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ABSTRACT  

 Breeding seeds to include desirable traits (increased yield, drought/temperature 

resistance, etc.) is a growing and important method of establishing food security. 

However, besides breeder intuition, few decision-making tools exist that can provide the 

breeders with credible evidence to make decisions on which seeds to progress to further 

stages of development. This thesis attempts to create a chance-constrained knapsack 

optimization model, which the breeder can use to make better decisions about seed 

progression and help reduce the levels of risk in their selections. The model’s objective is 

to select seed varieties out of a larger pool of varieties and maximize the average yield of 

the “knapsack” based on meeting some risk criteria.  Two models are created for different 

cases. First is the risk reduction model which seeks to reduce the risk of getting a bad 

yield but still maximize the total yield. The second model considers the possibility of 

adverse environmental effects and seeks to mitigate the negative effects it could have on 

the total yield. In practice, breeders can use these models to better quantify uncertainty in 

selecting seed varieties. 
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Chapter 1: 

Introduction 

1.1 Overview 

The current world population is 7.6 billion, and it is expected to grow above 9.8 billion 

by 2050 (UN). According to the population reference bureau, the current rate of population 

increase is 1.2%. This means that the world’s population of 7 billion will double to 14 

billion within the next 60 years. This upward growth is expected to continue and place an 

even greater burden on the earth’s ability to provide enough food for its inhabitants. The 

Food and Agriculture Organization of the UN states that more than 66% of the world’s 

population is malnourished. This is a 300% increase in the number of people who are 

malnourished when compared to 1950.  

 Crop farming is a reliable way of growing food, however simply growing more 

crops is not a practical solution due to the extra strain this will place on the earths supply 

of arable land. Also, climate change has been shown to reduce wheat yields by 6% for 

every 1-degree Celsius increase in global temperatures. Rice yields are also reduced as 

nighttime temperatures increase (Environmental Health News). Additionally, most farming 

is dependent on irrigation water which is gained from snowmelt, usually stored in mountain 

snow packs. Climate change has been shown to reduce snow packs and therefore lessen 

the availability of irrigation water.  

In order to overcome these issues, countries and companies around the world have 

increasingly focused on developing crops with higher bushel yields (US NEWS).  For 

example, some Asian countries have been able to keep up food production in part due to 

developing new breeds of Asian rice. (FOA) 
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1.2 Background 

When it comes to creating new seeds, farming and agricultural groups set the 

expectations. These groups advise farmers on what to look for in varieties and how to make 

good choices when selecting them. For example, Iowa State University’s Department of 

Agronomy is one of these groups. They advise farmers to look for five things when 

selecting soybean varieties. They are, in order of importance, yield, disease resistance, 

maturity group, grain composition, hedging and lodging.   

Another example is the Rice Knowledge Bank, which as its name suggests advises 

farmers on what to look for when selecting rice seeds. The Rice Knowledge Bank 

recommends that farmers find seeds which meet market expectations like color, shape and 

cooking characteristics, provide adequate yield, have disease resistance, have adequate 

tillering capacity and resistance to lodging. This advice causes there to be a market demand 

for certain traits, and it is the breeder’s job to come up with new varieties that can satisfies 

these demands. 

To develop new varieties of seeds, breeders use stage-gating. Breeders will start 

with a large pool of seeds and each have some desirable trait that the breeders have 

developed in the seeds. During a stage, breeders will plant each seed in a different location 

around the United States for one growing season. At the end of the growing season, a 

varieties performance will be judged based on the varieties total yield. The seeds with the 

best performance are promoted to the next stage and this cycle continues until three stages 

are completed. The seeds remaining at the end of the third stage are released to the market. 

This process takes several years to complete from start to finish, so the development of a 

poor performing seed is very costly. Progression decisions are largely based on the 
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expertise of the breeders and the results of the three seasons of planting. This is a risky 

method of progression because there is no way to confirm or disprove the assumptions 

made by the breeders and the three seasons of planting may misrepresent the real 

performance of the seeds. As a result, mathematical models are developed to help breeders 

in making more objective decisions and reduce the risk of selecting poor performing seeds. 

1.3 Goals and Limitations 

The goal of this research is to assess the potential for using robust optimization 

methodologies in helping seed breeders make better seed advancement decisions. Since 

breeders evaluate seed performance based on yield, this thesis is focused on creating an 

optimization model which helps select seed varieties which maximize the average yield of 

the selected group. The study also considers potential variance in the yield caused by any 

number of factors. This way, the solution to the model is a knapsack which both maximizes 

the yield but also acts to hedge against uncertainty. This study is limited by the small 

amount of data available on seed variety performance. Another limitation is the lack of 

computing power when trying to solve more complex optimization problems.  

1.4 Knapsack Problem  

The breeders’ job is to select a subset of seed varieties that they think will succeed 

in the market. Usually, there will be some constraints on which seeds they can select and 

how many, usually it is a group of seeds which are progressed together. A group of seeds 

is progressed instead of a single variety because seeds are progressed through stages, and 

each stage eliminates more seeds until the most elite seeds are selected.  This structure 

defines the knapsack problem, which is an optimization model which selects a subset of 
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items out of a larger set based on some objective function and constrained, usually, by a 

size limit on the subset. The most basic deterministic knapsack set up is as follows,  

max ∑ 𝑎𝑖𝑥𝑖

𝑖 ∈ 𝐼

 

s. t. ∑ 𝑥𝑖

𝑖 ∈ 𝐼

 ≤  𝐶 

𝑥𝑖 ∈  {0,1} 

 In this case, 𝑥 is a binary decision variable on whether to include item 𝑖 in a set 𝐼 

of alternative items in the knapsack. The objective of this knapsack model is to maximize 

the total knapsack. The equation ∑ 𝑎𝑖𝑥𝑖𝑖 ∈ 𝐼  represents the total value of the knapsack, here 

𝑎𝑖 is the value of item 𝑖. C is the maximum size of the knapsack and the constraint 

∑ 𝑥𝑖𝑖 ∈ 𝐼  ≤  𝐶 prevents the model from selecting more items then the total size of the 

knapsack. Additional constraints can be added to this model make it more specialized.  

The chance-constrained knapsack is simply the knapsack model above with one or 

more chance constraints. In a basic form it looks like this 

max ∑ 𝑎𝑖𝑥𝑖

𝑖 ∈ 𝐼

 

s. t. ∑ 𝑥𝑖

𝑖 ∈ 𝐼

 ≤  𝐶 

𝑃𝑟(𝑊 ≥ 𝑅) ≥ 𝛼 

𝑥𝑖 ∈  {0,1},        ∀𝑖 ∈  𝐼 

 Here Pr() represents the probability of an event occurring, and W and R are some 

values of interest and 𝛼 is the probability of success.  
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1.5 Findings 

The novelty of this work is in showing the importance of considering uncertainty 

in seed selection and how using a chance-constrained knapsack optimization model can 

help breeders make better selection decisions. We show that using a naïve (selection based 

only on the mean) approach to the seed selection problem can result in very low means 

when uncertain events occur. Therefore, we use optimization to find a compromise 

between finding varieties which maximize the knapsack value and hedging against 

uncertainty. This research shows that knapsacks selected by this optimization has a smaller 

total value, but also increases the chances of performing better when uncertain events 

occur. Using this model, breeders can select their own requirements such as minimum yield 

requirements and identify which seeds maximize the knapsack’s yield.  

