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  ABSTRACT 

Corrosion fatigue has been of prime concern in railways, aerospace, construction industries 

and so on. Even in the case of many medical equipment, corrosion fatigue is considered to 

be a major challenge.  The fact that even high strength materials have lower resistance to 

corrosion fatigue makes it an interesting area for research. The analysis of propagation of 

fatigue crack growth under environmental interaction and the life prediction is significant 

to reduce the maintenance costs and assure structural integrity. Without proper 

investigation of the crack extension under corrosion fatigue, the scenario can lead to 

catastrophic disasters due to premature failure of a structure. An attempt has been made in 

this study to predict the corrosion fatigue crack growth with reasonable accuracy.  Models 

that have been developed so far predict the crack propagation for constant amplitude 

loading (CAL). However, most of the industrial applications encounter random loading. 

Hence there is a need to develop models based on time scale. An existing time scale model 

that can predict the fatigue crack growth for constant and variable amplitude loading (VAL) 

in the Paris region is initially modified to extend the prediction to near threshold and 

unstable crack growth region. Extensive data collection was carried out to calibrate the 

model for corrosion fatigue crack growth (CFCG) based on the experimental data. The time 

scale model is improved to incorporate the effect of corrosive environments such as NaCl 

and dry hydrogen in the fatigue crack growth (FCG) by investigation of the trend in change 

of the crack growth.  The time scale model gives the advantage of coupling the time 

phenomenon stress corrosion cracking which is suggested as a future work in this paper. 
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CHAPTER 1                                                   

INTRODUCTION 

 
Corrosion fatigue has been of prime interest for decades in various industrial applications. 

Researches have been conducted to study the behavior of materials under different 

environments to develop various models for the prediction of life of structures. Developing 

a model for the prediction of fatigue crack growth in aggressive environments reduce the 

possibility of premature failure that might happen without considering the environmental 

interactions with fatigue loading. 

In the first chapter, a brief introduction to the ideas of fatigue loading and corrosion fatigue 

is presented. Different crack propagation models developed for constant amplitude loading 

are discussed in detail. Various factors affecting corrosion fatigue is studied to analyze the 

significance of these parameters.  In the second chapter, an existing time scale model that 

predicts the fatigue crack growth in the Paris region is improved to extend the prediction 

to near threshold region for various alloys under any type of loading condition. The third 

chapter presents the work done to improve the model to account for the change in fatigue 

crack growth rate under environmental interactions with fatigue loading. Mainly two types 

of corrosion are considered in the development of the model which is discussed in detail. 

The modified model is validated against the experimental data collected from literature in 

their corresponding chapters. The final section is concluded with the findings from this 

study. It gives a scope of the work that may be carried out in the future. 
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1.1. Background and literature review 

 

1.1.1. Introduction to Fatigue Loading 

 
A structure may fail at stress below the ultimate tensile strength or even the yield 

point due to repeated loading. This is due to the progressive failure by initiation and 

propagation of cracks that grow to an unstable size (fatigue). This is termed as fatigue 

failure. This type of failure usually occurs with no/ little warning if the crack goes 

unnoticed. The fatigue failure occurs in three stages: 1) Crack Initiation 2) Crack 

Propagation and 3) Failure. Researches have been going on to analyze the crack 

propagation to predict the failure of material. When a load is applied on a structure, the 

stress concentration is not uniform and is more at the crack tip compared to any undamaged 

area of the structure. The cracks might have been introduced in the structure as 

manufacturing defect or might have initiated due to fatigue loading. The stress distribution 

ahead of the crack tip due to the applied load is represented in terms of stress intensity 

factor, which causes the crack to grow. It is given as, 

 𝐾𝐾 =  𝑌𝑌𝑌𝑌√𝜋𝜋𝜋𝜋 (1) 

The geometric correction factor Y is a function of the crack length and width W of the 

specimen and hence is geometry dependent. The stress intensity range due to the applied 

stress range is defined as 

 𝛥𝛥𝛥𝛥 =  𝑌𝑌𝑌𝑌𝑌𝑌√𝜋𝜋𝜋𝜋 (2) 

According to Sadananda and Holtz [1], a two-parameter model is chosen to be the 

crack tip driving force wherein Kmax and ΔK are intrinsic to fatigue growth. The crack 
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growth rate as a function of stress intensity range is represented in a logarithmic scale. 

Based on the crack propagation rates, it is divided into three regimes as shown in Figure 1. 

In regime A (Near Threshold region), the propagation rates are of the order 10-9 m/cycle or 

less. The crack growth is negligible or is nearly zero for stress intensity range below ΔK0. 

ΔK0 is the threshold stress intensity range above which there is a visible crack growth. In 

regime B (Paris regime), the propagation rates are of the order of 10-9 – 10-6 m/cycle and 

the crack growth is linear. In regime C, the crack grows in an asymptotic way and the 

material fractures at critical stress intensity, Kc 

                             

Figure 1. Fatigue crack growth rate curve. Log-log graph for da/dN vs ΔK 
 

With increase in stress ratio, =  𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

 , the threshold decreases and crack growth 

rates are faster compared to low R ratios. 

 

 

 



4 
 

1.1.1.1. Different Crack Propagation Models for Fatigue Loading 
 

      Various fatigue crack propagation models were developed for constant amplitude 

fatigue loading. In a constant amplitude loading, all the load cycles are identical with same 

peak stress, range of applied stress, mean stress and stress ratio.          

