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ABSTRACT  

   

Autonomous vehicle technology has been evolving for years since the Automated 

Highway System Project [1]. However, this technology has been under increased scrutiny 

ever since an autonomous vehicle killed Elaine Herzberg, who was crossing the street in 

Tempe, Arizona in March 2018 [2].  Recent tests of autonomous vehicles on public roads 

have faced opposition from nearby residents [14]. Before these vehicles are widely 

deployed, it is imperative that the general public trusts them. For this, the vehicles must be 

able to identify objects in their surroundings and demonstrate the ability to follow traffic 

rules while making decisions with human-like moral integrity when confronted with an 

ethical dilemma, such as an unavoidable crash that will injure either a pedestrian or the 

passenger. 

Testing autonomous vehicles in real-world scenarios would pose a threat to people 

and property alike. A safe alternative is to simulate these scenarios and test to ensure that 

the resulting programs can work in real-world scenarios. Moreover, in order to detect a 

moral dilemma situation quickly, the vehicle should be able to identify objects in real-time 

while driving. Toward this end, this thesis investigates the use of cross-platform training 

[15] for neural networks that perform visual identification of common objects in driving 

scenarios. Here, the object detection algorithm Faster R-CNN [25] is used. The hypothesis 

is that it is possible to train a neural network model to detect objects from two different 

domains, simulated or physical, using transfer learning. As a proof of concept, an object 

detection model is trained on image datasets extracted from CARLA, a virtual driving 

environment, via transfer learning [26]. After bringing the total loss factor to 0.4, the model 

is evaluated with an IoU metric [24]. It is determined that the model has a precision of 
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100% and 75% for vehicles and traffic lights respectively. The recall is found to be 84.62% 

and 75% for the same.  It is also shown that this model can detect the same classes of 

objects from other virtual environments and real-world images. Further modifications to 

the algorithm that may be required to improve performance are discussed as future work. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Research spanning almost seven decades about human behavior around automation has 

shown that we have a natural tendency to trust reliable automated systems too much. After 

we relinquish our control to these machines for an extended period, it becomes second 

nature to our minds to trust them and to expect them to work as required. However, new 

research suggests that this trust may not extend to autonomous vehicles, also called self-

driving vehicles, or vehicles with autopilot. For example, a recent study found that while 

drivers used the autopilot control feature to travel 34.8% of their miles, they maintained 

‘functional vigilance’ while the autopilot was enabled [3]. Advanced driver assistance 

systems like automatic lane keeping, smart cruise control, and other technologies are now 

commonplace in most mid-range consumer automobiles. Some researchers claim that a 

few hundred thousand kilometers of driving experience for autonomous cars programmed 

with machine learning algorithms is sufficient to prepare the technology for widespread 

deployment [27]. However, many argue that the safety record for self-driving cars has not 

yet been proven [13]. While these autonomous vehicles would eliminate the incidence of 

fatal crashes that are due to human causes [4] (see Figure 1), public trust in autonomous 

vehicles is essential for their widespread adoption.  
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Figure 1 – Human Factor Involvement in Crashes [4] 

 

Although automation erases some of the limitations of human-operated machinery, it will 

still need to respond to difficult dilemmas entailing ethical and moral decisions. An 

example of such a problem that is relevant to autonomous vehicle decision-making is the 

“trolley problem”. A trolley problem is an analogy which represents a decision between 

hurting a few or many [28]. The MIT moral machine experiment gathered data from 40 

million decisions on trolley-problem scenarios, presented online in ten languages, from 

people spanning over 233 countries and territories [12] (see Figure 2). The analysis of this 

data determined both global moral preferences and individual variations in preferences. 

This study revealed the factors that influenced their decisions. In addition, a recent study 

by Dr. Kathryn Johnson at Arizona State University (ASU) has isolated some of the moral 

values or factors behind decisions that determine a person’s driving behavior [23]. The two 

core values that really mattered were ‘power’ and ‘benevolence’. It is now apparent that 

autonomous vehicles will encounter ethical dilemmas, such as inevitable crash scenarios 
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similar to the trolley problem. The technology available to us today can be used to tackle 

some of these challenges.  

 

 

Figure 2 - MIT Moral Machine Experiment [12] 

Towards this end, the work in this thesis is motivated by the problem of programming 

moral integrity into autonomous vehicles based on studies of human decision-making 

during simulated vehicle crashes. I conducted these studies, in collaboration with Dr. 
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Kathryn Johnson at ASU, using the CARLA driving simulator, which is described below 

in Section 1.3. In addition, experiments can be performed on object detection and lane 

tracking using a new version of a small-scale physical driving testbed called 

CHARTOPOLIS, developed at ASU [5][29], which includes small robots that emulate 

autonomous vehicles.  

