Figure27 0.832 TP 85% 1 1 0

Traffic

Light
Figure28

0.858

5
TP 70% 1 1 0

Traffic

Light
Figure29 - - 0% 1 0 1

Traffic

Light
Figure30

0.847

6
TP 85% 1 1 0

Table 2 - Object detection precision-recall calculation

 34

From Table 2, Precision (vehicle) = TP/(TP+FP) = 4/4 = 1 (100%);

and Precision (traffic light) = TP/(TP+FP) = 3/4 = 0.75 (75%)

Since we already have calculated the number of correct predictions (A) (True Positives)

and the number of missed detections (False Positives), we can now calculate the Recall

(A/B) of the model for that class using the formula TP/(TP+FN). The actual object

detection results for this test dataset is shown in Appendix-C.

Recall (vehicle) = TP/(TP+FN) = 11/13 = 0.8462 (84.62%)

Recall (Traffic Light) = TP/(TP+FN) = 3/4 = 0.75 (75%)

These error rates would be unacceptable in a real-life autonomous vehicle. The accuracy

of detection and other deep learning functions can be improved by using a larger image

dataset to train the neural network. Use of more modern object detection algorithms like

the DenseNet and pretraining such a neural network on a larger dataset that consists of

video streams could significantly improve accuracy to yield desired results.

 35

4.2 Test Results

The object detection algorithm was tested on the images in Figures 32-41, which display

the pixel scaling on its sides and detected object classes as bounding boxes with their names

and confidence levels in percentages. It can be seen from the results that the 260-epoch

training helped the neural network to detect vertical traffic lights (similar models) and

vehicles without fail. The classes that were not detected in environments alien to CARLA

(like the horizontal traffic lights from Figure 33 which are rare in the model towns in

CARLA) have not been detected in the images from CARLA either. Thus, ruling out the

possibility of any interference from transfer learning, our work lays the foundation to build

a cross platform trained neural network that will provide a useful tool for validating

autonomous vehicle controllers in scenarios that are dangerous to implement in the real

world, such as situations that present a moral dilemma

Figure 32 - Test Result

 36

Figure 33 - Test Result

Figure 34 - Test Result

 37

Figure 35 - Test Result

Figure 36 - Test Result

 38

Figure 37 - Test Result

Figure 38 - Test Result

 39

Figure 39 - Test Result

Figure 40 - Test Result

 40

Figure 41 - Test Result

 41

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The data collected from the driving study can further be used to verify and establish value-

based dependencies with the personal choices that drivers make. From a large portion of

previous work surrounding possibilities in programming moral integrity in robots, it was

understood that any semblance of morality or ethics in decisions taken by a machine can

only be illustrated by a toy problem at the very basic level. This can be further elaborated

to model complex scenarios. The toy problem would ideally consist of a posted speed limit

and the degree of adherence to this speed limit by a ‘powerful’ or ‘benevolent’ driver. To

program such scenarios, it was proposed that a small-scale driving testbed with multiple

robots that emulate autonomous vehicles which can interact among themselves and with

their surroundings must be designed. This led to the development of the newer version of

CHARTOPOLIS. Further, to improve the scalability of the environment (for use in real

world scenarios), it is apparent that cross platform compatibility in neural network models

trained across the test bed and the CARLA driving simulator would help in recognizing

and grouping different objects into their correct classes from image data. This proof of

concept shows that the cross-platform training can be successful with the application of

transfer learning. To improve productivity, all these tools should be used in tandem while

changing the weights of each neuron in the network (to closely model powerful and

benevolent drivers). This is of vital importance as this step can adversely affect the degree

to which we can reproduce the composite moral profile identified from participant data.

 42

5.2 Future Work

The future work of this project will consist of the following objectives:

1. Model a city in Unreal Engine that is as similar to the CHARTOPOLIS testbed as

possible.

2. Modify the object detection method to increase its accuracy to at least 95%.

3. Toward this end, a new and robust training dataset should be created with at least

30,000 images.

4. All possible benefits of transfer learning should fully be used by extracting models

from neural network layers before the output layer and using them as base models

for new training.