                 

Figure 2. Constant amplitude loading 
 

     Paris [2] developed a crack propagation model for second regime as 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝐶𝐶𝛥𝛥𝛥𝛥𝑚𝑚 (3) 

 
C and m are Paris constant obtained from experimental data. C and m are the intercept and 

slope of Paris regime respectively. The limitation of this model is that it does not predict 

the growth in the near threshold and the critical growth region. It does not take into account 

the effect of Ratio. Forman [1967] [3] modified this equation to incorporate R effect and 

the growth in in region 3 as 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝐶𝐶

𝛥𝛥𝛥𝛥𝑛𝑛

(1 − 𝑅𝑅)𝐾𝐾𝐼𝐼𝐼𝐼 −  𝛥𝛥𝛥𝛥  (4) 

 

  Nicholson [1973] [4] proposed a model that incorporates the crack growth rate in 

the near threshold regime as well 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝐴𝐴

(𝛥𝛥𝛥𝛥 −  𝛥𝛥𝛥𝛥𝑡𝑡ℎ)𝑛𝑛

𝐾𝐾𝐼𝐼𝐼𝐼 −  𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚   (5) 

   

Elber [1970] [5] introduced the concept of crack closure that explained the effect of 

R ratios on the fatigue crack growth rates. The crack closure is a result of the crack tip 

plasticity. He argued that crack remain closed until a certain stress level (opening stress 

σop) is reached. σop is usually higher than the minimum stress σmin. Below σop, the crack 

does not propagate.  With higher R, the closure level is reduced inducing faster growth 

rates. The effective stress intensity range 𝛥𝛥𝛥𝛥𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐾𝐾𝑜𝑜𝑜𝑜 is used in calculating the 

fatigue crack growth. Khan [6] developed a model that calculates the crack increment as a 

function of plastic zone ahead of the crack tip and is given as 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝐶𝐶 �

𝛥𝛥𝛥𝛥𝑒𝑒𝑒𝑒𝑒𝑒
𝜎𝜎𝑦𝑦𝑦𝑦

�
2

�
𝛥𝛥𝛥𝛥 −  𝛥𝛥𝛥𝛥𝑡𝑡ℎ
𝐾𝐾𝐼𝐼𝐼𝐼 −  𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑛𝑛

 
(6) 

 
Wheeler [7] developed a crack tip plasticity based crack propagation model to 

calculate fatigue growth under the application of single overload as 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =  (𝐶𝐶𝑝𝑝)𝑖𝑖[𝐶𝐶(𝛥𝛥𝐾𝐾)𝑖𝑖

𝑚𝑚] (7) 

Cp is retardation parameter depending on the plastic zone size of ith cycle and the overload 

plastic zone size. Newman [8] proposed that the opening stress σop varies for different stress 
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level. σop is calculated for different cycles. According to Bannantine [9], the crack 

propagation is calculated as  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝐴𝐴(𝛥𝛥𝛥𝛥𝑒𝑒𝑒𝑒𝑒𝑒)𝑚𝑚 (8) 

A is calculated from Paris constant C as  

 𝐴𝐴 =  
𝐶𝐶

(𝑈𝑈𝑖𝑖)𝑚𝑚
 (9) 

Where 𝑈𝑈𝑖𝑖 =  𝛥𝛥𝛥𝛥𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

𝛥𝛥𝛥𝛥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
 

 These models only predict the fatigue growth during a cycle and not at any arbitrary 

time. Lu and Liu [10] expressed the instantaneous crack growth rate at any arbitrary time 

point as  

 ȧ =  H(σ͘). H(𝜎𝜎 – 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟)
2𝐶𝐶𝐶𝐶𝐶𝐶

1 −  𝐶𝐶𝐶𝐶𝜎𝜎2 σ͘. 𝑎𝑎 (10) 

 

Where H(x) is the Heaviside function 

        𝐻𝐻(𝑥𝑥) = �0, 𝑥𝑥 ≤ 0
1, 𝑥𝑥 > 0 

This model can be used to predict the crack propagation in a variable amplitude loading 

where the load cycles are not identical as shown in Figure 3. 
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Figure 3. Variable amplitude loading 
 

There are two hypotheses involved in the derivation of this small time scale 

formulation: 1) crack does not grow during unloading, 2) crack grows only during a part 

of the loading path. Zhang and Liu [11] verified these hypotheses through in situ testing 

and imaging analysis. They observed that no/very small crack growth occurred during 

unloading. They noticed that crack tip opens only when SIF exceeds certain loading level 

(𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟). The crack does not grow until this loading level. Once the crack tip starts to open, 

the crack starts to grow. The crack increment da within a cycle varied non-linearly with 

crack tip opening displacement δ  

 𝑑𝑑𝑑𝑑 ∝ √δ  (11) 

Using a power function to fit the crack growth kinetics with respect to ctod variation, 

they expressed instantaneous crack growth rate function for Al 7075- T6 as 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝐴𝐴𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚
2

2√𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  (12) 

Lu and Liu [12] introduced a model to estimate the ctod at an applied stress in a cyclic 

loading as 
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 𝛿𝛿 =   

⎩
⎪
⎨

⎪
⎧

𝐾𝐾2

𝐸𝐸𝜎𝜎𝑦𝑦
                                                                                           𝐾𝐾 ≥ 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚      

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1 +  (𝐾𝐾− 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1)2

2𝐸𝐸𝜎𝜎𝑦𝑦
                       𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1 ≤ 𝐾𝐾 <    𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 +  (𝐾𝐾− 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚)2

2𝐸𝐸𝜎𝜎𝑦𝑦
                                                  𝐾𝐾 ≤  𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1    

  (13) 

 

For the unloading path, ctod at any applied stress is calculated as  

 𝛿𝛿 =

⎩
⎪
⎨

⎪
⎧ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 −  

(𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 −  𝐾𝐾)2

2𝐸𝐸𝜎𝜎𝑦𝑦
                                  𝐾𝐾 ≥ 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1 

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1 −  
(𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1 −  𝐾𝐾)2

2𝐸𝐸𝜎𝜎𝑦𝑦
                          𝐾𝐾 <  𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚−1    

 (14) 

 

Later on, Karthik and Liu [13] modified the small time scale model to incorporate 

different types of alloys as  

 𝛥𝛥𝛥𝛥 =
𝐴𝐴𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵 𝛥𝛥𝛥𝛥
�𝛿𝛿𝑖𝑖  +  √𝛿𝛿𝑖𝑖−1

 (15) 

The change in ctod between two applied stresses, 𝛥𝛥𝛥𝛥 =  𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −  𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 
𝛿𝛿𝑖𝑖 =  𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −  𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚  

    𝛿𝛿𝑖𝑖−1 =  𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −  𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚   
(16) 

A and B are the fitting parameters determined from the experimental data at R = 0. 
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1.1.1.2. Determination of crack opening stress for constant and Variable Amplitude 

Loading 

 
   The crack opening stress is a consequence of complex interaction of forward plastic 

zone created during loading path and reverse zone plastic zone created during the unloading 

path [14]. For positive stress ratio (tensile-tensile loading), unloading produces 

compressive residual stress ahead of the crack tip. This results in local crack closure near 

to the crack tip. This compressive residual stress needs to be reversed indicating the crack 

will grow after reaching σref. In case of negative R ratio (tensile-compressive loading), 

during unloading the local crack closure happens and when it enters the compressive 

loading, a global crack closure happens far from the crack tip due to the applied 

compressive stress along with the local crack closure. During unloading of compressive 

stress, tensile residual stresses are generated ahead of the crack tip and crack starts to open. 

