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ABSTRACT 

Lithium Titanium Oxide (LTO), is a crystalline (Spinel) anode material that has recently 

been considered as an alternative to carbon anodes in conventional Lithium-Ion Batteries 

(LIB), mainly due to the inherent safety and durability of this material. In this paper 

commercial LTO anode 18650 cells with Lithium Cobalt Oxide (LCO) cathodes have been 

cycled to simulate EV operating condition (temperature and drive profiles) in Arizona. The 

capacity fade of battery packs (Pack #1 and Pack#2), each consisting 6 such cells in parallel 

was studied. While capacity fades faster at the higher temperature (40°C), fading is 

significantly reduced at the lower temperature limit (0°C). Non-invasive techniques such 

as Electrochemical Impedance Spectroscopy (EIS) show a steady increase in the high-

frequency resistance along with capacity fade indicating Loss of Active Material (LAM) 

and formation of co-intercalation products like Solid Electrolyte Interface (SEI). A two-

stage capacity fade can be observed as previously reported and can be proved by 

differential voltage curves. The first stage is gradual and marks the slow degradation of the 

anode while the second stage is marked by a drastic capacity fade and can be attributed to 

the fading cathode. After an effective capacity fading of ~20%, the battery packs were 

disassembled, sorted and repackaged into smaller packs of 3 cells each for Second-Life 

testing. No major changes were seen in the crystal structure of LTO, establishing its 

electrochemical stability. However, the poor built of the 18650-cell appears to have 

resulted in failures like gradual electrolytic decomposition causing prominent swelling and 

failure in a few cells and LAM from the cathode along with cation dissolution. This result 

is important to understand how LTO batteries fail to better utilize the batteries for specific 

Secondary-life applications.  
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1 INTRODUCTION 

1.1 History 

Although the term ‘Battery’ was first used by Benjamin Franklin to describe a set of capacitors he 

had connected in series to produce a higher voltage, the term is now used to define a single or 

connected set of electrochemical cells that can convert stored chemical energy into usable 

electricity. The first battery is known to have existed over 2000 years ago, the Parthian battery or 

the Afghan Battery that used an Iron rod inside a Copper cylinder, packed inside an earthen clay 

pot is speculated to have been used for electroplating [1]. However, the first definitive battery is 

known to be built by Alexander Volta in 1800 by separating Zinc and Copper plates by cloth 

soaked in saltwater. Being higher in the reactivity series, Zinc oxidizes easily and thus acts as 

anode as compared to copper which acts cathode in the electrochemical cell. Like many natural 

phenomena like photosynthesis and respiration, batteries work on a redox reaction. In 1802 

William Cruickshank modified the ‘Voltaic pile’ for mass production of the ‘Trough’ battery that 

laid the voltaic pile to its side in a slotted box to avoid electrolyte leakages.  

In 1836, John Fredric Daniell further improved the design of batteries by using a porous earthen 

pot barrier separating Copper cathode immersed in copper sulphate kept inside Zinc anode 

container with Zinc sulphate. The porous barriers improved ion mobility and prevented hydrogen 

bubbles that improved the operation times and reliability [2]. In fact, the unit of 1 Volt is derived 

from the output of a Daniel cell [3]. It was in 1859, when French physicist Gaston Planté fabricated 

the first secondary(rechargeable) battery, using Lead (Pb) anode and Lead Oxide cathode (PbO2) 

submerged in sulphuric acid. Despite being very heavy and environmentally toxic, these batteries 

are used in cars today due to the robustness of this model against high rate capabilities [4].The first 
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dry battery was invented by Carl Gassner, consisted of a carbon cathode and a Zinc anode 

separated by a dry electrolyte paste of aluminum chloride and plaster of Paris.[5] Since it could be 

used in any orientation, owing to its dry nature, it got widespread attention and was 

commercialized and the design has continuously improved leading to the modern alkaline 

battery[6]. Even today the design and materials used widely vary, the working of battery has still 

relied upon the same fundamental chemistry of redox reactions.  
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1.2  Relevant Background 

Important breakthroughs in the past century by prominent scholars like British chemist M Stanley 

Whittingham [7]  John B Goodenough [8], also known as the father of Li-Ion Batteries (LIBs), 

have yielded energy storing crystalline materials that has ushered humanity towards a brighter 

future. This led to the commercialization of primary (single use) LIBs in 1991[9] and further the 

commercialization of Lithium Polymer (Li-Po) batteries [10]. Global concerns like climate change 

has led to electrification of technology and batteries are becoming common commodity. In this 

decade itself, the costs of batteries have reduced from $1000/KWh in 2010 to $275/KWh in 

2016[11]. This is driven by the everchanging landscape of energy storage; however, Lithium 

remains as the active charge carrier alternative due to low weight density and high electrical 

potential. Figure 1 shows a schematic of a standard LIB, consisting of carbon anodes and Lithium 

Cobalt Oxide cathodes, packed in a cylindrical format. Cylindrical cell formats are a popular 

choice of 

 
Figure 1: Schematic of a Lithium Ion Battery [12] 
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automakers for making larger battery modules as this format ensures ample surface area for Li+ 

shuttling and better manufacturability. The kind of materials used as electrodes determine the 

nominal voltage while the amount of active materials defines the gravimetric and volumetric 

energy densities of the cell.  

