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ABSTRACT

Eigenvalues of the Gram matrix formed from received data frequently appear in suffi-

cient detection statistics for multi-channel detection with Generalized Likelihood Ra-

tio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in

which the null hypothesis is that the channels are independent and contain only com-

plex white Gaussian noise and the alternative hypothesis is that the channels contain

a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue

λ1 of the Gram matrix formed from data. This Gram matrix has a Wishart distri-

bution. Although exact expressions for the distribution of λ1 are known under both

hypotheses, numerically calculating values of these distribution functions presents

difficulties in cases where the dimension of the data vectors is large. This dissertation

presents tractable methods for computing the distribution of λ1 under both the null

and alternative hypotheses through a technique of expanding known expressions for

the distribution of λ1 as inner products of orthogonal polynomials. These newly pre-

sented expressions for the distribution allow for computation of detection thresholds

and receiver operating characteristic curves to arbitrary precision in floating point

arithmetic. This represents a significant advancement over the state of the art in a

problem that could previously only be addressed by Monte Carlo methods.
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Chapter 1

INTRODUCTION

Recent research directions in multi-sensor statistical signal processing (e.g., [5, 6,

7, 8, 9, 10]) and MIMO communications (e.g., [1, 11, 12, 13]) have brought signifi-

cant attention to the roles of complex Wishart matrices in these application areas.

Wishart matrices have a long history in the statistical literature [14, 15, 16]; they

arise naturally in multi-channel sensing and MIMO applications when the received

data is modeled as being complex normally distributed. In particular, statistics used

for detection, estimation, and characterization of collected data are often functions of

the Gram matrix formed from the received data, which is a complex Wishart matrix

under typical Gaussian data models.

This dissertation examines a problem motivated by multi-channel detection, as

arises in multistatic passive radar, where it is to be ascertained whether a common

signal is present across several noisy channels. In some such problems, a subset

of the channels may be “reference channels” known to contain a noisy copy of the

common signal of interest, or all channels may be “surveillance channels” which may

or may not contain the common signal. The surveillance-only scenario is the primary

motivation for the analysis in this dissertation, and is discussed in [2, 17], though the

results apply to a broader class of detection problems [18, 19].

The largest eigenvalue of the M × M Gram matrix formed from the complex

data was shown in [20] to be a sufficient statistic for the Generalized Likelihood

Ratio Test (GLRT) for a rank-one signal in M channels of independent zero-mean

white Gaussian noise (ZMWGN). Typical multi-receiver detection scenarios involve a

relatively small number of sensors (generally M < 10), but detection of weak signals
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may require the length N of data sequences collected at each sensor to be on the order

of 105−106 or larger. To set detection thresholds corresponding to desired false alarm

probabilities in such situations, it is thus necessary to compute the distribution of λ1

under the null hypothesis for small values of M and very large values of N ; complete

performance analysis of the detectors requires computation of the distribution under

the alternative hypothesis as well.

At this point, it is important to emphasize that the distribution of λ1 is known

from classical statistical results in the null hypothesis case [15] and from more recent

work in MIMO communications under the alternative hypothesis [21]. The issue

addressed in this dissertation is that these formulations of the distributions are not

amenable to numerical evaluation except for relatively small values of M and N .

Commonly-used approximation or asymptotic methods, such as those involving the

Tracy-Widom distribution [22], lack sufficient fidelity for the desired ranges of M

and N and may not be sufficiently accurate in the tail of the distribution, which

is of the greatest interest in multi-channel sensing applications in which low false-

alarm operating regimes are the norm. Monte Carlo methods, including those that

incorporate variance reduction methods such as importance sampling [23, 24], have

been used to analyze these distributions. However, they are not computationally

viable in the low false-alarm regimes entailed in radar surveillance applications for

a variety of reasons. These methods are generally problem specific (e.g., taking the

limit in both N and M at some fixed ratio; in this problem M is generally small),

are very non-trivial to derive and construct, and are designed only for the central

distribution. In the regimes of interest for multi-channel detection problems, which

often require very low false-alarm probabilities, these methods generally provide only

modest performance gains that are insufficient for setting detection thresholds.

This thesis presents methods to compute the distribution of λ1 under the null

2



hypothesis in which the M channels contain independent ZMWGN, referred to in the

literature as a “central” Wishart distribution, and the alternative hypothesis under

which a common signal is present in the mean across each channel, which is referred

to as a “non-central” Wishart distribution. In addition these methods are extended

to the distribution of λ1 in the case of a non-identity covariance matrix, which is

not of direct interest to the detection problem presented but has applications in

MIMO communications [21]. The results for the central distribution allow for closed

form computation of detection thresholds; when combined with the results for the

non-central distribution it is possible to compute receiver operating characteristic

(ROC) curves to arbitrary precision in the low-false alarm regimes of interest for

multistatic passive radar applications. Chapter 2 presents a model for the multistatic

detection problem derived from physical phenomenology, derives detection statistics,

and presents classical results on probability distributions on these statistics and their

numerical shortcomings. First, Section 2.1 presents the physical model of the passive

radar scenario that motivates this work and gives rise to the model for the data.

Section 2.2 derives GLRT statistics for the binary decision problem presented by the

signal model. Section 2.4 discusses classical and modern results on the distributions

of the largest eigenvalue of Wishart matrices. The intractability of these results

for this class of detection problem is demonstrated in 2.5. Chapter 3 contains the

primary theoretical contributions of this thesis, in which the classical distributions for

λ1 are expanded as inner products of Laguerre polynomials, which allows for tractable

computation of probabilities through quadrature integration. The particular cases of

the central, non-central, and central correlated distributions are treated in Sections

3.1, 3.2, and 3.3, respectively. Results from numerical experiments are presented in

Chapter 4, which includes comparison of CDF computation to Monte Carlo methods,

computing detection thresholds, and computing ROC curves. Specific contributions

3



of this thesis and possible future directions for this research and applications to related

problems are discussed in Chapter 5.
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Chapter 2

MULTISTATIC PASSIVE RADAR AND EXISTING RESULTS

This chapter presents a formulation of the multistatic passive radar detection

problem that is the primary motivation of the work, along with existing results on

detection statistics and probability distributions on these statistics as derived in clas-

sical random matrix theory. Section 2.1 presents a model for the data collected at

each geographically distributed radar receiver resultant from RF propagation and the

physical geometry of the problem. The initial signal processing performed on the

data to time align and undo Doppler shifts induced by the putative physical state of

the target whose presence is to be ascertained is also discussed. Next, Section 2.2

presents a derivation of the generalized likelihood ratio test (GLRT) statistic for the

binary hypothesis problem presented in the preceding section, as originally seen in

[20]. The Bayesian detection statistic for the same binary hypothesis problem is also

presented. Classical random matrix theory results for the largest eigenvalue distri-

bution in the central Wishart case as originally derived in [15] are seen in Section

2.4. This section also discusses more modern generalizations of these results to the

non-central and central correlated cases. This chapter then concludes in Section 2.5

with a discussion of the numerical limitations of these classical results and thus the

reasons they are not suitable for computing probabilities in the presented formulation

of the multistatic passive radar detection problem, and some discussion of previous
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efforts to find a numerically tractable formula for the distribution.

2.1 Signal Model

This section presents a signal model for detection in multistatic passive radar,

beginning with a physical model for the data recorded at each receiver. Section 2.2

uses this to formulate a binary hypothesis problem, gives an overview of the derivation

of GLRT and Bayesian statistics for the rank-K detection problem, and discusses the

rank-1 scenario that is the subject of analysis for the remainder of the dissertation.

This dissertation considers the passive radar scenario described in [2]. The pres-

ence or absence of a target with a given isolated state (position and velocity) is to

be deduced from sensor data. The target may be itself transmitting RF energy or

be a scatterer reflecting energy from some illuminator or illuminators in the envi-

ronment. In the case that the target is a scatterer, as in [2] it is assumed that the

transmitted signal only manifests in the data through scattering off the target; i.e.,

no direct-path signal appears in the sensor data, and there is no clutter. In practice,

this situation would occur if physical obstacles prevent direct-path propagation of the

transmitted signal to the receivers. The positions of M receivers, and in the case that

the target is a scatterer, the transmitter, are assumed known and fixed. Although

motivated by this scenario, the results presented below are more broadly applicable

in multi-channel detection.
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Figure 2.1: Signal Model Geometry.

In addition to a scalar gain and additive Gaussian noise, each channel imparts time

delay and Doppler to the transmitted signal in accordance with the putative target

state and the corresponding sensor position. The analog signal at each receiver is

filtered at each receiver and sampled to convert to a digital time series. Delay and

Doppler are compensated at each receiver ultimately yieldingM complex data vectors,

each of length N , which are tested for common signal content. It is assumed the signal

of interest is narrow band, allowing for the following approximations to be used.

If a target is present at position p moving at velocity v, the signal at each receiver

will depend on two parameters, the time delay τm and the frequency shift ωm. The

time delay is calculated as the time the signal takes to propagate from the transmitter

located at position t to the mth receiver located at position rm via the target, and is

calculated as

τm =
1

c
(‖p− t‖+ ‖p− rm‖) . (2.1)

where c is the speed of light. Note of course if the target is itself the transmitter,

p = t. The frequency shift corresponding to the target traveling at a particular
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velocity is given by the standard approximation

ωm =
ω0

c

(∥∥∥∥(p− t)(p− t)†

‖p− t‖2 v

∥∥∥∥+

∥∥∥∥(p− rm)(p− rm)†

‖p− rm‖2 v

∥∥∥∥) (2.2)

ω0 is the center frequency of the transmitted signal s. The signal at the mth

receiver is thus

xm(t) = ηms(t− τm)eiωmt + νm(t) (2.3)

where ηm is the signal amplitude and νm(t) is receiver noise.

To test for the presence of a target postulated to be at a particular position and

traveling at a particular velocity, the data is corrected using the postulated frequency

shift and time delay to form the vectors

x̃m(t) = ηmxm(t+ τm)e−iωt = µmx(t) + νm(t). (2.4)

ξm(t) is the modified noise component. Note that νm(t) is assumed to be additive zero-

mean white Gaussian noise, independent and identically distributed at each receiver.

Following sampling at an appropriate (Nyquist) rate, the analog signal at each

receiver is digitized as a length N vector. Under the null hypothesis H0 that the

received data contain only noise, these vectors x̃m, m = 1, . . . ,M are given by

H0 : x̃m = νm

where the νm are independent N -vectors of zero-mean complex Gaussian noise. Under

the alternative hypothesis,

H1 : x̃m = ηms+ νm

where ηm is a complex channel gain and s is a unit modulus complex N -vector rep-

resenting the common signal component across all M channels. Throughout the

dissertation, these vectors will be considered as columns of the matrix X, i.e.

X = [x̃1, . . . , x̃M ] .

8



2.2 Maximum-Likelihood Parameter Estimation

The GLRT statistic for the problem of interest is first derived as a generalized

linear model as described in [20], for the general case of a rank K signal present

across M receivers. The case of particular interest for this dissertation, that of the

distribution of this statistic for a rank 1 signal across M channels, is subsequently

discussed as a special case.

The signal model described in Section 2.1 is a specific case of the more general

linear model described in [20]. The data is modeled as a matrix X ∈ CN×M with

elements representing the data at the mth sensor at time instant n, where

X = SA+ ν

Where ν is additive complex white Gaussian noise with variance σ2, S ∈ CN×K is

an unknown matrix describing the signal subspace. The matrix A ∈ CK×M con-

tains unknown complex amplitudes of channel gains between the kth signal subspace

component and the mth receiver. Thus, the detection problem becomes

H0 : X ∼ CN (0, σ2I)

H1 : X ∼ CN (SA, σ2I).

The probability density function of X under H0 condition on σ2 is

p(X|H0, σ
2) =

1

(πσ2)−MN
e−

1
σ2

Tr(X†X)

While under H1, the probability density function conditioned on σ2, A, and S is

p(X|H1, σ
2, A, S) =

1

(πσ2)MN
e−

1
σ2

Tr((X−AS)†(X−AS)).

The generalized likelihood ratio test is then calculated as the ratio of these PDFs.

In this dissertation, it will be assumed the noise variance is known; the case estimating

9



an unknown noise variance is readily computed using similar techniques and can be

seen in [20]. The GLRT is

L(X) =
maxA,S p(X|A, S, σ2)

p(X|σ2)
≷H1
H0
γ.

The ML estimate for the amplitude matrix is Â = XS†. To estimate S, the Schur-

Horn theorem is used to maximize over P = S†S yielding P̂ =
∑K

k=1 vkv
†
k where vk

are the unit norm eigenvalues of W = X†X [25].

L(X) = e
1
σ2

Tr(XS†SX†)

= e
N
σ2

Tr(WP )

= e
N
σ2

∑k
i=1 λi

where λ1 ≥ . . . λM ≥ 0 are the ordered, non-negative eigenvalues of X†X. Taking the

logarithm and absorbing known constants, the statistic becomes

`(X) =
K∑
i=1

λi. (2.5)

Note that in the case that σ2 is unknown, the statistic is

`(X) =

(
1− Tr(DP )

Tr(D)

)−MN

where D = diag(λ1, . . . , λn). A proof is shown in [20]. This statistic can also be

written, perhaps more intuitively, as a function of the eigenvalues as

`(X) =

(
1−

∑K
i=1 λi∑N
i=1 λi

)−MN

. (2.6)

In the Bayesian approach, the parameters A, S, and σ2 may be marginalized

out of the likelihood functions in which it appears by integration with respect to a

non-informative prior. In the case of known noise variance, the likelihood ratio is

`(X) = Qe
Nα
σ2

∑K
i=1 λiΠN−K

i=1 ΠK
j=1

1

λj − λK+i + σ2

α

10



where Q is a function of the volume of the Grassmannian consisting of K-dimensional

subspaces of N dimensional space. A similar result is found for the case of unknown

noise variance; a full derivation may be seen in [20].

The physical model described in Section 2.1 contains parameters for the delay and

Doppler, of the signal across each of M channels. By postulating a target position

and velocity, and performing corrections as shown in 2.1, (2.5) can be applied to data

arising from physical phenomenology corresponding to the signal model (2.3). In the

case of interest in this dissertation, a target of rank K = 1 will be considered, so the

GLRT reduces to

`(X) = λ1

The remainder of this dissertation will examine the probability distribution of λ1

under the H0 case, with an aim of analytically computing thresholds as a function

of the probability of false alarm for a passive radar operating as a multi-channel

detector. The probability distribution will be derived using known techniques, and

some limitations of these known results as applicable to the problem of interest will be

discussed. New results will be presented that overcome these numerical limitations,

and allow for thresholds to be set analytically in this problem.

