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ABSTRACT

Numerous works have addressed the control of multi-robot systems for coverage, mapping,

navigation, and task allocation problems. In addition to classical microscopic approaches

to multi-robot problems, which model the actions and decisions of individual robots, lately

there has been a focus on macroscopic or Eulerian approaches. In these approaches, the

population of robots is represented as a continuum that evolves according to a mean-field

model, which is directly designed such that the corresponding robot control policies pro-

duce target collective behaviors.

This dissertation presents a control-theoretic analysis of three types of mean-field mod-

els proposed in the literature for modeling and control of large-scale multi-agent systems,

including robotic swarms. These mean-field models are Kolmogorov forward equations

of stochastic processes, and their analysis is motivated by the fact that as the number of

agents tends to infinity, the empirical measure associated with the agents converges to the

solution of these models. Hence, the problem of transporting a swarm of agents from one

distribution to another can be posed as a control problem for the forward equation of the

process that determines the time evolution of the swarm density.

First, this thesis considers the case in which the agents’ states evolve on a finite state

space according to a continuous-time Markov chain (CTMC), and the forward equation is

an ordinary differential equation (ODE). Defining the agents’ task transition rates as the

control parameters, the finite-time controllability, asymptotic controllability, and stabiliza-

tion of the forward equation are investigated. Second, the controllability and stabilization

problem for systems of advection-diffusion-reaction partial differential equations (PDEs)

is studied in the case where the control parameters include the agents’ velocity as well as

transition rates. Third, this thesis considers a controllability and optimal control problem

for the forward equation in the more general case where the agent dynamics are given by

a nonlinear discrete-time control system. Beyond these theoretical results, this thesis also
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considers numerical optimal transport for control-affine systems. It is shown that finite-

volume approximations of the associated PDEs lead to well-posed transport problems on

graphs as long as the control system is controllable everywhere.
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Chapter 1

INTRODUCTION

There has been a significant amount of work on swarm robotic systems over the last

two decades. A major challenge is to develop modeling and control techniques for these

large-scale multi-robot systems that are scalable with the swarm population size (Brambilla

et al., 2013). One approach to address this issue, inspired by modeling methodologies used

in the natural sciences such as fluid dynamics, statistical mechanics, and mathematical

biology, is to treat the swarm as a continuum. The starting point of this approach is the

Kolmogorov forward equation of a stochastic process, which describes the spatio-temporal

evolution of the probability density associated with the process. For a finite number of

agents that are each modeled using such a stochastic process, the state space of the forward

equation, a linear dynamical system, is dependent on the number of agents N. On the

other hand, in the limit as the number of agents tends to infinity, one can approximate

the N-agent linear forward equation with a single, possibly nonlinear, forward equation

with parameters that can be functions of the probability density. The resulting equation,

known as the mean-field model, is defined on the set of probability densities that determine

the probability of an agent being in a given state at a specific time. When the number

of agents in the swarm is large, this approximation is valid if all agents follow the same

control laws (i.e., the swarm is homogeneous) and the control laws of each agent are not

dependent on other agents’ identities, but only on the agent’s own state or the local density

of the swarm. This identity-invariance of the control laws implies that the dimension of

the state space of the mean-field model depends on the dimension of the state space of

a single agent, and hence is independent of the actual number of agents in the swarm.

Therefore, the scalability of any controller design methodology that is based on mean-field
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models is dependent on the number of admissible states of a single agent, rather than on the

total number of agents in the swarm. While much work has been devoted to optimization-

based computational tools that use mean-field models to synthesize control laws for large

multi-agent systems, there has been very little investigation of fundamental properties of

these models, such as solvability of control and problems of stabilization and estimation.

Characterization of such system-theoretic properties are important because they enable an

engineer to understand fundamental limitations on the ability to control such systems, and

thus facilitate the effective design of multi-robot control laws. This dissertation makes

significant contributions in these directions.

This chapter is organized as follows. In Section 1.1, we highlight the major contribu-

tions of this dissertation that are presented in Chapters 2-5. In Section 1.2, we present a

detailed survey of the different types of mean-field models introduced in the literature on

multi-robot systems and the application of these models to control and estimation problems

for robotic swarms.

1.1 Contribution

The novel contributions of this work are summarized in this section.

1.1.1 Controllability and Stabilization of Finite-Dimensional Forward Equations

In Chapter 2, we provide several results on controllability and stabilizability properties

of the Kolmogorov forward equation of a continuous-time Markov chain (CTMC) evolving

on a finite state space, with the transition rates defined as the control parameters. First, we

present a result on small-time local and global controllability of the system from and to

strictly positive equilibrium distributions when the underlying graph is strongly connected.

Then, we show that any target probability distribution can be reached asymptotically using

time-varying control parameters. Second, we characterize all stationary distributions that
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are stabilizable using time-independent control parameters. For bidirected graphs, we con-

struct rational and polynomial density feedback laws that stabilize stationary distributions

while satisfying the additional constraint that the feedback law takes zero value at equi-

librium. Third, we extend our feedback stabilization results to stationary distributions that

have a strongly connected support.

Then, we construct a class of density-feedback laws, i.e., control laws that are func-

tions of the swarm population density, that achieve this stabilization of CTMCs to proba-

bility densities with disconnected supports. To execute these control laws, each agent only

requires information on the population fraction of agents that are in its current state. Addi-

tionally, the control laws ensure that there are no state transitions by agents at equilibrium,

which is a known drawback of stabilization using time- and density-independent control

laws. We guarantee global asymptotic stability of the equilibrium distribution by analyzing

the corresponding mean-field model. To admit feedback laws that take values only on a

discrete set, we consider control laws that can be discontinuous functions of the agent den-

sities. We validate the control laws using stochastic simulations of the CTMC model and

numerical simulations of the mean-field model.

Lastly, we introduce a control model for herding a swarm of “follower” agents to a

target distribution among a set of states using a single “leader” agent. The follower agents

evolve on a finite state space that is represented by a graph and transition between states

according to a CTMC, whose transition rates are determined by the location of the leader

agent and the distribution of followers on the graph. The control problem is to define a

sequence of states for the leader agent that steers the probability density of the forward

equation of the Markov chain. For the case with inter-follower interactions, we prove

approximate local controllability of the system about equilibrium configurations. If the

followers are non-interacting, they exit to neighboring states with equal positive probabil-

ities if the leader is present in their current state. For this case, we design two switching
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control laws for the leader that drive the swarm of follower agents asymptotically to a tar-

get probability distribution that is positive for all states. The first strategy is open-loop in

nature, and the switching times of the leader are independent of the follower distribution.

The second strategy is of feedback type, and the switching times of the leader are functions

of the follower density in the leader’s current state. We validate our control approach us-

ing numerical simulations with varied numbers of follower agents that evolve on graphs of

different sizes.

This chapter includes results from (Elamvazhuthi et al., 2017a, 2018a).

1.1.2 Controllability and Stabilization of Partial Differential Equation Type Forward

Equations

In Chapter 3, we investigate the exact controllability properties of an advection-diffusion

equation on a bounded domain, using time- and space-dependent velocity fields as the con-

trol parameters. This partial differential equation (PDE) is the Kolmogorov forward equa-

tion for a reflected diffusion process that models the spatiotemporal evolution of a swarm

of agents. We prove that if a target probability density has bounded first-order weak deriva-

tives and is uniformly bounded from below by a positive constant, then it can be reached

in infinite time using control inputs that are bounded in space and time. We then extend

this controllability result to a class of advection-diffusion-reaction PDEs that corresponds

to a hybrid-switching diffusion process (HSDP), in which case the reaction parameters are

additionally incorporated as the control inputs. For the HSDP, we first constructively prove

controllability of the associated CTMC system, in which the state space is finite. Then we

show that our controllability results for the advection-diffusion equation and the CTMC

can be combined to establish controllability of the forward equation of the HSDP. Third,

we provide constructive solutions to the problem of asymptotically stabilizing an HSDP to

a target non-negative stationary distribution using time-independent state feedback laws,
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which correspond to spatially-dependent coefficients of the associated system of PDEs.

Fourth, we consider a semilinear PDE model which is the closed-loop system for a HSDP

with a mean-field feedback law that stabilizes the swarm to probability densities with dis-

connected supports. In the semilinear model, we relax the assumption made in earlier

sections that the generator of the stochastic process is elliptic, and also consider processes

associated with a class of hypoelliptic operators.

This chapter includes results from (Elamvazhuthi et al., 2016, 2017b; Elamvazhuthi

and Berman, 2018; Elamvazhuthi et al., 2019).

1.1.3 Controllability and Optimal Control of Discrete-time Nonlinear Systems to Target

Measures

Chapter 4 considers the relaxed version of the transport problem for general nonlinear

control systems, where the objective is to design time-varying feedback laws that transport

a given initial probability measure to a target probability measure under the action of the

closed-loop system. To make the problem analytically tractable, we consider control laws

that are stochastic, i.e., the control laws are maps from the state space of the control sys-

tem to the space of probability measures on the set of admissible control inputs. Under

some controllability assumptions on the control system as defined on the state space, we

show that the transport problem, considered as a controllability problem for the lifted con-

trol system on the space of probability measures, is well-posed for a large class of initial

and target measures. We use this to prove the well-posedness of a fixed-endpoint optimal

control problem defined on the space of probability measures, where along with the termi-

nal constraints, the goal is to optimize an objective functional along the trajectory of the

control system. This optimization problem can be posed as an infinite-dimensional linear

programming problem. This formulation facilitates numerical solutions of the transport

problem for low-dimensional control systems, as we show in two numerical examples.

5



This chapter includes results from (Elamvazhuthi et al., 2018b).

1.1.4 Computational Optimal Transport of Control-affine Systems

In Chapter 5, we numerically construct optimal control laws for steering a given initial

distribution in phase space to a final distribution in prescribed finite time for the case of

non-autonomous nonlinear control-affine systems, while minimizing a quadratic control

cost. Toward this end, we introduce a Benamou-Brenier type fluid dynamics formulation

on a graph, which is obtained from discretizing the space using gridding. This leads to

a convex optimization problem despite the nonlinearity of the control problem. The well-

posedness of the resulting numerical optimal control problem is shown to be a consequence

of the graph being strongly connected, which in turn is shown to result from controllability

of the underlying dynamical system.

This chapter includes results from (Elamvazhuthi and Grover, 2018).

1.2 Literature Review

In this section, we survey the application of mean-field models to different problems

in swarm robotics such as coverage, task allocation, consensus, and distributed mapping.

Many of these problems can be framed as problems of feedback stabilization or parameter

identification for the corresponding mean-field model. There have been several surveys on

swarm robotics (Brambilla et al., 2013; Seeja et al., 2018), multi-robot systems (Khamis

et al., 2015; Robin and Lacroix, 2016) and the broader field of multi-agent systems (Oh

et al., 2015); in this section, we limit our review to works that specifically use mean-field

models to predict and control collective behaviors in robotic swarms. We note that the use

of mean-field models in robotic swarm control has been previously discussed in the litera-

ture under different terminology, including macroscopic models (Agassounon et al., 2004),

Rate Equation models (Lerman et al., 2006), and probabilistic swarm guidance (Açıkmeşe
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and Bayard, 2015).

First, we describe finite-dimensional mean-field models in the form of ordinary differ-

ential equations and difference equations, in which case each agent has a finite number

of states and the time variable is continuous or discrete. In the second section, we dis-

cuss infinite-dimensional mean-field models in the form of partial differential equations,

for which the agents’ state space is continuous and the time variable is continuous.

1.2.1 Finite-Dimensional Mean-Field Models

In this section, we introduce finite-dimensional mean-field models in which the time

variable is continuous or discrete.

Continuous-time models

There are N autonomous agents whose states evolve in continuous time according to a

Markov chain with a finite state space defined as the vertex set V = {1, ...,M}. For ex-

ample, the vertices in V can represent a set of tasks that the agents must perform, or a

set of spatial locations obtained by partitioning the agents’ environment. The edge set

E ⊂ V ×V defines the pairs of vertices between which the agents can transition. The di-

rected graph G = (V ,E ) is assumed to be strongly connected. The agents’ transition rules

are determined by the control parameters ue : [0,∞)→ R≥0 for each e ∈ E , and are known

as the transition rates of the associated continuous-time Markov chain (CTMC). The state

of each agent i ∈ {1, ...,N} at time t is defined by a stochastic process Xi(t) that evolves on

the state space V according to the conditional probabilities

P(Xi(t +h) = T (e)|Xi(t) = S(e)) = ue(t)h+o(h) (1.1)

for each e = (S(e),T (e)) ∈ E , where S(e) and T (e) denote the source and target vertices

of the edge e, respectively. Here, o(h) is the little-oh symbol and P is the underlying prob-
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Figure 1.1: Bidirected Graph with 3 Vertices, Representing Agent States.

ability measure induced on the space of events Ω by the stochastic processes {Xi(t)}N
i=1.

Let P(V ) = {y ∈ RM
≥0; ∑v yv = 1} be the simplex of probability densities on V , and let

int P(V ) be the interior of this simplex. Corresponding to the CTMC is a system of or-

dinary differential equations (ODEs) that determines the time evolution of the probability

densities P(Xi(t) = v) = xv(t) ∈ R≥0. If Xi(0) are independent and identically distributed

(IID), then the processes {Xi(t)}N
i=1 are also IID, and the Kolmogorov forward equation can

be represented by a single linear system of ODEs,

ẋ(t) = ∑
e∈E

ue(t)Bex(t), t ∈ [0,∞), (1.2)

x(0) = x0 ∈P(V ),

where x0 represents the initial distribution of the random variables Xi(0) and Be ∈ RM×M

are control matrices whose entries at row i and column j are given by

Bi j
e =


−1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

For example, consider a 3-state Markov chain, for which the corresponding graph G is
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illustrated in Fig. 1.1. The system of ODEs (1.2) in this case is given by:

ẋ1(t) = −u12(t)x1(t)+u21(t)x2(t) (1.3)

ẋ2(t) = −(u21(t)+u23(t))x2(t)+u12(t)x1(t)+u32(t)x3(t)

ẋ3(t) = −u32(t)x3(t)+u23(t)x2(t)

x1(0) = x0
1, x2(0) = x0

2, x3(0) = x0
3.

Let χv : V → {0,1} represent the indicator function of the vertex v. As N → ∞, the

population fraction of agents at a vertex v, given by 1
N ∑

N
i=1 χv(Xi(t)), converges to xv(t) for

each t ∈ [0,∞). This follows from the law of large numbers due to the random variables

Xi(t) being IID. Thus, instead of framing a control problem for the multi-agent system in

terms of the random variables Xi, one can alternatively pose a control problem in terms

of the deterministic quantity x(t), and hence control the mean-field behavior of the sys-

tem. Therefore, control or estimation problems where the objectives are functions of the

population fractions 1
N ∑

N
i=1 χv(Xi(t)) can be replaced by problems where the objectives

are functions of the probability distribution or population density x(t). An instance of this

mean-field control problem is when the goal is to design the control inputs ue(t) such that

x(T ) = xd for a target distribution xd ∈P(V ) and time T > 0. Another example of this

type of control problem is the mean-field stabilization problem, where the goal is to design

non-negative, possibly time-varying parameters ke such that ue(t) = ke for all t ≥ 0 and a

given xd ∈P(V ) is an asymptotically stable equilibrium point of system (1.2). When the

control inputs ue(t) are independent of time and the population density x(t), we will say

that they are in state-feedback form. Here, the term state-feedback refers to the fact that

agent i requires only knowledge of its current state Xi(t) to execute the control action, and

not the mean-field term x(t).

The following result is fundamental in analyzing the long-time behavior of Markov

chains. It follows from the Perron-Frobenius theorem (Berman and Plemmons, 1994)
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and plays an important role in the stabilization of the mean-field model (1.2) using time-

independent state-feedback laws.

Theorem 1.2.1. Suppose that ue(t) = ke is a (time-independent) state-feedback law and

is positive for each e ∈ E . Then 0 is an eigenvalue of the matrix ∑e∈E keBe, and it has

the largest real part of all the eigenvalues of this matrix. Moreover, this eigenvalue is

simple. Hence, the solution x(t) of system (1.2) exponentially converges to a unique limit

x∞ ∈ int P(V ), which is a vector with all elements positive.

Using the above theorem, the problem of designing state-feedback laws with the goal

of achieving exponential stabilization with maximal decay rate was considered in (Berman

et al., 2009) for a multi-robot stochastic task allocation scenario. It was shown that this

problem can be framed as a convex optimization problem. A drawback of using state-

feedback laws is that the control inputs ue(t) remain non-zero at equilibrium and hence

agents might continue switching between states at equilibrium; i.e., the system being in

macroscopic equilibrium does not imply that it is in microscopic equilibrium. To reduce

the frequency of switching at equilibrium, (Hsieh et al., 2008) introduced control laws

that are functions of the population density x(t). We will refer to such control laws as

mean-field feedback laws. In particular, a mean-field feedback law is a family of functions

ke : P(V )→ [0,∞) such that the control inputs are defined as ue(t) = ke(x(t)) for all

t ≥ 0 and all e ∈ E . In (Hsieh et al., 2008), the following mean-field feedback law ke is

considered,

ke(x) = k∗e +σS(e)(xS(e),qS(e))(α−1)k∗e , (1.4)

where for each e ∈ E , σS(e) = (1 + exp [γ(qS(e)−
xS(e)

xd
S(e)

)])−1, and qS(e), γ , k∗e , and α are

suitably chosen parameters. It was shown in (Hsieh et al., 2008) that for xd ∈ int P(V ),

i.e. the set of probability distributions that are positive everywhere on V , the solutions

of system (1.2) converge to xd as t → ∞. Note that, when the control inputs ue(t) are
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functions of the population fractions, which converge to the mean-field distribution x in

the limit N → ∞, the random variables Xi are not IID. Therefore, the validity of the limit

limN→∞
1
N ∑

N
i=1 χv(Xi(t)) = xv(t) does not follow from the law of large numbers. Instead,

one can apply the dynamic law of large numbers, which is proved in (Ethier and Kurtz,

2009).

Theorem 1.2.2. (Mean-field/Fluidic Limit) (Ethier and Kurtz, 2009) Suppose that the

transition rates ue(t) of each agent are given by

ue(t) = ve

(
1
N

N

∑
i=1

χ1(Xi(t)), ...,
1
N

N

∑
i=1

χM(Xi(t))

)
, (1.5)

where ve : P(V )→ [0,∞) is a Lipschitz-continuous function for each e ∈ E . Consider the

solution x(t) of the following system of ordinary differential equations,

ẋ(t) = ∑
e∈E

ve(x1, ...,xM)Bex(t), t ∈ [0,∞), (1.6)

x(0) = x0 ∈P(V ).

Then for every t ≥ 0,

lim
N→∞

sup
s≥t
|YN(s)−x(s)|= 0 almost surely (1.7)

where for each s≥ 0, the random variable YN(s) is given by

YN(s) =

[
1
N

N

∑
i=1

χ1(Xi(t)) ...
1
N

N

∑
i=1

χM(Xi(t))

]T

and for each y ∈ RM, |y| := ∑
M
i=1 |yi|.

There has been an extensive amount of work on generalizing the above result to cases

where the functions ve are possibly discontinuous (Gast and Gaujal, 2012; Roth and Sand-

holm, 2013) or where the mean-field model is a hybrid system with continuous as well as

discrete states (Bortolussi et al., 2013).
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Mean-field feedback laws require that agents can measure the population density x(t).

For practical purposes, it is desirable that the mean-field feedback laws are local; that is,

the control inputs ue are functions of the population density at the source vertex S(e), the

target vertex T (e), or both. The problem of reducing agent fluctuations at equilibrium is

framed as a variance control problem in (Mather and Hsieh, 2014), using local mean-field

feedback laws of the form ue(x) = αe +βe
xS(e)
xT (e)

for suitable choices of the parameters αe

and βe.

Before one proceeds to design control laws, it is important to know which distributions

are stabilizable. The works (Berman et al., 2009; Hsieh et al., 2008; Mather and Hsieh,

2014) require the assumption that xd ∈ int P(V ). When G is bidirected, it follows by

construction from (Halász et al., 2007) that, if xd ∈ int P(V ), then there exists a state-

feedback law that asymptotically stabilizes xd . From Theorem 1.2.1, it can be seen that

the assumption that G is bidirected can be relaxed in order for the stabilization result to

still hold. Suppose that G is strongly connected, the parameters ke are positive, and x∞ is

the unique (up to a scaling factor) eigenvector of the matrix ∑e∈E keBe corresponding to 0.

Then for the state-feedback law k̃e = ke
x∞

S(e)

xd
S(e)

, we have that xd is the unique eigenvector of

the matrix ∑e∈E k̃eBe = ∑e∈E keBeD , where D is the diagonal matrix diag(x∞
1

xd
1
,

x∞
2

xd
2
, ...,

x∞
M

xd
M
).

Thus, xd is the globally asymptotically stable equilibrium point of system (1.2).

A method for computing optimal time-varying state-feedback laws in order to achieve

a target distribution in finite time is shown in the work (Solomon et al., 2016) on compu-

tational optimal transport. For certain cost functions, this optimal control problem can

be treated in a convex optimization framework. For example, for a given T > 0 and

xd ∈P(V ), consider the following optimization problem:

inf
ue(t)≥0,xv≥0

∑
e∈E

∫ T

0
u2

e(t)xS(e)(t)dt (1.8)
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subject to the bilinear constraints defined by system (1.2), with

x(T ) = xd. (1.9)

This optimization problem is non-convex. However, it can be transformed into the follow-

ing equivalent convex optimization problem:

inf
re(t)≥0,xv(t)≥0

∑
e∈E

∫ T

0

r2
e(t)

xS(e)(t)
dt (1.10)

subject to the linear constraints

ẋ(t) = ∑
e∈E

re(t)Be1, t ∈ [0,∞), (1.11)

x(0) = x0, x(T ) = xd,

where 1 ∈ RM is the vector with all elements equal to 1. This approach of convexifying

optimization problems with objective functions such as the one in (1.8) and constraints

(1.2), (1.9) was introduced in (Solomon et al., 2016) in order to adapt the fluid-dynamic

version of the optimal transport problem (Benamou and Brenier, 2000), where the state

space is continuous, to the case of discrete state spaces. See Section 1.2.2 for more details.

We note that the cost function in (1.8) has a simpler structure than the one considered in

(Solomon et al., 2016).

Numerical construction of mean-field feedback laws is a much more computationally

challenging task, in comparison with the synthesis of state-feedback laws. Computational

approaches based on Linear Matrix Inequalities (Boyd et al., 1994) and Sum-of-squares

methods (Chesi, 2011) are used to numerically construct decentralized mean-field feedback

laws in (Deshmukh et al., 2018). Execution of mean-field feedback strategies requires

knowledge of the distribution of robots in each state. One approach to estimate the robot

distribution is to use a centralized observer, such as an overhead camera (Deshmukh et al.,

2018). An alternative approach, which does not rely on a centralized authority to observe
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the swarm, is to use encounter rates between agents to estimate population densities, as

observed in natural swarms such as ant colonies (Pratt, 2005). A model for estimating

population densities of swarms as a function of inter-agent encounter rates is proposed and

experimentally validated in (Mayya et al., 2019).

The work (Prorok et al., 2017) considers the effect of heterogeneity in the robot pop-

ulations on the optimal robot control policies. In this work, V denotes not only the states

that robots can occupy, but also the types of different robots. The problem of identifying

the minimum number of robots of each type in order to achieve a given goal is framed as

an optimization problem.

In some scenarios, it is useful to consider mean-field models where different types of

agents or agents in different states interact at particular probability rates and then physically

bond or change their states. Such models are commonly used to describe the dynamics of

chemical reaction networks (CRNs), and have been adopted in several works in swarm

robotics. A CRN model of a swarm represents agents of different types or in different

states as distinct species that are analogous to chemical species. A reaction occurs when a

combination of reactant species converts into a combination of product species at a certain

reaction rate constant. Suppose that a reaction r in a CRN has reactants ai ∈ R>0, i =

1, ...,n, that combine with probability kr(t)∆T in an infinitesimally small amount of time

∆T to form products b j ∈ R>0, j = 1, ...,m. Here, kr(t) is the reaction rate constant. We

denote this reaction by r = [(a1, ...,an),(b1, ...,bm)]. Let M be the total number of reactant

and product species in the entire CRN; then the vector of agent population densities in

each species is given by x ∈ RM. Define a vector field fr : RM → RM associated with

reaction r that has entries ( fr(x))ai = −∏
n
i=1 xai for i ∈ {1, ...,n}, ( fr(x))b j = ∏

n
i=1 xai for

j ∈ {1, ...,m}, and 0 otherwise. Then the resulting mean-field model can be written as
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follows, where R is the set of all reactions in the CRN:

ẋ(t) = ∑
r∈R

kr(t) fr(x(t)), t ∈ [0,∞), (1.12)

x(0) = x0 ∈ RM
≥0,

The system of equations (1.12) simplifies to the form of system (1.2) when only uni-

molecular reactions are admissible; i.e, all reactions in the CRN are of the form r = [a,b],

where a,b ∈ V .

The first application of this type of mean-field model to simulating the behavior of a

robotic swarm was in (Lerman et al., 2001), which introduced a CRN model for a stick-

pulling experiment performed by a swarm of robots that do not explicitly communicate

or coordinate with one another. Using the mean-field model, the authors identify optimal

state-dependent control parameters to improve the system’s performance. In (Lerman et al.,

2004), the authors study the application of these types of models to a number of tasks per-

formed by a swarm of robots, including collaborative pulling, foraging, and aggregation.

In (Lerman and Galstyan, 2002), the authors use a mean-field model to study the effect of

spatial interference on the performance of robots in a collective foraging task. A mean-

field model based on a CRN is used in (Matthey et al., 2009) for a task in which a swarm

of robots must assemble a collection of parts into target amounts of final products using

stochastic control policies determined by the reaction rate constants. The authors optimize

the reaction rate constants to improve the system’s rate of convergence to the target num-

bers of products. In (Wilson et al., 2014), the authors use a CRN-based mean-field model

to design stochastic robot attachment-detachment policies that drive a swarm to specified

spatial distributions around multiple payloads for a collective transport task. A CRN is used

to model a stochastic self-assembly task in (Haghighat et al., 2017), and methods are de-

veloped to estimate the reaction rates in the CRN model using high-fidelity physics-based

simulations. In (Klavins et al., 2006), the authors present an optimization-based method
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to maximize the yield of a stochastic self-assembly process by finding the optimal reaction

rates, and validate the method using a CRN model. These authors also introduce an integral

feedback controller in (Napp et al., 2011) to stabilize a CRN model of another stochastic

self-assembly process. In (Mermoud et al., 2010), the authors develop a CRN model of a

scenario in which robots collaboratively screen an environment for undesirable agents, and

use this model to find the optimal parameters to achieve the goal.

CRN models have also been used extensively to model collective decision-making

problems in swarm robotics, where a group of robots must collectively decide among a

number of available options using limited information and interactions. Collective decision-

making leads to stabilization problems that differ from classical formulations: the target

probability distribution to which the agents should stabilize is not predefined by a central-

ized authority, and this distribution is a non-local function of the states or the agent pop-

ulations in the states, while the robot control laws are constrained to be local. In (de Oca

et al., 2011), the authors consider a modified form of the majority rule opinion dynamics,

studied in the literature on opinion dynamics (Krapivsky and Redner, 2003), for a scenario

where a swarm of robots must decide between two different actions with different execu-

tion times, but without any prior knowledge of the execution times. Similarly, CRN models

that have been used to explain honeybee nest site selection strategies have found applica-

tions in swarm robotics (Reina et al., 2015). See (Valentini, 2017; Valentini et al., 2017) for

extensive surveys on the topic of collective decision-making problems in swarm robotics

with some applications of mean-field models. In (Albani et al., 2018), CRN models are

used to design unmanned aerial vehicle control policies for non-uniform spatial coverage.

In this work, the states represent spatial sites as well as tasks.

Other recent work that uses a CRN-based mean-field framework for swarm applications

considers the problem of keeping individual robot types private (Prorok and Kumar, 2016).

A privacy model that uses notions from differential privacy is developed to understand the

16



privacy preservation capabilities of the swarm as a function of the reaction parameters.

Discrete-time models

In discrete-time mean-field models, the state of each agent i ∈ {1, ...,N} is defined by a

discrete-time Markov chain (DTMC) Xi(n), n ∈ Z+, that evolves on the state space V

according to the conditional probabilities

P(Xi(n+1) = T (e)|Xi(n) = S(e)) = ue(n) (1.13)

with control parameters ue(n) ∈ [0,1] that satisfy the constraint

∑
e∈E ,S(e)=v

ue(n) = 1 (1.14)

for all v ∈ V and all n ∈ Z+. The parameters ue(n) are the transition probabilities that are

associated with each edge E . The probability distribution x(n) ∈ RM of the DTMC Xi(n),

given by P(Xi(n) = v) = xv(n) ∈ R≥0 for all v ∈ V , evolves according to the mean-field

model

x(n+1) = ∑
e∈E

ue(n)Bex(n), n ∈ Z+, (1.15)

x(0) = x0 ∈P(V ),

where the entries of Be ∈ RM×M are given by

Bi j
e =


1 if i = T (e), j = S(e),

0 otherwise.

The above model is the discrete-time analogue of model (1.2). The problem of stabi-

lizing the solution x(n) of the system (1.15) for swarm models was first considered in

(Chattopadhyay and Ray, 2009). In this work, the authors develop an iterative scheme to

construct a (time-independent) state feedback law ue such that limn→∞ x(n) = xeq, where

xeq ∈ int P(V ) is a target stationary probability distribution.
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In (Açıkmeşe and Bayard, 2015), the authors investigate general conditions on the

graph G under which time-independent state feedback laws ue ≥ 0 can be designed such

that the solution of the system (1.15) converges to a given stationary distribution xeq. The

authors construct a DTMC using a variant of the Metropolis-Hastings algorithm (Chib and

Greenberg, 1995) and show that if the vector xeq has a strongly connected support and

the graph G is symmetric, then one can find parameters ue ≥ 0 such that this stabilization

problem can be solved. The authors also provide a Linear Matrix Inequality based method

for computing the parameters ue such that a target xeq is exponentially stable with a given

decay rate. The following theorem is the discrete-time version of Theorem 1.2.1, and it

provides a theoretical foundation for the results proved in (Açıkmeşe and Bayard, 2015).

Theorem 1.2.3. Suppose that the transition probabilities ue are positive and constant. Ad-

ditionally, suppose that there exists a time n ∈ Z+ such that, for each v,w ∈ V , there exists

a directed path of length n from v to w. Then 1 is the eigenvalue of the matrix ∑e∈E ueBe

with the largest modulus. Moreover, this eigenvalue is simple. Hence, the solution x(t) of

system (1.15) exponentially converges to a unique limit x∞ ∈ int P(V ) for which all the

elements are positive.

A drawback of using time-independent state-feedback laws is that, as for the case of

CTMCs, the agents do not stop transitioning between states once the mean-field model

(1.15) reaches equilibrium. In order to resolve this issue, the authors in (Bandyopadhyay

et al., 2017) consider the problem of constructing time-varying parameters ue(n) such that

limn→∞ ue(n) = 1 for all e = (v,v)∈ E , v∈ V . This problem is framed as a linear program-

ming problem that each agent i must solve in order to compute its own optimal transition

probabilities ui
e(n) at each time n so that the swarm reaches the target distribution while

minimizing a particular objective functional. Strictly speaking, this linear programming

approach is not a mean-field approach, since the problem is formulated for a finite number
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of agents and it is not clear whether the transition probabilities ue(n) have well-defined

limits as N → ∞. The state-feedback laws constructed in (Bandyopadhyay et al., 2017)

depend on the distance of the swarm from the target distribution, and hence require global

knowledge of the swarm distribution at each time n. This requirement is then relaxed by

implementing a filtering algorithm that each agent uses to estimate the distribution of the

swarm over all the states from local measurements of the agent distribution in its current

state.

In (El Chamie et al., 2019), the authors address a swarm stabilization problem in which

the control laws must satisfy certain density constraints on the solution of the mean-field

model. The authors adapt classical Markov decision process (MDP) theory (Puterman,

2014) to construct stochastic or randomized state-feedback laws with constraints on the

probability distribution of the stochastic process that models agent motion, such as con-

straints on robot densities.

1.2.2 Infinite-Dimensional Mean-Field Models

In this section, we describe infinite-dimensional mean-field models in which the time

variable is continuous. We start with the case where the state space Ω of each agent,

indexed by i ∈ {1,2, ...,N}, is a subset of the Euclidean space Rn. The position of each

agent i evolves according to a stochastic process Zi(t) ∈ Ω, where t denotes time. We

initially assume that the agents are non-interacting. Therefore, the random variables Zi(t)

are independent and identically distributed, and we can drop the subscript i and define the

problem in terms of a single stochastic process Z(t) ∈ Ω. The deterministic motion of

each agent is defined by a velocity vector field v(x, t) ∈ Rn, where x ∈ Ω. This motion is

perturbed by an n-dimensional Wiener process W(t), which models noise. This process can

be a model for stochasticity arising from inherent sensor and actuator noise. Alternatively,

noise could be actively programmed into the agents’ motion to implement more exploratory
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agent behaviors and to take advantage of the smoothening effect of the process on the

agents’ probability densities. Given the velocity field v(x, t) and a diffusion coefficient

D > 0, the position of each agent evolves according to a diffusion process Z(t) that satisfies

the following stochastic differential equation (SDE) (Gardiner, 2009):

dZ(t) = v(Z(t), t)dt +
√

2DdW(t),

Z(0) = Z0. (1.16)

Given a final time T > 0, the Kolmogorov forward equation corresponding to the SDE

(1.16) is given by:

yt = D∆y−∇ · (v(x(t), t)y) in Ω× [0,T ],

y(·,0) = y0 in Ω. (1.17)

The solution y(x, t) of this equation represents the probability density of a single agent

occupying position x ∈ Ω at time t, or alternatively, the density of a population of agents

at this position and time. The PDE (1.17) is related to the SDE (1.16) through the relation

P(Z(t)∈Γ)=
∫

Γ
y(x, t)dx for all t ∈ [0,T ] and all measurable Γ⊂Ω.In Prorok et al. (2011),

the authors use the model (3.5) to simulate a swarm of miniature robots performing an

inspection task, and validate the model experimentally. In Kingston and Egerstedt (2011),

the authors construct state-feedback laws v that are piecewise constant with respect to space

for the model (3.5) with D= 0, using the Helmholtz-Hodge decomposition of a vector field.

The work Mesquita et al. (2008) considers a PDE model of the form

yt(x,v) = −v ·∇x · (y(x,v))−λ (x,v)y((x,v)) (1.18)

+
∫

Tv′(v,v′)λ (x,v)y(x,v′, t)dv′,

where x denotes the position coordinates and v denotes the velocity coordinates. The pa-

rameter λ denotes the rate at which a robot jumps to a random value of v according to
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the parameter Tv′ , a function known as the jump pdf. The authors design suitable λ and

Tv′ such that the robots converge to a target probability density that is positive everywhere.

This result is generalized to a larger class of controllable nonlinear systems in Mesquita

and Hespanha (2012).

There have been a number of works on numerical construction of state-feedback laws

for a swarm of agents that follow the dynamics (3.4). In (Foderaro et al., 2014), the authors

consider the problem of designing a time-varying, state-dependent velocity u1(x, t) and

turning rate u2(x, t) with the vector field v in (1.17) given by

v(x, t) =


u1(x, t)cos(x1)

u1(x, t)sin(x2)

u2(x, t)

 .
The authors use optimal control to compute the control inputs u1(x, t) and u2(x, t) that

transport a swarm from an initial probability density to a target density. The optimal con-

trol of PDEs that govern stochastic processes has received considerable attention in the

mathematics literature (Annunziato and Borzı̀, 2010, 2013; Annunziato and Borzi, 2018;

Fleig and Guglielmi, 2017). Similar optimal control problems have also been investigated

in the mathematics and control theory literature on mean-field games (Lasry and Lions,

2007; Huang et al., 2007; Bensoussan et al., 2013; Caines et al., 2017; Carmona and De-

larue, 2018). The application of mean-field games to swarm robotics problems has begun

only recently (Liu et al., 2018). A promising approach to numerically constructing state-

feedback laws comes from optimal transport theory. While this approach has thus far not

been applied to control swarms of robots, we mention it here due to its applicability in this

domain. Consider the following optimization problem:

inf
v

∫ T

0

∫
Ω

|v(x, t)|2y(x, t)dxdt (1.19)
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subject to the constraints

yt =−∇ · (v(x, t)y),

y(0) = y0, y(T ) = yd, (1.20)

where y0 and yd are the initial and target probability densities, respectively. The optimiza-

tion problem (1.19)-(1.20) was introduced to develop a computationally tractable approach

to calculating the 2-Wasserstein distance (Villani, 2008). In swarm robotics applications,

this can be viewed as an optimal control problem that computes a state-feedback law v(x, t)

which drives a swarm from an initial probability density y0 to a target probability density

yd in time T . However, this optimization problem is non-convex in the decision variables v

and ρ . If we perform the change of variable m = v
ρ

, we can instead consider the equivalent

convex optimization problem,

inf
m,ρ≥0

∫ 1

0

∫
Ω

|m(x, t)|2

y(x, t)
dxdt (1.21)

subject to the constraints

yt =−∇ · (m(x, t)),

y(0) = y0, y(1) = yd. (1.22)

Due to this convexification, one can guarantee that any locally optimal solution of the

optimization problem (1.21)-(1.22) is also globally optimal. This offers an advantage over

objective functionals that are more commonly used in optimal control of PDEs (Tröltzsch,

2010), for which global optimality of locally optimal solutions is much more difficult to

guarantee.

In (Elamvazhuthi et al., 2016) considers the problem of stabilizing the PDE (1.17) to

a target probability density y∞. It is shown that if the diffusion coefficient is defined as

the spatially-dependent function c/
√

y∞ for any positive constant c, then the solution of
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the PDE converges to ρ∞. The effectiveness of this control law is experimentally verified

with robot experiments in (Li et al., 2017). This strategy is extended to the case where

agents evolve on compact manifolds in (Elamvazhuthi and Berman, 2018). An alternative

approach to stabilize a swarm to a target distribution is to set D to a positive constant and

v = D∇ρ∞

ρ∞
, which also results in the solution converging to ρ∞ (Breiten et al., 2018; Elam-

vazhuthi et al., 2019). The long-time behavior of SDEs with gradient drift has been ex-

tensively treated in the mathematics and physics literature (Stroock, 1993; Markowich and

Villani, 1999; Ambrosio et al., 2009). In applications beyond swarm robotics, the prob-

lem of controlling the PDE (1.17) to a target probability density using a time-dependent

state-feedback law v(x, t) has been investigated in optimal transport theory (Benamou and

Brenier, 2000) and stochastic control (Blaquiere, 1992) for the case where Ω = Rn, and in

the theory of mean-field games (Porretta, 2014) when Ω is a torus.

While models of the form (1.17), with control parameters that are functions of the

swarm density, have been extensively analyzed in the mathematics literature (Bodnar and

Velazquez, 2005; Topaz et al., 2006; Bertozzi et al., 2011; Carrillo et al., 2014, 2010),

there has been very little work on using such models to construct mean-field feedback laws

for stabilization of robotic swarms. In (Kingston and Egerstedt, 2010), the authors design

mean-field feedback laws where the vector field v in (1.17) is set to a suitable integral

functional of the density so that the agents achieve consensus. A similar approach for

the analysis of consensus in swarms is also considered in (Canuto et al., 2008). In (Eren

and Açıkmeşe, 2017), the authors construct a mean-field feedback law by interpreting the

linear heat equation as a nonlinear advection equation with a density-dependent velocity

field as follows. The diffusion coefficient D is set to zero, and the control law is defined as

v(x, t) = −∇e(x,t)
y(x,t) for all x ∈ Ω and all t ≥ 0, where e(x, t) = y(x, t)− yd(x) and yd is the
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target probability density. Then model (1.17) becomes

et = ∆e in Ω× [0,T ],

e(·,0) = e0 in Ω. (1.23)

Using the relation between models (1.17) and (1.23), one can show that the swarm density

y(·, t) converges to the target probability density yd as t→ ∞.

While the analysis of the closed-loop system (1.23) is straightforward due to its lin-

earity, the solutions of these PDEs make sense only for initial conditions that are positive

everywhere on Ω; otherwise, the control law v is unbounded. An alternative is to set

v(x, t) =−b(x)∇y(x,t)
yd(x,t) , where b(x) is a positive function. The resulting closed-loop system

is a weighted variation of a well-known nonlinear PDE called the porous media equation

(Vázquez, 2007). According to results established in the mathematics literature (Grillo

et al., 2013), it is known that under particular technical assumptions on b(x) and yd(x), the

swarm density y(·, t) converges to the target probability density yd as t → ∞. These types

of control laws are used for stabilizing swarms to target probability densities in the re-

cent works (Elamvazhuthi and Berman, 2018), for robots evolving on compact manifolds

without boundary, and (Krishnan and Martı́nez, 2018), for robots evolving on a subset of a

Euclidean space with boundary.

In models of robotic swarms, it is useful to consider hybrid variants of the SDE (3.4)

to account for the fact that each robot, in addition to a continuous spatial state Z(t), can be

associated with a discrete state Y (t) ∈ V at each time t. For such scenarios, we can define

a hybrid switching diffusion process (Z(t),Y (t)) as a system of SDEs of the form

dZ(t) = v(Y (t),Z(t), t)dt +
√

2D ·dW(t),

Z(0) = Z0, (1.24)

where v : V ×Ω× [0,T ]→ Rn is the state- and time-dependent velocity vector field, and

D∈RM
+ is a vector of positive elements Dk, the diffusion coefficient associated with discrete
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state k ∈ V . Let vk denote the velocity field associated with discrete state k ∈ V Then the

forward equation for this system of SDEs is given by the system of PDEs

(yk)t = Dk∆yk−∇ · (vk(x, t)yk)+Fk in Ω× [0, t f ],

yk(·,0) = y0
k in Ω, (1.25)

where k ∈ V and Fk = ∑e∈E ∑ j∈V ue(t)B
k j
e y j, with Be defined as in Subsection 1.2.1. The

PDE (1.25) is related to the SDE (1.24), for each k ∈ V , through the relation P(Y (t) =

k,Z(t) ∈ Γ) =
∫

Γ
yk(x, t)dx for all t ∈ [0,T ] and all measurable Γ⊂Ω.

The class of models (1.25) is used in (Galstyan et al., 2005) to model microscopic

robots that reside in a fluid. In this work, some components of the vector are used to model

robot densities, and some model them densities of chemicals that the robots follow. In

(Milutinovic and Lima, 2006, 2007), the authors consider a 3-state model, with diffusion

coefficients equal to 0, in which the time-dependent transition rates are optimized using

infinite-dimensional optimal control theory (Fattorini, 1999). Each state is associated with

an uncontrolled velocity vector field, corresponding to left-translation, right-translation,

and remaining stationary. In (Hamann and Wörn, 2008; Hamann, 2010), these models

are applied to study collective migration and collective perception tasks in swarms. To

simulate the phenomenon of emergent taxis, the authors construct mean-field feedback laws

in the sense that the diffusion coefficients are functions of the population densities, as in

biological models of chemotaxis.

In (Berman et al., 2011), the authors use model (1.25) to simulate the coverage ac-

tivity of a swarm of robotic bees in a commercial pollination problem. The framework

presented in (Berman et al., 2011) is used in (Elamvazhuthi et al., 2018c) to optimize

time-dependent (and state-independent) robot velocities and state transition rates using op-

timal control theory of PDEs (Tröltzsch, 2010). Additionally, (Elamvazhuthi et al., 2018c)

considers the problem of identifying the spatial distribution of resources in the environment
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from temporal robot data and frames this as a problem of identifying coefficients in model

(1.25) using PDE-constrained optimization. Following a similar approach, (Ramachandran

et al., 2018) addresses the problem of mapping the boundaries of regions of interest in an

environment from temporal robot data. In (Elamvazhuthi et al., 2019), the authors analyt-

ically construct control laws vk(x, t) and ue(t) to transport a swarm modeled by (1.25) from

an initial probability density to a target density, thus establishing the controllability of the

system (1.25).