The main concern of using conventional cells that use a carbon anode in a vehicle is the associated 

with lithium plating and dendrite formation at the anode, recent efforts to address this issue include 

printing LTO slurries on Solid State Electrolytes like Lithium Lanthanum Zirconium Oxide [13]. 

As the chemistry and format are crucial to the performance of LIBs, it is important to characterize 

and study different formats (Cylindrical, Pouch, Coin, Prismatic) and newer materials. 

 A Ragone plot describes the power packed in a cell with its weight with a volume it takes for 

storage, figure 2 shows a plot of volumetric energy density Vs gravimetric energy densities of 

relevant Li-Ion LTO chemistries.  

 
Figure 2: Energy per unit volume of various chemistries [14] 

 

Note that the values in this plot considers the overall weight of cells and not just the active 

materials. Although the Gravimetric energy density for LTO anodes is lesser than that of 

conventional carbon anodes, LTO anodes have many desirable battery characteristics like safe 
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discharge even at high current rates and better structural stability.  Carbon has been the choice of 

EV manufacturers (Tesla, Nissan) while the cathode material has been improved from LCO to 

LMNO to LFP (Olivine structure). For a given chemistry and format, battery operation is affected 

by ageing and is subordinate to the operating conditions like the current-rate and working 

temperature. With growing number of chemistries being developed together the testing of any 

commercial cells should thus consider the intricacies of redox reactions. Half cells of active 

materials should be studied under controlled environment before being mass produced. However, 

this is out of the scope of this document This study was constrained by the SRP project that 

required testing battery packs further development is dedicated to electronics required for charging 

and a designing load circuit that can test single cells. The way a cell reacts electrochemically is 

dependent on the way it is used (i.e. charging pattern, temperature), it should be calibrated and 

parameters should be measured when the cell is being relaxed from the load. 
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1.3 Literature Survey 

Climate change and rising levels of greenhouse emissions from conventional vehicles have led the 

automotive industries to move towards electrification of vehicles that have Energy Storage 

Systems (ESS) made up of Li-Ion Batteries (LIBs). A sustainable utilization of these ESS is a 

major concern as they are extensively being used in consumer electronics, grid energy and storage 

and now, transportation [15]. International Energy Agency (IEA) estimates that the number of 

Electric Vehicles (EVs) to rise from 3.7 million currently to 21.5 million EVs by 2030 [16]. With 

the growing demand of such vehicles, developing cost-effective and long-lasting batteries that are 

safe is crucial to the sustainability of this benevolent transition. Since the commercialization of 

LIBs in 1991 by Sony® that used LiCoO2 cathodes and graphitic anodes, many new cathode 

materials like LiMn2O4 (spinel) LiFePO4 (olivine), Li1+z(NixMnxCo1-2x-yTiy) O2 , however, very 

few changes have been made in the anode side of the cell, in terms of material innovation or 

chemistry  [17-18]. The current state of LIBs, that are used in electric vehicles still uses a carbon 

anode and a stabilized blend of lithium- transition metal oxide and they still fall short to deliver a 

safe, long-lasting power backup. With growing concerns of safety and cycle-life, an alternative to 

inflammable lithiated graphite (charged) is crucial is to study and establish to supplement the rapid 

electrification of vehicles. Considering that battery modules currently contribute 40% of an electric 

car’s worth, it also becomes important to actively diagnose the State Of Health (SOH) of the ESS 

and model its capacity fade mechanism for second-life applications of ESS from Gridable Vehicles 

(GV)[19]. As the performance of the battery is primarily dependent upon the format and chemistry 

used, individual cells as well as larger packs from such Gridable Vehicles should be studied to 

better estimate the Remaining Useful Life (RUL).   



 

7 

Lithium Titanium Oxide (LTO spinel), a novel garnet-based anode material has recently gained 

much attention due to its excellent structural stability, self-passivating thin layered SEI formation 

[20], zero strain property, long cycle life and better safety features [21].  Li4Ti5O12 

(stoichiometrically, Li[Ti1.67Li0.33]O4) has a stable spinel structure with crystallographic sites 

denoted as [Li3]
8a [ Li1Ti5]

16d [O12]
32e and has space group of Fd-3m which can take up to 3 Li+ 

per molecule and change to Li7Ti5O12 as per the following reaction with a theoretical capacity of 

175 mAh/g [22-23]. 

Li3(8a) [LiTi5
4+

] (16d) O12(32e) + 3e−+ 3Li+↔ Li6(16c) [LiTi3
3+

Ti2
4+

] (16d) O12(32e) 

During this reaction, the tetrahedral(8a) Li+ ions are displaced into neighboring octahedral(16c) 

sites to generate a rock salt structure with all the octahedral sites are occupied by the) Li+. During 

this lithiation(charging) process, the spinel framework remains intact. The interstitial space of the 

spinel framework provides a three-dimensional network of the 8a tetrahedra and 16c octahedra 

through which lithium ions can diffuse rather unrestricted through the interstitial space, thus 

allowing rapid lithium-ion transport. Ab-initio calculations suggest that Li4Ti5O12 can bear a 

theoretical capacity of 262 mAh/g transforming into Li8.5Ti5O12 when charged from 0 to 3 V by 

insertion of extra lithium in the empty 8a sites which is accompanied by a negligible 0.4% volume 

change [24]. However, our study limits the battery charging to 2.75 V and thus this phase change 

is out of the scope of operation although it might occur in cases of overcharging. Figure 3 shows 

the Schematic of the spinel structure with atoms shown in the upper half depict the positions of 

lithium and titanium cations at 8a(Stripped spheres) and 16 d (dark dots) surrounded by the Oxygen 

anions as clear circles occupying 32e position in the lattice of LTO. 
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Figure 3: Schematic of LTO Spinel structure [25] 