5. Do a similar study using DenseNet in place of the ResNet architecture for CNN.

6. Conduct imitation learning to closely model the ‘powerful’ and ‘benevolent’ drivers

that were identified in Dr. Kathryn Johnson’s studies.

7. Identify crucial object classes pertaining to the toy problem (to be tested in the

physical domain, CHARTOPOLIS).

Imitation learning can be a useful tool to edit the weights attributed to each neuron.

Weights are assigned randomly when training starts. Gradually they are modified based

on the loss function to get desired results. In this case, we can get the weights associated

with rash driving or benevolent driving using imitation learning. We can try modifying

these to figure out which neuron has a larger association with the moral values that we

are trying to program.

 43

REFERENCES

[1] Stevens, William B. “The Automated Highway System Program: A Progress Report.”

IFAC Proceedings Volumes 29.1 (1996): 8180-188.

[2] Daisuke Wakabayashi. (2018, March 20). Self-Driving Uber Car Kills Pedestrian in

Arizona, Where Robots Roam. Retrieved from

https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html

[3] Fridman, L., Brown, D. E., Kindelsberger, J., Angell, L., Mehler, B., & Reimer, B.

Human Side of Tesla Autopilot: Exploration of Functional Vigilance in Real-World

Human-Machine Collaboration. 2019

[4] Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles:

opportunities, barriers and policy recommendations. Transportation Research Part A:

Policy and Practice, 77, 167-181.

[5] Spring Berman, Nancy Cooke, Mustafa Demir, Ruben Gameros, Sterling Martin,

Taylor Reagan, and Rakshith Subramanyam. “CHARTOPOLIS: A Testbed for Driver

Interaction with Driverless Cars.” 2018 Southwest Robotics Symposium, Arizona State

University, Tempe, AZ, Jan. 25-26, 2018. Oral and poster presentation.

[6] Unreal Engine. (Published: 2004, January 1). Retrieved from

https://en.wikipedia.org/wiki/Unreal_Engine

[7] TensorFlow. (Published: 2015, November 9). Retrieved from

https://en.wikipedia.org/wiki/TensorFlow

[8] Dai, W., Yang, Q., Xue, G. R., & Yu, Y. (2007, June). Boosting for transfer learning.

In Proceedings of the 24th International Conference on Machine Learning (pp. 193-200).

ACM.

[9] Kankam, Immanuella. Design of an Immersive Virtual Environment to Investigate How

Different Drivers Crash in Trolley-problem Scenarios (2019). Master’s Thesis in

Mechanical Engineering, Arizona State University.

[10] Johnson-Roberson, Matthew, Charles Barto, Rounak Mehta, Sharath Nittur Sridhar,

Karl Rosaen, and Ram Vasudevan. “Driving in the Matrix: Can Virtual Worlds Replace

Human-Generated Annotations for Real World Tasks?” Computer Vision and Pattern

Recognition (2016).

[11] tzutalin/labelImg. (Published: 2019, 4). Retrieved from

https://github.com/tzutalin/labelImg

https://en.wikipedia.org/wiki/Unreal_Engine
https://en.wikipedia.org/wiki/TensorFlow
https://github.com/tzutalin/labelImg

 44

[12] Awad, Edmond, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich, Azim

Shariff, Jean-François Bonnefon, and Iyad Rahwan. “The Moral Machine Experiment.”

Nature 563.7729 (2018): 59-64.

[13] Holstein, Tobias, Gordana Dodig Crnkovic, and Patrizio Pelliccione. "Ethical and

Social Aspects of Self-Driving Cars." EasyChair Preprints (2018).

[14] Romero, Simon. Wielding Rocks and Knives, Arizonans Attack Self-Driving Cars.

(2018, December 31). Retrieved from https://www.nytimes.com/2018/12/31/us/waymo-

self-driving-cars-arizona-attacks.html

[15] Baldwin, C.L. and Penaranda, B.N. “Adaptive Training Using an Artificial Neural

Network and EEG Metrics for within- and Cross-Task Workload Classification.”

NeuroImage, vol. 59, no. 1, 2012, pp. 48–56.