2.3 Defining SNR

It is assumed throughout this dissertation that the white Gaussian noise across

each receiver channel it known to have equal and unit variance. The SNR across

each channel is entirely dependent on the complex channel gain parameter ηm seen

in Section 2.1 in the expressions for the alternative hypothesis. The behavior of the

distribution under the alternative hypothesis is dependent only on the largest and

only non-zero eigenvalue of the Gram matrix formed by the rank-one matrix in the

mean of the signal model. Therefore, it is possible to achieve the same performance
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with differing SNR levels across each of the channels. However, in latter parts of this

dissertation, in particular in numerical examples seen in Chapter 4, SNR is generally

referred to by channel for purposes of intuition and to facilitate a description in units

of decibels, and in simulations is generally assumed to equal across each channel.

The relationship between the complex channel gains ηm defining the SNR and the

parameter µ1, the largest eigenvalue of the mean Grammian of the distribution of the

statistic under H1 is given by N times the norm of the vector of the weights of the

signal on each individual channel.

µ1 = N ‖(η1, . . . , ηM)‖2 (2.7)

2.4 Derivation of Classical Distributions

This section presents formulas for the distribution of λ1 as first seen in classical

statistical literature for the central case, which has been generalized to the non-

central case in more recent MIMO communications literature. These formulas will

be the starting point for closed form analysis, but it will be clear that they do not

allow for numerical computation of probabilities in scenarios of interest for multistatic

passive radar.

2.4.1 The Central Distribution

The form of the distribution of the largest eigenvalue of a complex central Wishart

matrix most commonly seen in the literature follows from a derivation in Khatri’s

paper [15]. This section follows Khatri’s derivation of the CDF from the joint PDF of

the ordered eigenvalues, but in keeping consistent with previous sections, the notation

from Tulino and Verdú’s book is used [11]. The joint PDF of the ordered eigenvalues

is
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f(λ1, . . . , λM) = e−
∑M
i=1 λi

M∏
i=1

λN−Mi

(N − i)!(M − i)!

M−1∏
j=1

M∏
k=j+1

(λj − λk)2. (2.8)

Two lemmas from Khatri are necesssary to derive this form of the CDF [15]. The

first concerns the separability of the integral - how summing over permutations of

exponents allows the domain of the integral of interest to be changed from a simplex

to a box.

Lemma 1 Suppose D = {0 ≤ xM ≤ . . . ≤ x1 ≤ x}, and let (Mtj , Ntj) be any

permutation of (Mk, Nk), . . . , (M1, N1), and consider summation taken over all such

permutations. Then

∑∫
D

k∏
j=1

(
x
Mtj

j (1− xj)Ntj dxj
)

=
k∏
j=1

(∫ x

0

x
Mj

j (1− xj)Njdxj
)

(2.9)

Note that this lemma is derived for the case of normalized eigenvalues; the (1−x)n

term becomes an exponential for large n. The second lemma concerns the determinant

of a particular matrix

Lemma 2 Let
∑

mean summation over all permutations j1, j2, . . . , jm of 1, 2, . . . ,M .

M−1∏
j=1

M∏
k=j+1

(xj − xk)2 =
∑

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2M−2
j1

x2M−3
j2

· · · xM−1
jM

x2M−3
j1

x2M−4
j2

· · · xM−2
jM

...
...

. . .
...

xM−1
j1

xM−2
j2

· · · x0
jM

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.10)

This follows from squaring the known form of a Vandermonde determinant.

Using the two lemmas, it is possible to integrate (2.8) to marginalize the M − 1

smallest eigenvalues and thus obtain the CDF of the largest eigenvalue λ1.
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Theorem 1 The CDF of the largest eigenvalue λ1 of W is

Fλ1(x) =
|γ(N + i+ j, x)|i,j=0,...,M−1∏M

k=1 Γ(N − k)Γ(M − k)

where γ is the lower incomplete gamma function and Γ is the complete gamma func-

tion.

Compute the CDF by integrating the PDF given in the first section

Fλ1(x) =

∫
D
f(λ1, . . . , λM)dλ1 · · · dλM

where D = {0 ≤ xM ≤ . . . ≤ x1 ≤ x}. First, using Lemma 2 and factoring the

exponential term into the product results in

Fλ1(x) =
∑∫

D

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2M−2
j1

λ2M−3
j2

· · · λM−1
jM

λ2M−3
j1

x2M−4
j2

· · · λM−2
jM

...
...

. . .
...

λM−1
j1

λM−2
j2

· · · λ0
jM

∣∣∣∣∣∣∣∣∣∣∣∣∣
M∏
i=1

e−λiλN−Mi

(N − i)!(M − i)!
dλ1 · · · dλM .

(2.11)

The determinant in the integrand can be written as

∑
sgn(t1, . . . , tM)λM−1+t1

j1
λM−2+t2
j2

· · ·λtMjM

where t1, . . . , tM is a permutation of 0, 1, . . . ,M − 1 and sgn(t1, . . . , tM) is positive

for an even permutation and negative for an odd permutation. Then the integral is

equivalent to

Fλ1(x) =
∑
t

∑
j

∫
D

sgn(t1, . . . , tM)λM−1+t1
j1

λM−2+t2
j2

· · ·λtMjM (2.12)

×
M∏
i=1

e−λiλN−Mi

(N − i)!(M − i)!
dλ1 · · · dλM
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where the sums are over all permutations of ti and ji. Next, apply lemma 1 to change

the domain of integration from D to the box [0, x]m, eliminate one of the permutation

sums, and factor the product.

Fλ1(x) =
∑
t

sgn(t1, . . . , tM)
M∏
i=1

1

Γ(N − i)Γ(M − i)

∫ x

0

λ
N−i+tj
i e−λidλi (2.13)

Factoring out the constant term and recognizing that the integrand is an incom-

plete gamma function, and the permutation summation is the Leibniz formula for a

determinant, the CDF can be written as

Fλ1(x) =
|γ(N −M + i+ j + 1, x)|i,j=0,...,M−1∏M

k=1 Γ(N − k)Γ(M − k)
. (2.14)

As F → 1 as x → ∞, the normalizing constant must tend to the limit of the

numerator, i.e. to a determinant of complete gamma functions. Therefore the CDF

can be written

Fλ1(x) =
|γ(N −M + i+ j + 1, x)|i,j=0,...,M−1

|Γ(N −M + i+ j + 1)|i,j=0,...,M−1

. (2.15)

This form is of interest for numerical rehabilition. Note that the lemmas here

can be generalized to derive expressions of a similar form for correlated central and

uncorrelated non-central Wishart matrices, as discussed in the following section. For

further detail, see [3].

2.4.2 The Non-Central and Correlated Distributions

Recent results motivated by MIMO communications generalize Khatri’s result to

the non-central case and the central correlated case. In particular, the following

theorem is given in [21].
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Theorem 2 Given two arbitrary matrices Φ(x) and Ψ(x) with ijth elements Φi(xj)

and Ψi(xj) and an arbitrary function ξ(x), the following identity holds:∫
· · ·
∫
D
|Φ(x)| · |Ψ(x)|

M∏
k=1

ξ(xk)dx =

∣∣∣∣∫ b

a

Φi(x)Ψj(x)ξ(x)dx

∣∣∣∣
i,j=0,...,M−1

(2.16)

such that D = {b ≥ x1 ≥ . . . ≥ xM ≥ a}.

A proof of this result as well as similar theorems regarding integration over differ-

ent domains D are given in [21]. This case is of particular interest as it allows Khatri’s

results to be generalized to the non-central and central correlated cases. The joint

PDFs of the ordered eigenvalues of a complex Wishart matrix of each case can be

written with functions ξ and matrices with a Vandermonde-like structure, allowing

application of the theorem. A table of the appropriate choices for ξ, Ψ, Φ can be seen

in [3].

First, consider the case of the non-central CDF of λ1 with an arbitrary rank K

mean.

Fλ1(x) =
1

C

∣∣∣∣∣∣∣∣∣∣∣∣∣



∫ x
0 0F1(N −M + 1, µjt)t

N−i+1e−tdt,

j = 0, . . . , K − 1, i = 0, . . . ,M − 1∫ x
0
tN−M+i+j+1e−tdt,

j = K, . . . ,M, i = 0, . . . ,M − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.17)

In this expression, C is a normalizing constant equal to the limit of the determinant

term as x→∞, and µi

Second, for completion, Chiani et al.’s work presents the CDF of λ1 under with

an arbitrary covariance matrix. In most commonly presented detection problems

in the literature involving a correlated central Wishart distribution generally, λ1 is

generally not a sufficient statistic; rather an expression involving all M eigenvalues

is often required [20]. Nevertheless, this distribution has more than just academic
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interest, as it arises in MIMO channel models with either transmit or receive side

correlation [21]. The CDF of λ1 in this case is given by

Fλ1(x) =
1

C

∣∣∣∣∣σN−M+i+1
j

∫ x/σj

0

tN−M+i+2e−tdt

∣∣∣∣∣
i,j=0...M−1

. (2.18)

2.5 Numerical Issues

Considering H0, suppose X is an M × N matrix with independent identically

distributed complex normal entries having mean zero and unit variance; i.e., xij ∼

CN (0, 1). The Gram matrix G = XX† generated from this data has a central com-

plex Wishart distribution G ∼ CW(N, IM). As noted above, the GLRT for detection

of a rank-one signal in this setting is based on the largest eigenvalue λ1 of this Gram

matrix, and hence establishing thresholds for constant false-alarm rate detection re-

quires explicit evaluation of the CDF of this eigenvalue. The CDF of λ1, as given in

[1], is

Fλ1(x) =
|γ(N −M + i+ j + 1, x)|i,j=0,...,M−1

|Γ(N −M + i+ j + 1)|i,j=0,...,M−1

(2.19)

where γ(a, x) =
∫ x

0
ta−1e−tdt is the lower incomplete gamma function.

The form of the CDF Fλ1 presented in (2.15) strongly constrains the problem

size for which explicit calculations are possible using floating point arithmetic. Direct

computation using a naive implementation of this expression, while exact in principle,

is severely limited by the maximum number of samples possible before overflowing

double precision floating point.
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Sensors (M) Maximum Samples (N)

2 98

3 71

4 57

5 47

Table 2.1: Computational Limits of Expression from [1] in Double Precision Floating
Point Arithmetic.

Realistic problems for passive radar applications require numbers of samples N on

the order of 105−106, generally with a single-digit number of receivers. The previous

best implementation, given in [2], allowed for computation in problems of this size

only for two or three receivers in the H0 case.

Sensors (M) Maximum Samples (N)

2 4.8× 108

3 2.6× 105

4 4.5× 103

5 5.5× 102

Table 2.2: Computational Limits of Expression from [2] in Double Precision Floating
Point Arithmetic.

The floating point overflow limits in the H1 case are similar to those seen in Table

2.1 in the rank one case. Columns 2, . . . ,M contain incomplete gamma function

entries identical to the H0 case, while the first column contains an integral with an

integrand containing terms equivalent to a lower order gamma function multiplied by

a hypergeometric function.
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Sensors (M) Maximum Samples (N)

2 101

3 75

4 57

5 47

Table 2.3: Computational Limits of Expression from [3] in Double Precision Floating
Point Arithmetic.

The point at which overflow occurs may shift by one to two samples dependent

on the magnitude of the eigenvalue of the mean Gramian; regardless these numbers

are on the same order of magnitude as the H0 case and are insufficient for multistatic

passive radar problems where the number of samples required could be on the order

of 106 or greater.
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Chapter 3

LAGUERRE POLYNOMIAL EXPANSION

This chapter represents the primary theoretical contribution of this dissertation.

The classical expressions for the distributions of the largest eigenvalue λ1 of a complex

Wishart matrix seen in Section 2.4 were shown in Section 2.5 to overflow double preci-

sion arithmetic in cases of interest for the multistatic passive radar detection problem

described in Section 2.1 and 2.2. This section focuses on the relationship between the

gamma function and the generalized Laguerre family of orthogonal polynomials, and

makes use of this relationship to rewrite the classically known expressions for these

distributions as inner products of polynomials. Through some further manipulation,

these inner product expressions may be made amenable to high accurate computa-

tion of probabilities using double precision floating point arithmetic in regimes of

interest, where the degrees of freedom N determined by the number of samples is

large. Furthermore, these expressions may prove to be very practical for application

to a multi-channel detection problem in which it is of interest to operate at a very

low probability of false alarm. In this operating regime, the tail of the distribution

is what is of primary interest for setting detection thresholds. Generating empirical

estimates of the distribution through pseudo-random trials would be extremely time

intensive to provide a sufficiently accurate approximation of the distribution.

This chapter is divided into three sections, corresponding to the three cases of

complex Wishart matrix commonly examined in the literature. Section 3.1 derives

an expression for the central case, corresponding to the H0 hypothesis in the pro-

posed detection problem. Section 3.2 derives an expression for the non-central case

corresponding to the H1 hypothesis. Finally, Section 3.3 derives an expression for the
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correlated central case, which does not directly appear in the proposed multistatic

detection problem, but has been examined in the literature as a quantity of interest

in MIMO communications applications.

3.1 Derivation for the H0 Distribution

This section presents a derivation of a computationally tractable formula for the

distribution of λ1 under theH0 hypothesis as originally seen in [26]. First, the formula

for the distribution as given by (2.15) is expanded as inner products of generalized

Laguerre polynomials. The problematic terms, namely normalization constants that

arise in the inner products and the gamma function integrand terms in the inner

products, are dealt with through the use of a substitution and computation of terms

in quickly convergent series. Finally, a new family of orthogonal polynomials is in-

troduced that are orthogonal on the resultant integration range due to the change of

variables, and a concise formula for the desired distribution in terms of inner products

of these polynomials is presented.

3.1.1 Laguerre Polynomial Conjugation

In order to write FH0
λ1

in a form that can be computed using floating point arith-

metic for practical problem sizes in multistatic passive radar applications, it is neces-

sary to rewrite the distribution such that the intermediate terms in the determinant

expression for the distribution can be computed without overflowing floating point

representations. Begin with the distribution of λ1 (2.15) under the H0 hypothesis as

given by Khatri, that the data across each of the M sensors consists of independent

zero-mean complex white Gaussian N vectors. Throughout this section and to dif-

ferentiate from the other cases for the remainder of the dissertation, the CDF of λ1

in the central case will be referred to using the notation FH0
λ1

. Originally shown in
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(2.15), the formula for the central CDF of λ1 commonly seen in the literature is

FH0
λ1

(x) =
|γ(N −M + i+ j + 1, x)|i,j=0,...,M−1

|Γ(N −M + i+ j + 1)|i,j=0,...,M−1

.

This formula for the distribution is numerically unwieldy due for large values of N en-

countered in multistatic passive radar applications due to the large gamma functions

that must be computed as intermediate terms in computing probabilities. These will

be eliminated via an expansion as inner products of orthogonal polynomials. Define

Ξ(x) to be the matrix in the numerator of this expression for the CDF containing

gamma function entries, and let A be the lower triangular matrix of generalized La-

guerre polynomials L
(a)
i of degree 0 . . . ,M − 1, such that a = N −M . Define the

matrix Ψ as the conjugation of Ξ by A.