1.7 Organization 

The first chapter of this thesis gives an introduction of the thesis. It explains the 

motivation of the work and basic topic. The second chapter is the literature review and it 

explains the current work being done in this field. It also details the work which has gone 

into the fields of robust optimization and chance constraints. The third chapter talks about 

the methodology of the thesis. It goes into detail about which models are used and how, 

plus what assumptions are being made. The fourth chapter shows the findings of the thesis 

and discusses the implications of the findings. The fifth chapter wraps up the thesis and 

reiterates the importance and results of the work.  
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Chapter 2:  

Literature Review 

2.1 Agricultural Seed Development 

 Historically, most research involved in the crop yield improvement was revolved 

around improving the environment that the crop was planted in. However, more recently, 

agricultural research has started to include more genetics. A widely used tool for 

agricultural research is optimization. In the case of genetic research this includes 

optimizing which genes are selected and how many new genes are utilized in a single seed. 

This technique coupled with useful metrics can help seed breeders breed seeds with 

interesting and valuable properties.  

 Before researchers considered genetics, most research was done on the 

environment. Optimization was used to properly use farm resources, like water, sun light 

and nutrients in the soil. For example, Goulding’s (2008) paper on resource management 

focuses on nitrogen use in the soil. Nitrogen is a critical nutrient for a variety of plants and 

needs to be replaced in the soil each year. However, an overabundance of nitrogen in the 

soil can also be detrimental to crop yields. Goulding (2008) describes the twin problems of 

countries how have too much nitrogen in their soil and countries without enough. He also 

mentions the importance of proper nitrogen balance in protecting the environment. 

Goulding (2008) suggests several best practices in proper nitrogen balance. These include 

regular data collection, the use of lime, proper fertilizer use calculation and careful 

irrigation. Another example is the use of optimization in selecting which type of crops to 

plant and how much land to allocate to each crop type. Boles (1955) sets up this problem 
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as an optimization problem, where the objective is to select the combination of crops and 

land allocation which maximizes the yearly profit of the farm. Each crop and allocation 

plan have a cost associated with it. He sets up a linear program which when solved provides 

the best of combination of these two variables.  

 More recently, researchers have also been including genetics into their research. 

Generally, the goals of such research are to discover new ways of adding new genes the 

gene pool of an already existing seed. Gene stacking or gene pyramiding is a popular 

problem currently being researched; it is defined as trying to introduce several desirable 

genes from many parents into a single genotype for a specific trait. Beukelaer (2015) 

explains how marker-assisted gene pyramiding problems are usually solved using integer 

programming. Beukelaer (2015) then goes on to say that the heuristic method which he 

helped developed can work in smaller cases. In larger cases this method can provide good 

approximations. Other researchers like Canzar’s (2011) use mathematical optimization to 

solve the gene pyramiding problem. Canzar (2011) attempts to minimize the number of 

generations and population size required to have a seed exhibit the properties of a certain 

gene. He shows that the general problem is NP-hard but that the problem difficulty can be 

reduced by taking advantage of the combinatorial structure of the problem.  

 Alongside methods on how to introduce genes to seeds, researchers have also been 

working on how to decide which genes to include. Traditionally, gene selection is arbitrary 

and based mostly on the breeder’s intuition or what the breeder believes to be the market’s 

demand. Researchers like Byrum et. al (2017), explain how they developed a metric which 

can help measure genetic gain. Genetic gain is the amount of increase in performance, in 

this case yield performance, that is achieved through the addition of genes. This metric can 
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help identify which genes assist in yield performance the most and breeders can use it as a 

way of more rigorously selecting which genes are important to pursue.  

Byrum et. al (2016) also discusses several operations research tools that are used in 

seed development decision making. The trait introgression tool evaluates the time, cost and 

probability of success during the variety design phase. This tool uses discrete-event 

simulation to asses these outcomes. This is an important step in improving the design phase 

of seed development. Using this tool, breeders can plan future steps in the design phase 

and measure the consequences of those decisions before implementing them.  Another tool 

used during the variety design phase is the breeding project lead tool, this tool helps the 

project lead determine the best use of resources like fields, facilities and plant materials. It 

also uses discrete-event simulation. For field trails, a tool called the yield trail design 

optimizer is used to identify the optimal number of varieties, locations and replications to 

test. This tool helps the breeders quickly decide which varieties meet commercial 

expectations. This tool requires three probability distributions in order to function 

correctly. In requires the variability of intrinsic yield, variability due to location and 

variability across replications.  These distributions used to simulate the yield of varieties at 

each location and each replication. By randomly generating values from those distributions, 

the model will calculate the mean of the variety and top performing varieties are selected 

for trail testing.   

2.2: Robust and Chance-Constrained Optimization   

 Using deterministic optimization, which assumes that the parameters of the 

problem are known with certainty can result in poor or unrealistic results. Robust 
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optimization is a method of quantifying uncertainty into an optimization model (Pinar 

2005). It is a wort-case oriented methodology and does not require prior knowledge of a 

distribution and is useful when parameters are uncertain, and when the objective function 

value is highly sensitive to parameter changes (Ben-Tal 2009). In the case of this research, 

it is assumed that the underlying distribution is known, so chance-constrained optimization 

is used.  

 Chance-constrained optimization is a major approach to solving 

optimization problems that deal with uncertainty and is used in many industries, including 

finance, water management and renewable energy. Chance-constrained optimization works 

by replacing the uncertain parameters with random variables. This alteration makes the 

problem more accurate by better modeling the problem but changes the structure of the 

model which causes certain problems in coming to a solution (Gelute 2012). For one, 

chance-constrained problems are both non-convex and non-linear (Henrion & Strugarek 

2008). Second, calculating correct probability distributions can be very difficult and slight 

inaccuracies in the probabilities can greatly alter the solution of the model (Uryasev 1995). 

Certain solution methodologies have been proposed to overcome these problems, including 

approximating distributions and different ways of formulation (Ahmed & Shapiro 2008).   

Stochastic or chance-constrained optimization was first described by Charnes and 

Cooper (1959). They described the concept as a problem where certain random numbers 

are selected as a function of a random variable with a known distribution in such a way 

that it maximizes some objective function subject to constraints that the probability be 

maintained above or at some value.  

 The generic way to express the stochastic constraint is  
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min
𝑥∈𝑋

𝑓(𝑥)       subject to 𝑃𝑟{𝐺(𝑥, 𝜔) ≤ 0}  ≥  1 − 𝛼, 

where 𝜔 is the random variable and  𝑃𝑟{𝐺(𝑥, 𝜔) ≤ 0} is the probability that a certain 

constraint will be greater than or equal to 0. The program seeks to identify a decision vector 

x, which minimizes the objective function and satisfies the constraint with a probability of 

1 − 𝛼, where 0 ≤ 𝛼 ≤ 1 .  

Gelute (2012) describes in further detail the various applications, properties and 

numerical issues that come with chance-constrained optimization problems. Gelute (2012) 

mentions that the classical applications for chance-constrained optimization includes water 

reservoir management, optimal power flow and reliability engineering and that modern 

applications include unmanned drone navigation and reliable wind and power generation. 

He also mentions the difficulty of calculating the probability distribution for 𝜔. However, 

he does mention a special case: 

If 𝐺(𝑥, 𝜔)  =  𝑎𝑇𝑥 + 𝑏 − 𝜔, 𝜔 ∈ ℝ and 𝜔 ~ 𝑁(𝜇, 𝜎2), then 

𝑃𝑟{𝐺(𝑥, 𝜔)  ≤ 0}  ≥ 𝛼 ↔ 𝜑−1(1 − 𝛼)  −  (𝑎𝑇𝑥 + 𝑏) ≥  0. 