It is noteworthy that Li-poor Li4Ti5O12 has a spinel crystal structure with very low electronic 

conductivity while Li-rich Li7Ti5O12 has a rock-salt crystal structure and has comparatively higher 

electronic conductivity. This differential in conductivities prevent an internal short circuit and a 

gradual cause thermal runaway and thus are inherently safe [26].When Li ions are extracted from 

Li-rich rock-salt phase, it gets consumed of Li ions rapidly, being highly conductive phase and 

transforms into spinel phase, which increases the impedance preventing a spike of Li ion starvation 

as caused in carbonaceous anodes at high C rates. However, the electrochemical properties of LTO, 

like carbon, greatly depend on the hierarchy of the structure and requires tuning of nanoparticles 

and mesoporous aggregates to stay at its maximum capacity. LTO is a material of interest to many 

scholars not only because it can be used in next generation Solid State Batteries that use flexible 

inflammable ion-conducting separator membranes (Gel Composite Electrolytes) and using multi-

stage printing with LCO cathodes [27] but also because composites like LTO-TiO2 can efficiently 

shuttle Na+ ions in Sodium Ion Batteries (SIBs) against a sodium metal [28]. LTO batteries are 

already used in Honda, Mitsubishi [29] and are been used in projects like TOSA [30] and are 

available in various formats like prismatic, pouch, cylindrical 18650s [31].  

However, the basic working of LTO batteries is same and can be visualized using the next 
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following Figure 4.The octahedrons in LTO are formed by Oxygen atoms at the edges around a 

Titanium cation , lithium ions are shown by dark spheres. The Li ions thermodynamically prefer 

to reside and orient inside the bulk of the positive electrode(cathode) which is usually a Lithium-

Transition metal oxide layered structure, where Lithium ions can reside between layers . During 

charging, the Li ions are forced into the anode (LTO in this case) and remain in a dynamic 

equilibrium which is controlled by the external electron flow.  

 

Figure 4: Working of LTO||LCO cell [26] 

With the external circuit turned on, the flow of electrons is the cause of Li ions shuttling back from 

anode to cathode through the electrolyte. 

With growing EVs on road, the determination of the State Of Health (SOH) of a battery pack/ESS 

by on-board diagnosis that can be estimated using Battery Management System (BMS) has become 

crucial [32]. Since ageing of Li-ion batteries in EVs being dependent upon driving patterns, 

discharge rate, temperature and battery chemistry this study focusses on LTO||LCO which are 

subjected to custom duty cycles that mimic typical drive conditions for an EVs to evaluate its true 

performance and failure modes using invasive and noninvasive techniques and explore the need 

of an active thermal management of the ESS. After a capacity fade of 20%, battery packs were 

dissembled and repackaged into smaller packs and were cycled under step wave form cyclic 
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thermal load to simulate seasonal changes, to explore the viability of LTO batteries in Second-Life 

applications. This approach emphasizes on reusing faded batteries before their End-Of-Life with 

a range of applications from smart grids that reuse ESS for auxiliary storage for solar systems [33]. 

Overcharge durability during cycling and ageing at room temperature, for LTO batteries has been 

studies previously [34-35].  

1.4  Scope and Objective 

Battery manufacturers provide a data sheet with cell performance, often under Constant 

Current Constant Voltage (CC-CV) conditions. The procedure includes charging and discharging 

at a constant current between fixed voltage limits. This does not represent the dynamic nature of 

load as experienced by battery module in an electric vehicle. Real-time cycling under simulated 

loads and environment is the key to get conclusive results about battery life. Battery 

characterization is an emerging field that has just recently gained much attention, as batteries of 

diverse chemistries and formats are widely manufactured. While the proponents of testing batteries 

with DC load like Prof. Jeff Dahn(with Tesla and Panasonic) use high precision direct current 

sources to find coulombic efficiencies as the cells are cycled in real-time to attribute the capacity 

fade to unwanted interface formation, other scholars like Prof Han (Tsinghua University, China) 

utilizes Differential Voltage curves to probe State Of Health in a manner that is convent for on-

board continuous monitoring . [36-37]. Modern testing of batteries includes extended 

characterization that run different schedules on cycler that run different kinds of tests for values of 

Static Capacity tests, SoC, OCV using active filters. [38]. Most of these approaches can be 

implemented on-board with the ESS so that continuous monitoring is possible, unlike EIS that 

requires testing when operation is ceased. The premise of the study lies on the fact that batteries 
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should undergo real-time tests before being considered for any application, thus a parallel 

assembly of 6 cells in parallel was used for testing. The objective of this study is to simulate real-

time conditions and implement battery characterization techniques such as Capacity Fade, 

Differential Voltage, EIS and XRD to determine the failure mechanism in LTO anode LIBs . As 

LTO batteries are been used in Electric Vehicles it is essential to understand if we can apply the 

conventional model of carbon-anode battery degradation to estimate Remaining Useful Life 

(RUL). The manufacturer of the cells is kept confidential since no permission to cut cells for study 

was acquired.  