Ψ(x) = ATΞ(x)A

Then the distribution of λ1 can be written

FH0
λ1

(x) =
|Ξ(x)|
|Ξ(∞)|

=

∣∣ATΞ(x)A
∣∣

|ATΞ(∞)A|

=
|Ψ(x)|
|Ψ(∞)|

where the individual elements of the matrix Ψ take the form

Ψij =

√
i!j!

(a+ i)!(a+ j)!

∫ x

0

L
(a)
i (t)L

(a)
j (t)tae−tdt i, j = 0, . . . ,M − 1. (3.1)

It is clear that as x→∞, (3.1) evaluates to δij and therefore the denominator is the

identity. Note that the elements of the matrix Ψ given by (3.1) are still numerically

intractable after conjugation by the coefficients of the generalized Laguerre polyno-

mials. This is due to the large leading constant of order approximately N ! on each
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element, as well as the continued presence of the tae−tdt term, which is of course

the integrand of a gamma function. To eliminate these extremely large numerical

cancellations, it is proposed to change variables and thus the domain of integration

in such a way that will allow cancellation of some of these terms in the expression

prior to any computation being performed.

3.1.2 Computing the Matrix Elements

The individual elements of the matrix expression for the distribution of λ1 as given

by (3.1) are amenable to some cancellation by substitution. Consider the change of

variable of integration given by t→ a+u
√

2a. This results in matrix elements of the

form

Ψij(x) =
√

2a

√
i!j!

(a+ i)!(a+ j)!
×∫ y(x)

−
√

a
2

L
(a)
i (a+ u

√
2a)L

(a)
j (a+ u

√
2a)(a+ u

√
2a)ae−(a+u

√
2a)du

=
√

2aaae−a

√
i!j!

(a+ i)!(a+ j)!
×∫ y(x)

−
√

a
2

L
(a)
i (a+ u

√
2a)L

(a)
j (a+ u

√
2a)(1 + u

√
2/a)ae−u

√
2adu

. (3.2)

Next, the behavior of the leading constants is examined, and it is noted that

through some manipulation it is possible to cancel the extremely large terms in order

to compute values exactly. Consider that these constants can be consolidated into
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the form

√
2aaae−a

√
i!j!

(a+ i)!(a+ j)!

=

√
2aaae−a

a!ai/2aj/2
√

Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

=
1√
π
a−i/2a−j/2

e−ε(a)√
Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

where the function ε is defined by

ε(a) = log a!− a log a+ a− 1

2
log 2πa.

Note that this equation can easily be computed to any arbitrary accuracy with the

quickly converging series

ε(a) =
1

12a
− 1

360a3
+

1

1260a5
− 1

1680a7
+ . . . .

Next, denote

cij(a) =
e−ε(a)√

Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

and observe that lima→∞ cij(a) = 1. With this notation, the leading constant can be

written as

1√
π
a−i/2a−j/2cij(a)e−ε(a).

As the leading constants have been consolidated into a tractable form, consider

the terms originally arising from the gamma functions left in the integrand as a result

of the change of variables and factorization of all constants. Define the function

φa(t) = a log(1 + t
√

2/a)− t
√

2a.

Note that for |t| <
√
a/2, this can be expanded in a Taylor series as

φa(t) = −t2 −
∞∑
j=3

(−1)j

j
(t
√

2/a)j.
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Combining these pieces, an elements of the matrix Ψ can be written

Ψij(x) =
1√
π
a−i/2a−j/2cij(a)e−ε(a)

×
∫ y(x)

−
√

a
2

L
(a)
i (a+ u

√
2a)L

(a)
j (a+ u

√
2a)eφa(u)du

(3.3)

such that y(x) = x−a√
2a

.

3.1.3 Asymptotics of Generalized Laguerre Polynomials

Prior to continuing the derivation, consider the relation between the generalized

Laguerre and Hermite polynomials shown in [27]:

lim
a→∞

a−n/2L(a)
n (a+ t

√
a) =

(−1)n

n!
2−n/2Hn(t/

√
2).

Define polynomials

D(a)
n (t) = (−1)nn!(2/a)n/2L(a)

n (a+ t
√

2a). (3.4)

As a consequence of the Laguerre recurrence relation

L
(a)
n+1(x) =

(2n+ 1 + a− x)

n+ 1
L(a)
n (x)− (n+ a)

n+ 1
L

(a)
n−1(x),

the polynomials D
(a)
n satisfy the recurrence relation

D
(a)
n+1(x) =

(
2x− (2n+ 1)

√
2/a
)
D(a)
n (x)−

(
2n+ n2(2/a)

)
D

(a)
n−1(x)

D
(a)
0 (x) = 1 D

(a)
1 (x) = 2x−

√
2/a.

. (3.5)

Taking the limit a→∞, this recurrence relation is the same as that satisfied by the

Hermite polynomials, with the same initial conditions. Therefore

lim
a→∞

D(a)
n = Hn. (3.6)

These polynomials are orthogonal on the interval [−
√
a/2,∞) with respect to the

measure eφa(t)dt; i.e.,∫ ∞
−
√
a/2

D(a)
n (t)D(a)

m (t)eφa(t)dt =

√
π2nn!

cnn(a)
δnm.
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3.1.4 Closed Form D Polynomial Distribution

Substituting the D polynomials defined in Section 3.1.3 into the integral form of

the matrix elements shown in (3.3) gives the matrix elements in terms of partial inner

products of the D polynomials:

Ψij(x) =
cij(a)√
π2i+ji!j!

∫ y(x)

−
√
a/2

D
(a)
i−1(t)D

(a)
j−1(t)eφa(t)dt.

where as before, y(x) = x−a√
2a

. The distribution can now be computed by taking the

determinant of this matrix:

FH0
λ1

(x) =

∣∣∣∣∣ cij(a)√
π2i+ji!j!

∫ y(x)

−
√
a/2

Di(t)Dj(t)e
φa(t)dt

∣∣∣∣∣
i,j=0,...,M−1

. (3.7)

This equation is tractable for computing probabilities in double precision arith-

metic. Note that the D polynomial coefficients are precomputed using the recursion

relation given by (3.5). The extremely large leading terms on each element of this

matrix have been eliminated. Remaining factorial terms i!j! are of order M !, which

in the motivational cases of multistatic passive radar applications is a relatively small

number, generally no larger than ten. Recall also that cij → 1; as such the leading

constant is very reasonable to compute using floating point arithmetic. Unlike the

original measure tae−tdt associated with the gamma functions, the measure eφa(t)dt

does not cause double precision overflows for either modest or large values of a.

3.1.5 Asymptotic Hermite Polynomials

Note that computing the matrix elements, while numerically tractable using (3.7),

may be computationally intensive due to the numerical integration required. In Sec-

tion 3.1.3, it was noted when defining the D polynomials that as a → ∞ in (3.6),

D
(a)
n → Hn. Therefore, the distribution of λ1 can be written in terms of the Hermite
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polynomials as

FH0
λ1

(x) =

∣∣∣∣∣ 1√
π2i+ji!j!

∫ y(x)

−∞
Hi−1(t)Hj−1(t)e−t

2

dt

∣∣∣∣∣ (3.8)

where as before, y(x) = x−a√
2a

. With some additional recurrence relations, the elements

of this matrix can be computed without computing any integrals. First, consider that

d(Hj(t)e
−t2) = −Hj+1(t)e−t

2
. For the zeroth row of the matrix, the inner product

takes the form

∫ x

−∞
Hi(t)Hj(t)e

−t2dt =


√
π(1 + erf(x))/2 if j = 0

−Hj−1(x)e−x
2

otherwise.

Subsequent elements of the matrix can be recursively calculated using the relation∫ x

−∞
Hi(t)Hj(t)e

−t2dt = −Hi(x)Hj−1(x)e−x
2

+2i

∫ x

−∞
Hi−1(t)Hj−1e

−t2dt.

The formulation of the distribution shown in (3.8) eliminates the large gamma func-

tions with number of degrees of freedom (samples), thus eliminating the main cause

of the severe floating point overflow. In addition, the recursion relations allows the

elements of the matrix required to compute Fλ1 to be computed without employing

a numerical integration algorithm. In cases where N is deemed sufficiently large that

the error inherent in taking this limit is minimal, this recursive relation that relies on

polynomial evaluation and highly optimized built in functions (such as the error func-

tion) as opposed to using numerical integration for evaluation can result in significant

computational savings.

3.2 Derivation for the H1 Distribution

This section derives an expression for the distribution of λ1 under the alternative

hypothesis H1 that is numerically tractable for computation of probabilities in the
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regimes of interest for the passive radar signal model presented in Section 2.1, i.e.

in which the number of samples N is large and the number of distributed receivers

M is relatively small. The methodology uses the fact that the matrix elements in

the classical expressions for the CDF are incomplete gamma functions (with an extra

hypergeometric term in the first column), and the relation to the orthogonality of the

generalized Laguerre polynomials.

3.2.1 Laguerre Polynomial Conjugation

Recall the expression given for the non-central CDF of λ1 in terms of gamma and

hypergeometric functions, as shown in (2.17).

FH1
λ1

(x) =
1

C

∣∣∣∣∣∣∣∣∣∣∣∣∣



∫ x
0 0F1(N −M + 1, µjt)t

N−i+1e−tdt,

j = 0, . . . , K − 1, i = 0, . . . ,M − 1∫ x
0
tN−M+i+j+1e−tdt,

j = K, . . . ,M, i = 0, . . . ,M − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let Ξ(x) be the M × M matrix given in the determinant form of FH1
λ1

shown

above, and let A be the lower triangular matrix of normalized (in the Laguerre inner

product sense) coefficients for the generalized Laguerre polynomials L
(a)
i where the

parameter a = N −M . Under the H1 hypothesis, M − 1 columns of Ξ(x) contain

incomplete gamma functions. Thus, similar to the central case, conjugating Ξ(x) by

A followed by well chosen variable changes will allow cancellation of the extremely

large intermediate terms generated by the gamma and hypergeometric functions in

the matrix entries.

Consider the conjugation of Ξ(x) by A, denoted Ψ(x) = A†Ξ(x)A. Note that the
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CDF of λ1 can be written as

FH1
λ1

(x) =
|Ξ(x)|
|Ξ(∞)|

=

∣∣A†Ξ(x)A
∣∣

|A†Ξ(∞)A|

=
|Ψ(x)|
|Ψ(∞)|

.

An arbitrary element of the matrix Ψ(x) is given by

Ψij(x) =
M∑
l=i

Āil

M∑
k=j

Ξlk(x)Akj.

Note that due to the lower triangular structure of A, any terms in the summation

where l < i and k < j are zero. This expansion may be divided into two cases:

the first column containing hypergeometric function terms, and the other M − 1

columns containing only incomplete gamma functions. First, consider the case that

j = 1. Substituting the elements of Ξ(x) and the corresponding generalized Laguerre

coefficients constituting the elements of A into the above summation results in

Ψij(x) =

√
i!j!

(a+ i)!(a+ j)!

M∑
l=i

(
L

(a)
M−i,M−lL

(a)
M−1,M−1∫ x

0

e−t0F1(a+ 1, µ1t)t
N−ldt

+
M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−k

∫ x

0

e−ttN+M−l−k

)
dt.

In this expression L
(a)
i,j denotes the coefficient corresponding to the tj term of the

generalized Laguerre polynomial L
(a)
i . Next, rearrange the sums and integrals, pulling
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the factor of e−ttN−M = e−tta out from each term in the summations. This yields

Ψij(x) =

√
i!j!

(a+ i)!(a+ j)!

∫ x

0

e−tta×

M∑
l=i

(
L

(a)
M−i,M−lL

(a)
M−1,M−10F1(N −M + 1, µ1t)t

M−l

+
M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−kt

2M−l−k

)
dt.

In this form, it is clear that to make computation of Ψij(x) numerically tractable,

the leading integrand term arising from the incomplete gamma functions and the

leading constants on the order of a! must be eliminated. This is accomplished through

a change of variables, substituting t → a + u
√

2a. Making this substitution, the

elements become

Ψij(x) =

√
i!j!

(a+ i)!(a+ j)!
×∫ y(x)

−
√
a/2

e−(a+u
√

2a)(a+ u
√

2a)a

×
M∑
l=i

L
(a)
M−i,M−lL

(a)
M−1,M−1

× 0F1(a+ 1, µ1(a+ u
√

2a))(a+ u
√

2a)M−l

+
M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−k(a+ u

√
2a)2M−l−k

√
2a du

where y(x) = x−a√
2a

. Factoring additional constant terms introduced by the substitu-

tion, the expression becomes
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Ψij(x) =
√

2aaae−a

√
i!j!

(a+ i)!(a+ j)!
× (3.9)∫ y(x)

−
√
a/2

e−u
√

2a(1 + u
√

2/a)a

×
M∑
l=i

L
(a)
M−i,M−lL

(a)
M−1,M−1

× 0F1(a+ 1, µ1(a+ u
√

2a))(a+ u
√

2a)M−l

+
M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−k(a+ u

√
2a)2M−l−k du.

(3.10)

3.2.2 Computing the Matrix Elements

Note that the expression Fλ1(x) = |Ψ| is exact, but computing the matrix elements

Ψij still presents difficulties. In particular, the factor multiplying the integral in (3.9)

contains factorials of the number of samples. This section develops a numerically

tractable form that allows for computation to an arbitrary accuracy by using further

terms of the convergent series. Consider the leading constant in (3.9). Applying

Stirling’s approximation yields

√
2aaae−a

√
i!j!

(a+ i)!(a+ j)!

=

√
2aaae−a

a!ai/2aj/2
√

Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

=
1√
π
a−i/2a−j/2

e−ε(a)√
Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

where the function ε is defined by

ε(a) = log a!− a log a+ a− 1

2
log 2πa

=
1

12a
− 1

360a3
+

1

1260a5
− 1

1680a7
+ . . . .
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Denote

cij(a) =
e−ε(a)√

Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

and observe that lima→∞ cij(a) = 1. Next, define

φa(t) = a log(1 + t
√

2/a)− t
√

2a.

For |t| <
√
a/2, this can be expanded in a Taylor series as

φa(t) = −t2 −
∞∑
j=3

(−1)j

j
(t
√

2/a)j.

Using these functions, the CDF may be written in the form

Ψij(x) =
cij(a)a−i/2a−j/2

√
i!j!√

π

∫ y(x)

−
√
a/2

eφa(u) (3.11)

M∑
l=i

L
(a)
M−i,M−lL

(a)
M−1,M−1

× 0F1(a+ 1, µ1(a+ u
√

2a))(a+ u
√

2a)M−l

+
M∑
k=2

L
(a)
M−i,M−lL

(a)
M−1,M−k(a+ u

√
2a)2M−l−kdu.