While continuing to the tensile loading, the forward plastic zone aids in crack opening. 

Thus, the compressive loading reduces the crack opening stress level [15]. Karthik came 

up with an equation for opening stress, which is applicable for constant and variable 

amplitude loading. It is derived as follows [13]  

𝑑𝑑𝑟𝑟,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −  𝑑𝑑𝑟𝑟 = 𝑑𝑑 

𝜋𝜋
8 �

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

2𝜎𝜎𝑦𝑦
�
2

𝜋𝜋(𝑎𝑎 − 𝑑𝑑)𝑌𝑌2 −
𝜋𝜋
8 �

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜎𝜎𝑐𝑐𝑐𝑐
2𝜎𝜎𝑦𝑦

�
2

𝜋𝜋𝜋𝜋𝜋𝜋

=
𝜋𝜋
8 �

𝜎𝜎𝑜𝑜𝑜𝑜 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑦𝑦
�
2

𝜋𝜋𝑌𝑌2(𝑎𝑎 − 𝑑𝑑) 

At  𝜎𝜎 = 𝜎𝜎𝑜𝑜𝑜𝑜 ,𝑑𝑑 = 0 
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𝜋𝜋
8 �

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

2𝜎𝜎𝑦𝑦
�
2

𝜋𝜋𝜋𝜋𝑌𝑌2 − 𝑑𝑑𝑟𝑟 =
𝜋𝜋
8 �

𝜎𝜎𝑜𝑜𝑜𝑜 −  𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑦𝑦
�
2

𝜋𝜋𝜋𝜋𝑦𝑦2 

𝑟𝑟𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼 �
𝐾𝐾
𝜎𝜎𝑦𝑦
�
2

=
𝛼𝛼𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

2 𝑌𝑌2𝜋𝜋𝜋𝜋
𝜎𝜎𝑦𝑦2

 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑟𝑟𝑓𝑓
𝛼𝛼𝛼𝛼𝛼𝛼�

0.5 𝜎𝜎𝑦𝑦
𝑌𝑌  

Sub (a) in (1) 

𝜋𝜋
8
� 
�
𝑟𝑟𝑓𝑓
𝛼𝛼𝛼𝛼𝛼𝛼�

0.5 𝜎𝜎𝑦𝑦
𝑦𝑦 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

2𝜎𝜎𝑦𝑦
�

2

𝑌𝑌2𝜋𝜋𝜋𝜋 − 𝑑𝑑𝑟𝑟 =
𝜋𝜋
8 �

𝜎𝜎𝑜𝑜𝑜𝑜 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑦𝑦
�
2

𝜋𝜋𝜋𝜋𝑦𝑦2 

Divide by 𝜋𝜋
2𝑎𝑎𝑦𝑦2

8
 

�
�
𝑟𝑟𝑓𝑓
𝛼𝛼𝛼𝛼𝛼𝛼�

0.5 𝜎𝜎𝑦𝑦
𝑦𝑦 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

2𝜎𝜎𝑦𝑦
�

2

−
8𝑑𝑑𝑟𝑟
𝜋𝜋2𝑎𝑎𝑦𝑦2 = �

𝜎𝜎𝑜𝑜𝑜𝑜 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑦𝑦
�
2

 

Multiply by 𝜎𝜎𝑦𝑦2 throughout 

�
�
𝑟𝑟𝑓𝑓
𝛼𝛼𝛼𝛼𝛼𝛼�

0.5 𝜎𝜎𝑦𝑦
𝑌𝑌 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

4
�

2

−
8𝜎𝜎𝑦𝑦2𝑑𝑑𝑟𝑟
𝜋𝜋2𝑎𝑎𝑌𝑌2 = �𝜎𝜎𝑜𝑜𝑜𝑜 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑛𝑛�

2
 

Take square root on both sides 

�
1
4
��

𝑟𝑟𝑓𝑓
𝛼𝛼𝛼𝛼𝛼𝛼�

0.5 𝜎𝜎𝑦𝑦
𝛾𝛾 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚�

2

−
8𝜎𝜎𝑦𝑦2𝑑𝑑𝑟𝑟
𝜋𝜋2𝑎𝑎𝑌𝑌2�

0.5

=  𝜎𝜎𝑜𝑜𝑜𝑜 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 
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𝜎𝜎𝑜𝑜𝑜𝑜 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 + �
1
4
��

𝑟𝑟𝑓𝑓
𝛼𝛼𝛼𝛼𝛼𝛼�

0.5 𝜎𝜎𝑦𝑦
𝑌𝑌 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚�

2

−
8𝜎𝜎𝑦𝑦2𝑑𝑑𝑟𝑟
𝜋𝜋2𝑎𝑎𝑌𝑌2�

0.5

 

= 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 +

⎩
⎨

⎧1
4
�
�
𝑟𝑟𝑓𝑓
𝛼𝛼�

0.5 𝜎𝜎𝑦𝑦
𝑌𝑌 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚√𝜋𝜋𝜋𝜋

√𝜋𝜋𝜋𝜋
�

2

−
8𝜎𝜎𝑦𝑦2𝑑𝑑𝑟𝑟
𝜋𝜋2𝑎𝑎𝑌𝑌2

⎭
⎬

⎫
0.5

 