When the parameters vk(x, t) and ue(t) are independent of the density y, the conver-

gence of the solution of the mean-field model (3.32) to the density of a swarm with a finite

number of agents can be concluded from the law of large numbers. However, such con-

vergence results thus far have been mostly qualitative. A more quantitative convergence

analysis of the model presented in (Elamvazhuthi et al., 2018c) is performed in (Zhang

et al., 2018), where the density of the finite-agent model is shown to converge to the solu-

tion of the mean-field model as the number of agents tends to infinity. Using this conver-

gence result, performance bounds are derived in (Zhang et al., 2018) for the optimal control

strategies constructed in (Elamvazhuthi et al., 2018c) as a function of the approximation

error due to the finiteness of the agent population.
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Chapter 2

CONTROLLABILITY AND STABILIZATION OF FINITE-DIMENSIONAL

FORWARD EQUATIONS

In this chapter, we present novel results on the controllability and stabilizability of

the mean-field control problem for CTMCs described in Section 1.2.1. We study local

and global controllability properties of the forward equation when the control inputs are

required to be zero at equilibrium. The case when control inputs are not constrained to

be zero at equilibrium is comparatively much easier, since local controllability follows

directly from linearization-based arguments, so we do not consider this case here. We

also demonstrate that it is possible to compute density-independent transition rates of a

CTMC that make any probability distribution with a strongly connected support (to be

defined later) invariant and globally stable. Similar work in (Acikmese and Bayard, 2012)

has characterized the class of stabilizable stationary distributions for DTMCs with control

parameters that are time- and density-invariant; we characterize this class of distributions

for CTMCs with the same type of control parameters (see Theorem 2.3.4). We show that

this result can be further strengthened by employing time-varying control parameters that

make the system asymptotically controllable to any feasible probability distribution.

In addition, we address the stabilization of mean-field models using decentralized den-

sity feedback laws under the constraint that the transition rates are required to be zero at

equilibrium. Such a constraint is needed in swarm robotic applications to prevent robots

from constantly switching between states at equilibrium. The problem of unnecessary state-

switching was previously addressed for CTMCs in (Mather and Hsieh, 2014) as a variance

control problem, and for DTMCs in (Bandyopadhyay et al., 2017) using a decentralized

density estimation strategy that implements centralized feedback laws and ensures that the
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transition matrix is the identity matrix at equilibrium. In this chapter, we investigate the

CTMC case in more detail. In contrast to (Mather and Hsieh, 2014), we explicitly show

that any distribution with a strongly connected support is stabilizable using a decentralized

feedback law, and we impose the additional constraint that transition rates must be zero

at equilibrium. Moreover, the controller in (Mather and Hsieh, 2014) was proved to be

stabilizing with the assumption that negative transition rates are admissible, and was then

implemented with a saturation condition in order to avoid negative rates, in which case the

stability guarantees are lost. We show how this issue can be resolved with a linear controller

by interpreting a negative flow from one state to another as a positive flow of appropriate

magnitude in the opposite direction. While the algorithmic construction of linear con-

trollers has low computational complexity, these controllers violate positivity constraints

on the control inputs. To realize linear controllers in practice for our problem, we show

that for bidirected graphs, we can implement linear controllers with rational feedback laws

that mimic their behavior.

Lastly, we extend the stabilization results on density feedback-based stabilization to

the more general case in which agents are not required in some states at equilibrium. In

this case, the target distribution possibly has a disconnected support, meaning that the

underlying subgraph induced by the vertices that are associated with positive target densi-

ties is disconnected. Stabilization of target distributions with disconnected supports is not

possible using time- and density-independent control laws. If a desired distribution with

disconnected support is a stationary distribution of a CTMC for a given set of time- and

density-independent transition rates, then multiple other stationary distributions can be con-

structed from the disconnected components of the support of the desired distribution, thus

obstructing global stability of this distribution. To bridge this gap, we propose a general

class of decentralized control laws that can globally asymptotically stabilize any proba-

bility distribution. These feedback laws require each agent to know the density of agents
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only in its current state, and thus rely only on information that can be locally acquired.

The works (Hsieh et al., 2008; Mather and Hsieh, 2011) also propose density-dependent

feedback laws to address the swarm redistribution problem that we consider. However, the

feedback laws in (Hsieh et al., 2008), which are implemented using a quorum-sensing ap-

proach, stabilize a swarm only to positive target distributions, with a nonzero desired agent

density in each state. In addition, while the control laws in (Hsieh et al., 2008) are designed

to yield a low rate of agent transitions between states at equilibrium, the transitions do not

stop completely since the equilibrium control inputs are nonzero.

2.1 Notation

We first define some notation that will be used to formally state the problems addressed

in this chapter. We will use the following definitions from graph theory. We denote by

G = (V ,E ) a directed graph with a set of M vertices, V = {1, ...,M}, and a set of NE

edges, E ⊂ V ×V , where e = (i, j) ∈ E if there is an edge from vertex i ∈ V to vertex

j ∈ V . We define a source map S : E → V and a target map T : E → V for which S(e) = i

and T (e) = j whenever e = (i, j) ∈ E . There is a directed path of length s from a vertex

i ∈ V to a vertex j ∈ V if there exists a sequence of edges {ei}s
i=1 in E such that S(e1) = i,

T (es) = j, and S(ek) = T (ek−1) for all 2 ≤ k < s. A directed graph G = (V ,E ) is called

strongly connected if for every pair of distinct vertices v0, vT ∈ V , there exists a directed

path of edges in E connecting v0 to vT . We will assume that (i, i) /∈ E for all i ∈ V . We

will denote the set of outgoing edges from a vertex v∈ V by N out(v). The set of incoming

edges to a vertex v ∈ V will be denoted by N in(v). Throughout this chapter, we will

assume that the graph G is strongly connected. We will also assume that (i, i) /∈ E for

all i ∈ V . The graph G is said to be bidrected if e ∈ E implies that ẽ = (T (e),S(e)) also

lies in E . We say that a vector xd ∈ RM has a strongly connected support if the subgraph

Gsub = (Vsub,Esub), defined by Vsub = {v ∈ V : xd
v > 0} and Esub = (Vsub×Vsub)∩E , is
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strongly connected. Moreover, Vsub is called the support of the vector xd .

We denote the M-dimensional Euclidean space by RM. RM×N is the space of M×N

matrices, and R≥0 is the set of non-negative real numbers. Given a vector x ∈ RM, xi will

refer to the ith coordinate value of x. The 2−norm of the vector x ∈ RM is denoted by

‖x‖2 =
√

∑i x2
i . For a matrix A ∈ RM×N , Ai j will refer to the element in the ith row and

jth column of A. The spectrum of a matrix A will be denoted by spec(A). Given a vector

y ∈ RM, for each vertex i ∈ V , the set σy(i) ⊂ V consists of all vertices j for which there

exists a directed path {ek} f
k=1 of some length f from j to i such that yS(ek) = 0 for each

k = 1, ..., f −1.

A matrix is non-negative if all its elements are non-negative, and it is essentially non-

negative if all its off-diagonal elements are non-negative. A real eigenvalue λm of a matrix

A will be called the maximal eigenvalue of A if λm ≥ |λ | for all λ ∈ spec(A). We will

denote the conical span of a set C of m vectors xi ∈ RM, i = 1, ...,m, by co span(C) =

{∑m
i=1 αixi : xi ∈C, αi ∈ R≥0, i = 1, ...,m}.

The matrix Lout(G ) = Dout(G )−A(G ) ∈ RM×M denotes the out-Laplacian of the

graph G , where Dout(G ) is the out-degree matrix of G and A(G ) is the adjacency ma-

trix of G . Dout(G ) is a diagonal matrix for which (Dout(G ))ii is the total number of edges

e such that S(e) = i. The entries of A(G ) are defined as (A(G ))i j = 1 if ( j, i) ∈ E , and 0

otherwise. When G is bidirected, Lout(G ) is the usual Laplacian of the graph, and we will

drop the subscript and denote it by L (G ). For a subset B⊂RM, int B and Bd(B) will refer

to the interior and the boundary, respectively, of B.

We will also need some basic notions from set-valued analysis (Aubin and Frankowska,

2009). We will use F : X⇒Y to denote a set-valued map, i.e., a map F from a metric space

X to the power set of a metric space Y . Let Bη(x) denote the open ball with center x ∈ X

and radius η > 0. Then the set-valued map F will be called upper semi-continuous at

x ∈ X if and only if for any neighborhood U of F(x), there exists η > 0 such that for all
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x′ ∈ BX(x,η), F(x′) ⊂ U . If A is a subset of RM, we define the distance between a point

x ∈ RM and the set A using the notation dist(x,A) = inf
y∈A
‖x− y‖. The notation c̄o A will

denote the convex closure of the set A in X . The notation c̄o F will denote the set-valued

map that is defined by setting (c̄o F)(x) = c̄o F(x) for all x ∈ X . A function f : R→ RM is

said to be absolutely continuous if ∀ε > 0, there exists δ > 0 such that for any finite set of

disjoint intervals (a1,b1), ...,(aN ,bN), ∑
N
j=1(b j− a j) < δ =⇒ ∑

N
j=1 ‖f(b j)− f(a j)‖ < ε .

More generally, f is said to be absolutely continuous on [a,b] if this condition is satisfied

whenever the intervals (a j,b j), j = 1, ...,N, all lie in [a,b].

In this chapter, we will analyze the forward equation of a CTMC presented in Section

1.2.1. For the reader’s convenience, we recall the description of this model from Section

1.2.1. There are N autonomous agents whose states evolve in continuous time according

to a Markov chain with a finite state space defined as the vertex set V = {1, ...,M}. For

example, the vertices in V can represent a set of tasks that the agents must perform, or

a set of spatial locations obtained by partitioning the agents’ environment. The edge set

E ⊂ V ×V defines the pairs of vertices between which the agents can transition. The

directed graph G = (V ,E ) is assumed to be strongly connected. The agents’ transition

rules are determined by the control parameters ue : [0,∞)→ R≥0 for each e ∈ E , and are

known as the transition rates of the associated CTMC. The state of each agent i∈ {1, ...,N}

at time t is defined by a stochastic process Xi(t) that evolves on the state space V according

to the conditional probabilities

P(Xi(t +h) = T (e)|Xi(t) = S(e)) = ue(t)h+o(h) (2.1)

for each e = (S(e),T (e)) ∈ E , where S(e) and T (e) denote the source and target vertices

of the edge e, respectively. Here, o(h) is the little-oh symbol and P is the underlying prob-

ability measure induced on the space of events Ω by the stochastic processes {Xi(t)}N
i=1.

Let P(V ) = {y ∈ RM
≥0; ∑v yv = 1} be the simplex of probability densities on V , and let
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int P(V ) be the interior of this simplex. Corresponding to the CTMC is a system of or-

dinary differential equations (ODEs) that determines the time evolution of the probability

densities P(Xi(t) = v) = xv(t) ∈ R≥0. If Xi(0) are independent and identically distributed

(IID), then the processes {Xi(t)}N
i=1 are also IID, and the Kolmogorov forward equation can

be represented by a single linear system of ODEs.

We recall the definition of the forward equation of a CTMC,

ẋ(t) = ∑
e∈E

ue(t)Bex(t), t ∈ [0,∞), (2.2)

x(0) = x0 ∈P(V ),

where Be are control matrices whose entries are given by

Bi j
e =


−1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

(2.3)

We note that P(V ) is an invariant set for system (2.2) because Be has off-diagonal

positive entries, the columns sum to 0, and the control inputs ue(t) are constrained to be

non-negative. This fact will be used throughout the chapter.

2.2 Controllability of the Forward Equation of a CTMC

The focus of this section is to study the controllability of the control system (2.2).

Toward this end, we will address the following problems.

Problem 2.2.1. (Global controllability) Given x0,xd ∈P(V ) and T > 0, determine if

there exist bounded time-dependent non-negative control parameters {ue}e∈E for system

(2.2) such that x(T ) = xd .

Problem 2.2.2. (Local controllability of underactuated forward equation) Given x0,xd ∈

P(V ) and T > 0, let E = E0∪E1 be a partition of the set of edges E . Determine if there
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exists r > 0 such that each point in the neighborhood B(xd,r)∩P(V ) for system (2.2) is

reachable within a finite time using time-varying control inputs {ue}e∈E2 with uê = 1 for all

ê ∈ E1.

When E0 is empty, that is, when all the transition rates can be specified and hence

the system is fully actuated, Problem 2.2.1 and Problem 2.2.2 are equivalent. The above

generalized problem (Problem 2.2.2) might be relevant in control problems where the con-

trol input can act only locally on the graph. For example, this could be the case when

the Markov chain represents a traffic flow model (Yu et al., 2003), where it might not be

possible for an external supervisor to control the flow along all the edges.

Note that these controllability results for Problem 2.2.1 and Problem 2.2.2 could not be

directly concluded from classical tests of controllability such as the Kalman rank condition

or the Lie Algebra Rank conditions (Bloch, 2015) due to the positivity constraints on the

control inputs. Here, we prove a general result which implies that the classical rank condi-

tions for controllability have a simple generalization to non-negative control inputs. These

generalized rank conditions can be used to establish the controllability result for system

(2.2) that was proved in (Elamvazhuthi et al., 2019), in the case where all control inputs

can be specified. More importantly, we will apply these conditions to establish the local

controllability for the underactuated case in which only a subset of the control inputs can

be designed (Example 2.2.6). A result such as the one we present is already known for

general nonlinear control systems with control constraints for the case when the linearized

control system with the same constraints is also controllable (Klamka, 1996). On the other

hand, the following result also applies to the larger class of controllable nonlinear systems

when the linearized system is not controllable, but controllability follows from Lie rank

conditions (Bloch, 2015). Moreover, our arguments are more elementary, and it will be

less cumbersome to address Problem 2.2.2 directly from our generalization of the rank

condition, rather than to invoke the result from (Klamka, 1996).
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Finally, we will also address the following problem in this section.

Problem 2.2.3. (Asymptotic controllability) Given x0,xd ∈P(V ), determine if there ex-

ist globally bounded time-dependent non-negative control parameters {ue}e∈E for system

(2.2) such that limt→∞ ‖x(t)−xd‖= 0.

Having defined the problems that will be addressed in this section, we will start by

addressing Problem 2.2.1 and Problem 2.2.2.

Theorem 2.2.4. Consider the control-affine system

ẋ(t) = f0(x(t))+
N

∑
i=1

ui(t)fi(x(t)) (2.4)

x(0) = x0

with smooth vector fields fi : RM → RM for i = 0, ...,N. Suppose x f ∈ RM and there exist

control inputs ui : [0,T ]→R such that a unique solution of system (2.4) exists and satisfies

x(T ) = x f . Additionally, suppose that the following condition holds for all t ∈ [0,T ]:

span{fi(x(t)) : i = 1, ...,N}= co span{fi(x(t)) : i = 1, ...,N}. (2.5)

Then there exist measurable control inputs ũi : [0,T ]→R≥0 such that the state x(t) evolves

according to the following system for almost every (a.e.) t ∈ [0,T ]:

ẋ(t) = f0(x(t))+
N

∑
i=1

ũi(t)fi(x(t)) (2.6)

x(0) = x0

Proof. The proof is a simple application of a representation theorem due to Filippov. We

consider the set-valued map F : [0,T ]⇒ RM defined by

F(t) = RM
≥0, ∀t ∈ [0,T ] (2.7)
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Here, by a set-valued map, we mean that F takes values from [0,T ] to the power set of RM.

We define the map g : [0,T ]×RN → RM by

g(t,v) = f0(x(t))+
N

∑
i=1

vifi(x(t)) (2.8)

for all t ∈ [0,T ] and for all v ∈ RN . The map g is a Carathéodory map; that is, g(·,v) is

measurable for every v ∈ RN , and the map g(t, ·) is continuous for every t ∈ [0,T ]. From

the definitions of g and F, it follows that ẋ(t) ∈ g(t,F(t)) := {g(t,z); z ∈ F(t)} for a.e.

t ∈ [0,T ] due to assumption (2.5). Therefore, by (Aubin and Frankowska, 2009)[Theorem

8.2.10], there exists a measurable function ũ : [0,T ]→ RN
≥0 such that

ẋ(t) = f0(x(t))+
N

∑
i=1

ũi(t)fi(x(t)) (2.9)

for almost every t ∈ [0,T ].

The above theorem can be used to establish the following controllability result for sys-

tem (2.2).

Theorem 2.2.5. (Global controllability for fully actuated system) Let xd ∈ int P(V ) and

T > 0 be given. Suppose x0 ∈ int P(V ). Then there exist control inputs {ue(t)}e∈E such

that the solution of system (2.2) satisfies x(T ) = xd .

Proof. To conclude the above result from Theorem 2.2.4, one only needs to observe that

the conical span of the set {Bey}e∈E = TyP(V ) = {x ∈ RM; ∑i xM
i=1 = 1}, the tangent

space of P(V ) at y, for all y ∈ int P(V ). To see this explicitly, note that since the graph

G is strongly connected, we know from the Perron-Frobenius theorem (Minc, 1988) that

span {Be1}e∈E = T1P(V ). Moreover, due to the strongly connected nature of the graph

G , it follows that if e ∈ E , then there exists a directed path (ei)
p
i=1 of length p such that

S(e1) = T (e) and T (ep) = S(e). Hence, ∑
p
i=1 Bei1 = −Be1. And hence, we also have that

co span {Be1}e∈E = T1P(V ). For general y ∈ int P(V ), the result follows. Therefore,
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given any path γ(t)∈ int P(V ) that is differentiable, which implies that γ̇(t)∈ Tγ(t)P(V ),

the path can be realized by system (2.2) using an appropriate choice of measurable control

inputs {ue(t)}e∈E .

Now we address our main motivation for proving Theorem 2.2.4. The following ex-

ample demonstrates the possibility of achieving local controllability of system (2.2) even

when the system is underactuated, in contrast with the requirement in Theorem 2.2.5.

Example 2.2.6. Let V = {1, ...,4}, E0 = {(1,2),(2,1)}, and E1 = {(2,3),(3,4),(4,2)}

(see Fig. 2.1). We set G = (V ,E ), where E = E0∪E1. We consider a variant of the control

system (2.2) in which the control inputs ue(t), e ∈ E0 are each set to 1, and the inputs ue(t),

e ∈ E1 can be designed:

ẋ(t) = ∑
e∈E0

Bex(t)+ ∑
e∈E1

ue(t)Bex(t), x(0) = x0 ∈P(V ). (2.10)

Let xd = [1
4

1
4

1
4

1
4 ]

T ∈P(V ). The Kalman rank condition can be used to verify that

the control system (2.10) linearized about the point xd is controllable. Hence, system

(2.10) is locally controllable (Bloch, 2015); that is, given T > 0, there exists r > 0 and

a neighborhood B(xd,r)∩P(V ) of xd such that for each xd ∈ B(xd,r)∩P(V ), there

exist measurable control inputs ue(t) for e ∈ E1, possibly with negative entries at some

time t, such that x(T ) = xd . Moreover, a straightforward computation of Bey confirms that

span{Bey : e ∈ E1} = co span{Bey : e ∈ E1} for all y ∈ int P(V ). Hence, by Theorem

2.2.4, system (2.10) is locally controllable at xd using only the non-negative control inputs

corresponding to E1, a subset of the edges in E .

The above example can be generalized to give the following sufficient condition for

local controllability.

Theorem 2.2.7. Let G be a strongly connected graph with E = E0∪E1. Let system (2.2) be

small-time locally controllable at xd ∈ int P(V ) without non-negativity constraints on the
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Figure 2.1: (Example 2.2.6) Edges in E0 are Uncontrolled and Denoted by the Red Arrows.

Controlled Edges in E1 are Denoted by the Green Arrows.

Figure 2.2: (Example 2.2.8) Edges in E0 are Denoted by the Red Arrows. Edges in E1 are

Denoted by the Green Arrows.

control inputs. Then the system (2.2) is small-time locally controllable at xd ∈ int P(V ) if

e∈ E1 implies that there exists a directed path (ei)
p
i=1 of length p from the vertex T (e) to the

vertex S(e) such that ei ∈ E1 for all i ∈ {1, ..., p}. In particular, with this assumption on E1,

if the linearization of control system (2.10) is controllable, then system (2.10) is small-time

locally controllable.

The controllability result in Theorem 2.2.5 was proved for the case where all control

inputs can be specified, in contrast to Example 2.2.6, in which only a subset of these inputs

can be designed. To prove Theorem 2.2.5, it was sufficient to assume that the graph G is

strongly connected. The following example shows that when only a small subset of the

control inputs can be designed, strong connectivity of the graph is not a sufficient condition

for proving local controllability of system (2.2).

Example 2.2.8. Let V = {1, ...,4}, E0 = {(1,3),(3,1),(2,3),(3,2)}, and E1 = {(3,4),(4,3)}

(see Fig. 2.2). We set G = (V ,E ), where E = E0∪E1. Note that G is strongly connected.
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We consider the control system (2.10) with this graph. If x0 ∈P(V ) is such that x0
1 = x0

2,

then the solution x(t) of system (2.10) satisfies x1(t) = x2(t) for all t ≥ 0 for any choice

of control inputs ue(t), e ∈ E1. Hence, although G is strongly connected, system (2.10) is

not locally controllable at any point xd ∈P(V ) that satisfies xd
1 = xd

2 . The nature of this

obstruction to controllability is similar to the one in leader-based control of linear consen-

sus protocols (Mesbahi and Egerstedt, 2010), where inputs act at the vertices rather than

the edges, and symmetries in the network with respect to input locations have detrimental

effects on the controllability of the system.

It would be desirable to extend the above controllability results to include target dis-

tributions that lie on the boundary of P(V ). However, one cannot expect to reach target

distributions on the boundary in finite time. The boundary of P(V ) is unreachable if the

initial condition of system (2.2) starts from the interior of P(V ), even if one uses possibly

unbounded but measurable inputs with finite Lebesgue integral. The following counterex-

ample clarifies this point.

Example 2.2.9. Consider system (2.2) for a bidirected graph G with two vertices:

ẋ1(t) = −u(1,2)(t)x1(t)+u(2,1)x2(t), (2.11)

ẋ2(t) = u(1,2)(t)x1(t)−u(2,1)x2(t),

x1(0) = x0
1, x2(0) = x0

2.

Let u(1,2),u(2,1) ∈ L1
+(0,1), the set of positive-valued measurable inputs with finite in-

tegrals over the time interval (0,1). Then the solution, x(t) = [x1(t) x2(t)]T , satisfies:

x1(t) = x0
1−

∫ t

0
(u(1,2)(τ)x1(τ)−u(2,1)(τ)x2(τ))dτ, (2.12)

x2(t) = x0
2 +

∫ t

0
(u(1,2)(τ)x1(τ)−u(2,1)(τ)x2(τ))dτ, (2.13)
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such that x0
1 ∈ (0,1) and x0

2 = 1− x0
1. We assume, without loss of generality, that x1(t)> 0

for all t ∈ [0,1). Then for each T ∈ [0,1), Equations (2.12) and (2.13) imply that:

x1(T ) = x0
1−

∫ T

0

(
u(1,2)(τ)+u(2,1)(τ)−

u(2,1)(τ)
x1(τ)

)
x1(τ)dτ.

From this equation, we can conclude that

x1(1) ≥ x0
1−

∫ 1

0
(u(1,2)(τ)+u(2,1)(τ)x̃1(τ))dτ (2.14)

= exp
(
−
∫ 1

0
(u(1,2)(τ)+u(2,1)(τ))dτ

)
x0

1,

where x̃1 is the solution of the differential equation

˙̃x1(t) = −(u(1,2)(t)+u(2,1)(t))x̃1(t), (2.15)

x̃1(0) = x0
1.

Therefore, it must be true that exp(−
∫ 1

0 (u(1,2)(τ)+u(2,1)(τ))dτ)x0
1 ≤ 0, which yields a

contradiction since x0
1 6= 0.

In the following theorem, we establish a general negative controllability result for the

case where the control inputs are restricted to be bounded.

Theorem 2.2.10. Let x0 ∈ int P(V ) and T ≥ 0. Suppose that the control inputs ue(t)

are essentially bounded over the time interval [0,T ]. Then the solution x(t) of the control

system (2.2) satisfies x(t) ∈ int P(V ) for all t ∈ [0,T ].

Proof. For the sake of contradiction, suppose that there exist bounded piecewise control

inputs ue(t) such that the solution x(t) of the control system (2.2) satisfies x(T ) = xd ∈

Bd(P(V )). Since xd ∈ Bd(P(V )), there exists i ∈ V such that xd
i = 0. Note that xi(t) =

x0
i +∑e∈E0

∫ t
0 ue(τ)xS(e)(τ)dτ−∑e∈E1

∫ t
0 ue(τ)xi(τ)dτ for all t ∈ [0,T ], where E0 is the set of

edges e such that T (e)= i and E1 is the set of edges e such that S(e)= i. Then xi(t)≥ x̂i(t)=
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Figure 2.3: Illustration of the splitting of the graph G in the proof of Theorem 2.2.11. The

graph on the left is the original graph G . The target densities at the red vertices are equal

to zero. The graphs on the right show the splitting of the graph into 3 disjoint graphs with

rooted in-branches whose root vertices, shown in blue, have positive target densities.

exp(−∑e∈E1

∫ t
0 ∑e∈E1 ‖ue‖∞dτ)x0

i = x0
i −∑e∈E1

∫ t
0 ‖ue‖∞x̂i(τ)dτ for all t ∈ [0,T ]. Other-

wise, due to continuity of the solution x(t) with respect to time t, there would exist a time

tin ∈ (0,T ) at which ẋi(tin)< ˙̂xi(tin) and xi(tin) = x̂i(tin). Hence, the inequality xi(t)≥ x̂i(t)

must hold for all t ∈ [0,T ]. However, given the initial assumption that xi(T ) = xd
i (T ) = 0,

this inequality leads to a contradiction since exp(−∑e∈E1

∫ t
0 ∑e∈E1 ‖ue‖∞dτ)x0

i > 0. There-

fore, the boundary set Bd(P(V )) is not reachable in finite time, using piecewise constant

control inputs that are bounded from above by maxe∈E ‖ue‖∞ and bounded from below by

−maxe∈E ‖ue‖∞. This implies that Bd(P(V )) is not reachable in finite time using essen-

tially bounded control inputs, since any essentially bounded function can be approximated

uniformly using piecewise constant functions.

In contrast with the above result, which shows that the boundary points of P(V ) are

not reachable in finite time, the next theorem proves that these points can be reached asymp-

totically as t→ ∞.

Theorem 2.2.11. Suppose that x0 ∈P(V ) is the initial distribution, and xd ∈P(V ) is

the desired distribution. Then for each e ∈ E , there exists a set of time-dependent control

inputs ue :R≥0→R≥0, e∈ E , such that the solution x(t) of the control system (2.2) satisfies

limt→∞ x(t) = xd .
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Proof. We define the set R = {i : xd
i > 0, i = 1, ...,M} with cardinality NR . Let I :

{1,2, ...,NR} →R be a bijective map that defines an ordering on R. Then we recursively

define a collection {Vn} of disjoint subsets of V as follows:

V1 = {I (1)}∪{i ∈ V : xd
i = 0 s.t. i ∈ σxd(I (1))}

Vn = {I (n)}∪{i ∈ V : xd
i = 0 s.t. i ∈ σxd(I (n))

and i /∈ ∪n−1
k=1Vk}

for each n ∈ {2,3, ...,NR}. We note that V = ∪NR
n=1Vn. Let xin ∈ int P(V ) be some

element such that ∑k∈Vn xin
k = xd

I (n) for each n∈ {1,2, ...,NR}. From (Elamvazhuthi et al.,

2019)[Theorem IV.17], we know that there exists a control u1
e : [0,T ]→R≥0 for each e∈ E

such that the solution x(t) of system (2.2) satisfies x(T ) = xin. Now we will design {ue}e∈E

such that ue(t) = u1
e(t) for each t ∈ [0,T ] and ue(t) = ae for each t ∈ (T,∞], where ae is

defined as follows:

ae =


0 if S(e) ∈ Vn and T (e) /∈ Vn, n ∈ {1, ...,NR},

0 if S(e) = I (n) for some n ∈ {1, ...,NR},

1 otherwise.

Then the solution of system (2.2) for t > T can be constructed from the solution of the

following decoupled set of ODEs:

ẏn(t) = −Lout(G̃n)yn(t), t ∈ [T,∞) (2.16)

yn(T ) = y0
n ∈P(Vn)

for n = 1, ...,NR . Here, Gn = (Vn,En) for each n∈ {1, ...,NR}, where e∈ En if S(e),T (e)∈

Vn and ae = 1. See Fig. 2.3 for an illustration. The solution of system (2.16) is related

to the solution of system (2.2) with x(T ) = xin through a suitable permutation matrix P,

defined such that Px(t) = [y1(t) y2(t) ... yNR (t)]. Since each graph Gn has a rooted in-
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branching subgraph, the process generated by −Lout(G̃n)
T has a unique stationary distri-

bution. Moreover, by construction, this unique, globally stable stationary distribution is

the vector [xd
I (n) 01×(|Vn|−1)]

T , where |Vn| is the cardinality of the set Vn. This implies

that limt→∞ P−1y(t) = limt→∞ x(t) = xd . By concatenating the control inputs {u1
e}e∈E and

{ae}e∈E , we obtain the desired asymptotic controllability result.

An interesting aspect of the above proof is its implication that asymptotic controllability

is achievable with piecewise constant control inputs with a finite number of pieces. From

the above result, it follows that any point in P(V ) can be stabilized using a full-state feed-

back controller (Clarke et al., 1997). However, for a general target equilibrium distribution,

a stabilizing controller with a decentralized structure might not exist.

2.3 Stabilization of the Forward Equation of a CTMC

Now we investigate the stabilizability properties of system (2.2). Note that stabilizabil-

ity using centralized feedback follows from the asymptotic controllability result in Theo-

rem 2.2.11 and a result in (Clarke et al., 1997) which states that asymptotic controllability

implies feedback stabilizability. In contrast, our focus in this section is to establish sta-

bilizability using decentralized control laws, which does not follow from (Clarke et al.,

1997).

The problems in Section 2.2 allow the control inputs to be time-varying. We now pose

a problem in which the control inputs are constrained to be time-independent. The motiva-

tion for the following problem is that time-invariant control laws are easier to implement.

However, as a trade-off, only a smaller class of target distributions can be reached using

such control laws as compared to the time-varying case (see Theorem 2.3.4).

Problem 2.3.1. (Open-loop stabilization) Given xd ∈P(V ), determine if there exist glob-

ally bounded time-dependent non-negative control parameters {ue}e∈E for system (2.2)
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such that limt→∞ ‖x(t)−xd‖= 0 for all x0 ∈P(V ).

By addressing Problem 2.2.3 and Problem 2.3.1, we provide a complete characteriza-

tion of the stationary distributions that are stabilizable for CTMCs with forward equation

(2.2) and transition rates ue that may be either time-independent or time-dependent. Al-

though time-independent transition rates of CTMCs have been previously computed in an

optimization framework (Berman et al., 2009), the question of which equilibrium distribu-

tions are feasible has remained unresolved for the case where the target distribution is not

strictly positive on all vertices. While only strictly positive target distributions have been

considered in previous work on control of swarms governed by CTMCs (Berman et al.,

2009), we address the more general case in which the target densities of some states can be

zero. This question was addressed in (Acikmese and Bayard, 2012) for swarms governed

by DTMCs. The problem has also been investigated in the context of consensus protocols

(Chapman, 2015) for strictly positive distributions. In our controller synthesis, we will

relax the assumption of strict positivity for desired target distributions.

Next, we address the feedback stabilization problem for system (2.2). Consider the

following system:

ẋ(t) = ∑
e∈E

ke(x(t))Bex(t), t ∈ [0,∞), (2.17)

x(0) = x0 ∈P(V ).

Problem 2.3.2. (Closed-loop stabilization) Given xd ∈P(V ), determine whether there

exists a decentralized feedback law, defined as a collection of maps k̃e : R2→ R≥0 where

ke(y) = k̃e(yS(e),yT (e)) for each e ∈ E and y ∈ RM, such that for the closed-loop system

(2.17), xd is asymptotically stable and k̃e(xd
S(e),x

d
T (e))= 0 for each e∈ E whenever xd

S(e)> 0.

Remark 2.3.3. (The significance of the condition k̃e(xd
S(e),x

d
T (e)) = 0) Solutions to Prob-

lem 2.3.2 can be inferred from solutions of Problem 2.3.1 only if the constraint k̃e(xd
S(e),x

d
T (e))=
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0 is not imposed on the control laws. If this constraint were not imposed, then agents’ tran-

sition rates would not necessarily be equal to 0 when the forward equation (2.17) reaches

equilibrium. Hence, even when the system reaches equilibrium from a “macroscopic point

of view,” at the microscopic level, agents would still keep switching between vertices of the

graph.

2.3.1 Stabilization of Distributions with Strongly Connected Supports using Open-loop

Control

We now address the feasibility of Problem 2.3.1.

Proposition 2.3.4. Let G be a strongly connected graph. Suppose that x0 ∈P(V ) is an

initial distribution and xd ∈P(V ) is a desired distribution. Additionally, assume that xd

has strongly connected support. Then there is a set of parameters, ae ∈ [0,∞) for each

e ∈ E , such that if ue(t) = ae for all t ∈ [0,∞) and for each e ∈ E in system (2.2), then the

solution x(t) of this system satisfies ‖x(t)− xd‖ ≤ Me−λ t for all t ∈ [0,∞) and for some

positive parameters M and λ that are independent of x0.

Proof. Let Vs ⊂ V be the support of xd . From this vertex set, we construct a new graph

G̃ = (V , Ẽ ), where e = (i, j) ∈ E implies that e ∈ Ẽ if and only if i ∈ Vs implies that j 6∈

V \Vs. Then it follows from (Chapman, 2015)[Proposition 10] that the process generated

by the transition rate matrix−Lout(G̃ )
T has a unique, globally stable invariant distribution

if we can establish that G̃ has a rooted in-branching subgraph. This implies that G̃ must

have a subgraph G̃sub = (V ,Esub) which has no directed cycles and for which there exists

a root node, vr, such that for every v ∈ V there exists a directed path from v to vr. This

is indeed true for the graph G̃ , which can be shown as follows. First, let r ∈ V such that

xd
r > 0. From the assumption that G is strongly connected and the construction of G̃ , it

can be concluded that there exists a directed path in Ẽ from any v ∈ V to r. Now, for each
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n∈Z+, the set of positive integers, let Nn(r) be the set of all vertices for which there exists

a directed path of length n to r. For each n > 1, let ˜Nn(r) = Nn(r)\∪n−1
m=1 Nm(r). We

define Esub by setting e ∈ Esub if and only if e ∈ Ẽ , S(e) ∈ ˜Nn(r), and T (e) ∈ ˜Nn−1(r) for

some n > 1. Then G̃sub = (V ,Esub) is the desired rooted in-branching subgraph.

The matrix −Lout(G̃ )
T is the generator of a CTMC, since Lout(G̃ )

T 1 = 0 and its off-

diagonal entries are positive. Moreover, as we have shown, G̃ has a rooted in-branching

subgraph. Hence, there exists a unique vector z such that −Lout(G̃ )z = 0 and z ∈P(V ).

The vector z is nonzero only on Vs, since the subgraph corresponding to Vs is strongly

connected. Then we consider a positive definite diagonal matrix D ∈ RM×M such that

Dii = xi/xd
i if i ∈ Vs and an arbitrary strictly positive value for any other i ∈ V . The

matrix−DLout(G̃ )
T is also the generator of a CTMC. Moreover, xd is the unique stationary

distribution of the process generated by −DLout(G̃ )
T , since xd lies in the null space of

G = −Lout(G̃ )D by construction. The simplicity of the principal eigenvalue at 0 for the

matrix −DLout(G̃ )
T is inherited by the same eigenvalue of the matrix G. Then the result

follows by setting ae =GT (e)S(e) for each e∈ E and by noting that since GT is the generator

of a CTMC, and its eigenvalue at zero has the aforementioned properties and is simple, then

the rest of the spectrum of G lies in the open left half of the complex plane.

Next, we address Problem 2.3.2.

2.3.2 Stabilization of Distributions with Strongly Connected Supports using Linear

Feedback Laws

In this subsection, we consider the possibility of stabilization using linear feedback

laws. The motivation behind considering linear feedback laws is that this type of controller

is a well-studied class of feedback laws for which there exists a rich literature on compu-

tational approaches for synthesis and design. Moreover, in contrast to stabilization using
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open-loop controls in Section 2.3.1, the controls take zero value at equilibrium and thus

prevent unnecessary switching of agents between states at equilibrium.

Lemma 2.3.5. Define xd ∈ int P(V ). For each e ∈ E and each y ∈ RM, let ke : RM →

(−∞,∞) be given by ke(y) = xd
T (e)yS(e)− xd

S(e)yT (e) in system (2.17). Then, xd is locally ex-

ponentially stable on the space P(V ). That is, there exists r > 0 such that ‖x0−xd‖2 < r

and x0 ∈P(V ) imply that the solution x(t) of system (2.17) satisfies the following inequal-

ity,

‖x(t)−xd‖2 ≤M0e−λ t , (2.18)

for all t ∈ [0,∞) and for some parameters M0 > 0 and λ > 0 that depend only on r. If G is

bidirected, then xd is also asymptotically stable.

Proof. We use the linearization of system (2.2) about xd to establish local exponential

stability. Consider the vector field fe = [ f e
1 f e

2 ... f e
M]T given by

f e
i (y) =


−(xd

T (e)yS(e)− xd
S(e)yT (e))yS(e) if i = S(e),

(xd
T (e)yS(e)− xd

S(e)yT (e))yS(e) if i = T (e),

0 otherwise

for each y ∈ RM. Then for each e ∈ E , we define the matrix Ae ∈ RM×RM as follows:

Ai j
e =



∂ f e
S(e)

∂yS(e)

∣∣∣
y=xd

=−xd
T (e)x

d
S(e) if i = j = S(e),

∂ f e
S(e)

∂yT (e)

∣∣∣
y=xd

= (xd
S(e))

2 if i = S(e), j = T (e),

∂ f e
T (e)

∂yT (e)

∣∣∣
y=xd

=−(xd
S(e))

2 if i = j = T (e),

∂ f e
T (e)

∂yS(e)

∣∣∣
y=xd

= xd
T (e)x

d
S(e) if i = T (e), j = S(e),

0 otherwise.

Now we define the matrix G ∈RM×M as G = ∑e∈E Ae. Note that GS(e)T (e) > 0 for each

e ∈ E , since xd ∈ int P(V ). Moreover, 1T G = 0, and the off-diagonal terms of G are
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positive. Hence, G is an irreducible transition rate matrix. It is a classical result that this

implies that G has its principal eigenvalue at 0, which is simple. The other eigenvalues of

G lie in the open left half of the complex plane. However, note that the equilibrium point

xd is non-hyperbolic, since the principal eigenvalue of G is at 0. Hence, local exponential

stability of the original nonlinear system does not immediately follow. However, it follows

that there exists an (M− 1)−dimensional local stable manifold of the system that is tan-

gential to P(V ) at xd ∈P(V ). Noting that the set {y ∈ RM;∑
M
i=1 yi = c} is invariant for

solutions of the system (2.17) for any c ∈ R, it follows that the stable manifold is in fact in

P(V ). From this, the result follows.

To prove asymptotic stability of xd for bidirected graphs, consider the continuously

differentiable function V : RM→ R≥0 given by

V (y) =
1
2
(y−xd)T D(y−xd) (2.19)

for all y ∈ RM, where D ∈ RM×M is defined as D = [diag(xd)]−1. Then

V̇ (x(t)) = ∑
e∈E

xS(e)(t)(x
d
T (e)xS(e)(t)− xd

S(e)xT (e)(t))
2.

Thus, V̇ (x(t))≤ 0 for all t ∈ [0,∞), with the equality V̇ (x(t)) = 0 holding only when x(t) =

xd . Then, the asymptotic stability of xd follows from LaSalle’s invariance principle (Khalil,

2001) by noting that the set P(V ) is invariant for the system (2.2).

The above lemma implies that if negative transition rates are admissible, then there

exists a linear feedback law, {ke}e∈E , such that ke(xd) = 0 for each e ∈ E and the desired

equilibrium point is locally exponentially stable.

A desirable property of the control system (2.2) is that stabilization of the target equi-

librium can be achieved using a linear feedback law that satisfies positivity constraints

away from equilibrium and is zero at equilibrium. However, any stabilizing linear con-

trol law that is zero at equilibrium and is additionally non-negative everywhere must in
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fact be zero everywhere. To see this explicitly, suppose that ε = [ε1 ... εM]T ∈ RM is a

nonzero element such that xeq± ε ∈P(V ), and suppose that ke(x) is a linear control law.

Then the control law has the form ke(x) = ∑i∈V ai
exi + be, where ai

e and be are gain pa-

rameters. Since the control inputs must take the value 0 at equilibrium, we must have that

be = −∑i∈V ai
exeq

i . Suppose, for the sake of contradiction, that this linear control law sat-

isfies the positivity constraints; that is, the range of ke(x) is [0,∞) for some e ∈ E . Then

we must have that ke(xeq + ε) = ∑i∈V ai
e(x

eq
i + εi)+be = ∑i∈V ai

eεi > 0. This must imply

that ke(xeq− ε) = ∑i∈V ai
e(x

eq
i − εi)+be =−∑i∈V ai

eεi < 0, which contradicts the original

assumption that the control law ke(x) satisfies the positivity constraints. Hence, to ensure

that the control laws satisfy the positivity constraints, we replace them with rational feed-

back control laws ce(x) that produce the same closed-loop system trajectories but respect

the positivity constraints, as desired.

On the other hand, in the next theorem we show that whenever G is bidirected, any

feedback control law that violates positivity constraints can be implemented using a rational

feedback law of the form k(x) = a(x) + b(x) f (x)
g(x) , such that k(x) satisfies the positivity

constraints and is zero at equilibrium.

Theorem 2.3.6. Let G be a bidirected graph. Let ke : RM → (−∞,∞) be a map for each

e ∈ E such that there exists a unique global solution of the system (2.17). Additionally,

assume that x(t) ∈ int P(V ) for each t ∈ [0,∞). Consider the functions mp
e : RM→{0,1}

and mn
e : RM→{0,1}, defined as follows for each e ∈ E :

mp
e (y) = 1 if ke(y)≥ 0, 0 otherwise;

mn
e(y) = 1 if ke(y)≤ 0, 0 otherwise.

Let ce : RM→ [0,∞) be given by

ce(y) = mp
e (y)ke(y)−mn

ẽ(y)kẽ(y)
yT (e)

yS(e)
. (2.20)
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Then the solution x̃(t) of the following system,

˙̃x = ∑
e∈E

ce(x̃(t))Bex̃(t), t ∈ [0,∞), (2.21)

x̃(0) = x0 ∈ int P(V ),

is unique, defined globally, and satisfies x̃(t) = x(t) for all t ∈ [0,∞).

Proof. This follows by noting that the right-hand sides of systems (2.2) and (2.17) are equal

for all t ≥ 0.

We now extend the stabilization results in Lemma 2.3.5 and Theorem 2.3.6 to the more

general case where the target distribution has a strongly connected support and is not nec-

essarily strictly positive everywhere on V . We will need the following preliminary results

to prove these extensions.

Proposition 2.3.7. Let A ∈ RM×M be an essentially non-negative matrix. Let S be the

set of elements k in V such that ∑i∈V Aik < 0. Assume that S is non-empty and that

∑i∈V Ai j ≤ 0 for all j ∈ V . Additionally, suppose that for each j ∈ V \S , there exists a

sequence (in)m
n=1 ∈ V of length m such that i1 = j, im ∈S , and Aikik−1 > 0 for all ik 6= ik−1

with k = 2, ...,m. Then spec(A) lies in the open left half of the complex plane.

Proof. First, we will confirm that spec(A) lies in the closed left half of the complex plane.

Toward this end, let λ > 0 be large enough such that λ I+A is a non-negative matrix, where

I is the M×M identity matrix. Since each column sum of the matrix λ I+A is less than or

equal to λ , it follows from (Minc, 1988)[Theorem 4.2] and (Minc, 1988)[Theorem 1.1] that

the maximal eigenvalue r of λ I+A exists and is bounded from above by λ . Next, we will

establish that r 6= λ . Suppose, for the sake of contradiction, that the maximal eigenvalue

of λ I+A is λ , and hence that A has an eigenvalue at 0. Then, by (Minc, 1988)[Theorem

4.2], there exists a nonzero element of v ∈ RM
≥0 such that Av = 0. Therefore, 1T Av =
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∑i∈V ∑k∈S Aikvk = 0. Hence, since each column of A corresponding to V \S sums to 0,

we can conclude that (Av)k = 0 for all k ∈S . Additionally, we assumed that if j /∈S , then

there exists a sequence (in)m
n=1 ∈ V of length m such that i1 = j, im ∈S , and Aikik−1 > 0

for all ik 6= ik−1 with k = 2, ...,m. Moreover, all the off-diagonal elements of A are non-

negative, and Av = 0. Thus, it must be the case that vi = 0 for all i ∈ N ( j), the set of

vertices that are adjacent to any vertex j ∈ S . The non-negativity of the off-diagonal

elements of A and the fact that Av = 0 also imply that vi = 0 for all i ∈ N (p), for all

p ∈N (k) with k ∈S . Using a similar argument, we can show that since the graph G is

strongly connected, vi = 0 for all i ∈ V . This implies that r 6= λ . Therefore, the matrix A

is Hurwitz. This concludes the proof.