(3.12)

3.2.3 The Distribution

Recall the family of D polynomials defined in Section 3.1.3, defined by the follow-

ing relationship with the Laguerre polynomials

D(a)
n (t) = (−1)nn!(2/a)n/2L(a)

n (a+ t
√

2a).

Substituting the coefficients for the D polynomials in place of the generalized

Laguerre polynomial coefficients into the form of the matrix elements Ψij given in
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(3.11) results in

Ψij(x) =
cij(a)√
π2i+ji!j!

∫ y(x)

−
√
a/2

eφa(u)

M∑
l=i

D
(a)
M−i,M−lD

(a)
M−1,M−1u

M−l (3.13)

0F1(a+ 1, µ1(a+ u
√

2a))

+
M∑
k=2

D
(a)
M−i,M−lD

(a)
M−1,M−ku

2M−l−kdu.

This completes the calculation. Next, consider the elements Ψij(x) for the case

j = 2, . . . ,M . It is clear the derivation will follow as shown in this section, without

the hypergeometric function in the leading part of the summation. This allows these

elements to be written more concisely as partial inner products of the D polynomials.

Ψij(x) =
cij(a)√
π2i+ji!j!

∫ y(x)

−
√
a/2

D
(a)
i−1(t)D

(a)
j−1(t)eφa(t)dt (3.14)

Therefore, the cumulative distribution function for λ1 can be written as the determi-

nant of Ψ; i.e.,

FH1
λ1

(x) = |Ψij(x)| (3.15)

such that the matrix elements Ψij(x) are given by (3.13) and (3.14). [28].

3.2.4 Perturbation Formula for the Distribution

It is of interest to determine an exact relationship between the distribution of λ1

under the H0 and H1 hypotheses. This section presents a formula for the distribution

under H1 equivalent to that given in (3.15), written as a rank one perturbation of

the distribution under H0 as given by (3.7). Techniques similar to those employed

in both cases to make the distributions amenable to floating point computation are

used on the perturbation term to allow closed form computation of theH1 distribution
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using this method. Further, asymptotic results are discussed, in order to present an

approximation of the H1 distribution that is analogous to the Hermite polynomial

form of the H0 distribution as given by (3.8).

Let Ξ(x) be the matrix given by (2.17). Recall the the distribution of λ1 under

H1 can be written

FH1
λ1

(x) =
|Ξ(x)|
|Ξ(∞)|

.

Let A be the lower triangular matrix of generalized Laguerre polynomial coefficients

of order a = N−M , and let Ψ(x) be the matrix of incomplete Laguerre inner products

as given by (3.1). Then Ξ can be written as a rank one perturbation of Ψ.

AΞ(x)AT = Ψ(x) + v(x)`T (3.16)

such that ` is the first column of A, i.e., the coefficients of the generalized Laguerre

polynomial of degree M − 1. The elements of the vector v(x) are given by

vj(x) =
j!

(a+ j)!

∫ x

0

(0F1(a+ 1, µ1t)− 1)L
(a)
j tae−tdt. (3.17)

Recall the matrix determinant lemma, which in the special case of a rank-1 pertur-

bation, states

∣∣A+ uvT
∣∣ =

(
1 + vTA−1u

)
|A| .

Applying this lemma to (3.16), it is then possible to rewrite FH1
λ1

as

FH1
λ1

(x) =
1 + `TΨ−1(x)v(x)

1 + `Tv(∞)
|Ψ(x)| .

Recall that FH0
λ1

(x) = |Ψ(x)|. Therefore, it is possible to rewrite FH1
λ1

as a perturbation

of FH0
λ1

.
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FH1
λ1

(x) =
1 + `TΨ−1(x)v(x)

1 + `Tv(∞)
FH0
λ1

(x) (3.18)

The perturbation formula for the CDF of λ1 under H1 given by (3.18) is suscep-

tible to the double precision arithmetic overflow problems previously discussed and

addressed in [26, 28], but may likewise be addressed with similar methods. In partic-

ular, it is necessary to address the numerical overflow problem in the Ψ−1(x), v(x),

and FH1
λ1

(x) terms of (3.16). Clearly, FH1
λ1

(x) and by extension Ψ−1 may be computed

using the D or Hermite polynomial CDF equations presented in [26]. This section will

discuss a similar argument for computing the elements of v in terms of partial inner

products of D polynomials, along with some discussion of an asymptotic expression

in terms of Hermite polynomials and how the hypergeometric function terms behave

in these regimes.

Consider the vector v(x) as defined in (3.17). By following a procedure similar

to the arguments originally seen in [26], by making the substitution t→ a+ t
√

2a it

is possible to reformulate v(x) in a way that avoids the numerical overflow problems

seen in the integrals encountered in this problem. In particular, elements of v(x) may

be written

vj(x) =
cj(a)√
π2jj!

∫ y(x)

−
√
a/2

eφa(t) (0F1(a+ 1, µ1t)− 1)D
(a)
j (t)dt j = 0, . . . ,M − 1

(3.19)

such that y(x) = x−a√
2a

, the polynomials D
(a)
n and function φa(t) are as defined in

[26, 28], and

cj(a) =
e−ε(a)√∏j

k=1(1 + k/a)

with ε(a) again as defined in [26, 28].

This work is motivated by passive radar problems in which the degrees of freedom
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N represents the number of samples, i.e., the time-bandwidth product of the captured

data, and can be quite large, while the size of the Wishart distribution M represents

the number is receivers and is generally considered to be small. Thus it is of interest

to consider asymptotic expressions for the distribution of λ1 in the case of N →

∞. Arguments were presented in [26] for an asymptotic form of the distribution

of λ1 in terms of the Hermite polynomials, as D
(a)
j (t) → Hn(t). Through the use

of recurrence relations, this allows the distribution under H0 to be approximated

without the use of numerical integration algorithms, resulting in a substantial savings

in computation time. It is of interest to attempt a similar methodology in the H1.

Using the perturbation formula given in (3.16), the distribution FH0
λ1

and Ψ−1(x) can

be computed using the Hermite polynomial forms defined in [26]. Taking some limits

in N in the v(x) term results in the expression

vj(x) =
1√
π2jj!

∫ y(x)

−∞
e−x

2

(0F1(a+ 1, µ1t)− 1)Hj−1(t)dt j = 1, . . . ,M. (3.20)

Note that the limit has deliberately not been taken in the hypergeometric term 0F1, as

for constant µ1, 0F1(a+ 1, µ1t)→ 1 and therefore FH1
λ1

(x)→ FH0
λ1

(x), but in regimes

of interest, clearly this is not a good approximation, i.e., the large value of a = N−M

does not outweigh the influence of µ1, and the 0F1 term does not converge to 1.

3.3 Derivation of the Correlated Central Distribution

Using the methods demonstrated in the previous two sections, it is possible to

construct a computationally tractable form of the distribution of λ1 in the case of a

correlated central Wishart matrix, which is the distribution of X†X when X is zero

mean complex Gaussian with an arbitrary covariance matrix Σ. λ1 is not generally

the GLRT for various detection problems of interest where the data follows a corre-

lated Gaussian distribution under one or both of the hypotheses, e.g., in which the
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signal under H1 is modeled as being in the covariance rather than the mean. Sim-

ilarly, in cases where the signal is in the mean but the noise has some non-identity

covariance, the GLRT is a function of the trace and thus depends on all M eigenvalues

[20]. Nevertheless, there is interest in the distribution in the MIMO communications

literature, where it may arise in models of spatial correlation across multiple chan-

nels at either the transmit or receive antennas [21], and in some practical engineering

cases performance may be close enough to the more optimal choice that the largest

eigenvalue may be used as a statistic when some more complicated function of the

eigenvalues may be costly to compute or too difficult to characterize.

3.3.1 Known CDF of λ1

Theorem 2 implies that the CDF of λ1 can be written as the determinant of some

matrix if it is possible to express the PDF in terms of some matrices Ψ(x), Φ(x),

and functions ξ(x). These are known for the uncorrelated central, correlated central,

and uncorrelated non-central cases, and are given in [3]. In particular, for the central

correlated case, the matrix elements are

φi(xj) = xM−ij

and

ψi(xj) = e−xj/σi .

The function ξ is

ξ(xk) = xN−Mk .
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Therefore, using the lemma, the CDF of λ1 can be written as

FΣ
λ1

(x) =
1

C

∣∣∣∣∫ x

0

tN−M+ie−t/σjdt

∣∣∣∣
i,j=0,...,M−1

(3.21)

such that C is a normalizing constant equal to the limit of the determinant term

as x → ∞. Performing the substitution of u = t/σj, it is thus possible to rewrite F

as

FΣ
λ1

(x) =
1

C

∣∣∣∣∫ x

0

tN−M+ie−t/σjdt

∣∣∣∣
i,j=0,...,M−1

=
1

C

∣∣∣∣∣
∫ x/σi

0

(uσj)
N−M+ie−uσjdu

∣∣∣∣∣
i,j=0,...,M−1

=
1

C

∣∣∣∣∣σN−M+i
j

∫ x/σj

0

uN−M+i+1e−udu

∣∣∣∣∣
i,j=0,...,M−1

=
1

C

∣∣σN−M+i+1
j γ(N −M + i, x/σj)

∣∣
i,j=1,...,M−1

. (3.22)

Note that this matrix is not Hermitian, and as such, will present a less concise

formulation when arguments similar to those used in [26] are applied. However, it is

important to note the structure of the elements is generally very similar, and as such,

it is possible to proceed as in the two previously examined cases.

3.3.2 Laguerre Polynomial Expansion

Starting with the form of FΣ
λ1

(x) presented in (3.22), it is possible to again apply

the Laguerre polynomial conjugation procedure to allow us to compute the distribu-

tion for large values of N . Conjugate (3.21) with a triangular matrix of generalized

Laguerre polynomial coefficients A with coefficient a = N − M , with the goals of

eliminating the ta integrand terms that cause the intermediate computational quan-

tities in this distribution to be on the order of a!. As seen in the prior derivations,
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let Ξ(x) be the matrix in (3.22), and let Ψ = A†ΞA. The elements of Ψ are

Ψij =

√
i!j!

(a+ i)!(a+ j)!

M∑
l=i

M∑
k=j

L
(a)
M−i,M−lL

(a)
M−j,M−kσ

l
k

∫ x/σk

0

titae−tdt (3.23)

where L
(a)
i,j signifies the order j coefficient of the order i generalized Laguerre polyno-

mial. As previously seen, the leading constant of order a! and the integrand term of

order tae−tdt represent an extremely large numerical cancellation occurring on every

intermediate term that one must compute when attempting to use this expression to

compute values of this CDF. Thus it is again proposed to make a change of variables

from t→ a + u
√

2a, which simultaneously allows for the consolidation and cancella-

tion of large leading constants and changes the integral into something which can be

computed for large values of N using numerical quadrature. Making this substitution

and consolidating the constants as previously seen results in elements of Ψ taking the

form

Ψij =
cij(a)a−i/2a−j/2

√
i!j!√

π

M∑
l=i

M∑
k=j

L
(a)
M−i,M−lL

(a)
M−j,M−kσ

l
k

×
∫ x/σk

0

(a+ u
√

2a)ie−φa(u)du

. (3.24)

The functions cij(a) and φa(t) are as defined in Sections 3.1 and 3.2.

3.3.3 The Distribution

Recall the D polynomials defined in terms of the generalized Laguerre polynomials

in Section 3.1.3.

D(a)
n (t) = (−1)nn!(2/a)n/2L(a)

n (a+ t
√

2a).

The derivation of a reasonably concise and computable form for elements of the

matrix Ψ is completed by making the substitution of the Laguerre polynomial coef-

ficients for the D polynomial coefficients that are orthogonal over the new domain of
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integration introduced by the substitution. The final expression for the coefficients

of the matrix Ψ is given by

Ψij(x) =
cij(a)√
π2i+ji!j!

M∑
l=i

M∑
k=j

D
(a)
M−i,M−lD

(a)
M−j,M−kσ

l
k

∫ yσk (x)

−
√

a
2

eφa(u)(a+ u
√

2a)M−l+1du.

(3.25)

The functions cij(a) and φa(u) are as defined in Sections 3.1 and 3.2. Note however

that the upper bound of each integral term in the summation is yσk(x) = x/σk−a√
2a

, which

depends on k and thus cannot be factored out of the sum. This expression contains

a large number of numerical integration terms that are not easily combined as in

the other two cases, and could be potentially much more computationally costly as a

result. It may be possible to rework this expression in such a matter that minimizes

redundant computation, which is worthy of future attention.
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Chapter 4

NUMERICAL RESULTS

This chapter presents a variety of numerical results related to the theoretical

derivations of distributions seen in Chapter 3. The distributions of λ1 under the

H0 and H1 hypotheses constructed via the Laguerre polynomial expansion methods

are compared with the well known expressions from the literature and empirically

calculated distributions derived from Monte Carlo simulations in Sections 4.1.1 and

4.2.2. The H0 distribution formulas are then used to numerically compute detec-

tion thresholds in Section 4.1.2, and compared against Monte Carlo methods and the

Tracy-Widom approximation in Section 4.1.3. Limitations of the H1 distribution for-

mulas due to the numerical instability of the 0F1 hypergeomtric function are discussed

in Section 4.2.1. The viability of these formulas is demonstrated by using them to

compute receiver operating characteristic curves in section 4.2.3. Discussion of the

limited viability inherent to both direct Monte Carlo simulation and existing meth-

ods to reduce the number of pseudorandom trials required is presented in Section 4.3.

Finally, a simulation of the multistatic passive radar problem presented in Section 2.1

is shown in Section 4.4, along with some discussion of practical engineering concerns

and model limitations.

4.1 H0 Numerics

This section discusses using the expressions derived in the H0 to compute proba-

bilities of λ1 in the signal absent case, which may be used to set thresholds. This work

was performed prior to work on the H1 case, meaning at the time only a “half-closed

form” ROC was possible, i.e. in which the probability of false alarm are computed in

41



closed form while probability of detection is computed using Monte Carlo simulation.

These results are included and discussed for sake of completeness.

4.1.1 CDF Comparison

In this section, the expressions introduced in Section 3.1 for FH0
λ1

(x) are compared

to the classical formula for the distribution given in Section 2.4 for small problem

sizes and to empirical estimates of the distribution generated using Monte Carlo

trials for larger problem sizes where floating point overflow may occur. These plots

were generated using MATLAB scripts which are documented in Appendix A. First,

consider a case in which N is sufficiently small that the gamma expression for the

distribution can be compared with the D polynomial formula derived in Section 3.1.

Figure 4.1: Central CDF Comparison from (2.15) and (3.7) for M = 2 and N = 50.

With M = 2 and N = 50, the two equations produce numerical results which

have differences on the order of machine precision. Although this is not a particu-
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larly useful example for the passive radar application motivating this work, Fig. 4.1

is a useful sanity check that the expression given by (3.7) is in fact exact. Next,

consider a comparison with a problem with a larger N , which is likely more realistic

for a multistatic passive radar application. In this case, (2.15) overflows double pre-

cision floating point representation and it is necessary to compare to an empirically

estimated Monte Carlo CDF.