[16] Shaoqing Ren, R, et al. “Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 39, no. 6, 2017, pp. 1137–1149.

[17] Sharma, Pulkit. A Practical Implementation of the Faster R-CNN Algorithm for

Object Detection (Part 2 - with Python codes). (2018, November 5). Retrieved from

https://www.analyticsvidhya.com/blog/2018/11/implementation-faster-r-cnn-python-

object-detection/

[18] Olivas, Emilio. “Handbook of Research on Machine Learning Applications and

Trends; Algorithms, Methods and Techniques; 2v.” Scitech Book News, vol. 33, no. 4,

2009, pp. Scitech Book News, Vol.33(4).

[19] Brownlee, Jason. How to Reuse Models for Computer Vision with Transfer Learning

in Keras. (2019, July 5). Retrieved from https://machinelearningmastery.com/how-to-use-

transfer-learning-when-developing-convolutional-neural-network-models/

[20] Soekhoe, Deepak, et al. “On the Impact of Data Set Size in Transfer Learning Using

Deep Neural Networks.” Lecture Notes in Computer Science Advances in Intelligent Data

Analysis XV, 2016, pp. 50–60., doi:10.1007/978-3-319-46349-0_5.

[21] Precision and recall. (Published: 2007, November 21). Retrieved from

https://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.

29

[22] Krizhevsky, Alex, et al. “ImageNet Classification with Deep Convolutional Neural

Networks.” Communications of the ACM, vol. 60, no. 6, 2017, pp. 84–90.

[23] Johnson, K.A., Berman, S., Chiou, E., Pavlic, T.P., Cohen, A.B. (under review).

Toward virtuous vehicles: Identifying the moral profile of good drivers as a basis for ethical

https://www.nytimes.com/2018/12/31/us/waymo-self-driving-cars-arizona-attacks.html
https://www.nytimes.com/2018/12/31/us/waymo-self-driving-cars-arizona-attacks.html
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29

 45

decision-making in self-driving cars. Submitted to Basic and Applied Social Psychology,

2019.

[24] Rezatofighi, Hamid, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and

Silvio Savarese. "Generalized Intersection over Union: A Metric and A Loss for Bounding

Box Regression." (2019).

[25] Shaoqing Ren, R., Kaiming He, Girshick, and Jian Sun. "Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks." IEEE Transactions on

Pattern Analysis and Machine Intelligence 39.6 (2017): 1137-149.

[26] Kensert, Alexander, Philip J Harrison, and Ola Spjuth. "Transfer Learning with Deep

Convolutional Neural Networks for Classifying Cellular Morphological Changes." SLAS

Discovery 24.4 (2019): 466-75.

[27] Koopman, Philip, and Michael Wagner. "Challenges in Autonomous Vehicle Testing

and Validation." SAE International Journal of Transportation Safety 4.1 (2016): 15-24.

[28] “Trolley Problem.” Wikipedia, Wikimedia Foundation, 22 July 2019,

en.wikipedia.org/wiki/Trolley_problem.

[29] Rakshith Subramanyam. “CHARTOPOLIS: A Self Driving Car Test Bed.” M.S. thesis,

Electrical Engineering, Arizona State University, April 2018.

[30] Dosovitskiy, Alexey, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen

Koltun. "CARLA: An Open Urban Driving Simulator." Proceedings of the 1st Annual

Conference on Robot Learning (2017).

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale

Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR),

2009.

[32] Lin, Tsung-Yi, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.

"Microsoft COCO: Common Objects in Context." (2014).

[33] Everingham, Mark, S. Eslami, M. Gool, Ali Williams, Luc Winn, and Christopher

Zisserman. "The Pascal Visual Object Classes Challenge: A Retrospective." International

Journal of Computer Vision 111.1 (2015): 98-136. Web.

 46

APPENDIX A

SAMPLE CODE FOR IMAGE EVALUATION

 47

Imports
In [0]:

import numpy as np

import os

import six.moves.urllib as urllib

import sys

import tarfile

import tensorflow as tf

import zipfile

from distutils.version import StrictVersion

from collections import defaultdict

from io import StringIO

from matplotlib import pyplot as plt

from PIL import Image

This is needed since the notebook is stored in the object_detection fo

lder.

sys.path.append("..")

from object_detection.utils import ops as utils_ops

if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):

 raise ImportError('Please upgrade your TensorFlow installation to v1.1

2.*.')