= 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 +

⎩
⎨

⎧1
4
�
�
𝑟𝑟𝑓𝑓
𝛼𝛼�

0.5
𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚√𝜋𝜋𝜋𝜋𝑌𝑌
𝜋𝜋𝜋𝜋𝑌𝑌2

�

2

−
8𝜎𝜎𝑦𝑦2𝑑𝑑𝑟𝑟
𝜋𝜋2𝑎𝑎𝑌𝑌2

⎭
⎬

⎫
0.5

 

= 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 + �
1

𝜋𝜋𝜋𝜋𝑌𝑌2
�
1
4��

𝑟𝑟𝑓𝑓
𝛼𝛼�

0.5
𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌√𝜋𝜋𝜋𝜋�

2

−
8𝜎𝜎𝑦𝑦2𝑑𝑑𝑟𝑟
𝜋𝜋

��
0.5

 

 𝜎𝜎𝑜𝑜𝑜𝑜 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 +
1
𝑌𝑌 �

1
𝜋𝜋𝜋𝜋

�
1
4��

𝑟𝑟𝑓𝑓
𝛼𝛼�

0.5
𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌√𝜋𝜋𝜋𝜋�

2

−
8𝜎𝜎𝑦𝑦2𝑑𝑑𝑟𝑟
𝜋𝜋

��
0.5

 (17) 

 

1.1.2. Introduction to Corrosion Fatigue 
 
 

Corrosion fatigue is the damage due to crack growth in a material undergoing cyclic 

loading in the presence of a corrosive media. Corrosion fatigue may accelerate or 

decelerate the crack growth rate. CFCP depends on various factors such as cyclic stress 

intensity, stress ratio, complex interaction of time and environmental variables [16]. 

Corrosion fatigue is mainly attributed to hydrogen embrittlement and anodic dissolution. 

The embrittlement of material occurs through decohesion, adsorption or hydride formation. 

The hydrogen atoms that enter the lattice reduce the cohesion forces among the atoms of 
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the material weakening the material. Surface energy is reduced due to the adsorption of 

hydrogen atoms making the material more energetically favorable for fracture in adsorption 

mechanism [17]. Hydride formation mechanism is characterized by the formation of 

hydrides at the crack tip making the material brittle. In anodic dissolution, the passive film 

within a crack initiated due to applied stress rupture exposing new surface to the corrosive 

environment. This surface gets partially dissolved facilitating the crack growth. Solutions 

with halide ions such as I, Br, Cl usually accelerates CFCP while nitrate inhibitors in 

chloride solution inhibit CFCP in aluminium alloys [18]. Ritchie, Suresh and Liaw [19] 

compared the fatigue growth behavior in high and low strength steels in dry gaseous 

hydrogen and moist air. They observed that in low strength alloys, which are resistant to 

hydrogen embrittlement, the crack growth rates seems to accelerate in hydrogen 

environment compared to moist air in contrary to what was expected. However, this 

influence was markedly visible only at low R ratios. High strength steels that are prone to 

hydrogen embrittlement showed retardation of crack growth in hydrogen environment 

irrespective of R ratios. At intermediate crack growth rates of 10-6 mm/cycle, crack 

propagation seems to be enhanced by hydrogen owing to hydrogen embrittlement. 
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 (a)  

 

     (b) 

Figure 4:  Effect of dehumidified hydrogen gas on fatigue crack propagation in a) 
lower strength 2 1/4 Cr-1Mo SA542-3 steel b) high strength 300-M steel [19] 
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1.1.2.1. Different Crack Propagation Models for Corrosion Fatigue 

 
Wei and Landes [20] proposed a Linear Superposition Model in which that the crack 

growth rate in a corrosive environment is the sum of fatigue growth rate due to mechanical 

loading in inert environment and time based environmental crack growth rate 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑁𝑁𝐸𝐸

=  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑀𝑀

+  
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆
 (18) 

The crack growth rate due to SCC is calculated by performing integration of crack growth 

data as function of the applied stress intensity factor 

 
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆
=  �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐾𝐾) [𝐾𝐾(𝑡𝑡)]𝑑𝑑𝑑𝑑
1 𝑓𝑓⁄

0
 (19) 

For nickel based super alloys environment assisted crack growth rate reduces to  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑁𝑁𝐸𝐸

=  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑀𝑀

+ 𝐶𝐶(∆𝐾𝐾)𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 (20) 

teff is (1/f) in case of a square wave cycle. This model can be used only for those 

material/environment systems where MECP kinetics have a significant contribution to 

environmental assisted fatigue growth. 

 
1.1.2.2. Factors affecting corrosion fatigue crack growth rate 

 

Stewart [21] stated that environment influences fatigue crack growth rates with their 

effect depending on the environment under which the material is subjected to failure.  The 

effect of environment is significant in the near threshold regime affecting the threshold 
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intensity values ΔKth at different stress ratios. He observed that there is a decrease in growth 

rate in vacuum compared to air while the crack growth rate increases in dry environments 

(hydrogen, argon) at lower R ratios with ΔKth being lower than that in air. At higher R 

ratios, ΔKth is almost insensitive to the environment. Pao and Haltz [22] conducted 

experiment to study the effect of air, vacuum and NaCl on fatigue growth rate in the near 

threshold and Paris regimes in aluminum 7075 alloys. They studied the effect of these 

environments on ΔKth as a function of R. It was clear from the experiment that fatigue 

growth rate in 1% NaCl is higher up to an order of magnitude compared to air even though 

ΔKth in ambient air and 1% NaCl is comparable. The water vapor present in air reacts with 

crack surface and the hydrogen produced causes embrittlement that accelerates crack 

growth compared to vacuum. In the presence of NaCl, hydrogen embrittlement coupled 

with complex electrochemical reaction between NaCl and aluminium further accelerates 

the fatigue growth. In stage 1 region where the water/aluminium surface reactions are 

longest, the surface reactions are saturated in ambient air and salt water producing 

comparable hydrogen entry to the crack tip. This is the reason for similar ΔKth in ambient 

air and 1% NaCl. They also figured out the effect of NaCl concentration on FCG. It was 

found that growth rate increase from 0.001% to 1% NaCl but remained almost same above 

1%. ΔKth remained same for all the concentration of NaCl. 