Figure 4.2: Central CDF Comparison Computed Using (3.7) and Monte Carlo Trials
for M = 2 and N = 105 with 106 Trials.

The D polynomial CDF agrees with the Monte Carlo distribution to machine

precision in the main body of the curve shown in Fig. 4.2. There is increased error

further out into the tails of the distribution, as events become more rare and unlikely

to occur in a modest sized Monte Carlo trial. Consider that it is of particular interest

to compute values of the complementary CDF 1−FH0
λ1

(x) for characterization of the

probability of false alarm PF of a detector for a given operating threshold T in the tail

of the distribution, corresponding to quite small values of PF . The following plots
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demonstrate the complementary CDF in ranges which are of interest for tolerable

values of PF , which is often within a few orders of magnitude of 10−9. This is clearly

not feasible using Monte Carlo approximations, due to the extremely large number of

trials that would be required to obtain a reasonable estimate. Shown here are figures

demonstrating the complementary CDF with M = 2 sensors and N = 104, as well as

for M = 5 and N = 106, demonstrating the viability of the new methods to practical

passive radar problems. Monte Carlo simulations with 106 trials at each point were

performed.

Figure 4.3: Complementary CDFs of Hermite polynomial (3.8) and D polynomial
(3.7) formulas compared with Monte Carlo for M = 2 and N = 104.
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Figure 4.4: Complementary CDFs of Hermite polynomial (3.8) and D polynomial
(3.7) formulas compared with Monte Carlo for M = 5 and N = 106.

The new methods agree with Monte Carlo simulation up to approximately one

order of magnitude below the inverse of the number of trials performed, below which

a Monte Carlo estimate is meaningless. Larger experiments would be too computa-

tionally time intensive. Note that in Fig. 4.3, for probability values down to approxi-

mately 10−9, the Hermite and D polynomial methods are extremely close, with some

divergence at lower orders of magnitude. This is expected, as the Hermite expression

as given by (3.8) is asymptotic. In Fig. 4.4, with a larger value of N there is much

closer agreement between the exact D polynomial and asymptotic Hermite expres-

sions, down to probability values that are likely many orders of magnitude below a

realistic operating PF . In such a case, a fast algorithm taking advantage of the lack

of numerical integration required for the Hermite expression may be advantageous.
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4.1.2 Threshold Computation

A primary motivation in finding computationally tractable formulas for the dis-

tribution of λ1 in the central case is to be able to explicitly compute threshold values

for the binary hypothesis problem derived in Section 2.2. The exact and asymptotic

distribution formulas shown in (3.7) and (3.8), respectively, can be used to compute

detection threshold values T for a given probability of false alarm, defined as the

probability the data (or equivalently, the sufficient statistic) exceeds the threshold T .

PF =

∫ ∞
TX

p(X|H0)dX

=

∫ ∞
T

p(Λ(X)|H0)dΛ(X)

= 1− FH0
λ1

(T )

T can be calculated to within a given tolerance of error on the probability of

false alarm through iterative computation, or for given system operating thresholds

performance may be characterized through exact calculation of PF . First, consider

an example in which thresholds for given false alarm rates are computed using the

gamma function formula for the CDF H0 as seen in the literature or previously given

by (2.15) compared with thresholds computed using the D polynomial formula given

in (3.7). Due to the inherent numerical overflow problems with (2.15), the degrees of

freedom N is quite limited in size in this problem.
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Figure 4.5: Threshold Values for a Given PF Computed in Closed Form Using (2.15)
and (3.7) for M = 2, N = 50.

Next, consider an example in which it is of interest to compute thresholds for a

multistatic passive radar system in which it is desirable to record a large number

of samples N to achieve an acceptable level of performance. This makes the use of

(2.15) impossible; consequently it is necessary to compare the D polynomial expres-

sion for the distribution against computing thresholds with an empirical distribution

generated through Monte Carlo trials. This presents its own difficulties, as realistic

operational PF values tend to be quite small, often on the order of 10−9 or smaller.

To achieve an acceptable level of accuracy when estimating values with an empirical

CDF generated using Monte Carlo methods, it is necessary to draw several orders of

magnitude more samples than 1/PF . For these extremely small PF values, this may

be extremely computationally costly.
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Figure 4.6: Threshold Values for a Given PF Computed Using Monte Carlo Trials
and (3.7) for M = 4, N = 105.

Per the computational cost of characterizing the tail of the distribution through

Monte Carlo methods, the example plot shown in Fig. 4.6, the first three values for

thresholds corresponding to PF values of 10−12, 10−10, and 10−8 as found using an

empirical estimate of the distribution using Monte Carlo methods are a lower bound,

as only 108 trials were run in this experiment.

4.1.3 Tracy-Widom Comparison

The most well known asymptotic result in the literature for computing the dis-

tribution of λ1 is the Tracy-Widom distribution [22]. These results derive a distri-

bution for the asymptotic behavior of λ1 as N,M →∞ at some constant fixed ratio

C = N/M . It is acknowledged that these results provide an accurate approximation

in regions of the distribution near to the mean, but are less accurate in the tails of the

distribution, which is of primary interest in multi-channel detection for the purpose of
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setting thresholds with low probability of false alarm. Consider Fig. 4.7 below which

compares thresholds from a Monte Carlo simulation of 107 trials to those computed

using (3.7) and using the Tracy-Widom distribution with algorithms available from

[4].

Figure 4.7: Thresholds Computed Using (3.7) and the Tracy-Widom Algorithms
from [4] Against Thresholds Found from a Monte Carlo Simulation for M = 4
and N = 105, Corresponding to Probability of False Alarm Values 10k Where
k = −6, . . . ,−1

It is clear that the Tracy-Widom thresholds are much less accurate than those

computed using (3.7), which is made even apparent in the following relative error

plot.
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Figure 4.8: Relative Error of Thresholds Computed Using (3.7) and the Tracy-
Widom Algorithms Against Thresholds Found from a Monte Carlo Simulation for
M = 4 and N = 105, Corresponding to Probability of False Alarm Values 10k Where
k = −6, . . . ,−1

Similarly, by using the thresholds found from the Monte Carlo experiment as

the arguments for the D polynomial and Tracy-Widom distribution algorithms, the

expected values of PF given by the corresponding models can be computed. These

values are show in Fig. 4.9.
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Figure 4.9: PF Computed Using a Monte Carlo Experiment, (3.7), and the Tracy-
Widom Algorithms for M = 4 and N = 105

As seen in the threshold case, the relative error between the true expected PF

and the values returned from the algorithm is several orders of magnitude higher in

the Tracy-Widom case. Note that in the D polynomial case the error does increase

for lower values of PF ; acquiring initial thresholds to use from a larger Monte Carlo

experiment would likely decrease this significantly.
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Figure 4.10: Relative Error of PF Computed Using Monte Carlo Thresholds and the
Tracy-Widom Algorithms and (3.7) Against Expected PF for M = 4 and N = 105

.

4.1.4 Receiver Operating Characteristic

Receiver operating characteristic (ROC) curves can be computed by first comput-

ing the threshold as seen in Section 4.1.2, and subsequently calculating the probability

of detection using the distribution under the H1 hypothesis.

PD =

∫ ∞
TX

p(X|H1)dX

=

∫ ∞
T

p(Λ(X)|H1)dΛ(X)

= 1− Fλ1(T )

It is typically desirable to characterize the performance of a detection system by view-

ing the probability of detection PD as a function of the probability of false alarm PF .
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To compute an ROC curve in closed form, it is necessary to compute the distribution

of the test statistic under the H1, in this case λ1 in the non-central case. This prob-

lem has seen some attention in the literature [1, 29, 30, 31], including a closed form

solution in terms of hypergeometric functions as seen in (2.17) [3]. However, known

methods in the literature are not computationally tractable, encountering the same

overflow problems as in the central case.

Prior to the introduction of the methods shown in Section 3.2, the only possible

solution to generating an ROC curve would be to compute PF in closed form using

(3.7) and to estimate PD through an empirical CDF generated using Monte Carlo

simulations, the detector is lower bounded by the line PF = PD, and in a realistic

use case would not operate in a regime anywhere near to this; rather PD would be

expected to be many orders of magnitude higher than PF for any system which is

to see real use. Therefore, it is likely less computationally time intensive to provide

a reasonable estimate of the H1 CDF than it would be for values of interest under

H1. However, in multistatic passive radar applications, the system performance can

be extremely sensitive to the SNR across the M channels, thus necessitating a large

number of Monte Carlo simulations to account for variable operating conditions.

The following figure represents an example of a “half-analytical” ROC curve. More

precisely, this figure shows an example in which the expressions for theH0 distribution

of λ1 given by (3.7) is used to compute thresholds for set values of probability of false

alarm as previously seen in Section 4.1.2, while the corresponding probabilities of

detection are computed using a Monte Carlo simulation of 103 trials. Unlike in the

H0 case where the region of interest of the distribution includes extremely small

probabilities of false alarm, it is of interest to have probabilities of detection on the

order of 0.5 or greater. Thus, the relatively small Monte Carlo simulation provides

an acceptable level of fidelity in this example.
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Figure 4.11: ROC Curve for M = 4, N = 105 with −22 dB per Channel SNR.

4.2 H1 Numerics

In this section, the method for computing the non-central CDF of λ1 using (3.15)

as presented in Section 3.2 is compared for small values of N with (2.17), and for

larger values of N where floating point overflow problems surface against an empirical

estimate of the CDF generated through Monte Carlo simulation. First, Section 4.2.1

discusses some numerical limitations with the result from the derivation in Section

3.2. Section 4.2.2 focuses on the direct computation of the CDF with the various

outlined methods. The expressions for FH0
λ1

(x) and FH1
λ1

(x) are then combined to

compute a receiver operating characteristic curve in closed form in Section 4.2.3.

4.2.1 Limitations Computing the Hypergeometric Function

Computing the distribution of λ1 requires computation of values of the hypergeo-

metric function 0F1(a+1, µ1(a+t
√

2a)) during the numerical integration necessary to
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find the values of the matrix elements in (3.15), over the interval (−
√
a/2, y), where

based on the substitutions demonstrated in Chapter 3 y is approximately in the range

(−5, 10). Recall 0F1 is defined to be

0F1(b, z) =
∞∑
k=0

zk

(b)kk!
(4.1)

such that (b)k is the Pochhammer symbol or rising factorial. In many cases of a and µ1

that are of interest in this problem, similar to the problems encountered throughout

this dissertation with the gamma function, 0F1 can overflow floating point represen-

tations. Numerical methods for computing 0F1 in the particular regimes of interest

has not seen particular interest in the literature, with methods primarily focusing

on the confluent and Gaussian hypergeometric functions [32]. To overcome this lim-

itation, note that the 0F1 term in the integral appears in the first column of the

matrices in both the numerator and denominator that normalizes the expression for

the CDF given by (3.15). Therefore, as the determinant is a multilinear operator

in the columns of the matrices, it is possible to multiply the first column in both

numerator and denominator by some constant to in some sense normalize the hyper-

geometric function. As a proposed normalization constant, take µl1 for some integer

value l. Next, expand 0F1 with the particular arguments of interest multiplied by this

constant, and computing each individual term in the summation in log space results

in the following.
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1

µl1
0F1(a+ 1,µ1(a+ t

√
2a))

=
1

µl1

∞∑
k=0

µk1(a+ t
√

2a)k

(a+ 1)kk!

=
∞∑
k=0

exp

(
log

(
µk1(a+ t

√
2a)k

(a+ 1)kk!

))

=
∞∑
k=0

exp
(

(k − l) log µ1 + k log(a+ t
√

2a)

+ log Γ(k + 1) + log Γ(a+ 1)− log Γ(a+ 1 + k)
)

Note that the log Γ terms can be computed using Stirling’s formula. By adjusting

the parameter l it is possible to compute values of this hypergeometric function in

many cases that are of interest for the multi-channel detection problems discussed

throughout this dissertation, though this approach is not particularly sophisticated

and will still suffer from numerical overflow in extremely large cases that could be of

interest in some applications.

4.2.2 CDF Comparison

Consider first the small problem comparing (2.17) and (3.15), the original gamma

function like form of the non-central distribution and the D polynomial formula de-

rived in Section 3.2. Fig. 4.12 plots these two CDFs.
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Figure 4.12: Comparison of FH1
λ1

(x) Calculated Using (2.17) and (3.13), (3.14) for
M = 2 and N = 64 with −5 dB per Channel SNR.

Note the absolute mean-squared error between the two methods is on the order

of machine epsilon.

Next, consider a larger problem, which must be addressed with Monte Carlo

methods as (2.17) overflows double precision floating point arithmetic for values of N

larger than those shown in Table 2.3. Fig. 4.13 compares the CDF computed using

(3.15) and an empirical CDF generated through Monte Carlo simulations.
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Figure 4.13: Comparison of FH1
λ1

(x) Calculated Using (3.15) and a Monte Carlo
Simulation with 106 Trials for M = 4 and N = 105 with −28 dB per Channel SNR.

4.2.3 Receiver Operating Characteristic

In a passive radar application, the primary goal of computationally tractable for-

mulas for the distribution of the GLRT statistic under both theH0 andH1 hypotheses

is to compute exactly the probability of false alarm PF = 1− FH1
λ1

(T ) and the prob-

ability of detection PD = 1 − FH1
λ1

(T ). The threshold value T is generally set to

maintain a constant PF as required for a particular system’s operation. Previously,

the H1 case could only be approached via Monte Carlo simulation; the expression

(3.15) allows PD to be computed to arbitrary precision.
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Figure 4.14: PF vs PD Computed Using Exact Expressions for Fλ1(x) Calculated
Using (3.15) and a Monte Carlo Simulation with 106 Trials for M = 4 and N = 104

with −15 dB per Channel SNR.

Note that due to the overflow problems with the hypergeometric function dis-

cussed in Section 4.2.1, the methods discussed throughout this dissertation may not

be sufficient to fully characterize all cases of interest under the H1 signal model,

primarily in cases where the SNR is relatively high for large values of N .

4.3 Monte Carlo Methods

This section will discuss computing (false alarm) event probabilities for the largest

eigenvalue of (central) Wishart matrices, i.e., PF = P (λ1 > x) through Monte Carlo

simulation. Of particular interest are cases in which x is relatively large, leading

the small probabilities of false alarm on the order of 10−8 to 10−12, so-called rare

events. In particular, Monte Carlo simulation and methods to reduce the variance

of resulting estimates and thus the computational overhead of such simulations are
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of interest in cases that are intractable analytically (large degrees of freedom) or in

which well known (TW) approximations fail [23]. For completeness, naive Monte

Carlo simulation methods will be examined, though it is obvious that the number of

samples required for fidelity using these methods will not be practical for the values

of PF that are of interest. Subsequently, the current state of the art for importance

sampling techniques are discussed.