Gelute (2012) explains two approximation strategies, all three strategies attempt to 

circumvent the computational problems (non-convexity, non-linearity, calculating the 

probability distribution) with chance-constrained problems. The first method is called 

back-mapping. The idea is to find a monotonic relationship between the function for the 

random variable and the true distribution of the random variable, which can help create 

direct representation of the chance constraints. The disadvantage is that such a relationship 

may not exist for every problem.  
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The second method is called sample average approximation (SAA), which was 

created by Ahmed and Shapiro (2008). SAA removes two of the main difficulties in solving 

chance-constrained optimization problems, which is the non-convex nature of chance-

constrained optimization problems and difficulty checking for feasibility. These problems 

are avoided by replacing the true distribution of the random variables with an empirical 

distribution created through a Monte Carlo simulation. SAA is a useful approximation and 

can create good approximate solutions to the exact case. However, even though SAA 

removes some of the problems with chance constrained optimization, it is still a NP-hard 

problem. To resolve this issue, Ahmed and Shapiro use a mixed-integer program to solve 

the SAA formulation. The formulation is   

min 𝑓(𝑥) 

subject to  𝐺(𝑥, 𝜔𝑗) ≤ 𝑀𝑗𝑧𝑗 

 ∑ 𝑧𝑗 ≤ 𝛾𝑁𝑁
𝑗=1  

𝑧𝑗 ∈  {0,1} 

𝑥 ∈ 𝑋subject to 

where 𝐺(𝑥, 𝜔𝑗) is a function of the decision variables and random distribution,  𝛾 is the 

allowable risk factor, N is the total number of samples and z is the count of failures, j is the 

set of samples, X is the set of decision variables, and M is any very large number. This 

formulation “counts” the number of failures within the number of samples and keeps this 

number below a certain risk factor decided beforehand. This allows us to use chance-

constrained constraints without having to calculate the probability distribution. 
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Henrion (2004) further explains the benefits of chance-constrained optimization by 

explaining how deterministic solutions to some problems are unstable. In his cash matching 

problem example, he shows how small changes to the initial payments can make a big 

difference in the optimal value and decision variables. The cash matching problem is the 

problem of trying to pay pension costs by financing these costs through the purchase of 

three types of bonds. The goal is to maximize the amount of money remaining at the end 

of each year.  

Henrion (2004) also makes the point that because of the potential for real-world 

situations, depending on exact cash payments is risky. Rather, he proposes a more robust 

solution by treating the initial cash payments as functions of a random variable and creating 

constraints which enforce the rule that the probability of having a positive cash flow 

exceeds 95%. This problem, which has random parameters on the right-side of the 

inequality, can be simplified by taking advantage of the normal distribution. By using the 

95-quantile and multiplying it by the expected value of the cash payment, it can effectively 

enforce the 95% constraint. This makes the stochastic constraint into a simple linear 

programming one.  The constraint transforms in this fashion 

𝑃𝑟(∑ 𝑎𝑖𝑗𝑥𝑖 ≥ 𝜔𝑗) ≥ 𝑝

𝑛

𝑖=1

⇔ ∑ 𝑎𝑖𝑗𝑥𝑖 ≥ 𝑏𝑗 + �̀�𝑗𝑞𝑝

𝑛

𝑖=1

  

where 𝑞𝑝 is the percentile used from the normal distribution. 

There is also an important distinction to be made between the two styles of writing 

stochastic constraints. It can be rewritten so that all constraints in the problem must pass 

with a probability of 𝛼 or that every constraint 𝑖 ∈  𝐼 where 𝐼 is the set of constraints must 
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pass with a probability of 𝛼𝑖. They are known as joint and single chance constraint 

respectively and can be written as  

Single Chance Constraint  

subject to  𝑃𝑟{𝐺𝑖(𝑥, 𝜔) ≤ 0} ≥ 𝛼𝑖 , 𝑖 = 1, … … . , 𝑚, 

Joint Chance Constraint 

subject to  𝑃𝑟{𝐺𝑖(𝑥, 𝜔) ≤ 0, 𝑖 = 1, … … . , 𝑚} ≥ 𝛼, 

In example of the cash matching problem, individual chance constraints are used to 

guarantee that the probability of having a positive cash flow for each individual year is 

over 95%. However, by formulating the constraints in this fashion, the overall (across all 

years) probability of a positive cash flow is lower than 95%. For example, for five years, 

each year is expected to have positive cash flow 95% of the time, then the probability that 

all five years is over 95% is 77%, which less than the 95% that was wanted. In the case 

where the overall probability must be over 95%, joint probability constraints should be 

used by replacing the many individual chance constraints with the single joint constraint. 

While this set up has fewer constraints, it is more difficult to solve than the many individual 

constraints.  

Chance-constrained optimization problems can sometimes have problems with 

convexity (Henrion 2004). Convexity is an important property in optimization because it 

is a key factor in whether the problem will converge to a single solution. A chance-

constrained optimization problem is convex if 𝐹𝜔, the distribution of the random vector 𝜔, 

is a quasiconcave function within the constraint 

{𝑥|𝑃𝑟(𝜔 < 𝑥) ≥ 𝑝} = {𝑥|𝐹𝜔(𝑥) ≥ 𝑝}. 
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However, it turns out that if the function has the property of being log-concave 

(which also means that it is quasiconcave), this is enough to say that the problem is convex. 

Fortunately, many useful and commonly used distributions have the property of being log-

concave (multivariate normal, Pareto).  (Henrion 2004) 

A second problem has to do with the stability of the optimization problem. In 

theory, chance-constrained problems are constructed using a known probability 

distribution (Charnes & Cooper 1959). However, finding the correct probability 

distribution is often difficult or impractical, hence empirical or approximated distributions 

are often used. The main concern with using an empirical distribution is that by using an 

approximated distribution, the problem solution does not give the “true” answer. 

Ultimately, since better approximations will give more accurate results, the final solution 

to the chance-constrained optimization problem is highly dependent on the accuracy of the 

probability distribution. 
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Chapter 3: 

Methodology 

 The problem that many breeders face is trying to decide which seeds will perform 

well in real world conditions. Currently, breeders mainly look at the average bushel yield 

of the seed to evaluate its performance. However, looking at mean yields is a risky way of 

conducting seed selection. There are many factors which can influence the yields of seeds, 

and this method puts the breeder at risk of these factors lowering the yield. A better way 

of seed selection is by also considering the potential variance in the seeds yield. This way 

breeders can make more relevant decisions on seed performance and reduce the risk of 

getting lower than expected yields.  

 This thesis uses a chance-constrained knapsack optimization model to optimize the 

total yield of the selected knapsack, but also hedge against the uncertainty in the seed’s 

yield. This model is relevant for this problem because breeders select only a few seeds to 

move on to the next stage and want this group of seeds to be the highest performing seeds 

possible. Therefore, the objective function of the model is to maximize the total yield of 

the selected knapsack. The constraints include restricting the size of the knapsack to be 

selected and certain chance constraints which force the model to meet minimum 

requirements. The knapsack capacity restriction models the fact that breeders only choose 

a few seeds out of the pool of seeds, and the chance-constraint is what hedges against 

uncertainty. We are assuming that the distributions of each varieties yields are available.  
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3.1: Baseline Scenarios  

 We want to create a knapsack model which maximizes the yield for N different 

varieties. Here we consider two different cases, one where the knapsack selection is only 

based on the mean, and another where the knapsack selection considers the uncertainty of 

the yield. The second knapsack models the impact of variation due to genetic effects, 

different agricultural practices, local soil or field conditions and local weather phenomena. 

Variety yields are assumed to be independent and normally distributed.   