Env setup
In [0]:

This is needed to display the images.

%matplotlib inline

Object detection imports

Here are the imports from the object detection module.

In [0]:

from utils import label_map_util

from utils import visualization_utils as vis_util

Model preparation
Variables
Any model exported using the export_inference_graph.py tool can be loaded here

simply by changing PATH_TO_FROZEN_GRAPHto point to a new .pb file.

By default we use an "SSD with Mobilenet" model here. See the detection model zoo for a list
of other models that can be run out-of-the-box with varying speeds and accuracies.

In [0]:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

 48

What model to download.

MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'

MODEL_FILE = MODEL_NAME + '.tar.gz'

DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/

'

Path to frozen detection graph. This is the actual model that is used

for the object detection.

PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'

List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

Download Model
In [0]:

opener = urllib.request.URLopener()

opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)

tar_file = tarfile.open(MODEL_FILE)

for file in tar_file.getmembers():

 file_name = os.path.basename(file.name)

 if 'frozen_inference_graph.pb' in file_name:

 tar_file.extract(file, os.getcwd())

Load a (frozen) Tensorflow model into memory.
In [0]:

detection_graph = tf.Graph()

with detection_graph.as_default():

 od_graph_def = tf.GraphDef()

 with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:

 serialized_graph = fid.read()

 od_graph_def.ParseFromString(serialized_graph)

 tf.import_graph_def(od_graph_def, name='')

Loading label map
Label maps map indices to category names, so that when our convolution network predicts 5,

we know that this corresponds to airplane. Here we use internal utility functions, but

anything that returns a dictionary mapping integers to appropriate string labels would be fine

In [0]:

category_index = label_map_util.create_category_index_from_labelmap(PATH

_TO_LABELS, use_display_name=True)

Helper code
In [0]:

def load_image_into_numpy_array(image):

 (im_width, im_height) = image.size

 return np.array(image.getdata()).reshape(

 49

 (im_height, im_width, 3)).astype(np.uint8)

Detection
In [0]:

For the sake of simplicity we will use only 2 images:

image1.jpg

image2.jpg

If you want to test the code with your images, just add path to the im

ages to the TEST_IMAGE_PATHS.

PATH_TO_TEST_IMAGES_DIR = 'test_images'

TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'

.format(i)) for i in range(1, 3)]

Size, in inches, of the output images.

IMAGE_SIZE = (12, 8)

In [0]:

def run_inference_for_single_image(image, graph):

 with graph.as_default():

 with tf.Session() as sess:

 # Get handles to input and output tensors

 ops = tf.get_default_graph().get_operations()

 all_tensor_names = {output.name for op in ops for output in op.out

puts}

 tensor_dict = {}

 for key in [

 'num_detections', 'detection_boxes', 'detection_scores',

 'detection_classes', 'detection_masks'

]:

 tensor_name = key + ':0'

 if tensor_name in all_tensor_names:

 tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(

 tensor_name)

 if 'detection_masks' in tensor_dict:

 # The following processing is only for single image

 detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]

)

 detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]

)

 # Reframe is required to translate mask from box coordinates to

image coordinates and fit the image size.

 real_num_detection = tf.cast(tensor_dict['num_detections'][0], t

f.int32)

 detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_de

tection, -1])

 50

 detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num

_detection, -1, -1])

 detection_masks_reframed = utils_ops.reframe_box_masks_to_image_

masks(

 detection_masks, detection_boxes, image.shape[1], image.shap

e[2])

 detection_masks_reframed = tf.cast(

 tf.greater(detection_masks_reframed, 0.5), tf.uint8)

 # Follow the convention by adding back the batch dimension

 tensor_dict['detection_masks'] = tf.expand_dims(

 detection_masks_reframed, 0)

 image_tensor = tf.get_default_graph().get_tensor_by_name('image_te

nsor:0')