This thesis accomplishes the task of building a bridge that closes the gap in experiments 

conducted on the CHARTOPOLIS testbed and the simulation environment, CARLA, by 

demonstrating cross platform training of a neural network. The method used in this thesis 

can also be called a normalization technique (object classification knowledge becomes 

transferrable) in which a control system implemented on the small robot robotic vehicles 

on the physical testbed can be transferred to simulated vehicles in CARLA in order to 

check its functionality in scenarios that are much more complicated than ones that can be 

implemented on the testbed. For example, there are limitations to the realism of modeling 

pedestrians on the testbed. While we could train an object detection model, designed as 

described in this thesis, to detect a pedestrian on the testbed, there might be situations in 

which the pedestrian performs complex maneuvers that cannot be reproduced easily on the 

testbed. In such a scenario, the exact same object detection model could be used on CARLA 

which can simulate complex traffic scenarios. In this way, the object detection model 

serves as a cross-platform tool that could potentially bridge the gap between physical and 

simulated environments when conducting research on autonomous vehicle control 

strategies. In the following sections, we describe Unreal Engine, which is used to design 

the simulated environment; CARLA Driving Simulator, which is used for data collection 

and object detection; CHARTOPOLIS testbed, which is used as the physical domain to 
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complement the simulation in CARLA; Object detection algorithms that are used in this 

thesis; TensorFlow library, which is used to deploy the object detection algorithms; 

Transfer learning and its applications in this thesis.  

1.2 Unreal Engine 

CARLA (see Section 1.3) was developed with a simulated world created using Unreal 

Engine 4. Unreal Engine is a graphics engine developed by Epic Games, first released 

in 1998 for the first-person shooter game ‘Unreal’. Since then, it has undergone various 

iterations through development year after year and has become quite popular among 

game developers. The most recent version is Unreal Engine 4, released in 2014 [6]. For 

the purposes of building the driving simulator detailed in this thesis, Unreal Engine 

4.22 was built on an Ubuntu distribution (16.04 LTS) of Linux. The following 

specification of the hardware is used. 

Operating System Ubuntu 16.04 LTS, 64-bit 

Processor 10-Core Intel Xeon Processor 

Memory 16 GB ECC x 2 

GPU Nvidia GeForce RTX 2080Ti 

Table 1 – Hardware used to build CARLA 

Other simulators like Autoware, Airsim, TORCS, Udacity Simulator, and the 

Donkeycar simulator were also considered for the simulated crash studies. From this 

list, CARLA and Airsim were identified as the best fits for the purposes of this thesis 

because they use Unreal Engine, which provides a lot of the functionality needed for 

simulation studies with acceptable fidelity and scalability. Another candidate for the 

graphics environment was Unity. Both Unity and Unreal Engine are capable of 
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producing AAA quality graphics. They have extensive toolboxes that include a terrain 

editor, physics simulation, animation, advanced lighting, and virtual reality support. 

Both engines support 2D, and fully 3D rendered games. They run the latest rendering 

technologies including PBR (Physically Based Rendering), GI (Global Illumination), 

volumetric lights, post processing, and advanced shaders. While it is possible to 

produce the same simulation quality using either engines, Unity falls short when it 

comes to tools that are usable out of the box. Unreal provides presets that can be easily 

used and modified. This was apparent once CARLA was updated with its current sensor 

suite.  For this reason, Unreal Engine was selected as the graphics engine in the 

simulation studies. 

1.3 CARLA Driving Simulator 

CARLA [30] is an open-source simulator for autonomous driving research that was 

developed by a group of developers with the help of its founding sponsors Intel Labs 

and the Computer Vision Centre at Universitat Autonoma de Barcelona, Barcelona to 

facilitate the development, training, and validation of autonomous vehicle systems. Not 

limited to open-source code, CARLA also provides open-source digital assets (urban 

layouts, buildings, vehicles). The simulator provides a wide array of sensor suites and, 

environmental conditions, full control of all static and dynamic agents, map generation, 

and many more features. [30] CARLA has two primary modules, the simulator module, 

and the Python API module. The former will be referred to as the server-side in this 

thesis. This module performs most of the graphic-intensive processes and hence 

requires a dedicated GPU to run satisfactorily. With the Python API, we can control all 

static and dynamic agents in the simulation, attach sensors to the agents, and 
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record/reproduce all the data generated using these sensors. CARLA is also well-

integrated with the Robot Operating System (ROS). The ROS bridge that is being 

developed by CARLA’s developers can facilitate the programming of multiple agents 

with a composite moral profile that is built from the results of human subject studies 

using the driving simulator. These programs can then be adapted to work with the 

CHARTOPOLIS testbed. 

1.4 CHARTOPOLIS testbed 

CHARTOPOLIS [29] is a miniature testbed that is being designed as a laboratory for 

testing human-robot interaction in a scale model of an urban traffic environment. It has 

small car shaped mobile robots called Go-CHARTS that has all the sensory capabilities 

of an autonomous vehicle. Along with carefully designed roads with proper lane 

systems that conform with the driving regulations in the United States (to scale), it also 

has artistically designed buildings, a working traffic regulation system with traffic signs 

and signals and model pedestrians. CHARTOPOLIS provides a safe environment in 

which it is possible to test our future autonomous vehicle control strategies, such as 

those based on a composite moral profile from human subject studies. It is also part of 

the vision that this thesis work proposes – to be able to train a single neural network 

that can perform various tasks like object detection and vehicle navigation across 

multiple domains/platforms. In this thesis, the proposed domains are the 

CHARTOPOLIS testbed (physical domain) and the CARLA driving simulator (virtual 

domain). 
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1.5 Object Detection Algorithms 

Within the field of computer vision, various algorithms based on deep learning 

techniques have been developed for detecting particular objects in images and videos. 