3.1.1: Naïve Knapsack  

 This knapsack model only considers the mean of the variety’s yield. In most cases, 

this version of the knapsack problem can be reduced to the rank ordering problem, where 

every variety is order based on their mean yields the top n number of varieties are selected. 

As a result, this problem is trivial to solve. The formulation for the naïve knapsack is  

max ∑ 𝜇𝑖𝑥𝑖

𝑖∈𝐼

 

s. t. ∑ 𝑥𝑖

𝑖∈𝐼

≤  𝐶 

𝑥𝑖 ∈  {0,1},        ∀𝑖 ∈  𝐼 

 Here we are tying to maximize the total knapsack value. 𝜇𝑖 is the mean of the variety 

𝑖 where 𝑖 is a variety in the set of alternative seed varieties 𝐼. The variable 𝑥𝑖 is a binary 

variable and is equal to 1 if variety 𝑖 is selected. C is the knapsack capacity, representing 

the maximum number of varieties to be selected.   
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3.1.2: Risk Reduction Knapsack  

 In the risk reduction knapsack, we consider the potential yield risk that could be 

caused by uncertainty and variation. We would again like to select 𝐶 varieties from a given 

set, 𝐼 of alternative seeds, each with an estimated yield randomly distributed (according to 

a known distribution, which in this case is assumed to be normal) with means 𝜇𝑖 and 

variances 𝜎𝑖
2 . We would like to maximize the total average yield that the selected varieties 

offer (i.e., total average knapsack yield), subject to a risk constraint. We set a minimum 

weight level, called “required minimum weight” and denoted by 𝑅. We would like to 

ensure that the probability that the total knapsack yield is greater than or equal to 𝑅 with a 

probability of at least 𝛼.  

The model can be stated as 

max ∑ 𝜇𝑖𝑥𝑖

𝑖∈𝐼

 

s. t. ∑ 𝑥𝑖

𝑖∈𝐼

≤  𝐶 

𝑃(𝑊 ≤ 𝑅) ≤ 1 − 𝛼 

𝑥𝑖 ∈  {0,1},        ∀𝑖 ∈  𝐼 

where 𝑊 is the total knapsack yield which is defined as the sum of the yields of all selected 

varieties and 𝑥𝑖 indicates if a variety is selected for the knapsack. The variable 𝑥𝑖 is 1 if the 

variety is selected, 0 otherwise. 𝑊 is a random variable given by the sum of the yields of 

the varieties in the chosen knapsack. When the variety yields are independent and 

identically distributed, the distribution of the total knapsack yield (which is a random 
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variable that is a sum of the random variety yields of the varieties in the knapsack) is also 

normally distributed with mean 𝜇 and variance 𝜎2 that is equal to 

𝜇 =  ∑ 𝜇𝑖𝑥𝑖

𝑖∈𝐼

 

𝜎2  =  ∑ 𝜎𝑖
2𝑥𝑖

𝑖∈𝐼

 

Hence, when the variety yields are normally distributed and independent, it is 

possible to rewrite the above model as 

max ∑ 𝜇𝑖𝑥𝑖

𝑖∈𝐼

 

s. t. ∑ 𝑥𝑖

𝑖∈𝐼

≤  𝐶 

∑ 𝜇𝑖𝑥𝑖

𝑖∈𝐼

+ 𝜑−1(1 − 𝛼)√∑ 𝜎𝑖
2𝑥𝑖

2

𝑖∈𝐼

≥ 𝑅 

𝑥𝑖 ∈  {0,1},        ∀𝑖 ∈  𝐼 

where 𝜑 denotes the standard normal CDF, and the constraint is due to the fact that  

𝑃(𝑊 ≤ 𝑅)  =  𝑃(𝑍 ≤
𝑅 − 𝜇

√𝜎2
) = 𝜑(

𝑅 − 𝜇

√𝜎2
) ≤ 1 − 𝛼 ⇔

𝑅 − 𝜇

√𝜎2
≤ 𝜑−1(1 − 𝛼) 

Substituting the value of 𝜇 and 𝜎2 gives the stated constraint. 

 This knapsack should give a different result when compared to the naïve knapsack, 

since the addition of a constraint reduces the feasible region of this problem, the solution 

to this problem should be less than that of the naïve knapsack. This also makes intuitive 

sense, because varieties with high variances but otherwise high means are penalized 

because of their larger variances and therefore not selected. For this research, we are 
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assuming that our data is normal, however this will not always be the case. In the results 

section we will discuss other methods that could be used to achieve similar results to the 

exact formulation used above using sampling.  

3.2: Adverse Environmental Cases 

 This model considers the potential influences of extreme weather conditions. They 

are systematic and correlated and are modeled by a random but correlated shift of the 

probability distribution for the yields of each variety. We consider three cases reflecting 

the probability of a drought year, the probability of a rainy year (e.g., el Nino year) and the 

probability of a year with extreme temperatures. For each of these cases we will we still 

sample in an iid fashion from the shifted probability distributions since the local and 

uncorrelated random effects mentioned in the baseline scenario are still present. This model 

has a different baseline than the previous models since a different dataset was used. Each 

environmental case is compared to the baseline case.  

Three cases are established, they are drought, rain, and extreme temperature. There 

are four possible responses to the scenarios. They are explained below in Table 3.1: 

Table 3.0.1: Potential Responses to Adverse Environments 

Code Meaning 

(+,+) 
Mean Increases, 

Variance Increases 

(+,-) 
Mean Increases, 

Variance Decreases 

(-,+) 
Mean Decreases, 

Variance Increases 

(-,-) 
Mean Decreases, 

Variance Decreases 
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 Each variety has a 25% chance of having any of the four responses to the adverse 

environment scenario. The exception to this is the drought scenario, which causes all 

varieties to experience the (-, +) response. Also, the model used in this design had to be 

adjusted to 

max ∑ 𝜇1𝑖𝑥𝑖

𝑖∈𝐼

 

s. t. ∑ 𝑥𝑖

𝑖∈𝐼

≤  𝐶 

∑ 𝜇2𝑖𝑥𝑖

𝑖∈𝐼

+ 𝜑−1(1 − 𝛼)√∑ 𝜎2𝑖
2 𝑥𝑖

2

𝑖∈𝐼

≥ 𝑅 

𝑥𝑖 ∈  {0,1},        ∀𝑖 ∈  𝐼 

where 𝜇1𝑖 is the baseline mean of variety 𝑖 ∈  𝐼 and 𝜇2𝑖 and 𝜎2𝑖
2  are the response mean and 

variance of variety 𝑖 ∈  𝐼 of alternative seeds. 𝑥𝑖 is the decision variable and is equal to 1 

if variety 𝑖 is selected, R is the required yield and 𝜑 denotes the standard normal CDF. 
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Chapter 4: 

Results 

4.1 Set-Up 

Each of the 50 varieties was assigned a randomly generated value for the mean and 

the variance. The means were generated using a uniform distribution between 40 and 80. 

All means were generated to three decimal places; this was done to avoid multiple 

alternative optimal solutions due to too many varieties having the same mean yield. The 

variances were generated using a uniform distribution between 25 and 900. These were 

also generated to three decimal places.   

For the first case, two models, the naïve and the risk reduction knapsack were 

compared. The naïve knapsack did not use any risk mitigation constraints, but rather found 

the highest possible knapsack value for a knapsack capacity of C. This set the baseline that 

the risk reduction knapsacks can be compared to. The risk reduction knapsack found the 

optimal knapsack value given a risk constraint. For example, the model could be run to 

find the optimal knapsack yield given a knapsack capacity of 5, with a minimum yield of 

500 which can’t be violated more than 10% of the time. 