The following equation has widely been used to model batteries that have carbon anodes, where , 

Qloss is the percentage capacity loss; Ea is the activation energy in J/mol; R is the gas constant; T 

is temperature in kelvins; t is the cycling time; z is the power law factor; and B is the pre-

exponential factor. However, such a model might not hold true to yield a correct RUL when the 

cell under consideration has a different chemistry [36]. It is thus important to model specific battery 

chemistries to practically predict RUL. With these objectives this study aims to find the feasibility 

of using LTO batteries in EVs  

An approximate mechanism of capacity fading will provide the basis of application and feasibilty 

in second life. In a sustainable energy scenario, large ESS would be actively monitored and reused 

after they are unable to deliver acceptable capacity. This would not only promote safety but also 

the life cycle of the commodity.  
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On testing of batteries that are thermally cycled after a few hundred cycles (as in this study) to 

simulate prolonged seasonal effects along with drive schedules that require high instantaneous 

discharge charge rates, causing an accelerated aging. A capacity fade mechanism that is unique to 

LTO anodes and distinctively different from failure in carbon anode batteries is confirmed. Effects 

of temperature on cell performance and need for thermal management is also investigated for LTO 

cells, 
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2 EXPERIMENT 

2.1 EV Drive Protocols 

In this study, LTO anode commercial batteries are tested under a custom drive cycle (AZ01), 

for state of Arizona, that combines several standard drive protocols like UDDS (urban driving), 

HWFET (highway driving), US-06 (aggressive driving) and SC-03 (driving with air-conditioning). 

The velocity profile of this cumulative cycle is shown in Figure 5 with an average velocity of 21.74 

miles per hour, covering 16.4 miles. 

 
Figure 5: Composite Driving profile, AZ-01 

Since the battery pack will be the sole power source for an EV, a Charge-Depleting (CD mode is 

selected for cycling the packs with a Depth of Discharge of 80%. The current profile for AZ-01 

under the CD mode is shown in Figure 6. Furthermore, the regenerative breaking was limited to 

7% in the current profile to get the battery packs discharges faster. Appendix A shows simulated 

current profile for a 300 mile ranged, mid-sized all electric car in Argonne National Lab’s 

Autonomie.  
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Figure 6: Current Profile for AZ-01 

A detailed procedure to derive current profiles was retrieved, studied, and published by Peterson 

et al [39]. The current profile was scaled to fit +/- 20 ampere current range for an Arbin cycler 

(BT2000) shown in Figure 7 and was used to record data points for capacity fading. 

 

As per the manufacturer, each cell has the positive electrode as Lithium Cobalt Oxide (LCO) while 

the negative electrode is made up of Lithium Titanium Oxide (LTO). Each cell is rated capacity 

of 1300 mAh and operate at a nominal voltage of 2.4 V, with a cutoff voltage of 2.85 V. 
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Figure 7: Arbin BT-2000 Cycler 

 

Two battery packs (Pack # 1 and Pack # 2), each containing six of such cells connected in parallel 

with cumulative capacity of 7.8 Ah were used to make battery packs to be subjected AZ-01 cycling 

in temperature chambers. Initial values of capacity of battery pack were determined by discharging 

the packs at C/2 (3.9 A) between fixed upper (2.85 V) and lower (1.5 V) voltage, for 5 cycles with 

5 min rest in between using Arbin BT 2000 cycler charge and discharge at room temperature. 

 

2.2 Battery cycle-life test and second life 

Both battery packs were cycled at 40°C and 0°C temperatures to see the effect of temperature 

on the performance and life these LIBs. To replicate the seasonal changes in temperatures, each 

pack was cycled for a few 100 cycles before switching the temperature. Figure 8 shows the 

flowchart for the schedule in Arbin cycler. Battery pack is first charged up to 2.85 V at a 1C rate 

following a rest of 5 minutes after which the battery is discharged using the AZ-01 current profile. 
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This process is carried out 6 times before charging and discharging the battery at C/5 rate with 10 

minutes rest. The Arbin is programmed to carry out this in loop of 6. In final step, battery pack is 

again charged up to upper cut off voltage at 1C rate. Typically, one such schedule takes ~ 37 cycles 

and it takes about a week or more to complete the schedule depending upon the operational 

temperature. 

 
Figure 8: Flowchart for the cycling schedule 

 

Reusing batteries, that are no longer adequate for use in EV, can have a major impact on 

environment and battery recycling industry Apart of developing techniques for recycling LIB, 

there is also a need to reuse these batteries for second life applications. These applications can be 

energy storage for residential usage, micro-grids or auxiliary ESS for load shaving [40]. After 

AZ01 cycling, half of battery packs were subjected to second life testing. Batteries were cycled 

under constant current charge/discharge current C/2 rate. For this, “8 channel battery analyzer”, 

shown in Figure 9 from ‘Battery Space’ was used, that could provide 3A of current up to 5V on 
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each channel. Both battery packs were cycled at C/2 current rate at 0ºC and 45ºC.  