Theorem 2.3.8. Let f : RM1 → RM1 be a Lipschitz-continuous vector field, where M1 is the

cardinality of a set V1 ⊂ V . Also, let M2 be the cardinality of V2 = V \V1. Suppose there

exists a continuously differentiable positive semidefinite function U : RM2 →R≥0 such that

∂U
∂y f(y)≤ 0, with the equalities U(y) = ∂U

∂y f(y) = 0 holding only at a unique fixed point of

f(x) given by y = xd ∈P(V1). Now consider the following system with solution z(t)∈RM,

ż1(t) = f(z1(t))+G2z2(t),

ż2(t) = Az2(t),

z(0) = z0 ∈P(V ), (2.22)

where z(t) = [z1(t)T z2(t)T ]T , G2 ∈RM×M2 , A ∈RM2×M1 , V has cardinality M > M1, and

P(V ) is invariant for the system. Lastly, assume that the matrix A satisfies the sufficient

conditions in Proposition (2.3.7) for spec(A) to lie in the open left half of the complex

plane. Then zd = [(xd)T 0T ]T is the globally asymptotically stable equilibrium point of the

system (2.22).

Proof. From the proof of Proposition (2.3.7), the matrix A is Hurwitz. This implies that

limt→∞ z2(t) = 0. Hence, limt→∞ ∑i∈V1(z1)i(t) = 1, since P(V ) is invariant for the system
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(2.22). We can extend the function U to a function Û on RM by defining Û(y) = U(y1),

where y= [yT
1 yT

2 ]
T , y1 ∈RM1 , and y2 ∈RM2 . Consider the set ∆c = {y∈P(V ) : ∑i∈V2 yi≤

c}. From the assumptions made on U , we have that ∂U
∂y1

f(y1)+
∂U
∂y1

G2y2 ≤ 0 on the set ∆0,

with the equality holding only at y = [(xd)T 0T ]T . Now fix c1 > 0. By the continuity of the

function Ûd(y) := ∂U
∂y1

f(y1)+
∂U
∂y1

G2y2, there exist ε > 0 and c2 > 0 such that Ûd(y)≤−ε

for all y ∈U−1((c1,∞]
)
∩∆c2 . Due to the assumption on the matrix A that ∑i∈V Ai j ≤ 0 for

all j ∈ V , it follows that U−1([0,c1]
)
∩∆c2 is invariant for the system (2.22). This implies

that the equilibrium xd is Lyapunov stable for the system (2.22). Next, we will establish that

the distribution xd is also globally attractive. We know that limt→∞ z2(t) = 0. Since P(V )

is compact, we can conclude that there exists t0 ≥ 0 such that z(t) ∈U−1([0,c1]
)
∩∆c2 for

all t ≥ t0. The constant c1 can be chosen to be arbitrarily small. This implies that lim→∞

z(t) = xd .

Using the results in Proposition 2.3.7 and Theorem 2.3.8, we prove the following re-

sult, which generalizes Lemma 2.3.5 to target distributions that have a strongly connected

support.

Theorem 2.3.9. Let G be a bidirected graph. Suppose that xd ∈P(V ) has a strongly

connected support. Let V1 be the support of xd and V2 = V \V1. Let ke : RM → [0,∞) be

defined as

ke(x) =


a1(xd

T (e)yS(e)− xd
S(e)yT (e)) if S(e),T (e) ∈ V1,

ge ∈ (0,∞) if S(e) ∈ V2,

0 if S(e) ∈ V1,T (e) ∈ V2.

Then xd is the globally asymptotically stable equilibrium point of the system (2.17).

Proof. Without loss of generality, we can assume that V1 is of the form {1, ...,M1} for
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some M1 ≥M. We rewrite system (2.17) as

ẋ(t) = G(x(t))x(t), x(0) = x0 ∈P(V ) (2.23)

with G : RM → RM×M given by G(y) = ∑e∈E ke(y)Be for all y ∈ RM. Since ke(y) = 0

whenever S(e) ∈ V1, T (e) ∈ V2, the state-dependent matrix G can be factorized into the

form

G(y) =

G1(y1) G2

0 A

 , (2.24)

where G1 : RM1 → RM1×M1 and G2 ∈ RM1×M2 . Moreover, since the graph G is strongly

connected and bidirected, from the definition of ke, it follows that A satisfies the sufficient

conditions of Proposition 2.3.7; therefore, spec(A) lies in the open left half of the complex

plane. In addition, since each column of the matrix G(y) sums to 0 and this matrix is

essentially non-negative for each y ∈P(V ), the set P(V ) is invariant for the system

(2.23). Let M1 be the cardinality of the set V1. Additionally, define the function U : RM1 →

R≥0 by U(y) = 1
2(y−yd)T D(y−yd) for all y ∈ RM1 , where yd ∈ int P(V1) such that

xd = [(yd)T 0T ]T ∈P(V ), and D ∈ RM1×M1 is given by D = [diag(xd)]−1. By Lemma

2.3.5, this function satisfies the conditions of Theorem 2.3.8 with respect to the vector field

f(z) = GT
1 (z)z on the set P(V1). Then the result follows from Theorem 2.3.8.

2.3.3 Stabilization of Probability Distributions with Disconnected Supports

In the previous subsection, we were able to only stabilize probability distributions that

have a strongly connected support. The goal in this subsection is to consider the case when

the target distribution is an arbitrary element of P(V ), thus including the possibility that

the support of the probability distribution is not strongly connected. Toward this end, we

define a general class of control laws under which the resulting closed-loop system (2.17)

will have the desired probability distribution as a globally asymptotically stable equilibrium

point.
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Define ke : [0,1]→ [0,umax] as

ke(y) =


ce(y− xeq

S(e)) if y > xeq
S(e)

0 otherwise
(2.25)

where ce : [0,1−xeq
S(e)]→ [0,umax] is a positive-valued function for each e∈ E , and umax > 0

is the upper bound on the transition rate parameters. For each e∈ E , we make the following

assumptions on the function ce:

1. The inequality ce(y)> 0 is satisfied for all y ∈ (0,1− xeq
S(e)].

2. The function ce is non-decreasing on [0,1− xeq
S(e)].

3. The function ce is locally Lipschitz continuous at every point in [0,1− xeq
S(e)], except

for a finite number of points, and right-continuous with left limits at every point in

[0,1− xeq
S(e)].

4. The set of points in [0,1− xeq
S(e)] at which ce is discontinuous is finite.

5. If ce1(0)> 0 for some e1 ∈ E , then ce2(0)> 0 for all e2 ∈ E such that S(e1) = S(e2).

Due to the above assumptions on the function ce, the right-hand side of the ODE (2.17)

can be discontinuous. Hence, the classical solution of the ODE (2.17) might not exist

in general. Therefore, we will consider a generalized notion of solutions using Filippov’s

theory for ODEs with discontinuous right-hand sides (Filippov, 2013). Toward this end, we

define the set-valued map F : P(V )⇒ RM, also known as the Krasovskii regularization

of the vector field f(x) = ∑e∈E ke(xS(e))Bex, as:

F(x) = ∩δ>0 c̄o {f(y) : y ∈ RM & ‖x−y‖ ≤ δ} (2.26)
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for all x ∈P(V ). We will also need the set-valued map F̃ : P(V )⇒ RM defined by

F̃(x) =
{

lim
j→∞

f(x j) : lim
j→∞

x j→ x & lim
j→∞

f(x j) exists
}

(2.27)

for all x ∈P(V ). Then F̃ and F = c̄o F̃ are upper-semicontinuous, closed, and bounded at

each x∈P(V ) (Filippov, 2013)[Lemma 1, Pg. 67]. Let L = {+,−}M. With each `∈L ,

we associate the set-valued map F̃` : P(V )⇒ RM,

F̃`(x) =
{

f`(x)
}
=

{
∑
e∈E

k
`S(e)
e (xS(e))Bex

}
(2.28)

for all x ∈P(V ), where k+e (y) and k−e (y) denote the right limit and left limit, respectively,

of ke(y) at y∈ [0,1]. Since the function ke accepts xS(e) as its argument, the directional limits

of the vector field f at x ∈P(V ) are determined completely by the right and left limits of

the function ke at xS(e). Moreover, due to the assumption of right-continuity of the functions

ce at every x ∈ [0,1− xeq
S(e)], we can infer that F̃(x) = ∪`∈L F̃`(x) for all x ∈P(V ). From

the definition of the set-valued map F, it follows that F(x) is convex for all x ∈P(V ).

Note that P(V ) is a convex and closed set. Whenever the limits lim
j→∞

x j→ x and lim
j→∞

f(x j)

exist for some x ∈P(V ) and sequence {x j} in P(V ), lim
j→∞

f(x j) lies in TxP(V ), the

tangent space of P(V ) at x,

TxP(V ) =

{
y ∈ RM : ∑

v∈V
yv = 0 & yw ≥ 0 whenever xw = 0 for w ∈ V

}
. (2.29)

This leads to the following observation.

Proposition 2.3.10. Let F be the set-valued map defined in Equation (2.26). Then,

F(x) = ∩δ>0 c̄o {f(y) : y ∈P(V ) & ‖x−y‖ ≤ δ}

= c̄o { lim
h→0+

f(x+hy) : y ∈ TxP(V )}

for all x ∈P(V ).
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For a given T > 0, a generalized solution or simply solution of the ODE (2.17) will refer

to an absolutely continuous function x : [0,T ]→ RM such that the following Differential

Inclusion (DI) is satisfied,

ẋ(t) ∈ F(x(t)), (2.30)

for almost every (a.e.) t ∈ [0,T ] and x(0) = x0. We will be interested only in those solutions

x(t) that are viable in P(V ), meaning that x(t) ∈P(V ) for all t ≥ 0. In the context

of this subsection, only viable solutions are physically meaningful since the density of

agents in any state (vertex) cannot be negative. Hence, we will first establish that for a

given x0 ∈P(V ), at least one global viable solution of the system (2.30) (and hence a

generalized solution of system (2.17)) exists.

Theorem 2.3.11. (Viability) Given x0 ∈P(V ), there exists at least one global viable

solution of the system (2.17).

Proof. We define the contingent cone (Aubin and Frankowska, 2009) of the set P(V ) at

a point z ∈P(V ) as

T−(z) =
{

y ∈ RM : liminf
h→0+

dist(z+hy,P(V ))

h
= 0
}
. (2.31)

where dist(x,A) := supp∈A{‖x− p‖} for each x ∈ RM and A ⊆ RM Then, from (Aubin

and Frankowska, 2009)[Lemma 4.2.4], we know that T−(z) = TzP(V ) for all z ∈P(V ).

Moreover, F is upper-semicontinuous, closed, and compact-valued, and it is defined on

a closed domain P(V ). From Proposition 2.3.10, it follows that F(z) ⊂ T−(z) for all

z ∈P(V ). Hence, it follows from the Local Viability Theorem (Aubin and Frankowska,

2009)[Theorem 10.1.4] that there exists a solution x : [0, t f ]→P(V ) of the DI (2.30)

that is viable in P(V ) for some t f > 0, i.e., a local viable solution exists. Since F(z) is

uniformly bounded for all z ∈P(V ) and P(V ) is a compact subset of RM, we can take

t f = ∞ (Aubin and Frankowska, 2009)[Theorem 10.1.4], and hence x(t) can be extended

to a global viable solution.
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In the following theorem, we note that the derivative of any solution of the DI (2.30)

can be expressed as a convex combination of elements in F(x(t)) for a.e. t ≥ 0 and that

this representation can be constructed using measurable functions. The theorem and its

proof are minor modifications of the statement and proof of the Carathéodory represen-

tation theorem (Aubin and Frankowska, 2009)[Theorem 8.2.15], and are adapted for our

purposes.

Lemma 2.3.12. Let x : [0,∞)→P(V ) be a global viable solution of the DI (2.30). Then

there exist measurable functions λ+
v : [0,∞)→ R≥0, λ−v : [0,∞)→ R≥0 for each v ∈ V

such that

ẋ(t) = ∑
e∈E

λ
+
S(e)(t)k

+
e (xS(e)(t))Bex(t) + ∑

e∈E
λ
−
S(e)(t)k

−
e (xS(e)(t))Bex(t)

and

∑
v∈V

λ
+
v (t)+ ∑

v∈V
λ
−
v (t) = 1 (2.32)

for a.e. t ∈ [0,∞).

Proof. Suppose that x : [0,∞)→P(V ) is a solution of the DI (2.30). We define the set

Q = {y ∈ R2M

≥0 : ∑
2M

i=1 yi = 1}. Let I : {1, ...,2M} → {+,−}M be a bijective map, i.e., an

ordering on {+,−}M. Then consider the map h : R2M

≥0× (RM)2M → RM defined by

h(γ1, ...,γ2M ,y1, ...,y2M) =
2M

∑
i=1

γiyi (2.33)

and the measurable set-valued map H : [0,∞)⇒ R2M

≥0× (RM)2M
defined by

H(t) = Q× F̃I (1)(x(t))× ...× F̃I (2M)(x(t)) (2.34)

for all t ∈ [0,∞). We recall that F(x(t)) = c̄o F̃(x(t)) = ∪`∈L F̃`(x(t)) for all t ∈ [0,∞).

Hence, ẋ(t) ∈ g(t,H(t)) for a.e. t ∈ [0,∞), where g(t,z) = h(z) for all

z = (γ1, ...,γ2M ,y1, ...,y2M)T ∈R2M

≥0× (RM)2M
. The map g(t,z) is a Carathéodory map, i.e.,
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for every t ∈ [0,∞) the map z 7→ g(t,z) is continuous and for every z ∈ R2M

≥0× (RM)2M
the

map t 7→ g(t,z) is measurable. Then it follows from the inverse image theorem (Aubin and

Frankowska, 2009)[Theorem 8.2.9] that there exists a measurable map

t 7→ (γ1(t), ...,γ2M(t),y1(t), ...,y2M(t))T such that

ẋ(t) = g(t,(γ1(t), ...,γ2M(t),y1(t), ...,y2M(t))T ) = h(γ1(t), ...,γ2M(t),y1(t), ...,y2M(t))

for a.e. t ∈ [0,∞). From this the result follows.

Remark 2.3.13. Henceforth, in the following results, when we refer to the functions λ+
v :

[0,∞)→ R+, λ−v : [0,∞)→ R+ for v ∈ V , we will mean measurable functions such that

equation (2.32) in Lemma 2.3.12 is satisfied for a given solution x(t) of the DI (2.30).

In the following lemma, we establish some monotonicity properties of the solutions of

the DI (2.30). In particular, if the agent density in a given state is below the desired value

over a certain time interval, then it is non-decreasing since the outflow of agents from the

state is zero over that time interval. This lemma lies at the heart of the proof of the main

stability theorem (Theorem 2.3.17).

Lemma 2.3.14. Suppose that x : [0,T ]→P(V ) is a local viable solution of the DI (2.30)

for a given T > 0, and that xv(t)< xeq
v for all t ∈ [0,T ]. Then xv(t) is non-decreasing over

the time interval [0,T ].

Proof. Let x : [0,T ]→P(V ) be a local viable solution of the DI (2.30). Then xv(t) is

differentiable almost everywhere on t ∈ [0,T ]. Suppose ẋv(s) exists for some s ∈ [0,T ].

Note that k+e (xv(t)) = k−e (xv(t)) = 0 for all t ∈ [0,T ] and for all e such that S(e) = v. This

fact, along with the assumption that xv(t)< xeq
v for all t ∈ [0,T ], implies that ẋv(s)≥ 0. The
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result that xv(t) is non-decreasing for t ∈ [0,T ] follows by noting that

xv(t) = x0
v +

∫ t

0
ẋv(s)ds

= ∑
p∈{+,−}

∑
w∈N in(v)

∫ t

0
λ

p
w(τ)k

p
(w,v)(xw(τ))xw(τ)dτ

− ∑
p∈{+,−}

∑
w∈N out(v)

∫ t

0
λ

p
v (τ)k

p
(v,w)(xv(τ))xv(τ)dτ

for all t ∈ [0,T ].

If the function ke is continuous at the origin, then the stability theorem (Theorem 2.3.17)

can be directly proved using the above lemma. To account for the possibility of disconti-

nuity of ke(xv) at xv = 0 for some e ∈ E , we prove the following proposition.

Proposition 2.3.15. Let x : [T1,T2]→P(V ) be a local viable solution of the system (2.17)

such that xeq
v ≤ xv(t) < xeq

v + ε for all t ∈ [T1,T2], for some T2 > T1 > 0, v ∈ V , and

ε > 0. Additionally, assume that ce(0) > 0 for some (and hence all) e ∈ E such that

S(e) = v. Suppose that there exists z ∈N in(v) such that
∫ T2

T1
λ+

z (τ)k+
(z,v)(xz(τ))xz(τ)dτ +∫ T2

T1
λ−z (τ)k−

(z,v)(xz(τ))xz(τ)dτ > 2ε . Then there exists a constant Cv > 0, which depends

only on v∈ V , such that
∫ T2

T1
λ+

v (τ)k+
(v,w)(xv(τ))xv(τ)dτ +

∫ T2
T1

λ−v (τ)k−
(v,w)(xv(τ))xv(τ)dτ >

Cvε for all w ∈N out(v).

Proof. From the assumed bounds on xv(t) over the time-interval [T1,T2], we can conclude

that
∫ T2

T1
ẋv(τ)dτ ≤ ε . Hence, it follows that

xv(T2)− xv(T1) =
∫ T2

T1

ẋv(τ)dτ =

∑
p∈{+,−}

∑
w∈N in(v)

∫ T2

T1

λ
p
w(τ)k

p
(w,v)(xw(τ))xw(τ)dτ −

∑
p∈{+,−}

∑
w∈N out(v)

∫ T2

T1

λ
p
v (τ)k

p
(v,w)(xv(τ))xv(τ)dτ < ε.
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Since
∫ T2

T1
λ+

z (τ)k+
(z,v)(xz(τ))xz(τ)dτ+

∫ T2
T1

λ−z (τ)k−
(z,v)(xz(τ))xz(τ)dτ > 2ε , we can con-

clude that

∑
p∈{+,−}

∑
w∈N out(v)

∫ T2

T1

λ
p
v (τ)k

p
(v,w)(xv(τ))xv(τ)dτ > ε.

From this, it follows that

max
w∈N out(v)

∑
p∈{+,−}

∫ T2

T1

λ
p
v (τ)k

p
(v,w)(xv(τ))xv(τ)dτ >

ε

|N out(v)|
,

where |N out(v)| represents the number of outgoing edges from v. Let cmax = max
w∈N out(v)

{k+
(v,w)(1)}

and cmin = min
w∈N out(v)

{k+
(v,w)(x

eq
v )}. Then it follows that

∑
p∈{+,−}

∫ T2

T1

λ
p
v (τ)k

p
(v,w)(xv(τ))xv(τ)dτ >

cmin

cmax

ε

|N out(v)|

for all w ∈N out(v). Note that cmin 6= 0 due to the assumption that ce(0)> 0 for some (and

hence all) e ∈ E such that S(e) = v. Hence, we have our result.

The above proposition does not hold true if assumption 5 is not satisfied by all functions

ce. This can happen only when, for a given vertex v ∈ V , the functions ce(y) are discon-

tinuous at y = 0 for some but not all outgoing edges e from v. In fact, violation of this

assumption can create spurious equilibrium solutions of the DI (2.30). This is highlighted

in the following counterexample.

Example 2.3.16. Let V = {1,2,3} and E = {(1,2),(2,1),(2,3),(3,2)}. Suppose xeq =

[0.5 0.5 0]T . Let c(1,2) be an arbitrary function with the appropriate domain and range

satisfying assumptions 1-5. The other functions ce are defined as

c(2,1)(y) = y for all y ∈ [0,0.5]

c(2,3)(y) = 1 for all y ∈ [0,0.5]

c(3,2)(y) = 1 for all y ∈ [0,1]
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Then x = [0 0.5 0.5]T is an equilibrium solution of the DI (2.30), that is, 0 ∈ F(x). This is

true because k+
(1,2)(x1) = k+

(2,1)(x2) = 0 and k+
(2,3)(x2)x2− k+

(3,2)(x3)x3 = 0. Hence,

∑
e∈E

k+e (x)Bex = 0. Note that x is not an equilibrium point of the original system (2.17)

because ∑
e∈E

ke(x)Bex 6= 0.

Now, we are ready to prove our main result.

Theorem 2.3.17. Let x0,xeq ∈P(V ). Then a global viable solution x : [0,∞)→P(V )

of the DI (2.30) exists. Moreover, the equilibrium point xeq is asymptotically stable with

respect to all global viable solutions of the DI (2.30).

Proof. The existence of global viable solutions has been already established (Theorem

2.3.11). Lyapunov stability of the equilibrium point xeq follows from Lemma 2.3.14 and

by noting that x(t) ∈P(V ) for all t ≥ 0. Suppose, for the sake of contradiction, that

the limit condition lim
t→∞
‖x(t)− xeq‖ = 0 is not satisfied by a global viable solution. Then

there exists v1 ∈ V such that lim
t→∞

xv1(t) 6= xeq
v1 . Since x(t) ∈P(V ) for all t ≥ 0, and from

the monotonicity property of the components of the solution proved in Lemma 2.3.14,

we can assume that the vertex v1 ∈ V is such that xv1(t) > xeq
v1 for all t ≥ T , for some

T ≥ 0. Then there exists an increasing sequence of positive numbers (Tn)
∞
n=1 such that

lim
n→∞

Tn = ∞ and xv1(Tn) > xeq
v1 + ε0 for all n ∈ Z+ for some ε0 > 0 independent of n. Note

that |ẋv1(t)| ≤ Cumax for a.e. t ∈ [0,∞), for some constant C > 0. Hence, there exists

∆T > 0 such that xv1(t)> xeq
v1 +

ε0
2 for all t ∈ [Tn,Tn+∆T ] and all n∈Z+. Now we consider a

subsequence of (Tn)
∞
n=1. We use the same notation (Tn)

∞
n=1 to denote this new subsequence,

and choose this subsequence such that Tn+1−Tn > ∆T for all n ∈Z+. Let T̃n = Tn+∆T for

all n∈Z+. From this and the assumption that ce is non-decreasing on [0,1−xeq
v1 ], it follows

that ∑p∈{+,−}
∫ T̃n

Tn
λ

p
v1(τ)k

p
e (xv1(τ))xv1(τ)dτ > ε1 for some ε1 > 0, for all e ∈ E such that

S(e) = v1, and for all n ∈ Z+.

Next, let µ = (ei)
m
i=1 be a directed path from the node S(e1) = v1 to some node T (em) =
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vm+1 such that lim
t→∞

xvm+1(t)< xeq
vm+1 and lim

t→∞
xvg(t)= xeq

vg with vg = S(eg) for all g∈{2, ...,m}.

Since the graph G is strongly connected, and from the result in Lemma 2.3.14, such a path

necessarily exists. Now, there are two possibilities. Either there exists some j ∈ {2, ...,m}

such that k+e j
(xeq

S(e j)
)xeq

S(e j)
= 0 for some j ∈ {2, ...,m}, or such a j does not exist. We will

consider the first possibility and show that such a j cannot exist due to the assumption made

on the path µ , and then consider the second possibility. Let j be the smallest element of

{2, ...,m} such that k+e j
(xeq

S(e j)
)xeq

S(e j)
= 0. We know that

∑
p∈{+,−}

∫ T̃n

Tn

λ
p
v1
(τ)kp

e1
(xv1(τ))xv1(τ)dτ > ε1 (2.35)

for some ε1 > 0 and for all n ≥ N. It follows from Proposition 2.3.15 that if N is large

enough, then since lim
t→∞

xv2(t)= xeq
v2 , we have that ∑p∈{+,−}

∫ T̃n
Tn

λ
p
v2(τ)k

p
e2(xv2(τ))xv2(τ)dτ >

ε2 for some ε2 > 0 depending only on ε1, for all n≥N. Using the same argument, it follows

that if N is large enough, then since lim
t→∞

xvg(t) = xeq
vg for all g = {3, ..., j−1}, we have that

∑p∈{+,−}
∫ T̃n

Tn
λ

p
w(τ)k

p
e (xvg(τ))xvg(τ)dτ > εg for some εg > 0 depending only on ε1, for all

n≥ N and for all g = {2, ..., j−1}. This implies that if N is large enough,

∫ T̃n

Tn

ẋw(τ)dτ = (2.36)

∑
p∈{+,−}

∑
a∈N in(w)

∫ T̃n

Tn

λ
p
a (τ)k

p
(a,w)(xa(τ))xa(τ)dτ

− ∑
p∈{+,−}

∑
a∈N out(w)

∫ T̃n

Tn

λ
p
w(τ)k

p
(w,a)(xw(τ))xw(τ)dτ

> ε j−1−δn

for all n ≥ N, with w = S(e j). Here, δn > 0 is an n-dependent constant, yet to be defined,

that satisfies the inequality ∑
p∈{+,−}

∑a∈N out(w)
∫ T̃n

Tn
λ

p
w(τ)k

p
(w,a)(xw(τ))xw(τ)dτ < δn for all

n ∈ Z+. Since k+
(w,a)(x

eq
w )xeq

w = 0 for all a ∈N out(w) and lim
t→∞

xw(t) = xeq
w , we know that δn

can be chosen such that lim
n→∞

δn = 0. This last observation and the inequality (2.36) lead to a
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contradiction that xw(T̃n)> ε j−1−δn > 0 for all n≥N if N is large enough. Hence, the sec-

ond possibility must be true; i.e., that there exists no j ∈ {2, ...,m} such that k+e j
(xeq

v j )x
eq
v j = 0.

This implies that ke j must be discontinuous at xeq
S(e j)

, with k+e j
(xeq

v j )x
eq
v j > 0 for each j ∈

{2, ...,m}. Then Proposition 2.3.15 implies that ∑p∈{+,−}
∫ T̃n

Tn
λ

p
vg(τ)k

p
eg(xvg(τ))xvg(τ)dτ >

εg for some εg > 0 depending only on ε1, for all g∈ {2, ...,m}, and for all n≥N if N is large

enough. This contradicts the assumption that lim
t→∞

xvm+1(t) < xeq
vm+1 for all t ≥ 0. Hence, it

must be true that lim
t→∞

xv1(t) = xeq
v1 .

Simulations

In this subsection, we numerically verify the effectiveness of the decentralized feedback

controllers that are defined in Lemma 2.3.5 (the linear controller) and Theorem 2.3.17. The

controllers were constructed to redistribute populations of N = 80 and N = 1200 agents

on the six-vertex bidirected graph shown in Fig. 2.4. In all cases, the initial distribu-

tion of agents was set to x0 = [0.2 0.1 0.2 0.15 0.2 0.15]T , and the desired distribution

was xd = [0.1 0.2 0.05 0.25 0.15 0.25]T . For both feedback controllers, the numerical

solution of the mean-field model (2.17) was compared to stochastic simulations of the

CTMC characterized by expression (2.1). This CTMC was simulated using an approxi-

mating DTMC that evolves in discrete time. The probability that an agent i in state (vertex)

S(e), e ∈ E , at time t transitions to state T (e) at time t +∆t was set to:

P(Xi(t +∆t) = T (e)|Xi(t) = S(e)) = ke

(
1
N

Np(t)
)

∆t.

Here, {ke}e∈E is the set of feedback laws and Np(t) = [N p
1 (t) N p

2 (t) ... N p
M(t)]T , where

N p
v (t) is the number of agents in state v ∈ V at time t. We assume that each agent can

measure the agent populations in its current state and in adjacent states.

In Figs. 2.5 and 2.6, we compare simulations of the closed-loop system (2.17) with the

feedback controllers to simulations of the open-loop system (2.2). The controller for the
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Figure 2.4: Six-vertex Bidirected Graph.

open-loop system was constructed by setting the right-hand side of system (2.2) equal to

Gx = −L(G )Dx, where L(G ) is the Laplacian matrix of the graph G and D is a diagonal

matrix with entries Di j = 1/xd
i if i = j, Di j = 0 otherwise. This makes the desired distribu-

tion xd invariant for the corresponding CTMC. The transition rates (control inputs) for this

controller were defined as ue(t) = GT (e)S(e) for all t ∈ [0,∞), e ∈ E . Fig. 2.5 shows that

the open-loop controller produces large variances in the agent populations at steady-state.

As an expected consequence of the law of large numbers, these variances are smaller for

N = 1200 agents than for N = 80 agents. In comparison, the variances are much smaller

when the feedback controllers are used, as shown in Fig. 2.6. This is due to the property

of the feedback controllers that as the agent densities approach their desired equilibrium

values, the transition rates tend to zero. This property reduces the number of unneces-

sary agent state transitions at equilibrium. Using open-loop control, the agents’ states keep

switching and never reach steady-state values. In contrast, using the feedback controllers,

the agents’ states remain constant after a certain time.

As discussed in beginning of this section, the underlying assumption of using the mean-

field models (2.2) and (2.17) is that the swarm behaves like a continuum. That is, the ODEs

(2.2) and (2.17) are valid as number of agents N→ ∞. Hence, it is imperative to check the

performance of the feedback controllers for different agent populations. We observe in Fig.

2.6b that in the case of N = 1200 agents, the stochastic simulation follows the mean-field

model solution quite closely for both feedback controllers. In addition, in all simulations,

the numbers of agents in each state remain constant after some time; in the case of N = 80

63



0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x
1

x
2

x
3

x
4

x
5

x
6

(a) Open-loop system, N = 80
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(b) Open-loop system, N = 1200

Figure 2.5: Trajectories of the Mean-Field Model (Thick Lines) and the Corresponding

Stochastic Simulations (Thin Lines).

agents, the fluctuations stop earlier than in the case of N = 1200 agents.

Next, we numerically verify the effectiveness of the decentralized feedback strategy

presented in Section 2.3.3 in two scenarios with different graph topologies and agent pop-

ulation sizes. In the first scenario, we redistribute N = 60 agents over a directed 6-vertex

cycle graph with V = {1, ...,5}, E = {(v,v+1) : v∈ V }∪{(6,1)}. The initial distribution

of agents was set to x0 = [0.2 0.1 0.2 0.15 0.2 0.15]T , and the target distribution was

xeq = [0.25 0 0.25 0 0.25 0.25]T . Note that the target fractions of agents are zero for

two states. Figs. 2.7a and 2.7b compare the solution of the mean-field model (2.17) to

a stochastic simulation of the CTMC characterized by expression (2.1) for two different

control laws that we design according to equation (2.25).

In Fig. 2.7a, we have used a discontinuous control law {ke(·)} by setting ce(y) = 1/S(e)

for all y ∈ [0,1− xeq
S(e)]. We call this control law controller 1. As shown in the figure, the

transitions exhibit chattering behavior that is typical of discontinuous control laws. Also,

as a consequence of the transition rates not tending to zero near the equilibrium, the agents

can transition between states with a high probability even near equilibrium. On the other
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(a) Closed-loop system with linear controller, N =

80
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(b) Closed-loop system with linear controller,

N = 1200

Figure 2.6: Trajectories of the Mean-Field Model (Thick Lines) and the Corresponding

Stochastic Simulations (Thin Lines).
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(a) Closed-loop system with controller 1,

N = 60
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(b) Closed-loop system with controller 2,

N = 60

Figure 2.7: Trajectories of the Mean-Field Model (Thick Lines) and the Corresponding

Stochastic Simulations (Thin Lines).
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hand, in Fig. 2.7b, we have used a Lipschitz continuous law {ke(·)} by setting ce(y) = y for

all y ∈ [0,1− xeq
S(e)]. We call this control law controller 2. The fractions of agents in each

state exhibit fewer fluctuations. The figures show that the stochastic simulation follows

the mean-field model solution fairly closely for both feedback controllers. In addition, the

fractions of agents in each state remain constant after some time.

2.4 Controllability and Stabilization of a Model for Herding a Swarm using a Leader

In this section, we will consider the controllability and stabilization problem for herding

a swarm of agents using a single leader agent. The leader agent performs a sequence of

deterministic transitions from one vertex to another. The leader’s location at time t is

denoted by `(t) ∈ V .

The transition rates ue(t) are constrained in this section by the leader’s location `(t). In

particular, for each e ∈ E and each t ≥ 0, we set

ue(t) = 1+u0
e(x(t)) if S(e) = `(t),

u0
e(x(t)) otherwise

for a set of Lipschitz functions u0
e : P(V )→R≥0, which model inter-follower interactions.

For example, the followers could have an attractive effect on each other, in which case the

interaction could be modeled as u0
e(x) = xT (e). Alternatively, u0

e(·) could model congestion

affects by setting u0
e(x) = 0 whenever xT (e) exceeds some threshold value.

Then for a given leader trajectory ` : R≥0→ V , the system (2.2) can be rewritten as

ẋ(t) = ∑
e∈E

u0
e(x(t))Bex(t)+D`(t)x(t), t ∈ [0,∞),

x(0) = x0 ∈P(V ), (2.37)

where, for each v ∈ V , the matrix Dv ∈ RN×N is given by

Dv = ∑
e∈E ,S(e)=v

Be. (2.38)
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We make the following assumptions about the agents’ capabilities for the case of non-

interacting agents (i.e., u0
e = 0 for all e ∈ E ):

1. The leader can perfectly localize itself in V ; i.e., it knows its location l(t) ∈ V at

each time t.

2. The leader can measure the density of follower agents xl(t)(t) that are at its current

location l(t) at time t.

3. Each follower can sense whether the leader is present at the follower’s current loca-

tion.

We can now state the control problems that we address in this section. The first problem

relates to the controllability of system (2.37).

Problem 2.4.1. Given a target probability distribution xeq ∈P(V ) among the states in

V , and a time T > 0, construct a trajectory ` : [0,T ]→ V of the leader agent such that

x(T ) = xeq.

After addressing the controllability problem, we will construct solutions for the follow-

ing stabilization problem.

Problem 2.4.2. Given a target probability distribution xeq ∈P(V ) among the states in

V , design the leader agent’s trajectory ` : R≥0→ V so that limt→∞ x(t) = xeq.

2.4.1 Controllability

In this subsection, we will address Problem 2.4.1. It is a standard approach in con-

trol theory literature (Cheng, 2005; Sun et al., 2002) to study controllability properties of

switched systems of the form (2.37) using controllability properties of a related relaxed sys-

tem. The controllability results in (Cheng, 2005; Sun et al., 2002) are restricted to bilinear

67



systems. Since system (2.37) is not bilinear in general, we will perform our controllability

analysis using the concept of relaxed controls (Young, 1980; Fattorini, 1999). The ap-

proach of using relaxed controls to study controllability properties of herding models was

first performed in (Colombo and Pogodaev, 2012), where the authors studied the reachabil-

ity properties of the differential inclusion based herding model that was initially presented

in (Bressan and Zhang, 2012). In contrast to the models used in (Bressan and Zhang, 2012;

Colombo and Pogodaev, 2012), where the swarm of followers was represented using a set,

in this work the swarm is represented as a probability distribution. Following this approach,

we first prove the controllability of the following relaxed system,

ẏ(t) = ∑
e∈E

u0
e(y(t))Bey(t)+ ∑

v∈V
αv(t)Dvy(t)

t ∈ [0,∞), (2.39)

y(0) = x0 ∈P(V ),

where αv(t) is a non-negative function for each v ∈ V .

If system (2.39) is controllable with α(t) = [α1(t) ... αM(t)]T as the control inputs, then

it can concluded that system (2.37) is controllable. In order to establish controllability of

the relaxed system (2.39), we will show that the span of the set ∪v∈V {Dvx} is equal to

M− 1 for all x ∈P(V ). To conclude this, we will use some spectral properties of Q :=

∑v∈V Dv = ∑e∈E Be that can be established using the Perron-Frobenius theorem (Berman

and Plemmons, 1994) for positive matrices. These properties are stated in Lemma 2.4.3

below. Since the proof of this Lemma is standard in the literature (see for example (Berman

et al., 2009)[Theorem 1]), we omit it here. Here and in the following sections, we define

int P(V ) = {x ∈P(V );xv > 0 ∀v ∈ V }.

Lemma 2.4.3. The matrix Q has rank M−1 with 0 as its principal eigenvalue. Moreover,

there exists β ∈ int P(V ) such that Qβ = 0.
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Lemma 2.4.4. Let xeq ∈ int P(V ) be an equilibrium point of the system (2.39) with steady-

state control input αss = [αss
1 ... αss

M ]T ∈ int P(V ). Let T > 0 be given. Then there exists

a neigborhood U of P(V ), such that for each x0 ∈ U, there exists a set of measurable

functions α̃v : [0,T ]→ [0,1] such that ∑v∈V α̃v(t) = 1 for almost every t ∈ [0,1] and the

solution x(t) of the system (2.39) satisfies x(T ) = xeq, with αv(t) = α̃v(t)+αss
v for all v∈V

and almost every t ∈ [0,T ].

Proof. Fix x ∈ int P(V ). We will show that the set Ax = {∑v∈V γvDvx; [γ1 ... γM]T ∈

RM, ∑v∈V γv = 0} is an (M− 1)-dimensional subspace of RM. This would imply that

(2.39) is locally controllable at x on P(V ), i.e., there is a neighborhood U of x in P(V )

in which system (2.39) is controllable to xeq.

According to Lemma 2.4.3, the matrix Q has rank M− 1. Moreover, there exists β =

[β1 ... βM] ∈ int P(V ), such that Qβ = 0. Note that Dvx = xv(Dv)
v, where (Dv)

v denotes

the vth column of Dv. Therefore, we can conclude that Ax
r = {∑v∈V γvDvx; [γ1 ... γM]T ∈

RM} has dimension M−1. Let y = ∑v∈V γvDvx be an element of Ax
r for some [γ1 ... γM] ∈

RM. Suppose that ∑v∈V γv = c. Then setting ηv = γv− cβv
xv ∑w∈V βw

for each v ∈ V , we note

that y = ηvDvx and ∑w∈V ηw = 0. This implies that Ax = Ax
r and hence the set Ar is an

(M− 1)-dimensional subspace of RM. This implies that there are sufficient number of

control directions for system (2.39) on the (M− 1)-dimensional submanifold P(V ) in a

neighborhood of x. This concludes the proof.

In order to prove the next result, we will need some new defintions and terminologies

from measure theory (Bogachev, 2007). Let C(V ) denote the space of continuous functions

on V , with the standard discrete topology on V . The space L1(0,T ;C(V )) is defined by

L1(0,T ;C(V )) = { f : (0,T )→C(V ) is a measurable function;
∫ T

0
‖ f (t)‖∞dt < ∞}

where ‖ f (t)‖∞ denotes the maximum of the function f (t)∈C(V ) attained over V . We will

also need the space R(0,T ;V ), which will be used to denote the set of relaxed controls, i.e.,
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the set of elements e for which e(t) is probability measure on C for almost every t ∈ (0,T ).

Since the set V has finite cardinality, we can identify the set of probability measures on V

with P(V ). Thus, if µ is a relaxed control, there exists a time-dependent vector-valued

function α(t) = [α1(t)...αv(t)]T such that µ(t,U ) =∑v∈U µ(t,v) =∑v∈U αv(t) for almost

every t ∈ (0,T ) and all U ⊂ V . Then the solution of the system (2.39) coincides with the

solution of the system

ż(t) = ∑
e∈E

u0
e(z(t))Bez(t)+

∫
V

Dvy(t)µ(t,dv) t ∈ [0,∞), (2.40)

z(0) = x0 ∈P(V ),

This implies that we can identify R(0,T ;V ) with L∞(0,1;P(V )). The duality map <

·, ·> from L1(0,T ;C(V ))×R(0,T ;V ) to R will be defined by < µ, f >=
∫ T

0
∫
V f (t)dµ(t,dv)dt

for all f ∈ L1(0,T ;C(V )) and all µ ∈ R(0,T ;V ). A sequence in µn in R(0,T ;V ) is said to

weakly converge to µ ∈ R(0,T ;V ) if

lim
n→∞

< µn, f >=< µ, f > (2.41)

for all f ∈ L1(0,T ;C(V )). Let PC(0,T ;D) denote the elements of R(0,T ;V ) that are

piecewise constant, and for each t ∈ [0,T ] the measure is a Dirac mass, that is, for each

t ∈ [0,T ] there exists a v∈V such that the measure of v is equal to 1. With these definitions,

we can state and prove our next result.

Proposition 2.4.5. Given T > 0 , let y(t) be the solution of the system (2.39) for a set of

controls αv : [0,T ]→ [0,1] such that ∑v∈V αv(t) = 1 for all t ∈ [0,T ]. Then, for each ε > 0

there exists a control ` : [0,T ]→ V such that the solution x(t) of the system (2.37) satisfies

‖x(T )−y(T )‖2 ≤ ε .

Proof. Let α ∈ L∞(0,1;P(V )) and let µ ∈ R(0,T ;V ) be the corresponding relaxed con-

trol. Then from (Fattorini, 1999)[Theorem 12.6.7], there exists a sequence (µn)
∞
n=1 ∈
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PC(0,T ;D) that weakly converges to µ . Let (`n)
∞
n=1 be the sequence of piecewise con-

stant functions from [0,T ] to V constructed by setting, for each t ∈ [0,∞] and each v ∈ V ,

`n(t) = v if µn(t,v) = 1. From (Fattorini, 1999), we know that solutions zn(t) of the system

(2.40) with relaxed control µn converge to the solution z of the system (2.40) with relaxed

control µ , uniformly over the time interval [0,T ]. This concludes the proof.

Lemma 2.4.4 states that trajectories of system (2.39) can be approximated arbitrarily

well using trajectories of system (2.37). Combining Lemma 2.4.4 and Proposition 2.4.5,

we obtain the following main theorem on approximate controllability of system (2.37),

which gives an affirmative answer to a weaker form of Problem 2.4.1 for which the state at

final time is only required to be within distance ε of the target final state.

Theorem 2.4.6. Let xeq ∈ int P(V ) be an equilibrium point of the system (2.39) with

steady-state control input αss = [αss
1 ... αss

M ]T ∈ int P(V ). Additionally, let T > 0. Then

there exists a neigborhood U of P(V ), such that for each x0 ∈U and each ε > 0, there

exists a control ` : [0,T ]→ V such that the solution x(t) of the system (2.37) satisfies

‖x(T )−xeq‖2 ≤ ε .

Remark 2.4.7. (Lack of Global Controllability) While Theorem 2.4.6 states that system

(2.37) is locally approximately controllable about an equilibrium point xeq, in general,

we cannot expect global controllability of the system for any T > 0. For example, take

the two node graph G , with V = {1,2}. Then, for a given positive parameter c, we set

u(1,2) = cy2
2 and u(2,1) = cy2

1, for all y1,y2 ∈ [0,1]. If x0
1 < 0.5 and c > 0 is large enough,

then limt→0+ ẋ1(t) < 0 for any choice of piecewise constant `(t). This implies that system

(2.37) is not controllable to the equilibrium point xeq = [0.5 0.5]T from x0 for any final time

T > 0.

Remark 2.4.8. (Unbounded Speed of the Leader) It is important to note that in order to

prove controllability of the system (2.37), we have implicitly assumed that the leader can
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switch between states arbitrarily fast. This implies that the leader can move at arbitrarily

large speeds in space, which might not be a realistic assumption in practice. In practice,

the leader’s speed will have an upper bound, which implies a lower bound on the switching

times. This would, in turn, impose a lower bound on the parameter ε in Theorem 2.4.6 so

that the approximate controllability result remains true. However, it is difficult to analyt-

ically quantify such a lower bound on ε as a function of a lower bound on the switching

times.

2.4.2 Stabilization

From here on, we will assume that the followers are not interacting with one another;

that is, uo
e(x) = 0 for all x ∈P(V ) and all e ∈ E .

To address Problem 2.4.2, we will construct two control laws that govern the leader’s

state transitions. Toward this end, we introduce some new definitions. A complete walk,

denoted by W = (ei)
w
i=1, is a sequence of size w ∈ Z>0 in E such that S(e1) = T (ew),

T (ei) = S(ei+1) for each i ∈ {1, ...,w− 1}, and for each v ∈ V there exists j ∈ {1, ...,w}

such that T (e j) = v. We will extend a given complete walk W to an extended complete

walk (ECW), W ∞ = (ei)
∞
i=1, by defining

enw+ j = e j for n ∈ Z>0, j ∈ {1, ...,w}. (2.42)

The sequence W ∞ denotes the path along which the leader can transition from one state to

another.