 # Run inference

 output_dict = sess.run(tensor_dict,

 feed_dict={image_tensor: image})

 # all outputs are float32 numpy arrays, so convert types as approp

riate

 output_dict['num_detections'] = int(output_dict['num_detections'][

0])

 output_dict['detection_classes'] = output_dict[

 'detection_classes'][0].astype(np.int64)

 output_dict['detection_boxes'] = output_dict['detection_boxes'][0]

 output_dict['detection_scores'] = output_dict['detection_scores'][

0]

 if 'detection_masks' in output_dict:

 output_dict['detection_masks'] = output_dict['detection_masks'][

0]

 return output_dict

In [0]:

for image_path in TEST_IMAGE_PATHS:

 image = Image.open(image_path)

 # the array based representation of the image will be used later in or

der to prepare the

 # result image with boxes and labels on it.

 image_np = load_image_into_numpy_array(image)

 # Expand dimensions since the model expects images to have shape: [1,

None, None, 3]

 image_np_expanded = np.expand_dims(image_np, axis=0)

 # Actual detection.

 51

 output_dict = run_inference_for_single_image(image_np_expanded, detect

ion_graph)

 # Visualization of the results of a detection.

 vis_util.visualize_boxes_and_labels_on_image_array(

 image_np,

 output_dict['detection_boxes'],

 output_dict['detection_classes'],

 output_dict['detection_scores'],

 category_index,

 instance_masks=output_dict.get('detection_masks'),

 use_normalized_coordinates=True,

 line_thickness=8)

 plt.figure(figsize=IMAGE_SIZE)

 plt.imshow(image_np)

 52

APPENDIX B

SAMPLE CODE FOR INTERSECTION OVER UNION EVALUATION

 53

#!/usr/bin/env python

coding: utf-8

In[1]:

import the necessary packages

from collections import namedtuple

import numpy as np

import cv2

define the `Detection` object

Detection = namedtuple("Detection", ["image_path", "gt", "pred"])

In[2]:

def bb_intersection_over_union(boxA, boxB):

 # determine the (x, y)-coordinates of the intersection rectangle

 xA = max(boxA[0], boxB[0])

 yA = max(boxA[1], boxB[1])

 xB = min(boxA[2], boxB[2])

 yB = min(boxA[3], boxB[3])

 # compute the area of intersection rectangle

 interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)

 # compute the area of both the prediction and ground-truth

 # rectangles

 boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)

 boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

 # compute the intersection over union by taking the intersection

 # area and dividing it by the sum of prediction + ground-truth

 # areas - the interesection area

 iou = interArea / float(boxAArea + boxBArea - interArea)

 # return the intersection over union value

 return iou

In[3]:

 54

define the list of example detections

examples = [

 Detection("image1.jpg", [529, 40, 581, 168], [530, 44, 576, 170]),

 Detection("image2.jpg", [225, 184, 414, 337], [227, 186, 416, 339]),

 Detection("image3.jpg", [243, 207, 397, 336], [245, 209, 394, 333]),

 Detection("image4.jpg", [227, 203, 411, 338], [225, 200, 415, 342]),

 Detection("image5.jpg", [455, 205, 640, 305], [456, 206, 644, 310])]

In[4]:

loop over the example detections

for detection in examples:

 # load the image

 image = cv2.imread(detection.image_path)

 # draw the ground-truth bounding box along with the predicted

 # bounding box

 cv2.rectangle(image, tuple(detection.gt[:2]),

 tuple(detection.gt[2:]), (0, 255, 0), 2)

 cv2.rectangle(image, tuple(detection.pred[:2]),

 tuple(detection.pred[2:]), (0, 0, 255), 2)

 # compute the intersection over union and display it

 iou = bb_intersection_over_union(detection.gt, detection.pred)

 cv2.putText(image, "IoU: {:.4f}".format(iou), (10, 30),

 cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)

 print("{}: {:.4f}".format(detection.image_path, iou))

 # show the output image

 cv2.imshow("Image", image)

 cv2.waitKey(0)

 55

APPENDIX C

OBJECT DETECTION RESULTS FOR IOU TEST DATASET

 56

 57

 58

 59