These algorithms are now quite widely used and have numerous applications besides 

autonomous vehicle driving, including people counting, face detection, medical 

diagnosis, gaming, and security. There are three algorithms that are used widely in the 

industry [17]: 

• Faster R-CNN 

• YOLO 

• SSD 

In this thesis, we make use of Faster R-CNN, which is a recent incarnation of region-

based convolutional neural networks (R-CNN). Although the first R-CNN algorithms 

were computationally expensive, they have now been improved and can achieve real-

time rates using very deep neural networks [16]. R-CNN extracts regions of interest in 

the shape of boxes from an input image by using selective search. It then checks 

whether any of these boxes contains an object. The regions that contain objects are 

extracted first. For each of these regions, a CNN is used to extract particular features. 

Finally, these features are used to detect objects. Unfortunately, R-CNN is relatively 

slow due to the multiple steps involved in the process [17].  



  9 

 

Figure 3 – Illustration of the R-CNN Object Detection Algorithm [17] 

 

A different version of the algorithm, Fast R-CNN, passes an entire image to ConvNet 

(short for Convolutional Neural Networks), which then generates regions of interest 

instead of passing the extracted regions from the image. Instead of using three different 

models as in R-CNN, the algorithm uses a single model that extracts features from the 

regions, classifies them into different classes, and returns the bounding boxes of object 

classes under investigation. These three steps are done simultaneously, enabling Fast 

R-CNN to execute faster than R-CNN. However, Fast R-CNN is not fast enough when 

applied on a large dataset, since it also uses selective search for extracting the regions. 
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Figure 4 – Illustration of the Fast R-CNN Object Detection Algorithm [17] 

The iteration of the algorithm that we use, Faster R-CNN, fixes this problem. It replaces 

selective search with the region proposal network (RPN) technique. Feature maps are 

extracted from the input image using ConvNet, and the maps are passed through an RPN, 

which then returns the object proposals. Finally, the maps are classified, and bounding 

boxes are predicted. Object detection algorithms like Faster R-CNN are possible means to 

identify potential traffic hazards on the two platforms proposed in this thesis work, the 

CHARTOPOLIS testbed and the CARLA driving simulator. Alternatives like YOLO, SSD 

or RFCN can also be used based on experimental requirements of speed and accuracy. 

Faster R-CNN was used in this thesis work due to its ease of access when it comes to 

overcoming common debugging hurdles because of better documentation. It also yielded  

better accuracy when a minimally trained neural network performed object detection. 
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Figure 5 – Illustration of the Faster R-CNN Object Detection algorithm [17] 

 

1.6 TensorFlow 

TensorFlow is an open-source software library for dataflow and differentiable 

programming across a wide range of applications. It was developed by Google initially 

for internal use. Later, it was released under the Apache License 2.0. It is a symbolic 

math library and is used for machine learning applications [7]. It can also be utilized as 

an interface for expressing machine learning algorithms through the implementation 

for executing such algorithms. The primary advantage that it provides is that it can be 

run across various platforms on different types of systems using the same algorithms. 

It is being used for conducting research in more than a dozen disciplines of computer 

science, including speech recognition, natural language processing, computer vision, 
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robotics, data mining, computational drug discovery, and geographic information 

extraction. 

1.7 Transfer Learning 

Transfer learning is a machine learning method in which a neural network model that 

was trained for a particular task is then repurposed by additional training for an entirely 

different application. This method saves time on model training and produces better 

results in test and validation of the checkpoint model (intermediate model output or 

save point) created by training a pre-trained model on a new dataset of the object class 

under investigation. It is popular for applications that can benefit from the use of pre-

trained models [8]. For example, knowledge (specific intrinsic features recognized by 

the neural network) realized by training a model to detect cars could then be used to 

train the same model to detect trucks. Domain adaptation can be used when we are 

required to learn from a source data distribution and subsequently create a model that 

performs well on a different (but related) target data distribution. Since the objective of 

this thesis is to show that minimal training of a neural network will suffice to enable 

cross-platform training of the network for object identification in autonomous driving 

applications, transfer learning is the most essential part of this project. The performance 

of a model that is trained using transfer learning can exhibit three main improvements 

over its performance without the use of transfer learning [18]: a higher start, a higher 

slope, and a higher asymptote (see Figure 6). A successful application of transfer 

learning will exhibit all these benefits. However, it 

should be noted that in general, it is not obvious that there will be a benefit to using 

transfer learning in a particular domain until after the model has been developed and 
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evaluated. The use of pre-trained neural network models in transfer learning is limited 

only by the researcher’s imagination. A model may be downloaded and used out of the 

box, which is the approach that we take in this work. Further, the model can be used as 

a feature extraction model. Here, the output of the model from a layer prior to the output 

layer of the model is used as input to a new classifier model [19]. This means that we 

make use of the intrinsic features that were captured by the pre-trained neural network 

while we train it further on a separate dataset. 