Open-Loop Controller

We first construct an open-loop control strategy for the leader agent. An advantage of this

control law over the feedback control law presented in the next subsection is that the leader

is not required to measure the density of follower agents.
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Let xeq ∈ int P(V ), ε > 0, and tε
0 = 0, and define Rv =

{
k ∈ {1, ...,w}; S(ek) = v

}
.

We define switching times (tε
j )

∞
j=1 as

tε
j = tε

j−1 +
ε

|RS(e j)|x
eq
S(e j)

for j ∈ Z>0, (2.43)

where |Rv| denotes the cardinality of the set Rv for each v∈ V . We also define `ε : [0,∞)→

V as

`ε(t) = S(e j) for t ∈ [tε
j−1, t

ε
j ), j ∈ Z>0. (2.44)

Let P = ∑
w
k=1 t1

k and

Aav =
1
P

∫ P

0
D`1(t)dt. (2.45)

Then, setting Ã = 1
P ∑v∈V Dv and D = diag [xeq

1 ... xeq
M ]T , we have that Aav = ÃD−1.

Lemma 2.4.9. Let `(t) = `ε(t) in (2.37). There exists ε0 > 0 and a time-varying matrix A :

[0,∞)→RM×M such that if ε ∈ (0,ε0], then the solution x(t) of (2.37) can be approximated

using the solution y(t) of the equation

ẏ(t) = Aavy(t)+ εA(
t
ε
)y(t), y(0) = x0. (2.46)

In particular, ‖x(t)− y(t)‖ = O(ε). Moreover, the map t 7→ A(t) is such that the induced

2-norm ‖A(t)‖ is globally bounded over t ∈ R≥0 and A(t +P) = A(t) for all t ∈ [0,∞).

Proof. Consider the change of variables τ = t
ε
. Then (2.37) becomes

ẋ(τ) = εD`(t)x(τ) (2.47)

Let H(τ) = D`(τ)−Aav for each τ ∈ [0,∞). Set U(τ) =
∫

τ

0 H(s)ds. Consider the change of

variables

x(τ) = y(τ)+ εU(τ)y(τ) (2.48)

Then we see that

ẋ(τ) = ẏ(τ)+ εU(τ)ẏ(τ)+ εU̇(τ)y(τ) (2.49)
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For all ε small enough, I+ εU(τ) is invertible for all τ ∈ [0,∞) and can be represented by

the power series expression

(I+ εU(τ))−1 =
∞

∑
i=0

(−ε)iUi(τ) (2.50)

From (2.47), (2.50), and the fact that U̇(τ)=H(τ) and D`(τ)−H(τ)=Aav for all τ ∈ [0,∞),

equation (2.49) can be used to solve for ẏ(τ):

ẏ(τ) = εAavy(t)+ ε
2A(τ)y(τ), (2.51)

where the time-varying matrix A(τ) is globally norm-bounded in time. From equation

(2.48), and noting again that I+ εU(τ) is invertible for all τ ∈ [0,∞) for small enough ε ,

we conclude that ‖x(t)−y(t)‖= O(ε) for all t ≥ 0. The periodicity of A(τ) follows from

the fact that both H(τ) and U(τ) are periodic.

Using Lemma 2.4.9, we can now establish the stability properties of system (2.37) with

the control input `(t) = `ε(t) defined in (2.44). The following theorem uses the fact that

solutions of system (2.46) can be used to approximate solutions of (2.37). The theorem

applies an argument based on averaging theory (Sanders et al., 2007) to prove practical

stability of system (2.37).

Theorem 2.4.10. Suppose the graph G is bidirected, W ∞ = (ei)
∞
i=1 is an ECW, and xeq ∈

int P(V ). Let `(t) = `ε(t). There exists ε0 > such that for each ε ∈ (0,ε0], there exists

Cε ≥ 0 with limε→0Cε = 0 and T 0,eq
ε > 0, which depends on x0, xeq, and ε , such that

‖x(t)−xeq‖<Cε for all t ≥ T 0,eq
ε .

Proof. Let A : [0,∞)→ RM×M be the time-varying matrix from Lemma 2.4.9. Then con-

sider the linear equation (2.46). Define a Lyapunov function V : P(V )→ R≥0 given by

V (z) = (z−xeq)T D(z−xeq) (2.52)
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for all z∈P(V ). Since the graph G is bidirected and strongly connected, we compute that

∂V
∂y

T
Aav(y(t)− xeq) = −∑e∈E

1
2(yS(e)(t)− xeq

S(e)− yT (e)(t)+ xeq
T (e))

2 < 0 for all t ≥ 0 such

that y(t) ∈P(V )\{xeq}. Then we have that

V̇ (y(t)) =
∂V (y(t))

∂y

T

Aav(y(t)−xeq)+ ε
∂V (y(t))

∂z

T

A(t)y(t) (2.53)

since Aavxeq = 0.

It follows from the computations in the proof of Lemma 2.4.9 that all off-diagonal

elements of Aav + εA( t
ε
) are non-negative and that 1T (Aav + εA( t

ε
)) = 0 for all t ∈ [0,∞)

and for all ε > 0 small enough. Then, from Lemma 2.4.9, we can conclude that P(V )

is invariant for the solution y(t). This result implies that the term ∂V (y(t))
∂z

T
A(t)y(t) is

uniformly bounded. Thus, the second term in the right-hand side of equation (2.53) is

bounded by a parameter C′ε for each ε > 0 with limε→0C′ε = 0. This implies that for all

ε > 0 small enough, V̇ (y(t))< 0 for all t ∈ [0,∞) such that ‖y(t)−xeq‖>Cε , where Cε→ 0

as ε → 0.

Remark 2.4.11. The assumption that the graph G is bidirected has been made for the sake

of simplicity. Theorem 2.4.10 can be generalized to strongly connected graphs that are not

necessarily bidirected by replacing ε

|RS(e j)
|xeq

S(e j)
with

εxd
S(e j)

|RS(e j)
|xeq

S(e j)
in (2.43) for each j ∈ Z>0,

where, from the Perron-Frobenius theorem (Berman and Plemmons, 1994), xd is the unique

vector in P(V ) such that ∑e∈E Bexd = 0.

Closed-Loop Controller

In contrast to the open-loop control law presented in the previous section, the control law

that we present in this section is a function of the density of the followers at the leader’s

current state. We show through numerical simulations in Section 2.4.2 that this closed-

loop controller ensures faster convergence of the followers to the target distribution than

the open-loop controller.
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Given xeq ∈ RM, we define the set Q ⊂ RM×Z>0 as:

Q = {(x,k) ∈ RM×Z>0; xS(ek) ≤ xeq
S(ek)
}. (2.54)

The set Q is used as follows to define the feedback control law according to which the

leader transitions from one state to another. If the leader is in state S(ek) and the density

of follower agents in that state, xS(ek), is less than or equal to the target value xeq
S(ek)

, then

the leader transitions to the next state T (ek) in W ∞. While the path that the leader takes is

predetermined by the specification of W ∞, the times at which it switches from one state to

another is a function of the follower density that it measures at its current state, according

to the following equations:

k(t+) = k(t−)+1, (2.55)

`(t+) = T (ek(t−)), (x(t−),k(t−)) ∈Q,

where k(t+) and `(t+) denote the right-sided limits of the functions k(t) and `(t), respec-

tively, at time t, and k(t−) and `(t−) denote the left-sided limits of k(t) and `(t) at t. This

control law for the leader, combined with the ODE model (2.37) that governs the follower

agent densities, results in a hybrid dynamical system (Goebel et al., 2012) in which the

continuous-time dynamics are given by:

ẋ(t) = D`(t)x(t), (2.56)

k̇(t) = 0,

˙̀(t) = 0, t ∈ [0,∞),

the discrete-time dynamics are given by equations (2.55), and the initial conditions are

defined as:

x(0) = x0 ∈P(V ), k(0) = 0, `(0) = S(e1). (2.57)

Since the closed-loop system (2.56)-(2.57) is a hybrid system, we need an appropri-

ate notion of a solution to this type of system in order to establish our stability result in
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Theorem 2.4.16. Hence, we provide the following definition that will be sufficient for the

purposes of this section.

Definition 2.4.12. Suppose that W ∞ = (ei)
∞
i=1 is a given ECW. By a solution of the system

(2.56)-(2.57), we mean that there exists a time t f ≥ 0 (possibly equal to ∞), an absolutely

continuous function x : [0, t f )→P(V ), piecewise constant functions k : [0, t f )→ Z>0

and vl : [0, t f )→ V , and a sequence of non-decreasing switching times (ti)∞
i=1 such that

lim j→∞ t j = t f and, for each i ∈ Z>0, we have that

x(t) = x0 +
∫ min{t,ti}

0
D`(t)x(τ)dτ (2.58)

and

k(t) = i, t ∈ [ti−1, ti), (x(ti),k(ti)) ∈Q, (2.59)

`(t) = T (ei−1), t ∈ [ti−1, ti),

where t0 = 0 and [ti−1, ti) := /0 is the null set if ti−1 = ti.

Given this definition, we prove the following result on the existence and uniqueness of

solutions of the system (2.56)-(2.57). In the following theorem and henceforth, int P(V )

will denote the interior of the set P(V ) in the subspace topology of P(V ) as a subset of

RM.

Theorem 2.4.13. Suppose that W ∞ = (ei)
∞
i=1 is an ECW and xeq ∈ int P(V ). Then there

exists a unique solution to the system (2.56)-(2.57) with switching times (ti)∞
i=1.

Proof. First, we show that there at least exists a unique local solution of system (2.56)-

(2.57). Specifically, we show that there exists j ∈ Z>0 and a sequence of switching times

(ti)
j
i=1 such that x : [0, t j]→P(V ) is absolutely continuous and equations (2.58)-(2.59)

hold for each i ∈ {1, ..., j}. Let i1 = min{m ∈ Z>0; xS(em)(0) > xeq
S(em)
}. If i1 does not

exist, we set ti = 0 for all i ∈ Z>0, and the existence of a unique local solution is trivial.
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Alternatively, suppose that i1 is finite. Let ti = 0 for all i ∈ {ĩ ∈ Z>0; 0 < ĩ < i1}. Set

v = S(ei1) and ti1 =
1

|N (S(v))| ln
xv(0)
xeq

v
. Since xeq lies in the interior of P(V ), the quantity

ln xv(0)
xeq

v
is well-defined. It follows that ẋv(s) =−|N (v)|xv(s) for all s∈ [0, ti1). This implies

that xv(s) = e−|N (v)|sxv(0) for all s ∈ [0, ti1), and hence lims→ti1
xv(s) = xeq

v . Then we set

k(t) = i1 and `(t) = v for all t ∈ [0, ti1). Thus, we have established that at least one local

solution of system (2.56)-(2.57) exists. This constructed local solution can be non-unique

only if there is an alternative possible choice of switching times, (t̃i)
j̃
i=1. This alternative

set of switching times is valid only if the first non-zero switching time is chosen to have an

index greater than i1. However, this would violate the requirement in constraint (2.59) that

(x(ti),k(ti)) ∈Q. Hence, the constructed local solution is unique.

Next, we will show that any local solution can be extended to a unique global solu-

tion that is defined over a countably infinite sequence of switching times. Suppose there

exists a unique local solution of system (2.56)-(2.57). That is, there exists p ∈ Z>0, pos-

sibly larger than i1, and a sequence of switching times such that x : [0, tp]→P(V ) is

absolutely continuous and equations (2.58)-(2.59) hold for each i ∈ {1, ..., p}. Let q1 =

min{m ∈ Z>0; m > p & limt→tp xS(em)(t)> xeq
S(em)
}. If q1 does not exist, then we set ti = tp

for all i ∈ Z+ such that i ≥ p, and the existence of a unique global solution is trivial. Al-

ternatively, suppose that q1 is finite. Let ti = tp for all i ∈ {ĩ ∈ Z>0; p < ĩ < q1}. Set

v = S(eq1) and tq1 = tp +
1

|N (S(v))| ln
xv(tp)

xeq
v

. Then we can see that ẋv(s) =−|N (v)|xv(s) for

all s ∈ [tq1−1, tq1). This implies that xv(s) = e−|N (v)|(s−tq1−1)xv(tq1−1) for all s ∈ [tq1−1, tq1),

and hence that lims→tq1
xv(s) = xeq

v . Then we set k(t) = q1 and `(t) = v for all t ∈ [tq1−1, tq1).

Therefore, any local solution can be extended uniquely over a longer time interval. Since

we have already constructed one such local solution, this implies that we can iteratively

construct a unique global solution x to system (2.56)-(2.57) by extending each local solu-

tion to another local solution over successively longer time intervals. Because this solution

is both continuous and piecewise continuously differentiable, and therefore Lipschitz, it is
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absolutely continuous. This concludes the proof.

In the next lemma, we derive an estimate of the solutions of system (2.56)-(2.57) that

will be used to prove Theorem 2.4.16.

Lemma 2.4.14. Suppose that xeq ∈ int P(V ). Let there exist some j ∈ Z>0 and ε > 0

such that the solution of system (2.56)-(2.57) satisfies xv(t j−1) > xeq
v + ε for v = S(e j).

Then xw(t j)> xw(t j−1)+
ε

|N (v)| for all w ∈N (v).

Proof. By assumption, we have that xv(t j−1) > xeq
v + ε for v = S(e j). Then t j = t j−1 +

1
|N (v)| ln

xv(t j−1)

xeq
v

. This implies that ẋv(t) = |N (v)|xv(t) and ẋw(t) = −xv(t) for all t ∈

[t j−1, t j) and all w ∈N (v). Therefore, xw(t j) = xw(t j−1)+
xv(t j−1)−xeq

v
|N (v)| for all w ∈N (v).

The following proposition establishes an important monotonicity property of solutions

of system (2.56)-(2.57) that is used in the proof of Theorem 2.4.16.

Proposition 2.4.15. Suppose there exist times τ1 > 0, τ2 > τ1 and state v ∈ V such that

the solution x(t) of system (2.56)-(2.57) satisfies xv(t) ≤ xeq
v for all t ∈ [τ1,τ2]. Then xv(t)

is non-decreasing over the interval t ∈ [τ1,τ2]. Hence, if there exist τ̃ ≥ 0 and w ∈ V such

that the solution x(t) satisfies xw(τ̃)≥ xeq
v , then xw(t)≥ xeq

v for all t ∈ [τ̃, t f ).

Proof. We are given that xv(t) ≤ xeq
v for all t ∈ [τ1,τ2]. Hence, tk− tk−1 = 0 for all k ∈

Z+ such that v = S(ek) and tk ∈ [τ1,τ2]. Moreover, ẋv(t) ≥ 0 for all t ∈ [tk−1, tk), since

gek(`(t)) = 0 whenever v 6= S(ek). This implies that ẋv(t)≥ 0 for t ∈ (τ1,τ2), and therefore∫ t
τ1

ẋv(s)ds is non-decreasing for t ∈ [τ1,τ2]. Since the solution x is absolutely continuous,

we have that xv(t)− xv(τ1) =
∫ t

τ1
ẋv(s)ds for all t ∈ [τ1,τ2]. This concludes the proof.

The result proved in Proposition 2.4.15 can be used to demonstrate that the target prob-

ability distribution xeq is stable in the sense of Lyapunov. In the following theorem, we

establish that this distribution is also globally attractive.
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Figure 2.8: Bidirected graph with 4 vertices, representing agent states. Red edges define

the leader’s sequence of state transitions; black edges define followers’ possible state tran-

sitions.

Theorem 2.4.16. Suppose that W ∞ = (ei)
∞
i=1 is an ECW and xeq ∈ int P(V ). Then the

unique solution of system (2.56)-(2.57) satisfies limt→t f x(t) = xeq.

Proof. For the sake of contradiction, suppose that limi→∞ x(ti) 6= xeq. Then there must be

a v ∈ V and ε > 0 such that for each N ∈ Z>0, there exists pN ≥ N for which xv(tpN−1)>

xeq
v +ε . From Lemma 2.4.14, this implies that for every w ∈N (v), xw(tpN )> xw(tpN−1)+

ε

|N (v)| . Because ε > 0, it follows that there exists an M ∈Z>0 that satisfies Mε

|N (v)| ≥ xeq
v , and

hence Proposition 2.4.15 implies that xw(t) ≥ xeq
w + ε

|N (v)| for t = tpM+1 for all w ∈N (v).

Since the graph G is assumed to be strongly connected, Lemma 2.4.14 also implies that

for each r ∈ V , there exists ε̃r > 0 and qr
N ∈ Z+ corresponding to each N ∈ Z>0 such that

xr(t)≥ xeq
r + ε̃r for t = tz with z = qr

N . This leads to a contradiction with the monotonicity

result in Proposition 2.4.15 and the fact that the set P(V ) is invariant for the solution x(t).

Hence, it must be true that limi→∞ x(ti) = xeq. From the monotonicity property of solutions

proved in Proposition 2.4.15, it follows that limt→t f x(t) = xeq.

Remark 2.4.17. (Zeno Behavior) Note that it is possible that limi→∞ ti = t f < ∞. In fact,

this is trivially true when x(0) = xeq ∈ int P(V ).
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(a) Open-loop control with N = 20 follower

agents
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(c) Closed-loop control with N = 20 follower

agents
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(d) Closed-loop control with N = 200 fol-

lower agents

Figure 2.9: Trajectories of the Mean-Field Model (Thick Lines) and the Corresponding

Stochastic Simulations (Thin Lines).
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Simulations

In this subsection, we verify the effectiveness of our control strategies with numerical sim-

ulations of three scenarios with different controllers, graph topologies, and follower agent

population sizes. In the first scenario, the leader agent must herd the follower agents to a

target distribution over an undirected 4-vertex grid graph with the topology shown in Fig-

ure 2.8. The leader moves along the path W ∞ = ((1,2),(2,3),(3,4),(4,1),(1,2), ...). The

initial distribution of followers was set to x0 = [1 0 0 0]T , and the target distribution was

defined as xeq = [0.1 0.1 0.4 0.4]T . Figures 2.9a and 2.9b compare the solution of the

system (2.37) to the stochastic simulation of the CTMC characterized by expression (2.1)

with the open-loop control (2.44) for two different follower population sizes, N = 20 and

N = 200, with the corresponding switching parameter value set to ε = 0.05 and ε = 0.01,

respectively. As expected, the plots show that the stochastic simulation for the N = 200

case follows the mean-field model solution more closely than for the N = 20 case. In both

cases, the average follower populations converge to the target distribution within 27.5 s.

For the N = 20 case, in which ε = 0.05, the solution of the mean-field model shows larger

fluctuations about the target distribution than for the N = 200 case, in which ε = 0.01.

This is consistent with the result in Theorem 2.4.10 that decreasing the value of ε produces

smaller fluctuations of the solution of the mean-field model about the target distribution as

t→ ∞.

In the second scenario, the graph topology and the path of the leader are the same as

in the first scenario. The initial distribution of followers was set to x0 = [1 0 0 0]T , and

the target distribution was defined as xeq = [0.25 0.25 0.25 0.25]T . Figures 2.9c and 2.9d

compare the solution of system (2.37) to a stochastic simulation of the CTMC characterized

by expression (2.1) with the feedback controller (2.55) for two different follower population

sizes, N = 20 and N = 200. As expected, the plots show that the stochastic simulation for
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Figure 2.10: Snapshots at three times t of N = 104 follower agents redistributing over a 36-

vertex graph during a stochastic simulation of the closed-loop system. The black arrows

define the sequence of state transitions by the leader agent.

the N = 200 case follows the mean-field model solution more closely than for the N = 20

case. In both cases, the average follower populations converge to the target distribution

within 3.5 s. Compared to the open-loop controller used in the first scenario, we observe

that the closed-loop controller achieves much faster convergence of the swarm to the target

distribution.

To demonstrate the scalability of our control approach, we also considered a scenario in

which the leader must herd N = 104 follower agents to a target distribution over a bidirected

36-vertex graph with a two-dimensional grid structure. All the follower agents start in a

single state (the bottom left grid cell). One-tenth of the follower agents are required to

distribute equally among the boundary cells and four cells at the center, while nine-tenths

of the population is required to distribute equally among the remaining cells to form the

letter ‘O’. Figure 2.10 shows snapshots at times t = 0 s, t = 100 s, and t = 103 s of the

distribution of follower agents and location of the leader agent in a stochastic simulation of

the CTMC characterized by expression (2.1) with the feedback controller (2.55). Let Nv(t)

denote the number of follower agents in state v ∈ V at time t in the stochastic simulation,

and define xs(t) = 1
N [N1(t) ... N36(t)]T as the vector of followers’ population fractions
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in different states at time t. Measuring the difference between the simulated and target

distributions of follower agents at time t as E(t)= ||xs(t)−xeq||2, we compute E(0)= 5.83,

E(100) = 0.63, and E(103) = 3×10−3 for the times of the snapshots in Figure 2.10. The

decreasing value of E(t) over time indicates that the follower agent distribution converges

to the target distribution as desired, which can also be confirmed qualitatively from the

snapshots.
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Chapter 3

CONTROLLABILITY AND STABILIZATION OF PARTIAL DIFFERENTIAL

EQUATION TYPE FORWARD EQUATIONS

In this chapter, we consider a controllability problem for a robotic swarm that is de-

scribed by a mean-field model in the form of an advection-diffusion partial differential

equation (PDE). Similar controllability problems have been addressed previously in the

literature. For example, motivated by problems arising from quantum physics, Blaquiere

(Blaquiere, 1992) used techniques from stochastic control to study a controllability problem

in which a stochastic process evolves on a n-dimensional Euclidean space Rn. A similar

controllability result was proved in (Dai Pra, 1991). In (Porretta, 2014), Porretta addressed

a controllability problem for a Fokker-Planck equation evolving on the n-dimensional torus,

along with an associated mean-field game problem (Bensoussan et al., 2013). This work

applied observability inequalities that are typically used in PDE controllability problems.

The results in (Blaquiere, 1992; Dai Pra, 1991) were extended to a more general setting

in which the stochastic process is a linear control system perturbed by a diffusion process

(Chen et al., 2017). Controllability problems for systems with a similar structure have also

been considered in work on multiplicative control of PDEs (Khapalov, 2010).

In contrast to these works, in this chapter, the stochastic process that models the agents’

motion is confined to a bounded subset of a Euclidean space. Boundedness of the do-

main is a common constraint in many problems in swarm robotics, e.g. in (Elamvazhuthi

et al., 2018c; Milutinovic and Lima, 2007), where optimal control techniques were used

to optimize swarm behavior. Additionally, the results in previous controllability studies

were proven with control parameters that are square-integrable. However, in bilinear op-

timal control of PDEs associated with stochastic processes, the boundedness of the vector
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fields is a common requirement (Elamvazhuthi et al., 2018c; Finotti et al., 2012; Fleig and

Guglielmi, 2017). Toward this end, we establish controllability with control inputs that are

(essentially) bounded in space and time.

Another contribution of this chapter is our analysis of a controllability problem for the

forward equation of a class of hybrid switching diffusion processes (HSDPs) (Yin and Zhu,

2010). These processes can be used as models for robots that switch between multiple

behavioral states, e.g. (Milutinovic and Lima, 2006; Elamvazhuthi et al., 2018c). Our

result is based on a controllability result for the forward equation of a related class of

continuous-time Markov chains (CTMCs). A nontrivial issue in the problem of controlling

the forward equation of CTMCs is the fact that the control parameters, which correspond

to the transition rates of the Markov chain, are constrained to be positive. Hence, classical

results on controllability of nonlinear control systems governed by ordinary differential

equations (ODEs) do not apply. In spite of this issue, we prove controllability of these

forward equations using piecewise constant control inputs. This controllability property

can be attributed to the strong connectivity of the associated graphs.

We also consider the problem of stabilizing HSDPs to desired stationary distributions

using time-independent and spatially-dependent controls or state feedback laws. A sim-

ilar problem was considered in (Mesquita and Hespanha, 2012) for general controllable

systems on unbounded domains with a single discrete state. As a final contribution, we

consider the problem of using mean-field feedback laws to stabilize HSDPs that model

a swarm of agents with nonholonomic dynamics to desired stationary distributions with

disconnected supports.

3.1 Notation

We denote the n-dimensional Euclidean space by Rn. Rn×m refers to the space of n×m

matrices, and R+ refers to the set of non-negative real numbers. Given a vector x ∈ Rn,
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xi denotes the ith coordinate value of x. For a matrix A ∈ Rn×m, Ai j refers to the element

in the ith row and jth column of A. For a subset B ⊂ RM, int(B) refers to the interior

of the set B. C, C−, and C̄− denote the set of complex numbers, the set of complex

numbers with negative real parts, and the set of complex numbers with non-positive real

parts, respectively. Z+ refers to the set of positive integers. We denote by Ω an open,

bounded, and connected subset of a Euclidean domain Rn. The boundary of Ω is denoted

by ∂Ω.

Definition 3.1.1. We will say that Ω is a C1,1 domain if each point x ∈ ∂Ω has a neigh-

borhood N such that Ω∩N is represented by the inequality xn < γ(x1, ...,xn−1) in some

Cartesian coordinate system for some function γ : Rn−1→ R that is at least once differen-

tiable and has derivatives of order 1 that are Lipschitz continuous.

For each 1≤ p < ∞, we define Lp(Ω) as the Banach space of complex-valued measur-

able functions over the set Ω whose absolute value raised to pth power has finite integral.

We define L∞(Ω) as the space of essentially bounded measurable functions on Ω. The space

L∞(Ω) is equipped with the norm ‖z‖∞ = ess supx∈Ω|z(x)|, where ess supx∈Ω(·) denotes

the essential supremum attained by its argument over the interval Ω. The space L2(Ω) is a

Hilbert space when equipped with the standard inner product, 〈·, ·〉2 : L2(Ω)×L2(Ω)→C,

given by 〈 f ,g〉2 =
∫

Ω
f (x)ḡ(x)dx for each f ,g ∈ L2(Ω), where ḡ is the complex conjugate

of the function g. The norm ‖ · ‖2 on the space L2(Ω) is defined as ‖ f‖2 = 〈 f , f 〉1/2
2 for

each f ∈ L2(Ω). For a function f ∈ L2(Ω) and a given constant c, we write f ≥ c to imply

that f is real-valued and f (x)≥ c for almost every (a.e.) x ∈Ω.

Let fxi denote the first-order (weak) partial derivative of the function f with respect

to the coordinate xi. Similarly, fxixi will denote the second-order partial derivative of the

function f with respect to the coordinate xi. We define the Sobolev space H1(Ω) =
{

f ∈

L2(Ω) : fxi ∈ L2(Ω) for 1 ≤ i ≤ N
}

. We equip this space with the usual Sobolev norm

87



‖·‖H1 , given by ‖ f‖H1 =
(
‖ f‖2

2+∑
n
i=1 ‖ fxi‖2

2

)1/2
for each f ∈H1(Ω). The weak gradient

of a function f ∈ H1(Ω) will be denoted by ∇ f = [ fx1 ... fxn]
T .

Definition 3.1.2. We will call Ω an extension domain if there exists a linear bounded

operator E : H1(Ω)→ H1(Rn) such that (E f )(x) = f (x) for a.e. x ∈Ω.

An example of an extension domain is a domain with Lipschitz boundary (Agranovich,

2015)[Theorem 10.4.1]. Unless otherwise stated, the default assumption in this section

will be that Ω is an extension domain. The exponential stability results will only re-

quire this default assumption. However, to prove the controllability result, we will need

the stronger assumption that the domain Ω is C1,1 or convex. An additional assumption

about the domain Ω will be needed to prove the controllability result, which motivates the

following definition.

Definition 3.1.3. The domain Ω will be said to satisfy the chain condition if there exists

a constant C > 0 such that for every x, x̄ ∈ Ω and every positive n ∈ Z+, there exists a

sequence of points xi ∈ Ω, 0 ≤ i ≤ n, such that x0 = x, xn = x̄, and |xi−xi+1| ≤ C
n |x− x̄|

for all i = 0, ...,n−1. Here | · | denotes the standard Euclidean norm.

Note that every convex domain satisfies the chain condition. For a given real-valued

function a ∈ L∞(Ω), L2
a(Ω) refers to the set of all functions f such that

∫ 1
0 | f (x)|2a(x)dx <

∞. We will always assume that the associated function a is uniformly bounded from below

by a positive constant, in which case the space L2
a(Ω) is a Hilbert space with respect to the

weighted inner product 〈·, ·〉a : L2
a(Ω)×L2

a(Ω)→R, given by 〈 f ,g〉a =
∫

Ω
f (x)ḡ(x)a(x)dx

for each f ,g∈L2
a(Ω). We will also need the space H1

a (Ω)=
{

z∈L2
a(Ω) : (az)xi ∈L2(Ω) for

1 ≤ i ≤ N
}

, equipped with the norm ‖ f‖H1
a
=
(
‖ f‖2

a +∑
n
i=1 ‖(a f )xi‖2

2

)1/2
. When a = 1,

where 1 is the function that takes the value 1 a.e. on Ω, the spaces L1(Ω) and H1(Ω)

coincide with the spaces L1
a(Ω) and H1

a (Ω), respectively. We will also need the spaces
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W 1,∞(Ω) =
{

z∈ L∞(Ω) : zxi ∈ L∞(Ω) for 1≤ i≤N
}

and W 2,∞(Ω) =
{

z∈W 1,∞(Ω) : zxixi ∈

L∞(Ω) for 1≤ i≤N}. Let X be a Hilbert space with the norm ‖·‖X . The space C([0,T ];X)

consists of all continuous functions u : [0,T ]→ X for which ‖u‖C([0,T ];X) :=

max0≤t≤T ‖u(t)‖X < ∞. If Y is a Hilbert space, then L (X ,Y ) will denote the space of

linear bounded operators from X to Y .

We will need an appropriate notion of a solution of the PDE (3.5). Toward this end,

let A be a closed linear operator that is densely defined on a subset D(A), the domain of

the operator, of a Hilbert space X . We will define spec(A) as the set {λ ∈ C : (λ I−A)−1

does not exist}, where I is the identity map on X . If A is a bounded operator, then ‖A‖op

will denote the operator norm induced by the norm defined on X . From (Engel and Nagel,

2000), we have the following definition.

Definition 3.1.4. For a given time T > 0, a mild solution of the ODE

u̇(t) = Au(t); u(0) = u0 ∈ X (3.1)

is a function u ∈C([0,T ];X) such that u(t) = u0 +A
∫ t

0 u(s)ds for each t ∈ [0,T ].

Under appropriate conditions satisfied by A, the mild solution is given by a strongly

continuous semigroup of linear operators, (T (t))t≥0, that are generated by the operator A

(Engel and Nagel, 2000).

The differential equations that we analyze in this chapter will be non-autonomous in

general. Hence, we must adapt the notion of a mild solution to these types of equations.

Definition 3.1.5. Let Ai be a closed linear operator with domain D(Ai) for each i ∈ Z+.

Suppose that for a certain time interval [0,T ], a piecewise constant family of operators is

given by a map, t 7→ A(t), for which there exists a partition [0,T ] = ∪i∈Z+[ai,ai+1) such

that ai ≤ ai+1 for each i ∈ Z+ and A(t) = Ai for each t ∈ [ai,ai+1). Then a mild solution of

the ODE

u̇(t) = A(t)u(t); u(0) = u0 ∈ X (3.2)
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is a function u ∈C([0,T ];X) such that

u(t) = u0 + ∑
i∈Z+

Ai

∫ min{t,ai+1}

min{t,ai}
u(s)ds (3.3)

for each t ∈ [0,T ].

There is in fact a more general notion of mild solutions that arises from two-parameter

semigroups of operators generated by time-varying linear operators. However, the defini-

tion (3.3) will be sufficient for our purposes, since one can construct solutions of the ODE

(3.2) by treating it as an autonomous system in each time interval [ai,ai+1) and concatenat-

ing these solutions together to obtain the solution u. Note that the mild solution is defined

with respect to an operator A or collection of operators A(t); when we refer to such a solu-

tion, the associated operator(s) will be clear from the context. We will also need the notion

of a positive semigroup, which is defined as follows.

Definition 3.1.6. A strongly continuous semigroup of linear operators (T (t))t≥0 on a

Hilbert space X is called positive if u ∈ X such that u ≥ 0 implies that T (t)u ≥ 0 for

all t ≥ 0.

We introduce some additional notation from graph theory which will be used in the

coming sections. We denote by G = (V ,E ) a directed graph with a set of M vertices,

V = {1,2, ...,M}, and a set of NE edges, E ⊂ V ×V . An edge from vertex i ∈ V to vertex

j ∈ V is denoted by e = (i, j) ∈ E . We define a source map S : E → V and a target map

T : E → V for which S(e) = i and T (e) = j whenever e = (i, j) ∈ E . There is a directed

path of length s from vertex i∈V to vertex j ∈V if there exists a sequence of edges {ei}s
i=1

in E such that S(e1) = i, T (es) = j, and S(ek) = T (ek−1) for all 2≤ k≤ s. A directed graph

G = (V ,E ) is called strongly connected if for every pair of distinct vertices v0, vT ∈ V ,

there exists a directed path of edges in E connecting v0 to vT . We assume that (i, i) /∈ E for

all i ∈ V . The graph G is said to be bidirected if e ∈ E implies that ẽ = (T (e),S(e)) also

lies in E .
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3.2 Controllability of an Advection-Diffusion Equation

Consider a swarm of Np agents that are deployed on the n-dimensional domain Ω.

The position of each agent, indexed by i ∈ {1,2, ...,Np}, evolves according to a stochastic

process Zi(t) ∈ Ω, where t denotes time. We assume that the agents are non-interacting.

Therefore, the random variables that correspond to the dynamics of each agent are inde-

pendent and identically distributed, and we can drop the subscript i and define the problem

in terms of a single stochastic process Z(t) ∈Ω. The deterministic motion of each agent is

defined by a velocity vector field v(x, t) ∈ Rn, where x ∈ Ω. This motion is perturbed by

a n-dimensional Wiener process W(t), which models noise. This process can be a model

for stochasticity arising from inherent sensor and actuator noise. Alternatively, noise could

be actively programmed into the agents’ motion to implement more exploratory agent be-

haviors and to take advantage of the smoothening effect of the process on the agents’ prob-

ability densities. Given the parameter v(x, t), each agent evolves according to a reflected

diffusion process Z(t) that satisfies the following SDE (Pilipenko, 2014):

dZ(t) = v(Z(t), t)dt +
√

2DdW(t)+n(Z(t))dψ(t),

Z(0) = Z0, (3.4)

where ψ(t)∈R is called the reflecting function or local time (Bass and Hsu, 1991; Pilipenko,

2014), a stochastic process that constrains Z(t) to the domain Ω; n(x) is the normal to the

boundary at x ∈ ∂Ω; and D > 0 is the diffusion constant. Without loss of generality, we

assume that D = 1.

We now pose the problem of determining the existence of the robot control law, defined

as the velocity field v(·, t), that drives the swarm to a target spatial distribution over the

domain.

Problem 3.2.1. Given a time t f > 0 and a target probability density f : Ω→ R+ such that
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∫
Ω

f (x)dx = 1, determine if there exists a feedback control law v : Ω× [0, t f ]→ Rn such

that the process (3.4) satisfies P(Z(T )∈ Γ) =
∫

Γ
f (x)dx for each measurable subset Γ⊂Ω.

The Kolmogorov forward equation corresponding to the SDE (3.4) is given by:

yt = ∆y−∇ · (v(x, t)y) in Ω× [0,T ]

y(·,0) = y0 in Ω

n · (∇y−v(x, t)y) = 0 in ∂Ω× [0,T ]. (3.5)

The solution y(x, t) of this equation represents the probability density of a single agent

occupying position x ∈ Ω at time t, or alternatively, the density of a population of agents

at this position and time. The PDE (3.5) is related to the SDE (3.4) through the relation

P(Z(t) ∈ Γ) =
∫

Γ
y(x, t)dx for all t ∈ [0, t f ] and all measurable Γ⊂Ω. Therefore, the solu-

tion y(x, t) captures the mean-field behavior of the population. In particular, as the number

of agents tends to infinity, the empirical measures (Bensoussan et al., 2013) converge to

the measure for which this PDE’s solution is the density y(x, t). See (Zhang et al., 2018)

for such a convergence analysis. Problem 3.2.1 can be reframed in terms of equation (3.5)

as a PDE controllability problem as follows:

Problem 3.2.2. Given t f > 0, y0 : Ω → R̄+, and f : Ω → R+ such that
∫

Ω
y0(x)dx =∫

Ω
f (x)dx = 1, determine whether there exists a space- and time-dependent parameter

v : Ω× [0, t f ]→ Rn such that the solution y of the PDE (3.5) satisfies y(·, t f ) = f .

Now, we prove one of the main theorems of this chapter. Specifically, we show that

the PDE system (3.5) is controllable to a large class of sufficiently regular target proba-

bility densities. We first provide some new definitions that will be used in the subsequent

analysis.

Given a ∈ L∞(Ω) such that a ≥ c for some positive constant c, and D(ωa) = H1
a (Ω),
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we define the sesquilinear form ωa : D(ωa)×D(ωa)→ C as

ωa(u,v) =
∫

Ω

∇(a(x)u(x)) ·∇(a(x)v̄(x))dx (3.6)

for each u ∈ D(ωa). We associate with the form ωa an operator Aa : D(Aa)→ L2
a(Ω),

defined as Aau = v if ωa(u,φ) = 〈v,φ〉a for all φ ∈ D(ωa) and for all u ∈ D(Aa) = {g ∈

D(ωa) : ∃ f ∈ L2
a(Ω) s.t. ωa(g,φ) = 〈 f ,φ〉a ∀φ ∈D(ωa)}.

Similarly, given a ∈ L∞(Ω) such that a ≥ c for some positive constant c and D(σa) =

H1
a (Ω), we define the sesquilinear form σa : D(σa)×D(σa)→ C as

σa(u,v) =
∫

Ω

1
a(x)

∇(a(x)u(x)) ·∇(a(x)v̄(x))dx (3.7)

for each u ∈ D(σa). As for the form ωa, we associate an operator Ba : D(Ba)→ L2
a(Ω)

with the form σa. We define this operator as Bau = v if σa(u,φ) = 〈v,φ〉a for all φ ∈D(σa)

and for all u ∈D(Ba) = {g ∈D(σa) : ∃ f ∈ L2
a(Ω) s.t. σa(g,φ) = 〈 f ,φ〉a ∀φ ∈D(σa)}.

Note that, formally, A1 = B1 is the Laplacian operator −∆(·) with Neumann boundary

condition (n · (∇ · ) = 0 in ∂Ω). For general extension domains Ω, the normal derivative

might not make sense since it might not be true that D(A1) is a subset of H2(Ω) (Jerison

and Kenig, 1989). Then, the Neumann boundary condition has to be interpreted in a weak

sense.

Using the above definitions, we derive some preliminary results on the unbounded op-

erators −Aa and −Ba. The semigroups generated by these operators will each play an

important role in the proof of controllability of system (3.5).

Lemma 3.2.3. The operator Aa : D(Aa) → L2
a(Ω) is closed, densely-defined, and self-

adjoint. Moreover, the operator has a purely discrete spectrum.

Proof. Consider the associated form ωa. This form is closed, i.e., the space D(ωa) equipped

with the norm ‖ · ‖ωa , given by ‖u‖ωa = (‖u‖2
a +ωa(u,u))1/2 for each u ∈D(ωa), is com-

plete. This is true due to the fact that the multiplication map u 7→ a · u is an isomorphism
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from H1
a (Ω) to H1(Ω) and H1(Ω) is a Banach space. Moreover, the space H1

a (Ω) is

dense in L2
a(Ω). This follows from the inequality ‖au− av‖2 ≤ ‖a‖∞‖u− v‖2 for each

u,v ∈ L2(Ω), the fact that the spaces L2
1(Ω) and L2

a(Ω) are isomorphic, and the fact that the

H1(Ω) is dense in L2(Ω). In addition, it follows from the definition of the form ωa that

ωa is symmetric, meaning that ωa(u,v) = ωa(v,u) for each u,v ∈ D(ωa). The form ωa is

also semibounded, i.e., there exists m ∈R such that ωa(u,u)≥m‖u‖2
a for each u ∈D(ωa).

Hence, it follows from (Schmüdgen, 2012)[Theorem 10.7] that the operator Aa is self-

adjoint. To establish the discreteness of the spectrum of Aa, we note that H1(Ω) is com-

pactly embedded in L2(Ω) whenever Ω is an extension domain (Definition 3.1.2). This

implies that when H1
a (Ω) = D(ωa) is equipped with the norm ‖ · ‖ωa , then it is also com-

pactly embedded in L2
a(Ω). From (Schmüdgen, 2012)[Proposition 10.6], it follows that Aa

has a purely discrete spectrum.

Lemma 3.2.4. The operator Ba : D(Ba) → L2
a(Ω) is closed, densely-defined, and self-

adjoint. Moreover, the operator has a purely discrete spectrum.

Proof. We only check that the form σa is closed. The rest of the proof follows exactly

the same arguments as the proof of Lemma 3.2.3. To prove that the form σa is closed,

we need to prove that the space D(σa) equipped with the norm ‖ · ‖σa , given by ‖u‖σa =

(‖u‖2
a +σa(u,u))1/2 for each u ∈ D(σa), is complete. Note that due to the lower bound c

on a, there exist constants k1,k2 > 0 such that

k1
∫

Ω
∇(a(x)u(x)) ·∇(a(x)ū(x))dx

≤
∫

Ω
1

a(x)∇(a(x)u(x)) ·∇(a(x)ū(x))dx

≤ k2
∫

Ω
∇(a(x)u(x)) ·∇(a(x)ū(x))dx (3.8)

for all u ∈ H1
a (Ω). From these inequalities, it follows that k1‖u‖H1

a
≤ ‖u‖σa ≤ k2‖u‖H1

a

for all u ∈ D(σa) = H1
a (Ω). Hence, the form σa is closed. Due to the symmetry and
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semiboundedness of this form, it follows from (Schmüdgen, 2012)[Theorem 10.7] that the

operator is self-adjoint. Since the norm ‖·‖σa is equivalent to the norm ‖·‖H1
a
, the discrete-

ness of the spectrum of Ba again follows from (Schmüdgen, 2012)[Proposition 10.6] due

to the compact embedding of H1
a (Ω) in L2

a(Ω).

Corollary 3.2.5. Consider the PDE

yt = ∆(a(x)y) in Ω× [0,T ]

y(·,0) = y0 in Ω

n ·∇(a(x)y) = 0 in ∂Ω× [0,T ]. (3.9)

Let y0 ∈ L2
a(Ω). Then−Aa generates a semigroup of operators (T A

a (t))t≥0 such that the

unique mild solution y ∈C([0,T ];L2
a(Ω)) of the above PDE exists and is given by y(·, t) =

T A
a (t)y0 for all t ≥ 0. Additionally, the semigroup (T A

a (t))t≥0 is positive. Finally, if

‖M−1
a y0‖∞ ≤ 1, then ‖M−1

a T A
a (t)y0‖∞ ≤ 1 for all t ≥ 0.

Proof. First, we note that the operator −Aa is dissipative, i.e., ‖(λ +Aa)u‖a ≥ λ‖u‖a for

all λ > 0 and all u ∈D(Aa) since ωa(u,u)≥ 0 for all u ∈D(ωa). Next, we note that −Aa

is self-adjoint, and hence the adjoint operator −A∗a is dissipative as well. It follows from

a corollary of the Lumer-Phillips theorem (Engel and Nagel, 2000)[Corollary II.3.17] that

−Aa generates a semigroup of operators (T A
a (t))t≥0 that solves the PDE (3.9) in the mild

sense.

Second, we establish the positivity of the semigroup. Toward this end, we note that

the absolute value function | · | : R→ R is Lipschitz. Hence, it follows from (Ziemer,

2012)[Theorem 2.1.11] that v ∈ H1(Ω) implies that |v| ∈ H1(Ω) whenever v is only real-

valued. This implies that if u∈D(ωa), then |Re(u)| ∈D(ωa), where Re(·) denotes the real

component of its argument. Then the positivity of the semigroup follows from (Ouhabaz,

2009)[Theorem 2.7].
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For the last statement, consider convex set C = {u ∈ L2(Ω);Re(u) = u, u(x)≤ 1/a(x)

a.e. x ∈ Ω}. This set is also closed in L2(Ω). We will show that this set is invariant

under the semigroup T A
a (t). The projection of a function u ∈ L2

a(Ω) on to the set C can be

represented by the (nonlinear) operator P given by Pu = Re(u)∧ 1/a = 1
2(Re(u+ 1/a)+

1
2 |Re(u)−1/a|. According to (Ouhabaz, 2009)[Theorem 2.3], the set C is invariant under

the semigroup T A
a (t), if for each u ∈ D(ωa), Pu ∈ D(ωa) and ωa(Pu,Pu) ≤ ω(u,u) .