Frederick and Gilbert [23] figured out the frequency effect on the fatigue crack 

propagation in aluminium alloy 2024 in NaCl environment. They observed that there is not 

much variation in the propagation rates from 2.5Hz – 10 Hz though the propagation rates 

are higher compared to that in air and distilled water. When the frequency is reduced to 

1Hz, there is a decrease in propagation rate compared to 2.5Hz and higher frequencies, 
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while the propagation rates become closer to that in air and distilled water. When the 

frequency is further reduced to 0.1 Hz, FCGR retards and become comparable to that in air 

and distilled water. They concluded that rising time (RT) is the controlling factor rather 

than cycle period T. They conducted experiments with different types of waveform such 

as sinusoidal, positive saw tooth form and negative saw tooth form. They found that at 1Hz 

frequency, negative saw tooth form with less RT had higher growth rate while positive saw 

tooth form with highest RT has the least growth rate. At 5 Hz, they observed that the effect 

of corrosion on crack propagation saturates and all the waveforms showed comparable 

FCGs. They proposed that at short RT, there is localized dissolution and concomitant 

hydrogen production wherein the hydrogen atoms are taken to the crack tip resulting in 

embrittlement process. However, at higher RT, the crack tip surfaces are passivated during 

large amount of plastic deformation that hydrogen production is reduced. Hence hydrogen 

embrittlement could not produce significant effect on FCG. They also summarized that 

FCGR does not depend on the duration of exposure to corrosive medium. It was observed 

that crack growth rate per cycle is frequency independent in vacuum and moist air for 

frequencies under 50Hz in case of aluminium alloys. However, 7075 and 7079 alloys 

showed a frequency dependency below 10-3 and 1 Hz respectively in chloride solution [22]. 

It is characterized as  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  ∝  𝑓𝑓−𝛽𝛽  (21) 

β is of the order of 0.5 in case of 7017 and 7045 and 0.1 for 7075 below 10-3 Hz. 

Pao and Holtz stated that fatigue growth rate is influenced by frequency in moist air 

while in water and salt water, little or no frequency effect is observed. Sivaprasad [24] 
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observed inverse effect of frequency on fatigue growth. He conducted experiments on 

HSLA to find the behavior of steel in air and 3.5%NaCl. He found that FCG at 0.1Hz in 

NaCl is faster than FCG at 1Hz in NaCl for ΔK > 18 MPa√m while FCG slows down for 

ΔK < 18 MPa√m 

                         

Figure 5. Effect of frequency on FCG of 2024-T351 steel [23] 
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Figure 6. Effect of frequency on the propagation of crack in fatigue loading [29] 
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CHAPTER 2                                                                                          

NEAR THRESHOLD FATIGUE CRACK GROWTH MODEL 

 

2.1. Overview 

 
Determining the near threshold fatigue crack growth data is an important aspect in 

predicting the structural fatigue life. Mainly, there are two methods used to generate the 

fatigue crack growth data, load reduction method and CPCA method. 

 
2.1.1. Load Reduction Method 

 
 

Based on the ASTM standard E – 647 [25], a high ΔK is applied to initiate a crack at 

the notch and is reduced by 5% of applied load, maintain a constant R ratio for every 0.5mm 

of crack growth until the threshold condition (ΔKth) is reached. Once the threshold is 

reached, the load is increased to generate the crack growth curve in the near threshold and 

higher crack growth regions. Even though this test procedure has been used for a wide 

variety of materials for past few years, the method overestimate the threshold causing over 

prediction of life of the structure in turn leading to premature failure of the component. 

This method also produces remote closure creating large differences between small and 

large cracks than expected [26]. 

 
2.1.2. Compression-Compression Pre-cracking Constant-Amplitude Method (CPCA) 

 
 

In CPCA method, the notched compact tension specimen, C(T) is loaded under 

compression-compression pre-cracking sequence until the crack grows to 0.25 – 0.5 mm. 
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Once the crack reaches the maximum extension, the crack stops growing further. A 

constant amplitude tension loading is then applied where the crack starts growing further. 

It needs to be ensured that the crack length is 2 – 3 times the compressive plastic zone so 

that the data will not be influenced by the tensile residual stresses at the notch. The CPCA 

method generates steady state constant amplitude curves minimizing the load history 

effect. Figure 7 shows CPCA loading sequence 

                          

Figure 7. CPCA Loading Sequence [26] 
 

2.2. Model Development of Fatigue Crack Growth rate for Near Threshold regime 

 
   The small time scale model developed by Karthik and Liu [13] predicts the fatigue 

crack growth over the Paris regime. It does not account for the lower crack growth rates in 

the near threshold regime and the unstable crack growth in the failure region. In order to 

estimate the crack growth in these two regions along with the Paris region, the time scale 

model is modified as  
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 𝑎𝑎 ̇ = 𝐻𝐻(𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 −  𝜎𝜎𝑡𝑡ℎ) 
𝐴𝐴 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚  

𝐵𝐵

√𝛿𝛿
𝛿̇𝛿 (22) 

Where H(x) is the Heaviside function. 

Equation () suggests that the crack does not grow until the threshold is reached. This does 

not mean that the crack grows for the entire loading cycle after the threshold is reached. It 

grows only during a portion of the applied loading cycle from σop to σmax. A power law 

function is proposed to be incorporated in the small time scale model as  

 𝑎𝑎 = 𝐶𝐶𝑡𝑡ℎ  𝐴𝐴 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚  
𝐵𝐵 √δ (23) 

where Cth is the power law function to include the dependence of crack growth on the 

threshold condition and the fracture toughness of the material. For a constant amplitude 

loading, the power law function is expressed as 

 𝐶𝐶𝑡𝑡ℎ = �
 𝛥𝛥𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒  −  𝛥𝛥𝐾𝐾𝑡𝑡ℎ
𝐾𝐾𝐼𝐼𝐼𝐼 − 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑛𝑛

 (24) 