4.3.1 Naive Monte Carlo Simulations and the Bartlett Decomposition

The Wishart distribution is often thought of as the distribution of the M ×M

Gramian constructed from an M ×N Gaussian matrix, i.e.,

W = X†X

Thus it is apparent that the first method of generating random samples of the largest

eigenvalue λ1 of W can be computed by finding the square of largest singular value

of an M ×N matrix of random Gaussian draws.

λ1 = max
(
SVD(X)2

)
In remote sensing applications, M is generally small (< 10), but N may be on the

order of 106 or larger. Clearly, generating millions of independent Gaussians for every

trial and then computing the M singular values for this large matrix is computation-

ally intensive. Thus, the second method for generating samples of λ1, the Bartlett

decomposition, involves generating only the M ×M Wishart matrix itself and sub-

sequently computing the eigenvalues of this matrix [33]. The Bartlett decomposition

of a (complex) Wishart matrix is a Cholesky factorization

W = AA†
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where A is a lower triangular matrix of with elements

A =



c1 0 0 · · · 0

n21 c2 0 · · · 0

n31 n32 c3 · · · 0

...
...

...
. . .

...

nM1 nM2 nM3 · · · cM


.

The elements of A are random variables with distributions ci ∼
√

Γ(N −M + i, 1)

and ni,j ∼ CN (0, 1) [34]. Then a single sample of λ1 can be computed as

λ1 = max
(
eig
(
AA†

))
.

Using this Bartlett decomposition approach requires the generation of M Gamma

distributed random samples and M(M − 1)/2 standard complex Gaussians. Given

that there are various fast numerical algorithms for generating Γ samples, this is

a significant improvement when N is large. However, in cases where one may be

interested in computing PF = P (λ1 > x) for a value of x where, for example, PF is on

the order of 10−9, it is still necessary to generate an enormous number of these Bartlett

decomposition matrices to have any hope of an accurate probability estimate. Note

a Bartlett decomposition may also be derived in the non-central case. For a rank K

non-centrality, the matrix is reduced to a block format consisting of a M−K×M−K

central Wishart (which can be computed using the above Bartlett decomposition) and

K×K non-central Wishart along the diagonal, with a M −K×K standard complex

normal matrix and its conjugate transpose filling in the remainder of the matrix [35].

4.3.2 Introduction to Importance Sampling

Importance sampling is a technique in which a random sample is drawn from

one distribution and transformed through some functional relationship into a sample
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from another distribution of interest. The distribution of interest may be intractable

to sample from for a variety of reasons, including intractable analytic expressions

or computing the probability of a rare event, from which the name derives. If the

probability density function of the distribution of interest is f and it is desired to

compute some integral I = Ef [h(X)], sample random variables with distribution

corresponding to density g, as

I = Ef [h(X)]∫
h(x)f(x)dx

=

∫
h(x)f(x)

g(x)
g(x)dx

= Eg

[
h(x)f(x)

g(x)

]
.

For rare event simulation, h is often the indicator function of (T,∞). Then the

key to performance of this technique is the choice of the distribution g. The optimal

distribution, in the sense that it minimizes the variance of the importance sampling

estimator, is

g∗(x) =
|h(x)| f(x)

Ef [h(X)]
.

This does not give insight into a method to actually find such g∗, which may require

significant careful analysis. This is beyond the scope of this dissertation.

4.3.3 Importance Sampling Algorithm for λ1

The current state of the art for importance sampling for the largest eigenvalue dis-

tribution of Wishart matrices derives from Jiang et al. [24]. The algorithm proposed

to compute the probability P (λ1 < Nx) generates samples of the ordered eigenvalues

λ1 > . . . > λM and then computes an importance samping estimator. The proposed

algorithm is as follows.
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Step 1: Generate a matrix LM−1,N−1,β = BM−1,N−1,βB
T
M−1,N−1,β where B is an

M − 1×M − 1 bidiagonal matrix defined as

BM−1,N−1,β =



χβ(N−1) 0

χβ(M−2) χβ(N−2)

. . . . . .

0 χβ χβ(N−(M−1))


.

Step 2: Conditional on λ2, . . . , λM sample λ1 from the exponential distribution.

f(λ1) =
x− β

2x
e−

x−β
2x

(λ1−max(Nx,λ2)) · Iλ1>max(Nx,λ2)

Step 3: Compute the estimator LN .

LN =
MAM

∏M
i=2 (λ1 − λi)β λ

β(N−M+1)
2

−1

1 e−
λ1
2

x−β
2x
e−

x−β
2x Iλ1>max(Nx,λ2)

Iλ1>Nx

In these expressions I is the indicator function. Note that β = 1, 2, 4 corresponding

to the real, complex, and quaternion cases, respectively. This process is repeated P

times, and the estimate for the probability P (λ1 > Nx) is the mean of the samples

L
(i)
N .

P (λ1 > Nx) ≈ 1

P

P∑
i=1

L
(i)
N

4.3.4 Importance Sampling Performance Analysis

In applications to remote sensing (multi channel radar) or MIMO communications,

the data derives from physical signals which are modeled as complex valued samples.

Note that consequently in Step 2 of the algorithm the exponential pdf is not well

defined for values of x less than β = 2.
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The following is presented not as a formal argument, but to provide mathematical

intuition as to why this importance sampling algorithm loses efficacy in regimes of

interest to multi channel sensing. As N,M → ∞ at a fixed ratio (N/M → c) the

probability that all eigenvalues lies within the Marčenko-Pastur support of

[
(
√
N −

√
M)2, (

√
N +

√
M)2

]
approaches 0.9397 [36]. In the problems of interest for multi channel sensing, where

N is large and M is small, it may be intuitively thought of that the distribution curve

is “narrowing” relative to the value of N . The values of x used in the importance

sampling algorithm corresponding to T = N × x for computing probabilities of false

alarm PF =
∫∞
T
f are slightly over 1 for probabilities of false alarm of interest (i.e.,

≈ 10−9). As mentioned in the previous paragraph, this is not well defined in the

exponential distribution sampling step of the importance sampling algorithm.

Although analysis is not tractable for the cases of interest for remote sensing, with

complex data and large values of N , analysis of importance sampling for rare events

for relatively small N and M is feasible using this method. Sample R code supplied

by the authors of [24] can be found at [37].

In a small test case, parameters of M = 2, N = 64 were used and the importance

sampling algorithm was performed with 103 and 105 trials.
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Figure 4.15: Importance Sampling and Analytical Complementary CDFs.

Figure 4.16: Relative Error from Analytical to Importance Sampling Calculations
of Complementary CDFs.
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It is apparent that the relative error improves by running the importance sampling

algorithm with 105 trials as opposed to with 103. However, there also appears to be a

threshold at which the relative error increases significantly, corresponding to the true

probability decreasing in magnitude and causing an increase in the variance of the

importance sampling estimate. This corresponds to findings by the authors of this

method; the expected value of the error between the importance sampling estimate

and either naive Monte Carlo or the analytical formulation is approximated as a

function of the number of trials and the magnitude of the complementary CDF at a

given point [24].

Figure 4.17: Importance Sampling and Analytical Complementary CDFs.
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Figure 4.18: Relative Error from Analytical to Importance Sampling Calculations
of Complementary CDFs.

Although the problem of calculating P (λ1 < Nx) is not as evident in this exam-

ple problem, the relative error is significantly worse in the smaller sized, “square”

experiment, even with an order of magnitude higher number of trials as compared to

the previous test. As previously discussed, the importance sampling method that is

detailed throughout this paper is designed by taking a limit in N and M at a fixed

ratio, and as such is not well tailored to this problem.

The importance sampling method demonstrated in this section is currently con-

sidered the state of the art for a less computational intensive Monte Carlo estimator

for the largest eigenvalue of Wishart matrices. There are obvious limitations, namely

that it was primarily designed with the real case in mind, and has severe limitations in

the complex case when N �M . However, it should be noted that this method is by

no means unique nor guaranteed to be optimal. With careful analysis it would likely

be possible to design a distribution from which to sample that would be well tailored
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to importance sampling for the particular problem cases of interest for multi-channel

sensing. In addition, it is likely possible to utilize alternative Monte Carlo variance

reduction techniques, or methods such as large deviations to estimate probabilities

far in the tail of the largest eigenvalue distribution.

4.3.5 Monte Carlo Timing Analysis

This section presents some analysis on the expected time required to compute

probabilities using the various methods of Monte Carlo simulation, and compares

them to the computational cost of computing values of the CDF of λ1 using an exact

expression as derived and shown in Section 3.1.

Figure 4.19: Computation Time to Generate One Sample of λ1 Using Naive Monte
Carlo, Bartlett Decomposition, Importance Sampling, or to Compute the Value of the
CDF Directly at One Point Using Exact Expression Given by (3.7). All Experimental
Results are for M = 4.

Fig. 4.19 demonstrates the amount of CPU time necessary to compute one pseudo

random draw from the distribution of λ1 using the direct Monte Carlo, Bartlett De-
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composition, and Importance Sampling methods described earlier in this section.

Note that the importance sampling draws are not meaningful in computing probabil-

ities as they fall outside the algorithm domain as detailed in Section 4.3.2; however

the results are illustrative in terms of the computation time required.

The first key takeaway from Fig. 4.19 is that clearly a direct Monte Carlo sim-

ulation is not a feasible option for computing probabilities in the central Wishart

cases, where probabilities of false alarm typically encountered are often on the order

of 10−9. This means even for small values of N the computational costs are at least

seven orders of magnitude higher than using the closed form D-polynomial expression

for the distribution to compute just one point in the tail of the distribution. Even

if it was of interest to tabulate a large number of points in the distribution, direct

Monte Carlo simulation is extremely time intensive compared to direct computation,

especially as the memory requirements start to climb for larger values of N .

Note that the Bartlett Decomposition, Importance Sampling, and exact D polyno-

mial timing results are much less dependent on N than direct Monte Carlo simulation.

Each of these methods takes N as a parameter to the problem, but computation is

performed using matrices of size M ×M for the Bartlett Decomposition and D poly-

nomial methods and (M − 1) × (M − 1) for the Importance Sampling algorithm,

considerably lessening the inherent memory overhead. For very small values of N ,

approximately less than 100, these methods perform worse than direct Monte Carlo

due to additional overhead in the software, but are clearly a major improvement in

regimes of interest to these problems. However, as it is of interest to compute values

of the complementary CDF corresponding to probabilities of false alarm on the order

of 10−9, large numbers of trials are still required. Using the Bartlett decomposition,

this means that computing a single point of the CDF with any accuracy requires

at least seven orders of magnitude more computation than a single point using the
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exact D polynomial expression. Recall that the purpose of importance sampling is

to transform fewer samples from some distribution to estimate some function that

would require drawing more samples from some other distribution. Some theoretical

bounds are given in [24] regarding the number of trials required, albeit experimental

validation is required to demonstrate values of the constants in these expressions to

determine the number of trials to run. In general, it seems gaining two to three orders

of magnitude versus other Monte Carlo methods is reasonable. This still results in

the Importance Sampling algorithm being at least five orders of magnitude more time

consuming than computing using an exact expression, to say nothing of the fact that

the algorithm fails to produce meaningful results in cases of interest for multistatic

passive radar in which N is large and M is small.

4.4 Detection Simulation

This section presents a simulation of an ambiguity function generated in a mul-

tistatic passive radar scenario. The formulas for the probability distributions of λ1

presented in the previous sections are used to compute detection thresholds in this

simulated scenario. Results from a particular example are given as a demonstration

of the utility of the distributions derived in earlier sections for performing multistatic

detection.

4.4.1 Test Parameters

Consider the signal model presented in Section 2.1. This was simulated in MAT-

LAB with a single stationary transmitter and M stationary receivers. The simulated

scatterer was assumed to be stationary, or equivalently, the results shown examine

the zero Doppler slice for Doppler corrected data. Various illuminating waveforms

and other RF system parameters such as transmit power, noise temperature, receiver
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beam pattern, etc. were set to realistic values for fixed commercial transmitters, radar

receivers, and realistic scatterers. The M receivers were modeled as having a narrow

scanning beam recording N samples for each position in a surveyed two dimensional

grid. Complex white Gaussian noise was added to the received data at a power level

corresponding to the signal bandwidth and a receiver operating at room temperature.

It is assumed the direct path copy of the transmitted signal is eliminated from the

receivers through a very deep null in beamforming or through environmental obstruc-

tion, such that the received data contains only noise or copies of the transmitted

signal that have reflected off the target.

4.4.2 Detection Results

Each receiver was simulated as scanning the two dimensional grid in the area

of interest, recording N samples from the simulated environment, and performing

the data alignment described in Section 2.1. Subsequently, a Gram matrix X†X was

formed from the data recorded at each of the M receivers, and λ1(X†X) calculated to

perform detection. Detection thresholds were set using the D-polynomial expression

for the distribution of λ1 under the null hypothesis H0 as given by (3.7). Consider the

simulated system geometry. In this simulated environment, each of the M receivers

collected N samples which were passed to a fusion center, corrected for the hypothe-

sized position in order to compute λ1 to decide on the presence of a target with the

given hypothesized state.

First, consider illumination of a target with a circularly symmetric complex Gaus-

sian waveform. In practice, generating a Gaussian illumination signal would be ex-

tremely difficult. However, in a Gaussian communications channel with a power

constraint, a Gaussian sequence with the variance determined by this power con-

straint maximizes the mutual information and thus the channel capacity [38]. In this
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example, a transmitter with an omnidirectional antenna emits a Gaussian signal at a

specified power level. Each of the M receivers scans the specified grid in the (X, Y )

plane with a narrow antenna beam and records N samples. If the beam is steered

towards the target, these samples will contain copies of the transmitted signal scat-

tered off the target that has been delayed, Doppler shifted, and with a corresponding

power loss due to spherical propagation, as given by the radar range equation [39].

PM = PT
σGTGMλ

2

(4π)3R2
TR

2
M

(4.2)

Here PM is the power at receiver M , PT the transmitted power, GT and GM the

antenna gains of the transmitter and receiver M , σ the radar cross section of the

scatterer, and RT and RM the propagation path lengths between the transmitter and

scatterer and the scatterer and receiver M . In the case where the target is an emitter,

the electromagnetic propagation is not bistatic and the RT term may be eliminated

from the equation.

If the beam is not steered towards the target, no scattered waveform will be

recorded and the receiver data will contain only white Gaussian noise. The data

at each receiver is time and Doppler aligned according to the posited physical state

of the target whose presence is to be ascertained, and the largest eigenvalue λ1 of

the Gram matrix X†X formed from this corrected data is calculated. Consider the

following simulated geometry. In this scenario, M = 2 receivers each collect N = 104

samples for each postulated target position on a discretized grid of the area under

surveillance. Each receiver has equal noise power and recorded data will contain

independent zero mean complex white Gaussian noise. Recorded data may contain

the transmitted signal scattered off the target, with appropriate delays and channel

gains corresponding to the path length between the transmitter, target, and receiver,

and the antenna gain corresponding to the beamforming performed at each receiver
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based on the putative target position currently under test. It is assumed there is a

null in this beam pattern in the direction of the transmitter.