This is straightforward to verify. If u ∈ D(ωa), then it follows from follows from the

chain rule (Ziemer, 2012)[Theorem 2.1.11] that Pu = 1
2(Re(u)+1/a)+ 1

2 |Re(u)−1/a| ∈

D(ωa) and ∇(aPu) = 1
2sign(Re(au)− 1)∇(Re(au))+ 1

2∇(Re(au). Hence, it follows that

ωa(Pu,Pu) ≤ ωa(u,u) for all u ∈ D(Ωa). This implies that the set C is invariant under

the semigroup (T A
a (t))t≥0 and therefore, if M−1

a y0 ≤ 1, then M−1
a T A

a (t)y0 ≤ 1 for all

t ≥ 0 from (Ouhabaz, 2009)[Theorem 2.3]. Since the semigroup is also positive, we can

conclude that, if ‖M−1
a y0‖∞ ≤ 1, then ‖M−1

a T A
a (t)y0‖∞ ≤ 1 for all t ≥ 0.

Using the same arguments as in the proof of Corollary 3.2.5, we have the following

result.

Corollary 3.2.6. The operator −Ba generates a semigroup of operators (T B
a (t))t≥0 on

L2
a(Ω). If additionally a ∈ W 1,∞(Ω) and y0 ∈ L2

a(Ω), then y(·, t) = T B
a (t)y0 is a mild

solution of the PDE

yt = ∆y−∇ · (∇ f (x)
f (x) y) in Ω× [0,T ]

y(·,0) = y0 in Ω

n · (∇y− ∇ f (x)
f (x) y) = 0 in ∂Ω× [0,T ], (3.10)

with f = 1/a ∈W 1,∞(Ω). Moreover, the semigroup (T B
a (t))t≥0 is positive.

When f ∈ C∞(Ω̄), the representation of the operator ∆(·)−∇ · (∇ f (x)
f (x) · ) in the form

∇ · ( f ∇( 1
f · )) is a well-known technique in the literature on Fokker-Planck equations

96



for SDEs with drifts generated by potential functions (Stroock, 1993). In Corollary 3.2.6,

however, since a is only once weakly differentiable and D(σa) = H1
a (Ω) (or equivalently,

H1(Ω)), the operation ∆y is not admissible unless a has additional regularity. Hence, the

mild solution y should be interpreted as the weak solution of the PDE (3.10) when a, f ∈

W 1,∞(Ω); i.e., it can be shown that y satisfies

〈yt ,φ〉V ∗,V =−σa(u,φ/a) =−
∫

Ω

∇y(x, t) ·∇φ(x)dx +
∫

Ω

∇ f (x)
f (x)

y(x, t) ·∇φ(x)dx (3.11)

for all φ ∈ V and a.e. t ∈ [0,T ], where V = H1(Ω) and V ∗ is the dual space of V . Here,

the second equality follows from the product rule (Theorem 3.2.9) and the fact that a, f ∈

W 1,∞(Ω). Note that in the weak formulation (3.11), the second-order differentiability of f

or y is not required. That the mild solution of a linear PDE is also a weak solution can be

shown using standard energy estimates and weak topology arguments.

Next, we establish that the semigroups (T A
a (t))t≥0 and (T B

a (t))t≥0 are analytic (Lu-

nardi, 2012). Additionally, we will show some mass-conserving properties and long-term

stability properties of these semigroups.

Lemma 3.2.7. The semigroups (T A
a (t))t≥0 and (T B

a (t))t≥0 that are generated by the oper-

ators−Aa and−Ba, respectively, are analytic. Additionally, these semigroups have the fol-

lowing mass conservation property: if y0≥ 0 and
∫

Ω
y0(x)dx= 1, then

∫
Ω
(T A

a (t)y0)(x)dx=∫
Ω
(T B

a (t)y0)(x)dx = 1 for all t ≥ 0. Moreover, 0 is a simple eigenvalue of the opera-

tors −Aa and −Ba with the corresponding eigenvector f = 1/a. Hence, if y0 ≥ 0 and∫
Ω

y0(x)dx =
∫

Ω
f (x)dx = 1, then the following estimates hold:

‖T A
a (t)y0− f‖a ≤ M0e−λ t‖y0− f‖a, (3.12)

‖T B
a (t)y0− f‖a ≤ M̃0e−λ̃ t‖y0− f‖a (3.13)

for some positive constants M0,M̃0,λ , λ̃ and all t ≥ 0.
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Proof. The operators Aa and Ba are self-adjoint and positive semi-definite. Hence, their

spectra lie in [0,∞). From this, it follows that the corresponding semigroups generated by

−Aa and −Ba are analytic. Let
∫

Ω
y0(x)dx = 1 such that y0 ∈ L2

a(Ω). Then
∫

Ω
(y(x, t)−

y0(x))dx = −
∫

Ω
Aa(
∫ t

0 y(x,s)ds)dx = −ωa(
∫ t

0 y(x,s)ds,1/a) = 0 for all t ≥ 0. Hence, the

integral preserving property of the semigroups holds. For the exponential stability esti-

mates (3.12) and (3.13), we note that since the domain Ω is a connected bounded extension

domain, it follows from Poincaré’s inequality (Leoni, 2009)[Theorem 12.23] that there ex-

ists a constant C > 0 such that for all u ∈ H1(Ω),

∫
Ω

|u(x)−uΩ|2dx ≤ C
∫

Ω

|∇u(x)|2dx, (3.14)

where uΩ = 1
µ(Ω)

∫
Ω

u(x)dx. This implies that 0 is a simple eigenvalue of the Neumann

Laplacian operator A1. Since the operator Aa can be written as a composition of operators

A1Ma, where Ma is the multiplication map u 7→ au from H1
a (Ω) to H1(Ω), it follows that 0

is also a simple eigenvalue of Aa with the corresponding eigenvector f = 1/a. Additionally,

for a given u∈H1
a (Ω), ωa(u,u)= 0 iff σa(u,u)= 0 due to the assumed positive lower bound

on a. Hence, it also holds that 0 is a simple eigenvalue of the operator Ba. Then the result

follows from (Engel and Nagel, 2000)[Corollary V.3.3].

The above result implies that if v(·, t) = ∇ f/ f , then the solution of system (3.5) ex-

ponentially converges to f if f is in W 1,∞(Ω) and is bounded from below by a positive

constant. Hence, this choice of v(·, t) is a possible control law for achieving exponen-

tial stabilization of desired probability densities. In the next few results, we verify some

regularizing properties of the semigroups considered above, which will be critical to our

controllability analysis.

Lemma 3.2.8. Let a ∈ L∞(Ω) be real-valued and uniformly bounded from below by a

positive constant c1. Moreover, let y0 ∈ L2
a(Ω) such that y0 ≥ c2 for some positive constant
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c2. If (T F
a (t))t≥0 is the semigroup generated by the operator−Aa or −Ba, then T F

a (t)y0≥
c1c2
‖a‖∞

for all t ≥ 0.

Proof. Let k = c1c2. Then we know that a · y0 ≥ k. Hence, we can decompose the ini-

tial condition as y0 = k f +(y0− k f ), where f = 1/a. Note that y0− k f is positive and

T F
a (t) f = f for all t ≥ 0. Therefore, it follows from the positivity preserving property of

the semigroup (Corollary 3.2.6) that T B
a (t)y0 ≥ k/‖a‖∞ for all t ≥ 0.

We note the following well-known result on the product rule of differentiation for

Sobolev functions, which will be used to prove Proposition 3.2.10 and other results later in

this section.

Theorem 3.2.9. (Product Rule) Let Ω ⊂ Rn be an open bounded set. Suppose that u ∈

H1(Ω) and v ∈W 1,∞(Ω). Then u · v ∈ H1(Ω) and the weak derivatives of the product u · v

are given by

(uv)xi = uxiv+ vxiu (3.15)

for each i ∈ {1, ...,n}.

Proposition 3.2.10. Let a ∈W 1,∞(Ω). Then D(Aa) = D(Ba).

Proof. Let u ∈D(Ba). Then using the product rule (Theorem 3.2.9), we have that

ωa(u,
φ

a
) =

〈
Bau,φ

〉
a−
〈 1

a2 ∇a ·∇(au),φ
〉

a (3.16)

for all φ ∈H1
a (Ω). Since a is in W 1,∞(Ω) and is bounded from below by a positive constant,

H1(Ω) = H1
a (Ω). Hence, φ ∈ H1

a (Ω) implies that a ·u, φ

a ∈ H1(Ω) due to the product rule

(Theorem 3.2.9). Therefore, we can conclude that

ωa(u,φ) =
〈
a ·Bau,φ

〉
a−
〈1

a
∇a ·∇(au),φ

〉
a (3.17)
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for all φ ∈ H1
a (Ω). Hence, u ∈ D(Ba) implies u ∈ D(Aa). To establish that u ∈ D(Aa)

implies u ∈D(Ba), we can use a similar argument: if u ∈D(Aa), then

σa(u,aφ) =
〈
Aau,φ

〉
a +
〈1

a
∇a ·∇(au),φ

〉
a (3.18)

for all φ ∈ H1
a (Ω).

In the following lemma, we will consider the space (D(Am
a ),‖ · ‖a|m), where ‖ · ‖a|m is

the norm given by ‖z‖a|m = ‖(I+Aa)
mz‖a for each z ∈ D(Am

a ) and I is the identity map

u 7→ u. This lemma will play an important role in the theorem on controllability, Theorem

3.2.16. It will be used to conclude that solutions of the parabolic systems (3.9) and (3.10)

have bounded gradients for each t > 0, provided that the boundary of the domain Ω is

regular enough. This will enable us to prove later on that the control inputs constructed to

prove controllability are bounded.

Lemma 3.2.11. Let a ∈W 1,∞(Ω). Let Ω be a domain that is either C1,1 or convex. Then

there exists m ∈ Z+ large enough such that, for some Cm > 0, ‖∇(a(x)u)‖∞ ≤ Cm(‖(I+

Aa)
mu‖a) for all u ∈ D(Am

a ). Similarly, there exists m′ ∈ Z+ large enough such that, for

some Cm′ > 0, ‖∇(a(x)u)‖∞ ≤Cm(‖(I+Ba)
m′u‖a) for all u ∈D(Bm′

a ).

Proof. First, we consider the case where Ω is a C1,1 domain. Let W 2,p(Ω) be the set of

elements in Lp(Ω) with second-order weak derivatives in Lp(Ω). Then we know that for

the Neumann problem with a = 1,

−∆u+a0u = f in Ω

n ·∇u = 0 in ∂Ω (3.19)

has solutions u ∈ W 2,p(Ω) if f ∈ Lp(Ω) whenever 1 < p < ∞, a0 ∈ L∞(Ω) (Grisvard,

2011)[Theorem 2.4.2.7] and a0 ≥ β for some β > 0. These solutions have bounds

‖u‖W 2,p ≤Cp‖ f‖Lp (3.20)
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for some constant Cp > 0. Let Ma : L2(Ω)→ L2(Ω) be the multiplication operator defined

as (Mau)(x) = a(x)u(x) for a.e. x ∈ Ω and each u ∈ L2(Ω). Note that u ∈ Lp(Ω) implies

that Mau ∈ Lp(Ω) for each 2 ≤ p ≤ ∞. Suppose that n > 2, where we recall that n is the

dimension of the Euclidean space Rn of which Ω is a subset. Note that Ω is an extension

domain (Definition 3.1.2). Then from the W 2,p regularity estimate (3.20) of equation (3.19)

and from the embedding theorem (Leoni, 2009)[Corollary 11.9], it follows that f ∈ L2(Ω)

implies (Aa + I)−m f = (A1Ma + I)−m f =
(
(A1 +M−1

a )Ma
)−m f ∈ Lq(Ω) for some q≥ n

for m ∈ Z+ large enough. For the general case n ≥ 1, it follows from the embedding

theorem (Leoni, 2009)[Theorem 11.23] that f ∈ L2(Ω) implies (Aa + I)−m f ∈ Lq(Ω) for

any desired n≤ q < ∞, provided m∈Z+ for m large enough. Since a∈W 1,∞(Ω), it follows

from the W 2,p regularity estimate (3.20) of equation (3.19) and Morrey’s inequality (Leoni,

2009)[Theorem 11.34] that if f ∈ L2(Ω), (Aa + I)−m f = u ∈ Lq(Ω), and m ∈ Z+ is large

enough, then ‖∇u‖∞ ≤C∞‖ f‖2, where C∞ > 0 is independent of f .

A similar argument can be used when Ω is convex. However, it is not clear if the W 2,p

regularity estimate (3.20) holds for general convex domains. On the other hand, it can be

established that the Lp regularity estimate of the PDE (3.19) holds for such domains. In par-

ticular, it follows from (Bakry et al., 2013)[Corollary 6.3.3] and the embedding theorems

(Leoni, 2009)[Corollary 11.9, Theorem 11.23] that for any 1 < p≤∞, there exists m ∈ Z+

large enough such that (Aa + I)−m is a bounded operator from L2(Ω) to Lp(Ω). This last

statement uses only the extension property of the domain Ω, which is not required to be

convex for the statement to hold true; the convexity of Ω is required mainly to derive the

bounds on the gradient of the solution u. For this derivation, we use a result from (Maz’ya,

2009). Since a ∈W 1,∞(Ω), it follows from the theorem (Maz’ya, 2009)[Theorem] that

there exists a constant C′∞ > 0 such that if f ∈ L2(Ω), (Aa+I)−m f = u, and m∈Z+ is large

enough, then ‖∇u‖∞ ≤C′∞‖ f‖2, where C′∞ is independent of f . In this last statement, the

theorem (Maz’ya, 2009)[Theorem] can be applied to derive the gradient bounds due to the
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fact that (Aa + I)−m+1 f ∈ Lq(Ω) for some q > n for m ∈ Z+ large enough.

For the operator Ba, the inequalities can be derived using exactly the same approach

as done for Aa. Hence, we only point out the key results needed. Particularly, for a C1,1

domain, the W 2,p regularity estimate also holds for the equation ∇ ·( 1
a(x)∇u)+a0u= f from

(Grisvard, 2011)[Theorem 2.4.2.7]. For Ω being convex, the W 1,p regularity estimate has

been proved in (Geng, 2018)[Theorem 1.3] for solutions of elliptic operators in divergence

form on convex domain. Since a ∈W 1,∞(Ω), using the product rule (Theorem 3.2.9), the

gradient bounds for the Neumann Laplacian (Maz’ya, 2009)[Theorem] also give the desired

gradient bounds of the operator ∇ · ( 1
a(x)∇·)

Lemma 3.2.12. Let Ω be a domain that is either C1,1 or convex. Let y0 ∈ D(Am
a ) for

some m ∈ Z+. Then the mild solution, y ∈ C([0,∞);L2
a(Ω)), of the PDE (3.9) satisfies

y(·, t)∈D(Am
a ) for each t ∈ [0,∞). Moreover, the following estimates hold for some positive

constants Mm and λ :

‖y(·, t)− f‖a|m ≤ Mme−λ t . (3.21)

Proof. We are given that y0 ∈ D(Am
a ). Since the semigroup (T A

a (t))t≥0 and its gen-

erator −Aa commute, we know that ‖y(·, t)− f‖a|m = ‖(I+ Aa)
m(T A

a (t))(y0 − f )‖a =

‖T A
a (t)(I+Aa)

m(y0− f )‖a ≤ M0e−λ t‖y0− f‖a|m for some positive constants M0 and λ .

Since controllability will first be proved in Lemma 3.2.14 under the assumption that the

initial condition is bounded from below by a positive constant, the following lemma will

be used to relax this assumption in Theorem 3.2.16.

Lemma 3.2.13. Let Ω be a domain that is either C1,1 or convex and that satisfies the chain

condition (see Definition 3.1.3). Let y0 ∈L2(Ω) be such that y0≥ 0. Let y∈C([0,T ];L2(Ω))

be the unique mild solution of the PDE (3.9). Then for all t ∈ (0,∞), there exists a positive

constant, ct > 0, such that y(·, t)≥ ct .
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Proof. Consider the heat equation with Neumann boundary condition, that is, the PDE

(3.5) with v ≡ 0. The solution y of this PDE can be represented using the Neumann heat

kernel K. That is, there exists a measurable map K : (0,∞)×Ω2 → [0,∞) such that the

mild solution y can be constructed using the relation y(x, t) =
∫

Ω
K(t,x,z)y0(z)dz for each

t ∈ (0,∞) and almost every x∈Ω. From (Choulli and Kayser, 2015)[Theorem 3.1] (for C1,1

domains) and (Li and Yau, 1986)[Corollary 2.1] (for convex domains), for some C > 0, we

know that K(t,x,z)≥ C
(4πt)1/2 exp(−|x−z|2

4t ) for each t > 0 and almost every x,z ∈Ω. From

this, the lower bound on y(·, t) follows.

Lemma 3.2.14. Let y0 ∈ D(Am
a ) for some m ∈ Z+ such that y0 ≥ c1 for some positive

constant c1. Suppose that f ∈W 1,∞(Ω) such that f ≥ c2 for some positive constant c2 and∫
Ω

f (x)dx =
∫

Ω
y0(x)dx. Let t f = ∑

∞
k=1

1
k2 be the final time. Define the vector field v in the

PDE (3.5) by

v(·, t) = ∇y
y
−α j

∇(ay)
y

(3.22)

for some α > 0, j ∈ Z+, where a = 1/ f whenever t ∈ [∑
j−1
k=1

1
k2 ,∑

j
k=1

1
k2 ). Here, we define

∑
j
k=1

1
k2 = 0 if j = 0.

If Ω is a domain that is C1,1 or convex, then there exists m ∈ Z+\{0} large enough and

α > 0 such that v ∈ L∞([0, t f ];L∞(Ω)n) and y(·, t f ) = f .

Proof. Substituting v(·, t)= ∇y
y −α j ∇(ay)

y whenever t ∈ [∑ j−1
k=1

1
k2 ,∑

j
k=1

1
k2 ) in the PDE (3.5),

it can be seen that if the solution of this PDE exists, then it can be constructed from mild

solutions of the closed-loop PDE

ỹt = α j∆(a(x)ỹ) in Ω× [0,
1
j2 )

ỹ(·,0) = ỹ0 = y(·,∑ j−1
k=1

1
k2 ) in Ω

n ·∇(aỹ) = 0 in [0,
1
j2 ), (3.23)

and we obtain the relation y(·,∑ j−1
k=1

1
k2 + i) = ỹ(·, i) for each i ∈ [0, 1

j2 ) and each m ∈ Z+.

Since y0 is uniformly bounded from below by a positive constant, ỹ is also uniformly
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bounded from below according to Lemma 3.2.13. Moreover, since a ∈W 1,∞(Ω), it follows

that D(Aa) ⊂ H1(Ω). Hence, the velocity field v is well-defined for all t in the half-open

interval [0, t f ).

It follows from Lemma 3.2.7 that ‖y(·,∑ j
k=1

1
k2 )− f‖a≤M0e−αλ ∑

j
k=1

k
k2 =M0e−αλ ∑

j
k=1

1
k

for each j ∈ Z+, for some positive constants M0 and λ independent of j. Since the sum-

mation ∑
j
k=1

1
k is diverging, we have that y(·, t f ) = f if the solution is defined over the

interval [0, t f ]. Since y is continuous on [0, t f ) and uniformly bounded, it follows that y

is in C([0, t f );L2
a(Ω)) and can be extended to a unique mild solution y ∈C([0, t f ];L2

a(Ω))

defined over the time interval [0, t f ].

It is additionally required to prove the existence of m ∈ Z+ and α > 0 such that v ∈

L∞([0, t f ];L∞(Ω)n). First, we derive bounds on the term 1/y(·, t). Due to the lower bound

on the initial condition y0, and noting that y(·, t) = T A
a (t̃)y0 for some t̃ ∈ [0,∞) depending

on t ∈ [0, t f ), it follows from Lemma 3.2.8 that there exists a positive constant d such that

y(·, t)≥ d (3.24)

for all t ∈ [0, t f ). This gives us the uniform upper bound 1/d on the term 1/y(·, t). Next,

we consider the term α∇(a(x)y(·, t)). We note that y0 ∈ D(A j
a). Hence, we can apply the

estimate in Lemma 3.2.12 to obtain

‖y(·,
m

∑
k=1

1
k2 )− f‖a|m ≤ M̃e−αλ ∑

j
k=1

1
k

for some positive constants M̃ and λ . From Lemma 3.2.11, it follows that when Ω is a

domain that is C1,1 or convex, there exists C > 0 depending only on a such that

‖α j∇(a(x)y)(·,
j

∑
k=1

1
k2 )‖∞ ≤ Cα jM̃e−αλ ∑

j
k=1

1
k (3.25)

for some positive constants M̃ and λ . The right-hand side of the estimate (3.25) is not

uniformly bounded for arbitrary α > 0 due to its dependence on j. However, we note
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that lim j→∞−ln j +∑
j
k=1

1
k = γ , where γ > 0 is the Euler-Mascheroni constant (Finch,

2003)[Section 1.5]. Therefore, by setting α ≥ 1/λ , the right-hand side becomes uniformly

bounded for all j ∈ Z+. Since a ∈W 1,∞(Ω), it follows from the product rule and the

estimate (3.25) that

‖∇y(·, t)‖∞ ≤ C2 (3.26)

for some positive constant C2 and for all t ∈ [0, t f ).

From the estimates (3.24)-(3.26), it follows that if α > 0 is large enough, then v ∈

L∞([0, t f ];L∞(Ω)n) and y(·, t f ) = f . This concludes the proof for the case when the domain

Ω is C1,1 or convex.

Note that any control law of the form v(·, t) = ∇y
y −αmβ ∇(ay)

y for numerous other values

of β and α will also achieve the desired controllability objective, due to the fact that an

exponential function of a variable grows faster than a polynomial function as the variable

tends to infinity. Additionally, we could replace the parameter m with a continuous function

m(t) such that
∫ T

0 m(τ)dτ = ∞.

The following corollary follows from Lemma 3.2.14 using a straightforward scaling

argument.

Corollary 3.2.15. Let y0 ∈ D(Am
a ) be such that y0 ≥ c1 for some positive constant c1 and

m ∈ Z+. Let Ω be a domain that is either C1,1 or convex. Suppose that f ∈W 1,∞(Ω) such

that f ≥ c2 for some positive constant c2,
∫

Ω
f (x)dx =

∫
Ω

y0(x)dx, and a = 1/ f . Let t f > 0

be the final time. Then there exists v ∈ L∞([0, t f ];L∞(Ω)n) such that the mild solution y of

the PDE (3.5) satisfies y(·, t f ) = f .

Now, we are ready to state and prove our main theorem, where we relax the assumptions

on the initial condition y0 made in Corollary 3.2.15. However, we will need to impose the

additional constraint that Ω should satisfy the chain condition.
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Theorem 3.2.16. Let Ω be a domain that is either C1,1 or convex and that satisfies the

chain condition. Let y0 ∈ L2(Ω) be such that y0 ≥ 0 and
∫

Ω
y0(x)dx = 1. Suppose that

f ∈W 1,∞(Ω) such that f ≥ c for some positive constant c,
∫

Ω
f (x)dx = 1. Let t f > 0 be the

final time. Then there exists v ∈ L∞([0, t f ];L∞(Ω)n) such that the unique mild solution y of

the PDE (3.5) satisfies y(·, t f ) = f .

Proof. Set v(·, t) = 0 in the PDE (3.5) for each t ∈ [0,ε/3], where ε ∈ (0, t f ) is small

enough. Then this PDE is the heat equation with Neumann boundary condition. From

Lemma 3.2.13, it follows that the solution y satisfies y(·,ε/2) ≥ c for some positive con-

stant c. For each t ∈ (ε/3,2ε/3], let v(·, t) = ∇ f
f . Then the mild solution of the PDE is

given by the semigroup (T B
a (t))t≥0, where a = 1/ f . From Lemma 3.2.7, the semigroup

(T B
a (t))t≥0 is analytic. Hence, from regularizing properties of analytic semigroups (Lu-

nardi, 2012)[Theorem 2.1.1], it follows that y(·,ε)∈D(B j
a) for each j ∈Z+. From Lemma

3.2.11, this implies that ‖Bay(·,2ε/3)‖∞ < ∞. Due to the product rule (Theorem 3.2.9),

Proposition 3.2.10, and Lemma 3.2.11, this inequality implies that ‖Aay(·,2ε/3)‖∞ < c

for some c > 0. Let v(·, t) = ∇y
y −

∇(ay)
y for t ∈ [2ε/3,ε]. Then from the last statement of

Corollary 3.2.5 and the fact that the operator −Aa commutes with the semigroup it gen-

erates, it follows that ‖MaAay(·, t)‖∞ = ‖MaT A
a (t−2ε/3)aAay(·,2ε/3)‖∞ < c′ for some

c′ > 0 and for all t ∈ (2ε/3,ε]. Since a ∈W 1,∞(Ω), we can apply the result in Proposition

3.2.10 and the gradient estimates of the Neumann Laplacian in (Grisvard, 2011)[Theorem

2.4.2.7] and (Maz’ya, 2009)[Theorem]. Taken together, all of these observations imply that

‖∇y(·, t)‖∞ < k for some k > 0 and all t ∈ (2ε/3,ε]. From Lemma 3.2.8, it also follows

that y is uniformly bounded from below, and hence v(·, t) is essentially bounded for all

t ∈ [0,ε]. Lastly, due to the analyticity of the semigroup (T A
a (t))t≥0, y(·,ε) ∈ D(A j

a) for

each j ∈ Z+. Then the result follows from Corollary 3.2.15.

In the following theorem, we note that system (3.5) has stronger controllability proper-
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ties than Theorem 3.2.16 describes: this system is path controllable if the path is confined

to a subset of L2(Ω) that is regular enough. This should not be surprising due to the large

dimensionality of the system’s control inputs as compared to the choice of controls in clas-

sical PDE control problems, where control inputs are typically localized on a small subset

of the interior or boundary of the domain. We restrict the path to the space W 2,∞(Ω) for

simplicity.

Theorem 3.2.17. Let Ω be a domain that is either C1,1 or convex. Suppose that γ ∈

C1([0,1];W 2,∞(Ω)) such that γ(t) ≥ c for some positive constant c and for all t ∈ [0,1].

Additionally, suppose that
∫

Ω
γ(x, t)dx = 1 for all t ∈ [0,1]. Then there exists

v ∈ L∞([0,1];L∞(Ω)n) such that a solution of the PDE (3.5) satisfies y(t) = γ(t) for all

t ∈ [0,1].

Proof. Fix t ∈ [0,1]. Consider the solution φ(t) ∈ L2(Ω) of the Poisson equation in weak

form,

ω1(φ(t),µ) =
〈∂γ

∂ t
(t),µ

〉
for all µ ∈ H1(Ω), (3.27)

where 1 is the function taking value 1 everywhere on Ω. Note that since
∫

Ω
γ(x, t)dx =

1 for all t ∈ [0,1], we have that
∫

Ω

∂γ

∂ t (x, t)dx = 0 for each t ∈ [0,1], and therefore the

Poisson equation has a unique solution for each t ∈ [0,1]. Then it follows from (Grisvard,

2011)[Theorem 2.4.2.7] and Morrey’s inequality (Leoni, 2009)[Theorem 11.34] (when Ω

is a C1,1 domain) and (Maz’ya, 2009)[Theorem] (when Ω is convex) that there exists a

constant C such that ‖∇φ(t)‖∞≤C‖∇(∂γ(t)/∂ t)‖2≤C‖∇(∂γ(t)/∂ t)‖∞ for each t ∈ [0,1].

Then setting v(·, t) = ∇γ(t)
γ(t) −

∇φ(t)
γ(t) for each t ∈ [0,1] gives us the desired controllability

result.
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Figure 3.1: Simulated Agent Densities at Three Times t and the Underlying Scalar Field.

3.2.1 Simulation

In this subsection, we validate the stability result presented in this section. This result

was presented in (Elamvazhuthi et al., 2016) to verify the stabilization of a simulated

swarm to a target probability density. The results have also been experimentally validated

in (Li et al., 2017) with a single robot over multiple trials.

We validate our coverage approach in a simulated scenario. The scalar field is defined

as F1(x) = f1(x)− f2(x)+ ε for all x ∈Ω, where fn, n = 1,2, are given by

fn(x) = exp
(

−1
1−‖anx−bn‖2

)
for ‖anx−bn‖2 < 1,

= 0 otherwise.

We set a1 = 2, a2 = 6, b1 = 1, b2 = 2, and ε = 0.01. The field F1(x) is shown in the lower

right plot of Fig. 3.1.

The diffusion-based feedback control law was chosen to be Dn(x) = 10−5/Fn(x)1/2,

n = 1,2. Since Dn is in C∞(Ω̄) and is uniformly bounded from below away from zero, it
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is globally Lipschitz on Ω. For the stochastic simulation, 3000 agents were simulated on

a domain Ω = (0,1)× (0,1). The agents were initially distributed as a Gaussian centered

at (0.5,0.5). The stochastic motion of each agent was approximated in discrete time using

the Euler-Maruyama scheme (Talay, 1994):

X(t +∆t)−X(t) = (2D2
n(X)∆t)1/2 Z(t), (3.28)

where Z ∈ R2 is a vector of independent, standard normal random variables. When an

agent encounters the boundary, it performs a specular reflection. As shown in Figs. 3.1, the

steady-state swarm density closely matches the underlying scalar field.

3.3 Controllability of a System of Advection-Diffusion-Reaction Equations

In models of robotic swarms, we consider the hybrid variants of the SDE (3.4) to ac-

count for the fact that each robot, in addition to a continuous spatial state Z(t), can be

associated with a discrete state Y (t)∈ V = {1, ...,N} at each time t (Milutinovic and Lima,

2006; Elamvazhuthi et al., 2018c). This model was introduced in Section 1.2.2. In this

case, the state of each agent is denoted by the pair (Z(t),Y (t)) ∈ Ω×V . Suppose that

the variable Y (t) evolves according to a CTMC. We define a graph G = (V ,E ) in which

the vertex set V is the set of discrete states, and the edge set E defines the possible agent

transitions between the discrete states in V . The agents’ transition rules are determined by

the control parameters ue : [0,∞)→U for each e ∈ E , also known as the transition rates of

the associated CTMC. Here U ⊂ R+ is the set of admissible transition rates.

The variable Y (t) evolves on the state space V according to the conditional probabilities

P(Y (t +h) = T (e) | Y (t) = S(e)) = ue(t)h+o(h) (3.29)

for each e ∈ E . Let P(V ) = {y ∈ RN
+ : ∑v yv = 1} be the simplex of probability densities

on V . Corresponding to the CTMC is a set of ODEs that determine the time evolution of
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the probability densities P(Y (t) = v) = µv(t) ∈ R+. The forward equation is given by a

system of linear ODEs,

µ̇(t) = ∑
e∈E

ue(t)Qeµ(t), t ∈ [0,∞), (3.30)

µ(0) = µ
0 ∈P(V ),

where Qe are control matrices whose entries are given by

Qi j
e =


−1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

Given these definitions, we can define a hybrid switching diffusion process (Z(t),Y (t)) as

a system of SDEs of the form

dZ(t) = v(Y (t),Z(t), t)dt +
√

2DdW(t)+n(Z(t))dψ(t),

Z(0) = Z0, (3.31)

where v : V ×Ω× [0, t f ]→ Rn is the state- and time-dependent velocity vector field, and

D ∈ RN
+ is a vector of positive elements. Here, Dk is the diffusion parameter associated

with each discrete state k ∈ V . Let vk denote the velocity field associated with discrete

state k ∈ V . Then the forward equation for this system of SDEs is given by the system of

PDEs

(yk)t = Dk∆yk−∇ · (vk(x, t)yk)+Fk in Ω× [0, t f ]

yk(·,0) = y0
k in Ω

n · (∇yk−vk(x, t)yk) = 0 in ∂Ω× [0, t f ],

(3.32)

where k ∈ V and Fk = ∑e∈E ∑ j∈V ue(t)Q
k j
e y j.
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We can pose a problem for the system of SDEs (3.31) that is similar to the one defined

in Problem 3.2.2, with a target spatial distribution assigned to each discrete state:

Problem 3.3.1. Given t f > 0, y0 : ΩN→R+, and f : ΩN→R+ such that ∑i∈V
∫

Ω
y0

i (x)dx=

∑i∈V
∫

Ω
fi(x)dx = 1, determine whether there exists a set of space- and time-dependent

parameters vk : Ω× [0, t f ]→Rn and time-dependent parameters ue : [0, t f ]→R+ such that

the solution y of the system of PDEs (3.32) satisfies y(·, t f ) = f.

In order to prove the results in this section, we note the following result (Elamvazhuthi

et al., 2019) on the controllability of system (2.2) using piecewise-constant controls.

Theorem 3.3.2. (Elamvazhuthi et al., 2019) Let T > 0. If the graph G = (V ,E ) is strongly

connected, then the system (2.2) is globally controllable within time T from every point in

the interior of the simplex P(V ), using piecewise-constant control inputs.

We define some new notation that will be needed in this section and the following one.

These definitions will be used to construct solutions of the system of PDEs (3.32) and hence

enable the controllability and stability analysis.

Let a = [a1 a2 ... aN ]
T ∈ L∞(Ω) = Z1× ...× ZN , where ai ∈ L∞(Ω) and Zi = L∞(Ω)

for each i ∈ V . If c > 0, then we write a ≥ c to denote that ai ≥ c for each i ∈ V . We

will assume throughout that this condition is satisfied by a for some positive constant c.

We consider the operator Ba : D(Ba)→ L2
a(Ω), where L2

a(Ω) = L2
a1
(Ω)× ...×L2

aN
(Ω) is

equipped with the norm ‖·‖a, defined as ‖u‖a = (∑N
i=1 ‖ui‖2

a)
1/2 for each u = [u1 ... uN ]

T ∈

L2
a(Ω), and D(Ba) = D(Ba1)×D(Ba2)× ...×D(BaN ). The operator Ba is defined by

Bav = [Ba1v1 Ba2v2 ... BaN vN ]
T for each v = [v1 ... vN ]

T ∈ D(Ba). Recall that, formally,

Ba is the operator ∆(a · ) for a given positive function a ∈ L∞(Ω). Corresponding to each

matrix Qe, we associate a bounded operator Qe on the space L2
a(Ω) given by (Qey)(x) =

Qey(x) for each y = [y1 ... yN ]
T ∈ L2

a(Ω) and a.e. x ∈ Ω. Let b ∈ L∞(Ω). M b will

denote the multiplication operator defined by M bv = [Mb1v1 Mb2v2 ... MbN vN ]
T for each
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v ∈ L2(Ω) = L2
a(Ω). For a function Ke ∈ L∞(Ω), KeQe will denote the product operator

M bQe, where M b is the multiplication operator corresponding to the function b∈L∞(Ω)

defined by setting bi = Ke for each i ∈ V .

Lemma 3.3.3. Let {Ke}e∈E be a set of non-negative functions in L∞(Ω). Suppose b ∈

L∞(Ω) such that bi = Di1 is a positive constant function for each i ∈ V . Then the operator

−M bBa +∑e∈E KeQe generates a semigroup of operators (S (t))t≥0 on L2
a(Ω). More-

over, the semigroup is positive and mass-conserving, i.e., if y0 ∈ L2
a(Ω) is real-valued, then

∑i∈V
∫

Ω
(S (t)y0)i(x)dx = ∑i∈V

∫
Ω

yi(x)dx for all t ≥ 0.

Additionally, if ai ∈W 1,∞(Ω), then S (t)y0 is the unique mild solution of the system

(3.32) with fi = 1/ai, vi(·, t) = Di∇ fi/ fi, and ue(t) = Ke for all i ∈ V , all e ∈ E , and all

t ∈ [0, t f ].

Proof. The generation of the semigroup (S (t))t≥0 follows from the fact that −M bBa +

∑e∈E KeQe is a bounded perturbation of the operator −M bBa. The positivity preserving

property of the semigroup can be demonstrated as follows using the Lie-Trotter product

formula (Engel and Nagel, 2000)[Corollary III.5.8]. Let (U (t))t≥0 be the semigroup gen-

erated by the operator ∑e∈E KeQe. In fact, the semigroup can be explicitly represented

as U (t) = e∑e∈E KeQet for each t ≥ 0. Moreover, (e∑e∈E KeQety0)(x) = e∑e∈E Ke(x)Qety0(x)

for each y0 ∈ L2
a(Ω) and a.e. x ∈ Ω. The semigroup (U (t))t≥0 is positivity preserving

since each matrix Qe has positive off-diagonal entries. From Corollary 3.2.5, we also

note that the semigroup (V (t))t≥0 generated by the operator −M bBa is positivity pre-

serving. Moreover, since ∑e∈E KeQe is a bounded operator, there exists w ∈ R such that

‖U (t)‖op ≤Mewt for some positive constant M for all t ≥ 0. The semigroup (V (t))t≥0 is

contractive, i.e., ‖V (t)‖op ≤ 1 for all t ≥ 0. Hence, it follows from the Lie-Trotter product

formula that S (t)y0 = limn→∞[V (t/n)U (t/n)]ny0 for all t ≥ 0. Therefore, the semigroup

(S (t))t≥0 is positivity preserving. Through another application of the Lie-Trotter product
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formula, it follows that ∑i∈V
∫

Ω
(S (t)y0)i(x)dx = ∑i∈V

∫
Ω

y0
i (x)dx for all t ≥ 0.

In the following lemma, we identify a relation between solutions of the system of PDEs

(3.32) and solutions of the ODE (2.2).

Lemma 3.3.4. Let {qe}e∈E be a set of non-negative constants. Suppose b ∈ L∞(Ω) such

that bi = Di1 is a positive constant function for each i ∈ V . Let (S (t))t≥0 be the semi-

group generated by the operator −M bBa +∑e∈E qeQe. Additionally, assume that y0 ∈

D(−M bBa) is real-valued and that µ0
i =

∫
Ω

y0
i (x)dx for each i ∈ V . Then µi(t), given by

µi(t) =
∫

Ω
(S (t)y0)i(x)dx for each t ≥ 0 and each i ∈ V , is a solution of the system (2.2).

Proof. Let y(·, t) = S (t)y0 for each t ≥ 0. Then the result follows by noting that

d
dt

∫
Ω

yi(x, t)dx

=
∫

Ω

DiBaiyi(x, t)dx+
N

∑
j=1

∑
e∈E

∫
Ω

qeQi j
e yi(x, t)dx

= Diσai(yi,1/ai)+
N

∑
j=1

∑
e∈E

qeQi j
e

∫
Ω

yi(x, t)dx

=
N

∑
j=1

∑
e∈E

qeQi j
e

∫
Ω

yi(x, t)dx

for all t ≥ 0.

The lemma above allows us to apply the results of Theorems 3.2.16 and 3.3.2 to prove

the following controllability result, which addresses Problem 3.3.1.

Theorem 3.3.5. Let Ω be a domain that is C1,1 or convex and that satisfies the chain

condition. Let t f > 0. Let fi ∈W 1,∞(Ω) for each i ∈ V such that fi ≥ c for some positive

constant c. Suppose y0 ∈ L2(Ω) such that y0 ≥ 0 and ∑i
∫

Ω
fi(x)dx = ∑i

∫
Ω

y0
i (x)dx. Then

there exist control parameters {vi}i∈V in L∞([0, t f ];L∞(Ω)n) and {ue}e∈E in L∞([0, t f ]),

where each ue is non-negative, such that the unique mild solution of the system (3.32)

satisfies yi(·, t f ) = fi for each i ∈ V .
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Proof. Let vi(·, t) = 0 for each t ∈ [0, t f /2] and for each i ∈ V . Then from Theorem 3.3.2

and Lemmas 3.3.3 and 3.3.4, it follows that there exist piecewise constant parameters ue :

[0, t f /2]→ R+ such that the mild solution of the PDE (3.32) satisfies
∫

Ω
yi(x, t f /2)dx =∫

Ω
fi(x)dx for each i ∈ V . Then the result follows by extending the function ue to the

domain [0, t f ] by defining ue(t) = 0 for t ∈ (t f /2, t f ] and by defining vi(·, t) for t ∈ (t f /2, t f ]

as in the proof of Theorem 3.2.16.

3.4 Stabilization of a System of Advection-Diffusion-Reaction Equations to Target

Probability Densities

In this section we will consider the following problem of stabilizing a target stationary

distribution feq of the process (3.31) using time-independent control laws, which are more

practical for implementation than time-dependent control laws.

Problem 3.4.1. Given feq : ΩN→R+, determine whether there exist time-independent and

possibly spatially-dependent parameters vk : Ω→ Rn, Ke : Ω→ R+ such that the solution

of the system

(yk)t = Dk∆yk−∇ · (vk(x)yk)+Fk in Ω× [0,∞)

yk(·,0) = y0
k in Ω

n · (∇yk−vk(x)yk) = 0 in ∂Ω× [0,∞),

(3.33)

where k ∈ V and Fk = ∑e∈E ∑ j∈V Ke(x)Q
k j
e y j, satisfies limt→∞ yk(·, t)→ fk for each k ∈

V .

Before addressing this problem, we first briefly review the notion of irreducibility of a

positive operator (Meyer-Nieberg, 2012), which will be used extensively in the theorems

in this section. Let P be a positive operator on the Hilbert space X = L2
a(Ω) (or L2

a(Ω))
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for some a ∈ L∞(Ω) (or a ∈ L∞(Ω)), i.e., a linear bounded operator that maps real-valued

non-negative elements of X to real-valued non-negative elements of X . Let Ω̃ ⊂ Ω (or

Ω̃⊂ΩN) be a measurable subset. Consider the set I
Ω̃

defined by I
Ω̃
=
{

f ∈ X : Ω̃⊂ {x∈

Ω : f (x) = 0}
}

. P will be called irreducible if the only measurable sets Ω̃⊂Ω for which

the set I
Ω̃

is invariant under P are Ω̃ = Ω (or ΩN) and Ω̃ =∅, the null set. A semigroup

of operators (T (t))t≥0 on X will be called irreducible if T (t) is an irreducible operator

for every t > 0. Suppose that A is the generator of the semigroup (T (t))t≥0 and s(A) :=

sup{Re(λ ) : λ ∈ spec(A)}. Then (T (t))t≥0 being irreducible is equivalent to (λ I−A)−1

mapping real-valued non-negative elements of X to strictly positive elements of X for every

λ > s(A) (Arendt et al., 2006)[Definition C-III.3.1]. Note that the definitions in the cited

reference are stated in a general framework of Banach lattices, for which (T (t))t≥0 being

irreducible is equivalent to (λ I−A)−1 mapping positive elements of X to quasi-interior

elements of X . However, for the spaces that we consider, quasi-interior elements are the

same as functions that are positive almost everywhere on their domain of definition.

Theorem 3.4.2. Let {qe}e∈E be a set of non-negative constants. Then spec(∑e∈E qeQe)⊂

C̄−.

Proof. This follows from (Minc, 1988)[Theorem II.1.1] by noting that all the elements of

the matrix Gλ = λ I+∑e∈E qeQe are non-negative for λ > 0 large enough.

Theorem 3.4.3. Let {qe}e∈E be a set of non-negative constants. Let a ∈ L∞(Ω) such that

a ≥ c for some positive constant c. Suppose b ∈ L∞(Ω) such that bi = Di1 is a positive

constant function for each i ∈ V . Then spec(−M bBa +∑e∈E qeaS(e)Qe)⊂ C̄−.