Cth takes care of the two extreme cases. When Kmax approaches KIC, the crack growth 

becomes unstable and at this point, the material failure occurs. When the stress intensity 

range approaches the threshold values, the crack grows in an asymptotic manner and 

becomes zero when it reaches ΔKth. In case of variable amplitude fatigue loading (VAL), 

cycles are not well defined. A cycle may consist of many sub cycles for a VAL. In addition, 

the stress ratio cannot be defined, as it can be different for different cycles constituting the 

VAL. The maximum applied stress and the applied stress range varies for different cycles 

as well as the sub cycles. This makes it to define ΔKth for a VAL. Since the change in ΔKth 

with R ratio is attributes the crack closure effect, ΔKth can be expressed in term of the 
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maximum monotonic plastic zone size and reverse plastic zone size. When a crack is 

unloaded from the maximum tensile stress, a reverse plastic zone of size dr with 

compressive residual stress acting on the zone is formed at the crack tip as shown in Figure 

8. This residual stress is transferred to the crack surfaces causing the crack surfaces to be 

closed fully or partially through a distance d. The crack propagates only when it is fully 

open. During reloading, the crack starts opening from σmin to σop. It starts growing when 

the stress exceeds the opening stress 

                                  

Figure 8. Reverse plastic zone and crack closure 
 

If an overload is applied, the compressive residual stress generated is higher in 

magnitude and the crack opening stress is increase when crack enters this higher magnitude 

compressive region. When the crack is reloaded from minimum stress, a forward plastic 

zone of size rf is formed at the crack tip. The crack opening stress attains a steady state 

when the current plastic zone reaches the boundary of the largest monotonic plastic zone 

as shown in Figure 9 [13].  
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Figure 9. Monotonic plastic zone size 
 

This closure effect is predominant in near threshold region [27] due to which ΔKth 

decreases with increasing R. The variation of ΔKth with respect to R is assumed to be a 

linear variation in case if alloys. This assumption is used in developing the near threshold 

fatigue crack growth model for VAL. 
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Figure 10. Stress intensity threshold (ΔKth) vs load ratio R for a) 300M [27] b) 
2NiCrMoV steel [19] c) Al 7075-T651 [22] 
 

Using this linear relationship,  
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 𝛥𝛥𝛥𝛥𝛥𝛥ℎ =  𝑃𝑃 –  𝑄𝑄𝑄𝑄 (25) 

P is the intercept and Q is the slope of the linear curve determined from ΔKth vs R curve. 

Since R cannot be defined for a variable amplitude loading, R is expressed in terms of the 

plastic zone sizes.  

 𝑅𝑅 =  
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚
= 1 −  

∆𝐾𝐾
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

 (26) 

According to Rice, the reverse plastic zone is expressed as 

 𝑑𝑑𝑟𝑟 =  
𝜋𝜋
8  �

𝛥𝛥𝛥𝛥
2𝜎𝜎𝑦𝑦

�
2

 (27) 

According to Dugdale model, the maximum monotonic plastic zone is  

 𝑟𝑟𝑓𝑓 =  
𝜋𝜋
8  �

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑦𝑦
�
2

 (28) 

From (27) and (28) 

 
𝛥𝛥𝛥𝛥
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

= �
4𝑟𝑟𝑓𝑓
𝑑𝑑𝑟𝑟

 (29) 

From (25), (26) and (29)  

 

𝐶𝐶𝑡𝑡ℎ =  

⎝

⎜
⎜
⎛ 𝛥𝛥𝛥𝛥 − (𝑃𝑃 − (𝑄𝑄(1− �4𝑟𝑟𝑓𝑓

𝑑𝑑𝑟𝑟
)

𝐾𝐾𝐼𝐼𝐼𝐼 − 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

⎠

⎟
⎟
⎞

𝑛𝑛

 

 

 

(30) 
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n was determined empirically to be a very small value  in case of constant as well as random 

loading. This generic equation can be used for both types of loading. The model validation 

can be found in chapter 4. 
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CHAPTER 3                                                         
MODEL DEVELOPMENT FOR CORROSION FATIGUE CRACK GROWTH 

 
3.1 Overview 

 
Vasudevan and Sadananda [1] proposed a two-parameter approach to quantify the 

fatigue crack growth data. They proposed that the two intrinsic thresholds ΔKth and Kmax,th 

needs to be exceeded simultaneously for the fatigue crack to grow. They argued that the 

Kmax is the controlling parameter for environmental interactions. They represented the 

threshold data, ΔK vs Kmax as an L shaped curve with the two limiting values corresponding 

to the fundamental threshold. In case of pure fatigue, ΔK* = Kmax
* and hence for any crack 

growth rate the plot of ΔK* vs Kmax
* gives a straight line. Any deviations from the ideal 

fatigue behavior is characterized by larger Kmax
* compared to ΔK*.  He classified the 

environmental effect on fatigue crack growth based on this curve into four types as shown 

in the below figure. 

                               

Figure 11. Classification of environmental interaction on fatigue crack growth 
rate on ΔK* vs Kmax* [1] 
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Type I shows that aggressive environmental effect has major influence in the near 

threshold region. In Type II, the fatigue crack growth rate is affected due to environmental 

interactions at higher crack growth rates while it remains unaffected at lower crack growth 

rate. This effect is seen to be a parallel shift in the crack growth rate in the log-log plot of 

da/dN vs ΔK. The crack growth seems to have an accelerating effect in the Paris regime 

due to the fatigue loading in corrosive environment. The environmental effect is 

independent of Kmax or transient time in this type of corrosion. They suggested that this 

type of corrosion is a consequence of rapid saturation of environmental effect with respect 

to the crack advance times providing a constant environmental contribution. The 

instantaneous covering of newly created surfaces with gaseous atoms or the continuous 

reaction and passivation and breaking of bonds can be the possible reasons for 

environmental saturation effect. Type III shows stress-driven environmental effects which 

is a characteristic of stress corrosion fatigue process while Type IV is an extreme case of 

Type III.  