In the risk reduction knapsack there were three adjustable parameters for the model. 

These were the knapsack capacity, the required yield and the allowable percentage of 

failure. For this study, the knapsack capacity was set to 10, and the allowable percentages 

of failure were 20%, 10%, 5%, and 1%. The required yield used for each model was 

empirically found for each percentage. It was found by starting from a required yield of 0 

and increasing it by 1, until a required yield which caused the problem to become infeasible 

was found. The required yield immediately before infeasibility was used for the problem 
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parameter. This required yield is the highest possible minimum yield for the specific 

knapsack, and so it is the most desirable minimum yield. 

4.2 Results of the Baseline Case 

The first entry in the table is the results of the “no risk” or naïve knapsack 

calculation. It is calculated by removing the chance-constraints in the optimization model. 

This model will select the 𝐶 seed varieties with the highest yields, resulting in the knapsack 

with the highest possible total knapsack value. In this case, 𝐶 = 10 and the naïve knapsack 

calculation resulted in a knapsack with a total yield of 734.84 and a standard deviation of 

53.23. Knapsack yield and standard deviation was calculated using the following formulas.  

𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘 𝑌𝑖𝑒𝑙𝑑 =  ∑ 𝜇𝑠   where S is in the set of select varieties.  

𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

=  ∑ √𝜎𝑠
2     where S is in the set of select varieties.  

Table 4.1: Summary of Results for Baseline Case 

Required 

Yield 

Risk Varieties in the Selected Knapsack Average 

Knapsack 

Yield 

Knapsack 

Standard 

Deviation 

- - {X7, X10, X12, X15, X20, X24, 

X28, X29, X31, X39} 

734.84 53.23 

691 20 {X6, X7, X10, X15, X20, X24, X28, 

X29, X31, X39} 

732.47 47.91 

672 10 {X6, X7, X10, X15, X20, X24, X29, 

X31, X39, X48} 

729.34 43.28 

662 5 {X6, X7, X10, X15, X20, X25, X29, 

X31, X39, X48} 

718.43 34.21 

  

The second entry is the results of adding the constraint that the knapsack yield had 

to be greater than or equal to a value of 691 at least 80% of the time. This resulted in a 
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knapsack yield of 732.47 and a standard deviation of 47.9. Compared to the naïve 

knapsack, the (691; 20%) knapsack exchanges the X12 variety for the X6 variety. Here 

(691; 20%) indicates that this knapsack’s yield does not fall below 691 bushels more than 

20% of the time. This results in a knapsack yield loss of 2.37 bushels; however, it improves 

the standard deviation by 5.32. The difference in the selected set of varieties can be 

attributed to the addition of the risk constraint. This risk constraint forces the model to 

select less risky varieties and as a result, it attempts to lower the standard deviation of the 

knapsack. Since the naïve knapsack gives the highest possible knapsack value, it is 

reasonable to expect to lose some knapsack value in exchange for choosing a less risky 

knapsack. Figure 4.1 shows the normal curve of the naïve knapsack in blue, and the curve 

for the (691;20%) knapsack is in orange. We can see that compared to the naïve curve, the 

691,20% curve is further to the left but has a narrower curve.  

 The 3rd and 4th entries in the table are the (672;10%) and (662;5%) risk constraints, 

respectively. Notice that as the risk percentage decreases, the required yield, knapsack yield 

and standard deviation decrease as well. The strictest risk constraint is the (662;5%) 

constraint, which means that the model is finding a knapsack which has a total yield of 662 

or higher more than 95% of the time. Compared to the naïve knapsack, this knapsack 

exchanges varieties X12, X24, X28 with varieties X6, X25, X48. The exchange results in 

a knapsack yield of 718.43 and a standard deviation of 34.21 bushels, which means a 

difference in knapsack yield of 16.41 bushels and a difference in standard deviation of 

19.02. This represents about a 2% loss in yield when compared to the naïve knapsack, but 

about a 35% reduction in the standard deviation. This is an important result because it 
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shows even extremely risk adverse breeders can select safe knapsacks without sacrificing 

too much of the knapsack yield.   

Figure 4.1: Normal Curve for Naive Knapsack and (691;20%) Risk Knapsack 

 
 

 Figure 4.1 is the normal curve for naïve knapsack and the knapsack constrained by 

the (691;20%) constraint. We can see that by adding a constraint to reduce the risk of 

getting low yields has an effect on the curve of the knapsack. Here, the mean is decreased, 

however so is the variance. This observation shows the relationship between reducing the 

risk of getting low yields and the knapsack value. 
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Figure 4.2: Normal Curve for Naïve Knapsack and all Risk Scenarios 

 
 Figure 4.2 shows the curves of all knapsacks in Table 4.1. Here the pattern between 

reducing the risk and the affects it has on the curve is better shown. Clearly, in exchange 

for reducing the risk of getting a low yield, total knapsack value must be sacrificed.     

4.4 Adverse Environment Cases  

4.4.1 Results of Drought Scenario 

In the drought scenario, we reduce the means and increase the variances of every 

variety. Two tables catalog the results of the drought scenario. Table 4.2 summarizes the 

results of the drought scenario, given there was not a drought. Table 4.3 summarizes the 

results of the drought scenario, given there was a drought.  
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Table 4.2: Summary of Results for Results for Optimal Knapsack without Drought 

Required 

Yield 

Risk Varieties in the Selected Knapsack Average 

Knapsack 

Yield 

Knapsack 

Standard 

Deviation 

- - {X19, X34, X45, X49, X50, X10, X40, 

X18, X21, X41} 

970 63.03 

522 20 {X17, X20, X23, X28, X30, X31, X32, 

X34, X48, X49} 

760 61.87 

490 10 {X17, X20, X23, X28, X30, X31, X32, 

X34, X48, X49} 

760 61.87 

463 5 {X17, X20, X23, X28, X30, X31, X32, 

X34, X48, X49} 

760 61.87 

415 1 {X17, X23, X28, X3, X30, X31, X32, 

X34, X48, X49} 

753 59.19 

 

The model for the drought scenario maximizes the total knapsack yield but tries to 

reduce the risk of selecting a bad knapsack given that there was a drought. Therefore, the 

knapsack yields in Table 4.2 are much higher than the required yield. The required yield 

values are chosen based on the scenario that a drought does happen. For example, the 

second entry in Table 4.2 has a knapsack value of 760 and a standard deviation of 61.87. 

The constraint that finds this is the (522;20%) constraint, meaning in the event of a drought, 

the selected varieties in the knapsack will have a knapsack value of 522 or more, more than 

80% of the time.  
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Figure 4.3: Normal Curve for Naïve Knapsack and Risk Scenarios without Drought 

 
 Figure 4.3 shows the normal curves of the entries in Table 4.2. The blue curve is 

the naïve knapsack, the red is both the (522;20%) and (490;10%) constraints, and the green 

is the (463;5%) constraint. There is a large discrepancy between the three curves. This is 

likely due to the constraint using the drought distribution instead of the no drought 

distribution.  
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Table 4.3: Summary of Results for Optimal Knapsack with Drought 

Required 

Yield 

Risk Varieties in the Selected Knapsack Average 

Knapsack 

Yield 

Knapsack 

Standard 

Deviation 

- - {X17, X23, X30, X34, X28, X32, 

X48, X20, X49, X31}  

585 73.89 

522 20 {X17, X20, X23, X28, X30, X31, 

X32, X34, X48, X49} 

585 73.89 

490 10 {X17, X20, X23, X28, X30, X31, 

X32, X34, X48, X49} 

585 73.89 

463 5 {X17, X20, X23, X28, X30, X31, 

X32, X34, X48, X49} 

585 73.89 

415 1 {X17, X23, X28, X3, X30, X31, 

X32, X34, X48, X49} 

578 69.54 

 

However, if there is not a drought, it will have a knapsack value of 760 and a 

standard deviation of 61.87. To see the knapsack yield of this set of varieties if there is a 

drought, we can look at Table 4.3. Here, there is still the same constraint (522;20%), but 

now the knapsack value is 585 and the standard deviation is 73.89. This means that if a 

drought occurs, the value of the knapsack drops by 175 bushels but is still higher than the 

required yield. 
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Figure 4.4: Normal Curve for Naïve Knapsack and Risk Scenarios with Drought 

 
 Figure 4.4 shows the normal curves for the entries in Table 4.3. The blue curve 

represents both the naïve knapsack and the (522;20%), (490;10%), (463;5%) constraints. 