Proof. Let W =−M bBa+∑e∈E qeaS(e)Qe. Let λ ∈C\spec(−M bBa+∑e∈E qeaS(e)Qe)

be real and large enough such that (λ I−W )−1 is a positive operator, i.e., (λ I−W )−1 f ≥ 0

whenever f ≥ 0. Such a λ necessarily exists because the semigroup (U (t))t≥0 generated

by the operator W is positivity preserving from Lemma 3.3.3. Hence, the existence of

115



λ follows from the resolvent formula (λ I−W )−1 =
∫

∞

0 e−λ tU (t)dt when λ is greater

than the growth bound of the semigroup (U (t))t≥0, which is equal to the spectral growth

bound, s(W ) := {Re µ : µ ∈ spec(W )}, of W since (U (t))t≥0 is analytic (Engel and

Nagel, 2000)[Theorem II.1.10]. Let Rλ = (λ I−W )−1. The operator −M bBa has a com-

pact resolvent since H1
ai
(Ω) is compactly embedded in L2

ai
(Ω) for each i ∈ V (Schmüdgen,

2012)[Proposition 10.6]. The operator Rλ is compact and positivity preserving since W

is a bounded perturbation of −M bBa. Additionally, the spectral radius of Rλ is positive

since 0 is an eigenvalue of W (and hence 1
λ

is an eigenvalue of Rλ ). Therefore, from the

Krein-Rutman theorem (Meyer-Nieberg, 2012)[Theorem 4.1.4], it follows that if r is the

spectral radius of the operator Rλ , then there exists a positive nonzero element h ∈ L2
a(Ω)

such that rh−Rλ h = 0. Then it follows that h ∈ D(W ) and (λ − 1
r )h−W h = 0. For the

sake of contradiction, suppose that λ > 1
r . Then we have that

α

∫
Ω

hi(x)dx +
∫

Ω

Di(Baihi)(x)dx

− ∑
e∈E

N

∑
j=1

∫
Ω

qeaS(e)(x)Qi j
e h j(x)dx = 0

for each i ∈ V , where α = λ − 1
r . This implies that

α

∫
Ω

hi(x)dx− ∑
e∈E

N

∑
j=1

∫
Ω

qeaS(e)(x)Qi j
e h j(x)dx = 0

for each i∈V . But this implies that the matrix ∑e∈E qekS(e)Qe, where the constants {ki}i∈V

are such that ∫
Ω

ai(x)hi(x)dx = ki

∫
Ω

hi(x)dx,

has a positive eigenvalue α . This contradicts Theorem 3.4.2, since spec(∑e∈E qekS(e)Qe)⊂

C̄−. Hence, we cannot have any eigenvalues of W on the positive real axis. Since W

generates a positive semigroup, and its spectrum is non-void, we know that the spectral

growth s(W ) lies in the spectrum of W (Arendt et al., 2006)[Theorem 1.1]. Hence, we can

conclude that the spectrum of W lies in C̄−. This concludes the proof.
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Proposition 3.4.4. Let G be strongly connected. Let f ∈ L∞(Ω) be such that f≥ c for some

positive constant c. Let b ∈ L∞(Ω) such that bi = Di1 is a positive constant function for

each i ∈ V . Suppose y0 ∈ L2(Ω) such that y0 ≥ 0 and ∑i
∫

Ω
fi(x)dx = ∑i

∫
Ω

y0
i (x)dx = 1.

Let a ∈ L∞(Ω) be such that ai = 1/ fi for each i ∈ V . Then there exist positive parameters

{qe}e∈E such that, if (F (t))t≥0 is the semigroup generated by the operator −M bBa +

∑e∈E qeaS(e)Qe, then we have

‖F (t)y0− f‖2 ≤ Me−λ t (3.34)

for some positive constants M and λ and all t ≥ 0.

Proof. Since the graph G is assumed to be strongly connected, from Proposition 2.3.4 we

know that there exist positive parameters {pe}e∈E such that, if ue(t) = pe for all e ∈ E and

all t ≥ 0, then the solution µ(t) of system (2.2) satisfies

‖µ(t)−µ
eq‖2 ≤ M1e−λ1t (3.35)

for some positive constants M1 and λ1 and all t ≥ 0, where µ
eq
k =

∫
Ω

fk(x)dx for each

k ∈ V and µ0 ∈P(V ). In particular, 0 is a simple eigenvalue of the irreducible operator

∑e∈E peQe and µeq is the corresponding unique (up to a scalar multiple) and strictly positive

eigenvector. Then 0 is an eigenvalue for the operator W = −M bBa +∑e peaS(e)Qe with

the corresponding eigenvector f, by construction. We will show that this eigenvalue is

simple and is the dominant eigenvalue. Let g ∈ L2
a(Ω) such that g is not the zero element

0 and is non-negative a.e. in ΩN . Defining h = (λ I−W )−1g for some λ > 0 that is large

enough, we have that

λ

∫
Ω

hi(x)dx+
∫

Ω

Di(Baihi)(x)dx− ∑
e∈E

N

∑
j=1

∫
Ω

peaS(e)(x)Qi j
e h j(x)dx =

∫
Ω

gi(x)dx

for each i ∈ V . This implies that

λ

∫
Ω

hi(x)dx−∑
e∈E

N

∑
j=1

∫
Ω

peaS(e)(x)Qi j
e h j(x)dx =

∫
Ω

gi(x)dx
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for each i ∈ V , which implies that

λ

∫
Ω

hi(x)dx− ∑
e∈E

N

∑
j=1

∫
Ω

pekS(e)Q
i j
e h j(x)dx =

∫
Ω

gi(x)dx (3.36)

for each i∈V for some positive constants ki > 0. The existence of such positive constants is

guaranteed, since we assumed that g is non-negative and hence h is non-negative. However,

∑e pekS(e)Qe generates an irreducible semigroup on RN whenever pe > 0 implies that ke > 0

for all e∈ E . Hence, (λ I−∑e pekS(e)Qe)
−1 maps non-negative, nonzero elements of RN to

strictly positive elements of RN . This implies that
∫

Ω
hi(x)dx> 0 for each i∈V . From this,

we can conclude that hi(x) > 0 for a.e. x ∈ Ω for each i ∈ V . To see this more explicitly,

note that h must satisfy

λhi +DiBaihi−Giiaihi = gi +
N

∑
j=1, j 6=i

Gi ja jh j (3.37)

for each i ∈ V , where G = ∑e∈E peQe. Let Mai be the multiplication operator, defined

on L2(Ω) = L2
ai
(Ω), that is associated with the function ai. The spectrum of the oper-

ator −DiBai lies in C̄−. Consequently, since ai ≥ ` for some ` > 0, so does the spec-

trum of the operator −DiBai − λMai . Moreover, Gii is negative. Hence, the inverse

Ri
λ
=(λ I+DiBai−GiiMai)

−1 =(λM−1
ai

+DiBaiM
−1
ai
−GiiI)−1M−1

ai
exists. The operator

−λM−1
ai
−DiBaiM

−1
ai

generates an irreducible semigroup on L2(Ω) (Ouhabaz, 2009)[The-

orem 4.5] (see equation (4.8) in the cited reference for the class of operators considered);

formally, −BaiM
−1
ai

is the operator ∇ · ( 1
ai

∇(·)). Hence, (Ri
λ
[gi +∑

N
j=1, j 6=i Gi ja jh j])(x) is

strictly positive for a.e. x∈Ω and each i∈V , since ∑
N
j=1, j 6=i Gi j and hi are nonzero for each

i ∈ V . Therefore, (λ I−W )−1 maps nonzero, non-negative elements of L2
a(Ω) to strictly

positive elements of L2
a(Ω). This implies that the semigroup generated by the operator W

is irreducible. Now, we can use (Arendt et al., 2006)[Corollary C-III.3.17] to establish that

the eigenvalue 0 is simple and is the dominant eigenvalue. This follows from the cited

corollary because W has a compact resolvent and generates an analytic semigroup, due to
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the fact that it is a bounded perturbation of the operator −M bBa, which itself has a com-

pact resolvent and generates an analytic semigroup (Engel and Nagel, 2000)[Proposition

III.1.12]. Additionally, we know from (Engel and Nagel, 2000)[Corollary III.1.19] that

since W has a compact resolvent, its spectrum is discrete. Then the result follows from

(Engel and Nagel, 2000)[Corollary V.3.3].

Irreducibility is not necessary, but only sufficient, for the simplicity of the dominant

eigenvalue of a compact positive operator. The goal of the following proposition and theo-

rem is to extend the result in Proposition 3.4.4 to a much larger set of equilibrium distribu-

tions, for which the resulting semigroup is not necessarily irreducible.

Proposition 3.4.5. Let P ∈ RN×N be essentially non-negative, i.e., Pi j ≥ 0 for all i 6= j

in V . Let P be the linear bounded operator on L2(Ω), defined pointwise using P as

(Ph)(x) = Ph(x) for a.e. x ∈Ω for all h ∈L2(Ω). Suppose b ∈L∞(Ω) such that bi = Di1

is a positive constant function for each i ∈ V . In addition, suppose that spec(P) lies in C−.

If ai = 1 for each i ∈ V , then spec(−M bBa +P) lies in C−.

Proof. The proof follows the same line of argument as Theorem 3.4.3. Note that according

to the Lie-Trotter product formula, W = −M bBa +P generates a positive semigroup

since both−Ba and P generate positivity preserving semigroups. Hence, if λ > 0 is large

enough, then Rλ = (λ −W )−1 is a positive operator. Moreover, Rλ is a compact operator

and has a nonzero spectral radius r. From the Krein-Rutman theorem (Meyer-Nieberg,

2012)[Theorem 4.1.4], it follows that there exists a positive function h ∈ L2
a(Ω) = L2(Ω)

such that rh−Rλ h = 0. This implies that λ − 1
r is an eigenvalue of W . However, this

implies that
∫

Ω
−(Baihi) = 0 for each i ∈ V , and hence that(

λ − 1
r

)∫
Ω

hi(x)dx−
N

∑
j=1

∫
Ω

Pi jh j(x)dx = 0

for each i ∈ V . If λ − 1
r ≥ 0, then we arrive at a contradiction, since spec(P) lies in C−.

Here, we have used the fact that h is a positive function, and therefore
∫

Ω
hi(x)dx cannot
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be equal to 0 for each i ∈ V . Hence, we cannot have any eigenvalues of W on the non-

negative real axis of the complex plane. Since W generates a positive semigroup, and its

spectrum is non-void, we know that the spectral growth s(W ) lies in the spectrum of W

(Arendt et al., 2006)[Theorem 1.1]. Hence, we can conclude that the spectrum of W lies

in C−. This concludes the proof.

Theorem 3.4.6. Let G = (V ,E ) be strongly connected, and let Ω be an extension do-

main. Let b ∈ L∞(Ω) such that bi = Di1 is a positive constant function for each i ∈ V .

Let f ∈ L∞(Ω) be non-negative such that fi ≥ c
∫

Ω
fi(x)dx for some positive constant

c > 0. Let V1 = {i ∈ V :
∫

Ω
fi(x)dx > 0}. Additionally, consider the set E1 = {e ∈

E : S(e),T (e) ∈ V1}. Suppose that the graph G1 = (V1,E1) is strongly connected. Then

there exist a ∈ L∞(Ω) and spatially-dependent reaction coefficients {Ke(x)}e∈E ∈ L∞(Ω)

for which−M bBa+∑e∈E KeQe generates a positive semigroup (S (t))t≥0 on L2
a(Ω) such

that if y0 ∈ L2
a(Ω) is a positive function and ∑i∈V

∫
Ω

fi(x)dx = ∑i∈V
∫

Ω
yi(x)dx, then

‖S (t)y0− f‖ ≤ Me−λ t (3.38)

for some positive constants M and λ and all t ≥ 0.

Proof. Without loss of generality, we assume that the set V1 is of the form V1 = {1,2, ..., N̄}

for some integer N̄ ≤ N. Define µeq ∈RN
+ such that µ

eq
i =

∫
Ω

fi(x)dx for each i ∈ V . Then

from Proposition 2.3.4, it follows that there exist positive constants {qe}e∈E such that the

solution µ(t) of the ODE system (2.2) converges exponentially to µeq. In particular, the

matrix ∑e∈E qeQe has 0 as a simple eigenvalue with µeq as the corresponding eigenvector,

which is unique up to a scalar multiple. Let G = ∑e∈E Qe. Then G is necessarily of the

form

G =

G1 G2

0 G3

 , (3.39)
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where G1 ∈ RN̄×N̄ , G2 ∈ RN̄×(N−N̄), G3 ∈ R(N−N̄)×(N−N̄), and 0 is the zero element of

R(N−N̄)×N̄ . If G does not have the block triangular structure above, then there exist indices

i ∈ V1 and j ∈ V \V1 such that G ji > 0. But this implies that if µ0 = µeq, then µ̇ j(0) 6= 0

for all j ∈ V , hence contradicting that Gµeq is the zero element of RN . Moreover, since

limt→∞ µ j(t) = 0 for all j ∈ V \V1 for any µ0 ∈ RN , we must have that spec(G3) is in C−

and that 0 is a simple eigenvalue of G1. Now, let a ∈ L∞(Ω) be such that ai = 1/ fi if

i ∈ V1 and ai = ki1 if i ∈ V \V1 for some positive constant ki. Then consider the operator

W =−M bBa +∑e∈E qeaS(e)Qe. This operator is of the form

W =

W 1 W 2

0 W 3

 , (3.40)

where W 1 ∈L (X1,X1), W 2 ∈L (X1,X2), W 3 ∈L (X2,X2), and 0 is the zero element of

L (X2,X1), with X1 = L2
a1
× ...×L2

aN̄
and X2 = L2

aN̄+1
× ...×L2

aN
. From Proposition 3.4.5,

it follows that spec(W 3) lies in C−. Moreover, from Theorem 3.4.2, it follows that 0 is

a simple and dominant eigenvalue of W 1 with the corresponding eigenvector [ f1 ... fN̄ ]
T .

Then the result follows from (Engel and Nagel, 2000)[Corollary V.3.3].

3.5 Weighted Hypoelliptic Laplacians and their Semigroups

In this section, we generalize some of the semigroup generation results of Section 3.2

to a class of degenerate operators that are not necessarily elliptic. This generalization is

relevant to applications in swarm robotics in which each agent of the swarm has non-

holonomic constraints (Bloch, 2015) on its dynamics.

Before we proceed to state the results of this section, we define some new notation and

motivation for the results. We refer the reader to (Lee, 2001) for the differential geometric

terminologies used in this section.

In this section, Ω will denote an open, bounded, and connected subset with a smooth

boundary of an N−dimensional simply connected Lie group G. The boundary of Ω is
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denoted by ∂Ω. In addition,
∫

Ω
f (x)dx will denote the integral of a function f : Ω→R with

respect to the Haar measure (Diestel and Spalsbury, 2014). We recall that when G = RN

with the standard group structure on RN , the Haar measure coincides with the Lebsegue

measure.

Suppose that eXt is the flow generated by a vector field X. Then X defines a differential

operator on the set of smooth functions C∞(G) through the action

(X f )(x) = lim
t→0

f (etX(x))− f (x)
t

(3.41)

for all x ∈Ω.

Note that here we are using the differential geometric definition (Lee, 2001) of a vec-

tor field X as an associated differential operator acting on the space of smooth functions

through the definition (3.41).

Let X = {X1, ...,Xm} be a collection of left-invariant vector fields (Lee, 2001) with

m ≤ N. We will assume that the collection of vector fields X satisfies the Lie Rank con-

dition or the Hormander condtion, i.e., the Lie algebra spanned by the vector fields X

has rank N. Given a ∈ L∞(Ω), with a ≥ c for a positive parameter c > 0, we define the

Horizontal Sobolev space WH1
a (Ω) =

{
f ∈ L2(Ω) : Xi(a f ) ∈ L2(Ω) for 1 ≤ i ≤ m

}
. We

equip this space with the Horizontal Sobolev norm ‖ · ‖WH1 , given by ‖ f‖WH1
a
=(

‖ f‖2
2 +∑

n
i=1 ‖Xi(a f )‖2

2

)1/2
for each f ∈WH1

a (Ω). Here, the derivative action of Xi on a

function f is to be understood in the distributional sense.

A horizontal curve γ : [0,1]→Ω connecting two points x,y ∈Ω is a Lipschitz curve in

Ω such that there exist essentially bounded functions ai(t) such that

γ̇(t) =
m

∑
i=1

ai(t)X(γ(t)) (3.42)

for almost every t ∈ [0,1], such that γ(0) = x and γ(1) = y. Then X defines a distance

d : Ω→ R≥0 on Ω given by

d(x,y) = inf {
∫ 1

0
|γ̇(t)|dt;γ is a horizontal curve connecting x and y} (3.43)
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The metric d on Ω is known as the Carnot-Caratheodory or Sub-Riemannian metric

(Bramanti, 2014). The topology induced by this metric on d coincides with the usual bi-

invariant metric on G (Nhieu, 2001), which is the standard Euclidean metric when G =RN .

We will assume that the radius r(Ω) of Ω, given by r(Ω) = sup{d(x,y);x,y ∈ G}, is finite.

Consider the following SDE,

dZ(t) =
m

∑
i=1

ui(Z(t), t)Xidt +
m

∑
i=1

Xi ◦dW +n(Z(t))dψ(t),

Z(0) = Z0, (3.44)

In the above SDE (3.44), the notation ◦ is used to mean that the SDE should be interpreted

in the sense of Stratonovich (Karatzas and Shreve, 1998). We define ∆H :=∑
m
i=1 X2

i and will

refer to this operator as the Horizontal Laplacian operator. Let ∇H denote the horizontal

gradient, defined by

∇H( f ) =
m

∑
i=1

Xi( f )Xi (3.45)

for all f ∈C∞(G). The associated probability density y of the random variable Z(t) evolves

according to the PDE

yt = ∆Hy−∇w · (∑m
i=1 ui(x, t)Xiy) in Ω× [0,T ]

n · (∇Hy−∑
m
i=1 ui(x, t)Xiy) = 0 in ∂Ω× [0,T ]

y(·,0) = y0 in Ω, (3.46)

where ∇w· denotes the divergence operation with respect to the Haar measure that maps

vector fields to functions.

The operator ∆H is not elliptic in general, but only hypoelliptic. Particularly, if f ∈

C∞
0 (Ω) has compact support K, then, due to the Lie Rank condition, if u is a function on Ω

such that ∆Hu = f , then u is smooth on K (Bramanti, 2014).

Let f ∈W 1,∞(Ω) be a positive function that is bounded from below by a positive number

and for which
∫

Ω
f (x)dx= 1. If we set ui(·, t)=Xi(g)/g for each i∈{1, ...,m} and all t ≥ 0,
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then the PDE (3.46) becomes

yt = ∆Hy−∇w · (∑m
i=1

Xi(g)
g Xiy) in Ω× [0,T ]

n · (∇Hy−∑
m
i=1

Xi(g)
g Xiy) = 0 in ∂Ω× [0,T ]

y(·,0) = y0 in Ω . (3.47)

When the Lie group G is unimodular, i.e., the left- and right-Haar measure coincide,

∇w ·∇H(·) = ∆H(·) (Agrachev et al., 2009). Hence, if we set y = g, then

∆Hy−∇w · (
m

∑
i=1

Xi(g)
g

Xiy) = ∆Hg−∇w · (∇Hg) = 0 (3.48)

Thus, g is an equilibrium solution of the PDE (3.47). We can further show that g is the

globally exponentially stable equilibrium solution of PDE (3.47) on the the set of square-

integrable probability densities. Thus, if a swarm of robots is modeled according to the

SDE (3.44), the state-feedback law ui(·, t) = Xi(g)/g can be used to stabilize the swarm

to the target density g. This motivates us to study semigroup generation properties of the

operator ∇w · ( 1
a(x)∇H(a(x)·)). Similarly, the operator ∆H(a·) can also be associated with a

stochastic process on G whose probability density converges to 1/a. Hence, we will also

establish similar semigroup generation results for the operator ∆H(a·).

While there have been works on semigroups generated by hypoelliptic operators on

manifolds without boundary (Jerison and Sánchez-Calle, 1986), or manifolds with bound-

ary under the Dirichlet boundary (Varopoulos et al., 2008; Robinson, 1991), there seems to

be, to our knowledge, no existing work on semigroups generated by hypoelliptic operators

with Neumann boundary condition such the one considered in (3.47).

Given a ∈ L∞(Ω) such that a≥ c for some positive constant c, and D(ωH
a ) =WH1

a (Ω),

we define the sesquilinear form ωH
a : D(ωH

a )×D(ωH
a )→ C as

ω
H
a (u,v) =

m

∑
i=1

∫
Ω

Xi(a(x)u(x)) ·Xi(a(x)v̄(x))dx (3.49)
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for each u ∈ D(ωa). We associate with the form ωa an operator AH
a : D(AH

a )→ L2
a(Ω),

defined as AH
a u = v if ωH

a (u,φ) = 〈v,φ〉a for all φ ∈D(ωH
a ) and for all u ∈D(AH

a ) = {g ∈

D(ωH
a ) : ∃ f ∈ L2

a(Ω) s.t. ωH
a (g,φ) = 〈 f ,φ〉a ∀φ ∈D(ωH

a )}.

Similarly, given a ∈ L∞(Ω) such that a≥ c for some positive constant c and D(σH
a ) =

WH1
a (Ω), we define the sesquilinear form σH

a : D(σH
a )×D(σH

a )→ C as

σ
H
a (u,v) =

m

∑
i=1

∫
Ω

1/(a(x))Xi(a(x)u(x)) ·Xi(a(x)v̄(x))dx (3.50)

for each u ∈ D(σH
a ) = WH1

a (Ω). As for the form ωH
a , we associate an operator BH

a :

D(BH
a )→ L2

a(Ω) with the form σH
a . We define this operator as Bau= v if σH

a (u,φ)= 〈v,φ〉a

for all φ ∈ D(σH
a ) and for all u ∈ D(BH

a ) = {g ∈ D(σH
a ) : ∃ f ∈ L2

a(Ω) s.t. σH
a (g,φ) =

〈 f ,φ〉a ∀φ ∈D(σH
a )}.

It is known that the space WH1(Ω) is a Banach space and is dense and compactly

embedded in L2(Ω) (Nhieu, 2001). Thus, as in Lemma 3.2.3, we have the following result

on the operators AH
a and BH

a .

Lemma 3.5.1. The operators AH
a : D(AH

a )→ L2
a(Ω) and BH

a : D(BH
a )→ L2

a(Ω) are closed,

densely-defined, and self-adjoint. Moreover, these operators have purely discrete spectra.

We also know that if f ∈WH1(Ω), then | f | ∈WH1(Ω) (Garofalo and Nhieu, 1998).

Thus, Corollary 3.2.5 extends to the following result.

Corollary 3.5.2. Let y0 ∈L2
a(Ω). Then−AH

a generates a semigroup of operators (T AH

a (t))t≥0.

Additionally, the semigroup (T AH

a (t))t≥0 is positive. Finally, if ‖May0‖∞ ≤ 1, then

‖MaT AH

a (t)y0‖∞ ≤ 1 for all t ≥ 0.

Using the same arguments as in the proof of Corollary 3.2.5, we have the following

result.

Corollary 3.5.3. The operator −BH
a generates a semigroup of operators (T BH

a (t))t≥0 on

L2
a(Ω). Moreover, the semigroup (T BH

a (t))t≥0 is positive.
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Next, we will establish the long-term stability properties of the semigroups associated

with the sub-elliptic operators.

Lemma 3.5.4. The semigroups (T A
a (t))t≥0 and (T B

a (t))t≥0 that are generated by the oper-

ators−Aa and−Ba, respectively, are analytic. Additionally, these semigroups have the fol-

lowing mass conservation property: if y0≥ 0 and
∫

Ω
y0(x)dx= 1, then

∫
Ω
(T A

a (t)y0)(x)dx=∫
Ω
(T B

a (t)y0)(x)dx = 1 for all t ≥ 0. Moreover, 0 is a simple eigenvalue of the operators

−Aa and −Ba. Hence, if y0 ≥ 0 and
∫

Ω
y0(x)dx =

∫
Ω

f (x)dx = 1, then the following esti-

mates hold:

‖T A
a (t)y0− f‖a ≤ M0e−λ t‖y0− f‖a, (3.51)

‖T B
a (t)y0− f‖a ≤ M̃0e−λ̃ t‖y0− f‖a (3.52)

for some positive constants M0,M̃0,λ , λ̃ and all t ≥ 0.

Proof. The proof of analyticity of the semigroups follows along the lines of the proof of

Lemma 3.2.7.

In order to establish the stability properties of the semigroups, we will identify the

eigenvectors associated with the eigenvalue 0. In the proof of Lemma 3.2.7, we used the

Poincaré inequality to establish the uniqueness of the eigenvector of constant functions,

corresponding to the eigenvalue 0 of the Laplacian ∆. It is not clear if the Poincaré inequal-

ity holds for the operator ∆H . Hence, instead of using a Poincaré inequality, we will prove

that the kernel of the operator ∆H consists only of constant functions. Suppose u ∈ D(AH)

is such that AHu = 0, where AH := AH
1 . Since the operator AH satisfies the Lie Rank condi-

tion, from regularity results due to Hormander (Robinson, 1991; Bramanti, 2014), we can

infer that u is locally smooth everywhere in Ω. Then we know that, for a given horizontal

curve γ : [0,1]→Ω,

u(γ(1))−u(γ(0)) =
∫ 1

0

m

∑
i=1

ai(t)Xu(γ(t))dt = 0 (3.53)
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where ai(t) are the essentially bounded functions associated with the curve γ(t) according

to (3.42). Note that we require the local smoothness of u to make sense of the term∫ 1
0 ∑

m
i=1 ai(t)Xu(γ(t))dt. Due to the Lie Rank condition, we can choose γ(t) to be such that

γ(0) and γ(1) are given initial and final conditions in Ω. Hence, we have that u is constant

everywhere on Ω. This implies that ∆H f = 0, and hence AH
a a = BH

a a = 0.

3.6 Stabilization of a System of Hypoelliptic Reaction-Diffusion Equations to Target

Probability Densities with Disconnected Supports

In Sections 3.2-3.3, the probability densities that we stabilized were assumed to be

uniformly bounded from below by a positive number. Without this assumption, the semi-

groups that were constructed to establish the controllability and stability results would not

be irreducible. In this section, we will introduce a semilinear PDE model for stabilization

of a swarm to probability densities that possibly have supports that are disconnected.

As in Section 3.5, Ω will denote an open bounded subset of a Lie group, and we have

a collection of left-invariant vector fields X = {X1, ...,Xm} satisfying the Lie Rank con-

dition. Let AH := AH
1 = ∆H be the operator defined in Section 3.5, where 1 denotes the

function that is equal to 1 almost everywhere on Ω.

We will consider the following PDE model

(y1)t =−AHy−u1(x, t)y1 +u2(x, t)y2 in Ω× [0,T ]

(y2)t = u1(x, t)y1 +u2(x, t)y2 in Ω× [0,T ]

y(·,0) = y0 in Ω

n ·∇y1 = 0 in ∂Ω× [0,T ]. (3.54)

This PDE model is the forward equation of a hybrid switching process, as defined in Section

3.3. Let L2(Ω) = L2(Ω)×L2(Ω) and L∞(Ω) = L∞(Ω)×L∞(Ω) with the standard norms

inherited from the spaces L2(Ω) and L∞(Ω), respectively, as defined in Section 3.3.
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We will consider the following problem in this section.

Problem 3.6.1. Let yd ∈ L∞(Ω) be a target probability density. Construct a mean-field

feedback law Ki : L2(Ω)→ L∞(Ω) such that if ui(·, t) = Ki(y(t)) for all i ∈ {1,2} and

all t ≥ 0, then the system (3.54) is globally asymptotically stable about the equilibrium

yd = [0 yd]T .

Before we address this problem, we make some additional assumptions about the do-

main Ω and the operator AH . Particularly, we will assume that the domain Ω and/or the

operator AH satisfy one of the two following properties:

1. If Ω 6= G, then Ω is a bounded subset of RN , equipped with the usual Lie group

structure; −AH = ∆ is the Laplacian; and Ω is either a C1,1 domain in the sense of

Definition 3.1.1 or is convex.

2. The set Ω is a compact Lie group G without a boundary.

Given these assumptions, we have the following result due to Gaussian estimates proved

by (Choulli and Kayser, 2015) for the Laplacian ∆, and by (Jerison and Sánchez-Calle,

1986) for sub-Laplacians ∆H . We will use this result in the subsequent analysis.

Theorem 3.6.2. Let (T AH
(t))t≥0 be the semigroup generated by the operator −AH . Let

y0 ∈ L2(Ω) be non-negative. Then there exists a constant C > 0 and time T > 0, indepen-

dent of y0, such that T AH
(t)y0 ≥C‖y0‖1 for all t ≥ T .

In order to address Problem 3.6.1, for each i ∈ {1,2}, we define the maps Fi : L2(Ω)→

L2(Ω) given by

(Fi( f ))(x) = ri( f (x)− yd(x)) (3.55)

for almost every x ∈ Ω and all f ∈ L2(Ω), where ri : R→ [0,c] are globally Lipschitz

functions for some positive number c, such that the functions r1 and r2 have supports equal
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to the intervals [0,∞) and (−∞,0], respectively. Our candidate mean-field feedback law Ki

for addressing Problem 3.6.1 will be Ki(y) = Fi(y1) for each i ∈ {1,2}.

Then the resulting closed-loop PDE is given by

(y1)t =−AHy−F1(y2)y1 +F2(y2)y2 in Ω× [0,T ]

(y2)t = F1(y2)y1−F2(y2)y2 in Ω× [0,T ]

y(·,0) = y0 in Ω

n ·∇(y) = 0 in ∂Ω× [0,T ]. (3.56)

In order to perform stability analysis of the PDE (3.56), we will need a suitable notion

of a solution. Toward this end, we introduce the following notion of solutions for semilinear

PDEs (Lunardi, 2012).

Definition 3.6.3. Let (T AH
(t))t≥0 be the semigroup generated by the operator −AH . We

will say that the PDE has a local mild solution if there exists T > 0 and y∈C([0,T ];L2(Ω))

such that

y1(·, t) = T AH
(t)y0

1−
∫ t

0
T AH

(t− s)
(

F1(y2(·,s))y1(·,s)
)

ds

+
∫ t

0
T AH

(t− s)
(

F2(y2(·,s))y2(·,s)
)

ds

y2(·, t) = y0
2 +

∫ t

0
F1(y2(·,s))y1(·,s)ds−

∫ t

0
F2(y2(·,s))y2(·,s)ds (3.57)

for all t ∈ [0,T ].

We will say that the PDE (3.56) has a unique global solution if it has unique mild

solution for every T > 0.

In order to establish the existence of solutions of the PDE (3.56), we consider the map

G : L2(Ω)→ L2(Ω) defined by

G(f) =

−F1( f2) f1 +F2( f2) f2

+F1( f2) f1−F2( f2) f2


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for each f ∈ L2(Ω). We will also need the operator A : D(A) :→ L2(Ω) defined by

Ay =

AHy1

0


for all y ∈ D(A) = D(AH)×L2(Ω).

Then we have the following result.

Lemma 3.6.4. The map G is locally Lipschitz continuous everywhere on L2(Ω).

Proof. We only show that the map y 7→ F1(y2)y1 from L2(Ω) to L2(Ω) is locally Lipschitz

everywhere on L2(Ω). The rest of the proof is a straightforward extension. Let R > 0 and

y0,p,q ∈ L2(Ω) with ‖p−y0‖2 ≤ R and ‖q−y0‖2 ≤ R. Then we have that

‖F1(p2)p1−F1(q2)q1‖2
2 =

∫
Ω

|r1(p2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))q1(x)|2dx

≤
∫

Ω

|r1(p2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))p1(x)|2dx

+
∫

Ω

|r1(q2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))p1(x)|2dx

Since function r1 is a globally Lipschitz function that is bounded from above by a constant

c, and from below by 0, we can conclude that

‖F1(p2)p1 − F1(q2)q1‖2
2

≤ C‖r1(p2(·)− yd(·)− r1(q2(·)− yd(·))‖∞

∫
Ω

|p1(x)|2dx

+C
∫

Ω

|r1(q2(x)− yd(x))|2dx
∫

Ω

|p1(x)−q1(x)|2dx

≤ C
∫

Ω

|r1(q2(x)− yd(x))p1(x)− r1(q2(x)− yd(x)|2dx
∫

Ω

|p2(x)|2dx

+C
∫

Ω

|r1(q1(x)− yd(x))|2dx
∫

Ω

|p1(x)−q1(x)|2dx

≤ C
∫

Ω

|r1(q2(x)− yd(x))p1(x)− r1(q2(x)− yd(x))|2dx

+C
∫

Ω

|p1(x)−q1(x)|2dx

≤ C
∫

Ω

|p2(x)−q2(x)|2dx+C
∫

Ω

|p1(x)−q1(x)|2dx
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for some C > 0 depending only on the constants R and c.

Using Lemma 3.6.4, we can conclude the following theorem on existence of a mild so-

lution of the PDE (3.56) by applying standard results on existence of solutions of semilinear

PDEs (Lunardi, 2012)[Theorem 7.1.2].

Theorem 3.6.5. Let y0 ∈ L2(Ω). There exists a unique local mild solution of the PDE

(3.56).

Proof. We have shown that the map G is locally Lipschitz everyhwhere on L2(Ω).

Our next goal will be to construct global solutions of the PDE (3.56). Further ahead,

we will show that the solutions of the PDE (3.56) remain essentially bounded if the initial

condition is essentially bounded. Toward this end, we first establish this property for a

related autonomous linear PDE.

Lemma 3.6.6. Suppose that y ∈ L∞(Ω). Let a ∈ L∞(Ω) be non-negative. Consider the

linear bounded operator B : L2(Ω)→ L2(Ω) defined by

(By)(x) =

−a1(x)y1(x)+a2(x)y2(x)

a1(x)y1(x)−a2(x)y2(x)


for almost every x ∈Ω and all y ∈ L2(Ω). Let (T C(t))t≥0 be the semigroup generated by

the operator C =−A+B. Then ‖T C(t)y0‖∞ ≤ e‖a‖∞t‖y0‖∞ for all t ≥ 0.

Proof. We know that the operator A generates a semigroup (T A(t))t≥0 given by

T A(t) =

T AH
(t) 0

0 I

 (3.58)

for all t ≥ 0. Moreover, the semigroup (T A(t))t≥0 satisfies ‖T A(t)y0‖∞ ≤ ‖y0‖∞ for

all y0 ∈ L∞(Ω) and t ≥ 0 (Corollaries 3.2.5 and 3.5.2). Additionally, we know that the
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semigroup (T B(t))t≥0 generated by the bounded operator B satisfies the estimate

‖T B(t)y0‖∞ ≤ e‖a‖∞t‖y0‖∞. Then the result follows from the Lie-Trotter product formula

(Engel and Nagel, 2000)[Corollary III.5.8], by noting that T C(t) =

limN→0(T
A( t

N )T
B( t

N ))
N , where the limit holds in the strong operator topology, for all

t ≥ 0.

Now we can show that the L∞− estimate proved in the last lemma can be extended to a

class of non-autonomous linear systems that can be treated as autonomous linear systems

over certain intervals of time.

Lemma 3.6.7. Suppose that y0 ∈ L∞(Ω) and T > 0. For a positive constant c, let a1,a2 ∈

L2(0,T ;L2(Ω)) be non-negative and piecewise constant with respect to time with ‖a1(t)‖∞≤

c and ‖a2(t)‖∞ ≤ c for all t ∈ [0,T ]. Then suppose that y ∈C([0,T ];L2(Ω)) is given by

y1(·, t) = T AH
(t)y0

1−
∫ t

0
T AH

(t− s)
(

a1(·,s)y1(·,s)
)

ds

+
∫ t

0
T A(t− s)

(
a2(·,s)y2(·,s)

)
ds

y2(·, t) = y0
2 +

∫ t

0
a1(·,s)y1(·,s)ds−

∫ t

0
a2(·,s)y2(·,s)ds (3.59)

for all t ∈ [0,T ]. Then

‖T C(t)y0‖∞ ≤ ect‖y0‖∞ (3.60)

for all t ∈ [0,T ].

Proof. Let (ti)m
i=0 be a finite sequence of strictly increasing time instants of length m+1 ∈

Z+, with t0 = 0, such that the functions a1 and a2 are constant over the intervals [ti−1, ti)

for each i ∈ {1, ...,m}. Then, for each i ∈ {1, ...,m}, consider the bounded operators

Bi : L2(Ω)→ L2(Ω) and Ci : D(A)→ L2(Ω) defined by,

(Biy)(x) =

−a1(x, ti−1)y1(x)+a2(x, ti−1)y2(x)

a1(x, ti−1)y1(x)−a2(x, ti−1)y2(x)

 (3.61)
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for almost every x ∈ Ω and all y ∈ L2(Ω), and Ci = A+Bi, respectively. Then, for each

i ∈ {1, ...,m}, y is given by,

y(·, t) = T Ci(t− ti)T Ci−1(ti− ti−1)...T
C1(t1) (3.62)

for all t ∈ [ti−1, ti]. Then the result follows from Lemma 3.6.6.

Lemma 3.6.8. Suppose that y0 ∈ L∞(Ω) and T > 0. For a positive constant c, let a1,a2 ∈

L2(0,T ;L2(Ω)) be non-negative with ‖a1(t)‖∞ ≤ c and ‖a2(t)‖∞ ≤ c for almost every t ∈

[0,T ]. Then suppose that y ∈C([0,T ];L2(Ω)) is given by

y1(·, t) = T AH
(t)y0

1−
∫ t

0
T AH

(t− s)
(

a1(·,s)y1(·,s)
)

ds

+
∫ t

0
T AH

(t− s)
(

a2(·,s)y2(·,s)
)

ds

y2(·, t) = y0
2 +

∫ t

0
a1(·,s)y1(·,s)ds−

∫ t

0
a2(·,s)y2(·,s)ds (3.63)

for all t ≥ 0. Then

‖y(·, t)‖∞ ≤ ect‖y0‖∞ (3.64)

for all t ∈ [0,T ].

Proof. Given that a1,a2 ∈ L2(0,T ;L2(Ω)), we know that there exists sequence of piecewise

(with respect to time) non-negative functions (ai
1)

∞
i=1,(a

i
2)

∞
i=1 in L2(0,T ;L2(Ω)) such that

limi→∞ ‖ai
j− a j‖L2(0,T ;L2(Ω)) = 0, for j = 1,2 (Roubı́ček, 2013)[Proposition 1.36]. More-

over, for each j ∈ {1,2}, we can assume that ‖ai
j(t)‖∞ ≤ c for all t ∈ [0,T ] and all i ∈ Z+.

Consider the corresponding sequence (y)∞
i=1 in C([0,T ];L2(Ω)) defined by

yi
1(·, t) = T A(t)y0

1−
∫ t

0 T A(t− s)
(

ai
1(·,s)yi

1(·,s)
)

ds+
∫ t

0 T A(t− s)
(

ai
2(·,s)yi

2(·,s)
)

ds

yi
2(·, t) = y0

2 +
∫ t

0 ai
1(·,s)yi

1(·,s)ds−
∫ t

0 ai
2(·,s)yi

2(·,s)ds (3.65)

for each i ∈ Z+. Let ei ∈C([0,T ];L2(Ω)) be given by ei = yi− y for each i ∈ Z+. Then,
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from equations (3.63) and (3.65), we know that ei satisfies

ei
1(·, t) = −

∫ t

0
T A(t− s)

(
ai

1(·,s)yi
1(·,s)

)
ds+

∫ t

0
T A(t− s)

(
ai

2(·,s)yi
2(·,s)

)
ds

+
∫ t

0
T A(t− s)

(
a1(·,s)y1(·,s)

)
ds−

∫ t

0
T A(t− s)

(
a2(·,s)y2(·,s)

)
ds

= −
∫ t

0
T A(t− s)

(
(ai

1(·,s)−a1(·,s))yi
1(·,s)

)
ds

+
∫ t

0
T A(t− s)

(
a1(·,s)(y1(·,s)− yi

1(·,s))
)

ds

+
∫ t

0
T A(t− s)

(
(ai

2(·,s)−a2(·,s))yi
2(·,s)

)
ds

−
∫ t

0
T A(t− s)

(
a2(·,s)(y2(·,s)− yi

2(·,s))
)

ds (3.66)

for all t ∈ [0,T ]. Considering the fact the semigroup T A(t− s) is contractive (Corollaries

3.2.5 and 3.5.2), and that ai
j and yi

j are uniformly bounded in L∞((0,T )×Ω), we can

conclude that there exists a constant α > 0 such that

‖ei
1(·, t)‖2 ≤ α‖ai

2−a2‖L2(0,T ;L2(Ω))‖yi
1‖L2(0,T ;L2(Ω))

+α‖a1‖L2(0,T ;L2(Ω))‖ei
1‖L2(0,T ;L2(Ω))

+α‖ai
2−a2‖L2(0,T ;L2(Ω))‖yi

2‖L2(0,T ;L2(Ω))

+α‖a2‖L2(0,T ;L2(Ω))‖ei
2‖L2(0,T ;L2(Ω)) (3.67)

for all t ∈ [0,T ]. Similarly, we can conclude the estimate

‖ei
2(·, t)‖2 ≤ α‖ai

1−a1‖L2(0,T ;L2(Ω))‖yi
1‖L2(0,T ;L2(Ω))

+α‖a1‖L2(0,T ;L2(Ω))‖ei
1‖L2(0,T ;L2(Ω))

+α‖ai
2−a2‖L2(0,T ;L2(Ω))‖yi

2‖L2(0,T ;L2(Ω))

+α‖a2‖L2(0,T ;L2(Ω))‖ei
2‖L2(0,T ;L2(Ω)) (3.68)

for all t ∈ [0,T ].

Then, by considering the sum ‖ei
2(·, t)‖2 + ‖ei

1(·, t)‖2, combining the two inequalities

(3.67) and (3.68), and applying the integral form of Gronwall’s inequality (Evans, 1998),
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we have that

‖ei
2(·, t)‖2 +‖ei

1(·, t)‖2 ≤Ci
2(1+Ci

1teCi
1t) (3.69)

for all t ∈ [0,T ], where Ci
1 = max{2‖a2‖L2(0,T ;L2(Ω)),2‖a2‖L2(0,T ;L2(Ω))} and Ci

2 = 2‖a1−

ai
1‖L2(0,T ;L2(Ω))‖y1‖L2(0,T ;L2(Ω)) + 2‖a2 − ai

2‖L2(0,T ;L2(Ω))‖y2‖L2(0,T ;L2(Ω)), for all i ∈ Z+.

From the inequality (3.69), we can infer that

lim
i→∞
‖ei‖C([0,T ];L2(Ω)) = 0

Considering the estimate (3.60), and the fact that the set

Rc := {u ∈C([0,T ];L2(Ω));‖u(t)‖∞ ≤ c ∀t ∈ [0,T ]} (3.70)

is a closed subset of C([0,T ];L2(Ω)) for every c > 0, we can conclude that y satisfies the

estimate (3.64).

From the above lemma, we can conclude the following theorem on global existence of

solutions of the PDE (3.56).

Theorem 3.6.9. Suppose that y0 ∈ L∞(Ω). Then the PDE (3.56) has a unique global mild

solution.

Next, our goal will be to prove that yd is the globally asymptotically stable equilibrium

of the system (3.56). We prove some preliminary results for this.

Lemma 3.6.10. Suppose that y0 ∈ L∞(Ω) and T > 0. Let a ∈ L∞(Ω) be non-negative.

Consider the multiplication operator B : L2(Ω)→ L2(Ω) defined by

(By)(x) =−a(x)y(x)

for all x∈Ω and all y∈ L2(Ω). Let (T C(t))t≥0 be the semigroup generated by the operator

C =−AH +B. Then ‖T C(t)y0‖∞ ≤ ‖y0‖∞ for all t ≥ 0.
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Proof. We know that if (T AH
(t))t≥0 is the semigroup generated by the operator −AH ,

then from Corollaries 3.2.5 and 3.5.2, ‖T C(t)y0‖∞ ≤ ‖y0‖∞ for all t ≥ 0. Moreover, B

generates the multiplication semigroup (e−a(·)t)t≥0. Then the result follows from the Lie-

Trotter formula (Engel and Nagel, 2000).

Lemma 3.6.11. Let T > 0. Let f ,a ∈ L2(0,T ;L2(Ω)) be non-negative such that ‖ f (t)‖∞

and ‖a(t)‖∞ are bounded by a constant C > 0 almost everywhere on t ∈ [0,T ]. Suppose

that e ∈C([0,T ];L2(Ω)) is given by

e(·, t) = −
∫ t

0 T AH
(t− s)

(
a(·,s)e(·,s)

)
ds+

∫ t
0 T AH

(t− s) f (·,s)ds

for all t ∈ [0,T ]. Then e(·, t) is non-negative for all t ∈ [0,T ].

Proof. The proof follows a similar line of argument as the proof of Lemma 3.6.8. There-

fore, we only provide a sketch of the proof. As in the proof of Lemma 3.6.8, for a given

a ∈ L2(0,T ;L2(Ω)) we can construct a sequence (ai)∞
i=1 in L2(0,T ;L2(Ω)) that is piece-

wise constant in time, and converging in L2(0,T ;L2(Ω)) with ‖ai(t)‖∞ bounded almost

everywhere on [0,T ] by C > 0. Let (ei)
∞
i=1 in C([0,T ];L2(Ω)) be given by

ei(·, t) = −
∫ t

0 T AH
(t− s)

(
ai(·,s)e(·,s)

)
ds+

∫ t
0 T AH

(t− s) f (·,s)ds

for all t ∈ [0,T ]. Using Lemma 3.6.10, we can conclude that (ei)
∞
i=1 is non-negative for each

i ∈ Z+. Then, using the fact that the sequences (ei)
∞
i=1 and (ai)

∞
i=1 are uniformly bounded

in the spaces C([0,T ];L2(Ω)) and L∞((0,T )×Ω), respectively, and applying Gronwall’s

inequality, the result follows.