Figure 4.20: Simulated Geometry of Two Receivers, One Transmitter, and One
Target.

The approximate SNR at each receiver for data collected corresponding to the true

target position is −7.3 dB. In this example, the target is assumed to be stationary.

Using the expressions for the distributions underH0 andH1 given by (3.7) and (3.15),

the expected ROC for this scenario can be seen in Fig. 4.21.
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Figure 4.21: Expected ROC for Simulation Scenario.

Calculating the detection statistic λ1, it is possible to produce an image corre-

sponding to the problem geometry that is analogous to the zero-Doppler slice of the

Woodward ambiguity function. Consider the following, with the value of λ1 corre-

sponding to each position on the (X, Y ) grid, with the data corrected for the time

delay corresponding to this position.
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Figure 4.22: Grid of the Detection Statistic λ1 for Corrected Data Corresponding
to Each Hypothesized Physical Location of the Target with Gaussian Illumination.

Note that clearly there is a bright spot corresponding to the true target location.

However, it is also important to note that for some hypothesized positions, the data

recorded at each receiver does not exactly correspond to either the H0 or H1 hy-

potheses. The stripes between the true target location and receivers correspond to

some signal scattered off the target being recorded on one receiver. The received data

in this scenario results in a non-central Wishart distribution for the Gram matrix,

but with only one non-zero column in the mean. If a detection threshold is set too

low, the entirety of this region could result in a false detection. The probability of

false alarm is set to relatively small values to avoid this. Consider the following map

of detections performed on the previously shown ambiguity function, with threshold

values computed for a particular probability of false alarm using (3.7).
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Figure 4.23: Detections Resulting from the Values of λ1 Shown in Fig. 4.22 Using
a Threshold Corresponding to a PF = 10−7 with Gaussian Illumination.

Using a defined acceptable probability of false alarm to set an appropriate detec-

tion threshold for this problem calculated using (3.7), the D polynomial distribution

under the null hypothesis, a decision can be made to determine if the value of λ1

in each cell on this grid corresponds to hypothesis H0 or H1. In this example, with

PF = 10−7 the striping seen in Fig. 4.22 caused by scattered signal energy recorded

at each receiver for hypothesized positions in the direct path of the target does not

result in false detections.

Next, consider a more realistic example of illumination by a truncated linear chirp

waveform, which may actually be used in a radar system. Consider the same geometry

as shown in Fig. 4.20, again with N = 104 samples, M = 2 transmitters, and setting

simulation parameters such that for signals scattered from the true target location

result in a per channel SNR of −7.3 dB. The system should again perform per the

ROC curve given by Fig. 4.21. As before, consider the test statistic λ1 for each
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position in the (X, Y ) grid.

Figure 4.24: Grid of the Detection Statistic λ1 for Corrected Data Corresponding to
Each Hypothesized Physical Location of the Target with Linear Chirp Illumination.

It is clear that there is a bright spot corresponding to the target, but that it

is slightly more spread around the true scatterer location. This is due to the fact

that the autocorrelation of the truncated chirp is not as narrow around the peak as

that of the Gaussian illumination signal. This increased correlation causes slightly

misaligned copies of the signal to still produce higher values of the detection statistic

λ1 than seen in the Gaussian case. Again, take PF = 10−7, and consider the following

map of detections.
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Figure 4.25: Detections Resulting from the Values of λ1 Shown in Fig. 4.22 Using
a Threshold Corresponding to a PF = 10−7 with Linear Chirp Illumination.

Note that as may be anticipated by the autocorrelation properties of the illumi-

nation signal, there are detections in the cells adjacent to the true target location.

Note also that there is an ambiguous detection several cells further away. The signal

is only present on one of the channels when this cell is under test, which corresponds

to neither the H0 nor H1 hypotheses discussed for most of this dissertation. This

highlights the need for additional signal processing or a human operator to help to

distinguish which of several adjacent cells actually contains the target, or cause the

system to throw out ambiguous detections. This process can be aided by additional

information or assumptions, such as an understanding of the illumination waveform

ambiguity properties or other physical properties of the system or environment.
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Chapter 5

CONCLUSION

This chapter aims to summarize the results presented in previous chapters of

this thesis and present future directions for research in this area and with related

problems. First, a variety of possible extensions to this problem are presented in

Section 5.1. Extensions of the methods used to compute probability distributions from

the largest eigenvalue to functions of several eigenvalues of a complex Wishart matrix,

as well as some discussion of a geometric interpretation of the problem present the

primary proposed theoretical extensions of the work. Further discussion is given to the

possibility of extending existing work on Monte Carlo methods, engineering concerns

that could arise when attempting to implement these results as part of a detection

algorithm on a real physical system, and on applications to related problems in the

fields of detection, estimation, and random matrix theory. Section 5.2 summarizes the

contents of this thesis and outlines the specific contributions that have been presented.

5.1 Future Work

The work presented in this thesis is a theoretical derivation of computationally

tractable expressions for the CDF of λ1, the largest eigenvalue of a complex Wishart

matrix, with a stated intent of applying these results to compute probabilities of false

alarm and detection to characterize multi-channel detection performance in passive

radar. Tractable formulas for the distributions are presented that allow for computa-

tion of probabilities in both the central and non-central Wishart cases, corresponding

to the null and alternative hypotheses in the multistatic passive radar detection prob-

lem model presented as motivation.
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These results represent significant contributions to the current state of the art,

but there are many directions in which this work could be extended. First and

foremost, it would be ideal to be able to have closed form, computationally tractable

expressions for the distribution of the GLRT statistic for rank K detection, which

is the rank K partial trace of the Gram matrix formed from collected data. This

represents a formidable problem in which some progress has been made, but presents

significant challenges and opportunity to extend this work. In addition to considering

the application of methods similar to those seen throughout this thesis, it has been

proposed to approach this problem through a very general geometric presentation

of the joint distribution of the eigenvalues of a complex Wishart matrix. From a

theoretical perspective, examining these distributions from the most general geometric

perspective is in itself is a worthwhile direction of future work. Although this work is

motivated by a desire to avoid empirical characterization of a distribution via Monte

Carlo simulation, that area represents an area in which significant progress is also

possible. There are also a number of further practical engineering concerns that would

arise in implementation of a detection algorithm utilizing these distributions on a real

system, including illumination waveform performance, communications bandwidth

limitations, and scenarios in which the received data does not completely fit either

the null or alternative hypothesis leading to ambiguities. Finally, the theory that

has been presented has applications to other problems both in remote sensing and

in related areas such as MIMO communications, as well as to random matrix theory.

Various related problems could possibly benefit from the approaches detailed in this

thesis or perhaps provide insight into extensions of this work.
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5.1.1 Higher Rank Detection

The GLRT and Bayesian test statistics for a common rank-K component in the

mean across M receivers were shown to be functions of the partial and complete trace

of the Gram matrix constructed from data, dependent on if the noise power is known

or unknown, by Sirianunpiboon et al. [20]. In the most general case in which K is

unknown, the GLRT is the determinant of the Gram matrix, which is known to have

a distribution that is a product of independent Beta variates [40]. In the case that

the rank of the signal of interest is equal to (or greater than) the number of sensors,

GLRT is the trace of the Gram matrix. In this case, the distribution can be computed

using the Bartlett decomposition of a central Wishart matrix. This section discusses

the more general case of this problem, where the rank of the common component in

the mean is K < M , and examines the complications of integrating the joint PDF

of the ordered eigenvalues of a complex Wishart matrix over the polytope defined by

the partial trace. Some computation for the particular case of rank K = 2 detection

with M = 3 is presented as an example.

First, the joint PDF of the ordered eigenvalues of W is given by

f(λ1, . . . , λM) = ce−
∑M
i=1 λi

M∏
i=1

λN−Mi

M−1∏
j=1

M∏
k=j+1

(λj − λk)2 (5.1)

where c is a normalization constant [11].

To determine the distribution of the statistic (i.e. if one wishes to compute thresh-

olds), λk+1, . . . , λm must be marginalized out of the distribution given by (5.1), at

which point the resultant joint PDF of λ1, . . . , λk can be integrated over the region

Dx = {x ≥ λ1 ≥ . . . ≥ λM ≥ 0} ∩

{
x ≥

K∑
i=1

λi ≥ 0

}
. (5.2)

To find the CDF for some value of x. Pictorially, for the K = 2 case this corresponds

to integrating over the region show in Fig. 5.1.
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r = λ1 + λ2

λ1 = λ2

λ2

λ1

Figure 5.1: Integration Region for the First Two Largest Eigenvalues

As an example, in the case K = 2, M = 3, this corresponds to the integral

[∫ x/2

0

∫ λ1

0

∫ λ2

0

+

∫ x

x/2

∫ x−λ1

0

∫ λ2

0

]
f(λ1, . . . , λM)dλ3dλ2dλ1. (5.3)

This case is fairly simple to write, and can be generalized for arbitrary K and

M to fit the appropriate polytope as defined by (5.2). However, computing the

integral presents some difficulties. First, consider marginalizing out the variables

λK+1, . . . , λM . Expanding the quadratic terms of the joint PDF given by (5.1) will

result in a polynomial with terms of the generic form

a
M∏
i=1

e−λiλlii

where leading constant a and exponents li arise from expanding the polynomial terms

of the PDF. Computing the marginalization integral of λM results in these terms

becoming ∫ λM−1

0

a
M∏
i=1

e−λiλlii dλM = aγ(lM , λM−1)
M−1∏
i=1

e−λiλlii (5.4)

where γ(n, x) is the lower incomplete gamma function. Note that, it can be shown

that γ satisfies the recurrence relation

γ(n+ 1, x) = nγ(n, x)− xne−x.
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Applying the recurrence relation multiple times it is apparent

γ(n, x) = (n− 1)γ(n− 1, x)− xn−1e−x

= (n− 1)
(
(n− 2)γ(n− 2, x)− xn−2e−x

)
− xn−1e−x

. . .

Following the recurrence n times and noting that γ(0, x) = 1 results in the identity

γ(n, x) = (n− 1)!

(
1− e−x

n−1∑
k=0

xk

k!

)
. (5.5)

Substituting the formula for the incomplete gamma function given in (5.5) into (5.4)

results in

aγ(lM , λM−1)
M−1∏
i=1

e−λiλlii

= a(lM − 1)!

(
1− e−λM−1

lM−1∑
k=0

λkM−1

k!

)
M−1∏
i=1

e−λiλlii

= a(lM − 1)!

(
e−λM−1λ

lM−1

M−1 − e
−2λM−1

lM−1∑
k=0

λ
lM−1+k
M−1

k!

)
M−2∏
i=1

e−λiλlii .

It is then possible to compute the integral of terms of this form in the same manner

as previously to marginalize out λM−1, and iterate upon this process to marginalize

out the eigenvalues of index greater than K.

After marginalizing the low order eigenvalues, it is then of interest to compute

the integral of the joint PDF over the polytope defined by the summation term given

in (5.2). Note that in the example case of K = 2, M = 3, the integral is split into

two pieces. The first,
∫ x/2

0

∫ λ1
0
dλ2dλ1 can be approached using the same summation

expansion as in the marginalization integrals. The second,
∫ x
x/2

∫ x−λ1
0

dλ2dλ1, can

also be expanded using the recurrence identity (5.5) and the first integral computed,

resulting in terms of the form
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∫ x

x/2

αe−λ1λl11

(
1− e−(x−λ1)

l1∑
k=0

(x− λ1)k+l2

k!

)
dλ1

where α contains multiplicative constants and lower order terms. Factoring the lead-

ing e−λ1λl11 through results in∫ x

x/2

α

(
e−λ1λl11 − e−x

l1∑
k=0

λl11 (x− λ1)k+l2

k!

)
dλ1.

The first term of the summation is, as before, an incomplete gamma function. Chang-

ing variables with the substitution u = λ1/x the second term takes the form of the

upper incomplete beta function, which is defined as

B(x; a, b) =

∫ 1

x

ta(1− t)bdt.

Combining these incomplete beta function pieces with the gamma function pieces,

the final version of the distribution takes the general form

F∑K
i=1 λi

(x) =
∑
i

ai

li∑
k=0

γ(li, x)

2lik!
(5.6)

+
∑
j

bj

mj∑
k=0

xmj+k

k!
B (1/2;mj, k)

+
∑
k

ckγ(nk, x).

Where ai, bj, ck are constants and li, mj, nk are integers of approximately order

N−M to N +M that arise through the polynomial expansion. Exact expressions for

particular cases can be computed by explicitly expanding the joint PDF of the order

eigenvalues given by (5.1). However, using these expressions to compute probabilities

is not practical. As a CDF the range of this function is [0, 1]. In addition to the

extremely large gamma function terms that have been a major focus throughout

this work, there is significant subtractive cancellation occurring which is extremely

numerically unstable.
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It is likely that an alternative approach must be taken to achieve significant

progress in a computationally tractable methodology for computing the distribution

of the partial trace of a complex Wishart matrix. It may be that it is possible to

work directly with the joint PDF of the ordered eigenvalues to find an expression

that is amenable to computation via numerical integration. There is also a push to

understand the geometric connection between the generalized Laguerre polynomials

and the distribution of Wishart eigenvalues, which may yield an approach allowing

integration of (5.1) over any arbitrary region of its support.

5.1.2 Monte Carlo Simulation

It is natural to consider the approach of characterizing the distribution of λ1

empirically through Monte Carlo simulation. While this may be feasible for small

problems, naive Monte Carlo is not suited to multistatic passive radar applications.

This is primarily a consequence of the memory requirements for problems in which N

is large and the long computation time required to generate sufficient pseudo-random

trials to be statistically meaningful in the tails of the distribution. There exists some

work on variance reduction techniques, primarily importance sampling, in which it

is of interest to compute some quantity Ef [h(X)] where X has density f , by noting

that

Ef [h(X)] = Eg

[
h(X)f(X)

g(X)

]
for some other distribution g. Samples are then drawn from g, which can then be

transformed to compute the quantity of interest. The performance gains (i.e., the

number of pseudo random trials that must be generated for accurate probabilities)

are generally fairly modest. In addition, finding a suitable g may be very non-trivial.

Results exists on importance sampling for a particular class of this problem, taking

a limit in N,M at a fixed ratio, but it is of limited use in this multi-channel sensing
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problem. For further discussion of the current state of this research direction, see

Section 4.3.2.