 

Figure 6 - Benefits of Transfer Learning [18] 

Deep CNNs extract low, middle, and high-level features and classifiers in an end-to-end 

multi-layer fashion. When a deep neural network starts to converge on an asymptote (as 

the loss decreases), a degradation problem occurs: the deeper the network is, the faster its 

accuracy becomes saturated, after which its performance degrades rapidly. The cause for 

this is neither overfitting nor the addition of more layers causing higher training error but 

poorly optimizable loss functions. This deterioration is proof that not all systems are easily 

optimizable. As a solution, Microsoft introduced the deep residual learning network 

(ResNet).  Error rates of single-model results on the ImageNet validation set [31] are listed 
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in Figure 7. The figure shows that ResNet is the better choice since it results in the lowest 

errors. In the case of top-1 score (see Figure 7), you check if the top class (the one having 

the highest probability) is the same as the target label. In the case of top-5 score, you check 

if the target label is one of your top 5 predictions (the 5 ones with the highest probabilities). 

The 50-layer ResNet (ResNet-50 in Figure 7) is constructed by replacing each 2-layer block 

with a 3-layer bottleneck block. This model requires 3.8 billion FLOPs. The 101-layer and 

152-layer ResNets requires 7.6 billion and 11.3 billion FLOPs, respectively. Because of 

these high computational requirements, choosing a network with a large number of hidden 

layers would defeat our objective of achieving accurate object detection with quick, 

minimal training of the model.  

 

Figure 7 - Error Rates on ImageNet Validation Set [22] 

 

To further motivate the use of transfer learning in this thesis, let us look at an example 

problem. Imagine that we have a pre-trained object detection model that can detect cats 

and dogs from images. These are four-legged mammals that share similar visual 

characteristics which can be recognized by the hidden layers in the pre-trained model. Now 
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imagine that we need to create an object detection model that can detect horses. It is much 

harder to train a model with a small image dataset of horses to reach the same level of 

performance as a model that is modified from cat-dog detection through further learning 

(transfer learning). A study indicates that we reduce the size requirement of the new dataset 

by implementing transfer learning [20]. This simply means that we will need fewer pictures 

of horses to train the new model. To summarize, transfer learning enables the use of a much 

smaller image dataset to train and test a neural network that can detect particular object 

classes across multiple domains (in our case, the physical testbed CHARTOPOLIS and the 

virtual environment CARLA). The application of transfer learning can also vastly improve 

the final performance of the neural network as shown in Figure 6.  These are the primary 

motives behind the use of transfer learning in this thesis work.  
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CHAPTER 2 

DRIVING SIMULATION STUDY 

We used the driving simulator CARLA in a study, designed in collaboration with Dr. 

Kathryn Johnson at ASU, that sought to understand and differentiate the moral profiles of 

drivers based on study participants’ decisions in a simulated “trolley-problem” scenario 

and their responses to a survey afterward. The details of this study are described in 

Immanuella Kankam’s M.S. thesis, “Design of an Immersive Virtual Environment to 

Investigate How Different Drivers Crash” [9]. Participants viewed the simulation on three 

adjacent computer monitors and drove through the virtual environments, from the 

perspective of the driver, using a Logitech steering wheel (G920 Driving Force) and pedals. 

During the simulation, they would unexpectedly encounter three different inevitable crash 

scenarios, in which they could not avoid a collision and could only decide where to steer 

their vehicle, and therefore, where to crash. Snapshots of the three simulated scenarios are 

shown in Figures 8, 9, and 10 below. As described earlier, a wide range of virtual driving 

environments can be simulated in CARLA, which can be used to train and validate the 

object identification algorithms that are proposed in this thesis. 
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Figure 8 – Scenario 1 

  

 

Figure 9 – Scenario 2 
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Figure 10 – Scenario 3 

The driving environments in Figures 8, 9, and 10 were modeled in Unreal Engine 4 built 

on an Ubuntu distribution of Linux, as described in Section 1.2. These scenarios were then 

simulated in CARLA by using a Python API to call functions in Unreal Engine, which in 

turn uses an RPC (Remote Procedure Call) client, as illustrated in Figure 11.  

 

Figure 11 – RPC Server-Client 

There were several major drawbacks in the initial implementation of these simulation 

studies. We identified solutions to these drawbacks, described below: 
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• Motion sickness: The simulations were displayed to the study participants on a 

three-monitor arrangement that required rapid lateral eye movement, which caused 

motion sickness in some participants. This was fixed by replacing the three-monitor 

setup with an ultra-wide curved monitor and better anti-aliasing. 

• Low simulation framerates: The low frame rates of the simulation can be increased 

by running the Unreal Engine server-side on a different computer station and 

running only the client-side on Python, which is relatively less computationally 

intensive on a computer. The setup for the server-side processing is currently under 

development. 

• Steering wheel sensitivity: The cause of extreme steering-wheel sensitivity was 

identified as a low input range from -1 to 1 that is being employed by the CARLA 

developers for inputs from steering wheels. A fix for this issue is also under 

development with help from CARLA’s developers. 

After the three-monitor setup was replaced with a curved monitor (see Figure 13) to 

reduce the incidence of motion sickness, a second group of participants used the 

simulator to conduct similar tests on a fourth scenario (with a similar situation), shown 

in Figure 12. 