We can use the above lemma to prove the following result, which will enable us to show

further on that the decay of the solution y of the PDE (3.56) toward 0 can be controlled by

the decay of the solution of a related linear PDE.
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Theorem 3.6.12. (Comparison Principle)

Let T > 0. Let y0 ∈ L2(Ω) and f ,g ∈ L2(0,T ;L2(Ω)) be non-negative such that ‖ f (t)‖∞

and ‖g(t)‖∞ are bounded by a constant C1 > 0 almost everywhere on t ∈ [0,T ]. Let C =

−AH−‖g‖∞I. Let y(·, t) be given by

y(·, t) = T AH
(t)y0−

∫ t

0
T AH

(t− s)
(

g(·,s)y(·,s)
)

ds+
∫ t

0
T AH

(t− s) f (·,s)ds (3.71)

for all t ∈ [0,T ]. Then y(·, t) ≥ T C(t)y0 for all t ∈ [0,T ], where (T C(t))t≥0 is the semi-

group generated by the operator C.

Proof. Let ỹ(·, t) = T C(t)y0 for all t ≥ 0. Then, we know that

ỹ(·, t) = T AH
(t)y0−

∫ t

0
T AH

(t− s)‖g‖∞ỹ(·,s)ds (3.72)

for all t ∈ [0,T ]. Let e = y− ỹ. Then we have that

e(·, t) = −
∫ t

0
T AH

(t− s)
(

g(·,s)y(·,s)
)

ds+
∫ t

0
T AH

(t− s) f (·,s)ds

+
∫ t

0
T AH

(t− s)‖g‖∞ỹ(·,s)ds

= −
∫ t

0
T AH

(t− s)
(
(g(·,s)−‖g‖∞)e(·,s)

)
ds+

∫ t

0
T AH

(t− s) f (·,s)ds

−
∫ t

0
T AH

(t− s)
(

g(·,s)−‖g‖∞)e(·,s)
)

ds

+
∫ t

0
T AH

(t− s)
(
(‖g‖∞−g(·,s))ỹ(·,s)

)
ds (3.73)

for all t ∈ [0,T ]. Then the result follows from the non-negativity of e, which is a conse-

quence of Lemma 3.6.11.

Using the above comparison principle, we can prove the following result, which will be

used later to establish the strict positivity of solutions of (3.56) over at least a small time

interval.
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Theorem 3.6.13. (Positive Lower Bound of Solutions) Let T > 0. Let y0 ∈ L2(Ω) and

f ,g ∈ L2(0,T ;L2(Ω)) be non-negative such that ‖ f (t)‖∞ and ‖g(t)‖∞ are bounded by a

constant C1 > 0 almost everywhere on t ∈ [0,T ]. Let y(·, t) be given by

y(·, t) = T A(t)y0−
∫ t

0
T A(t− s)

(
g(·,s)y(·,s)

)
ds
∫ t

0
T A(t− s) f (·,s)ds (3.74)

for all t ∈ [0,T ]. Then there exist τ,ε,δ > 0, independent of y0 and T > 0, such that if

τ +δ < T , then y(·, t)≥ ε‖y0‖1 for all t ≥ [τ,τ +δ ].

Proof. We know from Theorem 3.6.2 that there exists a constant C > 0 and time T > 0,

independent of y0, such that T AH
(t)y0≥C‖y0‖1 for all t ≥ T . Let C =−AH−‖g‖∞I. Then

the semigroup (T C(t)) generated by the operator C is given by T AH
(t) = e−‖g‖∞tT AH

(t)

for all t ≥ 0. Then the result follows from Theorem 3.6.12.

In the following theorem, we establish a fundamental result that the PDE (3.56) con-

serves mass and maintains positivity.

Theorem 3.6.14. Let y ∈ L∞(Ω) be non-negative. Then the unique global mild solution of

the PDE (3.56) is non-negative, and ‖y(·, t)‖1 = ‖y0‖ for all t ≥ 0.

Proof. The conservation of mass is a simple consequence of taking the inner product of

the solution of (3.56) with a constant function. The positivity property of solutions follows

from (Duprez and Perasso, 2017)[Theorem 1] by noting that, if λ > 0 is large enough, then

G(y)+λy≥ 0 for all y ∈ L2(Ω) that are non-negative.

From this point on, we will need some new notation. For a function f ∈ L2(Ω), we

define f+ := | f |+ f
2 , the projection of the function f onto the set of non-negative functions

in L2(Ω), and f− := − | f |− f
2 , the projection of the function f onto the set of non-positive

functions in L2(Ω). Given these definitions, we have the following result on partial mono-

tonicity of solutions of the PDE (3.56).
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Proposition 3.6.15. (Partial Monotonicity of Solutions) Let y ∈ L∞(Ω) be positive. The

unique global mild solution of the PDE (3.56) satisfies

(yd− y2(·, t))+ ≤ (yd− y2(·,s))+ (3.75)

(yd− y2(·, t))− ≥ (yd− y2(·,s))− (3.76)

for all t ≥ s≥ 0.

Proof. We will only prove the first inequality (3.75). Since y0 ∈L∞(Ω), we know that y2 ∈

C([0,1];L2(Ω)) and ‖y2(t)‖∞ is uniformly bounded over [0,T ]. Assume that yd−y0
2 is non-

zero and non-negative on a set Ω1 ⊆Ω of positive measure. For the sake of contradiction,

suppose that there exists t2 ∈ (0,T ] such that y2(·, t2) is greater than yd on a subset of Ω1

that has positive Lebesgue measure. Then, due to the fact that y2 ∈C([0,T ];L2(Ω)), there

must exist t1 ∈ (0, t2) and a measurable set Ω2 ⊂ Ω1 of positive Lebesgue measure, such

that for each s ∈ [t1, t2], y2(x,s) ≥ yd(x) for almost every x ∈ Ω2, with y2(x, t2) 6= y2(x,s)

for almost every x ∈Ω2 and a subset of [t1, t2] with positive Lesbesgue measure. However,

we know that

y2(·, t) = y2(·, t1)+
∫ t

s
F1(y2(·,τ))y1(·,τ)dτ−

∫ t

s
F2(y2(·,τ))y1(·,τ)dτ (3.77)

for all t ∈ [t1, t2]. This implies that

y2(x, t) = y2(x, t1)+
∫ t

s
F1(y2(x,τ))y1(x,τ)dτ−

∫ t

s
F2(y2(x,τ))y1(x,τ)dτ

= y2(x, t1)−
∫ t

s
r2(y2(x,τ)− yd(x))y1(x,τ)dτ (3.78)

for almost every x ∈ Ω2 and for all t ∈ [t1, t2]. Since the functions y1 and r2 are both non-

negative, we arrive at a contradiction that y2(x, t) ≤ y2(x, t1) for almost every x ∈ Ω1 and

for all t ∈ [t1, t2]. Hence, we must have that

y2(x, t) = y2(x, t1)+
∫ t

s
r1(y2(x,τ)− yd(x))y1(x,τ)dτ (3.79)
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for almost every x ∈ Ω1 and for all t ∈ [0,T ]. This implies that y2 is non-decreasing with

time, and that it is less than or equal to yd almost everywhere on Ω1. This proves the first

inequality (3.75).

Using a similar argument, based on the fact that r1 and r2 are non-negative bounded

functions, we can arrive at the second inequality (3.76).

Using the above proposition, we will establish global asymptotic stability of the system

(3.56) in the L1 norm. Toward this end, we first establish marginal stability of the system

about the equilibrium distribution yd .

Theorem 3.6.16. (L1-Lyapunov Stability) Let y0 ∈L∞(Ω) be non-negative and
∫

Ω
y0(x)dx=

1. For every ε > 0, if

‖y0−yd‖1 ≤ ε, (3.80)

then the solution y(·, t) of the system (3.56) satisfies

‖y(·, t)−yd‖1 ≤ 2ε (3.81)

for all t ≥ 0.

Proof. We know that the solution y satisfies
∫

Ω
y(·,)dx =

∫
Ω

y1(·, t)dx+
∫

Ω
y2(·, t)dx = 1

for all t ∈ [0,T ]. From Proposition 3.6.15, we know that ‖y2(·, t)− yd‖1 is non-decreasing

with time t. Hence, ‖y2(·, t)− yd‖1 ≤ ε for all t ≥ 0. Then we have,∫
Ω

y1(x, t)dx+
∫

Ω

(y2(x, t)− yd(x))dx = 1−
∫

Ω

yd(x)dx (3.82)

for all t ≥ 0. This implies that∫
Ω

y1(x, t)dx ≤ −
∫

Ω

(y2(x, t)− yd(x))dx

≤ ‖y2(·, t)− yd‖1

≤ ε

for all t ≥ 0. This concludes the proof.
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Proposition 3.6.17. Let y0 ∈ L∞(Ω) be non-negative and ‖y0‖1 = 1. Then the solution y

of the PDE (3.56) satisfies limt→∞ ‖(y1(·, t)− yd)+‖∞ = 0.

Proof. Suppose that, for the sake of contradiction, this is not true. Then, due to the partial

monotonicity property of the solution y as stated in Proposition 3.6.15, there exists a subset

Ω1⊆Ω of positive measure, and a parameter ε > 0, such that y1(x, t)−yd(x)≥ ε for almost

every x ∈Ω1 and all t ≥ 0. However, we know that

y2(x, t) = y2(x, t1)−
∫ t

s
F2(y2(x,τ))y2(x,τ)dτ

= y2(x, t1)−
∫ t

s
r2(y2(x,τ)− yd(x))y2(x,τ)dτ (3.83)

for almost every x ∈ Ω1 and for all t ≥ 0. We know that the function r2 is non-zero and

continuous on the open interval (0,∞). Hence, there must exist δ > 0 such that

y2(x, t) ≤ y2(x,0)−
∫ t

0
δy2(x,τ)dτ

≤ y2(x,0)−δ

∫ t

0
(yd(x)+ ε)dτ (3.84)

for almost every x ∈Ω1 and for all t ≥ 0. This leads to a contradiction.

Finally, we can establish the attractivity of the equilibrium point yd ∈ L∞(Ω). We prove

a preliminary lemma toward this end.

Lemma 3.6.18. Let y0 ∈ L∞(Ω) be non-negative and ‖y0‖1 = 1. Then the solution y of the

PDE (3.56) satisfies limt→∞ ‖y1(·, t)‖1 = 0. Hence, limt→∞ ‖y2(·, t)‖1 = 1.

Proof. Suppose that this statement is not true. Then there exists ε1 > 0 and a sequence of

increasing time instants (ti)∞
i=1 such that limi→∞ ti = ∞ and ‖y1(·, ti)‖1 ≥ ε1 for all i ∈ Z+.

From Theorem 3.6.13, we know that this implies that there exist τ,ε2,δ > 0 such that

y1(·, t)≥ ε2‖y0
1‖1 ≥ ε1ε2 for all t ≥ [ti, ti+δ ], for all i ∈ Z+. Without loss of generality, we

can assume that ti+1− ti > δ for all i ∈ Z+. Let Ω1 ⊆ Ω be the subset of largest measure
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such that y0
2(x)≥ yd(x) for all x ∈Ω1. Then, from the partial monotonicity property of the

solution y (Proposition 3.6.15), we have that, for each i ∈ Z+,

y2(x, ti +δ ) = y2(x,0)+
∫ ti+δ

0
F1(y2(x,τ))y1(x,τ)dτ

≥ y2(x,0)+
i

∑
j=1

∫ ti+δ

ti
r1(y2(x,τ)− yd(x))y1(x,τ)dτ (3.85)

for almost every x ∈ Ω1. This implies that limi→∞ ‖(y2(·, ti)− yd)−‖∞ = 0. However, we

know that ‖y(·, t)‖1 = 1 for all t ≥ 0. From this, along with the fact that limt→∞ ‖(y1(·, t)−

yd)+‖∞ = 0 (Lemma 3.6.18) and the assumption that ‖y1(·, ti)‖1 ≥ ε1 for all i ∈ Z+, we

arrive at a contradiction.

Theorem 3.6.19. (L1-Global Attractivity) Let y0 ∈ L∞(Ω) be non-negative and ‖y0‖1 = 1.

Then limt→∞ ‖y(·, t)−yd‖1 = 0.

Proof. Let Ω1 = {x∈Ω;y0
2(x)≥ yd(x)}. Let Ω2 =Ω−Ω1. From Lemma 3.6.18, we know

that limt→∞ ‖y2(·, t)|Ω1 − yd|Ω1‖∞ = 0, where ·|Ω1 denotes the restriction operation. This

implies that limt→∞ ‖y2(·, t)|Ω1− yd|Ω1‖1 = 0. From Lemma 3.6.18, we know that

lim
t→∞

∫
Ω1

(
y2(x, t)− yd(x)

)
dx+

∫
Ω2

(
y2(x, t)− yd(x)

)
dx = 0 (3.86)

This implies that

lim
t→∞

∫
Ω2

(
y2(x, t)− yd(x)

)
dx = 0 (3.87)

From Proposition 3.6.15, we know that y2(·, t) ≤ yd almost everywhere on Ω2 and for all

t ≥ 0. Therefore, limt→∞

∫
Ω2
|y2(x, t)− yd(x)|dx = 0. Hence, we can conclude that

lim
t→∞
‖y2(·, t)− yd‖1 = lim

t→∞

∫
Ω1

|y2(x, t)− yd(x)|dx+
∫

Ω2

|y2(x, t)− yd(x)|dx = 0 (3.88)

From this equation, along with the fact that limt→∞ ‖y1(·, t)‖1 = 0, we arrive at our result.
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Chapter 4

CONTROLLABILITY AND OPTIMAL CONTROL OF DISCRETE-TIME

NONLINEAR SYSTEMS TO TARGET MEASURES

In this chapter, we consider a variation of the optimal transport problem (Villani, 2008).

The objective of this problem is to construct a map such that a given probability measure is

pushed forward to a target probability measure in some optimal manner. Initially motivated

by resource allocation problems in economics, this problem has potential applications in

many engineering problems involving the control of large-scale distributed systems (Dje-

hiche et al., 2016) using mean-field models, in which these measures could represent the

distribution of an ensemble of agents such as a swarm of robots or the distribution of nodes

in an electric power grid (Bagagiolo and Bauso, 2014) or a wireless network (Tembine,

2014).

In the original formulation of optimal transport, the dynamics of the agents are simplis-

tic from a control-theoretic point of view. There have been some recent efforts to extend

classical optimal transport theory to the case where the cost functions and transport maps

are subject to dynamical constraints arising from control systems. Toward this end, (Hin-

dawi et al., 2011) considers the optimal transport problem for linear time-invariant systems

with linear quadratic cost functions. For a smaller class of cost functions, the case of lin-

ear time-varying systems is addressed in (Chen et al., 2017). There have also been efforts

to extend the theory to nonlinear driftless control-affine systems in the framework of sub-

Riemannian optimal transport (Agrachev and Lee, 2009; Figalli and Rifford, 2010; Khesin

et al., 2009).

The original optimal transport problem, i.e., the Monge problem, searches for a de-

terministic map that maps a given measure to a target measure. In view of the analytical
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difficulties involved in this original formulation of Monge, Kantorovich introduced a re-

laxed version of the problem in 1942, in which the map is allowed to be stochastic. This

form of relaxation, which is used to convexify nonlinear control problems, has a rich his-

tory in control theory in the context of Young measures or relaxed control (Florescu and

Godet-Thobie, 2012; Young, 1980). In recent years, such a measure-based convexification

of optimization problems has been used for numerical synthesis of control laws (Lasserre

et al., 2008; Vaidya et al., 2010).

In this chapter, we use a similar relaxation procedure to consider the optimal transport

problem for discrete-time nonlinear control systems with a compact set of admissible con-

trols. Before considering the issue of optimality, we consider the problem of controllability.

First, we prove that controllability of the original control system implies controllability of

the control system induced on the space of probability measures. Next, we show that we

can frame the control-constrained optimal transport problem of controllable nonlinear sys-

tems as a linear programming problem, as in the Kantorovich formulation of the optimal

transport problem. Such a linear programming based approach to solving optimal control

problems is classical in optimal control of discrete-time stochastic systems, also known as

Markov decision problems (Hernández-Lerma and Lasserre, 2012).

4.1 Notation

Let X be a finite-dimensional manifold (for example, the Euclidean space RM) equipped

with a metric. The set of admissible control inputs will be denoted by U . We will as-

sume that the set U is a compact subset of a metric space. We will denote by B(X),

B(U), and B(X ×U) the collection of Borel measurable sets of X , U , and X ×U , re-

spectively. The space of Borel probability measures on the sets X and U will be denoted

by P(X) and P(U), respectively. For a metric space Y , let Cb(Y ) be the set of bounded

continuous functions on Y . We will say that a sequence of measures (µn)
∞
n=1 ∈P(Y ) con-
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verges narrowly to a limit measure µ ∈P(Y ) if the sequence
∫

Y f (y)dµn(y) converges

to
∫

Y f (y)dµ(y) for every f ∈ Cb(Y ). The topology on P(Y ) corresponding to this con-

vergence will be referred to as the narrow topology. For a set M ⊂ X and p ∈ Z+, we

will define the set Dp
M =

{
∑

p
i=1 ciδyi; yi ∈ M, ci ∈ [0,1] for i ∈ {1, ..., p}, ∑

p
i=1 ci = 1

}
,

where δx is the Dirac measure concentrated at the point x ∈ X . We will also define the set

DM = ∪p∈Z+Dp
M. The support of a measure µ ∈P(X) will be denoted by supp µ = {x ∈

X ; x ∈ Nx implies that µ(Nx)> 0, where Nx is a neighborhood of x}. We define Y (X ,U)

as the set of stochastic feedback laws, i.e., maps of the form K : X ×B(U)→ R, where

K(·,A) is Borel measurable for each A ∈B(U) and K(x, ·) ∈P(U) for each x ∈ X . For a

continuous map F : Y → X , the pushforward map F# : P(Y )→P(X) is defined by

(F#µ)(A) = µ(F−1(A)) =
∫

Y
1A(F(y))dµ(y)

for each A ∈ B(X), where 1B denotes the indicator function of the set B ∈ B(X) and

µ ∈P(Y ).

Problem Formulation

Now we are ready to state the problems addressed in this section. Consider the nonlinear

discrete-time control system

xn+1 = T (xn,un), n = 0,1, ...

x0 ∈ X , (4.1)

where xn ∈ X for each n∈Z+, (ui)
∞
i=0 is a sequence in a compact set U , and T : X×U→ X

is a continuous map with respect to the topologies T (X), T (U), and T (X)×T (U)

defined on X , U , and X ×U , respectively. Then this nonlinear control system induces a
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control system on the space of measures P(X), given by

µn+1 = T (·,un)#µn, n = 0,1, ...

µ0 ∈P(X). (4.2)

The first problem of interest is the following.

Problem 4.1.1. (Controllability problem with deterministic control) Let N ∈ Z+ be a

specified final time. Given an initial measure µ0 ∈P(X) and a target measure µ f ∈P(X),

does there exist a sequence of feedback laws vn : X →U such that the closed-loop system

satisfies

µn+1 = T cl,n
# µn, n = 0,1, ...,N−1,

µN = µ
f ,

where T cl,n
# : P(X)→P(X) is the pushforward map corresponding to the closed-loop

map T cl,n : X → X defined by T cl,n(x) = T (x,vn(x)) for all x ∈ X?

This problem is unsolvable in general. For instance, consider the case when X =R, U =

[−1,1], T (x,u) = x+u for each (x,u) ∈ X×U , µ0 = δ0 is the Dirac measure concentrated

at the point 0 ∈ R, and µ f = 1
2δ−1 +

1
2δ+1 is the sum of Dirac measures concentrated at

−1 and 1, respectively. This example does not admit any solutions to the controllability

problem because a deterministic map cannot take the measure concentrated at the point

0 and distribute it onto measures concentrated at −1 and +1. However, there might be

several important cases where the problem does admit a solution. For example, when

X = RM, U = RM (which is not compact, in contrast to the assumptions made in this

section), T (x,u) = u for all (x,u) ∈ X ×U , and N = 1, this problem is equivalent to the

classical optimal transport problem (Villani, 2008), for which solutions are known to exist

when the initial and final measures are absolutely continuous with respect to the Lebesgue
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measure and have a finite second moment. On the other hand, this problem is expected to

be highly challenging for general nonlinear control systems without any further constraints

on the control set U , which is only assumed to be compact, given a final time N ≥ 1. Hence,

to make the problem analytically tractable, we consider the following relaxed problem.

Problem 4.1.2. (Controllability problem with stochastic control) Given a final time N ∈

Z+, an initial measure µ0 ∈P(X), and a target measure µ f ∈P(X), determine whether

there exists a sequence of stochastic feedback laws Kn ∈Y (X ,U) such that the closed-loop

system satisfies

µn+1 = T cl,n
# µn, n = 0,1, ...,N−1,

µN = µ
f , (4.3)

where the closed-loop pushforward map T cl,n
# is given by

(T cl,n
# µ)(A) =

∫
X

∫
U

1A(T (x,u))Kn(x,du)dµ(x). (4.4)

Problem 4.1.2 can be considered a relaxation of Problem 4.1.1 in the sense that deter-

ministic control laws v : X →U are just special types of stochastic control laws identified

through the mapping v(x) 7→ δv(x).

After addressing Problem 4.1.2, we will address the following optimization problem.

Problem 4.1.3. (Fixed-time, fixed-endpoint optimal control problem) Suppose that c :

X×U→R is a continuous map. Given a final time N ∈Z+, an initial measure µ0 ∈P(X),

and a target measure µ f ∈P(X), determine whether the following optimization problem

admits a solution:

min
µm∈P(X)

Km∈Y (X ,U)

N−1

∑
m=0

∫
X

∫
U

c(x,u)Km(x,du)dµm(x) (4.5)
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subject to the constraints

µn+1 = T cl,n
# µn, n = 0,1, ...,N−1,

µN = µ
f . (4.6)

4.2 Controllability

In this section, we will address Problem 4.1.2. Toward this end, we present the follow-

ing definitions, which will be needed to define sufficient conditions under which Problem

4.1.2 admits a solution. Let Rx
1 = {T (x,u); u∈U} be the set of reachable states from x∈ X

at the first time step. Then we inductively define the set Rx
m = ∪y∈Rx

m−1
{T (y,u); u ∈U} for

each m ∈ Z+−{1}.

Instead of proving that we can always find a sequence of stochastic feedback laws

Kn such that the system of equations (4.3) is satisfied, we will consider the alternative

“convexified problem” in which we look for measures νn on the product space P(X ×U)

such that, for given initial and target measures µ0,µ
f ∈P(X), the following constraints

are satisfied:

µn+1 = T#νn, n = 0,1, ...,N−1, (4.7)

with νn(A×U) = µn(A) for all A ∈B(X) and µN = µ f . We will first solve Problem 4.1.2

for the special case of Dirac measures, and then extend the result to general measures using

a density-based argument that is standard in measure-theoretic probability.

Now we are ready to present several results that address Problem 4.1.2.

Proposition 4.2.1. Let µ0 = δx0 for some x0 ∈ X. Let µ f ∈ Dp
M for a compact subset M of

X, for some p ∈ Z+, such that supp µ f ⊆ Rx0
N . Then there exists a sequence of measures

(νm)
N−1
m=0 ∈P(X×U) such that

µn+1 = T#νn, n = 0,1, ...,N−1, (4.8)

with νn(A×U) = µn(A) for all A ∈B(X) and µN = µ f .
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Proof. Let µ f = ∑
p
i=1 ciδyi , where ∑

p
i=1 ci = 1, for some yi ∈ X . By assumption, supp µ f ⊆

Rx0
N . Hence, for each i ∈ {1, ..., p}, there exists a sequence of inputs (ui)N

n=0 such that the

nonlinear discrete-time control system

xi
n+1 = T (xi

n,u
i
n), n = 0,1, ...,N−1,

xi
0 = x0 (4.9)

satisfies xN = yi for all i ∈ {1, ..., p}. We define ν i
n = δ(xi

n−1,ui
n)
∈P(X ×U). Note that

(T#ν i
n)(A) = δxi

n
(A) for all A ∈B(X) and all i ∈ {1, ..., p}. Then the result follows from

the linearity of the operator T# : P(X ×U) →P(X) by setting νn = ∑
p
i=1 ciν i

n for all

n ∈ {0,1, ...,N−1}. In particular, for this choice of νn, we have that (T#νn) = ∑
p
i=1 ciµ i

n+1

for each n ∈ {0,1, ...,N−1}, and hence that (T#νN−1) = ∑
p
i=1 ciδyi = µ f .

The next result follows immediately from Proposition 4.2.1.

Lemma 4.2.2. Let µ0 ∈Dp
A and µ f ∈Dq

A for a compact subset A of X, for some p,q ∈ Z+,

such that supp µ f ⊆ Rx
N for each x ∈ supp µ0. Then there exists a sequence of measures

(νm)
N−1
m=0 ∈P(X×U) such that

µn+1 = T#νn, n = 0,1, ...,N−1, (4.10)

with νn(A×U) = µn(A) for all A ∈B(X), and µN = µ f .

Proof. Let µ0 = ∑
p
i=1 ciδyi , where ∑

p
i=1 ci = 1, for some yi ∈ X . By assumption, supp µ f ⊆

∪p
i=1Ryi

N . From Proposition 4.2.1, there exist measures ν i
n ∈P(X×U) such that if η i

0 = µ0,

then

η
i
n+1 = T#ν

i
n, n = 0,1, ...,N−1, (4.11)

with ν i
n(A×U) = η i

n(A) for all A ∈B(X), and η i
N = µ f . The result follows by setting

νn = ∑
p
i=1 ciν i

n for all n ∈ {0,1, ...,N−1}.

149



In order to prove the next proposition, we recall a well-known result, which follows

from (Pedersen, 2012)[Proposition 2.5.7], that probability measures can be approximated

using linear combinations of Dirac measures.

Theorem 4.2.3. Let Y be a locally compact Hausdorf space Y . Then the set of elements

in P(Y ) with support contained in a compact subset M ⊆ Y is a convex and narrowly

compact subset of P(Y ). Additionally, the set DM is narrowly dense in the subset of P(Y )

with supports contained in M.

Proposition 4.2.4. Let µ0,µ
f ∈P(X) be Borel probability measures with compact sup-

ports, such that supp µ f ⊆ Rx
N for each x ∈ supp µ0. Then there exists a sequence of

measures (νm)
N−1
m=0 ∈P(X×U) such that

µn+1 = T#νn, n = 0,1, ...,N−1, (4.12)

with νn(A×U) = µn(A) for all A ∈B(X), and µN = µ f .

Proof. Let A = ∪x∈supp µ0Rx
m. Clearly, the set A is compact. From Theorem 4.2.3, we

know that there exist sequences of measures (µ i
0)

∞
i=1,(µ

f ,i)n∞
i=1 ∈ DA such that (µ i

0)
∞
i=1 and

(µ f ,i)∞
i=1 narrowly converge to µ0 and µ f , respectively. Then it follows from Lemma 4.2.2

that there exists a sequence of probability measures (ν i
n)

∞
i=1 in P(X×U) such that

µ
i
n+1 = T#ν

i
n, n = 0,1, ...,N−1, (4.13)

with ν i
n(A×U) = µ i

n(A) for all A ∈B(X) and µ i
N = µ f ,i for all i ∈ Z+. Since the map

T : X×U→ X is continuous, the map T# is narrowly continuous. This imples that, for each

n ∈ {0,1, ...,N−1}, there exists a limit measure νn ∈P(X ×U) such that T#ν i
n narrowly

converges to a unique limit T#νn as i→ ∞. Using the fact that the map T# : P(X ×U) is

narrowly continuous, the last statement also implies that the sequence of marginal measures

ν i
n(·×U) = µ i

n narrowly converges to the unique limit µn for each n∈ {0,1, ...,N−1}.
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From the above proposition, we obtain one of the main results of this section.

Theorem 4.2.5. Let µ0,µ
f ∈P(X) be Borel probability measures with compact supports,

such that supp µ f ⊆ Rx
N for each x ∈ supp µ0. Then there exists a sequence of stochastic

feedback laws (Kn)
N−1
m=1 ∈ Y (X ,U) such that the system of equations (4.3) is satisfied, and

hence the measure µ f can be reached from the measure µ0.

Proof. Note that X and U are separable. Hence, the product σ -algebra on X ×U is equal

to B(X ×U). Then, given a measure ν ∈P(X ×Y ), from the disintegration theorem

(Florescu and Godet-Thobie, 2012)[Theorem 3.2] there exists a measure µ ∈P(X) and

stochastic feedback law K ∈ Y (X ,U) such that

∫
A×B

dν(x,u) =
∫

A

∫
B

K(x,du)dµ(x) (4.14)

for all A ∈B(X) and all B ∈B(U). Then the result follows from Proposition 4.2.4. In

particular, using the measures (νm)
N−1
m=0 ∈P(X×U), by disintegration, the stochastic feed-

back laws (Km)
N−1
m=0 ∈ Y (X ,U) can be constructed such that the system of equations (4.3)

holds true.

Remark 4.2.6. (Conservatism of controllability result) Theorem 4.2.5 gives a sufficient,

but not necessary, condition on system (4.1) for Problem 4.1.2 to admit a solution: namely,

that each point in the support of the target measure be reachable from each point in the

support of the initial measure. The controllability result in Theorem 4.2.5 is conservative

because we do not, in general, require this condition. To see this explicitly, consider the

trivial example where X = R, U = {0}, and T (x,u) = x+u. Suppose we define the initial

and target measures as µ0 = µ f = 1
2δx1 +

1
2δx2 for some x1 6= x2 in R. Then it is straight-

forward to see that the target measure is reachable from the initial measure. However,

the system is nowhere controllable in R. More specifically, the points x1 and x2 are not

reachable from each other.
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4.3 Optimal Control

This section addresses Problem 4.1.3. As in the proof of the controllability result in

Theorem 4.2.5, we will apply the disintegration theorem (Florescu and Godet-Thobie,

2012)[Theorem 3.2] to the correspondence between elements of Y (X ,U) and elements

of P(X ×U) with a given marginal. Hence, the optimization problem (4.5)-(4.6) can

be convexified by replacing stochastic feedback laws Kn ∈ Y (X ,U) with elements νn ∈

P(X ×U) and by enforcing appropriate constraints on the marginals of the measures νn.

These modifications allow us to frame the optimization problem in Problem 4.1.3 as an

equivalent infinite-dimensional linear programming problem:

min
µm+1∈P(X),
νm∈P(X×U)

N−1

∑
m=0

∫
X×U

c(x,u)dνm(x,u) (4.15)

subject to the constraints

µn+1 = T#µn, n = 0,1, ...,N−1,

µN = µ
f ,

π#νn = µn, (4.16)

where π : X ×U → X is the projection map defined by π(x,u) = x for all x ∈ X and all

u ∈U . Here, the constraints π#νn = µn ensure that, for each n ∈ {1, ...,N}, νn(A×U) =

(π#νn)(A) = µn−1(A) for all A ∈B(X). Hence, we have the following result.

Theorem 4.3.1. Let µ0,µ
f ∈P(X) be Borel probability measures with compact supports,

such that supp µ f ⊆ Rx
N for each x ∈ supp µ0. Then the optimization problem (4.15)-(4.16)

has a solution (µn+1,νn), n = 0, ...,N−1.

Proof. The proof follows the standard compactness-based arguments in optimization. From

Theorem 4.2.5, we know that the set of measures satisfying constraints (4.16) is non-empty.

Moreover, the map c : X ×U → R is continuous. Since T is continuous, measures with
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compact support are pushed forward to measures with compact support. This implies that

for any choice of measure νn, supp µn+1 is contained in a compact set since supp µ0 is

contained in a compact set. Therefore, ∑
N−1
m=0

∫
X×U c(x,u)dνm(x,u) is bounded from below

on the set of admissible measures. Hence, there exists a minimizing sequence of mea-

sures (µ i
n+1,ν

i
n)

∞
i=1, with (µ i

n+1,ν
i
n) ∈P(X)×P(X ×U) for each n ∈ {0,1, ...,N− 1},

that satisfies the constraints (4.16). By minimizing, we mean that the sequence of measures

(µ i
n+1,ν

i
n)

∞
i=1

lim
i→∞

N−1

∑
m=0

∫
X×U

c(x,u)dν
i
m(x,u) = inf

µm+1∈P(X), νm∈P(X×U)

N−1

∑
m=0

∫
X×U

c(x,u)dνm(x,u),

(4.17)

with the infimum taken over the constraint set (4.16). We now confirm that there exist

measures (µ∗n+1,ν
∗
n ) that achieve this infimum. We recall that the support of the measures

(µn+1,νn) is compact for all n ∈ {0,1, ...,N− 1}. Therefore, it trivially follows that there

exists a compact set Q such that µn+1(Q) > 1− ε and νn(Q×U) > 1− ε . This implies

that the set of measures that satisfy the constraints (4.16) is tight (Billingsley, 2013), and

therefore is relatively compact, i.e, every sequence of measures (µ i
n+1,ν

i
n) contains a nar-

rowly converging subsequence (µ j
n+1,ν

j
n). The map γ 7→

∫
X×U c(x,u)dγ(x,u), a map from

P(X×U) to R, is narrowly continuous. Hence, there exist limit measures (µ∗n+1,ν
∗
n ) such

that ∑
N
m=0

∫
X×U c(x,u)dν∗m(x,u)= infµm+1∈P(X), νm∈P(X×U) ∑

N−1
m=0

∫
X×U c(x,u)dνm(x,u),

subject to the constraints (4.16). This concludes the proof.

By disintegration of the measures νm in Theorem 4.3.1, it is straightforward to conclude

the following result.

Theorem 4.3.2. Let µ0,µ
f ∈P(X) be Borel probability measures with compact supports,

such that supp µ f ⊆ Rx
N for each x ∈ supp µ0. Then the optimization problem in Problem

4.1.3 has a solution (µn+1,Kn), n = 0, ...,N−1.
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4.4 Numerical Optimization

In this section, we briefly describe a numerical approach to solving the optimization

problem in Problem 4.1.3. In both the examples that we consider in Section 4.5, the state

space X is taken to be a compact subset of R2. This subset X is partitioned into nx ∈ Z+

sets, X̃ = {Ω1, ...,Ωnx}, whose union is X and whose intersections have zero Lesbesgue

measure. The set of control inputs U is approximated as a set of nu ∈Z+ discrete elements,

Ũ = {γ1, ...,γnu}, where γi ∈U for each i. We then use the Ulam-Galerkin method (Bollt

and Santitissadeekorn, 2013) to construct an approximating controlled Markov chain on

a finite state space V = {1, ...,nx}. In the uncontrolled setting, this method is a classical

technique used to construct approximations of pushforward maps induced by dynamical

systems, also known as Perron-Frobenius operators.

We define the controlled transition probabilities for the Markov chain on V as follows:

p̃k
i j =

m̃(T−1
k (Ω j)∩Ωi)

m̃(Ωi)
,

where m̃ is the Lebesgue measure and Tk = T (·,γk). The quantity p̃k
i j is the probability of

the system state entering the set Ω j in the next time step, given that this state is uniformly

randomly distributed over the set Ωi (identified with i∈V ) and the control input is chosen to

be γk. We also define an equivalent of the stochastic feedback law Kn in the discretized case

that we consider. Toward this end, we denote by λ
k,i
n the probability of choosing the control

input γk, given that the system state is in Ωi at time n. We define the variables ν̃
k,i
n = µ̃ i

nλ
k,i
n ,

where µ̃ i
n is the probability of the state being in Ωi at time step time n. Additionally, let

c̃i,k =
∫

Ωi
c(x,γk)dx be the average cost of the state being in Ωi and the control input given

by γk.

Given these parameters and specified initial and target measures µ̃0, µ̃
f ∈P(X̃), we can

define the finite-dimensional equivalent of the linear programming problem (4.15)-(4.16)
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as follows:

min
µ̃ i

m+1,ν̃
k,i
m ∈R≥0

N−1

∑
m=0

nx

∑
i=1

nu

∑
k=1

c̃i,kν̃
k,i
m (4.18)

subject to the constraints

µ̃
j

n+1 = ∑
nu
k=1 ∑

nx
i=1 p̃k

i jν̃
k,i
n ,

µ̃
j

N = (µ̃ f ) j,

∑
nx
i=1 µ̃ i

n+1 = 1, ∑
nu
k=1 ν̃

k, j
n = µ̃

j
n , (4.19)

for n ∈ {0, ...,N−1} and j ∈ {1, ...,nx}.

After solving this linear programming problem, we can extract the control laws λ
k,i
n by

setting λ
k,i
n = ν̃

k,i
n

µ̃ i
n

if µ̃ i
n 6= 0 and λ

k,i
n = 0 otherwise. The resulting Markov chain evolves

according to the equation µ̃
j

n+1 = ∑
nu
k=1 ∑

nx
i=1 p̃k

i jλ
k,i
n µ̃ i

n.

4.5 Simulation Examples

In this section, we apply the numerical optimization procedure described in the previous

section to two examples. Neither example can be solved by classical optimal transport

methods, due to the nonlinearity of the control system (Example 1) or the bounds on the

control set (Examples 1 and 2). In both examples, we define the cost function as c(x,u) =

‖x‖2 +‖u‖2, where ‖ · ‖ represents the 2-norm.

Example 1: Unicycles in a Time-Periodic Double Gyre We consider the system

xn+1 = F(xn)+G(u), (4.20)

where xn = [xn yn]
T ∈ X , u = [u1 u2]T ∈U , and G(u) = [u1 cos(u2) u1 sin(u2)]T . The phase

space is X = [0,2]× [0,1], and the set of control inputs is U = [−1,1]× [0,2π]. The final
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time is set to N = 10. To define the map F : X → X , we consider the double-gyre system:

ẋ =−πAsin(π f (x, t))cos(πy), (4.21)

ẏ = πAcos(π f (x, t))sin(πy)
d f (x, t)

dx
, (4.22)

where f (x, t) = β sin(ωt)x2 +(1−2β sin(ωt))x is the time-periodic forcing in the system.

The map F is defined by setting F(x) equal to the solution of equations (4.21)-(4.22),

integrated over the time period τ . In this example, we define A = 0.25, β = 0.25, and

ω = 2π , which results in τ = 1. The set X is not invariant for all choices of control inputs in

U . Hence, since this set must be approximatable by a finite set, we define F(x)+G(u), x

if F(x)+G(u) /∈ X for some (x,u) ∈ X ×U . The initial and target measures are chosen

to be uniform over certain almost-invariant sets (Bollt and Santitissadeekorn, 2013) in the

left and right halves of the domain, respectively. The optimal transport shown in Fig.

4.1 exploits lobe dynamics, i.e., the control inputs push the initial measure onto regions

bounded by stable and unstable manifolds. As a result, the measure is transported into the

right half of the domain under the action of F .

Example 2: Double-Integrator System In this example, we consider the following sys-

tem:

xn+1 = xn +0.15yn, (4.23)

yn+1 = yn +u, (4.24)

with [xn yn]
T ∈ X = [0,1]2 and u ∈U = [−0.25,0.25]. The final time is set to N = 15. For

unbounded control inputs, this control system can be verified to be globally controllable

using the Kalman rank condition. For compact control sets, controllability is harder to ver-

ify without numerical computation. The initial measure is taken to be the Dirac measure

concentrated at [0 0]T ∈ X . The target measure is a linear combination of Gaussian distri-

butions that are centered at the coordinates [0.8 0.1]T and [0.8 0.8]T , as shown in Fig. 4.2d.
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(a) n = 0 (Initial Measure) (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8 (f) n = 10 (Final Measure)

Figure 4.1: Solution of the Optimal Transport Problem at Several Times n for Unicycles in

a Double-Gyre Flow Model

Measures at three intermediate times are shown in Fig. 4.2a-4.2c. The control map adds a

“drift” term 0.15yn to equation (4.23), which makes the system controllable despite the fact

that it is underactuated. Figure 4.2 confirms that this drift drives the initial measure exactly

to the target measure at N = 15.
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(a) n = 4 (b) n = 8 (c) n = 12 (d) n = 15

Figure 4.2: Solution of the Optimal Transport Problem at Several Times n for a Double-

Integrator System
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Chapter 5

COMPUTATIONAL OPTIMAL TRANSPORT OF CONTROL-AFFINE SYSTEMS

In this chapter, we consider multi-agent systems in which each agent’s state x(t) is gov-

erned by a continuous-time nonlinear control system. The distribution of the agents’ states

is described by a time-varying measure over the phase space of a single agent. Specifically,

we consider nonlinear control-affine systems of the form,

ẋ(t) = g0(x(t), t)+
n

∑
i=1

ui(t)gi(x(t)), (5.1)

where X is the d−dimensional phase space, and n is the number of control inputs and

{gi}n
i=0 are smooth vector fields on X . Our aim is to compute controls ui such that a cost

of transporting a measure µt0 to µt f over the time-horizon [t0, t f ] is minimized. This cost is

given by the integral over phase-space and time,

C =
∫

X

∫ t f

t0

n

∑
i=1
|ui(x, t)|2dt dµt(x). (5.2)

In contrast to Chapter 4, where the goal was to transport the measures using stochastic

feedback laws, the objective in this chapter is to construct deterministic feedback laws

ui(x, t).

5.1 Preliminaries

We briefly review concepts from control systems theory, optimal transport, and set-

oriented numerical methods relevant to the discussion in Section 5.2. Specifically, we

motivate the developments of Section 5.2 by relating the continuous and discrete (graph-

based) concepts of optimal transport in controlled dynamical systems.
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Optimal Transport in Controlled Dynamical Systems The Monge-Kantorovich opti-

mal transport (OT) problem (Villani, 2003) is concerned with mapping of an initial measure

µ0 on a space X to a final measure µ1 on a space Y . In the original formulation, it involves

solving for a measurable transport map T : X → Y , which pushes forward µ0 to µ1 in an

optimal manner. The cost of transport per unit mass is prescribed by a function c(x,T (x)).

Hence, the optimization problem is

inf
T

∫
c(x,T (x))dµ0(x), (5.3)

s.t. T#µ0 = µ1,

where T# is the pushforward of T , i.e. (T#µ)(A) = µ(T−1(A)) for every A. In a “relaxed”

version of this problem due to Kantorovich, the optimization problem is to obtain an opti-

mal joint distribution π(X ×Y ) on the product space X ×Y , where the marginal of π on X

is µ0 and on Y is µ1. We denote by ∏(µ0,µ1) the set of all measures on product space with

the marginals µ0 and µ1 on X and Y , respectively. Hence, the relaxed problem is

inf
π(X×Y )∈∏(µ0,µ1)

∫
c(x,y)dπ(x,y). (5.4)

For the case of quadratic costs, i.e., c(x,y) = ‖x− y‖2, the support of the optimal

distribution π(X ×Y ) is the graph of the optimal map T obtained from the solution of

problem (5.3). The square root of the optimal cost obtained as the solution of this problem

is called the 2−Wasserstein distance, and we denote it by W2(µ0,µ1). We concern ourselves

with only quadratic costs in this section.

An alternative fluid dynamical interpretation of the OT problem was provided by Ben-

amou and Brenier (Benamou and Brenier, 2000). In this approach, the optimization prob-

lem is formulated in terms of an advection field u(x, t) and the initial and final densities

(ρ0(x),ρ1(x)) of a single agent. The core idea is to obtain the optimal map T as a result of

advection over a time period (t0, t f ) by an optimal advection field u(x, t). It can be shown
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that the optimization problem (5.3) (with X = Y = Rd) with quadratic cost is equivalent to

the following problem:

W 2
2 (µ0,µ1) = inf

u(x,t),ρ(x,t)

∫
Rd

∫ t f

t0
ρ(x, t)|u(x, t)|2dtdx, (5.5)

s.t.
∂ρ(x, t)

∂ t
+∇ · (ρ(x, t)u(x, t)) = 0, (5.6)

ρ(x, t0) = ρ0(x), ρ(x, t f ) = ρ1(x).

The motion of a single agent is governed by the ordinary differential equation of the

single integrator,

ẋ(t) = u(x, t). (5.7)

By a change of variables from (ρ,u) to (ρ,m ∆
= ρu), the optimization problem (5.5),

(5.6) can be put into a form where its convexity can be proved easily. The transformed

convex optimization problem is

inf
ρ(x,t)≥0,m(x,t)

∫
Rd

∫ t f

t0

|m(x, t)|2

ρ(x, t)
dtdx, (5.8)

s.t.
∂ρ(x, t)

∂ t
+∇ · (m(x, t)) = 0, t0 ≤ t ≤ t f ,

ρ(x, t0) = ρ0(x), ρ(x, t f ) = ρ1(x).