 

 

Figure 9: Battery Space 8-Channel Battery Analyzer 
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3 CHARACTERIZATION 

3.1 EIS Analysis: 

Electrochemical Impedance Spectroscopy (EIS) measures the impedance of a system over a 

range of voltage perturbation at various frequencies, and the frequency response reveals the 

properties of the system. This is one of the most widely used non-invasive technique to quantitively 

estimate the temperature gradients and relaxation [41] and State Of Charge (SOC) [42] of LIBs 

based on frequency response of signal. The EIS patterns were fitted using the circuits seen in the 

inset of following figures. The Nyquist plot of battery consists of three distinct regions, each 

representing a part of the Rendall’s circuit. Firstly, an inductive tail to the left of a Nyquist plot at 

high frequency that intercepts with Zre axis denotes High Frequency Resistance (HFR) 

representing ohmic resistance in series with the cells offered by the battery pack and the total pack 

inductance. This includes summation of all resistances offered by electrolyte, current collectors, 

electrode particles and connections between cell terminals and instrument. Second feature is 

marked by a semicircular region at mid frequency range that is attributed to charge transfer 

resistance of Li+ through the Anode-Electrolyte Interface (a.k.a. SEI) and Cathode Electrolyte 

Interface (CEI). Third region includes a tangential line, representing the impedance due to 

diffusion process into electrodes at lower frequency and is represented by a Warburg element in 

the Rendall’s circuit. In this study EIS tests were carried out on cell at regular intervals of cycling. 

Batteries were charged up to 100% SOC after two hours being out from temperature chambers to 

Voltage signal of amplitude 10mV was applied over frequency range of 10KHz to 10mHz. The 

apparatus used for EIS test was Biologic BCS 810, shown in Figure 10. Finally, a Warburg 

resistance is included to account for diffusion in the Low Frequency Range (LFR). 
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Figure 10: Biologic 810 Potentiostat 

 

3.2 XRD Analysis 

X-Ray diffraction is an established method in Solid State characterization, that uses the 

order of atoms in planes (for any crystal structure) and gives the interplanar distance between 

planes in different miller directions. This becomes the direct link to its crystal structure and lattice 

parameters which also yields site occupancy. To confirm the structural integrity of crystalline 

electrodes, Bruker D-8 X-Ray (Copper Kα; ƛ=1.5406 Å) diffraction machine, shown in Figure 11, 

was used to probe the active material. 
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Figure 11: Bruker D-8 X-Ray Diffractometer 

 

After an eventual capacity fade (~20%), the packs were sorted and repackaged into smaller 

packs for Secondary-Life and the rest cells were used for the invasive testing. The cells cycled on 

AZ-01 were discharged completely before cutting inside a fume hood. Preparing the samples 

includes extracting jelly roll from the metal casing after which circular blanks were cut from the 

electrode films. These electrolyte blanks were sonicated for 30 mins in Propylene Carbonate to 

remove the electrolyte salts, prior to rinsing isopropyl alcohol. After overnight vacuum drying at 

80°C was done after washing. SEI cannot be probed using this approach since it too washes away 

during sonication. A scan from 10 to 60 degrees was carried out at a scan rate of 2 degrees per 

minute for structural analysis.  
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4 RESULTS AND DISCUSSIONS 

4.1 Capacity Fading 

As the two battery packs undergo thermal cycling (0 °C and 40°C) while being discharged via 

AZ-01, a capacity fade is observed in both the packs, depicted in Figure 12 and Figure 13. It is 

noteworthy that the discharge capacity drastically falls at lower temperature than at a higher 

temperature while the cells retain this capacity fades less with cycles at the lower temperature 

limit. Although cells cycled at higher temperature delivered significantly more discharge capacity, 

the capacity fade at this temperature is observed to be faster. A two-stage capacity fade, as 

previously reported for LTO batteries can be seen evidently; the first stage is marked by slow 

capacity fade before the onset of second stage which is marked by significant and drastic capacity 

fade. Pack#1 remains in the stage 1 of capacity fading under the EV schedule and shows excellent 

cyclability, with the maximum capacity fade at the high temperature limit~3.75% in 138 cycles. 

We can also say that about 290 mAh is lost from 7800 mAh over 138 cycles (or 2mAh fade per  

AZ-01 schedule ).The capacity fade is minimized at the low temperature with about 1.1% over the 

next 258 cycles and it can similarly be concluded that about 61 mAh of capacity is lost from 6100 

mAh available at zero degree Celsius or 0.23 mAh of capacity is faded after each cycle of AZ-01 

at the lower temperature limit. 
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Figure 12: Capacity Fade for Pack#1 under EV cycling 

Pack#2 showed the similar capacity fade of 128 mAh lost off 6400 mAh available over 174 cycles 

(0.73 mAh/ cycle) with overall ~2.4% fade at low temperature operation after which. major 

fading~6.8% over 186 cycles is observed when cycled at high temperature and it seems to enter 

the second stage of more drastic fading, which translates to 510 mAh lost off 7500 mAh or 2.74 

mAh/ cycle. This is four times the degradation at lower temperature and can at least one cell must 

have reached the inflexion point of stage 1 degradation, entering into a regime of more drastic  
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capacity fade as evident 

After an overall capacity fade of ~20% the battery packs were disassembled, and the cells were 

tested. All the cells from pack#1 seemed acceptable while one cell from pack#2 was swollen up 

and showed a voltage output in the range of Millivolts. A picture of the swollen cell can be seen 

in Appendix A. Figure 14 shows capacity values for second life. Batteries were initially charged 

C/2 rate up to cut off voltage and discharged at C/2 rate after rest of 2 minutes. 