 

Figure 12 – Scenario 4 
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Figure 13 – Driving Simulator Setup 
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CHAPTER 3 

DATASET COLLECTION METHODOLOGY 

The paper “Driving in the Matrix: Can Virtual Worlds Replace Human-Generated 

Annotations for Real World Tasks” explains the need to explore our ability to train neural 

networks on data obtained from virtual worlds [10]. In this paper, they say, “We 

demonstrate that a state-of-the-art architecture, which is trained only using these synthetic 

annotations, performs better than the identical architecture trained on human-annotated 

real-world data, when tested on the KITTI data set for vehicle detection”. The work in this 

thesis is inspired by a similar motivation. Moreover, we aim to evaluate our trained object 

detection model on images from the real world and other graphic engines. This would 

ultimately demonstrate that cross-platform training can be used to enable a neural network 

to detect objects on the physical CHARTOPOLIS testbed. The paper [10] used an image 

dataset obtained from the video game GTA-V and used its GPU’s stencil-buffer data, 

which includes scene depth and other auxiliary information from the game for image 

segmentation. This aids in proper semantic segmentation and eliminates the need for 

human supervision during the segmentation process. When using image datasets from 

CARLA, this technique can be replaced by data from the array of sensors pre-programmed 

into the simulation environment. These sensors are the following: 
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1. Camera - RGB 

 

Figure 14 – Image from RGB Camera 

 

 

2. Camera – Depth 

 

Figure 15 – Visualized Output of Depth Sensor 
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3. Camera – Semantic Segmentation 

 

Figure 16 – Semantic Segmentation 

 

4. Lidar – Ray cast 

 

Figure 17 – LIDAR -Ray Cast 

The in-situ dataset recording tools in CARLA make it easy to simulate different 

scenarios and create an annotated dataset of objects that are commonly present in 

driving environments. We created a training dataset with 820 images from CARLA 

simulations and labelled this dataset with the following object classes: 
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• vehicle 

• bicycle 

• motorbike 

• traffic light 

• traffic sign 

A test dataset consisting of 208 similar images (from CARLA) was also created. 

Labelling was done manually using ‘labelImg’ (a tool used for annotation), as shown 

in Figure 18 [11]. 

 

Figure 18 – Annotating a Sample Image Using LabelImg 

The ResNet-50 model was used to implement transfer learning. This model was pre-

trained on the COCO (Common Objects in Context) dataset [32], which contains some 

of the object classes that are used in this thesis. Faster R-CNN, described in Section 

1.5, was used as the object detection algorithm. 
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CHAPTER 4 

OBJECT DETECTION TESTING AND RESULTS 

4.1 Object Detection Algorithm Testing and Evaluation 

Faster R-CNN, though slow, is very accurate. The speed versus accuracy of the model 

compared to some of the other models from the ‘object detection model zoo’ is shown in 

Figure 19. 

 

Figure 19 – Object Detection Model Zoo 

The newly created dataset is then used to do transfer learning, and the object detection 

algorithm is subsequently tested and validated as explained above. The training was 

terminated, and a checkpoint was created at 260 epochs. The total loss values decreased 

from 3 to below 0.5 in this time frame. The step number, although low, yielded acceptable 
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recognition of images from different graphic engines and several real-world images. The 

graph of total loss versus epoch number is shown in Figure 20. 

 

Figure 20 – Loss Curves from Tensorboard Data 

The inference graph is then frozen, and the metadata stored for continuing training with a 

multiple GPU setup. As a proof of concept, the saved object detection model is then tested 

on ten images: five images from the recorded dataset, three real-world images, and two 

images from video games rendered using a different graphical engine (Rockstar Advanced 

Game Engine). 
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To evaluate the instance segmentation provided by the trained model, we use a method 

called Intersection over Union (IoU) for object detection. This is an evaluation metric that 

evaluates the predicted bounding boxed versus the annotations used for training (ground 

truth).  

 

Figure 21 - Illustration depicting the IoU metric 

In the numerator, we compute the area of overlap between the predicted bounding box and 

the ground-truth bounding box. The denominator is the area of the union or the area 

encompassed by both the predicted bounding box and the ground-truth bounding box. Here 

we see the evaluation of some of the images from the test dataset. An extensive list is 

attached in Appendix-C. The IoU values have been printed along with the bounding boxes 

on the top left corner.  

 

Figure 22 - An example of computing IoU for various bounding boxes 
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Figure 23 - IoU for car detection 

 

Figure 24 - IoU for car detection 
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Figure 25 - IoU for car detection 

 

Figure 26 - IoU for car detection 
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Figure 27 - IoU for traffic light detection 

 

Figure 28 - IoU for traffic light detection 
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Figure 29 - IoU for traffic light detection 

 
Figure 30 - IoU for traffic light detection 
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Figure 31 - Precision and recall to measure accuracy of object detection [21] 

 
In the field of information retrieval, precision is the fraction of retrieved documents that 

are relevant to the query. In our context, precision is a measure of how many detections of 

all the detections pertaining to an object class are correct. Recall is the fraction of relevant 

documents that are successfully retrieved. In our context, recall is a measure of how many 

were successfully detected out of the total number of images of a particular object class. 