     It can be seen from the literature that based on fatigue crack growth rate curve da
dN

 vs 

ΔK, there are mainly three types of classification of environmental interaction as shown in 

Figure 12. Type A shows accelerated fatigue crack growth due to environmental 

interactions even below KISCC which is the threshold required to initiate stress corrosion 

cracking. This process depends on the exposure time of crack tip to the environment. This 

occurs under cyclic loads and is a time dependent process. Decreasing the frequency of 

cyclic loading exposes the crack tip to environment for longer duration increasing the time 

period for chemical reactions at the crack tip enhancing the crack growth rate. Type B 
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stress dependent rather than time dependent. This process occurs only when the crack tip 

driving force Kmax at the crack tip exceeds KISCC in an aggressive environment. The 

environmental contribution increases with an increase in the stress in this case. Type C is 

a combination of the other two types. 

 

Figure 12. Classification of environmental interaction on fatigue crack growth 
based on da /dN vs ΔK curve [28]   
 

     For easiness of study of environmental interaction on fatigue crack growth, 

corrosion fatigue is divided into four main types in this paper as shown in Figure 13.Type 

A and Type B are stress independent. This occurs due to the synergistic action of cyclic 

loading and corrosive environment. Type A shows a retardation effect on fatigue crack 

growth in the near threshold region and merges with higher crack growth rates. This 

behavior can be observed in steels in dry environment such as dry hydrogen, dry argon and 
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so on. Type B shows an accelerating effect on the fatigue crack propagation which can be 

seen as a in Paris regime while the lower crack growth rates remain unaffected due to 

environmental interaction. This type of behavior can be observed in Aluminium alloys 

exposed to NaCl environment. In type C, corrosive environment accentuates the crack 

growth in the near threshold region. Ultra high strength steel in dry H2 shows this behavior 

for lower R ratios. Type D is stress dependent. The crack growth rates in aggressive 

environment are affected only above KISCC which is the threshold required for acceleration 

of crack growth under fatigue loading in aggressive environment. These types of behavior 

can occur in combinations as shown in Figure 14. Type B and Type C are the results of 

anodic dissolution and hydrogen embrittlement mechanisms due to the aggressive 

environment. Type D is due to the high applied tensile forces combined with adsorption of 

environmental species at the crack tip enhancing the crack growth. The possible reasons 

for Type A are not yet clear. Researches are still progressing to explain the possible 

mechanism for this type [27]. 

Type A Type B 
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  Type C        Type D 

 

Figure 13. Types of Corrosion fatigue loading 
  

                                          

Figure 14. Combination of different types of corrosion fatigue loading 
 

     In the following sections, models are developed to predict the corrosion fatigue 

crack growth for Type A behavior in 1% NaCl and Type B behavior. These models are 

then validated against experimental data for various alloys. 

 

3.2. Model development for the prediction of corrosion fatigue crack growth in Near 

threshold region for Type A behavior 
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     In dry hydrogen environment, the threshold is found to be 14% higher than the 

threshold in air irrespective of R ratios [19]. The corrosion fatigue crack growth can be 

predicted by modifying the coefficient of threshold in the modified time scale model as  

 𝐶𝐶𝑡𝑡ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  

⎩
⎨

⎧ΔKeff - (Pcorr- Qcorr(1-�(4 rf
dr

)))

Kc - Kmax
⎭
⎬

⎫
𝑛𝑛

 (31) 

Pcorr = k * P 

Qcorr = k * Q 

Where P and Q are the intercept and slope of ΔKth vs R plot as given in section 2.4. The 

value of k is determined based on the increase in threshold in dry hydrogen environment 

compared to the threshold in air and is taken as 1.14. 

                           

Figure 15. Effect of dry hydrogen on ΔKth for Ni-Cr-Mo-V steel at different R 
ratios [19] 
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3.3 Modeling for corrosion fatigue crack growth in Paris regime 

 
The small time scale model predicts the fatigue crack growth behavior for various alloys 

in the Paris regime. The parameter A is the intercept that matches with the experimental 

data. Since there is a parallel shift in case of corrosion fatigue crack growth rate from the 

pure fatigue growth rate, the parameter A is modified in the small time scale model to 

account for this shift in the Paris region. The proposed modified small time scale model is  

 𝑎𝑎 =  Acorr 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 
𝐵𝐵 √δ  (32) 

Experimental data were collected for the crack growth rate in pure fatigue and NaCl 

environment for various alloys to and studied. It was observed that for these alloys, the 

crack growth data showed a similar trend in the accelerating effect in the growth rate in 

NaCl environment. The modified A is proposed to be 

 Acorr = kA (33) 

The value of k was determined empirically for different alloys as given in the table below.  

The below table shows the values for k for various alloys. 

Table 1. Values for k factor for Corrosion fatigue in 1% NaCl for various alloys 
 

Material k 
Al 7075 –T6 4.2 
Al 7075 – T7 3.7 
HSLA 100 3.3 
HSLA 80 2.2 
2205 Duplex 
SS 1.5 

Ti-6Al-4V 3.5 
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CHAPTER 4                                                                               
MODEL VALIDATION AND DEMONSTRATION 

 

4.1. Overview 
 

This chapter gives an idea of the parameters used for the validation of the improvised 

small time scale model. The model is validated against the experimental data collected 

from the literature for constant amplitude loading. Since collecting the experimental data 

for variable amplitude loading is tedious and time consuming due to limited availability of 

crack growth rate data, the model is not validated for variable amplitude loading (VAL) 

but it is demonstrated for VAL. The table below shows the mechanical properties for 

different alloys tested. 