The basic theory of generalization to general nonlinear controlled dynamical systems

ẋ(t) = f(x(t),u(t)) has been developed in (Agrachev and Lee, 2009; Rifford, 2014). This

problem can be interpreted as finding an optimal control which steers an initial scalar den-

sity to a final density, where the scalar transport occurs according to a controlled dynamical

system f(x(t),u(t)).

Transfer Operator and Infinitesimal Generator Consider the flow-map φ
t0+T
t0 : X→ X

on a d-dimensional phase space X . This map may be obtained as a time-T map of the flow
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of a possibly time-dependent dynamical system,

ẋ = f(x, t). (5.9)

The corresponding Perron-Frobenius transfer operator (Lasota and Mackey, 1994) Pt0+T
t0

is a linear operator which pushes forward measures in phase space according to the dynam-

ics of the trajectories under φ
t0+T
t0 . Let B(X) denote σ−algebra of Borel sets in X . Then,

for any measure µ ,

Pt0+T
t0 µ(A) = µ((φ t0+T

t0 )−1(A)) ∀A ∈ B(X). (5.10)

The transfer operator lifts the evolution of the dynamical systems from phase space X to the

space of measures M(X). Numerical approximation of P, denoted by P̂, may be viewed as a

transition matrix of an N-state Markov chain (Bollt and Santitissadeekorn, 2013). For com-

putation, we partition the phase space volume of interest into N d−dimensional connected,

positive volume subsets, B1,B2, . . . ,BN with piecewise smooth boundaries ∂Bi. Usually,

these subsets are hyperrectangles. The matrix P̂ = { p̂i j} is numerically computed via the

Ulam-Galerkin method (Ulam, 2004; Bollt and Santitissadeekorn, 2013) as follows:

p̂i j =
m̄
(
(φ t0+T

t0 )−1(Bi)∩B j

)
m̄(B j)

, (5.11)

where m̄ is the Lebesgue measure. The action of the transfer operator over a finite time

T can also be defined naturally on densities in the case of Lebesgue absolutely continuous

measures. However, we are more interested in capturing the continuous-time behavior of

the dynamical system (5.9) in the space of densities. The continuity equation for the system

in equation (5.9) is given by

dµ

dt
=−∇ · ( f (x, t)µ). (5.12)

For the numerical approach used in this section, we briefly consider equation (5.12) in

an operator-theoretic framework, as an abstract ordinary differential equation in the space
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of measures, formally. Equation (5.12) can be expressed as

µ̇(t) = A (t)µ ; µ(s) = µs ∈M(X), (5.13)

where A (t) : D(A (t)→ M(X)), D(A (t)) ⊂ M(X) and the solution, µ(t), of equation

(5.13) can be expressed using a two-parameter semigroup of operators (U (t,s)s,t∈R,t≥s as

µ(t) = U (t,s)µs. The divergence operation is to be understood in the sense of duality of

M(X) with C(X) (assuming X is compact). Here C(X) refers to the space of continuous

functions on X . The Perron-Frobenius operator is related to this two-parameter semigroup

of operators as U (T, t0)=Pt0+T
t0 for given parameters t0 and T . In general, guaranteeing the

existence of a strongly continuous two-parameter semigroup based on the time-dependent

generator A (t) is quite involved. See, for example, (Engel and Nagel, 2000; Fattorini,

1984). In contrast, the theory is more well-developed for the case when A (t) ≡ A (the

vector field f (x) is time-independent). In this case, the solution, µ(t), can be expressed by

a one-parameter semigroup of bounded operators, (T (t))t≥0, as µ(t) = T (t− s)µs. Here,

the generator A and T (t) are related by the formula

A µ = lim
h→0+

T (h)µ−µ

h
for each µ ∈ D(A ). (5.14)

As in the case of the Perron-Frobenius operator, one can also consider the semigroup

and its generator on a space of densities, or equivalently, on a space of measures that are

absolutely continuous with respect to a reference measure with additional regularity restric-

tions.

Ulam’s method for approximating Perron-Frobenius operators using Markov matrices

extends to numerical approximations of semigroups corresponding to the continuity equa-

tion. Analogously, one approximates the generator of the semigroup using transition rate

matrices, which generate approximating semigroups on a finite state space. We recall this

method as shown in (Froyland et al., 2013). We denote by B̄i the closure of Bi. The oper-

ator A (t) is approximated by defining elements of the time-varying transition rate matrix
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{Ai j(t)}, which are computed as follows:

Ai j(t) =


1

m̄(B j)

∫
B̄i∩B̄ j

max{f(x, t) ·ni j,0}dmd−1(x) i 6= j,

−∑k 6=i
m̄(B̄k)

m̄(B̄i)
Aik(t) otherwise,

(5.15)

where ni j is the unit normal vector pointing out of Bi into B j if B̄i ∩ B̄ j is a (d − 1)-

dimensional face, and the zero vector otherwise, andmd−1 denotes the d− 1-dimensional

measure. Note that in (Froyland et al., 2013), the authors also considered the perturbed

version of the operator, −∇ · (f(x, t)·) : −∇ · (f(x, t)·)+ ε2

2 ∆. This was mainly to exploit the

spectral properties of the perturbed operator and the corresponding semigroup. However,

in this work, the perturbed operator does not offer any visible advantages. Hence, we work

with approximations of the operator, −∇ · (f(x, t)·), alone. Nevertheless, we note that the

discretization will introduce some numerical diffusion.

Monge-Kantorovich Transport on Graphs Now consider a directed graph G = (V ,E )

on X , where the vertices V represent the subsets Bi as before, and the directed edges E

are obtained from the topology of X . For each pair of neighboring vertices, two edges are

constructed, one in each direction.

A continuous-time advection on such a graph can be described as (Berman et al., 2009;

Chapman, 2015),

d
dt

µ(t,v) = ∑
e=(w→v)

U(t,e)µ(t,w)− ∑
e=(v→w)

U(t,e)µ(t,v), (5.16)

where µ(t,v) is the time-varying measure on a vertex v, and U(t,e) is the flow on an

edge e. Here we use the notation e = (v→ w) to represent the edge e directed from a

vertex v to w. The notion of optimal transport has been extended to such a continuous-time

discrete-space setting recently (Maas, 2011; Gigli and Maas, 2013; Mielke, 2013; Solomon

et al., 2016). Following (Solomon et al., 2016), one can formulate a quadratic-cost optimal
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transport problem on G as follows. First, define an advective inner product between two

flows U1,U2 as

〈U1,U2〉µ = ∑
e=(v→w)

(
µ(v)
µ(w)

.
µ(v)+µ(w)

2

)
U1(e)U2(e). (5.17)

Then the corresponding optimal transport distance between a set of measures (µ0,µ1) sup-

ported on V can be written as

W̃N(µ0,µ1) = inf
U(t,e)≥0,µ(t,v)≥0

∫ 1

0
‖U(t, .)‖µ(t,.)dt, (5.18)

such that equation (5.16) holds, and

µ(0,v) = µ0(v), µ(1,v) = µ1(v) ∀v ∈V.

Here ‖U(t, .)‖µ(t,.) ,
√
〈U,U〉

µ
. This approach is motivated by the previously dis-

cussed Benamou-Brenier approach for optimal transport on continuous spaces, and results

in the following advection-based convex optimization problem:

W̃N(µ0,µ1)
2 = inf

J(t,e)≥0,µ(t,v)≥0

∫ 1

0
∑

e=(v→w)

J(t,e)2

2

(
1

µ(t,v)
+

1
µ(t,w)

)
dt, (5.19)

µ(0,v) = µ0(v), µ(1,v) = µ1(v) ∀v ∈V, (5.20)

d
dt

µ(t, .) = DT J(t, .), (5.21)

where J(t,e), µ(t,v)U(t,e) for e = (v→ w), and D ∈R|E |×|V | is the linear flow operator

computing µ(w)−µ(v) for each e = (v→ w) ∈ E . Specifically, DT (i, j) equals +1 if the

jth edge points into the ith vertex, −1 if the jth edge points out of the ith vertex, and 0

if the jth edge is not connected to the ith vertex. Hence, equation (5.21) is a rewriting of

equation (5.16) in terms of J(t, .). The change of variables from U to J is analogous to the

change of variables in Benamou-Brenier formulations, as discussed earlier in this section.

Conceptually, one can regard the problem described by equations (5.19-5.21) as the graph-

based analogue of the optimal transport problem (5.8). Recall that this corresponds to
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single-integrator dynamics ẋ = u(t). In the next section, we use this interpretation, and

generalize this graph-based framework to nonlinear dynamical systems of the form given

in equation (5.1).

5.2 Problem Setup and Computational Approach

Formulation of Optimal Transport Problem on Graphs Let M⊂Rd be an open bounded

connected subset of an Euclidean space with piecewise smooth boundary. For a collection

of analytic time-invariant vector fields {gi}n
i=1 and possibly time-varying vector field g0 on

M, consider the control affine system of the form

ẋ(t) = g0(x(t), t)+
n

∑
i=1

ui(t)gi(x(t)),

x(0) = x0. (5.22)

Then given the densities ρ0 and ρ1 on M, the corresponding optimal transport problem of

interest is the following:

inf
u(x,t),ρ(x,t)

∫
Rn

∫ t f

t0

n

∑
i=1

ρ(x, t)|ui(x, t)|2dtdx, (5.23)

s.t.
∂ρ(x, t)

∂ t
+∇ · (ρ(x, t)g0(x, t))+

n

∑
i=1

∇ · (ρ(x, t)ui(x, t)gi(x)) = 0, x ∈M, (5.24)

~n · (g0(x, t)ρ(x, t)+
n

∑
i

ui(x, t)gi(x)ρ(x, t)) = 0 a.e. x ∈ ∂M,

ρ(x, t0) = ρ0(x), ρ(x, t f ) = ρ1(x).

Here,~n is the outward normal vector at the boundary of M, and we have assumed zero mass

flux boundary conditions.

We approximate the optimal transport problem using a sequence of optimal transport

problems on graphs. A key tool is to approximate the (time-varying) generator of the

semigroup corresponding to equation (5.24) using generator approximations on a finite

state space (Froyland et al., 2013), as discussed in Section 5.1. Hence, we approximate
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solutions of optimal transport problems on a Euclidean space using solutions of optimal

transport problems on graphs.

Construction of Graph G : Toward this end, we partition M into m d-dimensional con-

nected, positive volume subsets Pm = {B1,B2, ...,Bm}. Additionally, we assume that the

boundaries ∂Bi are piecewise smooth. Then we can consider the optimal transport prob-

lem on a graph G = (V ,E ), where the the cardinality of V is m and the connectivity of

the graph is determined by the topology of M and the partition Pm. More specifically,

V = {1,2, ...,m} and an element e = (v→ w) ∈ E for v,w ∈ G and v 6= w if B̄v∩ B̄w has

nonzero (d−1)-dimensional measure. The graph G is strongly connected, i.e., for any two

vertices v0,vT ∈ V , there exists a directed path (v1,v2, ...,vr) of r vertices in V such that

(vi→ vi+1) ∈ E for each i ∈ {1,2, ...,r− 1}. Moreover, this graph is also symmetric, that

is, e = (v→ w) ∈ E implies that ē defined by ē = (w→ v) is also in E .

In order to apply the approximation procedure from (Froyland et al., 2013), we express

the continuity equation (5.24) as a bilinear control system,

ẏ(t) = A0(t)y+
n

∑
i=1

Ai(ûi(t)y(t)), (5.25)

where A0(t) =−∇ · (g0(x, t) · ) for each t ∈ [0,1], ûi(t) = ui(·, t), y(t) = ρ(·, t), Ai =−∇ ·

(gi(x) · ). Note that the right-hand side of a bilinear system is traditionally expressed in

the form A(t)ρ(t) + u(t)Bρ(t) in the control theory literature (Elliott, 2009). The form

in equation (5.25) is equivalent for systems on finite-dimensional state spaces, but not for

general infinite-dimensional bilinear systems if û(t) is not a scalar for each t ∈ [t0, t f ]. For

example, in the continuity equation, one can see that u(x, t)∇ ·(ρ(x, t)) 6=∇ ·(u(x, t)ρ(x, t))

in general. Hence, the form of equation (5.25) is more appropriate for expressing the system

in equation (5.24).
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In Section 5.1, it was discussed how generators of semigroups corresponding to the

continuity equation can be used to define a approximating semigroup on a graph gener-

ated by appropriately constructed transition rate matrices. This method can be generalized

to the controlled continuity equation, equation (5.24). A natural extension is to consider

approximations of the control operators Ai using corresponding transition rate matrices,

and analogously construct a controlled Markov chain on the space V . However, we note

that typically for a controlled Markov chain, the control parameters are constrained to be

non-negative. Hence, a direct approximation of Ai using transition rate matrices and con-

straining ûi(t) to be positive would negate the possibility that the system can flow both

backward and forward along the control vector fields, which is critical for controllability of

the system. Hence, to account for this in the approximation procedure, we define a bilinear

control system equivalent to the one in equation (5.25), but with positivity constraints on

the control:

ẏ(t) = A0(t)y+ ∑
s∈{+,−}

n

∑
i=1

A s
i (û

s
i (t)y(t)); ûs

i (t)≥ 0 (5.26)

where A +
i =−A −

i = Ai for each i ∈ {1,2, ...,n}.

Using the methodology introduced in Section 5.1, for each of the operators A0, A s
i , we

construct the control operators on the graph G , which are denoted by A0 : [0,T ]×E →R+

and As
i : E → R+. (Recall that only g0 is possibly time-varying, while gi, i > 0, are all

time-invariant.) The difference is that while generators in Section 5.1 were defined as

vertex-based |V | × |V | transition rate matrices, here we construct edge-based vectors of

size |E | in a natural way. Hence, A0 is the edge-based version of the generator constructed

from the vector field g0(x, t) using the formula in equation (5.15). For As
i , the corresponding

transition rates are defined as

A+
i (e) = A+

i (v→ w) =
1

m(Bw)

∫
B̄v∩B̄w

max{gi(x) ·nvw,0}dmd−1(x), (5.27)

A−i (e) = A−i (v→ w) =
1

m(Bw)

∫
B̄v∩B̄w

max{−gi(x) ·nvw,0}dmd−1(x), (5.28)
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for i = 1, . . . ,n, where nvw is the unit normal vector pointing out of Bv into Bw at x.

Construction of Control Graph Gc and Drift Graph G0: Let P(V ) be the space of

probability densities on the finite state space, V . Then using the above parameter defini-

tions, we consider the following flows on the graph G ,

d
dt

µ(t,v) = ∑
e=(w→v)

A0(t,e)µ(t,w)− ∑
e=(v→w)

A0(t,e)µ(t,v)

+ ∑
s∈{+,−}

n

∑
i=1

∑
e=(w→v)

As
i (e)U

s
i (t,e)µ(t,w)

− ∑
s∈{+,−}

n

∑
i=1

∑
e=(v→w)

As
i (e)U

s
i (t,e)µ(t,v), (5.29)

where µ(t, ·) ∈P(V ) for each t ∈ [0,T ], and U s
i (t, ·) are the edge-dependent non-negative

“control” parameters that scale the transition rates, As
i (e). We associate a set of edges E s

i

with the above controlled flow. For each s ∈ {+,−} and i ∈ {1,2, ...,n}, we set e ∈ E s
i if

As
i (e) 6= 0. Similarly, we define E0 by setting e∈ E0 if A0(t,e) 6= 0 for some t ∈ [0,1]. Using

these definitions, we define the control graph Gc = (V ,Ec) by setting Ec = ∪s∈{+,−}∪n
i=1

E s
i , and the drift graph G0 = (V ,E0). These definitions will be used in Section 5.2.

The above defined flows can be shown to correspond to the evolution of a

time-inhomogeneous continuous-time Markov chain on the finite state space, V . The evo-

lution of the corresponding stochastic process X(t) ∈ V over an edge, e = (w→ v) ∈ E , is

defined by the conditional probabilities:

P(X(t +h) = v|X(t) = w) = A0(t,e)+ ∑
s∈{+,−}

n

∑
i=1

∑
e=(w→v)

As
i (e)U

s
i (t,e)+o(h). (5.30)

This leads us to the approximating optimal transport problem on a graph, motivated by
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the formulation in Section 5.1:

W̃ (µ0,µ1) = inf
U s

i (t,e)≥0,µ(t,v)≥0
∑

s∈{+,−}

n

∑
i=1

∫ 1

0
‖U s

i (t, .)‖µ(t,.)dt (5.31)

such that equation (5.29) holds, and

µ(0,v) = µ0(v), µ(1,v) = µ1(v) ∀v ∈ V

Again, the formulation in Section 5.1 motivates the following convex formulation of

the above problem:

W̃ (µ0,µ1)
2 = inf

Js
i (t,e)≥0,µ(t,v)≥0

∑
s∈{+,−}

n

∑
i=1

∫ 1

0
∑

e=(v→w)

Js
i (t,e)

2

2

(
1

µ(t,v)
+

1
µ(t,w)

)
dt,

(5.32)

µ(0,v) = µ0(v), µ(1,v) = µ1(v) ∀v ∈ V ,

d
dt

µ(t, .) = ∑
e=(w→v)

A0(t,e)µ(t,w)− ∑
e=(v→w)

A0(t,e)µ(t,v)+ ∑
s∈{+,−}

n

∑
i=1

(Ds
i )
ᵀJs

i (t, .),

(5.33)

where Js
i (t,e), µ(t,v)U s

i (t,e) for e = (v→ w), i = {1,2, ...,n}, and Ds
i ∈ R|E s

i |×|V | is the

linear flow operator computing µ(w)−µ(v) for each e = (v→ w) ∈ E s
i .

Remark 5.2.1. We note that the controlled advection equation (5.29) and the correspond-

ing convex optimal transport problem (5.32) can be simplified if control vector fields are

unidirectional across all boundaries ∂Bi. This can often be achieved by choosing the grid

carefully, and making the subvolumes Bi small enough. If this condition holds, then we

immediately see from equations (5.27-5.28) that for each edge e = (v→w), only one of the

transition rates A+
i (e) and A−i (e) is nonzero. Denote the nonzero transition rate by Ai(e). It

also follows that Ai(e) = Ai(ē), where ē = (w→ v). Then the simplified version of equation
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(5.29) is

d
dt

µ(t,v) = ∑
e=(w→v)

A0(t,e)µ(t,w)− ∑
e=(v→w)

A0(t,e)µ(t,v)

+
n

∑
i=1

∑
e=(w→v)

Ai(e)Ui(t,e)µ(t,w)−
n

∑
i=1

∑
e=(v→w)

Ai(e)Ui(t,e)µ(t,v). (5.34)

This results in the following convex optimal transport problem,

W̃ (µ0,µ1)
2 = inf

Ji(t,e)≥0,µ(t,v)≥0

n

∑
i=1

∫ 1

0
∑

e=(v→w)

Ji(t,e)2

2

(
1

µ(t,v)
+

1
µ(t,w)

)
dt, (5.35)

µ(0,v) = µ0(v), µ(1,v) = µ1(v), ∀v ∈ V

d
dt

µ(t, .) = ∑
e=(w→v)

A0(t,e)µ(t,w)− ∑
e=(v→w)

A0(t,e)µ(t,v)+
n

∑
i=1

(Di)
ᵀJi(t, .). (5.36)

Remark 5.2.2. We note that equation (5.16), discussed in Section 5.1, can be seen as the

special case of equation (5.34) with g0 ≡ 0 and gi = î (the ith unit vector). Hence, our

formulation generalizes optimal transport on graphs from a single-integrator system to

general nonlinear control-affine systems.

Controllability Analysis of Flow over Graphs

In this section, we establish that the controlled Markov chain approximations (5.29) pre-

serve the controllability properties of the system (5.22). In other words, we will show that

if the underlying dynamical system (5.22) satisfies some controllability conditions, then the

dynamical system (5.29) governing the evolution of measure on the graph G is also con-

trollable in some precise sense. This will ensure the well-posedness of the graph optimal

transport problem (5.31), since optimal transport is meaningful only if the set of possible

transports between a pair of measures is non-empty.

Our procedure is as follows. First, in Theorem 5.2.7, we will prove that controllabil-

ity of equation (5.22) results in the control graph Gc being strongly connected and equal

to G . In the subsequent theorems, we will show that the strongly connected property of
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Gc = Gc implies that the system defined by equation (5.29) is controllable between any pair

of measures in the interior of P(V ). This is first shown for the case of driftless systems

(i.e., g0 ≡ 0) in Theorem 5.2.9, and then for systems with drift (i.e., g0 6≡ 0) in Theorem

5.2.10. Here, the interior of P(V ) is defined as the set int(P(V )) = {µ ∈P(V ); µ(v)>

0 for each v ∈ V }.

Without loss of generality, we consider the case when t0 = 0 and t f = 1. First, we recall

a few standard notions from geometric control theory (Bloch, 2015).

Definition 5.2.3. Given x0 ∈M, we define R(x0, t) to be the set of all y ∈M for which there

exists an admissible control u = (u1,u2, ...,un) such that there exists a trajectory of system

(5.22) with x(0) = x0, x(t) = y. The reachable set from x0 at time T is defined to be

RT (x0) = ∪0≤t≤T R(x0, t). (5.37)

Definition 5.2.4. We say that the system (5.22) is small-time locally controllable from x0

if x0 is an interior point of RT (x0) for any T > 0.

Definition 5.2.5. Let f = ( f1, ..., fd) and g = (g1, ...,gd) be two smooth vector fields on M.

Then the Lie bracket [f,g] is defined to be the vector field with components

[f,g]i =
d

∑
j=1

(
f j ∂gi

∂x j −g j ∂ f i

∂x j

)
. (5.38)

Definition 5.2.6. For a collection of vector fields {gi}, Lie{gi} refers to the smallest Lie

subalgebra of a set of smooth vector fields on M that contains {gi}. Liex{gi} refers to the

span of all vector fields in Lie{gi} at x ∈M.

Using these definitions, we have the following result.

Theorem 5.2.7. Suppose that one of the following statements is true:
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1. g0 ≡ 0 and Liex

{
gi : i ∈ {1,2, ...,n}

}
= TxM at each x ∈ int(M).

2. span
{

gi(x) : i ∈ {1,2, ...,n}
}
= TxM at each x ∈ int(M).

Then the graph Gc associated with the system (5.29) is strongly connected and Gc = G .

Proof. Let v,w∈{1,2, ...,m} be such that v 6=w and B̄v∩B̄w has nonzero (d−1)−dimensional

(Hausdorff) measure. Consider points x0 ∈ int(Bv) and x1 ∈ int(Bw). Due to the connected-

ness of M, there exists a continuous path γ : [0,1]→M such that γ(0) = x0, γ(1) = x1, and

γ(t)∈ Bv∪Bw ∀t ∈ [0,1]. From the Lie bracket condition of the vector fields, it follows that

the system is small-time locally controllable at every x ∈ int(M). Then, we can approxi-

mate the path γ as a trajectory of the control system, using a sequence of piecewise-constant

control inputs.

To construct such a sequence, let us denote the flow map for time period t under

an autonomous vector field X by etX . Then, for each ε > 0, there exists k ∈ N large

enough, a sequence of time intervals t1, t2, ..., tk satisfying ∑
k
i=1 ti = 1, constant control in-

puts u1,u2, ...,uk ∈ R, a set of indices ηi ∈ {1,2, ...,n} selecting the corresponding control

vector field gηi , and an approximating path f : [0,1]→M satisfying ‖γ(z)− f (z)‖2
2 ≤ ε for

all z ∈ [0,1]. The path f (z) for z ∈ [0,1] can be written using the concatenation of flows

under the action of a chosen sequence of control vector fields:

f (
j

∑
j=1

t j + τ) = eτu j+1gη j+1 ◦ ...◦ et ju jgη j ◦ et1u1gη1 x0 (5.39)

for each j ∈ {0,1, ...,k} and τ ∈ [t j, t j+1]. Here, the case j = 0 means f (τ) = eτu1gη1 x0 for

all τ ∈ [0, t1].

Let z∗ ∈ (0,1) be such that f (z∗) ∈ ∂Bv and there exists c ∈ (0,z∗) small enough such

that f (z∗− c) ∈ int(Bv) and f (z∗+ c) ∈ int(Bw). Then, clearly nvw · gr(x) 6= 0 for some

r ∈ {1,2, ...,n} and some x in an open neighborhood of f (z∗) that is completely contained
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in Bv∪Bw, assuming that γ and ε are chosen appropriately (i.e. avoiding crossings of γ and

f over corners of Bv and Bw). If not, then f (z∗+δ ) ∈ ∂Bi for all δ ∈ (0,c], since the non-

existence of such a point c with the desired property in the neighborhood of f (z∗) implies

that one cannot use a concatenation of flows associated with the control vector fields to

leave the set ∂Bv, which leads to a contradiction to the assumed property of small-time

local controllability. From continuity of the vector field gr, there exists a small enough

neighborhood Nx of x such that nvw · gr(y) 6= 0 for all y ∈ Nx. Hence, this implies that

As
r(e) 6= 0 for e = v→ w for some s ∈ {+,−}. Due to continuity of the vector field gr

at x, it also follows that As
r(e) = As

r(ē). Hence, the connectivity of the graph Gc follows.

Case 2 follows from the assumption that span
{

gi(x) : i ∈ {1,2, ...,n}
}

= TxM at each

x ∈ int(M).

Remark 5.2.8. The main obstruction in extending the above result for underactuated sys-

tems (span
{

gi(x) : i ∈ {1,2, ...,n}
}
6= TxM for some x ∈ M) with drift, i.e. g0 6≡ 0, is

that usual tests for small-time local controllability of control systems with drift (Sussmann,

1987) require the initial condition to be an equilibrium point. Hence, starting at a non-

equilibrium initial condition, one might need to make large excursions (in our case, possi-

bly outside the domain M) in order to return to the initial condition. For example, consider

the simplest control-affine system with drift, the double integrator: ẍ = u. Hence, given

initial and target densities, the optimal transport problem on a bounded domain might not

admit a solution for a system with drift if M is not taken to be large enough.

In the following, we observe that equation (5.29) has a certain controllability property

for the case when the underlying system is driftless (i.e., g0 ≡ 0). The proof follows from

Theorem 2.2.5, where the controllability result was proved for the case when Ai(t,e) is

either equal to 0 or 1 for each i ∈ {1,2, ...,n} and each e ∈ Gc, and Gc is only required to be
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strongly connected.

Theorem 5.2.9. Consider µ0,µ1 ∈ int(P(V )) and assume that Gc = G is strongly con-

nected and A0(t,e) = 0 for every e ∈ E and all t ∈ [0,1]. Then there exist piecewise contin-

uous U s
i (t, ·)≥ 0 such that the solution of equation (5.29), µ(t, ·) satisfies µ(0, ·) = µ0 and

µ(1, ·) = µ1.

Theorem 5.2.9 leads to the following result for the case of systems with drift, i.e.,

g0 6≡ 0.

Theorem 5.2.10. Consider µ0,µ1 ∈ int(P(V )). Assume the graph Gc = G is strongly

connected, and G0 ⊆ Gc. Then there exist U s
i (t, ·) ≥ 0 such that equation (5.29) satisfies

µ(0, ·) = µ0 and µ(1, ·) = µ1.

Proof. The graph Gc is connected. Since G0⊆G , we can choose Ũ s
i (t, ·) such that the right-

hand side of equation (5.29) is equal to 0 for all t ∈ [0,1]. Then, from the previous theorem,

it follows that there exists a control U s
i (t, ·) of the form U s

i (t, ·) = Û s
i (t, ·)+ Ũ s

i (t, ·) such

that equation (5.29) satisfies µ(0, ·) = µ0 and µ(1, ·) = µ1. Here, the parameters Ũi(t, ·)

negate the effect of the drift field A0, and Û s
i (t, ·) ensure that the density µ0 is transported

to µ1, as in Theorem 5.2.9.

5.3 Construction of Approximate Feedback Control Laws

Given the solution the optimal transport problem on the graph, we reconstruct the cor-

responding approximate feedback control laws {ui(x, t)} for the underlying dynamical sys-

tem Eq. (5.22). Since the optimal transport problem is solved on the graph, the feedback

control law is vertex-based. For any vertex v of the graph G , all agents with their state x

lying in the sub-volume Bv apply the following feedback law:
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ui(x, t) =
∑w∈N +

i (v)U
+
i (v→ w, t)

|N +
i (v)|

−
∑w∈N −

i (v)U
−
i (v→ w, t)

|N −
i (v)|

∀x ∈ Bv. (5.40)

Here, N s
i (v) refers to the the neighboring vertices of v in the graph (V ,E s

i ) for each

s ∈ {+,−} and i ∈ {1,2....n}.

5.4 Numerical Implementation

We adapt the numerical scheme used in (Solomon et al., 2016) to our setting, and use a

staggered discretization scheme for pseudo-time discretization. We define

µ j(v), µ(t j,v), (5.41)

Js
i, j(e), Js

i (t j,e), (5.42)

where t j = ( j/k)t f , j ∈ [0,1,2, . . . ,k] is the time discretization into k intervals. We take

t0 = 0. Here Js
i, j(e) represents the s ∈ {+,−} flow due to gi(x) over edge e = (v→ w),

from vertex v at time t j to vertex w at time t j+1.

Hence, the optimization problem given in Eqs. (5.32) can be discretized as,

W̃ (µ0,µ1)
2 = inf

Js
i, j≥0,µ j≥0

∑
s∈{+,−}

n

∑
i=1

k

∑
j=1

|E s
i |

∑
e=1

e=(v→w)

(Js
i, j(e))

2(
1

µ j(v)
+

1
µ j+1(w)

), (5.43)

subject to the following constraints:

µ j+1−µ j

∆t
= A0(t j)µ j + ∑

s∈{+,−}

n

∑
i=1

(Ds
i )
ᵀJi, j

s , (5.44)

µ0 = µt0,µk = µt f , (5.45)

where we have used the vertex-based m×m transition rate matrix A0(t j) as originally de-

fined in Eq. (5.15). Here ∆t =
t f

k
. The cost function given by Eq. (5.43) is again of the
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form “quadratic over linear,” and the advection (Eq. (5.44)) imposes linear constraints.

Hence the discretized problem is convex, and can be solved using many off-the-shelf con-

vex solvers. The optimization problem is solved via the CVX (Grant et al., 2008) mod-

eling platform, an open-source software for converting convex optimization problems into

a usable format for various solvers. We use the SCS (O’Donoghue et al., 2013) solver, a

first-order solver for large size convex optimization problems. This solver uses the Alter-

nating Direction Method of Multipliers (ADMM) (Eckstein and Yao, 2012) to enable quick

solution of very large convex optimization problems, with moderate accuracy.

The variables to be solved for in the optimization problem Eqs. (5.43-5.45) are vertex-

based quantities µ j and edge-based quantities Js
i, j. The size of the optimization problem can

be quantified in terms of the number of time-discretization steps k, the number of vertices

|V |=m, and the number of edges |Ec|. The graph Gc is always sparse, since a typical vertex

is at most connected to 2(n+ 1)d neighbors, and m� n,m� d. Hence, the variables in

the optimization problem scale as O(k(m+ |E |)) = O(n ·d · k ·m).

In the examples that follow, the graph size m is chosen to be large enough so that the

qualitative features of the optimal transport are well resolved, and do not change upon

finer grid refinement. The time-discretization parameter k is chosen such that the optimal

transport cost W̃ is insensitive to finer discretization.

5.5 Simulation Examples

Optimal Transport in the Grushin Plane

We first apply our framework to a non-holonomic control-affine system in which certain

optimal transport solutions can be found analytically. We consider transport of measure in

the Grushin system. In (Agrachev and Lee, 2009), the structure of optimal controls in this

problem was analyzed. Using this structure, optimal transport to a delta measure at (0,0)
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was computed. The system is described by

ẋ1 = u1, (5.46a)

ẋ2 = u2x1. (5.46b)

This system is a driftless system with control vector fields g1(x1,x2)= [1 0]ᵀ, g2(x1,x2)=

[0 x1]
ᵀ. These do not span the tangent space R2, but their Lie algebra does, i.e. Liex

{
gi :

i ∈ {1,2}
}

= R2. This can be seen by noting that the Lie bracket [g1,g2] = [0 1]ᵀ, and

hence span{[g1,g2],g1} = R2. Hence, this system satisfies condition 1 of Theorem 5.2.7.

By Theorem 5.2.9, the corresponding numerical optimal transport problem for this driftless

system is well-posed.

The optimal control cost c(x,y) between initial and final states, x = (x1,x2)
ᵀ,y =

(y1,y2)
ᵀ, is taken to be square of the sub-Riemannian distance d(x,y)= infUy

x

∫ 1
0

√
u2

1 +u2
2dt.

Hence, the optimal control solutions are also geodesics in the sub-Riemannian space. The

solutions of the optimal control problem are integral curves of the Hamiltonian H given by

H(x1,x2, p1, p2) =
1
2
(p2

1 + x2
1 p2

2). (5.47)

Here p1, p2 are the co-state variables. Note that since H is independent of x2, H can be

reduced to a Hamiltonian in (x1, p1), and the integral curves of H can be obtained using

quadratures. The geodesics reaching (0,α) at t = 1 are of the form

x1(t) =
a
b

sin(b(1− t)), (5.48)

x2(t) =
a2

4b2 (2b(1− t)− sin(2b(1− t)))+α. (5.49)

A geodesic between a specified initial point (x̄1, x̄2), and (0,α) can be obtained by

inverting the Eqs. (5.48-5.49) at t = 0 to solve for (a,b). For t ≤ π

b , these geodesics are

also global minimizers of the optimal control problem. Figure 5.1(a) shows some geodesics

to the origin.
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Figure 5.1: (a) Some minimizing geodesics to the origin in the Grushin plane. (b) Analyti-

cally computed optimal transport solution between a uniform measure whose support is the

disk Ω = {(x,y)|x2 +(y− .8)2 < .152}, and a measure concentrated at the origin.

Now consider the optimal transport problem with c(x,y) = d2 from an initial measure

µ0 to final measure µ1 = δ(0,0). See Fig. 5.1(b) for analytically computed transport in the

case in which the initial measure is uniform over a disk.

Using the algorithm developed in Section 5.2, we compute optimal transport for this

same case. We divide the phase space X = [−1,1]× [−1,1] into m = 1002 boxes, and form

the corresponding graph G . The resulting solution is shown in Figure 5.2(a)-(d). It can be

seen that the computed solution closely follows the analytical solution shown in Fig. 5.1.

Optimal Transport for Unicycle Model

Finally, we consider optimal transport for a three-dimensional non-holonomic system called

the “unicycle” model. This system is a toy model for vehicle kinematics, and is used exten-

sively in vehicle path planning and control (Murray and Sastry, 1993; Aicardi et al., 1995).

The states are the Cartesian coordinates (x,y) ∈ R2 and orientation θ ∈ S1 of the unicycle.

The system equations on M = S1×R2 are given by
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(a) t=0 (b) t=0.25

(c) t=0.75 (d) t=0.95

Figure 5.2: (a)-(d) The optimal transport solution in the Grushin plane between a measure

whose support is the disk Ω = {(x,y)|x2 +(y− .8)2 < .152}, and the delta measure at the

origin. The parameters are m = 104, k = 75.

θ̇ = u1,

ẋ = u2 cosθ ,

ẏ = u2 sinθ ,

where u1 is the steering speed and u2 is the translation speed. The above system is a driftless

system with control vector fields g1(θ ,x,y) = [1 0 0]ᵀ, g2(θ ,x,y) = [0 cosθ sinθ ]ᵀ. These

do not span the tangent space TxM, but their Lie algebra does, i.e. Liex

{
gi : i ∈ {1,2}

}
=

TxM. This can be seen by noting that the Lie bracket [g1,g2] = [0 − sinθ cosθ ]ᵀ does not

lie in span{g1,g2}. Hence, this system satisfies condition 1 of Theorem 5.2.7. By Theorem
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Figure 5.3: Initial and final measures shown on the (x,y) plane for optimal transport for

the unicycle model. The green arrows indicate the third coordinate θ . µ0 is supported on

(0,0.5,0), and µ1 is supported on (1,0,0) and (1,1,0).

5.2.9, the corresponding optimal transport problem for this driftless system is well-posed.

To study the optimal transport problem for the unicycle model, take the control cost to

be quadratic, i.e. d(z1,z2) = infUz2
z1

∫ 1
0

√
u2

1 +u2
2dt. We compute optimal transport solutions

for two scenarios. In the first case, µ0 is chosen to be the uniform measure supported on

a box containing (0,0.5,0), and µ1 is chosen to be the uniform measure supported on a

union of boxes containing (1,0,0) and (1,1,0). In the second case, µ0 is chosen to be the

uniform measure supported on a box containing (0,0.5,0), and µ1 is chosen to be a uniform

measure supported on a union of boxes containing (1,1, π

2 ) and (1,0, 3π

2 ). We use m = 253

boxes to discretize the 3D phase space M, and t f = 1 with k = 20 equally-spaced time steps,

for both cases. The computation in CVX takes about 6×104 seconds. The initial and final

measures are depicted in Fig. 5.3. The optimal transport solution is shown in Fig. 5.4.

Since the final orientation is prescribed to be along the x−axis, this leads to a splitting of

the measure half-way in the transport, and steering of the two halves horizontally to their

final positions.
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(a) t=0 (b) t=0.5

(c) t=0.7 (d) t=1

Figure 5.4: The optimal transport solution for the unicycle model shown in the x−y plane.

The grid size is m = 253, and k = 20.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this chapter, we conclude this thesis and mention some possible directions for future

work.

In Chapter 2, we presented several fundamental results on controllability and stabi-

lizability properties of forward equations of CTMCs that are associated with strongly con-

nected graphs. We proved a sufficient condition for controllability of control-affine systems

that extends the classical rank conditions for controllability to the case where the control

inputs have non-negativity constraints. We applied this condition to a system in which

only a subset of the transition rates are control inputs. We proved asymptotic controlla-

bility of distributions that are not strictly positive, with target densities equal to zero for

some states. We also characterized the stationary distributions that are stabilizable using

time-independent and time-dependent control inputs. Further, we constructed decentral-

ized, density-dependent feedback laws that stabilize the forward equation, with control

inputs that equal zero at equilibrium. A possible direction for future work is to generalize

the controllability and stabilization results of Chapter 2 to more general CRN models of

the form (1.12). Such models are nonlinear even when the control inputs are independent

of the probability distributions. Hence, the corresponding stabilization and controllability

problem is expected to be much more complicated to address.

In Chapter 2, we also addressed the problem of herding a robotic swarm to a desired

distribution among a set of states using a leader agent that produces a repulsive effect

on swarm members in its current state. We utilized a mean-field model of the swarm in

our approach and constructed a switching feedback controller for the leader agent. We

proved that this controller can stabilize the swarm to target probability distributions that
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are positive everywhere. Future work will focus on designing feedback laws and optimal

control strategies for the leader agent that improve system performance criteria such as

the rate of the follower agents’ convergence to the target distribution and the robustness of

this convergence to disturbances, such as environmental factors (e.g., wind) and inter-agent

collisions.

In Chapter 3, we proved controllability properties of a system of advection-diffusion-

reaction (ADR) PDEs with zero-flux boundary condition that is defined on certain smooth

domains. In contrast to previous work, we established controllability of the PDEs with

bounded control inputs. Our approach to establishing controllability using spectral proper-

ties of the elliptic operators under consideration is also novel. In our opinion, this approach

to proving controllability of ADR PDEs is simpler than methods that have previously been

employed in similar works, discussed in Section 1.2. In addition, we provided constructive

solutions to the problem of asymptotically stabilizing a class of hybrid-switching diffusion

processes (HSDPs) to target non-negative stationary distributions. A possible direction for

future work is to extend the arguments in this chapter to the case where the corresponding

HSDP has diffusion and velocity control parameters in only a small subset of the discrete

behavioral states. Lastly, while diffusive movement by agents was modeled as Brownian

motion in this chapter, future work could focus on alternative diffusion models which do

not implicitly assume that agents can move from one location to another at arbitrarily large

speeds.

To consider scenarios where the dynamics of each agent in a swarm is nonlinear, in

Chapter 4 we presented a relaxed version of the optimal transport problem for discrete-

time nonlinear systems. We showed that under mild assumptions on the controllability of

the original control system, the extended system on the space of measures is controllable.

This enabled us to prove the existence of solutions of an optimal transport problem for

nonlinear systems evolving in discrete time. A possible direction for future work is to
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explore conditions under which deterministic feedback maps exist for the optimal transport

problem.

In Chapter 5, we developed a graph-based computational framework for continuous-

time optimal transport over nonlinear dynamical systems. In the control systems setting,

this framework generalizes the graph-based approximations of the optimal transport prob-

lem for single-integrator systems to nonlinear control-affine systems. This is accomplished

by exploiting recent work on approximations of infinitesimal generators associated with

nonlinear dynamical systems using infinitesimal generators on graphs. The controllabil-

ity of measures over graphs is related to the connectivity of the “controlled” graph, and is

proved to be a consequence of controllability of the underlying control system. This work

opens up new directions in the design of efficient feedback control strategies for multi-agent

and swarm systems with agents that have nonlinear dynamics.
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Schmüdgen, K., Unbounded self-adjoint operators on Hilbert space, vol. 265 (Springer
Science & Business Media, 2012).

Seeja, G., A. Selvakumar and V. B. Hency, “A survey on swarm robotic modeling, analysis
and hardware architecture”, Procedia Computer Science 133, 478–485 (2018).

Solomon, J., R. Rustamov, L. Guibas and A. Butscher, “Continuous-flow graph transporta-
tion distances”, arXiv preprint arXiv:1603.06927 (2016).

Stroock, D. W., “Logarithmic Sobolev inequalities for Gibbs states”, in “Dirichlet forms”,
pp. 194–228 (Springer, 1993).

195



Sun, Z., S. S. Ge and T. H. Lee, “Controllability and reachability criteria for switched linear
systems”, Automatica 38, 5, 775–786 (2002).

Sussmann, H. J., “A general theorem on local controllability”, SIAM Journal on Control
and Optimization 25, 1, 158–194 (1987).

Talay, D., “Numerical solution of stochastic differential equations”, (1994).

Tembine, H., “Energy-constrained mean field games in wireless networks”, Strategic Be-
havior and the Environment 4, 1, 99–123 (2014).

Elamvazhuthi, K., C. Adams and S. Berman, “Coverage and field estimation on bounded
domains by diffusive swarms”, in “Decision and Control (CDC), 2016 IEEE 55th Con-
ference on”, pp. 2867–2874 (IEEE, 2016).

Elamvazhuthi, K. and S. Berman, “Nonlinear generalizations of diffusion-based coverage
by robotic swarms”, in “2018 IEEE Conference on Decision and Control (CDC)”, pp.
1341–1346 (IEEE, 2018).

Elamvazhuthi, K., S. Biswal and S. Berman, “Mean-field stabilization of robotic swarms
to probability distributions with disconnected supports”, in “American Control Confer-
ence (ACC), 2018”, pp. 885–892 (IEEE, 2018a).

Elamvazhuthi, K. and P. Grover, “Optimal transport over nonlinear systems via infinitesi-
mal generators on graphs”, Journal of Computational Dynamics 5, 1&2, 1–32 (2018).

Elamvazhuthi, K., P. Grover and S. Berman, “Optimal transport over deterministic
discrete-time nonlinear systems using stochastic feedback laws”, IEEE Control Systems
Letters 3, 1, 168–173 (2018b).

Elamvazhuthi, K., M. Kawski, S. Biswal, V. Deshmukh and S. Berman, “Mean-field con-
trollability and decentralized stabilization of Markov chains”, in “Decision and Control
(CDC), 2017 IEEE 56th Annual Conference on”, pp. 3131–3137 (IEEE, 2017a).

Elamvazhuthi, K., H. Kuiper and S. Berman, “Controllability to equilibria of the 1-d
Fokker-Planck equation with zero-flux boundary condition”, in “IEEE Conference on
Decision and Control (CDC)”, pp. 2485–2491 (IEEE, 2017b).

Elamvazhuthi, K., H. Kuiper and S. Berman, “PDE-based optimization for stochastic
mapping and coverage strategies using robotic ensembles”, Automatica 95, 356–367
(2018c).

Elamvazhuthi, K., H. Kuiper, M. Kawski and S. Berman, “Bilinear controllability of a
class of advection-diffusion-reaction systems”, IEEE Transactions on Automatic Control
64, 6, 2282–2297 (2019).

Topaz, C. M., A. L. Bertozzi and M. A. Lewis, “A nonlocal continuum model for biological
aggregation”, Bulletin of Mathematical Biology 68, 7, 1601 (2006).
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