Since the objective of this thesis does not require perfect accuracy scores, accuracy 

calculations are based on the IoU values in Figures 23-30. For calculating Precision and 

Recall, as with all machine learning problems, we have to identify True Positives, False 

Positives, True Negatives and False Negatives. To identify True Positives and False 

Positives, we use IoU. Using IoU, we now have to identify whether the detection (a 

Positive) is correct (True) or not (False). The most commonly used threshold is 0.5 - i.e., 

if IoU > 0.5, then it is considered a True Positive, and otherwise it is considered a False 

Positive. The COCO evaluation metric [32] recommends measurement across various IoU 

thresholds, but for simplicity, we will use a threshold of 0.5, which is the PASCAL VOC 

metric [33]. For calculating Recall, we need the count of Negatives. Since every part of the 

image where we did not predict an object is considered a negative, measuring “True” 
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negatives is not that useful. So, we only measure “False” Negatives, i.e., the objects that 

our model has failed to identify. 

Another factor that is taken into consideration is the confidence that the model reports for 

every detection. By varying our confidence threshold, we can change whether a predicted 

box is a Positive or Negative. Basically, all predictions (Box + Class) above the threshold 

are considered Positive boxes and all below it are Negatives. For every image, we have 

ground truth data that tells us the number of actual objects of a given class in that image. 

We calculate the IoU with the ground truth for every positive detection box that the model 

reports. Using this value and our IoU threshold (set to 0.5), we calculate the number of 

correct detections (A) for each class in an image. This is used to calculate the Precision for 

each class [TP/(TP+FP)]. 

Object 

class 
Image IoU TP FP 

Confidenc

e 

Actual 

No. 

detecte

d 
FN 

Vehicle Figure23 
0.954

3 
TP  99% 2 1 1 

Vehicle Figure24 
0.930

5 
TP  99% 4 3 1 

Vehicle Figure25 
0.921

2 
TP  99% 1 1 0 

Vehicle Figure26 0.919 TP  99% 6 6 0 

Traffic 

Light 
Figure27 0.832 TP  85% 1 1 0 

Traffic 

Light 
Figure28 

0.858

5 
TP  70% 1 1 0 

Traffic 

Light 
Figure29 - -  0% 1 0 1 

Traffic 

Light 
Figure30 

0.847

6 
TP  85% 1 1 0 

Table 2 - Object detection precision-recall calculation 
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From Table 2, Precision (vehicle) = TP/(TP+FP) = 4/4 = 1 (100%); 

and Precision (traffic light) = TP/(TP+FP) = 3/4 = 0.75 (75%) 

Since we already have calculated the number of correct predictions (A) (True Positives) 

and the number of missed detections (False Positives), we can now calculate the Recall 

(A/B) of the model for that class using the formula TP/(TP+FN). The actual object 

detection results for this test dataset is shown in Appendix-C. 

Recall (vehicle) = TP/(TP+FN) = 11/13 = 0.8462 (84.62%) 

Recall (Traffic Light) = TP/(TP+FN) = 3/4 = 0.75 (75%) 

These error rates would be unacceptable in a real-life autonomous vehicle. The accuracy 

of detection and other deep learning functions can be improved by using a larger image 

dataset to train the neural network. Use of more modern object detection algorithms like 

the DenseNet and pretraining such a neural network on a larger dataset that consists of 

video streams could significantly improve accuracy to yield desired results.  
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4.2 Test Results 

The object detection algorithm was tested on the images in Figures 32-41, which display 

the pixel scaling on its sides and detected object classes as bounding boxes with their names 

and confidence levels in percentages. It can be seen from the results that the 260-epoch 

training helped the neural network to detect vertical traffic lights (similar models) and 

vehicles without fail. The classes that were not detected in environments alien to CARLA 

(like the horizontal traffic lights from Figure 33 which are rare in the model towns in 

CARLA) have not been detected in the images from CARLA either. Thus, ruling out the 

possibility of any interference from transfer learning, our work lays the foundation to build 

a cross platform trained neural network that will provide a useful tool for validating 

autonomous vehicle controllers in scenarios that are dangerous to implement in the real 

world, such as situations that present a moral dilemma 

 
Figure 32 - Test Result 
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Figure 33 - Test Result 

 
Figure 34 - Test Result 
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Figure 35 - Test Result 

 
Figure 36 - Test Result 
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Figure 37 - Test Result 

 

 

 
Figure 38 - Test Result 
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Figure 39 - Test Result 

 
Figure 40 - Test Result 
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Figure 41 - Test Result 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The data collected from the driving study can further be used to verify and establish value-

based dependencies with the personal choices that drivers make. From a large portion of 

previous work surrounding possibilities in programming moral integrity in robots, it was 

understood that any semblance of morality or ethics in decisions taken by a machine can 

only be illustrated by a toy problem at the very basic level. This can be further elaborated 

to model complex scenarios. The toy problem would ideally consist of a posted speed limit 

and the degree of adherence to this speed limit by a ‘powerful’ or ‘benevolent’ driver. To 

program such scenarios, it was proposed that a small-scale driving testbed with multiple 

robots that emulate autonomous vehicles which can interact among themselves and with 

their surroundings must be designed. This led to the development of the newer version of 

CHARTOPOLIS. Further, to improve the scalability of the environment (for use in real 

world scenarios), it is apparent that cross platform compatibility in neural network models 

trained across the test bed and the CARLA driving simulator would help in recognizing 

and grouping different objects into their correct classes from image data. This proof of 

concept shows that the cross-platform training can be successful with the application of 

transfer learning. To improve productivity, all these tools should be used in tandem while 

changing the weights of each neuron in the network (to closely model powerful and 

benevolent drivers). This is of vital importance as this step can adversely affect the degree 

to which we can reproduce the composite moral profile identified from participant data. 
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5.2 Future Work 

The future work of this project will consist of the following objectives: 

1. Model a city in Unreal Engine that is as similar to the CHARTOPOLIS testbed as 

possible. 