The red curve is the (415;1%) constraint. These two curves are closer together in 

comparison to Figure 4.3. This is likely because the constraints use the drought 

distribution and, in this case, so does the objective function.  
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Table 4.4: Changes in the Naïve and Risk Knapsack with Drought 

 Varieties No Drought Yield  Drought Yield  

1 {X19, X34, X45, X49, X50, 

X10, X40, X18, X21, X41} 

970 465 

2 {X17, X20, X23, X28, X30, 

X31, X32, X34, X48, X49} 

760 585 

3 {X17, X23, X30, X34, X28, 

X32, X48, X20, X49, X31} 

760 585 

 

Table 4.4 shows how the naïve and risk knapsack change when there is and is not 

a drought and it’s a good example of how neglecting to account for uncertainty will result 

in risky knapsacks. Here we can see that the varieties that come up with the naïve knapsack 

when optimizing for when there is not a drought, labeled here as (1), suffers when there is 

a drought. This knapsack loses almost half of its yield, and in comparison, the knapsack 

(2) which hedges against drought is larger by 120 bushels. Interestingly, the hedging 

knapsack is the optimal knapsack when trying to maximize the yield in the event of a 

drought (3). This makes sense, because the model will choose to select the varieties that 

perform best during a drought.  
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Figure 4.5: Normal Curves for Changes in the Drought/No Drought Naïve and (522; 

20%) Risk Constraint Knapsack 

 
 Figure 4.5 further shows the relationship described in Table 4.4. Here the blue curve 

is the naïve knapsack created using the values from the baseline scenario. The baseline 

scenario assumes that there will be no drought and so it does not hedge against drought. 

The red curve shows the performance of the varieties selected from the baseline if a drought 

does occur. The blue and red curves together show how a naïve knapsack can be very risky. 

The breeder who selects this knapsack make themselves very vulnerable to the adverse 

effects of drought, since in the event of a drought the breeder will lose a third of their total 

yield. The green curve shows the results of adding the (522;20%) risk constraint to the 

model using the baseline means. The yellow curve shows what happens to this knapsack if 

a drought occurs. Here we can see that the green curve has a smaller mean than the blue 

curve, meaning that because we hedged against the drought, we will lose some yield in the 

event a drought does not occur. However, if a drought does occur, this knapsack has a yield 

of 585 bushels, which is higher than the red curves yield of 465 bushels. So, if there is a 
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drought does occur, the breeder who selected the hedging knapsack will have 120 more 

bushels. On the other hand, if a drought does not occur than the person who selected the 

hedging knapsack will lose 210 bushels in yield.  

The results of the other entries in Table 4.3 are what we expect to see. As the percent 

of success increases, the required yield, knapsack value and standard deviation are all 

decreased. Again, showing that the model will give up some knapsack value to reduce the 

total standard deviation. In the simplest case the deciding factor for selecting the risk 

reduction knapsack is the probability of drought and how the breeder can mitigate the 

potential loss due to drought versus the opportunity loss. In a more complex case, this 

creates an interesting economic opportunity. If the drought reduces the yields of soybeans 

across many farms, the reduction in supply could increase the selling price. Therefore, there 

could be additional benefits to hedging against the drought in such a market situation.  

4.4.2 Results of Rainy Scenario 

In the rainy scenario, each variety can respond in four different ways. Each has an 

equal chance of increasing or decreasing both the variety’s mean and variance. Table 4.5 

and 4.6 summarizes the results of the rain scenario. In this scenario, the presence of extra 

rain has the chance to increases the mean yields of some varieties and as a result, the 

knapsack values where rain does occur is much larger, see Figure 4.6. The results are 

calculated in a similar way to the drought scenario. Here the model tries to maximize the 

knapsack value when there is not any rain but meet a required yield when there is rain. 
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Table 4.5: Summary of Results for Optimal Knapsack without Rain 

Required 

Yield 

Risk Varieties in the Selected Knapsack Average 

Knapsack 

Yield 

Knapsack 

Standard 

Deviation 

- - {X19, X34, X45, X49, X50, X10, 

X40, X18, X21, X41} 

970 63.03 

1399 20 {X3, X9, X14, X15, X19, X30, X31, 

X36, X38, X40} 

750 51.79 

1377 10 {X3, X9, X14, X15, X19, X30, X31, 

X36, X38, X40} 

750 51.79 

1360 5 {X3, X9, X14, X15, X19, X30, X31, 

X36, X38, X40} 

750 51.79 

1328 1 {X3, X9, X15, X19, X30, X31, X36, 

X38, X40, X44} 

749 55.98 

 

Figure 4.6: Normal Curve for Naïve Knapsack and Risk Scenarios without Rain 

 
Figure 4.6 shows the normal curves of the entries in Table 4.5. The blue curve is 

the naïve knapsack, the red is the (1399;20%), (1377;10%), (1360;10%) constraints, and 

the green is the (1328;1%) constraint.  
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Table 4.6: Summary of Results for Optimal Knapsack with Rain 

Required 

Yield 

Risk Varieties in the Selected Knapsack Average 

Knapsack 

Yield 

Knapsack 

Standard 

Deviation 

- - {X40, X38, X9, X15, X36, X3, 

X31, X26, X14, X19} 

1445 57.68 

1399 20 {X3, X9, X14, X15, X19, X30, 

X31, X36, X38, X40} 

1441 49.29 

1377 10 {X3, X9, X14, X15, X19, X30, 

X31, X36, X38, X40} 

1441 49.29 

1360 5 {X3, X9, X14, X15, X19, X30, 

X31, X36, X38, X40} 

1441 49.29 

1328 1 {X3, X9, X15, X19, X30, X31, 

X36, X38, X40, X44} 

1434 45.24 

 

The required yields for the rain scenario are much larger when compared to the 

required yields of the drought scenario. This is because, as mentioned before, some 

varieties will have their yields increased when there is an increase in rain.  For example, in 

entry one, the (1399;20%) constraint results in a knapsack with a knapsack value of 750 

and a standard deviation of 51.79, when there is no extra rain, but a knapsack value of 1441 

when there is extra rain. The relationship between the rain and no rain knapsacks is 

different from that of the drought no drought knapsack. Because of increase in mean yields, 

rain scenario can be thought of like the required opportunity knapsack. Therefore, the 

constraint can be thought of as securing the opportunity of getting more than 1399 

knapsack value, at least 80% of the time. 
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Figure 4.7: Normal Curve for Naïve Knapsack and Risk Scenarios with Rain 

 
Figure 4.7 shows the normal curves for the entries in Table 4.6. The blue curve 

represents both the naïve knapsack, the red is the (1399;20%), (1377;10%), (1360;10%) 

constraints, and the green is the (1328;1%) constraint.  
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Figure 4.8: Normal Curves for Rain/No Rain Naïve and 1399,20% Risk Constraint 