 

 

 

 

 
Figure 13: Capacity Fade for Pack#2 under EV cycling 
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Figure 14: Capacity Fade of Pack#1 and Pack#2 for Second-Life under CC-CD at C/2 rate 

4.2 Electrochemical Impedance Spectroscopy 

The distinct shape of EIS spectra show a clear ionic diffusion through different part of the 

battery. When a cell discharges, the circuit current is the result of Li ions travelling from anode to 

cathode. This involves de-intercalation of Li ions from LTO (fast) followed by charge transfer 

from the electrolyte (most mobile ions) after which Li ions diffuse through interface (CEI) and 

eventually de-solvation of Li ions into the cathode. The simulated curves using equivalent circuit 

analysis are plotted as a function of cycle number in Figure 15 and Figure 16. The EIS spectra was 

analyzed using the software BT-Lab and the equivalent circuit was developed and fitted using 

(Randomize + Simplex) to converge at χ2 ~0.97 after stopping at 5000 iterations. A steady increase 

in High Frequency Resistance (HFR), (R1) denotes Conductivity Loss (CL) from electrolyte 
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degradation triggered by  loss of active material from the cathode primarily by dissolution and co-

intercalation with electrolyte species, that eventually get deposited over anode. No depositions 

were probed using microscopy on the electrode films. The model used is widely accepted and 

known as Adapted Randall’s Circuit(ARC), however this  model could not yield a satisfactory fit 

with the experimental data, thus quantitative conclusions from these The Nyquist plot of battery 

packs suggest gradual increase in series resistance (intercept with zero on real axis). The 

resistances of electrode-electrolyte interfaces (R2) and charge transfer resistance(R3) could not be 

resolved into two distinct semi-circles, this suggests that the battery pack should either be probed 

at different set of frequency of voltage perturbations or individual cells should be probed, rather 

than the whole battery pack with connections  [43]. Table 1 and 2 show the parameters found from 

the EIS fit of experimental data using the model circuit as L1+R1+C2/R2+Q3/R3+W1 , also shown 

in the inset of plots as components of adapted Randall’s circuit. 
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Figure 15: EIS patterns for Pack#1 under EV cycling 

Table 1: Simulation parameters for Pack#1 

Parameters L1 (H) R1(Ohm) C2 (F) R2(Ohm) Q3(F.s^(a - 1)) a R3(Ohm) W1(Ohm.s-^1/2) 

100 0.297 8e-6  0.01228  2.082 0.589 
6e-3 

-0.107 0.395 
7e-6 

-3.081e-
3 

0.552 4e-3 

200 65.62e-9 0.013413 0.934 0.6956e-
3 

-2.708e-3 0.993 -0.0112 0.811e-3 

300 28.09e-9 1.479e-2 1.914 0.768 
5e-3 

-0.078 36 0.690 6.905e-3 1.092e-3 

400 0.314e-6 1.418e-2 0.203 
8e-3 

7.421e-3 6.303 0.807 
9 

0.948 
7e-3 

1.196e-3 
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Figure 15: EIS patterns for Pack#1 under EV cycling 
 

 

 

4.3 Differential Voltage Curves 

If a battery is analogous to a water tank with different cross-sections(capacity) at different 

heights (Potential). The quantity dV/dQ increases drastically(peaks) when there is a phase change 

of crystallite electrode bulk while a plateau is caused by steady diffusion. Although capacity fade 

mechanism is specific to the chemistry of a single cell, probing the electrochemical degradation of 

Table 2: Simulation parameters for Pack#2 

Parameters L1 (H) R1(Ohm) C2 (F) R2(Ohm) 
Q3(F.s^(a 

- 1)) 
a R3(Ohm) W1(Ohm.s-^1/2) 

100 
0.335 
3e-6 

0.01545 10.4 1.037e-3 0.070 8 0.457 0.010 1.743e-3 

200 
-14.73e-

9 
0.01647 

-0.815 
3e-3 

-0.024 0.155 0.472 0.014 0.515 8e-3 

300 0.343 0.035 4.843 
0.854 
2e-3 

-2.844 0 
-0.020 

06 
0.318 6e-3 
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individual electrodes can be done qualitatively by fabricating Half cells, which was beyond the 

scope of this study. Differential Voltage (DV) curves give an idea of the working of battery in 

operation and is used as an estimate of State of Health (SOH) in this regard. The peaks of DV 

curves represent stable phases A two phases change as previously reported for LTO battery is 

observed, denoted by the two peaks corresponding to Spinel and Rock-Salt structure.  

For instance, since at the beginning of the battery life, cathode capacity is higher that the anode 

capacity, the cell capacity is limited by the anode. The first stage of gradual capacity fade is marked 

by the slow degradation of cathode, this stage is marked by Loss of Lithium Inventory (LLI) and 

Loss of Active Material (LAM)primarily and shows itself in the right side of the DV curves. As 

the cell ages, cathode fades faster and when its value reduces than that of anode, a second stage of 

capacity fade is observed which corresponds to the dwindling cathode capacity. The second stage 

is hypothesized to be due to failure of cell because of electrolytic reduction at the anode and 

formation of interfacial surfaces resulting from both LLI and LAM [44].  Similar DVA curves 

have   been found particularly true for LTO batteries. Figure 17 and Figure 18 illustrates the DV 

curves observed from Pack#1 and Pack#2 discharge cycles as they get aged over the AZ-01 drive 

schedule with a voltage width of 10 mV, the graph is smoothened to filter noise. The degradation 

of the cells can be seen evidently from the capacity loss in the DVA curves. 