Table 2. Mechanical properties of various alloys 

Material E (GPa) σy (MPa) KIC 
(MPa√m) 

HSLA 100 197.066 840 180 
HSLA 80 197.066 650 180 
Al 7075 – T7 72 435 20 
Al 7075 – T6 71.7 503 20 
300M – T650 205 1070 152 
2205 Duplex 
SS 200 460 200 

Ti-6Al-4V 113.763 758.423 76.918 
 

 The fitting parameters A and B are taken to be the intercept of Paris regime from 

experimental data collected. A and B  shown below are taken at R = 0. Parameters P and 

Q are found from the linear curve of ΔKth vs R. 
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Table 3. Fitting parameter values for various alloys 

Material A B P Q 
Al 7075 – T7 2.19077E-06 1.7638 2.9653 2.1194 
Al 7075 – T6 1.75E-06 2.29 2.2732 1.3817 
300M 1.4E-07 1.81 8.988 8.31 
Ti-6Al-4V 9.75E-09 2.8318 3.5201 1.3712 

 

The loading conditions used for the model validation are given as below: 

 

Table 4. Loading condtions for prediction of fatigue and corrosion fatigue crack 
growth rate 

Medium Loading Frequency, Hz Concentration, % 
Air 10 - 
NaCl 10 1% 
Dry Hydrogen 10  

 

4.2. Model Validation for Constant Amplitude Loading (CAL) 

 
Experimental data for crack growth rate per cycle as a function of stress intensity 

factor in ambient air is collected for various alloys such as 2205 duplex stainless steel, Al 

7075, copper strengthened HSLA – 100, 300M - T650 high strength steel from literature 

to validate the small time scale fatigue model for near threshold and Paris regime for 

different R ratios. The experimental data is compared with the predicted data to verify the 

model. Small time scale corrosion fatigue model for Type A corrosion is validated by 

plotting the model predicted data against with the experimental data for 300M – T650 high 

strength steel in dry hydrogen. In order to validate the model for Type B corrosion, 

experimental fatigue crack growth data for various alloys such as HSLA – 100, Al 7075, 

duplex stainless steel are plotted.  
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Figure 16. Log da/dN versus Log ΔK graph and predicted results for 300M in 
near threshold and Paris region at R = 0.7 [27] 

 

 

Figure 17. Log da/dN versus Log ΔK graph and predicted results for high 
strength 300-M at R = 0.7 [27] 
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Figure 18. Log da/dN versus Log ΔK graph and predicted results for 2205 Duplex 
steel at R = 0.1 [30] 

 

 

Figure 19. Log da/dN versus Log ΔK graph and predicted results for HSLA 100 at 
R = 0.5 [24] 
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Figure 20. Log da/dN versus Log ΔK graph and predicted results for HSLA 100 at 
R = 0.1 [24] 

 

 

Figure 21. Log da/dN versus Log ΔK graph and predicted results for Al 7075-
T651 at R = 0.1 [22] 
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4.3. Model Demonstration for Variable Amplitude Loading (VAL) 

 
The model developed is applied to a random loading case to predict the fatigue crack 

growth rate and the corrosion fatigue crack growth rate. The below given figure is the 

random loading applied in 1% NaCl. 

 

 

 Figure 22. Applied random loading 

 

 

Figure 23. Fatigue crack growth rate for random variable loading 
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Figure 24. Crack length vs time graph for a variable amplitude loading in case of 
corrosion fatigue and mechanical fatigue 

 

Figure 25 is the girder response data available for a day. This is an example of complex 

variable amplitude loading spectrum. The model is used to predict the length of the crack 

considering fatigue in air as well as the corrosion fatigue as given in Figure 26. 1% NaCl is 

the corrosive media considered. 

 

 

 Figure 25: Girder response taken for a day (Stress vs time graph) 
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Figure 26: Predicted Crack length versus time for the Girder response 

 

4.4. Results and Discussion 
 

It can be seen that the model predicted data matches with the experimental data for 

constant amplitude loading. The model prediction for near threshold region however 

shows a slight variation in the near threshold region. The determination of exact stress 

intensity factor at which the crack growth rate changes from near threshold behavior to 

Paris regime is difficult. Materials show a smooth transition from near threshold to Paris 

regime. Since the model is developed for power law, the near threshold region is 

represented by a linear vertical curve and does not accommodate this smooth transition. 

The crack growth rate prediction for variable amplitude shows that consideration of 

environmental interactions is significant to avoid any premature failure of components. 
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CHAPTER 5                                                                  

Conclusion and Future Work 

 

5.1. Conclusion 

 

An existing small time scale is modified to extend the prediction of crack growth in the 

near threshold as well as the unstable crack growth region along with the Paris region. A 

new coefficient Cth is introduced which is defined as a function of ΔKeff and Kmax. The 

crack closure effect seems to be predominant in the near threshold region. This is visible 

as a shift in the fatigue crack growth rate curve accompanied by a change in R in da/dN vs 

ΔK plot. In case of VAL, the crack closure level varies for sub cycles within a cycle as 

well for cycles and is included in the modified model as a function of the plastic zone sizes.  

 
The effect of various corrosive environments such as NaCl and dry hydrogen on fatigue 

crack growth (FCG) was studied. It was observed that dry environments affect the FCG 

only at lower crack growth rates by a retardation in the growth rate. Salt-water environment 

speeds up the crack growth process. In this research, cases where this effect is visible only 

in the Paris region as a parallel shift are studied. More extensive data collection is required 

to study the effect of NaCl in near threshold region. The small time scale is improved to 

consider these two types of environmental interaction effect on FCG. Later on, the model 

predictions were compared with the experimental data to verify the applicability of model 

for various alloys.  
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5.2. Future Work 

The following suggestions need to be investigated to consider the corrosion fatigue in 

a broader level.  

• It was observed that the change in frequency of applied load has a significant effect 

mainly in the range of 0.1 Hz – 5 Hz. There are studies showing the significance of 

Rising time, RT over the frequency. This needs to be investigated thoroughly to 

understand the prominent factor in corrosion fatigue. 

• It was observed that there is an effect of NaCl concentration on the corrosion fatigue 

crack growth (CFCG). From few studies, this effect was limited to the range 

0.001% – 1%. The improved small time scale model can further be modified to 

account for this change in CFCG in under varying concentration of NaCl. 

• Extensive data collection is required for the study of expedition of FCG in near 

threshold region under aggressive environment and the small time scale model 

needs to be improvised further to account for this effect. 

• A model to predict the stress driven corrosion cracking may be developed in the 

future to be incorporated with the small time scale corrosion fatigue crack growth 

model. This occurs in specific alloy/environment interaction. The environments 

under which SCC may occur for the given alloy needs to be investigated initially 

and the threshold, KISCC required for various alloys to initiate SCC has to be 

determined. 
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