Knapsack 

 
Also, because of the different relationship, the graph for the naive knapsacks and 

the risk constraint looks different. In Figure 4.8, the blue curve is the naïve knapsack using 

the baseline (assuming no drought) means. The green curve is how this knapsack reacts to 

the rain. Here we can see that the mean of the knapsack goes down by 220 bushels. The 

red curve is the hedged knapsack using the baseline means and the yellow curve is how 

this knapsack reacts when there is rain. If there is not rain then the hedged knapsack does 

not perform as well as the naïve knapsack, however when there is rain, it greatly 

outperforms the blue curve. This is because the hedged knapsack can take advantage of the 

varieties which have an increase in yield due to the rain. 
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Table 4.7: Changes in the Naïve and Risk Knapsack with Rain 

 Varieties No Rain Yield  Rain Yield  

1 {X19, X34, X45, X49, X50, X10, 

X40, X18, X21, X41} 

970 857 

2 {X3, X9, X14, X15, X19, X30, X31, 

X36, X38, X40} 

750 1441 

3 {X40, X38, X9, X15, X36, X3, X31, 

X26, X14, X19} 

743 1445 

 

Table 4.7 shows how the naïve and risk knapsacks change based on the 

environment. Here again we see that the knapsack optimized for no rain suffers when there 

is rain. In this case, the knapsack is not able to take advantage of the extra growth available 

due to the rain. In this case the difference is even more than the in the drought case. Here 

if a person chooses the hedged knapsack (2) and it does not rain, they will lose 220 bushels 

of yield. However, if they select the hedged knapsack and it does rain, they will gain 584 

bushels of yield. The benefit of this hedged knapsack is that it is able to take advantage of 

the varieties which may have had an increased yield due to the rain.  

4.4.3 Results of Extreme Temperature Scenario 

 The extreme temperature scenario is like rainy scenario in that each variety’s mean 

and variance has an equal chance of increasing and/or decreasing.  
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Table 4.8: Summary of Results for Optimal Knapsack without Extreme Temperature 

Required 

Yield 

Risk Varieties in the Selected Knapsack Average 

Knapsack 

Yield 

Knapsack 

Standard 

Deviation 

- - 
{X19, X34, X45, X49, X50, X10, 

X40, X18, X21, X41} 
970 63.03 

1340 20 
{X1, X3, X7, X11, X15, X17, X33, 

X34, X37, X38} 
689 57.10 

1316 10 
{X1, X3, X7, X11, X15, X17, X33, 

X34, X37, X38} 
689 57.10 

1297 5 
{X1, X3, X7, X11, X14, X15, X33, 

X34, X37, X38} 
668 53.05 

1266 1 
{X1, X3, X7, X11, X14, X15, X33, 

X34, X37, X38} 
668 53.05 

 

Table 4.9: Summary of Results for Optimal Knapsack with Extreme Temperature 

Required 

Yield 

Risk Varieties in the Selected Knapsack Average 

Knapsack 

Yield 

Knapsack 

Standard 

Deviation 

- - 
{X38, X3, X33, X15, X1, X7, X37, 

X17, X11, X34} 
1386 54.55 

1340 20 
{X38, X3, X33, X15, X1, X7, X37, 

X17, X11, X34} 
1386 54.55 

1316 10 
{X38, X3, X33, X15, X1, X7, X37, 

X17, X11, X34} 
1386 54.55 

1297 5 
{X1, X3, X7, X11, X14, X15, X33, 

X34, X37, X38} 
1372 45.21 

1266 1 
{X1, X3, X7, X11, X14, X15, X33, 

X34, X37, X38} 
1372 45.21 

 

Tables 4.8 and 4.9 summarize the results of the extreme temperature scenario. Like 

the rain scenario, this scenario also has the possibility to increase the mean yield of a 

variety. This is also why the required yield values are so much higher than the drought 

scenario. The results are also like that of the rain scenario. They are not identical because 

each variety has a different probability of reacting a certain way to each adverse 

environmental scenario. 
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Figure 4.9: Normal Curve for Naïve Knapsack and Risk Scenarios without Extreme 

Temperature 

 
Figure 4.9 shows the normal curves of the entries in Table 4.8. The blue curve is the 

naïve knapsack, the red is the (1340;20%), (1316;10%) constraints, and the green is the 

(1297;5%), (1266;1%) constraints.  
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Figure 4.10: Normal Curve for Naïve Knapsack and Risk Scenarios with Extreme 

Temperature 

 
Figure 4.10 shows the normal curves of the entries in Table 4.9. The blue curve is 

the naïve knapsack, and the (1340;20%), (1316;10%) constraints, the green is the 

(1297;5%), (1266;1%) constraints.  
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Figure 4.11: Normal Curve for Naïve and 1340,20% Risk Constraint Knapsack 

 
In Table 4.8, we can see that both the required yield and the knapsack values are 

lower than those in the rain scenario, again this likely because of the different response 

probabilities. Here the blue curve is the naïve knapsack using the baseline means, and the 

red curves shows how the knapsack reacts to the extreme temperature. The green curve is 

the hedged knapsack using the baseline means and the yellow curve shows that variety 

responds to the extreme temperature.  
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Table 4.10: Changes in the Naïve and Risk Knapsack with Extreme Temperature 

 Varieties 
No Extreme 

Temperature 

Extreme 

Temperature 

1 
{X19, X34, X45, X49, X50, X10, X40, 

X18, X21, X41} 
970 581 

2 
{X1, X3, X7, X11, X15, X17, X33, 

X34, X37, X38} 
689 1386 

3 
{X1, X3, X7, X11, X15, X17, X33, 

X34, X37, X38} 
689 1386 

  

Table 4.10 shows the changes in the naïve and risk knapsacks for extreme 

temperature. This is similar to the rain scenario, where the hedged knapsack takes 

advantage of the fact that some varieties improve due to the weather condition. The 

implications are like the rain scenario.  

4.5 SAA Method 

 In cases where the true distribution is unknown, or too complex to calculate 

correctly, sampling can be substituted for the distribution. In the SAA method, the accuracy 

of the answer depends on the number of samples available, with a larger number of samples 

providing a more accurate solution. This is because a larger sample size will more closely 

represent the underlying distribution. Table 4.11 shows the difference in values for 

solutions found with a range of sample sizes. Here the risk constraint is the (691;20%) 

constraint and we are using the same data used in the baseline case.  

Table 4.11: SAA Method 

Sample Size Knapsack Value 

Exact Formulation  732.47 

1000 729.34 

2000 729.34 

3000 732.47 
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 Here we can see that as the number of samples increases, the solution to the model 

gets closer to the exact formulation. In general, it is best to have as many samples as 

possible, but we have found that for this research about 3000 samples is a good 

approximation for the true distribution.  

4.6 Conclusions 

In summary the purpose of this work is to establish a tool that breeders can use to 

make better decisions when it comes to seed progression. This tool is a chance-constrained 

knapsack optimization model, which selects the 𝑁 varieties which maximize the average 

yield of the knapsack. This model is constrained by yield requirements and a minimum 

chance of success. The mean and the variance of the yields of the seed varieties are assumed 

to be normal and are used to create the chance-constraint. However, this method assumes 

that the breeder has very good knowledge of the variety’s distribution, mean and variance. 

Since, this isn’t always the case, the breeders can use sampling to replace the need of 

calculating a probability distribution.  