By measuring the IC curves (dQ/dV) and differential voltage (DV) curves (dV/ dQ) estimates of 

State Of Health (SOH) can be predicted and are viable option for on-board Battery Management 

Systems (BMS) [45]. 

Hall et al [46] carried out studies on LTO||NCA batteries for stationary energy storage 

applications subjected to thermal cycling and varying C rates. While the LTO was stable with 

cycling, NCA was found out to be dominant ageing component with formation of nickel oxide 
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layer.  

 

 

 

Figure 17: Differential Voltage curve of Pack#1 for EV cycling 

 

Xuebing Han et al  [36-37] has widely been studied  to model capacity fade mechanisms similarly 

for various commercial LIB chemistries like LTO||NMC and C||LFP batteries using this approach. 

Battery ageing is attributed to two causes; Loss of Active Material (LAM) and Loss of Lithium 

Inventory (LLI). The former is caused by dissolution of electrode ions. 
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 Figure 18: Differential Voltage curve of Pack#2 for EV cycling  

 

in the electrolyte and eventual thickening of Cathode-Electrolyte Interface layer while the latter is 

marked by Lithium plating and SEI formation (loss of lithiated cathode). However, LLI is 

significantly mitigated since LTO avoids lithium plating as compared carbon-anodes and is known 

to have stable-thinner SEIs. Initially the battery capacity is limited by the anode capacity as the 

cathode that has a higher capacity but fades at a faster rate than the anode, eventually coming to a 

point where cathode capacity becomes less than anode capacity and is then cell capacity gets 

limited by the cathode capacity. The shifting of peaks on the right towards left with ageing can 

thus be attributed to LAM.  Different LTO batteries were tested to collect Incremental Capacity 

(IC) and Differential Voltage (DV) data to confirm a two stage piecewise linear capacity loss 

which is different from traditional graphite anode degradation. Region B and C are most affected 

by ageing, While region. The capacity fade as observed by this research group for LTO anode cells 

is depicted in Appendix B.  
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4.4 X-Ray Diffraction Pattern 

The signals from Bruker D-8 (Cu Kα source) were used to do Rietveld analysis using Topaz 

V4.2 with a Pseudo Voigt Function and an LP factor with a monochromator angle of 26.4°. 

Chebychev polynomial of 5th order with 1/X Bkg function was used to filter the background. The 

reference used of LTO [47] and LCO [48] is obtained from Open Crystallography Database. The 

patterns for Anode and Cathode can be seen in Figure 19 and Figure 20. The structural analysis 

and phase detections were done using the Jade software. The XRD patterns of LTO shows no 

major change in the crystal structure. The Rietveld refinement reveals minor changes in the lattice 

constants and negligible strains as expected are confirmed. The swollen cell from pack#2 exposed 

the delaminated anode film and a 5% loss of weight was observed, which is an indication of failure 

by gassing. Although no other cell showed major swelling and similar fading. However, the XRD 

of the cathode reveals that the cathode material is a mix of LCO and LMNCO.LCO is known to 

be tuned and mixed with LMNCO to electrochemically outperform LCO, when the ratio of LCO 

and LMNCO is about 80:20[49] As the battery is cycled the loss of Mn ions is seen, which is 

commonly observed[50] and shows that the Li ion transport occurs through a solid solution method 

rather than through phase change as seen in LTO anodes. 
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Figure 19: XRD patterns of LTO 
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Figure 20: XRD patterns of LCO 

 

The LTO anode shows excellent structural stability against ageing and no major changes 

in the peak are observed. Lattice parameters and strains calculated from Rietveld from the 

refinement are tabulated in Table 1 and Table 2 for LTO and LCO respectively.  

Table 3: Rietveld Analysis of LCO Anode 
 

 
SAMPLE CELL VOLUME (Å3) A(Å) STRAIN 

PRISTINE LTO 584.06741 8.359 0.0001 

PACK#1, AFTER AZ-01 584.06741 8.359 0.00010062 

PACK#2, AFTER AZ-01 584.06741 8.359 0.00013966 

PACK#1, AFTER SL 584.06741 8.3592 0.09580225 

PACK#2, AFTER SL   

SSSECOND-LIFE 

583.63322 8.35692 0.00016 

FAULTED PACK#2 622.61709 8.539 2.004535 
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The LTO anodes show little or no strain even after Second-Life cycling, the lattice strains 

were not observed. One cell from Pack#2 was observed to be swollen and failed, but no flames 

were seen, and the process seems to be self-passivating as it does not propagate or affect the 

adjacent cells. Rietveld refinement reveals a highly distorted lattice for the faulted, swollen cell. 

Appendix C shows the results of phase identification of anode and cathode patterns as obtained 

using Jade software.  