2. Modify the object detection method to increase its accuracy to at least 95%. 

3. Toward this end, a new and robust training dataset should be created with at least 

30,000 images.  

4. All possible benefits of transfer learning should fully be used by extracting models 

from neural network layers before the output layer and using them as base models 

for new training. 

5. Do a similar study using DenseNet in place of the ResNet architecture for CNN. 

6. Conduct imitation learning to closely model the ‘powerful’ and ‘benevolent’ drivers 

that were identified in Dr. Kathryn Johnson’s studies.  

7. Identify crucial object classes pertaining to the toy problem (to be tested in the 

physical domain, CHARTOPOLIS). 

Imitation learning can be a useful tool to edit the weights attributed to each neuron. 

Weights are assigned randomly when training starts. Gradually they are modified based 

on the loss function to get desired results. In this case, we can get the weights associated 

with rash driving or benevolent driving using imitation learning. We can try modifying 

these to figure out which neuron has a larger association with the moral values that we 

are trying to program. 
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APPENDIX A 

SAMPLE CODE FOR IMAGE EVALUATION 
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Imports 
In [0]: 

import numpy as np 

import os 

import six.moves.urllib as urllib 

import sys 

import tarfile 

import tensorflow as tf 

import zipfile 

 

from distutils.version import StrictVersion 

from collections import defaultdict 

from io import StringIO 

from matplotlib import pyplot as plt 

from PIL import Image 

 

# This is needed since the notebook is stored in the object_detection fo

lder. 

sys.path.append("..") 

from object_detection.utils import ops as utils_ops 

 

if StrictVersion(tf.__version__) < StrictVersion('1.12.0'): 

  raise ImportError('Please upgrade your TensorFlow installation to v1.1

2.*.') 

Env setup 
In [0]: 

# This is needed to display the images. 

%matplotlib inline 

Object detection imports 

Here are the imports from the object detection module. 

In [0]: 

from utils import label_map_util 

 

from utils import visualization_utils as vis_util 

Model preparation 
Variables 
Any model exported using the export_inference_graph.py tool can be loaded here 

simply by changing PATH_TO_FROZEN_GRAPHto point to a new .pb file. 

By default we use an "SSD with Mobilenet" model here. See the detection model zoo for a list 
of other models that can be run out-of-the-box with varying speeds and accuracies. 

In [0]: 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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# What model to download. 

MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' 

MODEL_FILE = MODEL_NAME + '.tar.gz' 

DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/

' 

 

# Path to frozen detection graph. This is the actual model that is used 

for the object detection. 

PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb' 

 

# List of the strings that is used to add correct label for each box. 

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') 

Download Model 
In [0]: 

opener = urllib.request.URLopener() 

opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) 

tar_file = tarfile.open(MODEL_FILE) 

for file in tar_file.getmembers(): 

  file_name = os.path.basename(file.name) 

  if 'frozen_inference_graph.pb' in file_name: 

    tar_file.extract(file, os.getcwd()) 

Load a (frozen) Tensorflow model into memory. 
In [0]: 

detection_graph = tf.Graph() 

with detection_graph.as_default(): 

  od_graph_def = tf.GraphDef() 

  with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: 

    serialized_graph = fid.read() 

    od_graph_def.ParseFromString(serialized_graph) 

    tf.import_graph_def(od_graph_def, name='') 

Loading label map 
Label maps map indices to category names, so that when our convolution network predicts 5, 

we know that this corresponds to airplane. Here we use internal utility functions, but 

anything that returns a dictionary mapping integers to appropriate string labels would be fine 

In [0]: 

category_index = label_map_util.create_category_index_from_labelmap(PATH

_TO_LABELS, use_display_name=True) 

Helper code 
In [0]: 

def load_image_into_numpy_array(image): 

  (im_width, im_height) = image.size 

  return np.array(image.getdata()).reshape( 
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      (im_height, im_width, 3)).astype(np.uint8) 

Detection 
In [0]: 

# For the sake of simplicity we will use only 2 images: 

# image1.jpg 

# image2.jpg 

# If you want to test the code with your images, just add path to the im

ages to the TEST_IMAGE_PATHS. 

PATH_TO_TEST_IMAGES_DIR = 'test_images' 

TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'

.format(i)) for i in range(1, 3) ] 

 

# Size, in inches, of the output images. 

IMAGE_SIZE = (12, 8) 

In [0]: 

def run_inference_for_single_image(image, graph): 

  with graph.as_default(): 

    with tf.Session() as sess: 

      # Get handles to input and output tensors 

      ops = tf.get_default_graph().get_operations() 

      all_tensor_names = {output.name for op in ops for output in op.out

puts} 

      tensor_dict = {} 

      for key in [ 

          'num_detections', 'detection_boxes', 'detection_scores', 

          'detection_classes', 'detection_masks' 

      ]: 

        tensor_name = key + ':0' 

        if tensor_name in all_tensor_names: 

          tensor_dict[key] = tf.get_default_graph().get_tensor_by_name( 

              tensor_name) 

      if 'detection_masks' in tensor_dict: 