This thesis shows the risks of selecting knapsacks based only on the mean yields of 

the varieties. This method can result in reduced yields due to factors such as weather 

conditions, gene variability and soil type. By creating a risk reduction knapsack, we can 

select varieties that ensure a higher mean yield when uncertain events do occur. This 

research shows that by considering uncertainty, we select varieties which provide a smaller 

total yield, but have a smaller total variance. This means that even when the varieties 

perform poorly, they will still meet certain minimum requirements.  
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Additionally, we see that when trying to hedge against poor weather conditions, we 

select varieties which perform well both when there is or is not a drought. The total yield 

for this knapsack is smaller than that of the naïve knapsack, but if there is a drought, then 

this knapsack performs much better than the naive one. Similarly, the knapsacks for the 

rain and extreme temperature case result in a combination of varieties which perform well 

whether the poor weather condition occurs.  

This is a novel contribution which can be used as a tool for breeders to make better 

decisions during seed progression. This will save time and money in seed trials and allow 

the breeders to provide higher yielding seeds to the market. Currently, breeders risk 

progressing dud seeds far into the 3-year span of testing seeds. Using this tool, breeders 

can lower the chance of progressing bad seeds.  

In this work we used data pulled from a normal distribution and showed that given 

normally distributed data it is possible to create a chance-constrained optimization model. 

In reality, it is not always possible to have normally distributed data and sampling should 

be used to approximate the distribution of the data. Yield data could be affected by different 

factors like weather, soil, past yields, genetic traits. To create a more accurate data 

distributions data from these different places could be pooled together and assimilated into 

a single distribution.  
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APPENDIX A 

BASELINE DATA SET  
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Variety Mean  Variance  Variety Mean Variance 

X1 59.95 120.52  X36 64.37 312.94 

X2 41.81 158.45  X37 43.42 96.60 

X3 55.10 73.44  X38 56.95 743.69 

X4 57.36 275.64  X39 71.58 307.59 

X5 51.03 245.45  X40 62.97 549.18 

X6 68.84 30.79  X41 63.32 59.68 

X7 71.39 68.64  X42 49.97 37.08 

X8 60.06 37.17  X43 62.10 26.82 

X9 48.12 729.44  X44 40.33 127.47 

X10 68.93 115.99  X45 54.24 187.15 

X11 40.48 745.22  X46 60.27 816.93 

X12 71.21 568.47  X47 48.44 282.85 

X13 64.61 526.54  X48 68.29 38.62 

X14 62.76 110.07  X49 40.82 670.32 

X15 71.76 25.68  X50 41.17 41.41 

X16 47.72 214.78  X50 41.17 41.41 

X17 62.59 130.38 

X18 53.00 63.56 

X19 65.75 275.79 

X20 73.18 31.27 

X21 55.49 657.44 

X22 61.61 613.14 

X23 66.38 514.91 

X24 77.50 786.65 

X25 66.59 83.68 

X26 57.34 28.79 

X27 58.50 670.47 

X28 71.42 461.13 

X29 79.87 146.08 

X30 43.17 480.85 

X31 78.00 321.96 

X32 54.49 42.52 

X33 41.16 656.93 

X34 42.74 847.96 

X35 59.07 540.15 
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APPENDEX B 

ADVERSE ENVIROMENT BASELINE DATA SET 
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Variety AverageYield1 Variance1  Variety Average 

Yield1 

Variance 

X1 42 326  X39 87 389 

X2 65 542  X40 X41 92 

X3 57 266  X41 X42 56 

X4 70 122  X42 X43 64 

X5 84 434  X43 X44 53 

X6 76 333  X44 X45 100 

X7 83 141  X45 X46 52 

X8 65 363  X46 X47 64 

X9 91 199  X47 X48 75 

X10 97 491  X48 X49 100 

X11 61 98  X49 X50 99 

X12 49 119  X50 99 161 

X13 51 364  

X14 54 100  

X15 72 242  

X16 63 227  

X17 75 546  

X18 93 585  

X19 100 579  

X20 64 590  

X21 93 118  

X22 43 371  

X23 59 261  

X24 79 140  

X25 82 624  

X26 63 344  

X27 53 450  

X28 60 566  

X29 49 92  

X30 70 232  

X31 73 165  

X32 84 434  

X33 64 524  

X34 100 487  

X35 74 422  

X36 77 130  

X37 75 408  

X38 60 223  
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APPENDEX C 

ADVERSE ENVIROMENT DROUGHT DATA SET 
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Variety AverageYield2 Variance2  Variety Average 

Yield 2 

Variance 

2 

X1 38 627  X39 21 346 

X2 32 321  X40 52 748 

X3 50 299  X41 37 475 

X4 46 410  X42 28 446 

X5 30 641  X43 20 664 

X6 23 579  X44 24 862 

X7 53 932  X45 54 916 

X8 34 951  X46 27 451 

X9 43 604  X47 24 123 

X10 34 572  X48 59 151 

X11 26 535  X49 57 759 

X12 51 668  X50 41 930 

X13 20 696  

X14 40 955  

X15 25 53  

X16 24 610  

X17 60 145  

X18 33 810  

X19 45 959  

X20 57 922  

X21 52 625  

X22 43 89  

X23 60 641  

X24 26 610  

X25 21 514  

X26 53 979  

X27 34 762  

X28 59 896  

X29 21 816  

X30 60 366  

X31 54 280  

X32 59 349  

X33 44 519  

X34 60 951  

X35 34 668  

X36 20 691  

X37 46 608  

X38 38 861  
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APPENDEX D 

ADVERSE ENVIROMENT RAIN DATA SET 
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Variety AverageYield2 Variance2  Variety AverageYield2 Variance2 

X1 38 627  X38 154 138 

X2 122 150  X39 86 142 

X3 143 340  X40 157 163 

X4 26 124  X41 37 475 

X5 30 641  X42 28 446 

X6 23 579  X43 81 111 

X7 53 932  X44 126 127 

X8 92 516  X45 84 217 

X9 150 221  X46 27 451 

X10 114 203  X47 99 851 

X11 121 647  X48 88 616 

X12 90 774  X49 81 331 

X13 86 75  X50 41 930 

X14 133 510  

X15 149 81  

X16 24 610  

X17 43 44  

X18 52 117  

X19 132 145  

X20 41 180  

X21 52 625  

X22 32 85  

X23 53 148  

X24 83 37  

X25 37 150  

X26 135 910  

X27 44 215  

X28 118 65  

X29 94 135  

X30 131 12  

X31 143 90  

X32 97 604  

X33 27 169  

X34 107 864  

X35 109 298  

X36 149 730  

X37 46 608  
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APPENDEX E 

ADVERSE ENVIROMENT EXTREME TEMPERATURE DATA SET 
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Variety AverageYield2 Variance2  Variety AverageYield2 Variance2 

X1 145 527  X38 154 138 

X2 32 321  X39 97 741 

X3 153 147  X40 52 748 

X4 46 410  X41 37 475 

X5 30 641  X42 34 59 

X6 46 124  X43 20 664 

X7 141 89  X44 24 862 

X8 34 951  X45 84 217 

X9 49 138  X46 26 55 

X10 37 182  X47 95 60 

X11 121 647  X48 21 213 

X12 90 774  X49 81 331 

X13 22 153  X50 51 125 

X14 110 19 

X15 149 81 

X16 38 126 

X17 124 951 

X18 33 810 

X19 38 118 

X20 57 922 

X21 52 625 

X22 43 89 

X23 60 641 

X24 26 610 

X25 37 150 

X26 38 179 

X27 34 762 

X28 59 896 

X29 88 779 

X30 104 470 

X31 54 280 

X32 22 174 

X33 153 122 

X34 116 83 

X35 34 668 

X36 20 691 

X37 130 191 

 