 

 

5 SHORTCOMINGS 

It is noteworthy that battery packs under study were modules of 6 cells in parallel without 

an active balancing and failure in a single cell can affect the performance of the pack and would 

be hard to probe with current experimental setup. This is a major shortcoming of the experimental 

procedure adopted. Thus, resolving the Nyquist plot was difficult and non-conclusive, quantitively. 

An active control switch is necessary to be designed and implemented that will include complex 

electronic parts so that health of each cell can be monitored, this could be done using multiplexers 

that can probe individual cells as they get charged at a charging station. High precision voltage 

source (+/- 0.5mV) are essential to effectively resolve the voltage curves and quantitatively know 

the coulombic efficiency, the Arbin cyclers used has little accuracy as they were not calibrated in 

Table 4: Rietveld Analysis of LCO cathode 

 Sample Cell Volume (Å3) a(Å) c(Å) Strain 

Pristine LCO 98.69127 2.822097 14.30972 0.622 

Pack#1, After AZ-01 104.86312 2.921616 14.1855 0.13 

Pack#2, After AZ-01 102.69431 2.863103 14.46577 2.03413 

Pack#1, After SL 98.03898 2.814809 14.28796 0.659162 

Pack#2, After SL 98.499 2.807 14.435 0.23098 
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due time had errors.  

 Sophisticated characterization techniques such as TEM and In-Situ X-ray that can probe changes 

in operation will provide better insight into the phenomenon behind cell behaviors and operation. 

To better probe the surface and features like SEI, advanced characterization (such as TEM/SEM) 

is crucial and will be done to observe dendrite growth at high rates and effects of temperature on 

active material surface. Also, the connections and soldering done to make the battery packs were 

not identical and may have caused noise in impedance spectra. Single cells and half cells that are 

identical should be tested for more accurate data on failure mechanism 

 

 

6 CONCLUSIONS AND FUTURE WORK 

 

The anode material was confirmed to be purely LTO however the cathode was found to be 

a mixture of LMO and LCO. A rise or fall of about 1.5 mAh was evident by cycling at 40°C. The 

first stage of gradual capacity fade is marked by the slow degradation of cathode. As the cell ages, 

cathode capacity fades faster and when its value reduces than that of anode, a second stage of 

capacity fade is observed which corresponds to the dwindling cathode capacity. Expectedly, XRD 

patterns of LTO shows no major change in the crystal structure, however, the XRD of LCO reveals 

that the cathode material is a mix of LCO and LMCO unlike stated by the manufacturer, which 

proves that the cathode material disintegrates which can be classified as Loss Of Active Material 

(LAM)This shows a different nature of Li+ ion transport which occurs through a phase change (flat 

voltage curve while discharge with slopes at voltage boundaries) in the anode while. Li+ transport 



 

36 

through cathode occurs via a solid solution route (steady voltage increases while charging). As the 

battery is cycled the loss of Manganese ions is seen, which is commonly observed mechanism of 

cathode ageing. A steady increase in the High Frequency Resistance (mainly R1) and the trend of 

impedance spectra signifies Conduction Losses (CL) as the electrolyte partly reacts with cathode.  

To test battery, it is essential to either have very accurate current supply and measure the 

decreasing coulombic efficiency or to test the batteries in a simulated environment and operating 

condition and observe capacity fade, however filtered Differential Voltage curve that is flat with 

two peaks for discharge prove that that there is a two-phase change in the LTO (anode)  as Li+ ions 

get transferred to the cathode during discharging The DVA curves are a tool to resolve degradation 

of individual failure mechanism by its features even when cells are probed in a parallel connection 

battery pack. 

Loss of Active Material (LAM) can be concluded as the major degradation mechanism as 

evident from XRD and DVA curves that triggers other failure mechanism like CL and LLI to 

occur.  RUL could not be estimated quantitively as it is important that single cells are tested along 

with battery packs to understand the electrochemistry of a cell and dynamics of cell working 

together in a pack. Efforts on finding the inflexion point between first stage of slow degradation 

and second stage of accelerated fading were made to decide the usability of a battery pack from 

vehicle ESS for use in stationary applications like grid storage (Second-Life).  

 

  Cell testing as presented in this thesis will be continued with efforts to actively and 

passively augment Supercapacitors along with LIBs to form a hybrid ESS. Extensive EIS and 
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cyclic voltammetry on lab assembled coin-cells (from sample cell’s electrodes) can be used to 

resolve the behavior of each electrode and testing can be standardized for regulating data presented 

by battery manufacturers. A new approach towards testing should include the effects of electrolyte 

mixtures and additives on cell performance and characterization of electrolyte, a component that 

was overlooked in this testing, shall be emphasized. A robust testing procedure should include 

cycling of both, single cells and battery packs by using high precision cyclers to resolve the 

degradation of individual components of a cell along with characterization of cell in operation and 

post-mortem. Quantitative analysis can then be done to predict accurately Remaining Useful Life 

of a cell or a battery pack.  
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APPENDIX B 

CAPACITY FADE AND DIFFERENTIAL VOLTAGE  
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Two stage capacity fade observed in cells with LTO anode and NCM cathode [37] 

 

 

Differential Voltage curves of LTO battery [37]  
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APPENDIX C 

XRD PHASE RECOGNITION USING JADE FOR ELECTRODES 
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XRD phase recognition for anode using Jade 
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XRD phase recognition for cathode using Jade 

 

 

 

 

 

 

 

 