        # The following processing is only for single image 

        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]

) 

        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]

) 

        # Reframe is required to translate mask from box coordinates to 

image coordinates and fit the image size. 

        real_num_detection = tf.cast(tensor_dict['num_detections'][0], t

f.int32) 

        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_de

tection, -1]) 
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        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num

_detection, -1, -1]) 

        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_

masks( 

            detection_masks, detection_boxes, image.shape[1], image.shap

e[2]) 

        detection_masks_reframed = tf.cast( 

            tf.greater(detection_masks_reframed, 0.5), tf.uint8) 

        # Follow the convention by adding back the batch dimension 

        tensor_dict['detection_masks'] = tf.expand_dims( 

            detection_masks_reframed, 0) 

      image_tensor = tf.get_default_graph().get_tensor_by_name('image_te

nsor:0') 

 

      # Run inference 

      output_dict = sess.run(tensor_dict, 

                             feed_dict={image_tensor: image}) 

 

      # all outputs are float32 numpy arrays, so convert types as approp

riate 

      output_dict['num_detections'] = int(output_dict['num_detections'][

0]) 

      output_dict['detection_classes'] = output_dict[ 

          'detection_classes'][0].astype(np.int64) 

      output_dict['detection_boxes'] = output_dict['detection_boxes'][0] 

      output_dict['detection_scores'] = output_dict['detection_scores'][

0] 

      if 'detection_masks' in output_dict: 

        output_dict['detection_masks'] = output_dict['detection_masks'][

0] 

  return output_dict 

In [0]: 

for image_path in TEST_IMAGE_PATHS: 

  image = Image.open(image_path) 

  # the array based representation of the image will be used later in or

der to prepare the 

  # result image with boxes and labels on it. 

  image_np = load_image_into_numpy_array(image) 

  # Expand dimensions since the model expects images to have shape: [1, 

None, None, 3] 

  image_np_expanded = np.expand_dims(image_np, axis=0) 

  # Actual detection. 
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  output_dict = run_inference_for_single_image(image_np_expanded, detect

ion_graph) 

  # Visualization of the results of a detection. 

  vis_util.visualize_boxes_and_labels_on_image_array( 

      image_np, 

      output_dict['detection_boxes'], 

      output_dict['detection_classes'], 

      output_dict['detection_scores'], 

      category_index, 

      instance_masks=output_dict.get('detection_masks'), 

      use_normalized_coordinates=True, 

      line_thickness=8) 

  plt.figure(figsize=IMAGE_SIZE) 

  plt.imshow(image_np) 
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APPENDIX B 

SAMPLE CODE FOR INTERSECTION OVER UNION EVALUATION 
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#!/usr/bin/env python 

# coding: utf-8 

 

# In[1]: 

 

# import the necessary packages 

from collections import namedtuple 

import numpy as np 

import cv2 

  

# define the `Detection` object 

Detection = namedtuple("Detection", ["image_path", "gt", "pred"]) 

 

# In[2]: 

 

def bb_intersection_over_union(boxA, boxB): 

    # determine the (x, y)-coordinates of the intersection rectangle 

    xA = max(boxA[0], boxB[0]) 

    yA = max(boxA[1], boxB[1]) 

    xB = min(boxA[2], boxB[2]) 

    yB = min(boxA[3], boxB[3]) 

  

    # compute the area of intersection rectangle 

    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) 

  

    # compute the area of both the prediction and ground-truth 

    # rectangles 

    boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) 

    boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) 

  

    # compute the intersection over union by taking the intersection 

    # area and dividing it by the sum of prediction + ground-truth 

    # areas - the interesection area 

    iou = interArea / float(boxAArea + boxBArea - interArea) 

  

    # return the intersection over union value 

    return iou 

 

# In[3]: 
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# define the list of example detections 

examples = [ 

    Detection("image1.jpg", [529, 40, 581, 168], [530, 44, 576, 170]), 

    Detection("image2.jpg", [225, 184, 414, 337], [227, 186, 416, 339]), 

    Detection("image3.jpg", [243, 207, 397, 336], [245, 209, 394, 333]), 

    Detection("image4.jpg", [227, 203, 411, 338], [225, 200, 415, 342]), 

    Detection("image5.jpg", [455, 205, 640, 305], [456, 206, 644, 310])] 

 

# In[4]: 

 

# loop over the example detections 

for detection in examples: 

    # load the image 

    image = cv2.imread(detection.image_path) 

  

    # draw the ground-truth bounding box along with the predicted 

    # bounding box 

    cv2.rectangle(image, tuple(detection.gt[:2]),  

        tuple(detection.gt[2:]), (0, 255, 0), 2) 

    cv2.rectangle(image, tuple(detection.pred[:2]),  

        tuple(detection.pred[2:]), (0, 0, 255), 2) 

  

    # compute the intersection over union and display it 

    iou = bb_intersection_over_union(detection.gt, detection.pred) 

    cv2.putText(image, "IoU: {:.4f}".format(iou), (10, 30), 

        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) 

    print("{}: {:.4f}".format(detection.image_path, iou)) 

  

    # show the output image 

    cv2.imshow("Image", image) 

    cv2.waitKey(0) 
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