5.1.3 Engineering Concerns

The results presented here are concerned primarily concerned with using a closed

form expression for the distribution of the GLRT to compute ROC curves, but from

an engineering perspective this does not fully characterize system performance. Some

results on ambiguity performance in realistic passive radar scenarios exist [7], and a

basic simulation is presented in this work in Section 4.4. However, this is certainly not

exhaustive nor representative of all the additional engineering challenges that would

be faced in deploying these techniques as part of the detection algorithm on a real

system. This problem is highly motivated by a passive radar scenario in which one

does not control the waveform, therefore analysis of ambiguity properties of common

waveforms deployed on illuminators of opportunity in the environment (i.e., commu-

nications signals) in a multistatic case would be very valuable. Although difficult to

carry out in a general research context, it is highly important to understand further

system specific limitations to truly characterize detection performance, such as the

the effects of clutter or limitations and non-linearities induced by RF hardware .

The presented results on the distributions of λ1 under both H0 and H1 are suf-

ficient to characterize system performance for arbitrary N , but practically speaking,

the choice of numerical integration algorithm and consequent limits on the number of

integration intervals or increased computation time may limit the size of N . It is also

clearly the case that beyond a certain problem size, verification via Monte Carlo is

infeasible due to physical memory limitations and computation time constraints. It

is also apparent that, particularly in the H1 case it is possible that the formulas for

the distribution may return infinite or NaN values when given an argument outside
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the domain; care must be taken in numerical implementations to avoid this.

5.1.4 Other Related Problems

There are many related problems motivated by multistatic detection in which

distributions of some functions of the spectrum of a Gram matrix constructed from

data arise. One variation of the problem that has generated significant interest is

the case in which data vector at each receiver has been normalized to unit length.

Normalizing null-hypothesis data consisting of white Gaussian noise results in vectors

uniformly distributed on the unit sphere. Generalized Coherence provides a well

studied approach to detection for normalized data [5]. Similar techniques to those

used by Cochran et al. to factor the Gram matrix and compute the distribution of

its determinant has potential application in computing the distribution of the trace

of complex Wishart matrices, as discussed in the second problem.

In addition to expansions of the work as motivated by multi-channel passive radar

systems, there is potential to apply similar techniques to other multi-channel prob-

lems. There has also been a renewed interest in work pioneered by Gardener in the

1990’s in detecting cyclostationary signals through properties of the autocorrelation,

or applying known detection results for single cycle detection [41] [42]. Recent work

by Ramirez et al. develops a detector that is a function of the determinant of block

diagonal representations of covariance matrices [43]. These detectors are all functions

of the spectrum of the data covariance, and as such may admit the application of

similar techniques to the problems examined in this research. In many cases, the

H0 model in these problems is the same as that used throughout this dissertation.

However, concerns about sensitivity of these problems to a sampling rate commensu-

rate with the period of the cyclic autocorrelation of cyclostationary signals has been

noted; careful analysis must be performed if this is to be pursued.
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5.2 Summary

This thesis presents new methods for tractable numerical computation of the dis-

tribution of the largest eigenvalue of a complex Wishart matrix in various cases.

Motivation for this problem comes from detection of a rank-one signal in the mean of

additive white Gaussian noise across multiple receivers in a multistatic passive radar

system. In the binary hypothesis problem that arises from the signal model in this

problem, the largest eigenvalue of the Gram matrix constructed from the data has

a complex Wishart distribution, and the largest eigenvalue λ1 of this matrix is the

GLRT. It is thus of interest to compute probabilities of the distribution of λ1 in the

signal absent case in which only noise is present across each of the receivers, as well

as under the signal present case in which a common rank-one signal is present in

the mean. The problem is formulated and a signal model developed in Section 2.1.

Classical results on the distribution of λ1 are presented in 2.4, and the numerical

limitations and a discussion of the why these results are unsuitable for use in the

problem of interest was presented in 2.5.

The primary novel contributions of this thesis are computationally tractable for-

mulas for the distribution of λ1 under both the signal absent (central Wishart) and

signal present (non-central Wishart) cases. Explicit formulas for both of these dis-

tributions are well known and documented in the literature, they are unsuitable for

computation in regimes of interest due to very large gamma function terms. Although

as a probability distribution the final value must be in [0, 1], the known expressions

rely on cancellation via ratios of these extremely large gamma function terms, which

overwhelm double precision floating point representations. This work discusses the

connection between the gamma function and the generalized Laguerre polynomials,

and demonstrates an expansion of the distribution formulas in both the central and
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non-central cases as inner products of these orthogonal polynomials. Further anal-

ysis is performed to eliminate numerical overflows through leading constants and

additional gamma function like terms, eventually resulting in equations that can be

used to compute probabilities in cases with large degrees of freedom using numerical

quadrature. These results may be seen in Section 3.1 for the central case, and Section

3.2 for the non-central case. Although not directly related to the motivating problem

of multistatic passive radar detection, the presented techniques can also be applied

to the case of a central correlated Wishart matrix, in which the covariance matrix is

arbitrary. For completeness, these results are presented in 3.3. A survey of Monte

Carlo methods for approximating these distributions is given in Section 4.3 along with

a discussion of their limitations and shortcomings in cases of interest.

Numerical results presented in this thesis are motivated primarily by the multi-

static passive radar problem in which it is desirable to characterize detection perfor-

mance using these distributions. The central and non-central formulas derived in the

theoretical portion of this thesis are compared to previously known closed form ex-

pressions in small cases and to empirical distributions constructed from Monte Carlo

trials in cases that would overwhelm these closed form expressions from the litera-

ture. Using the central distribution formula, detection thresholds based on a chosen

acceptable probability of false alarm are computed, and the corresponding probability

of detection was computed in closed form using the non-central distribution. Using

these results, fully analytical receiver operating characteristic are generated. Chapter

4 presents these results, beginning with a comparison of methods of computing prob-

abilities, and subsequently using the results from Sections 3.1 and 3.2 to compute

detection thresholds and receiver operating characteristic curves. A simulation of a

multistatic passive radar detection scenario is shown in 4.4, in which the theoretical

results are used to set thresholds and perform detection on simulated data in a realis-
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tic scenario. Certain practical engineering concerns are noted, including a discussion

of the limitations of the signal model and the necessity to take this into account when

implementing these theoretical detection results as a portion of an algorithm on a

real system.

Possible future extensions to this work are presented in Section 5.1. Expanding

this work to be able to compute the distribution of a rank-K partial trace of a complex

Wishart matrix would be the ideal generalization. This section gives some preliminary

derivations and further discussions on why this is a very difficult problem to approach

directly, as well as some discussion on geometric insights that may prove a useful tool

in working towards this generalization. In addition, some further discussion of related

research directions in detection and estimation using tools from random matrix theory

is discussed.
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A.1 Introduction

Included in this section is a description of MATLAB source code for computing the
distribution of λ1 using the closed form expressions under the various cases presented
throughout this thesis, as well as ancillary code that is generally of interest to this
problem. The code in question will be uploaded as a publically available github
repository.

A.2 Wishart Matrix Tools

The following documented MATLAB scripts and functions are useful to compute
the probability distribution of the largest eigenvalue λ1 of a complex Wishart matrix
under various cases of interest. In particular, these functions are designed for use
in problems in which the size of the matrix M ×M is reasonably small, while the
degrees of freedom parameter N is quite large.

The included functions for computing the distribution of λ1 follow the below
naming convention:

[C, NC, S] [CDF, CCDF] [D, H, G, MC].m
Such that the abbreviations are as follows:

- [C, NC, S]: the type of complex Wishart matrix, (C)entral uncorrelated, (NC)
non-central, or central correlated with (S)igma covariance.

- [CDF, CCDF]: computes the (CDF) or complementary CDF (CCDF), 1-CDF.

- [D,H,G,MC]: method of computing probabilities, (D) polynomials, (H)ermite
polynomials, (G)amma functions, (MC) Monte Carlo.

Note that the included functions do not exhaust the combinatorics of the above.

C CDF D.m

Computes in closed form the central CDF of λ1 using the D-polynomial formula given
by (3.7).

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1
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C CDF G.m

Computes in closed form the central CDF of λ1 using Khatri’s gamma function for-
mula given by (2.15). Note that this formulation will overflow for approximately
N ≥ 100. For exact overflow points, see Table 2.1.

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1

C CDF H.m

Computes the central CDF of λ1 using the Hermite polynomial formula given by
(3.8). Note that this is asymptotic in N and thus most accurate for large values, but
is computationally efficient as numerical quadrature integration is not required.

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1

C CDF MC.m

Generates an empirical CDF of λ1 in the central case by generating pseudo-random
complex Wishart matrices via a Bartlett decomposition as implemented in wishrndC.m.

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– nTrials: Number of pseudo-random trials to perform, length of returns F
and x

• Returns:

– F : CDF of λ1

– x: Support of the CDF F
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C CDF IS.m

Generates an empirical CDF of λ1 in the central case using the importance sampling
algorithm discussed in [24].

• Arguments:

– M : Size of the Wishart matrix.

– N : Degrees of freedom.

– x: Support of the CDF F .

– nTrials: Number of pseudo-random trials to perform, length of returns F
and x

• Returns:

– F : CDF of λ1

C CCDF D.m

Computes in closed form the central complementary CDF of λ1 using the D-polynomial
formula given by (3.7). Uses certain identities of the determinant to eliminate sub-
traction errors when computing 1− F (x) when F (x) is close to 1.

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1

C CCDF H.m

Computes asymptotically the central complementary CDF of λ1 using the Hermite
polynomial formula given by (3.7). Uses identities of the determinant to eliminate
subtraction errors when computing 1− F (x) when F (x) is close to 1.

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1
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NC CDF D.m

Computes in closed form the non-central CDF of λ1 using the hypergeometric D-
polynomial formula given by (3.15).

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– mu1: Dominant (only non-zero) eigenvalue of the non-centrality Gram
matrix

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1

NC CDF G.m

Computes in closed form the non-central CDF of λ1 using the hypergeometric gamma
function formula given by (2.17).

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– mu1: Dominant (only non-zero) eigenvalue of the non-centrality Gram
matrix

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1

NC CDF MC.m

Generates an empirical CDF of λ1 in the non-central case by generating pseudo-
random complex Wishart matrices via a direct Monte Carlo algorithm.

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– S: M ×N signal in the mean. Assuming S is rank one, the largest eigen-
value of S†S defines the SNR.

– nTrials: Number of pseudo-random trials to perform, length of returns F
and x

99



• Returns:

– F : CDF of λ1

– x: Support of the CDF F

S CDF D.m

Computes in closed form the central correlated CDF of λ1 using D-polynomial formula
given by (3.25).

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– sigma: Length M vector of the eigenvalues of the covariance matrix of the
Wishart matrix

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1

S CDF G.m

Computes in closed form the central correlated CDF of λ1 using gamma function
formula given by (2.18).

• Arguments:

– M : Size of the Wishart matrix

– N : Degrees of freedom

– sigma: Length M vector of the eigenvalues of the covariance matrix of the
Wishart matrix

– x: Domain on which to compute values of the CDF.

• Returns:

– F : CDF of λ1

S CDF MC.m

Generates an empirical CDF of λ1 in the central correlated case by generating pseudo-
random complex Wishart matrices via a Bartlett decomposition as implemented in
wishrndC.m.

• Arguments:
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– M : Size of the Wishart matrix

– N : Degrees of freedom

– Sigma: M ×M covariance matrix for the Wishart distribution

– nTrials: Number of pseudo-random trials to perform, length of returns F
and x

• Returns:

– F : CDF of λ1

– x: Support of the CDF F

wishrndC.m

Generates pseudo-random central complex Wishart matrices. For small values of N
directly generates a matrix X and then computes the Wishart matrix W = X†X.
For larger values of N , computes W directly using the Bartlett decomposition. These
generated matrices be used to generate empirical CDF’s of λ1.

• Arguments:

– Sigma: M ×M covariance matrix, eye(M) for uncorrelated case, positive
definite in general.

– N : Degrees of freedom

– D: Cholesky factorization of Sigma - faster provided as argument if calling
the function repeatedly.

– n trials: Number of matrixes to generate

• Returns:

– W : M ×M × n trials array of Wishart matrices

– D Cholesky factorization of Sigma

A.3 Multistatic Passive Radar Simulation

MATLAB code for the two dimensional multistatic passive radar simulation seen
in section 4.4 is also made available. This code is designed to be general and modular,
allowing arbitrary numbers of transmitters, receivers, and targets to be instantiated as
arrays of objects containing the necessary data fields and functions to describe electro-
magnetic properties, and perform transmit, receive, and signal processing functions.
The data generated in this simulation can be visualized as a plot of the geometry of
the simulated problem, a spatial ambiguity function, and as a map of detections made
using the thresholds computed using (3.7). The following gives a brief description of
the structure and use of these tools.
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Passive sim.m

Master script that sets problem parameters and constructs Tx, Rx, Target, and Fu-
sionCenter objects. Calls methods from these functions to simulate the transmission,
RF propagation, and receiving of data, as well as functions that perform signal pro-
cessing to construct and plot system geometry, ambiguity functions, and detection
outcomes.

Rx.m

Receiver object constructor. The number M receivers constructed defines the size of
the Wishart distribution, the number of samples recorded at each receiver N is the
degrees of freedom parameter in this distribution.

• Arguments:

– param: Structure containing physical, RF, and signal processing parame-
ters. Empty fields are automatically populated.

• External Functions:

– ReceiveData: Collects data based on the location of the argument sup-
plied Tx, Target, and hypothesized target position defining the direction
in which the receiver antenna beam is pointed, including applying the ap-
propriate delay and Doppler shifts if the received data has reflected off of
a target.

Tx.m

Transmitter object constructor. Transmitted signal modes include frequency mod-
ulated audio (FM), random data frequency modulated (RAND), pure tone (SIN),
QPSK, linear chirp (CHIRP), and Gaussian illumination (GAUSS).

• Arguments:

– param: Structure containing physical, RF, and signal processing parame-
ters. Empty fields are automatically populated.

• External Functions:

– Transmit: Dependent on what transmit mode is selected, generates the
transmitted signal and places into a buffer that can be accessed by the
receiver.

Target.m

Target object constructor. Default behavior is to randomly generate a target with
physical parameters that approximate a commercial airliner.

• Arguments:

– param: Structure containing physical parameters. Empty fields are auto-
matically populated.
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FusionCenter.m

FusionCenter object constructor. Performs signal processing and target detection
algorithms.

• Arguments:

– param: Structure containing physical, RF, and signal processing param-
eters, as well as the Tx, Rx, and Target objects involved in the scenario.
Empty fields are automatically populated.

• External Functions:

– Ambiguity XY: Calculates a two dimensional spatial ambiguity function,
maximizing over the Doppler parameter.

– Ambiguity RD: Calculates a range-Doppler (Woodward) ambiguity func-
tion along a particular angle slice of the spatial domain, centered on coor-
dinates (0, 0). Defaults to the slice along which the target is located.

– PlotAmbiguity: Creates an image of the ambiguity function calculated;
labels axes as X,Y or Doppler, Range accordingly.
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